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Monodromy of inhomogeneous Picard–Fuchs

equations

Robert A. Jefferson and Johannes Walcher

We study low-degree curves on one-parameter Calabi–Yau hyper-
surfaces, and their contribution to the space–time superpotential
in a superstring compactification with D-branes. We identify all
lines that are invariant under at least one permutation of the
homogeneous variables, and calculate the inhomogeneous Picard–
Fuchs equation. The irrational large volume expansions satisfy the
recently discovered algebraic integrality. The bulk of our work is
a careful study of the topological integrality of monodromy under
navigation around the complex structure moduli space. This is a
powerful method to recover the single undetermined integration
constant that is itself also of arithmetic significance. The examples
feature a variety of residue fields, both abelian and non-abelian
extensions of the rationals, thereby providing a glimpse of the arith-
metic D-brane landscape.
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1. Introduction and nature of results

The reader of this note will appreciate that when it comes to calculations
around moduli spaces parameterizing supersymmetric vacua of quantum
field theories and string theory, explicit evaluations of global monodromy
rank among both the most subtle and the hardest. This is so because except
in the simplest situations (really, anything that cannot be reduced to the
thrice punctured sphere, or hypergeometric functions), the required ana-
lytic continuations cannot be handled algebraically, and one has to resort to
numerical methods. (This would be even more true for higher dimensional
moduli spaces.) Moreover, the precise matching of the local data from one
patch to the next is contingent on keeping track of the chosen continuation
path, and the relative normalization.

These facts notwithstanding, monodromy calculations are often a worth-
while enterprise. A priori knowledge of (even part of) the monodromy con-
stitutes valuable information to constrain the behavior around the singular
points which are of more direct physical and mathematical interest. A pos-
teriori, consistent monodromies serve as cross-check of local results, and are
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the final confirmation that all normalizations are correct. In some situations,
such as the one studied in the present paper, monodromy considerations
can be used to determine subtle local data whose perturbative calculation
is either much harder or even unknown. This will be the main payoff of the
present paper.

Much of the physics motivation for the calculations that we will present
flows from the realization that in the context of Calabi–Yau compactifica-
tions of type II string theory, breaking supersymmetry from eight to four
supercharges by wrapping D-branes comes, at the level of solving the F-
flatness equations on the worldvolume, with an extension of moduli spaces,
schematically1

(1.1) MN=1 −→MN=2,

where the fibers of the map are the N = 1 “open string” vacua with fixed
value ofN = 2 “closed string” moduli. In a fixed charge sector, the extension
is finite modulo continuous open string moduli, and is accompanied with a
rich algebraic structure whose physical consequences are only beginning to
emerge. The aspect emphasized in [1] is the action of the Galois group on
the extending vacua, locally around large volume point. What we study in
the present paper is how these local extensions fit together into the global
structure of (1.1). This is a generalization of the work [2].

In the rest of the introduction, we describe the geometric (Hodge theo-
retic) situation, and then summarize our main results. The bulk of the paper
is devoted to explicit calculations. We include a brief discussion section at
the end, but the broader lessons for the landscape of N = 1 string vacua
will be extracted elsewhere.

The geometric situation underlying our calculations involves, first of all,
a smooth, quasi-projective family of Calabi–Yau threefolds Y → B, with
semi-stable compactification Ȳ → B̄. To keep that part simple, we will be
working with the earliest list of four examples, one-parameter hypersurfaces
in weighted projective space, originally studied in [3, 4]. The list includes
(the mirror manifolds of): the quintic P411111[5], the sextic P411112[6], the octic

1We are using a “mostly mathematical” notation throughout the paper, with
occasional physics terminology when we do not know the correct mathematical
equivalent. Equation (1.1) means that there exists a nice map from the N = 1
moduli space to the N = 2 moduli space, as we presently explain. As physicists,
we would point the arrow in the direction of lower supersymmetry, as in, N = 2→
N = 1.
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P411114[8] and the dectic P411125[10]. So, the base of our family will be a thrice-
punctured projective line, which we parameterize with a complex variable z
taking values 0, 1,∞ at the three singular points: B ∼= P1 \ {0, 1,∞}.

The middle cohomology groups of the members of our family, H3(Yz,C),
are four-dimensional symplectic vector spaces, and, as z varies over B, fit
together to a holomorphic vector bundle, HC, that is naturally flat because
the fibers contain the locally constant integral lattice H3(Yz,Z), fitting
together to the local system HZ. The global structure of the bundle HC =
HZ ⊗OB is encoded in the monodromy representation

(1.2) ρ : π1(B)→ Sp(4,Z).

In the usual conventions, the boundary point z = zLV = 0 is the point of
maximal unipotent monodromy (large volume point), z = zC = 1 is the coni-
fold point with unipotent monodromy of rank 1, while the Gepner point
z = zG =∞ has monodromy of finite order (5, 6, 8 and 10 in the four exam-
ples, respectively). We will imagine the base point implicit in (1.2) to be
located close to zLV, and denote the corresponding fixed symplectic lattice
by (HZ, 〈·, ·〉). A choice of basis in HZ allows to write matrices representing
generators of π1(B), which we denote by MLV, MC, MG, and which satisfy

(1.3) MLV ·MC =MG.

A specific basis of HZ is determined from the intrinsic properties of the
variation of Hodge structure associated with Y → B, and its degeneration at
B̄ \B. From the fact that N :=MLV − id is nilpotent (N4 = 0) and maps
integral vectors to integral vectors, the spaces Im(N3−j)/Im(N4−j) for j =
0, 1, 2, 3 are (projectively) rational. Using additional information from the
symplectic form determines an integral basis (γ0, γ1, γ2, γ3) of HZ that is
adapted to the monodromy weight filtration

(1.4) W2j = KerN j+1, j = 0, 1, 2, 3

(namely γj generatesW2j/W2j−2), up to a lower-triangular symplectic trans-
formation that is integral except for a single constant of integration, α, which
corresponds to an indeterminacy γ3 → γ3 + αγ0, and can a priori take any
(imaginary) value. These constants can be determined and hence a basis fully
fixed by studying the behavior at the conifold locus. Namely, one imposes
that γ3 vanish at z = zC, and MC send γ0 �→ γ0 + γ3, and leave γ1, γ2,
untouched.
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In practice, the task is accomplished by calculating the periods of the
holomorphic three-form, viz., the restrictions

(1.5) �j = 〈γj , ·〉
∣∣
F 3H

via the polarization 〈·, ·〉, to the first step of the Hodge filtration F ∗H on
HC. More precisely, choosing a non-zero section Ω ∈ Γ(B,F 3H) determines
a Picard–Fuchs differential equation satisfied by any (complex) period

(1.6) L�(Ω) = 0

and studying the analytic properties of the solutions of that differential
equation provides all the data listed above. The first such calculation was
completed for the quintic in [5], with further explanations in [6,7]. For more
recent discussions, see, e.g., [8] which in particular points out a severe ambi-
guity of this procedure or [9].

Once this is done, the (conjecturally) irrational constant α mentioned
above features as an entry of the limiting period matrix with respect to the
canonical mirror map coordinate

(1.7) q = exp 2πi
〈γ1, ·〉
〈γ0, ·〉

∣∣∣∣
(F 3H)×

.

The fact that in general

(1.8) α ∈ ζ(3)
(2πi)3

Q

is explained by the physics origin of this constant (in perturbative corrections
to the sigma-model on the A-model manifold), as well as by motivation [9].
It also meshes nicely with the recent discussions of integral structures on
quantum cohomology in the context of the gamma genus, see [10–12].

We now introduce the main complication, which models extension by
D-branes (1.1). It is the same as in several previous works [13–15]. For each
fixed member of our family of Calabi–Yau threefolds, we find holomorphic
curves Cz,k ⊂ Yz that vary generically locally uniquely (as algebraic cycles
modulo algebraic equivalence) with z. Here, k is an index running over a
certain finite set A. Consideration of such a finite collection of curves is
necessary because any given Cz,k will, under continuous global variation
of z, branch at specific locations in B, i.e., the local variation will not be
unique, and the curve will not return to itself when the variation encircles
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those branch points. In other words, in order for the collection of curves to fit
together into a globally well-defined algebraic cycle C, we first have to extend
the moduli space to an |A|-fold branched covering B̂ → B. Schematically,

(1.9)
C ⊂ Ŷ −→ Y
↓ ↓ ↓
B̂ == B̂ −→ B

and the Cz,k are components of the fibers of C → B. We assume that for
fixed z, the Cz,k for different k are homologous to each other, and generi-
cally irreducible. We will call the branch locus of B̂ → B the “open string
discriminant,” and denote it by D. In the examples, D is a finite number
of points. (To be sure, the extension (1.9) extends to the compactification
Ȳ → B̄, and ˆ̄B → B̄ can also be branched at B̄ \B. This plays an important
role in our analysis. But when we speak of open string discriminant, we only
mean points that were not on the boundary before.)

