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Fourier expansions of Kac–Moody Eisenstein series

and degenerate Whittaker vectors

Philipp Fleig, Axel Kleinschmidt and Daniel Persson

Motivated by string theory scattering amplitudes that are invari-
ant under a discrete U-duality, we study Fourier coefficients of
Eisenstein series on Kac–Moody groups. In particular, we analyse
the Eisenstein series on E9(R), E10(R) and E11(R) correspond-
ing to certain degenerate principal series at the values s = 3/2
and s = 5/2 that were studied in [1]. We show that these Eisen-
stein series have very simple Fourier coefficients as expected for
their role as supersymmetric contributions to the higher deriva-
tive couplings R4 and ∂4R4 coming from 1/2-BPS and 1/4-BPS
instantons, respectively. This suggests that there exist minimal
and next-to-minimal unipotent automorphic representations of the
associated Kac–Moody groups to which these special Eisenstein
series are attached. We also provide complete explicit expressions
for degenerate Whittaker vectors of minimal Eisenstein series on
E6(R), E7(R) and E8(R) that have not appeared in the literature
before.
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1. Introduction and Summary

This paper concerns the analysis of Fourier coefficients of certain automor-
phic forms on infinite-dimensional Kac–Moody groups. As such, our results
are of a mathematical nature, although our motivations come from the study
of scattering amplitudes in string theory. In this introduction, we begin in
Section 1.1 by setting the stage with some general background and motiva-
tion, providing both the physical and the mathematical perspective on the
subject of Eisenstein series and their Fourier expansions. We then describe
some of our mathematical results in more detail in Section 1.2. Finally, Sec-
tion 1.3 contains a short outline of the main text of the paper.

1.1. Background

Automorphic forms are certain functions on Lie groups G(R) with invariance
properties under subgroups of the discrete G(Z) group. Their importance
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in mathematics cannot be overstated: by now the theory of automorphic
forms is a vast subject that touches upon several areas, ranging from num-
ber theory and geometry to representation theory, and beyond (see [2–4] for
reviews). This web of interrelations between various fields is often referred
to as the Langlands program, due to its origin in a series of far-reaching con-
jectures outlined by Langlands in [5,6]. Much of the interesting information
carried by an automorphic form is captured by its Fourier coefficients. In
the classical case of G(R) = SL(2,R) these coefficients often carry a wealth
of arithmetic information, such as eigenvalues of Hecke operators and the
counting of points on elliptic curves (see, e.g., [7]). More generally, Fourier
coefficients of automorphic forms on higher rank Lie groups are closely linked
with representation theory; for example, these coefficients play a key role in
the transfer of automorphic forms from one group G to another group G̃, a
process known as “functoriality” — one of the cornerstones of the Langlands
program (see, e.g., [8, 9]).

Automorphic forms also appear naturally in physics, most notably in
string theory. When supergravity is formulated on a (ten-dimensional) space–
time manifold which includes a compact submanifold X, the theory has a
large moduli space of solutions. For certain choices of X this moduli space is
described by a coset space G(R)/K(G), where the Lie group G(R) is a con-
tinuous global symmetry andK(G) is its maximal compact subgroup (corre-
sponding to a local symmetry). When passing to string theory, the continu-
ous symmetryG(R) is broken to a discrete subgroupG(Z) called “U-duality”
group in physics [10, 11], and for the maximally supersymmetric cases the
moduli space becomes the arithmetic double quotient G(Z)\G(R)/K(G).

Physical observables, such as scattering amplitudes, must respect the
symmetry and are therefore given by functions on G(Z)\G(R)/K(G); to
wit, automorphic forms (see [12–28] for a sample of the vast literature on
the subject). Of particular interest for us is the case when X = T d, the
d-dimensional torus for d = 0, . . . , 10. In this situation, the relevant sym-
metry groups G(R) fall into the series of Ed+1-groups listed in table 1
with Dynkin diagrams displayed in figure 1. In particular, for d = 5, 6, 7 we
have the exceptional Lie groups E6, E7, E8, while for d = 8, 9, 10 one conjec-
turally obtains discrete symmetries described by the affine, hyperbolic and
Lorentzian Kac–Moody groups E9, E10, E11, respectively [10].

From a physics perspective the Fourier coefficients of these automor-
phic forms capture quantum corrections to classical observables: the zeroth
Fourier coefficient (or constant term) captures perturbative contributions,
while the remaining Fourier coefficients capture non-perturbative (instan-
ton) contributions [12]. In order to determine which instanton configurations
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Table 1: This is a list of all U-duality groups which appear when compacti-
fying maximal type IIB string theory in ten dimensions on a torus T d down
to D = 10− d dimensions. The leftmost column corresponds to the global
continuous symmetry of the classical theory [29], and the middle column lists
the associated maximal compact subgroups (which are local symmetries). In
the rightmost column, we give the discrete subgroups that are expected to
be preserved in the string theory [10]. The last two rows are conjectural as
are the discrete groups E8(Z) and E9(Z).

D/d Ed+1(R) K(Ed+1) Ed+1(Z)
10/0 SL(2,R) SO(2) SL(2,Z)
9/1 R+ × SL(2,R) SO(2) SL(2,Z)
8/2 SL(2,R)× SL(3,R) SO(3)× SO(2) SL(2,Z)× SL(3,Z)
7/3 SL(5,R) SO(5) SL(5,Z)
6/4 SO(5, 5,R) SO(5)× SO(5) SO(5, 5,Z)
5/5 E6(R) USp(8) E6(Z)
4/6 E7(R) SU(8)/Z2 E7(Z)
3/7 E8(R) Spin(16)/Z2 E8(Z)
2/8 E9(R) K(E9(R)) E9(Z)
1/9 E10(R) K(E10(R)) E10(Z)
0/10 E11(R) K(E11(R)) E11(Z)

contribute to a given observable it is therefore vital to know which of the
Fourier coefficients are non-vanishing. As alluded to above, this question is
also of major interest for mathematicians, and the key to answering it lies in
the representation theory of the Lie groupG(R) [30]. It is currently too ambi-
tious to try and address this in the context of general amplitudes in string
theory; instead we focus on a certain restricted class which is constrained by
supersymmetry — these are also called “Bogomol’nyi-Prasad-Sommerfield
(BPS)-protected” amplitudes. These types of amplitudes are characterized
by having very few quantum corrections, both at the perturbative and the
non-perturbative level. Put differently, the associated automorphic form
must have very few non-vanishing Fourier coefficients. This is somewhat sim-
ilar to the classical case of holomorphic modular forms f(τ) on the complex
upper-half plane H: holomorphicity then requires that the Fourier coeffi-
cients a(n) in the q = e2πiτ -expansion f(τ) =

∑
n∈Z a(n)q

n all vanish for
n < 0. Hence the BPS-condition can be thought of as a representation-
theoretic generalization of this holomorphicity condition to automorphic
forms on higher rank Lie groups.
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Figure 1: Dynkin diagram for En with Bourbaki labelling.

Recently there has been quite some progress in understanding the rel-
evant automorphic forms for higher derivative BPS-protected amplitudes
in toroidal compactifications of maximal supergravity. Here we are mainly
interested in curvature corrections to Einstein gravity in the low-energy effec-
tive action which are of the typeR4, ∂4R4, whereR4 is a specific contraction
of four Riemann tensors (see, e.g., [31]). These correspond to four-graviton
superstring scattering in type IIB string theory compactified on a torus T d.
The associated corrections to the effective action are of the schematic forms∫

d10−dx
√
Gf

(0)
Ed+1

(g)R4,

∫
d10−dx

√
Gf

(4)
Ed+1

(g)∂4R4,(1.1)

where f (0)
Ed+1

and f (4)
Ed+1

are functions on Ed+1(R) satisfying

f
(0)
Ed+1

(γgk) = f
(0)
Ed+1

(g), γ ∈ Ed+1(Z), g ∈ Ed+1(R), k ∈ K(Ed+1),
(1.2)

and similarly for f (4)
En
, with n = d+ 1. In addition to the invariance prop-

erties given above, the coefficients f (0)
En

and f
(4)
En

are subject to a number
of physical constraints: (i) they should be eigenfunctions of the Laplacian
on the symmetric space En/K with a specific eigenvalue (listed for exam-
ple in [25]); (ii) they must have a specific leading order behaviour when
expanded around one of the cusps in En/K(En). The first constraint arises
from supersymmetry [32], while the second is needed in order to match
with known perturbative results. Hence, the coefficients are the sought-after
automorphic forms that capture quantum corrections.

Let us illustrate this with an example. In the simplest case of n = 1
(d = 0), we have E1(R) = SL(2,R) and K(E1) = SO(2), such that the mod-
uli space SL(2,R)/K is isomorphic to the complex upper-half plane H.
This is parametrized by a complex variable τ = τ1 + iτ2 with τ2 > 0 such
that the cusp at infinity corresponds to the limit τ2 → ∞. Physically, the
variable τ1 is the axion of ten-dimensional IIB string theory, while τ2 =
g−1
s is the inverse string coupling. Hence, the limit τ2 → ∞ corresponds to
weak coupling gs → 0. In the strict weak-coupling limit, the leading order
(tree-level) contribution to the R4 term is known to be 2ζ(3)g−3/2

s [31].
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Hence, the automorphic form in front of R4 (in Einstein frame) must satisfy
f

(0)
SL(2)(τ) ∼ 2ζ(3)τ3/2

2 in the limit τ2 → ∞. This case was settled in the sem-

inal paper by Green and Gutperle [12] where they showed that f (0)
SL(2)(τ) is

the non-holomorphic Eisenstein series E(s, τ) =
∑

(m,n) �=(0,0) τ
s
2 |m+ nτ |−2s

evaluated at s = 3/2.1

In a series of works [17, 19, 25, 33–36] (see also [37] for closely related
mathematical results) this result has been generalized to higher-dimensional
tori T d, and by now the functions f (0)

Ed+1
and f (4)

Ed+1
have been determined for

d = 0, 1, . . . , 7: they are given by certain Eisenstein series (see Equation (1.8)
below, as well as Section 2 for more details) attached to special automorphic
representations of Ed+1(R), whose Fourier coefficients have precisely the sup-
port expected from physics considerations.2 Specifically, the function f (0)

Ed+1

should only receive contributions from (at least) 1/2 BPS-instantons, which
forces severe restrictions on the number of non-vanishing Fourier coefficients.
Following earlier work [30], it was shown in [35,36] that this condition is pre-
cisely satisfied for automorphic forms attached to the minimal unitary rep-
resentation of the group Ed+1(R) [38–40]. Here, “minimal” refers to the fact
that this representation is of smallest (non-trivial) functional dimension3.

These results imply that the automorphic form f
(0)
En
(g) corresponds to

a special point in the parameter space of Eisenstein series on En(R). Generi-
cally these Eisenstein series depend on n = rkEn complex parameters
(s1, . . . , sn) and f

(0)
En

arises at the point s = 3/2 on a certain complex one-
dimensional locus in Cn, parametrized by s. This specialization is responsible
for the vanishing of most of the Fourier coefficients which exist in the generic
case. For example, according to work of Langlands [41], a generic Eisenstein
series on a finite-dimensional simple Lie group G(R) has the same num-
ber of constant terms as the order of the Weyl group of the associated
Lie algebra g. This would give far too many perturbative contributions to
match the coefficient of the R4-term, but when restricting to s = 3/2 there

1In principle one could also have contributions from so called cusp forms, which
have zero constant term (perturbative term), but these were subsequently ruled out
in [14] using a combination of U-duality and supersymmetry arguments.

2For d < 5 the functions are actually linear combinations of Eisenstein series [34].
In the present paper, we are mainly interested in the case d ≥ 5.

3Unitary representations of non-compact Lie groups G(R) are infinite-
dimensional, but one can still attach to them a notion of “size”, called the functional
(or Gelfand–Kirillov) dimension. This is defined as the smallest number of variables
on which the associated functions can depend on. For example, the space L2(Rn)
of square-integrable functions on Rn has functional dimension n in this sense.
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are many cancellations in the general formula for the constant term and
the number of constant terms precisely reduces to the known perturbative
contributions [34]. Mathematically, s = 3/2 is precisely the value for which
the Eisenstein series is attached to the minimal automorphic representa-
tion [30]4, thus explaining the collapse in the number of Fourier coefficients.

A similar phenomenon occurs for the term involving ∂4R4: its coefficient
f

(4)
En
(g) corresponds to the value s = 5/2 of the same generic Eisenstein series;

this is then attached to the so called “next-to-minimal” representation of
En(R) [35, 36]. Physically, this is a manifestation of the fact that the term
∂4R4 in the effective action receives quantum corrections only from 1/2 and
1/4 BPS-states.

The situation becomes considerably more complicated when the torus
T d has dimension eight or higher. In this situation we move into the realm of
symmetry groups Ed+1 which are infinite-dimensional Kac–Moody groups.
Garland has pioneered the study of Eisenstein series on affine Kac–Moody
groups and has in particular analysed their convergence properties [42].
Moreover, he also proved [43] a constant term formula which generalizes the
formula of Langlands for finite-dimensional Lie groups. For affine groups this
formula involves a sum over the affine Weyl group, and has thereby infinitely
many contributions. This is in stark contrast with what we expect from the
associated physical functions f (0)

En
(g) and f (4)

En
(g), which should still only have

a finite number of perturbative contributions for reasons of supersymmetry.
This puzzle was resolved in the paper [1] (see also [44] for a short account)
where it was shown that for the same special points in the parameter space,
in particular for s = 3/2 and s = 5/2, the infinite number of constant terms
in fact collapse to a finite number, matching the expectations from physics.
This result was also shown to hold for the formal generalization of Eisenstein
series to E10(R) and E11(R).

