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Automorphy of Calabi–Yau threefolds of

Borcea–Voisin type over Q
Yasuhiro Goto, Ron Livné and Noriko Yui

We consider certain Calabi–Yau threefolds of Borcea–Voisin type
defined over Q. We will discuss the automorphy of the Galois repre-
sentations associated to these Calabi–Yau threefolds. We construct
such Calabi–Yau threefolds as the quotients of products of K3 sur-
faces S and elliptic curves by a specific involution. We choose K3
surfaces S over Q with non-symplectic involution σ acting by −1
on H2,0(S). We fish out K3 surfaces with the involution σ from
the famous 95 families of K3 surfaces in the list of Reid [32], and of
Yonemura [43], where Yonemura described hypersurfaces defining
these K3 surfaces in weighted projective 3-spaces.

Our first result is that for all but few (in fact, nine) of the
95 families of K3 surfaces S over Q in Reid–Yonemura’s list, there
are subsets of equations defining quasi-smooth hypersurfaces which
are of Delsarte or Fermat type and endowed with non-symplectic
involution σ. One implication of this result is that with this choice
of defining equation, (S, σ) becomes of CM type.

Let E be an elliptic curve over Q with the standard involution
ι, and let X be a standard (crepant) resolution, defined over Q,
of the quotient threefold E × S/ι× σ, where (S, σ) is one of the
above K3 surfaces over Q of CM type. One of our main results is
the automorphy of the L-series of X.

The moduli spaces of these Calabi–Yau threefolds are Shimura
varieties. Our result shows the existence of a CM point in the
moduli space.

We also consider the L-series of mirror pairs of Calabi–Yau
threefolds of Borcea–Voisin type, and study how L-series behave
under mirror symmetry.
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1. Introduction

We will address the automorphy of the Galois representations associated to
certain Calabi–Yau threefolds of Borcea–Voisin type over Q. Here by the
automorphy, we mean the Langlands reciprocity conjecture which claims
that the L-series (of the �-adic étale cohomology group) of the Calabi–Yau
threefolds over Q come from automorphic representations. For our Calabi–
Yau threefolds, we will show that these representations arise as induced
automorphic cuspidal representations of GL2(K) of some abelian number
fields K.

Our Calabi–Yau threefolds were previously considered by Voisin [41] and
also by Borcea [6] from the point of view of geometry and also toward physics
(mirror symmetry) applications.

We now describe briefly the Borcea–Voisin construction of Calabi–Yau
threefolds over C. Let E be any elliptic curve with involution ι, and let S
be a K3 surface with involution σ acting by −1 on H2,0(S). The quotient
threefold E × S/ι× σ is singular, but the singularities are all cyclic quo-
tient singularities, and there is an explicit crepant resolution, which yields
a smooth Calabi–Yau threefold X.

To find our K3 surfaces, we use the famous 95 families of K3 sur-
faces which can be given by weighted homogeneous equations in weighted
projective 3-spaces. They are classified by M. Reid [32] (see also Iano–
Fletcher [18]), and also in Yonemura [43]. Yonemura gave explicit equations
for these surfaces as weighted hypersurfaces h(x0, x1, x2, x3) = 0 using toric
methods, and we will use Yonemura’s list throughout this paper.

We first fish out, from the list of Yonemura, K3 surfaces S having the
required involutions σ acting on the holomorphic 2-forms of the surfaces as
multiplication by −1. Earlier, Borcea [6] found 48 such pairs (S, σ). We will
find additional 41 + (3) such pairs (S, σ) (our involutions may have a differ-
ent formula from Borcea’s examples), bringing the total to 92 pairs (S, σ).

Nikulin [29] classified all K3 surfaces (S, σ) over C with non-symplectic
involution σ by triplets of integers (r, a, δ), and found that there are 75
triplets up to deformation. In this paper, we calculate only the invariants r
and a for our 92 examples and realize at least 40 Nikulin triplets (r, a, δ).
As the task of calculating δ is more involved, especially because we often
need a Z-basis for Pic (S), we leave the determination of the invariant δ to
a future publication(s). Since δ ∈ {0, 1}, the number of triplets realized may
increase somewhat.

For 86 of our 92 pairs of (S, σ) above, we find a representative hypersur-
face defining equation for S of Delsarte type over Q, that is, the equation
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consists exactly of four monomials with rational coefficients. Since S needs
to be quasi-smooth, we put a condition on the defining equation (see Sec-
tion 2.2). Then our new S has the same singularity configuration as the
original hypersurface. (We should call attention why we only have 86 pairs:
What happens to the remaining 6 pairs? This is because for the six weights,
K3 surfaces have involution but cannot be realized as quasi-smooth hyper-
surfaces in four monomials.)

Thus, we obtain K3 surfaces S of Delsarte type. Recall that a cohomol-
ogy group of a variety is of CM type if its Hodge group is commutative; and
a variety is of CM type if all its cohomology groups are of CM type (see
Zarhin [44]). In general, the computation of Hodge groups is notoriously
difficult, and this is definitely not the direction we will pursue. Instead, we
will follow the argument similar to the one in Livné–Schütt–Yui [25]: a Del-
sarte surface S can be realized as a quotient of a Fermat surface by some
finite group. Since we know that Fermat (hyper) surfaces are of CM type,
it follows that a Delsarte surface is also of CM type.

It is known [6, 33] that over C the moduli spaces of Nikulin’s K3 fam-
ilies are Shimura varieties. Recently, the rationality of the moduli spaces
of all but two out of the 75 Nikulin’s K3 families has been established by
Ma [26, 27], combined with the results of Kondo [21], and Dolgachev and
Kondo [14].

Our results give explicit CM points in these moduli spaces defined over
Q; we do not know what their fields of definition (or moduli) are in the
Shimura variety.

Next we take a product E × S, where E is an elliptic curve over Q with
the −1-involution ι, and S is a K3 surface of CM type over Q with involution
σ as above. Take the quotient E × S/ι× σ. Let X be a crepant resolution
of the quotient threefold E × S/ι× σ. Then X is a smooth Calabi–Yau
threefold. We first show that X has a model defined over Q. Then we will
establish the automorphy of the Galois representations associated to X, in
support of the Langlands reciprocity conjecture. We show that X is of CM
type if and only if E also has complex multiplication.

This generalizes the work by Livné and Yui [24] on the modularity of
the non-rigid Calabi–Yau threefold over Q obtained from the quotient E ×
S/ι× σ, where S is a singular K3 surface with involution σ (and hence of
CM type).

We also construct mirror partners X∨ (if they exist) of our Calabi–
Yau threefolds using the Borcea–Voisin construction. In fact, 57 of the 95
families of K3 surfaces S of Reid and Yonemura have mirror partners S∨

within the list. We show that all these 57 families have subfamilies with
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involution σ and a CM point rational over Q. Then the quotients of the
products E × S∨/ι× σ∨ give rise to mirror partners of E × S/ι× σ.

From the point of view of mirror symmetry computations, our results
supply particularly convenient base points both in the moduli space and in
the mirror moduli space: they are defined over Q, and their �-adic étale coho-
mological Galois representations are attached to some automorphic forms
whose L-series are known.

2. K3 surfaces

2.1. K3 surfaces with involution

Let S be a K3 surface over C. Then H2(S, Z) is torsion-free and the inter-
section pairing gives it the structure of a lattice, even and unimodular, of
rank 22 and signature (3, 19). By the classification theorem of such lattices,
up to isometry,

H2(S, Z) � U3 ⊕ (−E8)2,

where U is the usual hyperbolic lattice of rank 2 and E8 is the unique even
unimodular lattice of rank 8.

Let Pic (S) be the Picard lattice of S. It is torsion free and finitely gen-
erated, and together with the intersection pairing it can be identified as the
sublattice Pic (S) = H2(S, Z) ∩H1,1(S) of H2(S, Z). We define the transcen-
dental lattice of S, denoted by T (S), to be the orthogonal complement of
Pic (S) in H2(S, Z), i.e., T (S) := Pic (S)⊥ in H2(S, Z), with respect to the
intersection pairing.

Consider now a pair (S, σ), where S is a K3 surface and σ is an invo-
lution of S acting by −1 on H2,0(S). Let Pic (S)σ denote the sublattice of
Pic (S) fixed by σ. Let (Pic (S)σ)∗ := Hom(Pic (S)σ, Z) be the dual lattice of
Pic (S)σ. Let T (S)0 = (Pic (S)σ)⊥ be the orthogonal complement of Pic (S)σ

in H2(S, Z), and let T (S)∗0 be the dual lattice of T (S)0. From the assump-
tion that σ acts as −1 on the holomorphic 2-forms of S, one can show that
it acts by −1 on T (S)0 (and by 1 on Pic (S)σ).

Consider the quotient groups (Pic (S)σ)∗/Pic (S)σ and T (S)∗0/T (S)0.
Since H2(S, Z) is unimodular, the two quotient abelian groups are canoni-
cally isomorphic:

(Pic (S)σ)∗/Pic (S)σ � T (S)∗0/T (S)0.
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Figure 1: Nikulin’s pyramid.