Associated to the algebraic cycle C → B, we have a variation of mixed
Hodge structure. Locally on B, the extension is encoded in the Abel–Jacobi
map to the intermediate Jacobian

(1.10) J = F 2H\HC/HZ

as discussed extensively in the literature, loc. cit.. Specifically, to a local fam-
ily of homologically trivial cycles, such as Cz = Cz,k − Cz,k′ in some simply
connected open set in B, we can associate a normal function, ν, as a holo-
morphic section of J satisfying Griffiths transversality

(1.11) ∇ν̃ ∈ F 1H⊗ ΩB.

Here ν̃ is a lift of ν to HC and ∇ is the Gauss–Manin connection. Such a lift
can be conveniently represented by an integral over a three-chain bounding
Cz. Actually, as a consequence of (1.11) (and surjectivity of the infinitesimal
period mapping), the complete information about the extension class ν can
be recovered from the inhomogeneous Picard–Fuchs equation

(1.12) Lτ(Ω) = f

satisfied by the truncated normal function

(1.13) τ = 〈ν̃, ·〉|F 3H
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(cf. (1.5)). The basic idea behind this statement is that in the Hodge decom-
position of ν̃, the truncated normal function gives the (0, 3) part, and the
first derivatives of τ give the (1, 2) part. Moreover, as emphasized in [15], the
inhomogeneity on the right-hand side of (1.12) is local and additive in the
boundary cycle Cz. Since the integral (period) ambiguity of τ drops out of
the differential equation (1.12), this means that we can associate an inhomo-
geneity, fk, to each curve, Cz,k, by itself, such that when Cz = Cz,k − Cz,k′ ,
we have

(1.14) f = fk − fk′ .

More formally, and for the global issues which we propose to study in the
present paper, it is convenient to fix a “marking” on A, the finite set labeling
the Cz,k. The simplest way to do this is to include a locally constant (techni-
cally, of vanishing infinitesimal invariant) and globally invariant curve in the
same homology class that serves as reference point for the chain integrals.
Namely, if we label this reference curve with k = 0, then the point of is that
f0 = 0, and we might as well identify fk with the inhomogeneity associated
to Cz,k − Cz,0, which is more canonical. In the calculations, this additional
cycle will often be implicit, though we promise to display it at least once
(see Equation (2.9)).

Physically, in anN = 1 compactification of the type II/I superstring, the
truncated normal function τ gives the contribution to the space–time super-
potentialW for the chiral scalar fields coming from N = 2 vector-multiplets,
that is made by a D-brane configuration whose algebraic characteristic class
is the cycle under consideration, after integrating out all (massive) degrees
of freedom on the D-brane worldvolume.

To state the main results of our calculations, we denote by A the local
system over B obtained by tensoring the data of the extension B̂ → B with
Z. Continuation of the bounding chains over B then really is an extension
of local systems

(1.15) HZ −→ ĤZ −→ A

that underlies the variation of mixed Hodge structure, and which we recover
from the solutions of the inhomogeneous Picard–Fuchs equation. In other
words, we will determine the monodromy representation

(1.16) ρ̂ : π1(B \D)→ SA × iSp(4,Z),
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where SA is the symmetric group and

(1.17) iSp(4,Z) = (HZ)A � Sp(4,Z).

The factor (HZ)A arises because the bounding chains will only return up
to closed three-cycles, and manifests itself in shifts of the truncated nor-
mal function by solutions of the homogeneous equation. The crux of the
computation is that these shifts are indeed integral periods.

We find that, in analogy with the homogeneous case reviewed above, the
integrality of monodromy can be determined by combining data from the
large volume point and the conifold. This data can be interpreted in terms
of limiting values of normal functions studied in full generality in the work
of Green–Griffiths–Kerr [16]. In a degeneration of maximal unipotent mon-
odromy, the relevant statement for us is that with respect to the monodromy
weight filtration (1.4), the lift of the normal function is integral moduloW1,
and rational moduloW0. (It is integral moduloW0 when the covering ˆ̄B → B̄
is trivial at zLV.) Moreover, the coefficient ak of the fundamental period �0

in the truncated normal function τk (in the limit z → zLV, with respect to
the canonical coordinates (1.7)) has an interpretation in terms of the geom-
etry of the singular fiber YzLV , which leads to general expectations about
the range of values analogous to (1.8). In our examples, we find that this
coefficient is completely determined from the conifold monodromy, and our
numerical results are consistent with the general expectations.

An interesting observation is that, at least in all examples that we study,
the integral structure at zLV (and in particular, the constants ak) can also
be determined by tracking the vanishing normal function to the open string
discriminant, D, and imposing appropriate boundary conditions over there.
We remark that this possibility is not a priori obvious (at least to us) because
it requires a certain relation between the branch structure at zLV and the
number of components of D. We will emphasize this aspect in the discussion.
As a practical matter, however, the coincidence is quite welcome because it
over-constrains integrality of monodromy.

Here is an overview over the remainder of the paper:

We will start in Section 2 by identifying interesting cycles C in each of
our four families of Calabi–Yau hypersurfaces. As in [1], we organize the
search by looking for curves of low degree, and lines specifically. Drawing
on the strategy employed by van Geemen [17–19], imposing certain discrete
symmetries allows us to fully solve the problem in certain cases. We note that
some of our lines actually belong to families (in the sense that they allow
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additional continuous deformations for fixed z), but we do not complete
the analog of the discussion of van Geemen lines in [18, 20]. Referring the
interested reader to [13, 15] for the details of the method, and to appendix
for a few intermediate steps in one example, we present the result of the
calculation of the inhomogeneity fk for each of our cycles.

In Section 3, we localize our cycles to the large volume point zLV. Follow-
ing [1], we perform a Newton–Puiseux expansion that separates the curves
by residue field. We then check that the A-model expansion of the truncated
normal function (the space–time superpotential) satisfies the “D-logarithm
integrality” discovered in [1], and recently proven in [21]. All the new cycles
from Section 2 turn out to have residue fields that are abelian extension
of Q. Therefore, in order to have a more complete set of examples for the
monodromy calculations, we also include the (non-abelian) conics from [1].

Section 4 then is concerned with the main calculations. For each of the
cycles, we expand periods and truncated normal functions at the conifold
and at the open string discriminant. Numerical analytic continuation along
certain paths in B determines the relevant change of basis and monodromy
matrices. The one friendly aspect is that all components of the open string
discriminants are on the real axis.

We summarize our numerical results in Section 5, see in particular
table 1, and discuss the arithmetic significance to the best of our abilities.

Note added: The referees’ comments prompt us to translate the sentence
below (1.1) into a more mathematical language. The phrase “fixed charge
sector” means that we are considering algebraic curves with a fixed degree
(in particular, we are considering lines and conics). “Continuous open string
moduli” are (unobstructed) deformations of the cycles for fixed z, or alge-
braic equivalences. Such deformations do not affect the inhomogeneous
Picard–Fuchs equation or the normal function. In other words, we are
exploiting that the Griffiths group of algebraic cycles modulo algebraic
equivalence is filtered by the degree of a representative cycle, and this filtra-
tion is finite at each step. Based on this, our calculations should be useful
input for more rigorous discussions of algebraic cycle groups and their Abel–
Jacobi image.

2. From curves to residues

For completeness, we begin with some of the standard homogeneous data.
Our Calabi–Yau manifolds are hypersurfaces of degree d = 5, 6, 8, 10 in
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weighted projective space

(2.1) {W = 0} ⊂ P4w1,w2,w3,w4,w5
,

where (w1, w2, w3, w4, w5) = (1, 1, 1, 1, 1), (1, 1, 1, 1, 2), (1, 1, 1, 1, 4), (1, 1, 1,
2, 5) are the weights, and d =

∑
iwi. The Fermat-polyhedron-Dwork pencil

from which we construct the mirror manifold is specified by the family of
polynomials

(2.2) W =
∑
i

wi
d
x
d/wi

i − ψ
∏
i

xi,

where the global complex structure parameter is related to ψ via

(2.3) z = ψ−d.