Motivated by these developments, in this paper we initiate a study of the
non-constant Fourier coefficients of Eisenstein series on Kac–Moody groups
(see also [45–48] for related work), and show that a similar collapse hap-
pens also here when specializing to s = 3/2 and s = 5/2 for the groups
E9(R) and E10(R). Mathematically this is achieved by proving a formula
for certain degenerate Whittaker vectors on En(R) and show that upon
restricting the parameters most of the terms in this formula vanish, effec-
tively reducing the result to linear combinations of Whittaker vectors on
SL(2,R) or SL(2,R)× SL(2,R). As a by-product we also use our formula

4In fact, this corresponds to s = 1/4 in the normalization of [30]; see the conver-
sion table on page 58 of [36].
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to calculate the complete list of the non-vanishing Whittaker vectors on
the finite-dimensional exceptional groups E6(R), E7(R) and E8(R) in the
minimal representation.

We shall now summarize our mathematical results in a little more detail.

1.2. Summary of results

Let g be a Kac–Moody algebra and G its associated Kac–Moody group.
We are interested in the case when G = G(R) is a split real form and
G(Z) ⊂ G(R) is a discrete subgroup of Chevalley type. G(R) has an Iwa-
sawa decomposition G = BK = NAK and we formally define a Langlands–
Eisenstein series on G(R) according to5

E(χ, g) =
∑

γ∈B(Z)\G(Z)

χ(γg).(1.3)

Here, χ : G(R)→ C∗ satisfies χ(nak) = χ(a). The value of χ on the Cartan
subgroup A can be parametrized by a choice of complex weight λ ∈ h∗ ⊗ C,
where h∗ is the dual space of the Cartan subalgebra h = Lie(A). Using this
parametrization one then writes χ(a) = aλ+ρ, where ρ is the Weyl vector and
λ itself is parametrized by n complex parameters (s1, . . . , sn) (see Section 2
for more details). The function χ is trivial under left-action of B(Z), i.e.,
χ(γg) = χ(g) for all γ ∈ B(Z), explaining the quotient in (1.3). Using the
relation χ(a) = aλ+ρ, we also often write E(λ, g) = E(χ, g).

WhenG is a finite-dimensional Lie group, absolute convergence ofE(λ, g)
in (1.3) was proven by Godement [50] and Borel [51] in a domain where

(λ) is large enough (see below Equation (2.4) for a more concise state-
ment) and analytic continuation to almost all complex λ was established
by Langlands [52]. When G is an affine Kac–Moody group convergence was
established by Garland [42] (in the affine case one must be more cautious
with how χ depends on the derivation and also with the precise value of
a ∈ A [42,43] but we circumvent this subtlety here by working solely in the
domain of absolute convergence). The problem of proving convergence for
more general classes of Kac–Moody groups is still open, except for the case
of rank 2 hyperbolic groups which was recently established in [46].

As alluded to in the previous section we are interested in the Fourier
expansion of the Eisenstein series E(λ, g). The existence of such an expansion

5In the literature, one also encounters the definition in terms of a (constrained)
sum over the so-called instanton charge lattice with carefully implemented BPS
conditions [17,49].
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follows from the translational invarianceE(λ, ng) = E(λ, g) for all n ∈ N(Z) =
N(R) ∩G(Z). In order to write the expansion it turns out to be very conve-
nient to pass to the adelic viewpoint, in which we consider the adelic group
G(A) in place of G(R) and its discrete subgroup of rational points G(Q) in
place of G(Z) — we then view E(λ, g) as a function on G(Q)\G(A). See
Section 2.2 for more details on the process of adelization.

Let ψ : N(A)→ U(1) be any unitary character on N(A) which is trivial
on N(Q). Such a character is necessarily trivial on the entire derived sub-
group [N,N ] and so restricts to a character on the abelianization [N,N ]\N .
We can then write the general form of the Fourier expansion as follows:

E(λ, g) = C(λ, a) +
∑
ψ �=1

Wψ(λ, g) + non-abelian terms,(1.4)

where C(λ, a) is the constant term and the Fourier coefficient Wψ(λ, g) is
given by the Whittaker integral

Wψ(λ, g) =
∫
N(Q)\N(A)

E(λ, ng)ψ(n)dn.(1.5)

The constant term is given by the same formula for the trivial character
ψ = 1. The non-abelian terms correspond to Fourier coefficients which have
a non-trivial dependence on [N,N ]; these will not concern us in this paper.6

The dimension of the abelianization [N,N ]\N equals the rank n of the
(simple) group G(R) and we can parametrize ψ by an n-plet of rational num-
bers mα ∈ Q for all simple roots α. The trivial character ψ = 1 corresponds
to mα = 0 for all simple roots α. Note that by construction the Whittaker
vector satisfies Wψ(λ, nak) = ψ(n)Wψ(λ, a) and so Wψ(λ, g) is determined
by its values on A. The right-K-invariance ofWψ(λ, g) is sometimes encoded
by referring to it as a spherical Whittaker vector. The importance of Whit-
taker vectors is also highlighted by the fact that one can sometimes rewrite
the full automorphic function in terms of its Whittaker vectors [55, 56]

It turns out that, in contrast to the case of finite-dimensional Lie groups,
for infinite-dimensional Kac–Moody groups the Fourier coefficient Wψ(λ, g)
always vanishes when ψ is generic, i.e., all mα �= 0 (see Section 3.6 and
[45,46]). It is therefore of particular interest to compute the coefficient
Wψ(λ, g) for degenerate Whittaker vectors. By this we mean Whittaker vec-
tors Wψ(λ, g) associated with characters ψ for which at least one of the mα

vanishes.

6Some results on non-abelian terms can be found for example in [22,23,53,54].
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Motivated by this we prove the following formula for the degenerate
Whittaker vector in Section 4:7

Proposition 1. When ψ is a degenerate unitary character on N(A) and
λ in the Godement range such that the Eisenstein series (1.3) converges
absolutely, the Whittaker vector Wψ(λ, a) is given by

Wψ(λ, a) =
∑

wcw′0∈Cψ
a(wcw′0)

−1λ+ρM(w−1
c , λ)W ′

ψa(w
−1
c λ, 1).(1.6)

Here W ′
ψ is a Whittaker vector for the subgroup G′ ⊂ G such that ψ is generic

on the unipotent radical N ′ ⊂ G′; ψa denotes a certain twisted version of
ψ defined in Section 4.1. The set Cψ ⊂ W is the set of Weyl words (poten-
tially) contributing to Wψ; its explicit parametrization in terms of the longest
Weyl w′0 of G′ and special coset representatives wc is defined in Section 4.2.
Finally, the factor M(w, λ) is the same product over ratios of completed zeta
functions that appears in the constant term formula of Langlands [41] (see
also [58]) and is given explicitly in Equation (2.8).

In particular, for maximally degenerate characters ψ (i.e., only onemα �=
0), the Whittaker vectorWψ(2sΛi∗ − ρ, a) reduces to a linear combination of
(twisted) SL(2,R) Whittaker vectors. We refer to these Whittaker vectors as
vectors of type A1. For degenerate characters ψ that have two non-vanishing
mα on non-adjacent nodes with subgroup G′ = SL(2,R)× SL(2,R), one
obtains the product of two SL(2,R) Whittaker vectors. We refer to this
case as type A1 ×A1. These two are all the cases we will require in this
paper.

Our proof of Proposition 1 is strictly valid only in the finite-dimensional
case. Garland’s results on affine Eisenstein series [42, 43] strongly suggest
that our manipulations in the proof are also valid in this case and we will
in fact assume that Proposition 1 is also valid for Eisenstein series on gen-
eral Kac–Moody groups in the domain of absolute convergence. Since our
main interest is in very special Eisenstein series that are thought to arise
in physics, we do not attempt a general proof for (complete) Kac–Moody
groups in this paper.

In the general Kac–Moody case, the sum over the Weyl elements in (1.6)
is, however, infinite. As mentioned in the previous section, we are interested

7A similar formula for Whittaker vectors on finite-dimensional semi-simple Lie
groups was proven previously in [57].
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in special choices of the parameter λ such that this collapses to a finite sum.
To this end we restrict to Eisenstein series E(λ, g) for which

λ = 2sΛi∗ − ρ,(1.7)

where s ∈ C and Λi∗ denotes the fundamental weight associated with a single
simple root αi∗ . As will be explained in Section 2 the associated Eisenstein
series E(2sΛi∗ − ρ, g) can be interpreted as an Eisenstein series induced
from a character on the maximal parabolic subgroup Pi∗ ⊂ G, instead of
the Borel subgroup as was the case in (1.3). The automorphic forms f (0)

En

and f (4)
En

discussed in Section 1.1 are given by the Eisenstein series

f
(0)
En
(g) = E(3Λ1 − ρ, g) and f

(4)
En
(g) = E(5Λ1 − ρ, g),(1.8)

for g ∈ En(R). For these Eisenstein series the sum over characters ψ in (1.4)
then corresponds to a sum over instanton charges.

For these more special Eisenstein series we now have the following results:

Proposition 2. For the special choices of (s,Λi∗) which are relevant for
the R4 and ∂4R4 curvature corrections in the low-energy effective action,
the infinite sum in (1.6) collapses to a finite sum over elements in the set
Cλ,ψ defined in Equation (5.9). (This proposition is proven in Section 5.)

Proposition 3. For the R4 curvature corrections one has (s,Λi∗) =
(3/2,Λ1) (with labelling as in figure 1) [1]. The Whittaker vectors for the
corresponding Eisenstein series E9, E10 and E11 are given explicitly in
Section 6. In particular, for these cases we show that they are given by sums
over A1-type Whittaker vectors only such that∑

ψ �=0

Wψ(λ, na) =
∑
α∈Π

∑
ψα

cα(a)W ′
ψaα
(χ′α,1)ψα(n),(1.9)

where ψα denotes a maximally degenerate character with only mα �= 0 and
cα(a) is a simple polynomial function on the Cartan torus; Π denotes the
set of simple roots. In other words, all the Whittaker vectors vanish except
the ones associated with maximally degenerate characters.

Proposition 4. For the ∂4R4 curvature corrections one has (s,Λi∗) =
(5/2,Λ1) (with labelling as in figure 1) [1]. The Whittaker vectors for the
corresponding Eisenstein series on E9, E10 and E11 are given by finite sums
of A1- and A1 ×A1-type Whittaker vectors only. A representative example
for E10 is given in Section 6.2.
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For completeness, we also calculate the complete list of degenerate Whit-
taker vectors for (3/2,Λ1), corresponding to the minimal representation, for
the finite-dimensional exceptional groups E6, E7, E8; these results are con-
tained in Appendix A. They are also of A1-type only.

1.3. Outline

This paper is organized as follows. In Section 2, we introduce some basic
properties of Langlands-type Eisenstein series, and their adelic formulation.
We also recall the structure of Langlands’ constant term formula. In Sec-
tion 3, we discuss the general structure of Fourier expansions of Eisenstein
series and the connection with Whittaker vectors. We discuss in particular
conditions for when these Whittaker vectors are non-zero, observing that in
the Kac–Moody case this can only happen when the character ψ is degener-
ate. This leads naturally to our analysis of degenerate Whittaker vectors in
Section 4. We prove formula (1.6) of Proposition 1, expressing these degen-
erate Whittaker vectors as Weyl sums over generic Whittaker vectors of
subgroups. In Section 5, we then apply these results to show that the infi-
nite Weyl sum collapses to a finite sum for certain special Eisenstein series
of relevance in string theory, proving Propositions 2, 3 and 4. We provide
explicit and full results for the Kac–Moody groups E9, E10 and E11 for
the R4 correction and representative examples for the ∂4R4 correction for
E10 in Section 6. We conclude in Section 7 with some open problems. The
paper also contains some appendices. In Appendix A we present explicitly
all degenerate Whittaker vectors for the exceptional Lie groups E6, E7 and
E8 for the R4 correction, and in Appendix B we present an alternative proof
of the formula (1.6) for degenerate Whittaker vectors. Appendix C contains
some technical details on a parametrization of certain roots that play a role
in the proofs. Finally, Appendix D lists distinguished gradings of E10 itself.

2. Eisenstein series and their adelic formulation

In this section, we briefly give the definition and key properties of Eisenstein
series on the real Lie group G(R) and their adelization. More information
can be found for example in [59–61].

2.1. Definition of Eisenstein series

Let G = G(R) be a split real simple Lie group of rank n; G can be either
of finite or infinite dimension. The cases we have in mind are G = En for



54 Philipp Fleig, Axel Kleinschmidt and Daniel Persson

n = 6, 7, 8, 9, 10, 11, . . .. We restrict Lie(G) to be simply-laced for simplicity.
The Eisenstein series on the moduli space G/K that is invariant under the
U-duality group G(Z) can be induced from a perturbative term as follows.