On (Pic (S)σ)∗/Pic (S)σ, σ acts by 1, whereas on T (S)∗0/T (S)0 it acts by
−1. Then the only finite abelian groups where +1 is −1 are the (Z/2Z)a for
some a. This shows that

(Pic (S)σ)∗/Pic (S)σ � (Z/2Z)a for some non-negative integer a.

Nikulin [29, 30] has classified such pairs (S, σ).

Theorem 2.1 (Nikulin). The pair (S, σ) of a K3 surface S with non-
symplectic involution σ is determined, up to deformation, by a triplet (r, a, δ),
where r = rank Pic (S)σ, (Pic (S)σ)∗/Pic (S)σ � (Z/2Z)a, and δ = 0 if (x∗)2 ∈
Z for any x∗ ∈ (Pic (S)σ)∗, and 1 otherwise.

There are in total 75 triplets (r, a, δ), as shown in figure 1.
The moduli space of (S, σ) with given triplet (r, a, δ) is a bounded sym-

metric domain of type IV having dimension 20− r.

For a given pair (S, σ) of a K3 surface S with involution σ, we now
consider the geometric structure of the fixed part Sσ of S under σ (i.e., the
part where σ acts as identity). We follow Voisin [41] for this exposition.
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Proposition 2.2. There are three types for Sσ:

(I) For (r, a, δ) �= (10, 10, 0), (10, 8, 0), Sσ is a disjoint union of a smooth
curve Cg of genus g and k rational curves Li:

Sσ = Cg ∪ L1 ∪ · · · ∪ Lk.

(II) For (r, a, δ) = (10, 10, 0), Sσ = ∅.
(III) For (r, a, δ) = (10, 8, 0), Sσ is a disjoint union of two elliptic curves

C1 and C̄1:

Sσ = C1 ∪ C̄1.

Furthermore, in the case (I), the genus g and the number k of rational
curves can be determined in terms of the triplet (r, a, δ) as follows:

g =
1
2
(22− r − a),

and

k =
1
2
(r − a).

Equivalently, (r, a) and (g, k) are related by the identities:

r = 11− g + k, a = 11− g − k.

Remark 2.1. Since σ is a non-symplectic involution, the quotient S/σ is
either a rational surface or Enriques surface. It is an Enriques surface if
and only if Sσ = ∅, i.e., (r, a, δ) = (10, 10, 0). Note that if σ is a symplectic
involution, then σ has eight fixed points and the minimal resolution of S/σ
is again a K3 surface.

2.2. Realization of K3 surfaces as hypersurfaces over Q

We are interested in finding defining equations over Q for pairs (S, σ) of
K3 surfaces S with non-symplectic involution σ. For this, we appeal to the
famous 95 families of K3 surfaces of M. Reid [32] (see also Iano–Fletcher
[18]) and of Yonemura [43]. All these 95 families of K3 surfaces are realized
in weighted projective 3-spaces P3(w0, w1, w2, w3). Reid determined 95 pos-
sible weights (w0, w1, w2, w3), and singularities as they are all determined
by the weights. Then Yonemura described concrete families of hypersurfaces
defining them, using toric constructions.
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We first recall a result of Borcea [6]. Here we say that Q = (w0, w1, w2,
w3) is normalized if gcd(wi, wj , wk) = 1 for every distinct i, j, k. Also, we
assume that wi’s are ordered in such a way that w0 ≥ w1 ≥ w2 ≥ w3.

Proposition 2.3 (Borcea). Assume that Q = (w0, w1, w2, w3) is normal-
ized and w0 = w1 + w2 + w3. Then there are in total 48 weights (w0, w1, w2,
w3) giving rise to pairs (S, σ) of K3 surfaces S with involution σ acting by
−1 on H2,0(S). More precisely, if w0 is odd, there are 29 weights, and if w0

is even, there are 19 weights.
S may be realized as the minimal resolution of a hypersurface S0 of degree

2w0 in P3(w0, w1, w2, w3) of the form

x2
0 = f(x1, x2, x3),

where deg(xi) = wi for 0 ≤ i ≤ 3. A non-symplectic involution σ on S0 is
defined by σ(x0) = −x0, and f is a homogeneous polynomial in the variables
x1, x2, x3 of degree 2w0.

By abuse of notation, we often write σ for the involution on S0 as well
as that induced on S by desingularization.

Our first result is to extend the list of Borcea by adding more weights
that yield K3 surfaces (S, σ) with involution σ.

Theorem 2.4. There are in total 92 = 48 + 44 normalized weights (w0, w1,
w2, w3) giving rise to pairs (S, σ) of K3 surfaces S with non-symplectic
involution σ defined by σ(xi) = −xi for some single variable xi. In other
words, we have 44 new weights (i.e., not in the list of Borcea) yielding K3
surfaces with involution σ.

We divide the 92 cases into two groups:

(i) The 48 weights of Borcea and defining equations for quasi-smooth K3
surfaces S0 are tabulated in tables B.1 to B.3 in Appendix B.

(ii) The additional 44 weights and defining equations F (x0, x1, x2, x3) = 0
for quasi-smooth K3 surfaces S0 are tabulated in tables B.4 to B.7 in
Appendix B.

Proof. The proof of Theorem 2.4 is done by case by case analysis. Yonemura
[43] determined hypersurface equations defining Reid’s 95 families of K3
surfaces using toric geometry. We use his list of equations to find K3 surfaces
with non-symplectic involutions.
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If the defining equation contains the term x2
0 or x2

0xi, then we can define
involution σ by σ(x0) = −x0 just as in Borcea’s 48 cases. If the defining
equation contains the term x2

0xi + x0x
m
j (say), then we remove x0x

m
j to

define the involution σ(x0) = −x0 (see tables B.4 and B.7).
For the equations in table B.5, we change x3

0 to x2
0x1 to define an invo-

lution by σ(x0) = −x0.
For the equations in table B.6, we choose variables other than x0 (and

remove several terms if necessary) to define an involution.
Note that in each of the 92 cases, the quotient S/σ is a rational or

Enriques surface. Hence σ is a non-symplectic involution. �

Remark 2.2. Among the 95 K3 weights of Reid, there are three cases
#15, #53, #54 where we find no obvious involution; that is, there is no
involution σ on S acting as σ(xi) = −xi for some variable xi. These cases
are tabulated in table B.8 in Appendix B.

For our arithmetic purposes, it is useful that we can compute the zeta-
functions of S explicitly. One of such classes of varieties are those defined
by equations of Delsarte type (i.e., equations consisting of the same number
of monomials as the variables) named after Delsarte (see [25], Section 4).
Hypersurfaces of Delsarte type are finite quotients of Fermat varieties. Our
next task is to find the subset of the 92 cases of Theorem 2.4 which can be
defined by equations of Delsarte type, namely

(1) for each S of [43], find an equation h(x0, x1, x2, x3) consisting exactly of
four monomials; and

(2) make sure that the hypersurface obtained in (1) is quasi-smooth.

Conditions (1) and (2) give a restriction on the form of S, but many of
its geometric properties are unchanged. For instance, the types of singulari-
ties on S remain the same as the original hypersurfaces h(x0, x1, x2, x3) = 0
of [43].

Theorem 2.5. There are 86 weights (w0, w1, w2, w3) for which there exists
a quasi-smooth K3 surface S0 in P3(w0, w1, w2, w3) defined by a Delsarte
equation with an involution. Moreover, this involution defines a non-
symplectic involution σ on the minimal resolution S of S0.

(a) If (S, σ) is one of the 48 pairs determined in Proposition 2.3 other than
#90, #91, #93, then S0 can be defined by an equation over Q of four
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monomials

x2
0 = f(x1, x2, x3) ⊂ P3(w0, w1, w2, w3).

The equation is obtained by removing several terms from the equation of
Yonemura [43], where f is a homogeneous polynomial over Q of degree
w0 + w1 + w2 + w3 (cf. tables B.1 to B.3).

(b) Let (S, σ) be one of the additional 38 pairs determined in Theorem 2.4
(ii) other than #85, #90, #91, #93, #94 and #95. Then S0 can be
defined by an equation F (x0, x1, x2, x3) = 0 over Q consisting of four
monomials of degree w0 + w1 + w2 + w3. In most cases, F (x0, x1, x2, x3)
can be chosen as

F (x0, x1, x2, x3) = x2
0xi + f(x1, x2, x3).

The weights and equations are listed in tables B.4 to B.6 in Appendix B.

Proof. This can be proved by case by case checking of the list of equations
of Yonemura [43]. In both (a) and (b), we transform S into a Delsarte type
by removing several terms of its original defining equation. In doing so, we
make sure that the condition (2) above is satisfied so that the new surface
is also quasi-smooth.