The convenient normalization of the holomorphic three-form is

(2.4) Ω =
|G|

(2πi)3
ResW=0

ψω

W
,

where ω = α(v), α = dx1 ∧ · · · ∧ dx5, v =
∑
wixi∂i and |G| = d3/

∏
wi is

the order of the Greene–Plesser group. The three-form satisfies the Picard–
Fuchs equation

(2.5) LΩ = dβ,

where β is a certain two-form and d = drel is the fiberwise exterior derivative.
The Picard–Fuchs operator can be written as

(2.6) L = θ4 − z(θ + r1)(θ + r2)(θ + r3)(θ + r4),

where (r1, r2, r3, r4) =
(
1
5 ,

2
5 ,

3
5 ,

4
5

)
,
(
1
6 ,

2
6 ,

4
6 ,

5
6

)
,
(
1
8 ,

3
8 ,

5
8 ,

7
8

)
,
(
1
10 ,

3
10 ,

7
10 ,

9
10

)
are the “indices at infinity,” and θ ≡ z∂z.

2.1. Quintic

The generic quintic threefold contains 2875 lines. That number not being
divisible by 3, while the Dwork pencil is invariant under cyclic permutation
of (x1, x2, x3), suggests that there should exist Z/3-invariant lines for generic
values of ψ. It is not very hard to see that there are, up to SL(2,C) trans-
formations on homogeneous coordinates (u, v), and conjugacy class of cyclic
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permutation, precisely two different Z/3-equivariant parameterizations that
are distinguished by whether the determinant of the generator acting on
(u, v) is 1 or a non-trivial cube root of unity, ω. (Note that this distinction
arises after fixing a particular linearization of the Z/3 action on projective
space. Twisting the action with multiplication of the homogeneous coordi-
nates by cube roots of unity maps the two possibilities onto each other.) We
will need the first of those options later, while for the quintic we are left
with the general ansatz

(2.7) x1 = u+ v, x2 = u+ ωv, x3 = u+ ω2v, x4 = a u, x5 = b u,

where a, b are two parameters that are constrained by the condition that
(2.7) be contained in the mirror quintic

(2.8) abψ = 6, a5 + b5 = 27.

The solutions to these equations (and their images under symmetries of the
quintic) yield the van Geemen lines. The original interest of these lines [17]
was that they allow continuous (unobstructed) deformations for fixed ψ. The
global structure of the corresponding families was worked out in [18], see
also [20]. One of the results of this analysis is that the only other lines
besides those contained in these families are the coordinate lines, such as

(2.9) C0 = {x1 + x2 = 0, x3 + x4 = 0, x5 = 0}.

It follows from elementary considerations (or the explicit calculations in [13])
that these coordinate lines have a vanishing inhomogeneity, i.e.,

(2.10)
∫
C0

β = 0,

where β is the two-form in (2.5). This vanishing reflects the fact that the
Abel–Jacobi image of the coordinate lines is torsion.2 Since they are in addi-
tion of primitive degree, the C0 (and their integral multiples) are ideally
suited to serve as reference cycle for the monodromy calculations as men-
tioned in the introduction. All our other examples have similar coordinate
lines.

2For the coordinate lines, this follows from elementary symmetry considerations.
It is however not clear whether this statement follows from known results about
algebraic cycles on Calabi–Yau threefolds, whose general versions would be widely
open. We thank the referee for instructive comments on this point.
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On the other hand, the van Geemen lines have a non-trivial Abel–Jacobi
image. This was pointed out via an infinitesimal calculation in [18], while
the complete inhomogeneity was determined in [1] to be

(2.11) fω(z) =
1 + 2ω
(2πi)2

· 32
45
·
63
ψ5 + 1824

ψ10 − 512
ψ15(

1− 128
3ψ5

)5/2 .

The factor of 1− 128
3ψ5 in the denominator is the discriminant of the equa-

tions (2.8), when a5 = b5. It is worthwhile pointing out that when a = b in
(2.7), mapping ω �→ ω2 can be compensated by x2 ↔ x3, x4 ↔ x5, which
leaves the holomorphic three-form invariant. This explains in elementary
terms why changing the sign of the square-root in (2.11) is equivalent to
changing ω �→ ω2. More abstractly, we might say that the cycle generated
by the van Geemen lines modulo algebraic equivalence provides a twofold
cover of ψ-space (the base of our family of varieties) branched at ψ = 0 and
3ψ5 = 128. In particular, this extension does not split globally over Q(ω).

We now briefly review some conics on the mirror quintic found in [1].
Consider the Z2 × Z2-invariant ansatz

Ca,b = {x1 + x3 + ax5, x2 + x4 + ax5, x
2
3 + x24 + bx3x4

+ (a+ 1
2ab)(x3 + x4)x5 + 1

8(−ψa+ 6a2 + 2a2b)x25}.(2.12)

These conics lie on the quintic precisely if

64 + 5a3ψ2 − 40a4ψ + 12a5 = 0,

ψ − 2a+ ab2 = 0.
(2.13)

These are, for fixed generic ψ, ten different conics, so the covering B̂ →
B is quite a bit more interesting than for the van Geemen lines. Before
discussing it, we note that passing to the global coordinate z = ψ−5 is easily
accomplished since Equations (2.13) are invariant under (ψ, a)→ (ηψ, ηa),
when η5 = 1.

Now, the nature of the symmetry b→ −b shows that the ten conics group
as pairs of conics in five different planes determined by the first equation
of (2.13). That symmetry acts trivially when a = ψ/2, which under the
first equation can be seen to coincide with the discriminant locus of the
van Geemen lines, 3ψ5 = 128. Indeed, at this point, the conics (2.12) are
reducible to two members of the van Geemen family. One may check that
the conics are also reducible at 7ψ5 = 128, but this is not a branch point of
the covering (2.13).
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The discriminant of the first equation in (2.13) is

(2.14) −5308416 + 26104832ψ5 + 459ψ10 = 0.

In B (parameterized by z = ψ−5), these are the two points

(2.15) z± =
50986± 6875

√
55

20736
.

The inhomogeneity corresponding to Ca,b was also calculated in [1]. The
result can be simplified to

fa,b =
1
π2
· b

8640(2a− ψ)5(12a2 − 32aψ + 3ψ2)5

×
(
−366917713920− 1016582897664a4ψ + 3474322882560a3ψ2

− 3601465344000a2ψ3 + 2232487772160aψ4 + 1993006776320ψ5

− 1127509778432a4ψ6 − 62141296640a3ψ7 + 139109736960a2ψ8

− 48377468160aψ9 + 8404041600ψ10 + 92770596a4ψ11

− 308068920a3ψ12 + 34766415a2ψ13 + 486000aψ14
)
.

(2.16)

Note that the denominator of (2.16) vanishes when 2a = ψ, which implies
3ψ5 = 128 as we have seen above, or when 12a2 − 32aψ + 3ψ2 = 0, which
implies (2.14). Thus, as it should be, the three components of the open string
discriminant

(2.17) zD11 = z−, zD12 = z+, zD2 =
3
128

are manifest in the denominator of the inhomogeneity.

2.2. Sextic

This subsection contains the first new results. As is well known, the generic
number of lines on a weighted sextic Calabi–Yau threefold is 7884.3 Since this
is divisible by 3, it is possible for the cyclic permutations of the homogeneous
variables, such as (x1, x2, x3)→ (x3, x1, x2) to act freely on the set of lines.

3The mirror formula for the number of lines is d∏
wi

[
dd∏
w

wi
i

− d!∏
wi!

(
3dHd −

3
∑
wiHwi

+ 2
)]
.
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Working out the equations, we find that indeed there are no Z3-invariant
lines on (the one-parameter family mirror to) P411112[6].

As an example that divisibility (of the generic number of solutions by the
order of a symmetry group) does not imply absence of solutions (invariant
under that symmetry), we consider lines invariant under the Z2 symmetry

(2.18) (x1, x2, x3, x4, x5) �→ (x2, x1, x4, x3, x5).

With a parameterization ansatz

x1 = a1u+ v, x2 = a1u− v,
x3 = u+ a2v, x4 = u− a2v,
x5 = a3u

2 + a4v
2,

(2.19)

we find the space of such lines factors over Q into several components. The
simplest of those has a1 and a2 equal to sixth roots of −1, and a3 = a4 =√−3ψ. These are nothing but the curves studied in [14]. The corresponding
inhomogeneity was found to be proportional to z1/2, and the monodromy of
solutions was also completely worked out. In the present paper, we do not
wish to discuss these “toric” curves any further.

The next more complicated lines with Z2 symmetry (2.18) turn out to
also be invariant under a second Z2 acting as

(2.20) (x1, x2, x3, x4, x5) �→ (x3, x4, x1, x2, x5).