The “coupling constants”8 of the theory sit in the maximal split torus
A ⊂ G. We suppose that a perturbative term is known and that it is of
the form v2s1

1 v2s2
2 · · · v2sn

n , where the vi label the coupling constants, and
the constants si parametrize the dependence of the perturbative term on the
coupling constants. There will also be an overall numerical coefficient of the
term that we can absorb in the normalization of the automorphic function
to be defined presently. An example would be the perturbative string tree
level correction to four-graviton scattering associated with a term R4: As
discussed in the introduction, this term is of the form 2ζ(3)g−3/2

s (in Einstein
frame) [31] and the string coupling gs is related to the vi in a polynomial
way and the overall coefficient 2ζ(3) is the overall normalization that we
will no longer discuss. Given such a perturbative term, we can construct
its G(Z)-completion by summing over all its images. A more mathematical
description of this leads directly to Langlands’ Eisenstein series [12, 59], as
we now demonstrate.

Let χ : G→ C be a function that projects a group element onto the
perturbative term, i.e.,

χ(g) = v2s1
1 · · · v2sn

n ,(2.1)

where we parametrize the Cartan torus A ⊂ G by

a = exp [log(v1)h1 + · · ·+ log(vn)hn] = vh1
1 · · · vhnn ,(2.2)

where the hi are the standard Chevalley generators of the Cartan subal-
gebra (their Killing inner product matrix is the Cartan matrix). In other
words, χ assigns to a point of the moduli space G/K a perturbative term.
Furthermore, the function χ satisfies

χ(nak) = χ(a),(2.3)

where g = nak is the Iwasawa decomposition and we will, loosely speaking,
refer to it as a quasi-character. The function χ is invariant under discrete
Borel elements B(Z): χ(γg) = χ(g) for γ ∈ B(Z). Physically, these transfor-
mations correspond to discrete large gauge transformations of the axions.

8This includes string coupling constant gs and the d compactification radii of the
torus T d such that there are n = d+ 1 coupling constants in total.
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We also allow the parameters si to take complex values. It will sometimes be
convenient to embed the Weyl group W =W(G) in the maximal compact
subgroup K ⊂ G, thus making χ right-invariant under Weyl transforma-
tions.

Starting from χ we define the Eisenstein series

E(χ, g) =
∑

γ∈B(Z)\G(Z)

χ(γg).(2.4)

This is the sum over all G(Z)-images of the perturbative term where the
χ-stabilizing B(Z) transformations have been quotiented out in order not to
overcount the sum. The convergence of this sum depends on the group G and
the values si, where convergence is guaranteed by the condition 
(si) > 1 for
all si, known as Godement’s criterion [51]. This convergence was proven for
finite-dimensional groups in [52, 59], for affine groups in [42, 43] and argued
for more general Kac–Moody groups in [1, 47, 48]. In the finite-dimensional
case the domain can be extended to almost all complex values of si by means
of a functional equation [52]; for the Kac–Moody case convergence appears
restricted to the Tits cone [42,47] (see [62] for the notion of Tits cone) and
one also needs to restrict the domain of a [46].

It turns out to be convenient to parametrize the function χ alternatively
by means of a weight λ of G. This is done by writing

χ(a) = aλ+ρ,(2.5)

where ρ is the Weyl vector of G and therefore λ =
∑

i(2si − 1)Λi in terms of
the fundamental weights Λi satisfying Λi(hj) = δij and we write the Eisen-
stein series alternatively as

E(λ, g) ≡ E(χ, g).(2.6)

The functional relation allowing extension of the domain is then [59]

E(λ, g) =M(w, λ)E(wλ, g),(2.7)

where w ∈ W is an element of the Weyl group of G and

M(w, λ) =
∏

α>0 |wα<0

ξ(〈λ|α〉)
ξ(1 + 〈λ|α〉) ,(2.8)

is an important numerical coefficient that involves a product over all posi-
tive roots α that are mapped to negative roots by w. The function ξ(k) =
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π−k/2Γ(k/2)ζ(k) is the completed Riemann ζ-function and the angled bracket
denotes the canonical inner product on the space of weights. The factor
M(w, λ) enjoys the important multiplicative property

M(ww̃, λ) =M(w, w̃λ)M(w̃, λ).(2.9)

The Eisenstein series that have played a role in string theory thus far
have been of a special type. More precisely, they originate from very simple
perturbative terms that lead to weights λ of the form

λ = 2sΛi∗ − ρ,(2.10)

where i∗ denotes a single node of the Dynkin diagram. Instead of depending
on n different parameters si, the resulting Eisenstein series depends only a
single parameter s. This case is referred to as maximal parabolic Eisenstein
series in [34] because the corresponding characters χ have an enlarged invari-
ance under a maximal parabolic subgroup Pi∗(Z) rather than just B(Z). As
indicated, the maximal parabolic is defined by the node i∗ that also enters
the definition of the weight in (2.10). The string tree level term χ(g) = g

−3/2
s

is exactly of this form.

2.2. Adelization

When analysing Eisenstein series it is often convenient to not treat them
as functions on the real Lie group G = G(R) but instead consider them as
functions on the group G(A) over the (rational) adeles A. The validity of this
extended viewpoint is guaranteed by the strong approximation theorem [63]
and explained for example in [64]. The advantage of this is that more math-
ematical tools are available when performing operations on E(χ, g).

The adeles A over Q are defined as

A = R ×
∏′

p<∞
Qp,(2.11)

where Qp are the p-adic numbers (see for instance [60, 61] for an introduc-
tion) and the product involves all inequivalent completions of the field Q

of rational numbers. The prime on the product indicates that almost all
elements in this infinite product are restricted to the p-adic integers Zp.
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The adelic version of the Eisenstein series, with the definition of the
character χ appropriately extended to G(A), is

E(χ, gA) =
∑

γ∈B(Q)\G(Q)

χ(γgA),(2.12)

where the difference to (2.4) is that now gA ∈ G(A) and the sum is over the
diagonally embedded discrete subgroup G(Q). The link to (2.4) is obtained
by restricting the element gA to lie solely in the real factor:

gA = (gR, 1, 1, . . .), gR ∈ G(R).(2.13)

Evaluating the adelic Eisenstein series for such gA defines a function on the
real group G(R) and, by strong approximation, this function is equal to (2.4)
defined above. We will in the sequel drop the subscript on the group element
as it will be clear from the context whether g is in G(A) or G(R).

One cornerstone of the adelic treatment is that one can write the quan-
tity M(w, λ) of (2.8) as

M(w−1, λ) =
∫
w−1B(Q)w∩N(Q)\N(A)

χ(wn) dn.(2.14)

This integral arises naturally when calculating the constant term of the
Eisenstein series that is defined by

C(λ, g) =
∫
N(Q)\N(A)

E(χ, ng) dn(2.15)

and this is a function solely on the Cartan torus. Using the Bruhat decom-
position and the integral (2.14) one can demonstrate Langlands’ constant
term formula

C(λ, a) =
∑
w∈W

M(w, λ)awλ+ρ,(2.16)

where the notation (2.5) was used. More information on the adelic treatment
of Eisenstein series can be found in [61].

3. Fourier expansion of Eisenstein series

In this section, we discuss the general structure of Fourier expansions of
Eisenstein series E(χ, g) and set up some of our basic notation. Fourier
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expansions can be defined with respect to arbitrary unipotent radicals U
of the group G that the Eisenstein series is defined on. The largest such
radical will be denoted by N (rather than a general U) and is the unipotent
radical of the (minimal parabolic) Borel subgroup B ⊂ G. This will be the
main case of interest to us, however, we begin with developing some of
the theory for arbitrary unipotent radical U associated with a standard9

parabolic subgroup P ⊂ G, where P = LU = UL is the Levi decomposition
and L denotes the Levi factor of P .

3.1. Fourier coefficients

An important object of interest is the Fourier coefficient FψU associated with
a Fourier kernel given by the character (group homomorphism)

ψU : U(Q)\U(A)→ U(1).(3.1)

The notation for the domain indicates that the character is trivial on the
discrete subgroup U(Q) in the adelic unipotent U(A) and the image is the
circle group of uni-modular complex numbers. The Fourier coefficient FψU of
an Eisenstein series E(χ, g) along U is then defined by the following integral:

FψU (χ, g) =
∫
U(Q)\U(A)

E(χ, ug)ψU (u) du.(3.2)

We denote this more general Fourier coefficient for arbitrary unipotent U by
FψU and reserve the notation Wψ for Fourier coefficients/Whittaker vectors
(1.5) that are defined on the maximal unipotent N .

In general, the unipotent group U can be non-abelian and therefore the
character is trivial on the commutator subgroup U ′ := [U,U ]. Hence the
character can be thought of as defined on the “abelianization” U ′\U .10 For
this reason, the Fourier coefficient (3.2) is sometimes referred to as an abelian
Fourier coefficient. It only captures part of the Eisenstein series in the sense
that

∑
ψU

FψU (χ, g) =
∫
U ′(Q)\U ′(A)

E(χ, ug) du,(3.3)

9A parabolic subgroup P ⊂ G is said to be a standard parabolic if it contains the
Borel subgroup B.

10The Lie algebra of (the dual of) this space is called the character variety.
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where the sum is over all possible characters ψU of the type (3.1).11 In other
words, the Fourier expansion with respect to characters ψU does not reflect
the dependence of E(χ, g) on U ′(A) as this is averaged out in (3.3).

By writing a group element in the form g = ulk with u ∈ U , l ∈ L and
k ∈ K one finds that

FψU (χ, g) = ψU (u)FψU (χ, l)(3.4)

and hence FψU is completely determined by its values on the Levi subgroup
L ⊂ G. In the following, we will restrict our analysis to this dependence. A
function satisfying (3.4) is known as a (generalized) Whittaker function.12

A particular role is played by the trivial character, ψU ≡ 1U , given by the
identity on U . The corresponding Fourier coefficient represents the zeroth
mode of the Fourier expansion, which we denote by CU (χ, g). This contri-
bution to the expansion is also referred to as the constant term or conical
vector [66]. Each non-trivial character, ψU �= 1U , contributes a term FψU , in
total making up the so-called abelian Fourier coefficients in the expansion
of the series. Then the Fourier expansion takes the general form

E(χ, g) = CU (χ, g) +
∑
ψU �=1

FψU (χ, g) + · · · ,(3.5)

generalizing (1.4) from the introduction. Here, the ellipsis indicates fur-
ther possible terms associated with the non-zero commutator components
of U that are averaged out in (3.3). To describe them one has to study
non-abelian Fourier expansions, or Fourier–Jacobi expansions, (see, e.g.,
[22, 23, 53, 61, 67–69]) that are associated with the derived series of U . In
the present paper, we will, however, not deal with this part of the expan-
sion. As mentioned already, the constant term in the Fourier expansion can
be evaluated using Langlands’ formula (2.16) or similar formulas derived by
Mœglin and Waldspurger [58].

11Interpreted in terms of instanton charges this means that we allow for all mutu-
ally local charges, including the zero charge sector of the perturbative theory.

12The addition “generalized” pertains to the fact that the character ψU is defined
on a unipotent radical which is smaller than the unipotent radicalN associated with
the minimal (Borel) parabolic B = NA ⊂ G (see, for instance, [65]). Hence, later
when we restrict to characters on N we shall drop the subscript and simply write
ψ for ψN .
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The Fourier coefficients FψU possess the important property that their
values along L(Z) orbits are related by a simple formula (see, e.g., [36,37]):

Fγ·ψU (χ, g) = FψU (χ, γg) for γ ∈ L(Z).(3.6)

Here, the action of an element γ of the Levi subgroup L(Z) on a character ψU
is defined by (γ · ψU )(u) = ψU (γuγ−1). Realizing the character in terms of
(the dual of) a Lie algebra element of U ′\U one is therefore led to the study
of character variety orbits in the terminology of footnote 10. These orbits
have been completely classified for finite-dimensional simple and simply-
laced complex Lie algebras [37, 70–76]; the finer classification for integral
rather than complex orbits has only been carried out in some special cases;
see for example [77, 78].

3.2. Whittaker vectors and characters on N

The notion of a Fourier coefficient is general and is used for the FψU making
up the abelian part of the Fourier expansion with respect to a unipotent
subgroup U . From now on we will focus on the case of the so-called minimal
parabolic expansion, where P = B = NA, such that the unipotent radical
is given by N . Therefore characters are now group homomorphisms

ψ : N(Q)\N(A)→ U(1).(3.7)

Without a subscript characters will always refer to the unipotent N in this
article. To further mark the distinction we now use the letter Wψ and in
accordance with standard terminology the Fourier coefficients are defined
by the Whittaker integral

Wψ(χ, a) =
∫
N(Q)\N(A)

E(χ, na)ψ(n)dn.(3.8)

This definition is completely analogous to (3.2) and we have already restricted
the dependence on G to the Levi factor A of the minimal parabolic B. The
Levi factor in this case is identical to the maximal (split) torus.

It will be important to describe and distinguish in more detail the char-
acters (3.7) on N . To this end we denote by Nα(A) the restriction of the
unipotent group N(A) to the one-parameter subgroup associated with the
positive root α, then we can parametrize the space on which characters ψ
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depend as

[N,N ]\N ∼=
∏
α∈Π

Nα.(3.9)

We denote by Π a chosen fixed set of simple roots of G. The character ψ is
only sensitive to the part of N in the “directions” of the simple roots and
we choose to write the character in the following way:

ψ

(∏
α∈Π

xα(uα)

)
= e2πi(

∑
α∈Πmαuα),(3.10)

where mα ∈ Q are rk(g) many parameters that define the character com-
pletely. In the argument of ψ, we have used the Chevalley notation

xa(uα) = exp(uαEα),(3.11)

where Eα is the (canonically normalized) step operator corresponding to the
(one-dimensional) root space of the simple root α. The order of the factors
does not matter since ψ is a homomorphism to an abelian group. The mα

parametrize the character variety of footnote 10 in this case.
Different values of parameters mα correspond to different types of the

character ψ. We distinguish the following three basic types.