Condition (2) is met if for each variable xi (0 ≤ i ≤ 3), the set of mono-
mials containing xi takes one of the following forms:

xn
i , xn

i xj , xn
i + xix

m
j , xn

i xk + xix
m
j

for some j and k (j �= k) different from i.
This choice for the defining hypersurface preserves the configuration of

singularities on S (i.e., types and the number of singularities) as the original
hypersurfaces. The point is that for each of the 86 families, we can find a
defining equation which consists of four monomials containing xn

i or xn
i xj

(i �= j) with nonzero coefficients. �

Remark 2.3. Our list of defining equations for S does not cover all possible
equations of Delsarte type. For instance, in case #19 of weight (3, 2, 2, 1) in
table B.4, we may also choose an equation x2

0x1 + x3
1x2 + x4

2 + x8
3 = 0.

Remark 2.4. For the 95 families of quasi-smooth weighted K3 hypersur-
faces, Yonemura [43] described the number of parameters (i.e., the number
of monomials) for their defining equations. The minimum number was four,



592 Yasuhiro Goto, Ron Livné and Noriko Yui

but often equations contain more than four monomials. Our result shows
that except for the six cases #85, #94, #95 of table B.7 and #90, #91, #93
of Table B.1, the minimum number of parameters is attained.

Example 2.6. • Consider #42 in Yonemura = #3 in Borcea. The
weight is (5, 3, 1, 1) and a hypersurface is given by

x2
0 = f(x1, x2, x3) = x3

1x2 + x3
1x2 + x10

2 + x10
3

of degree 10. We can remove the second monomial x3
1x3. The singu-

larity is of type A2.

• Consider #78 in Yonemura = #10 in Borcea. The weight is (11, 6, 4, 1)
and a hypersurface is given by

x2
0 = f(x1, x2, x3) = x3

1x2 + x3
1x

4
3 + x1x

4
2 + x5

2x
2
3 + x22

3

of degree 22. We can remove the second and the fourth monomials
x3

1x
4
3 and x5

2x
2
3. The singularity is of type A1 + A3 + A5.

• Consider #19 in Yonemura. The weight is (3, 2, 2, 1) and a hypersurface
is given by

F (x0, x1, x2, x3) = x2
0x1 + x2

0x2 + x2
0x

2
3 + x4

1 + x4
2 + x8

3

of degree 8. We can remove the first or the second monomials x2
0x1 or

x2
0x2, the third monomial x2

0x
2
3. The involution is given by x0 → −x0.

The singularity is of type 4A1 + A2.

Remark 2.5. The cases #85, #90, #91, #93, #94 and #95 of Yonemura
cannot be realized as quasi-smooth hypersurfaces in four monomials with
involution σ.

For instance, consider the case #85 of weight (5, 4, 3, 2) and degree 14.
All the possible monomials of degree 14 are

x2
0x1, x2

0x
2
3, x0x1x2x3, x1x

3
2, x0x2x

3
3, x3

1x3, x2
1x

2
2,

x2
1x

3
3, x1x

2
2x

2
3, x1x

5
3, x4

2x3, x2
2x

4
3, x7

3.

To make the polynomial quasi-smooth and defined by four monomials, we
remove the monomials

x2
0x

2
3, x0x1x2x3, x0x2x

3
3, x2

1x
2
2, x2

1x
3
3, x1x

2
2x

2
3, x2

2x
4
3.



Automorphy of Calabi–Yau threefolds of Borcea–Voisin type 593

Then we obtain monomials

x2
0x1, x1x

3
2, x3

1x3, x1x
5
3, x4

2x3, x7
3.

There are no four monomials from this set such that their sum defines a
quasi-smooth polynomial.

Note that if we allow more than four monomials, we can define a non-
symplectic involution on this surface. For example, the surface defined by

x2
0x1 + x2

0x
2
3 + x3

1x3 + x2
1x

2
3 + x2x

5
3 + x4

2x3 + x7
3 = 0

is quasi-smooth and endowed with an involution σ(x0) = −x0.

2.3. K3 surfaces of CM type

Recall a definition of a CM type variety.

Definition 2.1. A cohomology group of a variety is said to be of CM type
if its Hodge group is commutative, and a variety is said to be of CM type if
all its cohomology groups are of CM type [44].

Theorem 2.7. Let (S, σ) be one of the 86 pairs of K3 surfaces S with
involution σ. Then (S, σ) is defined over Q and it is of CM type.

Proof. We use Shioda’s result (see, for instance, [36]). Let Xm
n : xm

0 + xm
1 +

· · ·+ xm
n+1 = 0 ⊂ Pn+1 be the Fermat variety of degree m and dimension n.

Let μm denote the group of mth roots of unity (in C). Then the eigenspaces
of the action of (μm)n+2 on the middle cohomology group of Xm

n are one-
dimensional, and this action commutes with the Hodge group. Hence the
Hodge group is commutative, and so the Fermat (hyper)surfaces are of CM
type. Since a pair (S, σ) is a finite quotient of a Fermat surface, it is of CM
type. �

2.4. Computations of Nikulin’s invariants for K3 surfaces of
Borcea type

Recall that a K3 surface S with involution σ is determined up to deformation
by a triplet (r, a, δ), where r is the rank of Pic (S)σ. In this section, we
compute r and a for K3 surfaces of Borcea type. By Proposition 2.2, r and
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a can be computed through the fixed locus Sσ:

r = 11− g + k, a = 11− g − k.

We note that the direct computation of r often requires a basis for Pic (S)
or at least for Pic (S)⊗Q. Since Pic (S) is usually difficult to determine, the
fixed locus Sσ is often easier to handle than the Picard group.

In what follows, first we explain a general algorithm of computing g and
k (and hence r and a). To describe the algorithm in detail, we choose K3
surfaces of Borcea type, namely those defined by x2

0 = f(x1, x2, x3). After
that, we explain how to compute r directly by looking at the σ-action on
Pic (S) (see Theorem 2.11). It has a merit that we can obtain a closed
formula for r.

2.4.1. Algorithm for the computation of g and k We explain how
to compute g and k (and then r) for our K3 surfaces S. In this section and
the next, we choose S0 to be a surface in P3(w0, w1, w2, w3) defined by the
equation

x2
0 = f(x1, x2, x3) or x2

0xi = f(x1, x2, x3),

where σ acts on it by σ(x0) = −x0. We assume that Q = (w0, w1, w2, w3)
is normalized. The algorithm described in this section also works for more
general K3 surfaces in P3(Q) with non-symplectic involution.

Since S0 is singular, S is chosen to be the minimal resolution of S0 as in

P3(w0, w1, w2, w3) ←− P̃3(w0, w1, w2, w3)
∪ ∪
S0 ←− S

where P̃3(w0, w1, w2, w3) is a partial resolution of P3(w0, w1, w2, w3) so that
S is non-singular. The curve Cg in Proposition 2.2 is the strict transform
of the curve defined by x0 = 0 on S0 which is isomorphic to the curve
f(x1, x2, x3) = 0 in P2(w1, w2, w3). The rational curves Li in Proposition
2.2 are among those defined by letting either x1, x2 or x3 be zero, or from
the exceptional divisors arising in the desingularization. The procedure is as
follows.

(i) The curve {x0 = 0} on S0 is fixed by σ. Since f(x1, x2, x3) = 0 is quasi-
smooth (and hence smooth) in P2(w1, w2, w3), its strict transform Cg

is also fixed by σ. The genus g can be calculated from d := deg f and
weight (w1, w2, w3) once it is normalized (see examples below). For
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instance, one can use the formula, which can be found in, e.g., Iano-
Fletcher [18]:

g =
1
2

(
d2

w1w2w3
− d

∑
i>j

gcd(wi, wj)
wiwj

+
3∑

i=1

gcd(d, wi)
wi

− 1
)

.

(ii) The locus {x1 = 0}, {x2 = 0} or {x3 = 0} may be fixed by σ depending
on (w0, w1, w2, w3). For instance, consider the case where w0 is odd. If
w2 and w3 are even (and w3 is necessarily odd), then the locus {x3 = 0}
is fixed by σ. In this case, the strict transform of the locus {x3 = 0} is
also point-wise fixed by σ. It can be shown that this locus is a rational
curve on S and contributes to a curve Li of Proposition 2.2.

(iii) The rest of the curves Li (for Sσ) are exceptional divisors in the min-
imal resolution S0 ← S. To find the divisors where σ acts as identity,
we look carefully at the σ-action around the singularities of S0 fixed
by σ. Every singularity P = (x0 : x1 : x2 : x3) on S0 has at least two
coordinates zero. Hence P is fixed by σ if and only if
• it has three zero coordinates, or
• it has exactly two zero coordinates with x0 = 0, or
• it has exactly two zero coordinates and two non-zero coordinates

x0, xi, and if d = gcd(w0, wi) ≥ 2, then w0/d is odd and wi/d is
even.

Combining information obtained in (ii) and (iii), we can calculate the
number k and hence the invariants r and a by the formula given in
Proposition 2.2.

2.4.2. Computation of g and k for surfaces x2
0 = f(x1, x2, x3) We

consider surfaces x2
0 = f(x1, x2, x3) in detail. Since the minimal resolution

S is a K3 surface, P is a cyclic quotient singularity of type An+1,n (or
simply An) for some positive integer n. We obtain n exceptional divisors
(i.e., irreducible components in the exceptional locus) by resolving P . Each
exceptional divisor is isomorphic to P1 and σ acts on it either as identity or
as a non-trivial involution, which depends on the singularity at P . In the
first case, we say that the divisor is ramified. The detail is explained in the
following lemmas.