Imposing (2.18) and (2.20) forces the parameters of our ansatz to respect

(2.21) a2 = a1, a4 = a3.

Eliminating a4 (and ignoring the toric solutions), the equations boil down
to

1− 18a22 + 111a42 − 252a62 + 111a82 − 18a102 + a122 + ψ3

+ 15a42ψ
3 + 32a62ψ

3 + 15a82ψ
3 + a122 ψ

3 = 0(2.22)

and its images under multiplying a2 by a third root of unity.
With these out of the way, we can complete the reduction of the curves

with only a single Z2 symmetry, (2.18). There are two more components
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over Q. The first is characterized by the vanishing of

(2.23) 1 + 2a62 + a122 − 4a62ψ
3,

while the second by

1953125 + 7812500a62 + 11718750a122 + 7812500a182 + 1953125a242
+ 2062500ψ3 − 6250000a62ψ

3 − 16625000a122 ψ
3 − 6250000a182 ψ

3

+ 2062500a242 ψ
3 + 726000ψ6 − 3156000a62ψ

6 + 12236000a122 ψ
6

− 3156000a182 ψ
6 + 726000a242 ψ

6 + 85184ψ9 − 484864a62ψ
9

− 180096a122 ψ
9 − 484864a182 ψ

9 + 85184a242 ψ
9 + 18944a62ψ

12

+ 18688a122 ψ
12 + 18944a182 ψ

12 − 1024a122 ψ
15.(2.24)

We have calculated the inhomogeneity corresponding to (2.23), and found
it to vanish. We suspect the same to hold for (2.22), although we have
not completed the calculation. (The basis for this conjecture is that the
discriminant meets the conifold locus ψ = 1.) We have also not calculated
the inhomogeneity corresponding to (2.24).

Since these results do not yield any new inhomogeneity for the Picard–
Fuchs equation of the sextic, we will drop it from the list for the rest of this
paper.

2.3. Octic

The number of lines on the weighted octic Calabi–Yau threefold is 29504.
This is not divisible by 3, so there should be analogs of the van Geemen
lines. Indeed, let us parameterize lines invariant under

(2.25) (x1, x2, x3, x4, x5) �→ (x2, x3, x1, x4, x5)

via
(2.26)
x1 = u+ v, x2 = u+ ωv, x3 = u+ ω2v, x4 = a u, x5 = b u4 + c uv3,

where ω is a non-trivial cube root of unity. We find that the space of such
lines factors globally in several components. The first of those has

(2.27) a8 = 34
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while the second

(2.28) a2ψ2 = 21.

Note that both of these expressions are invariant under (ψ, a)→ (ηψ, η−1a)
when η8 = 1, so that the corresponding cycle C is indeed well-defined over
B.

We have calculated the corresponding inhomogeneities, with the follow-
ing results. For the first component, (2.27), we find

(2.29) f1(z) =
√−3
(2πi)2

· 3
16
· ψ(8 + ψ2)
(ψ2 − 7)5/2

.

For the convenience of the reader, we explain a few of the intermediate steps
leading to (2.29) in the appendix.

The second component of lines on the octic with the Z3 symmetry (2.25)
gives inhomogeneity

(2.30) f2(z) =
√−7
(2πi)2

· 147
16

· −823543 + 184534ψ8 + 129ψ16

ψ4(ψ8 − 2401)5/2
.

Finally, we note that we have also studied lines with only a Z2 symmetry
exchanging two coordinates. For all the ones for which we have computed
the inhomogeneity, it vanishes.

2.4. Dectic

Last on the list of one-parameter Calabi–Yau hypersurfaces is the weighted
dectic, P411125[10]. It contains generically 231200 lines, a number also not
divisible by 3. Searching for lines that are invariant under cyclic permutation
of the first three variables, we find that the ansatz analogous to (2.7) allows
only three parameters (the coefficient of u2 in x4 and the coefficients of u5,
u2v3 in x5), constrained by a total of four independent equations (the coef-
ficients of u10, u7v3, u4v6, uv9 in W ), so there are generically no solutions.
This is where we remember the other possible Z3-equivariant parameteriza-
tion. The ansatz

x1 = u+ v, x2 = ωu+ ω2v, x3 = ω2u+ ωv, x4 = a uv,

x5 = b u4v + c uv4(2.31)

yields three parameters constrained by three equations (coefficients of u2v8,
u5v5, u8v2). We find that there are two components, characterized by the
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vanishing of a5 + 35 and 513 + a5 − 10a2ψ2, respectively. It turns out that
the first has vanishing inhomogeneity, while the second gives

f(z) =
1 + 2ω
(2πi)2

· 9
50ψ5(b− aψ)5(a3 − 4ψ2)5

·
(
87483691656− 9805676940a2ψ2 + 402856335a4ψ4 − 2843845767aψ6

+ 448788924a3ψ8 + 10768937688ψ10 − 321417648a2ψ12

+ 810896a4ψ14 − 15348960aψ16 + 299200a3ψ18
)
,

(2.32)

where the parameters a, b, c, ω in the ansatz (2.31) are determined by the
system of equations

513 + a5 − 10a2ψ2 = 0,

27 + b2 − 2abψ = 0
(2.33)

as well as c = 2aψ − b, ω: a non-trivial cube root of unity. This system is
somewhat similar to Equations (2.13) for conics on the quintic, in that there
are five pairs of solutions for fixed ψ. The open string discriminant has two
components

(2.34) zD1 =
128

36 · 193 , zD2 =
1
243

also apparent in (2.32) (recall that in present conventions, z = ψ−10).

3. Algebraic integrality

Consider the A-model expansion of the truncated normal function τ (1.13)
associated to an algebraic cycle, around the point of maximal unipotent
monodromy, z = zLV = 0. It is defined as the expansion in the mirror variable
q from Equation (1.7), of the quantity

(3.1) WA =
〈ν̃, ·〉
〈γ0, ·〉

∣∣∣
(F 3H)×

.

On general grounds, explained in the introduction, the A-model expansion
takes the form

(3.2) WA =
s

2πir
log q + a+

1
(2πi)2

∞∑
d=1

ñdq
d/r.
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Here, r and s are integers, with r measuring the ramification index of the
cycle at z = zLV (and s is defined modr). Namely, the cycle is really defined
over the locally extended moduli space with local coordinate z1/r. Moreover,
a is an a priori arbitrary complex constant.

We emphasize again that the “classical terms” in (3.2) (the constant a
and the log q term) are not determined by the inhomogeneous Picard–Fuchs
equation that we calculated in the previous section. This follows from the
definitions on account of the fact that �0 and �1 (Equation (1.5)) are peri-
ods, i.e., solutions of the homogeneous Picard–Fuchs equation. Instead, the
classical terms can be recovered from a monodromy calculation, as we will
do in the next section. In this section, we will concentrate on the non-trivial
part of the q-expansion in (3.2) (the “instanton expansion”). This serves two
purposes. First, we want to explain the splitting of the extension B̂ → B at
zLV, and emphasize again that the coefficients ñd are not in general ratio-
nal numbers. Second, we want to display the algebraic integrality discussed
in [1, 21] that is nevertheless inherent in the instanton expansion.

3.1. Octic

The instanton expansion we find for our lines on the octic is rather similar
to that of the van Geemen lines originally studied in [1]. In particular, the
field extension is quadratic and appears only as an overall constant.

3.1.1. First component. Solving the differential equation with f1 from
(2.29) as inhomogeneity, and doing the expansion, we find, modulo classical
terms

(2πi)2√−3 · WA ≡ 768q1/4 + 19584q1/2 + 860160q3/4 + 48733440q

+ 79882616832
25 q5/4 + 230232655872q3/2 + 868448460865536

49 q7/4

+ 1432733965743360q2 + 120259506663856128q9/4

+ 259997807371266134016
25 q5/2 + 111494235354933550841856

121 q11/4

+ 83296525620921045651456q3 + · · · .

(3.3)

Note that while the field extension is quadratic, the good local variable is in
fact q1/4 (i.e., r = 4). Taking account of the sign of the square-root of −3,
this corresponds to a degree 8 covering, locally organized in two groups of
degree 4. This can in fact also be seen from the defining Equations (2.26)
and (2.27). Multiplying a with an eighth root of unity in general will give
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a different curve (the calculation in the appendix was done for a2 = 3),
but (a, ω)→ (−a, ω2) can be compensated by (x2, x3, x4)→ (x3, x2,−x4),
an operation that leaves the holomorphic three-form invariant.