(i) The character is trivial if mα = 0 for all α ∈ Π and then ψ ≡ 1N .

(ii) If mα �= 0 for all α ∈ Π, we call the character generic.

(iii) If mα = 0 for at least one, but not all α ∈ Π, then the character
is degenerate.

We will later use a subset of simple roots Π′ ⊂ Π to define the non-trivial
directions of ψ, such that mα �= 0 if α ∈ Π′ and is zero otherwise. The char-
acter is then said to have support on Π′. Note that in the following, we also
sometimes use the term non-generic, to refer to degenerate characters.

When ψ is degenerate we call the associated integral Wψ in (3.8) a
degenerate Whittaker vector. They represent the main focus of our work.
We will deal with this case primarily in Section 4.

3.3. The Fourier integral

Let us re-write the expression for the Fourier integral (3.8) of an expan-
sion with respect to the minimal parabolic subgroup P = B = NA. In all
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manipulations that follow, we assume that we are in the region of absolute
convergence of sum (2.12) defining the Eisenstein series. The first step is to
simply substitute the definition of the Eisenstein series (2.12)

Wψ(χ, a) =
∑

γ∈B(Q)\G(Q)

∫
N(Q)\N(A)

χ(γna)ψ(n) dn.(3.12)

We can rewrite the right-hand side as follows (see, e.g., [59, 79])

Wψ(χ, a) =
∑

γ∈B(Q)\G(Q)

∫
N(Q)\N(A)

χ(γna)ψ(n)dnn(3.13)

=
∑

γ∈B(Q)\G(Q)/B(Q)

∑
δ∈γ−1B(Q)γ∩N(Q)\N(Q)

×
∫
N(Q)\N(A)

χ(γδna)ψ(n)dn

=
∑

γ∈B(Q)\G(Q)/B(Q)

∫
γ−1B(Q)γ∩N(Q)\N(A)

χ(γna)ψ(n)dn.

In the first line, we have written the sum over γ in terms of cosets over B(Q)
on the right which are labelled by δ. Because of the quotient by B(Q) on
the left in the original γ sum, we must make sure that we do not overcount
the coset representatives δ and this achieved by the restriction on the δ
sum. In the last step, we have unfolded the sum over δ to the integration
domain by enlarging it. The measure on this larger space is induced from
the embedding N(Q)→ N(A).

As the next step we then use the Bruhat decomposition (see, e.g., [80])

G(Q) =
⋃
w∈W

B(Q)wB(Q)(3.14)

to label the double cosets in the γ sum in terms of elements of the Weyl
group W. Then we can rewrite (3.13) as

Wψ(χ, a) =
∑
w∈W

∫
w−1B(Q)w∩N(Q)\N(A)

χ(wna)ψ(n)dn =
∑
w∈W

Fw,ψ(χ, a),

(3.15)

where we defined the short-hand for the individual terms

Fw,ψ(χ, a) =
∫
w−1B(Q)w∩N(Q)\N(A)

χ(wna)ψ(n)dn.(3.16)
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3.4. Integration range

We begin by analysing in more detail the integration range of the integral in
Equation (3.16). Depending on the character ψ, we will find that Fw,ψ will
only be non-zero for a restricted subset of Weyl words.

The integration range of the Fourier integral (3.16) for Fw,ψ is given by
the coset

w−1B(Q)w ∩N(Q)\N(A).(3.17)

The intersection in the denominator of this coset consists of those upper
elements (generated by positive root generators) of the minimal parabolic
subgroup B, that are also mapped to upper elements under the Weyl group
action. For the whole denominator we can therefore write

w−1B(Q)w ∩N(Q) �
∏

β>0|wβ>0

Nβ(Q).(3.18)

With this, the integration range then splits up in the following way:

w−1B(Q)w ∩N(Q)\N(A) �
⎛
⎝ ∏
β>0|wβ>0

Nβ(Q)\Nβ(A)

⎞
⎠(3.19)

·
⎛
⎝ ∏
γ>0|wγ<0

Nγ(A)

⎞
⎠ .

Let us introduce the following notation. We denote the product in the first
parenthesis as

Nw
{β} :=

⎛
⎝ ∏
β>0|wβ>0

Nβ(Q)\Nβ(A)

⎞
⎠(3.20)

and the product in the second parenthesis as

Nw
{γ} :=

⎛
⎝ ∏
γ>0|wγ<0

Nγ(A)

⎞
⎠ .(3.21)

Here the root sets {β} and {γ} contain precisely those roots which satisfy
the conditions imposed on the products in (3.20) and (3.21), respectively.
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A detailed explanation for the particular parametrization of the set {γ} is
provided in Appendix C.

Now, writing for the integration variable n = nβnγ in accordance with
this splitting of the integration range a contribution Fw,ψ in (3.15) then
takes the following form:

Fw,ψ(χ, a) =
∫
Nw
{β}

∫
Nw
{γ}

χ(wnβnγa)ψ(nβnγ) dnβdnγ .(3.22)

The two integrals can be disentangled further by inserting w−1w between
nβ and nγ and splitting the Fourier kernel into two factors. One obtains

Fw,ψ(χ, a) =
∫
Nw
{β}

∫
Nw
{γ}

χ(wnβw−1wnγa)ψ(nβ)ψ(nγ) dnβdnγ .(3.23)

As the character χ is left-invariant under any element ofN and wnβw−1 ∈ N
by the definition of the roots β in (3.20) we find

Fw,ψ(χ, a) =
∫
Nw
{β}

ψ(nβ) dnβ ·
∫
Nw
{γ}

χ(wnγa)ψ(nγ)dnγ .(3.24)

We reiterate from (3.20) and (3.21) that the integration domain Nw
{β} is

a compact quotient whereas Nw
{γ} consists of non-compact copies of A (as

many as there are roots γ > 0 with wγ < 0).

3.5. Conditions for non-zero Fw,ψ(χ, a)

The expression (3.24) gives a restriction on the Weyl words w that yield a
non-zero Fw,ψ(χ, a) for a given ψ. The reason is that the integral over nβ is
effectively the average of a character over a full period. If the set {β} contains
one (simple) root along which the character ψ is non-trivial (mβ �= 0) then
the character averages to zero. If not, the integral over Nw

{β} yields one by
normalization of the measure on the compact quotient.

Let ψ be a character which is non-trivial along the subset Π′ ⊂ Π of
the set of simple roots Π, i.e., mα �= 0 if and only if α ∈ Π′ ⊂ Π. Consid-
ering (3.24) it is then clear that only those Weyl words w that satisfy the
condition

wα′ < 0 for all simple roots α′ ∈ Π′(3.25)
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can yield a non-vanishing Fw,ψ, since otherwise the integral over Nw
{β}

vanishes. We therefore write

Wψ(χ, a) =
∑

w∈W|wΠ′<0

Fw,ψ(χ, a),(3.26)

where in this case

Fw,ψ(χ, a) =
∫
Nw
{γ}

χ(wnγa)ψ(nγ)dnγ ,(3.27)

since the integral over Nw
{β} in (3.24) yields unity.

An interesting special case is when ψ is generic since then Π′ = Π and
the character ψ is non-trivial along the directions of all simple roots. It is
clear that the integral over nβ in (3.24) is then zero (and hence also Fw,ψ
will be zero), unless the set {β} does not contain any simple roots. In other
words, by the definition (3.25) all simple roots have to be mapped to negative
(simple) roots under the action of w. Since all roots are linear combinations
of simple roots, this also means that the entire set of positive roots is mapped
to negative roots by w. For finite-dimensional G, it is a standard result that
this only happens when w is the longest Weyl word, w0, of the Weyl group
of G. This means that the sum (3.26) has only one, generically non-zero,
contribution coming from w = w0, and we have

Wψ(χ, a) =
∫
N(A)

χ(w0na)ψ(n)dn.(3.28)

Here, we have used the fact that Nw0

{γ} = N(A) and suppressed the index
γ on n in order to match the standard definition of the generic Whittaker
vector in the literature. It is for this (Jacquet–)Whittaker vector that nice
simple formulas exist (at the finite places) by the formula of Shintani [81]
or Casselman and Shalika [82] (see also [61] for a detailed survey).

3.6. Whittaker vectors and Kac–Moody groups

An important observation is that in the case of infinite-dimensional Kac–
Moody groups, the expression (3.28) never applies. The reason is that there
is no longest Weyl word w0 or no other word that maps all positive simple
roots to negative roots. As a result, Fw,ψ will be zero whenever the Fourier
kernel ψ is generic. The only non-vanishing Whittaker vectors for Kac–
Moody groups are therefore those associated with degenerate characters
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ψ. For this reason, and because many interesting special Eisenstein series
for finite-dimensional groups are determined by their degenerate Whittaker
vectors [37], we now turn to a more detailed study of degenerate Whittaker
vectors.

4. Degenerate Whittaker vectors

In this section, we will present a method for calculating Whittaker vectors
Wψ(χ, a), when the Fourier kernel ψ is degenerate; cf. Section 3.2. For this
we will discuss the general schematics of the integral for Fw,ψ of (3.27),
which allows us to derive a reduction formula that expresses Wψ in terms of
non-degenerate Whittaker vectors of subgroups G′ ⊂ G determined by the
degenerate character ψ.

4.1. Character twist

First we determine the dependence Fw,ψ(χ, a) on a. The starting expression
is (3.27):

Fw,ψ(χ, a) =
∫
Nw
{γ}

χ(wnγa)ψ(nγ)dnγ .(4.1)

Inserting a factor of aa−1 between w and nγ in the argument of χ and
performing a change of integration variables n→ a−1na, under which the
measure transforms as dnγ → δw(a)dnγ , we obtain

Fw,ψ(χ, a) = χ(waw−1)δw(a)
∫
Nw
{γ}

χ(wnγ)ψa(nγ)dnγ ,(4.2)

where we have defined the “twisted” Fourier kernel ψa(n) = ψ(ana−1) and
we have furthermore extracted the a dependence from the argument of χ.
The subscript on the Jacobi factor δw(a) serves to indicate that the inte-
gration is not necessarily over all of N(A) and therefore δw(a) is not equal
to the standard modulus character δ(a) of N(A). As just argued, a non-
vanishing Fw,ψ is expressed solely in terms of an integral over Nw

{γ} and it
is this part of all of N(A) that contributes to δw(a). That is, δw(a) is given
by the relation d(anγa−1) = δw(a)dnγ , where nγ is an element of Nw

{γ} as
before. With (3.21), one has

δw(a) = a
∑
γ>0 |wγ<0 γ = aρ−w

−1ρ,(4.3)
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where we have used standard results on the set {γ > 0 |wγ < 0} given for
example in [45], that we also rederive in Appendix C for completeness. Using
also the expression (2.5) for χ(waw−1), we deduce that the prefactor in (4.2)
is given by

χ(waw−1)δw(a) = aw
−1(λ+ρ)+ρ−w−1ρ = aw

−1λ+ρ.(4.4)

In order to ease the notation in the following sections, let us define the
integral

Fw,ψ(χ) := Fw,ψ(χ,1) =
∫
Nw
{γ}

χ(wnγ)ψ(nγ)dnγ .(4.5)

In terms of this quantity the full Whittaker vector (3.15) is then

Wψ(χ, a) =
∑
w∈W

aw
−1λ+ρFw,ψa(χ),(4.6)

where the twisted character ψa enters. Below we will study in detail the
integral (4.5) for Fw,ψ for arbitrary ψ and only substitute back the particular
twisted character ψa at the very end of the calculation.

4.2. Parametrizing the contributing Weyl words

According to the discussion in Section 3.5, the contributing set of Weyl
words for which Fw,ψ can be non-zero is given by

Cψ := {w ∈ W |wΠ′ < 0},(4.7)

where Π′ ⊂ Π denotes the simple roots α for which mα �= 0 (cf. also (3.10)).
We have added the subscript ψ as a reminder that the definition of the set
depends on ψ.

We are now going to characterize the special set Cψ of Weyl words (4.7)
in a more practical way. The set of simple roots Π′, together with its com-
plement Π′, partition the set of simple roots Π of G. The subgroup G′ of the
full invariance group G is defined by the Dynkin diagram given by Π′ and
we assume it to be finite-dimensional. The Weyl group associated with Π′

is denoted by W ′.
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The statement that we are going to prove in the following is that the
elements of our special set of words can be written in the following form13

w ∈ Cψ ⇐⇒ w = wcw
′
0,(4.8)

where w′0 is the longest Weyl word of W ′ and wc is a carefully chosen repre-
sentative of the coset W/W ′. We refer to the construction of the particular
coset representative that we require as the orbit method and we will out-
line it in Section 5.2. It is analogous to the method explained in [1]. Before
we present this construction, let us first characterize the representative wc
required in (4.8).

By its very definition, the action of the longest Weyl word w′0 of W ′

makes all roots of G′, and in particular the simple roots in Π′, negative. In
order to satisfy the condition (4.7), one can then add further Weyl words
wc to the left of w′0, provided they satisfy the condition

wcα
′ > 0 for all α′ ∈ Π′.(4.9)

Then the combined word w = wcw
′
0 will map all simple roots in Π

′ to neg-
ative roots. Weyl words wc satisfying (4.9) can be constructed as carefully
chosen representatives of the coset W/W ′. We will say more about the con-
struction of these Weyl words in Section 5.2.