Lemma 2.8. Let S0 : x2
0 = f(x1, x2, x3) be one of the 48 K3 surfaces

defined in Proposition 2.3. If w1 ≥ 2 and P = (0, 1, 0, 0) is on S0, then P is
a cyclic quotient singularity of type Aw1,w1−1 (= Aw1−1). Among the excep-
tional divisors arising from P , ramified divisors appear alternately and there
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are
[
w1 − 1

2

]
of them, where [x] denotes the integer part of x. The same

assertion holds for singularities (0, 0, 1, 0) and (0, 0, 0, 1).

Proof. When P = (0, 1, 0, 0) is a singularity, (x0, x2) or (x0, x3) gives a pair
of local coordinates above P , depending on the polynomial f(x1, x2, x3).
Assume that (x0, x2) is a coordinate system above P . Since P is a cyclic
quotient singularity of type Aw1,w1−1, the μw1-action above P can be written
as

(x0, x2) �−→ (ζw1−1x0, ζx2)

with ζ ∈ μw1 . (In other words, P is the singularity of the quotient A2/μw1

at the origin.) By the quotient map π0 : S0 −→ S0/σ, where S0/σ is in
P3(2w0, w1, w2, w3), P is mapped to π0(P ) ∈ S0/σ. It is a singularity locally
described by the group action

(y0, x2) �−→ (ζ2(w1−1)y0, ζx2)

with y0 = x2
0. Hence π0(P ) is a singularity of type Aw1,2(w1−1) (or precisely,

Aw1,w1−2).
In order to see how σ acts on the exceptional divisors, let E1 + E2 +

E3 + · · ·+ Ew1−1 be the exceptional divisors on S arising from P . Here we
set E1 to be the divisor intersecting with (the strict transforms) of the curves
passing through P . Consider the continued fractional expansions

w1

w1 − 1
= 2− 1

2− 1

2− 1

2− 1
· · ·

and
w1

2(w1 − 1)
= 1− 1

4− 1

1− 1

4− 1
· · ·

.

If π : S −→ S/σ denotes the quotient map, the continued fractions show that

π(Ei)2 =

{
−1 if i is odd,

−4 if i is even.

By the projection formula, we see that σ acts as identity (resp. −1) on Ei

when π(Ei)2 = −4 (resp. when π(Ei)2 = −1). Therefore the ramified excep-
tional divisors are those Ei’s with even i and there are in total [w1−1

2 ] of
them. �
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Next, we discuss singularities with exactly two zero coordinates, one of
which is x0 = 0.

Lemma 2.9. Let S0 : x2
0 = f(x1, x2, x3) be one of the 48 K3 surfaces

defined in Proposition 2.3. If gcd(w1, w2) ≥ 2, then P = (0, x1, x2, 0) with
x1x2 �= 0 is a singularity of type A2,1 and fixed by σ. There arises one excep-
tional divisor from P and it is not ramified under the quotient S −→ S/σ.
The same assertion holds for singularities of the form (0, x1, 0, x3) and
(0, 0, x2, x3).

Proof. Write d := gcd(w1, w2). When P = (0, x1, x2, 0) is a singularity, (x0,
x3) gives a local coordinate system above P ; that is, P is a singularity of
the quotient of an affine plane by the group action ζ ∈ μd defined by

(x0, x3) �−→ (ζw0x0, ζ
w3x3).

Since f is quasi-smooth, f contains a term without x3. Comparing the degree
of monomials in x2

0 = f(x1, x2, x3), one finds that 2w0 is divisible by d. Since
the weight is normalized, we see that gcd(d, w0) = gcd(d, w3) = 1 and hence
d | 2. If d ≥ 2, then d must be 2.

Since d = 2, the relation w0 = w1 + w2 + w3 implies w0 ≡ w3 (mod 2)
and the μ2 action above can be written as

(x0, x3) �−→ (−x0,−x3).

This means that P is a singularity of type A2,1. If π0 : S0 −→ S0/σ denotes
the quotient map, then π0(P ) is the singularity associated with the group
action

(y0, x3) �−→ (y0,−x3),

where y0 = x2
0. This shows in fact that π0(P ) ∈ S0/σ is not a singularity.

Hence if E is the exceptional divisor arising from P and π : S −→ S/σ is
the quotient map, π(E) should be a (−1)-curve. Therefore E is not ramified
in π. �

Lastly, we look at the singularity with two zero coordinates and x0 �= 0.

Lemma 2.10. Let S0 : x2
0 = f(x1, x2, x3) be one of the 48 K3 surfaces

defined in Proposition 2.3. If d := gcd(w0, w1) ≥ 2, then P = (x0, x1, 0, 0)
with x0x1 �= 0 is a singularity of S0. It is fixed by σ if and only if w0/d is
odd and w1/d is even. Let E1 + · · ·+ Ed−1 denote the exceptional divisors
arising from P . Then σ acts on Ei as identity (resp. by −1) if i is odd (resp.
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even). There are in total
[
d

2

]
divisors with odd i. The same assertion holds

for singularities (x0, 0, x2, 0) and (x0, 0, 0, x3).

Proof. Since S0 is quasi-smooth, one knows that P = (x0, x1, 0, 0) with x0x1

�= 0 is a singularity if and only if d = gcd(w0, w1) ≥ 2. Let w0 = du0 and
w1 = du1 with gcd(u0, u1) = 1. To see if P is fixed by σ, there are three cases
to consider: (u0, u1) = (even, odd), (odd, odd), (odd, even). Suppose that
there is a t such that tw0 = −1 and tw1 = 1. If u0 is even and u1 is odd, then
tu0u1d = (tu0d)u1 = (−1)u1 = −1 and tu0u1d = (tu1d)u0 = 1, which is absurd.
By the same reason as above, (u0, u1) = (odd, odd) cannot happen either.
If u0 is odd and u1 is even, then let ζ be a primitive 2dth root of unity.
We have ζw0 = (ζd)u0 = (−1)u0 = −1 and ζw1 = (ζd)u1 = (−1)u1 = 1. Hence
there does exist a t satisfying tw0 = −1 and tw1 = 1, and P is fixed by σ in
this case.

Choose (x2, x3) as a local coordinate system above P . P is isomorphic
to the singularity of the quotient by the group action μd defined by

(x2, x3) �−→ (ζw2x2, ζ
w3x3),

where ζ runs through μd. Since the weight is normalized, gcd(d, w2) = gcd(d,
w3) = 1 and the μd action above can be written as

(x2, x3) �−→ (ζd−1x2, ζx3).

P is mapped to (x0, x1, 0, 0) ∈ S0/σ and the group action around this point
is

(x2, x3) �−→ (ζd−1x2, ζx3)

as above. But, since gcd(2w0, w1) = gcd(2du0, du1) = 2d gcd(u0, u1/2) = 2d,
ζ now runs through μ2d. Hence this singularity on S0/σ is of type A2d,d−1.

Consider two continued fractions

d

d− 1
= 2− 1

2− 1

2− 1

2− 1
· · ·

and
2d

d− 1
= 4− 1

1− 1

4− 1

1− 1
· · ·

.

This shows that if E1 + E2 + E3 + · · · are exceptional divisor arising from
P , then only the exceptional divisors Ei with odd i are fixed by σ. Therefore
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ramified exceptional divisors appear alternately and there are [d2 ] such
divisors. �

Recall that r is the rank of Pic (S)σ. If we have good knowledge of Pic (S)
and the σ action on it, then we can compute r without knowing Sσ. The
following theorem shows that we can in fact find a closed formula for r by
taking this approach.

Theorem 2.11. Let (S, σ) be one of the 48 K3 surfaces defined in Propo-
sition 2.3 as the minimal resolution of a hypersurface

S0 : x2
0 = f(x1, x2, x3) ⊂ P3(Q),

where Q = (w0, w1, w2, w3) and f is a homogeneous polynomial of degree
w0 + w1 + w2 + w3. Recall r = rank Pic (S)σ. Let r(Q) denote the number of
exceptional divisors in the resolution S −→ S0. Assume that
rank Pic (S0)σ = 1.

(a) If w0 is odd, then there exists at most one odd weight wi such that
gcd(w0, wi) ≥ 2 and in such a case, gcd(w0, wi) = wi. We have

r =

{
r(Q)− wi + 2 if gcd(w0, wi) ≥ 2 for some odd weight wi (1 ≤ i ≤ 3),
r(Q) + 1 otherwise.

(b) If w0 is even, then let di = gcd(w0, wi). We have

r = r(Q) + 1−
3∑

i=1

(di − 1)
(

2di

wi
− 1
)

.

Proof. Since rank Pic (S0)σ = 1, Pic (S0)⊗Q is generated by the hyperplane
section {x0 = 0}, which is fixed by σ. Its strict transform on S is also fixed
by σ and gives a one-dimensional subspace of Pic (S)σ ⊗Q. The rest of it is
generated by exceptional divisors.