Since
√−3 appears only as an overall constant, the expected integrality

takes a fairly simple form. It can be written by twisting the standard Ooguri–
Vafa multi-cover formula by the corresponding quadratic residue character.
Namely, with

(3.4)
∑
d

ñdq
d/4 =

∑
d,k

nd

(−3
k

)
k2

qdk/4,

where
(−3
k

)
= 0, 1,−1 if k = 0, 1, 2 mod 3, the nd are integers (times

√−3).
For instance

n7 = ñ7 − ñ1
49 =

√−3 · 17723437976832,
n11 = ñ11 + ñ1

121 =
√−3 · 921439961611021081344.(3.5)

3.1.2. Second component. This case has r = 1, and a quadratic exten-
sion Q(

√−7) as residue field. There is no branching at zLV. The first few
terms of the A-model expansion are

(2πi)2√−7 WA ≡ 77672448q + 2364921695023104q2

+ 139205158983427963682816q3

+ 10833679402194213394854742437888q4

+ 24618206559572019809666493201002121265152
25 q5 + · · · .

(3.6)

In

(3.7)
∑
d

ñdq
d =

∑
d,k

nd

(−7
k

)
k2

qkd

the nd are integral,e.g.,

(3.8) n5 = ñ5 + ñ1
25 =

√−7 · 984728262382880792386659728040087957504.

3.2. Dectic

We now turn to the extension (2.33) of the dectic moduli space, with corre-
sponding inhomogeneity (2.32). Because of the high degree of these equation,
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we cannot solve them in terms of radicals as we did before. Rather, we rely on
expanding the parameters around ψ−10 = z = zLV = 0 in a fractional power
series.

Consider first the equation for a. The upper boundary of the Newton
polygon of the first of (2.33) consists of two segments, one of slope 1 and
one of slope −2/3. The corresponding local field extensions can be read off
from the coefficients on those segments. We see that the power series for a
has coefficients in Q(

√
513/10) and Q(101/3), respectively.

We can now insert these solutions into the second of Equations (2.33).
In the first case, Q(

√
513/10) suffers another quadratic extension, while in

the second, the equation for b splits over Q(101/3) in the limit ψ →∞.
What is not immediately obvious is that, upon plugging these results

into the inhomogeneity (2.32), and taking into account the overall prefactor
1 + 2ω =

√−3, it turns out that the final result for the residue fields at zLV
is significantly simpler than at some of the intermediate steps.

Specifically, the first group of four branches has ramification index r = 2,
and residue field K1 = Q(ζ1, ζ2), where ζ21 = −2, ζ22 = −57. The A-model
expansion of the normal function is

(2πi)2WA ≡ 480120ζ1q1/2 + 2894243400ζ2q + 3072231093399320
3 ζ1q

3/2

+ 16749751924576485360ζ2q2 + 45634140857715370626589476
5 ζ1q

5/2

+ 192692509139523826715663010240ζ2q3

+ 6085990469674530883728974279217064500
49 ζ1q

7/2

+ 2954640183071216785838740930876082745120ζ2q4

+ 56219253156252289550103460315334373757593346895
27 ζ1q

9/2 + · · · .

(3.9)

Note that in this case, the irrationality of the coefficients is not just an
overall constant. The twist of the multi-cover formula depends on nd

(3.10)
∑
d

ñdq
d/2 = ζ1

∑
k,d odd

nd

(−2
k

)
k2

qdk/2 + ζ2
∑
k,d

n2d

(−57
k

)
k2

qdk.

Moreover, as was already noticed in [1], the nd might not be integral at the
discriminant of the extension K1/Q. Here, the denominator of nd for d odd
is a growing power of 2.
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For the remaining six branches of our cycle, with r = 3, the residue field
in fact collapses back to Q(

√−3). The A-model expansion is

(2πi)3√−3 WA = 56100q1/3 + 35413275q2/3 + 42226839000q

+ 264700529287425
4 q4/3 + 120847065541631256q5/3

+ 243374447043299404350q2 + 25706778509839946246266800
49 q7/3

+
19022909901384216052391949375

16
q8/3 + · · ·

(3.11)

and we have an integrality structure as in (3.4).

3.3. Quintic

So far, all residue field extensions have had abelian Galois group. The sim-
plest (unfortunately, not simple) example with a non-abelian Galois group
that we know comes from the conics on the mirror quintic. We refer to [1,21]
for the full explanation of the integrality, and here content ourselves with
briefly reviewing the branch structure.

As mentioned before, the situation is rather similar to that for lines on
the dectic. The extension by a in (2.13) splits around ψ →∞ in one of degree
2, and one of degree 3, which are then both extended quadratically once we
add b. In the end, the total residue field extension for the first group is bi-
quadratic, of the form Q(ζ), with ζ4 + 100ζ2 − 6000 = 0. The Galois group
of this polynomial is the (non-abelian) dihedral group D4. Note in particular
that this extension survives in the expansion of the inhomogeneity (2.16).
The A-model expansion is

(2πi)2 · WA = (−304960000ζ + 7227200ζ3)q
− 512000

51 (−1016270788225ζ + 24084846092ζ3)q2

+ 40000
7803 (−131215286737935072263800ζ

+ 3109702672077500263451ζ3)q3 + · · · .

(3.12)

The second group of conics around zLV has r = 6, and residue field Q(51/3)

(2πi)2 · WA = 2400 · 52/3q1/6 − 400600q1/2 + 120620000
3 · 51/3q5/6

− 7863785008000
1323 · 52/3q7/6 + 48067627724000

9 q3/2 + · · · .(3.13)
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4. Integrality of monodromy

As before, we first collect the homogeneous data, with implicit reference to
the introduction of the paper.

The point of the normalization (2.4) of the holomorphic three-form is
that the so-called fundamental period [5] takes a particularly compact form
— the three-cycle γ0, defined in a neighborhood of z = zLV = 0 by encircling
the coordinate axes, is invariant under z → e2πiz and gives the period
(4.1)

�0(z) =
∫
γ0

Ω =
1

(2πi)5

∫ ∏
i

dxi
xi

∞∑
n=0

(∑ wi

d x
d/wi

i

ψ
∏
xi

)n
=

∞∑
n=0

(dn)!∏
(win)!

z̃n,

where z̃ =
∏

i w
wi
i

dd z. This can be readily verified to satisfy the Picard–Fuchs
equation (2.6). All solutions of that equation around z = 0 are obtained from
the hypergeometric generating function

(4.2) �(z̃;H) =
∞∑
n=0

Γ
(
1 + d(n+H)

)
∏
Γ
(
1 + wi(n+H)

) z̃n+H

by taking derivatives with respect to H. We define for j = 0, 1, 2, 3

(4.3) ϕj(z) =
1

(2πi)j
(∂H)j

∣∣
H=0

�(z;H).

In terms of these, the integral basis of periods is given by4

(4.4) Π =

⎛
⎜⎜⎝
�0

�1

�2

�3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
− c2
24 −κ

2
κ
2 0

α − c2
24 0 −κ

6

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝
ϕ0
ϕ1
ϕ2
ϕ3

⎞
⎟⎟⎠ .

Here, the change of basis involves some topological invariants of the mirror
manifold, viz., the classical triple intersection number κ = d/

∏
wi, the sec-

ond Chern number c2 = κ
∑
wiwj and the Euler number χ = κ(

∑
wiwjwk −

4This basis is almost equal to 1
j!(2πi)j (∂H)j |H=0

∏
Γ(1+wiH)
Γ(1+dH) �(z;H), with due

account of κ. Integral monodromy still prefers (4.4).
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d
∑
wiwj), which enters the constant (1.8)5

(4.5) α = −χ ζ(3)
(2πi)3

.

With respect to this basis, the large volume and conifold monodromy are
given by the matrices

(4.6) MLV =

⎛
⎜⎜⎝

1 0 0 0
1 1 0 0
0 κ 1 0

− c2
12 − κ

6 −κ −1 1

⎞
⎟⎟⎠ , MC =

⎛
⎜⎜⎝
1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ,

while the Gepner monodromy is

(4.7) MG =MLV ·MC.

The general strategy for calculating the extension of these matrices by the
algebraic cycles is explained at the beginning of Section 4.2. First, we warm
up with those somewhat simpler examples.

4.1. Octic

As we have seen in the previous sections, the extended moduli spaces asso-
ciated with lines on the octic are rather similar to that of the van Geemen
lines on the quintic, studied in [2].

4.1.1. First component. More precisely, the lines with inhomogeneity
(2.29) are associated with a degree 8 covering, which is branched at zLV with
ramification index 4 and at the open string discriminant zD = 7−4 with index
2. In other words, at zLV, the eight branches split into two groups of four,
while at zD, the eight branches come together pairwise.