4.3. Reduction formula

We now return to evaluating the contribution Fw,ψ to a degenerate
Whittaker vector given by (3.24) and use that w = wcw

′
0 ∈ Cψ with the par-

ticular parametrization of the preceding section. Associated with the word
w = wcw

′
0 is a parametrization of the elements nγ in the integration domain

Nw
{γ}; cf. (3.21). We write

nγ = ncn
′ with nc ∈ Nc(A) and n′ ∈ N ′(A),(4.10)

where N ′(A) is the unipotent subgroup of the minimal Borel B′(A) of
the subgroup G′(A) determined by the set of simple roots Π′ that indicate
the directions on which the degenerate character ψ depends non-trivially.

13We recall that a given Weyl element w ∈ W has of course many seemingly dif-
ferent representations in terms of products of other elements. What we are claiming
here is that all w that satisfy wΠ′ < 0 have a representation in the form given.
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The set Nc(A) involves the remaining positive roots γ that are mapped to
negative roots by the action of w but that are not positive roots of the sub-
group G′. The degenerate character ψ does not depend on nc since Nc(A)
does not involve any of the simple roots of G′. We can thus write the integral
for Fw,ψ as

Fw,ψ(χ) =
∫
Nc(A)

∫
N ′(A)

χ(wcw′0ncn
′)ψ(n′)dncdn′.(4.11)

The argument of the character χ can be rewritten as

χ(wncn′) = χ(wncw−1wn′) = χ(wncw−1wcñã),(4.12)

where we have used w = wcw
′
0. Moreover, ñãk̃ = w′0n′ arises from the Iwa-

sawa decomposition in the group G′ and we have used the right-invariance of
χ under k̃ in the last step. Now, it is important that wc satisfies the condition
(4.9) which implies that, even though it is no longer in G′(A), the element
wcñãw

−1
c = n̂â is an element of the Borel subgroup B(A) with n̂ ∈ N(A) and

â ∈ A(A). Hence, in particular â = wcãw
−1
c . In the next step, we conjugate

both n̂ and â through to the left in the argument of χ. For n̂ this induces
a uni-modular change of integration variables for nc [45]. By contrast, for
â this generates a non-trivial Jacobi factor when passing past wncw−1 that
we can determine in a way similar to (4.3). The relevant manipulation is:∫

Nc(A)
χ(n̂wncw−1â)dnc =

∫
Nc(A)

χ(n̂âwncw−1)âwcρ−ρdnc(4.13)

=
∫
Nc(A)

χ(wncw−1)ãw
−1
c λ+ρdnc,

where we have used χ(n̂â) = âλ+ρ and â = wcãw
−1
c . Now, ã does not depend

on nc and we can take it out of the Nc(A) integral. None of these transfor-
mations have any impact on the argument of the character ψ(n′).

The result of these steps is that Fw,ψ factorizes according to

Fw,ψ(χ) =
∫
Nc(A)

χ(wcw′0nc)dnc ·
∫
N ′(A)

χ′(w′0n
′)ψ(n′)dn′,(4.14)

where the character χ′ : B′(A)→ C∗ is given by the (projection of the)
weight w−1

c λ+ ρ. A different proof for this factorization is given in Appendix
B. The Jacobi factor arising from â has been transformed back into the
expression χ′(w′0n′) in the second integral.
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The two separate integrals in (4.14) are of well-known types. The Nc(A)
integral is identical to the integral that determines (the numerical coeffi-
cient of) the contribution of the Weyl word wc to the constant term (in
the minimal parabolic) (2.14) and therefore yields the factor M(w−1

c , λ).
From (4.10), we recall that w′0Nc(A)(w′0)−1 is the product of one-parameter
subgroups whose roots are mapped to negative roots by wc. Referring back
to (3.28), we recognize the second integral in (4.14) as the non-degenerate
Whittaker vector for the subgroup G′(A) ⊂ G(A) for a generic Fourier char-
acter ψ on N ′ of the Eisenstein series determined by the weight w−1

c λ+ ρ,
projected orthogonally to G′(A), and evaluated at the identity. The expres-
sion (4.14) for Fw,ψ, then evaluates to

Fw,ψ(λ) =M(w−1
c , λ)W ′

ψ(w
−1
c λ, 1).(4.15)

Equation (4.15) is the expression for an arbitrary character ψ. For the
Whittaker vectorWψ we require (4.15) evaluated at the twisted character ψa

according to (4.6). Combining all elements as prescribed by (4.6) we obtain
the following final expression for the degenerate Whittaker vector, claimed
in Proposition 1,

Wψ(λ, a) =
∑

wcw′0∈Cψ
a(wcw′0)

−1λ+ρM(w−1
c , λ)W ′

ψa(w
−1
c λ, 1),(4.16)

where the factor in front of Fw,ψa was determined in (4.4). Here,W ′
ψa denotes

a Whittaker function of the G′(A) subgroup of G(A). Therefore, Whittaker
vectors of degenerate characters ψ can be evaluated as sums over Whittaker
vectors of subgroups on which the character is generic. At non-archimedean
places these then can be evaluated using the Shintani–Casselman–Shalika
formula [81,82].

5. Whittaker vectors for Kac–Moody groups

In this section we discuss the calculation of Whittaker vectors of Kac–Moody
Eisenstein series. Due to the arguments of Section 3.6, we will only be con-
cerned with the computation of Whittaker vectors of degenerate type.

Let us outline the central problem in an explicit evaluation of the reduc-
tion formula (4.16) in the case of Kac–Moody Eisenstein series. Namely the
obvious problem is that the set of contributing Weyl words, a priori appears
to be infinite, due to the infinite-dimensional nature of the Kac–Moody
group and its associated Weyl group. For the moment we will keep our
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discussion general and specialize to particular types of Kac–Moody groups
later on.

As discussed in Section 1.1, the same problem also appears in Langlands’
formula for the constant term. However, as was shown in [1], this problem
is resolved when applying the formula for certain special types of Eisen-
stein series. These series are the maximal parabolic Eisenstein series, defined
around (2.10), with a special choice for the maximal parabolic subgroup and
the parameter s defining the series. In these cases the apparently infinite
series for the constant term “collapses” to a finite (and indeed very small)
number of terms. In particular, the series for which this happens, are the
Eisenstein series, which appear as the automorphic couplings (up to a con-
stant factor) of the lowest orders of curvature corrections in the low-energy
expansion of type II string theory (see Section 1.1 for more information and
references). As displayed in (2.10), these series, defined with respect to the
maximal parabolic subgroup Pi∗ , have as defining weight λ = 2sΛi∗ − ρ and
hence are of the form:

E(2sΛi∗ − ρ, g).(5.1)

For the choice i∗ = 1, s = 3/2 and 5/2, this series appears in the coefficient
of the R4 and ∂4R4 curvature correction, respectively. Motivated by this,
the collapse of the constant terms of these series was demonstrated in [1], for
the Kac–Moody groups E9, E10 and E11, i.e., in D = 2, 1 and 0 dimensions,
respectively. (The En Dynkin diagram with our labelling conventions of the
roots was given in figure 1 in the introduction.)

The collapse of the constant term is generally encoded in the factor
M(w, λ) appearing in (2.16) and can be shown to vanish for all but a finite
number of Weyl words w for these special choices of s and i∗. As the same
factor also appears in the reduction formula (4.16), one therefore expects
to observe a similar collapse in the degenerate Whittaker vectors. We now
summarize the general mechanism for collapse in some detail, by outlining
important properties of theM(w, λ) coefficient. For full details, we refer the
reader to [1].

5.1. The collapse mechanism

For the reader’s convenience, we state again the definition of the M(w, λ)
factor (2.8):

(5.2) M(w, λ) =
∏

α>0|wα<0

ξ(〈λ|α〉)
ξ(1 + 〈λ|α〉) =

∏
α>0|wα<0

c (〈λ|α〉) ,
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where we defined c(k) := ξ(k)/ξ(1 + k). The function c(k) only has special
values at k = ±1, with

c(−1) = 0 and c(+1) =∞,(5.3)

corresponding to a simple zero and a simple pole. (This means that products
that are formally of the type c(+1)c(−1) have finite limits when s approaches
one of its special values since s only appears linearly in the argument of c(k).)
From these basic facts we conclude that for a given Weyl word w ∈ W, the
product making upM(w, λ) will be zero, if there aremore c(−1) factors than
c(+1), appearing in it. Furthermore, by the multiplicative property (2.9),
we conclude that if M(w̃, λ) = 0 for a given Weyl word w̃ then the factor
M(ww̃, λ) =M(w, w̃λ)M(w̃, λ), associated with any longer Weyl word of
the form ww̃, will also be zero [34] as long as M(ww̃, λ) is finite.

For maximal parabolic series at special values of s, the truncation of
the apparently infinite sum over Weyl words in Langlands formula and the
reduction formula for Whittaker vectors, through the factorM(w, λ) occurs
in two steps, which we will now discuss.

5.1.1. Maximal parabolic criterion. Restricting to maximal parabolic
series with defining weight λ = 2sΛi∗ − ρ, it is easy to see then that 〈αi|λ〉 =
−1 for all simple roots αi �= αi∗ . In case a simple root other than αi∗ appears
in the product for M(w, λ), it will introduce a factor c(−1) = 0 and the
product can easily be shown to vanish. Non-vanishingM(w, λ) are obtained
by restricting to the following set of Weyl words:

SΠ∗ = {w ∈ W|wαi > 0 for all αi ∈ Π∗},(5.4)

where Π∗ := Π\{αi∗}. This set of Weyl words, can be constructed by the
“orbit method” which we will describe in Section 5.2. It represents the set
of minimal reflections needed to construct the Weyl orbit of the fundamental
weight Λi∗ .14 We can think of SΠ∗ as being the set of minimal coset repre-
sentatives of W/W∗, where W∗ denotes the Weyl subgroup of W generated
by the fundamental reflections in the simple roots Π∗ only. Let us point out
that the set SΠ∗ only contains a fraction of the total set of Weyl words W.
Nevertheless, it is important to note that for the case of Kac–Moody groups,
the set SΠ∗ , still contains an infinite number of elements. In the second step,
which we will now explain, this infinite number will be further reduced, to
a finite, small number, via special choices of the parameter s.

14Note that in [1] this set was denoted by Si∗
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5.1.2. Special s and i∗ values. Restricting to special values for s and
i∗, we see that there are two special sets of positive roots Δs,i∗(±1), defined
as

Δs,i∗(±1) := {α ∈ Δ+ : 〈λ|α〉 = 〈2sΛi∗ − ρ|α〉 = ±1},(5.5)

where Δ+ is the set of all positive roots of G. We stress that these sets are
not necessarily finite for arbitrary choices of i∗ and s in the Kac–Moody case.
For example, if there is a null root δ and supposing it satisfies 〈λ|δ〉 = 0, then
the sets will be trivially of infinite order. This would happen for example for
E10 and i∗ = 10 for arbitrary values of s.

The task now is to check how many of the roots contained in Δs,i∗(±1)
will contribute to M(w, λ) for a given Weyl word w. On a practical level,
this is done by parsing through the Weyl orbit of Λi∗ by increasing length of
the Weyl word. For each Weyl word w we check the number of c(−1) factors
and the number of c(+1) factors that contribute to the product of M(w, λ).
As discussed above, a Weyl word will only yield a non-zero M(w, λ) factor,
provided the number of c(−1) factors, is smaller or equal to the number of
c(+1) factors. By the multiplicative property ofM(w, λ), we know that once
it vanishes for a certain w̃ in a branch, we need not consider Weyl words
ww̃ that “end on” w̃.

It turns out that for specific choices of the parameters s and i∗, only a
finite number of the Weyl words SΠ∗ contribute, also in the case of Kac–
Moody groups. As already mentioned above, some particular values for
which this is the case are i∗ = 1 and s = 3/2 or 5/2 and these are the ones
relevant in string theory. In [1], it was shown that for the E9, E10 and E11

maximal parabolic Kac–Moody Eisenstein series with i∗ = 1, there are other
(small) integer and half-integer values of s for which this collapse happens.
The results are summarized in table 4 of that publication.

5.2. Orbit method

In the following, we will describe a general method for constructing a set of
Weyl words which satisfy the condition:

wαi > 0 for all simple roots αi ∈ Π∗.(5.6)

It thus provides a way of computing the sets of Weyl words SΠ∗ in (5.4), as
well as the Weyl words wc satisfying condition (4.9) that enter in the set Cψ
determined by a (degenerate) character ψ.
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The construction proceeds in the following way. Consider the dominant
weight

Λ =
∑
α∈Π∗

Λα.(5.7)

Its W-orbit points are in bijection with the coset W/W∗ as W∗ stabilizes
Λ.15 We construct its orbit under the action of the Weyl group W of G
iteratively, according to the following standard algorithm:

(1) Start with the initial set of orbit points O = {Λ}.
(2) Given a weight μ ∈ O, compute its Dynkin labels pα = 〈μ|α〉 for all

α ∈ Π.

(3) For all labels pα that are strictly positive, construct μ′ = wαμ where
wα is the fundamental reflection in the simple root α. Add the resulting
μ′ to the set O of orbit points if they are not already in there.

(4) If there remains a weight μ in O for which steps 2. and 3. have not
been carried out, repeat them for this μ.