Possible singularities for S0 are either of the form (0 : x1 : x2 : x3) with
one or two zero coordinates or of the form (x0 : x1 : x2 : x3) with x0 �= 0
and exactly two zero coordinates. Since the points with x0 = 0 are fixed
by σ, every exceptional divisor E arising from a singularity (0 : x1 : x2 : x3)
satisfies σ(E) = E. (σ acts on E as ±1.) Such exceptional divisors form part
of a basis for Pic (S)σ.

Consider a singularity (x0 : x1 : x2 : x3) with x0xi �= 0, gcd(w0, wi) ≥ 2
and other coordinates zero. It is fixed by σ if and only if tw0 = −1 and
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twi = 1 for some t. As x0xi �= 0 and other coordinates are zero, f(x1, x2, x3)
contains a monomial solely in xi. Hence wi | 2w0, where 2w0 = deg f . Now
we divide the proof according as the parity of w0.

(a) Assume that w0 is odd. Then the normality of weight Q and the
equality w0 = w1 + w2 + w3 imply that there is exactly one odd wi for
1 ≤ i ≤ 3. For simplicity, assume that w1 is odd and w2 and w3 are
even.
(i) If gcd(w0, w1) ≥ 2, then (x0 : x1 : 0 : 0) are singular points. Since

1 = (tw1)w0 = (tw0)w1 = −1, none of the singularities is fixed by σ.
But, if we consider a σ-conjugate pair, it is invariant under σ. There
are two singularities of the form (x0 : x1 : 0 : 0), each of which is
of type Aw1−1. (As w1 | 2w0 and w1 is odd, we have gcd(w0, w1) =
w1.) Totally, there are 2(w1 − 1) exceptional divisors arising from
these singularities and w1 − 1 conjugate pairs contribute to r =
rank Pic (S)σ.
If gcd(w0, w1) = 1, then (x0 : x1 : 0 : 0) is not a singularity.

(ii) Consider the case where gcd(w0, w2) ≥ 2 and w2 is even. (x0 : 0 :
x2 : 0) is a singularity. By letting t = −1, we see tw0 = −1 and
tw2 = 1. Hence (x0 : 0 : x2 : 0) is fixed by σ and so are the excep-
tional divisors arising from this point. This means that all excep-
tional divisors contribute to r. The same argument is valid for the
singularities (x0 : 0 : 0 : x3) with even w3.
Therefore it follows from (i) and (ii) that r = r(Q) + 1 if there is
no odd wi with gcd(w0, wi) ≥ 2, and

r = r(Q) + 1− (wi − 1) = r(Q)− wi + 2

if gcd(w0, wi) ≥ 2 for some odd weight wi.
(b) Assume now that w0 is even. Then the normality of weight Q and

the equality w0 = w1 + w2 + w3 imply that there is exactly one
even weight wi for 1 ≤ i ≤ 3. For simplicity, let w1 be even, and w2

and w3 be odd.
(i) Consider the point (x0 : x1 : 0 : 0) with w1 even. Since gcd(w0,

w1) ≥ 2, it is a singularity. We see w1 | 2w0.
If w1 | w0, then d1 = gcd(w0, w1) = w1 and {(x0 : x1 : 0 : 0)}
consists of two points, each of which is a singularity of type
Aw1−1. There arise 2(w1 − 1) exceptional divisors from them
and w1 − 1 conjugate pairs are fixed by σ. This means that the
rank r is the number of exceptional divisors minus w1 − 1.
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If w1 � | w0, then lcm (w0, w1) = 2w0 and (x0 : x1 : 0 : 0) is a sin-
gularity of type Ad1−1. This point is fixed by σ and so are the
exceptional divisors arising from it.
In summary, the rank r is less than the number of exceptional
divisors by

−(d1 − 1)
(

2w0

lcm (w0, w1)
− 1
)

= −(d1 − 1)
(

2d1

w1
− 1
)

.

(ii) Consider the points (x0 : 0 : x2 : 0) with w2 odd. They are sin-
gularities if and only if gcd(w0, w2) ≥ 2. Here w2 | 2w0 implies
w2 | w0 and d2 = gcd(w0, w2) = w2. Such singularities are of
type Ad2−1. The multiplicity of (x0 : 0 : x2 : 0) is 2w0/lcm (w0,
w2) = 2 and they are σ-conjugate. Among the 2(w2 − 1) excep-
tional divisors, w2 − 1 conjugate pairs are fixed by σ. Hence the
rank r is less than the number of exceptional divisors by

−(d2 − 1)
(

2d2

w2
− 1
)

.

The same argument holds for the points (x0 : 0 : 0 : x3) with
odd w3.
Therefore the asserted formula of (b) follows from (i) and (ii).

�

Example 2.12. For a generic choice of S0, one has rank Pic (S0)σ = 1 and
Theorem 2.11 gives a convenient way to calculate invariant r.

(1) For Q = (7, 3, 2, 2), we find that w0 is odd, r(Q) = 9 and no odd weight
wi with gcd(w0, wi) ≥ 2. Hence r = 9 + 1 = 10.

(2) For Q = (15, 10, 3, 2), we find that w0 is odd, r(Q) = 11 and gcd
(15, 3) = 3. Hence r = 11− 3 + 2 = 10.

(3) For Q = (8, 4, 3, 1), we find that w0 is even, r(Q) = 8 and d1 = 4. Hence
r = 8 + 1− (4− 1)(2 · 4/4− 1) = 6.

(4) For Q = (10, 5, 3, 2), we find that w0 is even, r(Q) = 12, d1 = 5 and
d3 = 2. Hence r = 12 + 1− (5− 1)(2 · 5/5− 1)− (2− 1)(2 ·
2/2− 1) = 8.

(5) For Q = (24, 16, 5, 3), we find that w0 is even, r(Q) = 15, d1 = 8 and
d3 = 3. Hence r = 15 + 1− (8− 1)(2 · 8/16− 1)− (3− 1)(2 ·
3/3− 1) = 14.
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Example 2.13. Proposition 2.2 tells that we can calculate r and a by
knowing Sσ, but the computation of a by finding a Z-basis for Pic (S)σ is
rather involved.

Take a look at the K3 surface #8 in Yonemura defined by the equation

S0 : x2
0 = x4

1 + x6
2 + x12

3 ⊂ P3(6, 3, 2, 1).

The involution is defined by σ(x0) = −x0.
We see that S0 is quasi-smooth and the minimal resolution S is a K3

surface. S0 has four singularities, P1, P ′1, P2 and P ′2 as follows:

Singularity Type Exceptional divisors
P1 := (1 : 1 : 0 : 0) A3,2 E1 + E2

P ′1 := (−1 : 1 : 0 : 0) A3,2 E′1 + E′2
P2 := (1 : 0 : 1 : 0) A2,1 E3

P ′2 := (−1 : 0 : 1 : 0) A2,1 E′3

No singularity is fixed by σ. There is a curve, C ′, defined by x0 = 0. Its
strict transform, C7, on S is of genus 7 and ramified under σ. We have

Sσ = C7.

Hence g = 7 and k = 0. This implies that r = 11− 7 + 0 = 4 and a = 11−
7− 0 = 4. As a = 4, the intersection matrix of a Z-basis for Pic (S)σ should
have determinant ±24.

We look for a basis for Pic (S)σ. An immediate choice for a set of four
divisors on S fixed by σ is E1 + E′1, E2 + E′2, E3 + E′3 and C7. But the
determinant of their intersection matrix is calculated as∣∣∣∣∣∣∣∣

−4 2 0 0
2 −4 0 0
0 0 −4 0
0 0 0 12

∣∣∣∣∣∣∣∣
= −2632.

Hence they do not form a Z-basis for Pic (S)σ.
We now consider another set of divisors by replacing C7 with the rational

curve D defined by x3 = 0. As a divisor, D is also fixed by σ. As D is a
rational curve on a K3 surface, D2 = −2. Since the curve {x3 = 0} on S0

passes through every singularity,

D.(E1 + E′1) = D.(E3 + E′3) = 2, D.(E2 + E′2) = 0.
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Hence the determinant of the intersection matrix of these divisors is∣∣∣∣∣∣∣∣
−4 2 0 2
2 −4 0 0
0 0 −4 2
2 0 2 −2

∣∣∣∣∣∣∣∣
= −24.

This agrees with the above calculation of a = 4; thus we see that

E1 + E′1, E2 + E′2, E3 + E′3 and D

form a Z-basis for Pic (S)σ.

It is not too difficult to find some subgroup of Pic (S0)σ, but often dif-
ficult to describe Pic (S0)σ completely. Above calculations give us a clue to
determine rank Pic (S0)σ. Let S be the minimal resolution of S0 and let E
denote the subgroup of Pic (S) generated by the exceptional divisors of the
resolution. We have

Pic (S)σ ⊗Q ∼= Pic (S0)σ ⊗Q⊕ Eσ ⊗Q.

Groups E and Eσ are easily describable and the rank of Pic (S)σ may be
computed from the fixed part Sσ

0 by Proposition 2.2 as

rank Pic (S0)σ = rank Pic (S)σ − rank Eσ = 11 + k − g − rank Eσ.