To give a little more detailed account of what is going on globally, we
recall that the inhomogeneity (2.29) was calculated (see appendix) over ψ-
space as corresponding to the solution a2 = 3 of (2.27). Because of the choice
of root of −3, these are really two branches of our cycle. The other branches
can be reached by multiplying a2 by a fourth root of unity, or equivalently
by a monodromy z → e2πiz.

Now notice that all interesting points in z-space line up conveniently on
the real axis: 0 = zLV < zD < zC < zG =∞. Therefore, it is natural to carry

5For d = 5, 6, 8, 10, κ = 5, 3, 2, 1, c2 = 50, 42, 44, 34, −χ = 200, 204, 296, 288.
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out the monodromy calculations along the positive real axis, where we write
f1 as

(4.8)
√−3
(2πi)2

· 3
16
· z

1/4 + 8z1/2

(1− 7z1/4)5/2
.

Let us label the lines with this calculated inhomogeneity on the positive real
axis as Cz,1 and Cz,2 for the two choices of square-root, respectively, and the
associated truncated normal functions τ1, τ2. Recall that it is understood
implicitly that we are calculating the chain integrals with respect to some
fixed globally constant cycle (e.g., a “coordinate line”). Naturally, the other
lines and normal functions would be labeled Cz,k, τk with k = 3, . . . , 8, and
their inhomogeneity is obtained from (4.8) by multiplying z1/4 with a fourth
root of unity.

In accord with this geometric situation, we can fix the ambiguity in the
solution of the inhomogeneous equation, and hence recover the full τk’s,
by imposing that for k = 1, 2, 3, 4, we have τ2k−1 = −τ2k, and that they
vanish at z = zD. This is the same strategy as in [2]. In the local coordinate
y = 1− 7z1/4, we find

(4.9)
4π2√−3τ1 =

392
15

y3/2 +
135191
5625

y5/2 +
23856287
1125000

y7/2 + · · · .

To determine the behavior of τ1 at zLV, we might continue it numerically as
a solution of the differential equation, or as in [2], pick a convenient point
of comparison between zLV and zD where both the power series expansion
(4.9) and

(4.10)
(2πi)2√−3 τ

LV
1 = 48z1/4 +

153
2
z1/2 + 210z3/4 +

190365
256

z + · · ·

converge well. We find

(4.11) τ1 = τLV1 + a�0 − 2�1 + 1
2�3,

where a ≈ i3.085052546678470732727 . . . .

4.1.2. Second component. The analysis for f2 is quite similar, the main
difference being that the covering has total degree 2 and is branched only
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at zD and zG. The expansions are
(4.12)
(2πi)2√−7 τ1 =

7
5
y3/2 +

23051
20000

y5/2 +
15388807
16000000

y7/2 +
19044150391
23040000000

y9/2 + · · · ,

(where y = 1− 2401z) and
(4.13)
(2πi)2√−7 τ

LV
1 =

18963
16

z +
577705085643

1048576
z2 +

2125304249123593811
4294967296

z3 + · · · .

Analytic continuation shows

(4.14) τ1 = τLV1 + a�0 − 3�1 + 1
2�3

with a ≈ i6.48474571034689069 . . . .

4.2. Dectic

We are now ready to embark on the calculation of the monodromy for the
inhomogeneity (2.32). As discussed previously, the covering has total degree
10, branched at zLV, zD1 and zD2 . Again, all these branch points lie on the
real axis, with

(4.15) 0 = zLV < zD1(≈ 2.56 · 10−5) < zD2(≈ 4.12 · 10−3) < zC = 1 < zG.

Recall the basic goal and strategy: we want to determine the asymptotic
behavior at zLV of the truncated normal function τk for k = 1, . . . , 10, asso-
ciated with each branch, Cz,k of our algebraic cycle. To this end, we need to
fix the solution of the inhomogeneous Picard–Fuchs equation modulo inte-
gral periods. Pertinent information is contained in the boundary condition
at the open string discriminant, and in the statement that all monodromies
be integral. The simplest degeneration (which is all we have to deal with in
our examples) is that two branches, say Cz,k1 and Cz,k2 , come together at a
component of the discriminant, say zD. Then the condition is that there be
an integral period p such that

(4.16)
τk1 − τk2 − p
(z − zD)3/2

is regular at zD. As explained in [2], this condition ensures that the full
normal function vanishes at zD (in other words, not only the integral of the
holomorphic three-form over a bounding three-chain, but also its derivative,
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which gives the integral of the (2, 1)-form). Under monodromy around zD,
we have

(4.17) (τk1 , τk2)→ (τk2 + p, τk1 − p).

We will refer to (4.16) as the “vanishing domain wall” condition. As we just
saw, it ensures integrality of monodromy around the open string discrimi-
nant.

In general, integral monodromy is the statement that for each of our
singular points (including open string discriminant, zLV, zC and zG), there
should be a permutation matrix (σlk) and an integral matrix (A

i
k) such that

upon encircling that point

(4.18) τk → σlkτl +Aik�i,

where (�i)i=0,1,2,3 is the integral basis of periods (4.4). We find it convenient
to combine (σlk) and (A

i
k) with the matrix M representing the monodromy

of periods into a single matrix M̂ of block form

(4.19) M̂ =
(
σ A
0 M

)

that acts on the “extended period vector”

(4.20) Π̂ = (τ1, . . . , τ10, �0, . . . , �3)T.

The collection of these matrices over all singular points gives the extended
monodromy representation advertised in (1.16).

In the previous examples, we exploited the fact that the open string
discriminant consisted of only a single point, and that there was, up to
simple symmetries, essentially only one vanishing domainwall. This allowed
us to fix τk at the open string discriminant, and then continue it to zLV in
order to extract the asymptotic behavior.

In the present example, we will proceed the other way around. We begin
with introducing the “large volume solutions,” τLVk , distinguished by their
vanishing at z = 0. (Technically, we impose that there be no logarithmic
terms, and no constant, in the solution of the differential equation.) We
then calculate the monodromy of these solutions around all the singular
points. This will not be integral in general, but we can improve on this
by adding suitable combinations of the integral periods. Namely, there is a
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matrix (Bi
k), which as it turns out is unique modulo integers, such that

(4.21) τk = τLVk +Bi
k�i

has integral monodromy. At the end, we check all vanishing domainwall
conditions (4.16).

Let us see what this looks like in practice. Referring to Section 3.2, we
label the four branches in the first group, see Equation (3.9), such that if τLV1
corresponds to the roots (ζ1, ζ2) of ζ21 = −2, ζ22 = −57, then τLV2 corresponds
to (−ζ1, ζ2), τLV3 to (−ζ1,−ζ2) and τLV4 to (ζ1,−ζ2). Thus, large volume
monodromy acts by exchanging (τLV1 , τLV2 ) and (τLV3 , τLV4 ).

In the second group, see Equation (3.11), τLV5,6,7 correspond to one choice
of
√−3 and τLV8,9,10 to the other, ordered in the same way such that large

volume monodromy acts by cyclic permutation.
Tracking these solutions to the first component of the discriminant zD1

along the positive real axis, we find that it is the combinations (k1, k2) =
(4, 7) and (k1, k2) = (1, 10) that should vanish there (though they do not
quite yet).

Skirting around zD1 in the positive upper half plane, we proceed to zD2

and find that the vanishing domainwall there will come from the combination
(k1, k2) = (2, 3).