This algorithm constructs the orbit representatives of the W-orbit of Λ. If
one remembers for each orbit point μ in the orbit the sequence of funda-
mental reflections that were needed to obtain it, one thus obtains a set of
minimal (with respect to word length) Weyl words that relate the domi-
nant weight Λ to each of its images. (For an illustration of this method, see
Section 3.3 of [1].) With this algorithm one can construct exactly the mini-
mal Weyl words that for example make up the set SΠ∗ or satisfy
condition (4.9).

We note that in the case of Kac–Moody groups, the Weyl orbit of Λ is of
infinite size and the algorithm has to be truncated in practice. However, the
algorithm provides the Weyl words of SΠ∗ as a partially ordered set of longer
and longer Weyl words that get longer on the left as one moves away from
the dominant Λ. Due to the multiplicative property (2.9) one does not need
to continue the Weyl orbit past a Weyl word whose M -factor vanishes. For
the special Eisenstein series of interest in string theory only a finite number
of Weyl words in SΠ∗ remain. These finitely many terms can be calculated
explicitly.

15For the case (5.4) this means Λ = Λi∗ .
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We denote the set of Weyl words w that have a non-zero factor M(w, λ)
by

Cλ = {w ∈ W |M(w, λ) �= 0} ⊂ SΠ∗,(5.8)

where we also allow potentially infinite values. In the final expressions, these
always appear in combinations such that the sum over them has a well-
defined limit.

5.3. The collapse for degenerate Whittaker vectors

As the next step, we will now combine the collapse mechanism with the for-
mula (4.16) for degenerate Whittaker vectors. This will allow us to calculate
explicitly some degenerate Whittaker vectors for Kac–Moody groups. The
following applies to (maximal) parabolic Eisenstein series.

Looking at the reduction formula (4.16), we first construct the set Cλ
defined in (5.8). In the context of (4.16) the Weyl elements w of Cλ with non-
vanishing M(w, λ) �= 0 should be interpreted as w−1

c . We also know that all
words w ∈ Cψ contributing to (4.16) are of the form w = wcw

′
0, cf. (4.8).

Therefore we form the set

Cλ,ψ =
{
w−1
c ∈ Cλ |wcw′0 ∈ Cψ

}
= Cψ ∩ ((Cλ)−1w′0

)
,(5.9)

where (Cλ)−1w′0 denoted the set of the inverses of all Cλ elements and then
multiplied on the right by w′0. The sum in the reduction formula (4.16) is
restricted to Cλ,ψ.

The set Cλ,ψ typically contains a very small number of elements for the
special values of λ, i.e., i∗ and s, that are relevant in string theory. We stress
that it is not guaranteed that the set Cλ,ψ is finite. Only for very special
choices of λ we expect finite sets and these are the ones that have appeared
in string theory thus far. The analysis of [1, table 4] revealed a few additional
values of s where simplifications occur. There is no systematic understanding
of “good” choices of i∗ and s at the moment; we offer a few more comments
on this point in the conclusions.

The reduction to Cλ,ψ is not the only simplification that arises. Fur-
ther terms can be absent for a degenerate Whittaker vector when the fac-
tor W ′

ψa((w
−1
c λ)G′ ,1) vanishes and its prefactor is finite. This vanishing of

W ′
ψa((w

−1
c λ)G′ ,1) happens for example always when the projected weight

(w−1
c λ)G′ is equal to −ρ′ (ρ′ being the Weyl vector of G′). The reason is that

for this case one is computing the Whittaker vector of a constant function
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which vanishes. Similar cases can arise when (w−1
c λ)G′ is such that generic

Whittaker vector on G′ vanishes, i.e., the projected weight corresponds to a
degenerate principal series representation. The application of this criterion
is a bit more subtle and typically involves the analysis of a family of maximal
parabolic Eisenstein series.

6. Explicit results for some Kac–Moody groups

We now present the results that we obtained by implementing the formalism
of Section 5 for E9, E10 and E11 for the special cases i∗ = 1 and s = 3/2 and
s = 5/2 in (2.10). See figure 1 for our labelling convention of the En Dynkin
diagram.

We present the results in table form and use some short-hand notations
for the Whittaker vectors of the subgroups A1 and A2 that arise. We denote
an element of the maximal torus by

a =
n∏
i=1

vhii ,(6.1)

where hi is the standard Chevalley generator of the simple root αi in Bour-
baki labelling and n is the rank of the group. In the case of the affine
Kac–Moody group E9 an element of the maximal torus is of the form avd,
where d is the derivation element in the Cartan subalgebra [43].

6.1. The case s = 3/2 or R4

The implementation of the reduction formula (4.16) shows that the Whit-
taker vectors of the Eisenstein series with (i∗, s) = (1, 3

2) are only non-zero
when G′ = SL(2,A). In other words, the character ψ is maximally degener-
ate (without being trivial). Therefore the set Π′ of Section 4 contains only
one simple root. For such a degenerate character ψ with only non-zero charge
mα for a single simple root α we write the corresponding A1-type Whittaker
vector as

W ′
ψa(χ

′,1) := Bs′,mα
(aα)

(6.2)

:=
2

ξ(2s′)
|aα|s′−1/2|mα|1/2−s′σ2s′−1(mα)Ks′−1/2(2π|mα|aα).
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Here, s′ parametrizes the projected character χ′ on SL(2) by λ′ = 2s′Λ′ − ρ′

where Λ′ is the unique fundamental weight of SL(2). In order to obtain finite
coefficients we will also use the differently normalized Bessel-type function

B̃s′,mα
:= ξ(2s′)Bs′,mα

(6.3)

for some entries of the table.

6.1.1. E9 with s = 3/2. As shown in [1], the series that appears in string
theory has to be multiplied by an overall factor of v. This means that the
function that should appear in string theory is

f
(0)
E9
(g) = vE(3Λ1 − ρ, g),(6.4)

where the notation of (1.1) in the introduction was used. We will not display
the extra v in the table that therefore only contains the Whittaker vectors
of E(3Λ1 − ρ, g).

Even though the Cartan subalgebra of E9 is ten-dimensional, the char-
acters ψ on N are only labelled by nine parameters mα since there are only
nine simple roots.

ψ Wψ(χ3/2, a)
(m, 0, 0, 0, 0, 0, 0, 0, 0) v2

3v
−1
1 B3/2,m

(
v2
1v
−1
3

)
(0,m, 0, 0, 0, 0, 0, 0, 0) v2

2B̃0,m(v2
2v
−1
4 )

ξ(3)

(0, 0,m, 0, 0, 0, 0, 0, 0)
ξ(2)v4B1,m(v2

3v
−1
1 v−1

4 )
ξ(3)

(0, 0, 0,m, 0, 0, 0, 0, 0) v4B̃1/2,m(v2
4v
−1
2 v−1

3 v−1
5 )

ξ(3)

(0, 0, 0, 0,m, 0, 0, 0, 0) v2
5B̃0,m(v2

5v
−1
4 v−1

6 )
ξ(3)v6

(0, 0, 0, 0, 0,m, 0, 0, 0)
ξ(2)v3

6B−1/2,m(v2
6v
−1
5 v−1

7 )
ξ(3)v2

7

(0, 0, 0, 0, 0, 0,m, 0, 0) v4
7v
−3
8 B−1,m

(
v2
7v
−1
6 v−1

8

)
(0, 0, 0, 0, 0, 0, 0,m, 0)

ξ(4)v5
8v
−4
9 B−3/2,m(v2

8v
−1
7 v−1

9 )
ξ(3)

(0, 0, 0, 0, 0, 0, 0, 0,m)
ξ(5)v6

9v
−5B−2,m(v2

9v
−1
8 v−1)

ξ(3)
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6.1.2. E10 with s = 3/2

ψ Wψ(χ3/2, a)
(m, 0, 0, 0, 0, 0, 0, 0, 0, 0) v2

3v
−1
1 B3/2,m

(
v2
1v
−1
3

)
(0,m, 0, 0, 0, 0, 0, 0, 0, 0) v2

2B̃0,m(v2
2v
−1
4 )

ξ(3)

(0, 0,m, 0, 0, 0, 0, 0, 0, 0)
ξ(2)v4B1,m(v2

3v
−1
1 v−1

4 )
ξ(3)

(0, 0, 0,m, 0, 0, 0, 0, 0, 0) v4B̃1/2,m(v2
4v
−1
2 v−1

3 v−1
5 )

ξ(3)

(0, 0, 0, 0,m, 0, 0, 0, 0, 0) v2
5B̃0,m(v2

5v
−1
4 v−1

6 )
ξ(3)v6

(0, 0, 0, 0, 0,m, 0, 0, 0, 0)
ξ(2)v3

6B−1/2,m(v2
6v
−1
5 v−1

7 )
ξ(3)v2

7

(0, 0, 0, 0, 0, 0,m, 0, 0, 0) v4
7v
−3
8 B−1,m

(
v2
7v
−1
6 v−1

8

)
(0, 0, 0, 0, 0, 0, 0,m, 0, 0)

ξ(4)v5
8v
−4
9 B−3/2,m(v2

8v
−1
7 v−1

9 )
ξ(3)

(0, 0, 0, 0, 0, 0, 0, 0,m, 0)
ξ(5)v6

9v
−5
10 B−2,m(v2

9v
−1
8 v−1

10 )
ξ(3)

(0, 0, 0, 0, 0, 0, 0, 0, 0,m)
ξ(6)v7

10B−5/2,m(v2
10v

−1
9 )

ξ(3)

6.1.3. E11 with s = 3/2

ψ Wψ(χ3/2, a)
(m, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) v2

3v
−1
1 B3/2,m

(
v2
1v
−1
3

)
(0,m, 0, 0, 0, 0, 0, 0, 0, 0, 0) v2

2B̃0,m(v2
2v
−1
4 )

ξ(3)

(0, 0,m, 0, 0, 0, 0, 0, 0, 0, 0)
ξ(2)v4B1,m(v2

3v
−1
1 v−1

4 )
ξ(3)

(0, 0, 0,m, 0, 0, 0, 0, 0, 0, 0) v4B̃1/2,m(v2
4v
−1
2 v−1

3 v−1
5 )

ξ(3)

(0, 0, 0, 0,m, 0, 0, 0, 0, 0, 0) v2
5B̃0,m(v2

5v
−1
4 v−1

6 )
ξ(3)v6

(0, 0, 0, 0, 0,m, 0, 0, 0, 0, 0)
ξ(2)v3

6B−1/2,m(v2
6v
−1
5 v−1

7 )
ξ(3)v2

7

(0, 0, 0, 0, 0, 0,m, 0, 0, 0, 0) v4
7v
−3
8 B−1,m

(
v2
7v
−1
6 v−1

8

)
(0, 0, 0, 0, 0, 0, 0,m, 0, 0, 0)

ξ(4)v5
8v
−4
9 B−3/2,m(v2

8v
−1
7 v−1

9 )
ξ(3)

(0, 0, 0, 0, 0, 0, 0, 0,m, 0, 0)
ξ(5)v6

9v
−5
10 B−2,m(v2

9v
−1
8 v−1

10 )
ξ(3)

(0, 0, 0, 0, 0, 0, 0, 0, 0,m, 0)
ξ(6)v7

10v
−6
11 B−5/2,m(v2

10v
−1
9 v−1

11 )
ξ(3)

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0,m)
ξ(7)v8

11B−3,m(v2
11v

−1
10 )

ξ(3)
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6.2. E10 with s = 5/2 or ∂4R4

For the case s = 5
2 we only give exemplary expressions for some degenerate

Whittaker vectors for the case of E10. Here there are now two types of degen-
erate Whittaker vectors that are non-zero. The first is of A1-type and the
second is of A1 ×A1-type. They correspond to the cases when the degener-
ate character ψ has support either on a single node or on two disconnected
nodes of the Dynkin diagram,

The expressions for the A1-type degenerate Whittaker vectors are much
longer now and we do not give all of them. An illustrative example is
obtained for instanton charge vector (m, 0, 0, 0, 0, 0, 0, 0, 0, 0). There we have

Wψ(χ5/2, a) =
v4
3B 5

2
,m

(
v2
1
v3

)
v3
1

+
ξ(2)v3

1v
2
5B− 1

2
,m

(
v2
1
v3

)
ξ(5)v4

(6.5)

+
ξ(2)v3

1v
2
7B− 1

2
,m

(
v2
1
v3

)
ξ(5)v8

+
ξ(4)v3

1v
4
2B− 1

2
,m

(
v2
1
v3

)
ξ(5)v2

3

+
ξ(3)v3

1v
3
4B− 1

2
,m

(
v2
1
v3

)
ξ(5)v2

2v
2
3

+ v3
1v

5
10B− 1

2
,m

(
v2
1

v3

)

+
ξ(3)v3

1v
3
8B− 1

2
,m

(
v2
1
v3

)
ξ(5)v2

9

+
ξ(4)v3

1v
4
9B− 1

2
,m

(
v2
1
v3

)
ξ(5)v3

10

+
(γE − log(4π) + log(v−1

5 v2
6v
−1
7 ))v3

1v6B− 1
2
,m

(
v2
1
v3

)
ξ(5)

.