Hence if one finds this number of divisors in Pic (S0)σ, then they form a
basis for Pic (S0)σ over Q.

Corollary 2.14. Let (S, σ) be one of the 48 K3 surfaces (considered in
Proposition 2.3) with involution σ defined by a hypersurface of the form
x2

0 = f(x1, x2, x3) where σ acts by σ(x0) = −x0. Let Sσ = Cg ∪ L1 ∪ · · · ∪ Lk

be the decomposition in connected components of Sσ, where Cg is a smooth
genus g curve and L1, . . . , Lk are rational curves.

Suppose that f is defined by three monomials, so that S is of Delsarte
type. Then the Jacobian variety J(Cg) of Cg is also of CM type.

Proof. In this case Cg is defined by putting x0 = 0. So Cg is defined by three
monomials and is realized as a Fermat quotient. �

In the next section, we discuss another type (non-Borcea type) of K3
surfaces. Noting the differences from the case x2

0 = f(x1, x2, x3), we sketch
the outline of our algorithm.
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3. Computations of Nikulin’s invariants for K3 surfaces of
non-Borcea type

3.1. Computations of r and a

In this section, we compute r and a for K3 surfaces of non-Borcea type,
namely for a quasi-smooth K3 surface S0 in P3(w0, w1, w2, w3) defined by
the equation

(3.1) x2
0xi = f(x1, x2, x3)

for some i (= 1, 2, 3). Let S be the minimal resolution of S0. Write Cg for the
strict transform of the curve defined by x0 = 0, which is isomorphic to the
curve f(x1, x2, x3) = 0 in P2(w1, w2, w3). We assume that f(x1, x2, x3) = 0
is quasi-smooth (hence smooth) in P2(w1, w2, w3) after normalization of the
weight.

Since Q = (w0, w1, w2, w3) is normalized, every fixed point in Sσ
0 must

have at least one zero coordinate. There are four cases to consider.

(i) The curve {x0 = 0} on S0 is fixed by σ. Since f(x1, x2, x3) = 0 is quasi-
smooth in P2(w1, w2, w3), its strict transform Cg is also fixed by σ. The
genus g can be calculated from deg f and weight (w1, w2, w3) as in the
previous section.

The rational curves Li of Sσ = Cg ∪ L1 ∪ · · · ∪ Lk are obtained by
letting x1, x2 or x3 be zero, or from the exceptional divisors arising in
the desingularization.

(ii) As in the case of K3 surfaces of Borcea type, the one-dimensional
locus {x1 = 0}, {x2 = 0} or {x3 = 0} may be fixed by σ. In addition
to them, there may be another one-dimensional locus fixed by σ; it
has two zero coordinates, one of which is xi of (3.1).

For instance, consider a surface x2
0x1 = f(x1, x2, x3) with f(0, 0, x3)

= 0. If w0 is odd and w3 is even, then the locus (x0 : 0 : 0 : x3) is a
line and fixed by σ. Its strict transform on S is also fixed by σ, which
gives one Li of Proposition 2.2.

(iii) The rest of the curves in Li’s are obtained from exceptional divisors
in the resolution S0 ← S. The singularities discussed in Lemmas 2.8,
2.9 and 2.10 also exist on surfaces (3.1) and by the same procedure as
described there, we can find those divisors fixed identically by σ. (The
proof of Lemma 2.9 needs a little modification; see Lemma 3.2).
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(iv) In addition to the singularities of (iii), we now have a singularity (1 :
0 : 0 : 0) on the surface x2

0xi = f(x1, x2, x3). The exceptional divisors
arising from it and fixed by σ are determined as follows.

Lemma 3.1. Let S0 : x2
0xi = f(x1, x2, x3) be one of the K3 surfaces

obtained in Theorem 2.4. Then P = (1, 0, 0, 0) ∈ S0 is a (cyclic quotient)
singularity of type Aw0,w0−1. Let E1 + · · ·+ Ew0−1 be the exceptional divi-
sors on S arising from P ∈ S0. On the quotient S0/σ, we see that σ(P ) is
a singularity of type A2w0,w0−1 or Aw0,2(w0−1).

(1) If σ(P ) is of type A2w0,w0−1, then σ acts on Ei as identity if and only
if i is odd. There exist

[w0

2

]
such divisors in total, where [x] denotes

the integer part of x as before.

(2) If σ(P ) is of type Aw0,2(w0−1), then σ acts on Ei as identity if and only

if i is even. There exist
[w0 − 1

2

]
such divisors in total.

The type of singularity at σ(P ) is determined as follows according
to the parity of weights:

w0 wi wj wk Type of σ(P )
(a) Even Even Odd Odd A2w0,w0−1

(b) Even Odd Odd Odd A2w0,w0−1

(c) Odd Odd Even Odd A2w0,w0−1

(c)′ Odd Odd Odd Even A2w0,w0−1

(d) Odd Even Even Odd Aw0,2(w0−1)

(d)′ Odd Even Odd Even Aw0,2(w0−1)

Proof. Since w0 ≥ 2 and S is K3, P = (1, 0, 0, 0) is a cyclic quotient sin-
gularity of type Aw0,w0−1. From the equation x2

0xi = f(x1, x2, x3), we can
choose variables xj and xk, different from x0 and xi, as local parameters
around P . The μw0-action at P is then written as

(xj , xk) �−→ (ζwjxj , ζ
wkxk).

As deg f = 2w0 + wi and Q is a K3 weight, we have 2w0 + wi = w0 + wi +
wj + wk. This implies w0 = wj + wk and, because Q is normalized, gcd(w0,
wj) = gcd(w0, wk) = 1. In particular, the congruence wjα ≡ wk (mod w0)
has solution α ≡ −1 (mod w0). Now P is mapped to (1, 0, 0, 0) ∈ S0/σ and
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the group action around this point is

(xj , xk) �−→ (ξwjxj , ξ
wkxk),

where ξ ranges over μ2w0 . To find out the type of singularity at σ(P ), we
divide the case according to the parity of weights. The cases (c) and (c)′,
(d) and (d)′ are essentially the same, so we discuss cases (a) to (d).

In (a) and (b), w0 is even. Since w0 = wj + wk, both wj and wk are odd.
Hence weight (2w0, wi, wj , wk) is normalized and the singularity (1, 0, 0, 0) ∈
S0/σ is of type A2w0,w0−1. As in Lemma 2.10, we see that σ acts on Ei as
identity if and only if i is odd, and there are [w0/2] such divisors.

In (c), w0 is odd. Since w0 = wj + wk, wj and wk have different parity.
Because wi is odd, the weight (2w0, wi, wj , wk) is normalized. Hence the
singularity (1, 0, 0, 0) ∈ S0/σ is of type A2w0,w0−1. As in Lemma 2.10, σ acts
on Ei as identity if and only if i is odd, and there are [w0/2] such divisors.

In (d), w0 is odd. Since w0 = wj + wk, either wj or wk is even, say wj is
even. Because wi is even in this case, (2w0, wi, wj , wk) is not yet normalized.
By normalization

P3(2w0, wi, wj , wk) ∼= P3
(
w0,

wi

2
,
wj

2
, wk

)
the group action around (1, 0, 0, 0) ∈ S0/σ is now written as

(xj , xk) �−→ (ξwj/2xj , ξ
wkxk)

where ξ ranges over μw0 . As gcd(w0, wj/2) = gcd(w0, wk) = 1 and w0 = wj +
wk, we have the congruence

wj

2
2(w0 − 1) ≡ wk (mod w0).

This shows that (1, 0, 0, 0) ∈ S0/σ is of type Aw0,2(w0−1) (to be more precise,
type Aw0,w0−2). As in Lemma 2.9, σ acts on Ei as identity if and only if i is
even, and there are [(w0 − 1)/2] such divisors. �

Lemma 3.2. Let S0 : x2
0xi = f(x1, x2, x3) be one of the K3 surfaces

obtained in Theorem 2.4. If wj and wk are the weight other than w0 and
wi, then gcd(wj , wk) = 1. If d = gcd(wi, wj) ≥ 2, then d must be 2 and P =
(0, xi, xj , 0) with xixj �= 0 is a singularity of type A2,1 fixed by σ. There
arises one exceptional divisor from P and it is not ramified under the quo-
tient S −→ S/σ.
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Proof. Let d = gcd(wj , wk). The relation w0 = wj + wk implies d | w0. But
this is not possible as the weight Q is normalized unless d = 1.

Let d = gcd(wi, wj). As in the proof of Lemma 2.9, f contains a term
without wk. By the relation deg f = 2w0 + wi, we see that d | 2w0. Since
Q is normalized, d | 2 and hence d = 2. The rest of the proof is similar to
Lemma 2.9. �

We combine (ii), (iii) and (iv) to calculate the number of rational curves
Li. Then Proposition 2.2 gives the value for r and a.

Example 3.3. Consider the K3 surface #60 in Yonemura. Dropping sev-
eral monomials, we choose the equation

S0 : x2
0x2 + x3

1 + x1x
3
2 + x18

3 = 0 ⊂ P3(7, 6, 4, 1).