Finally, we head for the conifold, encircle it in the positive direction and
return to zLV along the same path. The net result is that the τLVk pick up
a complex multiple of the fundamental period �0, in the above order given
by

(
9
2 + a1,−3 + a1, 3− a1,−9

2 − a1,−11
6 + a2,

11
6 + a2,

9
2 + a2,

11
6

− a2,−116 − a2,−
9
2
− a2

)
,(4.22)

where a1 ≈ i5.154774632407 . . . and a2 ≈ i5.090336702019 . . ..
It is then not hard to check that the change of basis (4.21), with B given

by
(4.23)

BT =

⎛
⎜⎜⎝
−1
2−a1 −a1 a1 −1

2+a1 −1
6−a2 1

6−a2 1
2−a2 1

6+a2 −1
6+a2 −1

2+a2
1
2

1
2

1
2

1
2

2
3

2
3

2
3

1
3

1
3

1
3

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎠

makes the conifold monodromy integral in a way that is consistent with the
extension at large volume. Specifically, in this basis the extended monodromy
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matrices are
(4.24)

M̂LV =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 −3 −1 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, M̂C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 4
0 1 0 0 0 0 0 0 0 0 0 0 0 −3
0 0 1 0 0 0 0 0 0 0 0 0 0 3
0 0 0 1 0 0 0 0 0 0 0 0 0 −5
0 0 0 0 1 0 0 0 0 0 0 0 0 −2
0 0 0 0 0 1 0 0 0 0 0 0 0 2
0 0 0 0 0 0 1 0 0 0 0 0 0 5
0 0 0 0 0 0 0 1 0 0 0 0 0 2
0 0 0 0 0 0 0 0 1 0 0 0 0 −2
0 0 0 0 0 0 0 0 0 1 0 0 0 −5
0 0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(4.25)

M̂D1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 1 0 −4 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 −1 4 0 −1
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 −4 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 4 0 −1
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, M̂D2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 −3 0 0
0 1 0 0 0 0 0 0 0 0 0 3 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

One may then first of all make the consistency check that the extension of
(4.7)

(4.26) M̂G = M̂LV · M̂D1 · M̂D2 · M̂C

(remember the lineup (4.15) and that these matrices compose on the right)
satisfies

(M̂G)10 = 1.

Finally, we verify the existence of vanishing domain walls. We find that

(4.27) τ7 − τ4 −�0 + 4�1 −�3 and τ10 − τ1 − 4�1 +�3

vanish at zD1 , and

(4.28) τ2 − τ3 + 3�1

vanishes at zD2 . So everything appears in order.

4.3. Quintic

We now repeat those calculations for the extension (2.16) of the quintic.
The first thing to note is that while the components of the open string
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discriminant (2.17) are still all on the real axis, one of them is negative.
Namely,
(4.29)
zD11(≈ −1.76 · 10−5) < zLV < zD2(≈ 2.34 · 10−2) < zC < zD12(≈ 4.92).

We label the four branches in the first group Equation (3.12) such that
τ1, τ4 correspond to the real roots of ζ4 + 100ζ2 − 6000 and τ2, τ3 to the
imaginary roots. Large volume monodromy leaves these branches untouched.
Those in the second group, (3.13), are arranged by Mathematica such that
large volume monodromy acts by (5, 6, 7, 8, 9, 10)→ (7, 5, 9, 6, 10, 8). Under
conifold monodromy, these solutions pick up the fundamental period times

(4.30)
(
a1, 24− a2,−24 + a2,−a1,−592 ,−

69
2
,−69

2
,
69
2
,
69
2
,
59
2

)

with a1 ≈ 1.6377482972 . . . and a2 ≈ i93.620780658 . . .. To compensate for
this, we add the periods

(4.31) BT =

⎛
⎜⎜⎝
−a1 −24 + a2 24− a2 a1

59
2

69
2

69
2 −69

2 −69
2 −59

2
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎠

giving the monodromy matrices

M̂LV =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 −5 0 0 0
0 0 0 0 1 0 0 0 0 0 5 0 0 0
0 0 0 0 0 0 0 0 1 0 69 0 0 0
0 0 0 0 0 1 0 0 0 0 −69 0 0 0
0 0 0 0 0 0 0 0 0 1 −5 0 0 0
0 0 0 0 0 0 0 1 0 0 5 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 5 1 0
0 0 0 0 0 0 0 0 0 0 −5 −5 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, M̂C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(4.32)

M̂D11 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 −96 55 −2 −4
0 0 0 0 0 0 0 1 0 0 96 −55 2 4
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 96 −55 2 4
0 0 1 0 0 0 0 0 0 0 −96 55 −2 −4
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(4.33)
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M̂D12 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 0 0 0 −16 40 0 −8
0 0 0 1 0 0 0 0 0 0 −16 40 0 −8
1 0 0 0 0 0 0 0 0 0 16 −40 0 8
0 1 0 0 0 0 0 0 0 0 16 −40 0 8
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

M̂D2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 −48 80 0 0
0 1 0 0 0 0 0 0 0 0 48 −80 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(4.34)

By the ordering (4.29), the extended Gepner monodromy is given by

M̂G = M̂D11 · M̂LV · M̂D2 · M̂C · M̂D12 , (M̂G)5 = 1.

We also find the vanishing domain walls

τ7 − τ2 − 96�0 + 55�1 − 2�2 − 4�3 and τ8 − τ3 + 96�0(4.35)
− 55�1 + 2�2 + 4�3

at zD11 ,
(4.36)

τ1 − τ3 + 16�0 − 40�1 + 8�3 and τ4 − τ2 − 16�0 + 40�1 − 8�3

at zD12 and

(4.37) τ3 − τ2 − 48�0 + 80�1

at zD2 .

5. Discussion

In this work, we have studied analytic invariants of a variety of (mostly
new!) algebraic cycles on four one-parameter Calabi–Yau hypersurfaces in
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weighted projective space. We found these cycles by looking for holomorphic
curves invariant under particular permutation symmetries of the homoge-
neous coordinates. In Section 2, we calculated the inhomogeneous Picard–
Fuchs equation satisfied by the truncated normal function associated with
each cycle. In Section 3, we verified that the large volume expansion satis-
fies the algebraic “D-logarithm” integrality of [1, 21]. In Section 3, we cal-
culated the monodromy representation (1.16) underlying the variation of
mixed Hodge structure. A by-product of these calculations is the limiting
value of the normal function. We summarize our results in table 1. (For the
van Geemen lines on the quintic, we have rescaled the results of [2] by a
factor of 4 in order to conform to our present conventions.)

The key formula to discuss the arithmetic data is the large volume expan-
sion (3.2)

(5.1) WA =
s

2πir
log q + a+

1
(2πi)2

∞∑
d=1

ñdq
d/r.

Namely, r is the ramification (or “Puiseux”) index of the corresponding
branch of the covering (1.9). The coefficients ñd are algebraic numbers in
a finite extension of Q, the “residue field,” K. In our terminology, we have
referred to branches with the same r and K as “a group of branches.” The
various branches in one group are distinguished by the choice of phase of q1/r,
as well as the choice of an embedding ofK into C. (We might emphasize that
there are cases in which the two choices are not independent. For instance,
the “second group” of conics on the quintic (3.13) has K = Q(51/3), and
r = 6. But as the coefficients satisfy ñd/52d/3 ∈ Q, only the overall choice of
phase of 52/3q1/6 matters, and there are really six branches in that group. In
contrast, the first component of lines on the octic (3.3), has r = 4 and K =
Q(
√−3). But the two choices are independent, and there are eight different

branches. Somewhat more formally, we can have an embedding of the Galois
group of the local extension of moduli (∼= Z/rZ) into the Galois group of
the extension of residue field (or rather its Galois closure). Another example
of this is the first group on the dectic, Equation (3.9).) The generator of
this embedding is written as ζ in the table. We emphasize the two most
important aspects of the expansion (5.1).

1) The coefficients ñd satisfy “Ooguri–Vafa integrality with an arithmetic
twist.” In the simplest cases, this means that there is a Dirichlet
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character χ such that in

(5.2)
∑

ñdq
d/r =

∑
nd Li

(χ)
2 (qd/r)

the nd are integral (at least outside the discriminant), where

(5.3) Li(χ)2 (q) =
∑ χ(k)

k2
qk

is the “D-logarithm.” Specifically, for a quadratic extension ζ =
√
Δ,

we can write χ in terms of the Jacobi-symbol

(5.4) χ(k) =
(
Δ
k

)
.

In more complicated cases, the twist depends on nd, see around Equa-
tion (3.10) and [1, 21].

2) The constant term a of the expansion is an interesting (conjecturally
transcendental) number that we identify with the limiting value of
the Abel–Jacobi map discussed in [16]. (Comparison with Section 4
will show that in many cases we have stripped off a simple rational
additive that appears to be explained by the branch structure at zLV,
rather than the intrinsic arithmetic of the residue field.) As we have
written in the table, in all cases with abelian Galois group, a can be
expressed in terms of the Dirichlet L-function with the same character
(5.4) that appears in the D-logarithm. We have not yet succeeded in
identifying an analogous formula in the non-abelian case (first group
of conics on the quintic). (The fact that a vanishes (modulo Q) for the
second group of conics on the quintic, and that the extension by

√−2
disappears from a in the first group on the dectic are consequences of
the interplay with the extension of moduli at zLV that we mentioned
above.)