Here, γE ≈ 0.577216 denotes the Euler–Mascheroni constant.
Some non-vanishing degenerate Whittaker vectors with two non-vanishing

charges are given by

ψ Wψ(χ5/2, a)

(m1,m2, 0, 0, 0, 0, 0, 0, 0, 0)
ξ(3)v3

1v
4
2B−1/2,m1

(
v2
1
v3

)
B−1,m2

(
v2
2
v4

)
ξ(5)v2

3

(m1, 0, 0,m2, 0, 0, 0, 0, 0, 0)
ξ(2)v3

1v
3
4B−1/2,m1

(
v2
1
v3

)
B−1/2,m2

(
v2
4

v2v3v5

)
ξ(5)v2

2v
2
3
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(m1, 0, 0, 0, 0,m2, 0, 0, 0, 0)
v3
1v6B−1/2,m1

(
v2
1
v3

)
B̃1/2,m2

(
v2
6

v5v7

)
ξ(5)

(m1, 0, 0, 0, 0, 0, 0,m2, 0, 0)
ξ(2)v3

1v
3
8B−1/2,m1

(
v2
1
v3

)
B−1/2,m2

(
v2
8

v7v9

)
ξ(5)v2

9

(m1, 0, 0, 0, 0, 0, 0, 0,m2, 0)
ξ(3)v3

1v
4
9B−1/2,m1

(
v2
1
v3

)
B−1,m2

(
v2
9

v8v10

)
ξ(5)v3

10

(m1, 0, 0, 0, 0, 0, 0, 0, 0,m2)
ξ(4)v3

1v
5
10B−1/2,m1

(
v2
1
v3

)
B−3/2,m2

(
v2
10
v9

)
ξ(5)

. . . . . .

7. Conclusions

In this paper, we have analyzed Fourier coefficients of Eisenstein series on
Kac–Moody groups. We showed that for special points in the parameter
space of these Eisenstein series the number of such coefficients is drasti-
cally reduced, as was previously observed for the constant terms [1]. The
non-vanishing coefficients are given by Whittaker vectors associated with
degenerate characters, and for E9, E10 and E11 we showed that these can
be written as linear combinations of simple Bessel-type Whittaker vectors
for A1 = SL(2,R) or A1 ×A1. Physically, these Fourier coefficients capture
instanton effects in certain string theory amplitudes. As discussed in detail
in [1,35,36], different types of instanton effects correspond to Fourier expan-
sions with respect to different parabolic subgroups. In the case of string the-
ory amplitudes in D ≤ 2 dimensions (which is the relevant situation where
E9, E10, E11-symmetries appear) it is not well-understood precisely which
instanton effects contribute, although there are expectations that they will
contain “exotic” effects with unusual exponential dependences on the cou-
plings [11, 83, 84]. (For D ≥ 3, these states were classified in [85].) More-
over, BPS-states in D = 2 fill out infinite-dimensional orbits of the duality
group [86], in contrast to the case of D ≥ 3. For a given Fourier coeffi-
cient, there is however only a finite number of instanton configurations that
contribute to 1/2 and 1/4 BPS-saturated couplings in D ≤ 2. It would be
interesting to examine in more detail how our degenerate Whittaker vectors
contribute to the various relevant physical limits [25,35,36], as done for the
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constant terms in [1]. In particular, from the expansions of the Bessel func-
tions one could extract the exponential dependence of the physical couplings
in the various limits, thereby giving an indication of which instanton effects
are captured by the Eisenstein series. We hope to return to these issues in
future work.

It is natural to speculate about the representation-theoretic implications
of our results. As mentioned in the introduction, for the finite-dimensional
Lie groups En(R) (n = 1, . . . , 8) in table 1 the Eisenstein series E(2sΛ1 −
ρ, g) is attached to certain special unitary representations with unusually
small functional dimension. More precisely, for s = 3/2 this gives an auto-
morphic realization of the minimal representation [30,38–40,87], which is the
one with smallest functional dimension (aside from the trivial one), while
s = 5/2 corresponds to the next-to-minimal representation. This means that
the character variety orbits on which the Fourier coefficients have support
are described by wave-front sets corresponding, respectively, to the closures
of the minimal, and next-to-minimal coadjoint nilpotent orbits of En+1

(see [36, 37] for more information on these concepts). In the classification
of nilpotent orbits of exceptional groups the minimal orbit has Bala–Carter
label A1 while the next-to-minimal has label 2A1 (see [88]). Physically, these
nilpotent orbits correspond to orbits of the BPS-instantons that contribute
to the respective amplitude.

In the case of Kac–Moody groups it is not known whether there exists
some analogue notion of small automorphic representations. The general-
ization from finite-dimensional groups however, suggests that the values
s = 3/2and s = 5/2 should play a special role and our investigations corrob-
orate this hypothesis. More rigorously, one would like to have some concept
of “minimal” and “next-to-minimal” nilpotent orbits in this setting, but
it is far from clear how to properly define this. Physically we expect that
this must be possible, and our results do, indeed, provide some cause for
optimism. First of all, we have found that the Kac–Moody Eisenstein series
E(2sΛ1 − ρ, g) for E9, E10 and E11 have very few non-vanishing degenerate
Whittaker vectors, a feature which is characteristic for small automorphic
representations. Moreover, all the non-vanishing Whittaker vectors are asso-
ciated with subgroups of type A1 or A1 ×A1. By analogy with the finite-
dimensional situation, this would suggest that the Eisenstein series with
s = 3/2 has a wave-front set corresponding to the minimal nilpotent orbit
of Bala–Carter type A1, and is therefore attached to what should be called
the minimal representation of E9 and E10. As an example, we note that in
the E10 case, the weighted Dynkin diagram of the dual (sub-regular) orbit
is [2, 2, 2, 0, 2, 2, 2, 2, 2, 2], which has precisely the same structure as for the
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finite-dimensional groups in the En-series (see [35, 36]). Similarly, we note
that all the non-vanishing Whittaker vectors for the s = 5/2 Eisenstein series
of E10 are of type A1 ×A1 which is consistent with the conjecture that the
wave-front set in this case is the next-to-minimal orbit, corresponding to a
nilpotent orbit with Bala–Carter label 2A1. The weighted Dynkin diagram
of the dual (sub–sub-regular) nilpotent orbit is [2, 2, 2, 0, 2, 0, 2, 2, 2, 2], which
matches with what one would expect from the next-to-minimal automorphic
representation. We give a list of distinguished E10 gradings in Appendix D.
It would be desirable to have a complete classification of nilpotent orbits for
Kac–Moody algebras.

We leave a more careful mathematical analysis of these issues to future
work.
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Appendix A. Examples for finite-dimensional groups

In this appendix, we apply the formula (4.16) to some finite-dimensional
cases of physical interest. These are associated with the groups E6, E7 and
E8 and the particular choices of character χ that arises in string theory; see
e.g., [34]. The Eisenstein series are again maximal parabolic with character
χ determined by the weight

λ = 2sΛ1 − ρ,(A.1)
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where Λ1 is the fundamental weight of the node labelled 1 in the Bourbaki
convention; cf. figure 1. The cases of relevance for half-BPS and quarter-
BPS corrections to the four-graviton scattering amplitude are given by the
values s = 3/2 and s = 5/2, respectively, and correspond to the minimal and
next-to-minimal automorphic representation of the groups.

We give the results for s = 3/2 only and denote the associated character
as χ3/2, but of course the method is applicable to any value of s. (The
resulting expressions just get longer.) For s = 3/2 our expressions constitute
the complete list of non-vanishing Whittaker vectors.

A.1. E6

ψ Wψ(χ3/2, a)
(m, 0, 0, 0, 0, 0) v2

3v
−1
1 B3/2,m

(
v2
1v
−1
3

)
(0,m, 0, 0, 0, 0) v2

2B̃0,m(v2
2v
−1
4 )

ξ(3)

(0, 0,m, 0, 0, 0)
ξ(2)v4B1,m(v2

3v
−1
1 v−1

4 )
ξ(3)

(0, 0, 0,m, 0, 0) v4B̃1/2,m(v2
4v
−1
2 v−1

3 v−1
5 )

ξ(3)

(0, 0, 0, 0,m, 0) v2
5B̃0,m(v2

5v
−1
4 v−1

6 )
ξ(3)v6

(0, 0, 0, 0, 0,m)
ξ(2)v3

6B−1/2,m(v2
6v
−1
5 )

ξ(3)

A.2. E7

ψ Wψ(χ3/2, a)
(m, 0, 0, 0, 0, 0, 0) v2

3v
−1
1 B 3

2
,m

(
v2
1v
−1
3

)
(0,m, 0, 0, 0, 0, 0) v2

2B̃0,m(v2
2v
−1
4 )

ξ(3)

(0, 0,m, 0, 0, 0, 0)
ξ(2)v4B1,m(v2

3v
−1
1 v−1

4 )
ξ(3)

(0, 0, 0,m, 0, 0, 0) v4B̃1/2,m(v2
4v
−1
2 v−1

3 v−1
5 )

ξ(3)

(0, 0, 0, 0,m, 0, 0) v2
5B̃0,m(v2

5v
−1
4 v−1

6 )
ξ(3)v6

(0, 0, 0, 0, 0,m, 0)
ξ(2)v3

6v
−2
7 B−1/2,m(v2

6v
−1
5 v−1

7 )
ξ(3)

(0, 0, 0, 0, 0, 0,m) v4
7B−1,m

(
v2
7v
−1
6

)
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A.3. E8

ψ Wψ(χ3/2, a)
(m, 0, 0, 0, 0, 0, 0, 0) v2

3v
−1
1 B3/2,m

(
v2
1v
−1
3

)
(0,m, 0, 0, 0, 0, 0, 0) v2

2B̃0,m(v2
2v
−1
4 )

ξ(3)

(0, 0,m, 0, 0, 0, 0, 0)
ξ(2)v4B1,m(v2

3v
−1
1 v−1

4 )
ξ(3)

(0, 0, 0,m, 0, 0, 0, 0) v4B̃1/2,m(v2
4v
−1
2 v−1

3 v−1
5 )

ξ(3)

(0, 0, 0, 0,m, 0, 0, 0) v2
5B̃0,m(v2

5v
−1
4 v−1

6 )
ξ(3)v6

(0, 0, 0, 0, 0,m, 0, 0)
ξ(2)v3

6v
−2
7 B−1/2,m(v2

6v
−1
5 v−1

7 )
ξ(3)

(0, 0, 0, 0, 0, 0,m, 0)
v4
7B−1,m(v2

7v
−1
6 v−1

8 )
r38

(0, 0, 0, 0, 0, 0, 0,m)
ξ(4)v5

8B−3/2,m(v2
8v
−1
7 )

ξ(3)

Appendix B. Proof of reduction formula

In this appendix, we present an alternative derivation of the reduction for-
mula (4.16), based on a Chevalley basis decomposition of the argument of
the character χ in integral (4.5).

As in Section 4, we denote by ψ a degenerate character on N that has
support along the subset of simple roots Π′ ⊂ Π.

B.1. The n = ncn
′ factorization

For a reduced Weyl word w of length �, we start with the integral (4.5):

Fw,ψ(χ) =
∫
Nw
{γ}

χ(wnγ)ψ(nγ)dnγ .(B.1)

In the first step towards evaluating this integral, we use the Chevalley basis
notation (3.11) to write elements n ∈ Nw

{γ}(A) as

nγ = xγ1(u1) · · ·xγ�(u�).(B.2)

The positive roots γi are parametrized in Appendix C and satisfy wγ < 0
and in this appendix we will denote these roots by {γ}w, where the subscript
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indicates the fixed Weyl word w. We have also used the Chevalley generator
notation xα(u)

xα(u) = euEα ,(B.3)

where Eα is the generator of the α root space and u ∈ A is the parameter of
the group element. With this parametrization, we can rewrite the individual
term Fw,ψ as

Fw,ψ(χ) =
∫

A�
χ (wxγ1(u1) . . . xγ�(u�))ψ(u)du1 . . .du�(B.4)

=
∫

A�
χ (xwγ1(u1) · · ·xwγ�(u�))ψ(u)du1 · · ·du�,

where u now denotes collectively all ui variables.

Let us label the simple roots of Π′ more explicitly as

Π′ = {α′i1 , . . . , α′ir}(B.5)

hence ψ is non-trivial along r “directions”. Since ψ is only sensitive to those
components of nγ , which correspond to the non-trivial directions, Π′, we can
write

ψ(u) = ψ(uα′i1 , . . . , uα′ir ).(B.6)

The particular order of the arguments in ψ is not important, since the char-
acter is abelian. In the following, we will denote the variables uα′i1 to uα′ir
collectively by uΠ′ . Let us recall that for a given choice of the set Π′, one
is restricted to the set of Weyl words Cψ; cf. (4.7). As a consequence, the
subset of simple roots Π′ is contained in the set of roots {γ}w. The set {γ}w
provides a canonical ordering of the Chevalley factors in the argument of
the character χ in (B.4). The embedding of Π′ in {γ}w in general takes the
form

{γ1, . . . , γk, γk+1 = α′i1 , . . . , γ� = α′ir}w,(B.7)

where we have used the fact that all other simple roots of Π′ appear some-
where to the right of γk+1. In other words the roots {γ1, . . . , γk} to the left
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of α′i1 do not contain simple roots along which ψ is non-trivial. We define

{γ}w′0 = {γk+1 = α′i1 , . . . , γ� = α′ir}w′0 .(B.8)

We will exploit this fact in the following to show that the Fourier integral
can be factorized into two integrals, one which is independent of the Fourier
kernel ψ and another one which depends on it. We present a constructive
proof of this statement.

B.2. Iterative step

Starting with the integral of (B.4), we perform an Iwasawa decomposition
of the last Chevalley factor xwγ� in the argument according to

xwγ�(u�) = n(u�)a(u�)k(u�).(B.9)

Due to the right-invariance of χ under the action of elements of K(A), we
can drop the k factor, leaving us with

Fw,ψ(χ) =
∫

A�
χ
(
xwγ1(u1) . . . xwγ�−1(u�−1)n(u�)a(u�)

)
ψ(uΠ′)du1 . . .du�.