The involution is defined by σ(x0) = −x0. We see that S0 is quasi-smooth
and the minimal resolution S is a K3 surface. S0 has three singularities, P1,
P2 and P3 as follows:

Singularity Type Exceptional divisors
P1 := (1 : 0 : 0 : 0) A7,6 E1 + E2 + E3 + E4 + E5 + E6

P2 := (0 : 0 : 1 : 0) A4,3 E7 + E8 + E9

P3 := (0 : −1 : 1 : 0) A2,1 E10

Every singularity is fixed by σ, and E2, E4, E6 and E8 are ramified under
σ (acting on the minimal resolution S).

There are two curves on S0 fixed by σ, namely C ′ defined by x0 = 0 and
L′ defined by x3 = 0. C ′ has genus 3 and L′ is a projective line. Their strict
transforms C (= C3) and L on S are ramified under σ. We have

Sσ = C3 ∪ E2 ∪ E4 ∪ E6 ∪ E8 ∪ L.

Hence g = 3 and k = 5. This implies r = 13 and a = 3.
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Example 3.4. Consider the K3 surface #89 in Yonemura. Dropping sev-
eral monomials, we choose the equation

S0 : x2
0x3 + x3

1x2 + x1x
4
2 + x11

3 = 0 ⊂ P3(5, 3, 2, 1).

The involution is defined by σ(x0) = −x0. We see that S0 is quasi-smooth
and the minimal resolution S is a K3 surface. S0 has three singularities, P1,
P2 and P3 as follows:

Singularity Type Exceptional divisors
P1 := (1 : 0 : 0 : 0) A5,4 E1 + E2 + E3 + E4

P2 := (0 : 1 : 0 : 0) A3,2 E5 + E6

P3 := (0 : 0 : 1 : 0) A2,1 E7

Every singularity is fixed by σ, and E2, E4 and E6 are ramified under σ
(acting on the minimal resolution S).

There are two curves on S0 fixed by σ, namely C ′ defined by x0 = 0 and
L′ defined by x1 = x3 = 0. C ′ has genus 5 and L′ is a projective line. Their
strict transforms C (= C5) and L on S are ramified under σ. We have

Sσ = C5 ∪ E2 ∪ E4 ∪ E6 ∪ L.

Hence g = 5 and k = 4. This implies r = 10 and a = 2.

Corollary 3.5. Let (S, σ) be one of the 86 K3 surfaces of Delsarte type
with involution σ in Theorem 2.5. Let Cg be the genus g curve in the fixed
locus Sσ = Cg ∪ L1 · · · ∪ Lk (where Li are rational curves). Then Cg is of
CM type in the sense that its Jacobian variety J(Cg) is a CM abelian variety
of dimension g.

Proof. If σ acts as σ(xi) = −xi on S, then Cg is defined by letting xi = 0.
It is a curve of Delstarte type and hence of CM type. �

3.2. Realization of Nikulin’s invariants

We briefly discuss how many Nikulin’s triplets (r, a, δ) can be realized by
our K3 surfaces. To realize as many triplets as possible, we introduce more
involutions than those considered in previous sections.

First, we summarize the results of previous sections where σ acts on the
variable x0 (with the highest weight among xi’s).
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Theorem 3.6. Let (S, σ) be one of the 92 K3 surfaces in Theorem 2.4 with
involution σ(x0) = −x0. Among the 75 triplets (r, a, δ) of Nikulin, at least
29 triplets are realized with such K3 surfaces. See tables B.1 to B.5 and B.7
of Appendix B for the list of defining equations of S0 and the values for
(r, a); in most cases, S0 is defined by

x2
0 = f(x1, x2, x3) or x2

0xi = f(x1, x2, x3).

Remark 3.1. We say “at least 29” because we computed only the invari-
ants r and a. If we are to find δ, we should have a Z-basis for Pic (S) or
calculate intersection numbers of divisors on S. We leave this as a future
problem. Once δ is calculated, the number of realizable triplets may increase.

When the weight Q = (w0, w1, w2, w3) is fixed and σ is defined by σ
(x0) = −x0 on the surface x2

0 = f(x1, x2, x3) or x2
0xi = f(x1, x2, x3), no mat-

ter what quasi-smooth equation we choose for f(x1, x2, x3), the fixed locus
Sσ is the same. Hence changes in equation f(x1, x2, x3) do not lead to any
new pairs of r and a.

On the other hand, even with the same S0, changing the involution σ
may change the fixed locus Sσ and thus also r and a may change. We use
this approach by letting σ act on some variable xi other than x0.

Theorem 3.7. Let (S, σ) be one of the 92 K3 surfaces in Theorem 2.4
having an involution σ on a variable xi other than x0. They are listed on
table B.9 in Appendix B with the values of r and a. Compared with the
triplets obtained in Theorem 3.6, at least 14 more triplets are realized with
such σ actions. Among the 75 triplets (r, a, δ) of Nikulin, the total number
of triplets we realize is at least 40. The values for r and a of such 40 triplets
are as follows:

r 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
a 1 0 1 2 3 6 1 0 1 6 3 2 5 2 1 0 1 2

2 4 7 8 9 2 9 8 5 4 7 6 3 2 3
4 9 6 5 4
6
8

Proof. The σ-fixed locus Sσ
0 can be determined by the same method as in

previous subsections. In particular, the singularities of S0 are independent of
the choice of σ. We use Lemmas 2.8 to 2.10 and 3.1 to find which exceptional
divisors are fixed by involution σ. �
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Remark 3.2. In some cases (say, Case #57 of table B.4), the σ-action on
xi (i �= 0) gives the same Sσ as the action by σ(x0) = −x0. Such cases are
omitted from table B.9.

Remark 3.3. Hisanori Ohashi has communicated us an idea of even more
different types of involutions on S0. We thank him for the idea of different
involutions. We plan to work on it in a subsequent paper.

4. Calabi–Yau threefolds of Borcea–Voisin type

4.1. Construction of Calabi–Yau threefolds of Borcea–Voisin type

In this section, we recall the Borcea–Voisin construction of Calabi–Yau
threefolds.

Let E be an elliptic curve with the standard involution ι, and let (S, σ)
be a pair of a K3 surface S with involution σ acting by −1 on H2,0(S).
By the classification theorem of Nikulin, the deformation class of such pairs
(S, σ) is determined by a triplet (r, a, δ) as we discussed in Section 2.

Now we consider the product E × S, and the quotient threefolds

E × S/ι× σ.

Obviously, this quotient is singular, having cyclic quotient singularities.
We resolve singularities to obtain a smooth crepant resolution, denoted
by X = X(r, a, δ), which is a Calabi–Yau threefold; we call it a Calabi–
Yau threefold of Borcea–Voisin type. It is plain that a Calabi–Yau three-
fold of Borcea–Voisin type is equipped with the following two fibrations:
the elliptic fibration with constant fiber E induced from the projection
E × S/ι× σ → S/σ, and the K3 fibration with the constant fiber S induced
from the projection E × S/ι× σ → E/ι.

Proposition 4.1 (Borcea [6]). The Hodge numbers of the Calabi–Yau
threefold X = X(r, a, δ) of Borcea–Voisin type are determined by the given
triplet (r, a, δ) and by the data from the fixed locus Sσ: Indeed,

h1,1(X) = 5 + 3r − 2a = 1 + r + 4(k + 1),

h2,1(X) = 65− 3r − 2a = 1 + (20− r) + 4g

where k, g are described in Proposition 2.2. The Euler characteristic of X
is

e(X) = 2(h1,1(X)− h2,1(X)) = 2(r − 10).
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[Voisin [41]]. Put N := 1 + k and N ′ := g. That is, N is the number of
components, and N ′ is the sum of genera of components, of Sσ. Then

h1,1(X) = 11 + 5N −N ′,
h2,1(X) = 11 + 5N ′ −N

and the Euler characteristic of X is

e(X) = 2(h1,1(X)− h2,1(X)) = 12(N −N ′).

Now we discuss briefly resolution of singularities; detailed discussions
are in Section 6. As above, let ι : E → E be the standard involution. The
fixed part Eι consists of four points {P1, P2, P3, P4}.

We consider the generic case (I) when the fixed part Sσ of S is given by

Sσ = Cg ∪ L1 ∪ L2 ∪ · · · ∪ Lk

where Cg is a smooth curve of genus g ≥ 1 and Li is a rational curve for
each i = 1, . . . , k.

Proposition 4.2. The quotient threefold E × S/ι× σ has singularities
along {Pi} × Sσ (i = 1, 2, 3, 4). Each singular locus is a cyclic quotient sin-
gularity by a group action of order 2.

By resolving singularities, we obtain a smooth Calabi–Yau threefold X:

E × S/ι× σ ← X.

The exceptional divisors are four copies of a union of ruled surfaces

Sσ × P1 := (Cg × P1) ∪ (L1 × P1) ∪ · · · ∪ (Lk × P1).