An interesting technical aspect of our calculations is that for each glob-
ally well-defined cycle C → B (cf. (1.9)), the number of independent limiting
values that have to be calculated matches the number of components of the
open string discriminant. For instance, for the lines on the dectic, there are
two groups at zLV, and D has two components. The conics on the quintic
also split into two groups at zLV. However, because the residue field of the
first group has two essentially independent embeddings into C (correspond-
ing to the real and imaginary ζ), we really have three independent values to
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calculate (counting one for Q(51/3)). This is matched precisely by the fact
that the open string discriminant has three different components, see (2.17).
This state of affairs has allowed us to calculate a in two independent ways,
from the conifold monodromy and the vanishing domain wall condition. We
suspect that there is an underlying general statement.

Considering which number fields appear in the examples, one might
observe that lines only come with abelian extensions of Q, though it is hard
for us to tell whether this had to be true. The hunch that conics give at
most solvable Galois groups is dispelled by an example from [1] (see table 1
there).

Clearly the most interesting open problem is to find an A-model explana-
tion for the interesting arithmetic that we have observed here in the B-model.
Some possibilities for the constant a were mentioned in [2], and one can be
rather hopeful that one of them will materialize soon. For the D-logarithm
integrality, we refer to the speculations in [1].
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Appendix. Some details of residue calculation

For the convenience of the reader, we give a few details of the residue algo-
rithm developed in [13, 15], applied to the first component of Z3-invariant
lines on the octic, see Equation (2.27).

We start from the expression Equation (2.4) for the holomorphic three-
form. With z = ψ−8, the Picard–Fuchs operator (2.6) has the form

L = θ4 − z(θ + 1
8)(θ +

3
8)(θ +

5
8)(θ +

7
8)

=
1

84ψ3
(
(ψ8 − 1)∂4ψ +

(
10ψ7 + 6

ψ

)
∂3ψ +

(
25ψ6 − 15

ψ2

)
∂2ψ

+
(
15ψ5 + 15

ψ3

)
∂ψ + ψ4

)
1
ψ .

(A.1)

The Griffiths–Dwork reduction method now allows us to write the two-form
in (2.5) as

(A.2) β = Res β̃,
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where β̃ is the meromorphic three-form6

β̃ =− 6ω5x4
1x

4
2x

4
3x

4
4x

3
5

W 4 − 6ψω5x5
1x

5
2x

5
3x

5
4x

2
5

W 4 − 6ψ2ω5x6
1x

6
2x

6
3x

6
4x5

W 4 − 6ψ3ω1x7
2x

7
3x

7
4x5

W 4

− 6ψ4ω2x2x8
3x

8
4x

2
5

W 4 − 6ψ5ω3x1x2x2
3x

9
4x

3
5

W 4 − 6ψ6ω4x2
1x

2
2x

2
3x

3
4x

4
5

W 4 − 6ψ7ω5x3
1x

3
2x

3
3x

3
4x

4
5

W 4

+ 6ω5x3
1x

3
2x

3
3x

3
4x

2
5

ψW 3 + 4ω5x4
1x
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(A.3)

and for i = 1, . . . , 5

(A.4) ωi = ω(∂i).

Now consider the line C parameterized as in (2.26), with a2 = 3, c = b, and
b2 − 2abψ + 21 = 0. To calculate the inhomogeneous Picard–Fuchs equation
associated to C, we choose a three-chain Γ with ∂Γ = C, and then apply
Griffiths’ “tube-over-cycle map” to write

(A.5) L
∫ C

Ω = L
∫
Tε(Γ)

Ω̃.

The calculation in P4 then splits in two types of contributions: “the exact
terms,”

(A.6) fexact =
∫
Tε(C)

β̃

and the “direct terms,” fdirect, which come from differentiating the tube over
the three-chain. If nψ is the normal vector to Tε(C) implementing infinites-
imal variation in ψ direction, fdirect is obtained from (A.1) by replacing ∂kψ

6Multiplied with 84ψ3 and up to factors of 2πi .
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with

(A.7) ∂kψ

∫
Tε(Γ)

Ω̃−
∫
Tε(Γ)

∂kψΩ̃ =
k−1∑
j=0

∂k−1−jψ

∫
Tε(C)

(∂jψΩ̃)(nψ).

We emphasize that while the final result is well-defined and does not depend
on any choices (such as, the three-form β̃, or the tube Tε(C)), the decom-
position into fexact and fdirect in general will.

The freedom in laying the tube is the key to calculating the integrals
defining fexact and fdirect in terms of residues. Fix some choice of plane P
passing through C, and denote the residual curve by R

(A.8) {W = 0} ∩ P = C ∪R.

We can now lay the tube over C inside of P except for some neighborhood
of the intersection points

(A.9) C ∩R = {p1, . . . , ps},

where we have to escape into the rest of P4. A certain advantage of the
lines over the conics studied in [1,13] is that we have some choice in picking
P , whereas a conic already spans a plane. In the case at hand, it turns
out convenient to let the second generator point in the x5 direction, which
results in the four intersection points

(A.10) p1 = {u = 0}, p2 = {u+ v = 0}, p3,4 = {u2 − uv + v2 = 0}.

Then, for each of those four points, we choose a third direction, normal to
the plane, and a local coordinate z on the curve. We also need a real function
f(r) that smoothly decreases from 1 to 0 as r = |z| runs from 0 to some small
positive r∗. The role of f(r) is to return the tube to P for |z| > r∗.

To be completely explicit, around p1 above, with z = u/v, we escape into
the x1-direction. The tube is parameterized as

x1 = 1 + z + ε rg(r), x2 = ω + z, x3 = ω2 + z, x4 = a z,

x5 = c z + b z4 + ε
[ r

(b− aψ)z −
7rg(r)
b− aψ

]
,

(A.11)
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where for computational convenience, we have rewritten f(r) as rg(r).
Around p2, with z = u/v + 1, the x2-direction turns out to be more con-
venient

x1 = z, x2 = −1 + ω + z − ε rg(r)
27(−1 + ω)

, x3 = −1 + ω2 + z,

x4 = a (−1 + z), x5 = c (−1 + z) + b (−1 + z)4

+ ε
[ −r
3(b− aψ)z +

7rg(r)
3(−1 + ω)(b− aψ)

]
.

(A.12)

Finally, for p3,4, we use z = u/v − u∗, where u∗ is one of the two roots of
u2 − u+ 1 = 0, and we again go in the x1-direction

x1 = 1 + u∗ + z − ε rg(r)
27(1 + u∗)

, x2 = ω + u∗ + z, x3 = ω2 + u∗ + z,

x4 = a (u∗ + z), x5 = c (u∗ + z) + b (u∗ + z)4

+ ε
[ −r
3(b− aψ)z +

7rg(r)
3(b− aψ)(1 + u∗)

]
.

(A.13)

By construction, the restriction of W to each of the tubes takes the form

(A.14) W |Tε(C) ∼ ε
(
r + rg(r) +O(z2))+O(ε2)

thereby exhibiting the order of pole of each of the terms in (A.4). The
convenience of choosing the plane in the x5-direction becomes apparent when
restricting the three-forms ωi from (A.4). All terms in (A.3) involving ω5
vanish as a result of our choice. As for the non-vanishing three-forms, we
have around p1, for example,

ω2 =
a+ aω

b− aψ z−1εr2g′(r) dz dε dr,

ω3 =
aω

b− aψ z
−1εr2g′(r) dz dε dr,

ω4 =
−1− 2ω
b− aψ z−1εr2g′(r) dz dε dr.

(A.15)

The algebraic calculation of the residues is then accomplished by expanding
(A.14) to the order in ε and z dictated by the pole order of the three-form
under consideration, picking out the term of degree 0, and integrating over
r. We do this around each of the four points (A.10), and sum up the results.
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For fexact, we find, corresponding the 37 terms in (A.4)

0 + 0 + 0 + 2(−31abψ4−62abωψ4+93ψ5+186ωψ5−5abψ6−10abωψ6+15ψ7+30ωψ7)
3(−7+ψ2)3

+ 5(−7abψ4−14abωψ4+21ψ5+42ωψ5−2abψ6−4abωψ6+6ψ7+12ωψ7)
3(−7+ψ2)3

− 7(−abψ6 − 2abωψ6 + 3ψ7 + 6ωψ7)
(−7 + ψ2)3

+ 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0

+ 7(−abψ4−2abωψ4+3ψ5+6ωψ5)
3(−7+ψ2)2 + 0 + 0 + · · · .

(A.16)

For fdirect, we first have to calculate nψ by differentiating the parameters
entering the tube (which depend implicitly on ψ). We then contract nψ with
∂jψΩ̃ and feed the result into (A.7). In the case at hand, fexact turns out to
vanish. Remembering some overall factors, and simplifying judiciously, the
final result becomes precisely (2.29).
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