(B.10)

We will now move the factor n(u�)a(u�) all the way to the left in the argu-
ment of χ, by conjugating it around each one of the other �− 1 remaining
Chevalley factors. This process will transform the arguments of each one of
these Chevalley factors. Let us first consider the effect of “pulling through”
the n(u�) factor. The argument of a Chevalley factor will then transform as

xγi(ui)→ xγi(ui + fi(ui+1, . . . , u�)),(B.11)

where i = 1, . . . , �− 1 and fi is some polynomial function in its arguments.
By making a re-definition of variables according to ui → ui − fi(ui+1, . . . , u�),
we can restore the simple form in the argument of the Chevalley factor. The
important point now is that the corresponding Jacobi factor of this variable
transformation is trivial, i.e., equal to one since ui is shifted only by higher
uk; see e.g., [45]. Nevertheless the arguments uΠ′ of the character ψ will
obtain a dependence on the variables of Chevalley factors associated with
the roots {γ}w′0 . This dependence is indicated by u{γ}w′0 . We are are then
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left with an integral of the form

Fw,ψ(χ) =
∫

A�
χ
(
n(u�)xwγ1(u1) · · ·xwγ�−1(u�−1)a(u�)

)
ψ(u{γ}w′0 )du1 · · ·du�.

(B.12)

Now consider moving the factor a(u�) to the left by conjugating it around
each Chevalley factor. This induces a scaling of the argument of each
Chevalley factor according to

xwγi(ui)→ xwγi(uia(u�)
−wγi).(B.13)

We can make a variable transformation ui → uia(u�)wγi in order to eliminate
the scaling from the argument. This transformation yields a Jacobi factor of
Ji(u�) = a(u�)wγi . There will of course also be a re-scaling in the argument of
the character ψ, which we will indicate by a tilde. Following this procedure,
we are left with the following expression for the integral

Fw,ψ(χ) =
∫

A�

( �−1∏
i=1

Ji(u�)
)
χ
(
n(u�)a(u�)xwγ1(u1) · · ·xwγ�−1(u�−1)

)
(B.14)

× ψ(ũ{γ}w′0 )du1 · · ·du�.

Let us denote the overall Jacobi factor by

J�(u�) =
�−1∏
i=1

Ji(u�)(B.15)

By the definition of the character χ one can drop the n(u�) factor from its
argument. After furthermore splitting off the factor χ(a(u�)), the integral
takes the following form

Fw,ψ(χ) =
∫

A�
J�(u�)χ(a(u�))χ

(
xwγ1(u1) · · ·xwγ�−1(u�−1)

)
(B.16)

× ψ(ũ{γ}w′0 )du1 · · ·du�.

B.3. Iteration and projection

The procedure outlined in the previous section is applied in an iterative
process to each Chevalley factor in the argument of χ. An important step
is the re-scaling transformation used to undo the effect that the conjugate
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action of an abelian element a(ui) has on the argument of a Chevalley factor.
The point is that only the re-scaling in the Chevalley factors x{γ}w′0 will also
have an effect on the variables on which the Fourier kernel ψ depends. To
see this more clearly, let us write the integral (B.4) for Fw,ψ in the following:
shorthand notation

Fw,ψ(χ) =
∫

A�
χ
(
xw({γ}w\{γ}w′0 ) xw({γ}w′0 )(u)

)
ψ(uΠ′)du,(B.17)

where we have defined the following notation:

{γ}w\{γ}w′0 := {γ1, . . . , γk}.(B.18)

Having performed the iteration step of B.2 on each Chevalley factor xw({γ}w′0 )

successively and defining a generalized analogue of the Jacobi factor (B.15)
according to

Ji(ui) =
i−1∏
j=1

Jj(ui),(B.19)

we obtain the following structure of the integral:

Fw,ψ(χ) =
∫

A�
χ
(
xw({γ}w\{γ}w′0 )

)( k+�′∏
i=k+1

Ji(ui)χ(a(ui))
)
ψ(ũ{γ}w′0 )du,

(B.20)

where �′ = �(w′0). It is now clear that we can split the integral up into a
product of one integral which is independent of ψ and a second one which
retains dependence on ψ

Fw,ψ(χ) =
∫

A�−�′
χ
(
xw({γ}w\{γ}w′0 )

)
du1 · · ·du�−�′

(B.21)

×
∫

A�
′

(
k+�′∏
i=k+1

Ji(ui)χ(a(ui))
)
ψ(ũ{γ}w′0 )du�−�

′+1 · · ·du�.
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Let us denote the factors as follows:

Pw =
∫

A�−�′
χ
(
xw({γ}w\{γ}w′0 )

)
du1 · · ·du�−�′ ,(B.22)

Pw′0,ψ =
∫

A�
′

(
k+�′∏
i=k+1

Ji(ui)χ(a(ui))
)
ψ(ũ{γ}w′0 )du�−�

′+1 · · ·du�,

such that Fw,ψ = Pw · Pw′0,ψ. Written out with the character χ parametrised
by λ, we have

Ji(ui)χ(a(ui)) = a(ui)λ+ρ+w(
∑ i−1
j=1 γj).(B.23)

As the next step, we will now show that the integral Pw′0,ψ can be conve-
niently projected onto the subgroup G′ ⊂ G generated by the simple roots
in Π′. To achieve this, we define an Eisenstein series EG′(χ′, g′) on the group
G′. Since ψ is a generic character on G′, the projection of the integral Pw′0,ψ
then gives the non-degenerate Whittaker vector of the EG

′
(χ′, g′) series. This

fact allows one to apply the Shintani–Casselman–Shalika formula [81,82] for
evaluating the integral.

The non-degenerate Whittaker vector W ′
ψ(χ

′, g′), associated with the
series EG

′
(χ′, g′), and evaluated at g′ = a′ = 1, takes the form

W ′
ψ′(χ

′,1) =
∫
N ′(Q)\N ′(A)

χ′(w′0n
′)ψ(n′).(B.24)

In the following, we use

{γ′}w′0 = {γ′1, . . . , γ′�′}.(B.25)

With this, the integral for W ′
ψ(χ

′,1) evaluates to

∫
A�
′

(
�′∏
i=1

Ji(ui)χ′(a(ui))
)
ψ(u{γ′}w′0 )du1 · · ·du�′ .(B.26)

In order to project (B.22) onto (B.26), we have to identify the two Fourier
integrands with each other. This yields the condition for the exponents

〈
λ′ + ρ′ + w′0

⎛
⎝ i−1∑
j=k+1

γj

⎞
⎠ |H−w′0γi

〉
=

〈
λ+ ρ+ w

⎛
⎝ i−1∑
j=1

γj

⎞
⎠ |H−wγi

〉
,

(B.27)
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where on the right-hand side, we have used the trivial observation that
{γ′}w′0 = {γk+1, . . . , γ�}. For a positive root α, we have denoted by Hα =
[Eα, E−α] the canonically normalized element in the Cartan subalgebra.

Now recall that w = wcw
′
0, such that the right-hand side can be re-

written as 〈
w−1
c (λ+ ρ) + w′0

⎛
⎝ i−1∑
j=1

γj

⎞
⎠ |w−1

c H−wγi

〉
(B.28)

=

〈
w−1
c (λ+ ρ) + w′0

⎛
⎝ i−1∑
j=1

γj

⎞
⎠ |H−w′0γi

〉
.

With this, (B.27) reduces to

〈λ′ + ρ′|H−w′0γi〉 =
〈
w−1
c (λ+ ρ) + w−1

c wcw
′
0

⎛
⎝ k∑
j=1

γj

⎞
⎠ |H−w′0γi

〉
.(B.29)

Applying the identity (C.4), we obtain

〈λ′ + ρ′|H−w′0γi〉 = 〈w−1
c (λ+ ρ) + w−1

c (wcρ− ρ)|H−w′0γi〉
= 〈w−1

c λ+ ρ|H−w′0γi〉,(B.30)

giving us the desired parametrization of λ′ in terms of λ.

Appendix C. The γ-parametrization

We require a parametrization of Nw
{γ} in (3.21). In other words we seek a

construction of the set of roots {γ}, for given w. Though this construction
is standard (see, e.g., [89, Lemma 1.3.14]), we give it for completeness and
employ a construction obtained in [45].

For this we fix a reduced expression w = wi1wi2 · · ·wi� for the Weyl word
w of length �. The subscripts refer to the nodes of the Dynkin diagram of G
and wi are the fundamental reflections that generate the Weyl group. Then
one can explicitly enumerate all positive roots that are mapped to negative
roots by the action of w as follows. Define

γk = wi�wi�−1 · · ·wik+1αik(C.1)

where αik is the ikth simple root. We note in particular γ� = αi� . That this
gives a valid description of the positive roots generating Nw

{γ} can be checked
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easily by induction. Therefore we have

{γ}w = {α > 0 |wα < 0} = {γi : i = 1, . . . , �(w)},(C.2)

where for clarity we have introduced the subscript label w. We also record
that there is a simple expression for the sum of all these roots in terms of
the Weyl vector ρ

γ1 + · · ·+ γ� = ρ− w−1ρ(C.3)

which can again be checked by induction. Furthermore, we record that

w(γ1 + · · ·+ γn) = w′ρ− ρ,(C.4)

where w′ = wi1wi2 . . . win , with n < �.
It is important to emphasize that by the construction (C.1), the set

inherits a canonical order of the roots, such that {γ}w = {γ1, γ2, . . . , γ�}
denotes an ordered set.

Appendix D. Distinguished gradings of E10

For a finite-dimensional (simple, complex) Lie algebra g one can study the
so-called distinguished gradings of g. These are integers gradings

g = ⊕m∈Zgm(D.1)

such that dim g0 = dim g2. These conditions imply that the grading is even:
g1 = {0} [88]. For finite-dimensional Lie algebras, the set of all distinguished
gradings is in one-to-one correspondence with nilpotent orbits with Bala–
Carter labels of type g [72,73].16 The distinguished gradings can be given in
terms of weighted Dynkin diagrams [p1, . . . , pn] that determine the degree
of any root α by

m = degα =
∑
i

pini(D.2)

if α =
∑

i niαi is expanded on a basis of simple roots αi with integer coef-
ficients ni. Evenness of the grading means that all pi are even numbers.

16On top of these, there are nilpotent orbits associated with distinguished grad-
ings of Levi factors of parabolic subalgebras of g and together they provide a com-
plete classification of nilpotent orbits.



92 Philipp Fleig, Axel Kleinschmidt and Daniel Persson

Table D.1: Distinguished even gradings of E10 with pi ≤ 2. The last column
contains the potential codimension of the associated nilpotent orbit.

[p1 p2 . . . . . . p9 p10] Codimension

[ 0 0 0 0 2 0 0 0 0 0 ] 60
[ 0 0 2 0 0 0 0 0 2 0 ] 56
[ 0 0 2 0 0 0 0 2 0 0 ] 48
[ 0 0 2 0 0 0 0 2 0 2 ] 44
[ 0 0 0 2 0 0 0 0 2 0 ] 40
[ 0 0 2 0 0 0 2 0 0 2 ] 38
[ 0 0 0 0 2 0 0 2 0 2 ] 38
[ 0 0 0 2 0 0 0 2 0 0 ] 36
[ 2 0 0 0 2 0 0 0 2 0 ] 36
[ 0 0 0 2 0 0 2 0 0 2 ] 30
[ 2 0 0 0 2 0 0 2 0 2 ] 30
[ 0 0 0 2 0 0 0 2 2 2 ] 30
[ 0 0 0 2 0 0 2 0 2 0 ] 28
[ 2 0 0 2 0 0 0 2 0 2 ] 28
[ 2 0 0 2 0 0 2 0 0 2 ] 26
[ 2 0 0 2 0 0 2 0 2 0 ] 24
[ 0 0 0 2 0 0 2 2 2 2 ] 24
[ 2 0 0 2 0 2 0 2 0 2 ] 20
[ 2 0 0 2 0 0 2 2 2 2 ] 20
[ 2 0 0 2 0 2 0 2 2 2 ] 18
[ 2 2 2 0 2 0 2 0 2 2 ] 16
[ 2 0 0 2 0 2 2 2 2 2 ] 16
[ 2 2 2 0 2 0 2 2 2 2 ] 14
[ 2 2 2 0 2 2 2 2 2 2 ] 12
[ 2 2 2 2 2 2 2 2 2 2 ] 10

For finite-dimensional g the maximum value is pi = 2 [88], so that all pi are
either zero or equal to two. The principal nilpotent orbit corresponds to
[2, 2, . . . , 2] and is the largest possible orbit with dimension (dim g)− (rk g),
i.e., codimension equal to the rank of g.

One can apply the same criterion for distinguished even gradings to
Kac–Moody algebras. It appears that the bound pi ≤ 2 is no longer satisfied,
leading to a much larger (and possibly infinite) set of distinguished gradings.
In table D.1, we list all distinguished gradings for E10 that have pi ≤ 2.
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The last row of the table corresponds to what is the principal orbit
in the finite-dimensional case and should be associated with the generic
principal series representation. The next-to-last (sub-regular) and second-to-
last (sub–sub-regular) rows were discussed in the conclusions in relation to
the minimal and next-to-minimal representations of E10. (This also requires
the definition of an analogue of the Spaltenstein map [90] for Kac–Moody
algebras.)
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