4.2. Realization of Calabi–Yau threefolds of Borcea–Voisin type
as hypersurfaces over Q

The construction of Calabi–Yau threefolds of Borcea–Voisin type we have
discussed so far are geometric in nature. In order to study arithmetic of these
Calabi–Yau threefolds, we wish to have defining equations by, e.g., hypersur-
faces or complete intersections defined over Q in weighted projective spaces.
We require that the zero loci of these equations define singular Calabi–
Yau threefolds and whose resolution would be birationally equivalent to our
Calabi–Yau threefolds of Borcea–Voisin type. In fact, the constructions of
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such singular models have been already carried out in Goto–Kloosterman–
Yui [16], using the so-called twist maps. Now we will briefly recall such
constructions.

We start with examples. Let P2(k + 1, k, 1) be a weighted projective 2-
space with weight(k + 1, k, 1) of degree 2(k + 1). Let P3(w0, w1, w2, w3) be
a weighted projective 3-space with weight (w0, w1, w2, w3) of degree d :=∑3

i=0 wi. A twist map may be defined as follows. Assume that gcd(k +
1, w0) = 1. Let

Φ : P2(k + 1, k, 1)× P3(w0, w1, w2, w3)

�→ P4(kw0, w0, (k + 1)w1, (k + 1)w2, (k + 1)w3)

be a map into a weighted projective 4-space with degree (k + 1)d. The twist
map was defined in Goto–Kloosterman–Yui [16] explicitly, and is given by

Φ : ((y0 : y1 : y2), (x0 : x1 : x2 : x3)) �→
(

y1

(
x0

y0

)k/k+1

: y2

(
x0

y0

)k/k+1

: x1 : x2 : x3

)
.

This will produce many singular Calabi–Yau threefolds defined by hyper-
surfaces in weighted projective 4-spaces.

Take k = 1. Then we have an elliptic curve

E2 : y2
0 = y4

1 + y4
2 ⊂ P2(2, 1, 1).

If we take k = 2, we obtain an elliptic curve

E3 : y2
0 = y3

1 + y6
2 ⊂ P2(3, 2, 1).

Both E2 and E3 have complex multiplication, by Z[
√−1] and Z[

√−3],
respectively.

Proposition 4.3 (Borcea [6]). Let E2 and E3 be elliptic curves defined
above. Let S0 : x2

0 = f(x1, x2, x3) ⊂ P3(w0, w1, w2, w3) be one of the 40 K3
surfaces from tables B.1 and B.3. Let S be the minimal resolution of S0.

(a) Suppose that w0 is odd, and that w0 = w1 + w2 + w3. Then there is a
twist map

P2(2, 1, 1)× P3(w0, w1, w2, w3) · · · −→ P4(w0, w0, 2w1, 2w2, 2w3)
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given by

(y0 : y1 : y2)× (x0 : x1 : x2 : x3) �→
(
y1

(
x0

y0

)1/2

: y2

(
x0

y0

)1/2

: x1 : x2 : x3

)
.

The product E2 × S0 maps generically 2 : 1 to the hypersurface of
degree 4w0 of the form

z4
0 + z4

1 = f(z2, z3, z4)

where f is a homogeneous polynomial over Q of degree 4w0. This is a
singular model for a Calabi–Yau threefold E2 × S/ι× σ in P4(w0, w0,
2w1, 2w2, 2w3).

(b) Suppose that w0 is even but not divisible by 3, and that w0 = w1 +
w2 + w3. Then there is a twist map

P2(3, 2, 1)× P3(w0, w1, w2, w3) · · · −→ P4(2w0, w0, 3w1, 3w2, 3w3)

given by

(y0 : y1 : y2)× (x0 : x1 : x2 : x3) �→
(

y1

(
x0

y0

)2/3

: y2

(
x0

y0

)1/3

: x1 : x2 : x3

)
.

The product E3 × S0 maps generically 2 : 1 to the hypersurface of
degree 6w0 of the form

z3
0 + z6

1 = f(z2, z3, z4),

where f is a homogeneous polynomial over Q of degree 6w0. This is a
singular model for a Calabi–Yau threefold E3 × S/ι× σ in P4(2w0, w0,
3w1, 3w2, 3w3).

Problem 1. When w0 is divisible by 6, describe the twist map explicitly
and construct hypersurface equations defining the Calabi–Yau threefolds
modifying twist maps.

Proposition 4.4. There are in total 40 Calabi–Yau threefolds correspond-
ing to K3 surfaces S0 in tables B.1 and B.2 which are realized by quasi-
smooth hypersurfaces over Q in weighted projective 4-spaces by the above
construction.
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Theorem 4.5. Suppose that S is the minimal resolution of one of the 45
K3 surfaces of tables B.1 to B.3 excluding #90, #91, #93. Then the asso-
ciated 45 Calabi–Yau threefolds of Borcea–Voisin type constructed above are
all of CM type.

Proof. We follow Borcea [6] Proposition 1.2. Let h be the rational Hodge
structure of H3(E × S, Q), and let hE and hS denote, respectively, the Hodge
structures of H1(E, Q) and H2(S, Q). Then

(H3(E × S, Q), h) = (H1(E, Q), hE)⊗ (H2(S, Q), hS).

(See Voisin [41], Thèoréme 11.38.) Since the fixed locus of Sσ are given by a
curve Cg (g ≥ 1) and rational curves Li (i = 1, . . . , k), the rational polarized
Hodge structure hX of a Calabi–Yau threefold X = ˜E × S/ι× σ is given by
the rational sub-Hodge structure of (H3(E × S, Q), h) together with those
arising from exceptional divisors associated to the curve Cg of genus g ≥ 1
in the fixed locus Sσ. We get

(H3(X, Q), hX) � (V− ∩H2(S, Q), h−)⊗ (H1(E, Q), hE)

⊕ (H1(Cg, Q), hCg
),

where (V−, h−) denotes the restricted Hodge structure on H1,1(S) of the −1
eigenspace, and hCg

is the Hodge structure of H1(Cg, Q). Note that there
is an associated Abel–Jacobi map H1,0(Cg) → H2,1(X) and we identify its
image with H1,0(Cg) in H2,1(X) (see Clemens and Griffiths [7]). Then hX

is of CM type if and only if hE and hS (more precisely, h− and hCg
) are

all of CM type. Now with our choices of E and S, E = E2 or E3 is of CM
type, and S is of CM type (in particular, Cg is of CM type (cf. Lemma 5.13
below)). Therefore, hE and hS (h− and hCg

) are all of CM type, and hence
X is of CM type (Cf. Borcea [5], Proposition 1.2). �

Remark 4.1. More examples of CM type Calabi–Yau threefolds of Borcea–
Voisin type may be obtained by taking any CM type elliptic curves E. In
fact, one notices that any elliptic curve E can be embedded in P2(2, 1, 1),
with equation

E : x2
0 = x2(x3

1 + ax0x2 + bx3
2) with a, b ∈ Q.

In particular, elliptic curves with CM by a quadratic field but with j-
invariant in Q can be realized in this way.
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Rohde [33] (Example A.1.9) gave four examples of elliptic curves over Q
with complex multiplication in the usual projective 2-space.

For the additional 41 pairs (S, σ) of K3 surfaces with involution σ of
Theorem 2.5 (b) (see tables B.4 to B.6), the situation is slightly different from
the above cases. Calabi–Yau threefolds X are birational to hypersurfaces
over Q, but they are not quasi-smooth. More precisely, we have the following
result.

Theorem 4.6. Let (S, σ) be (the minimal resolution of) one of the 41 pairs
of K3 surfaces with involution σ of Theorem 2.5 (b), which is not in the list
of Borcea. Let E be an elliptic curve over Q with involution ι with or without
CM. Take the product E × S and consider the quotient threefold E × S/ι×
σ. Resolving singularities, we obtain a smooth Calabi–Yau threefold X over
Q. Further, X is of CM type if and only if E is of CM type.

About the realization of X as a hypersurface, the following holds.

(a) If (S, σ) is one of the K3 surfaces listed in tables B.4 and B.5 other
than #22 and #58, then S is birational to x2

0xi + f(x1, x2, x3) = 0 for
some i �= 0 and X is birational to a (non-quasi-smooth) hypersurface
over Q defined by⎧⎪⎪⎨
⎪⎪⎩

zi+1(z4
0 + z4

1) + f(z2, z3, z4) = 0, if w0 is odd and E = E2,

zi+1(z3
0 + z6

1) + f(z2, z3, z4) = 0, if w0 is even but not divisible
by 3 and E = E3.

(b) Let (S, σ) be one of the K3 surfaces listed in table B.6 other than #16.
If we choose E = E2, then X is birational to the following (non-quasi-
smooth) hypersurface over Q:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
(z4

0 + z4
1)

2 + z3
2 + z4

3 + z6
4 = 0 in #2,

(z4
0 + z4

1)
2 + z3

2 + z2z
3
3 + z3z

4
4 = 0 in #52,

z3(z4
0 + z4

1)
2 + z3

2 + z2z
3
4 + z3

3z4 = 0 in #84.

Proof. Since the singular locus of E × S/ι× σ is defined over Q, resolving
singularities, we obtain a smooth Calabi–Yau threefold X over Q. Here X is
not necessarily of CM type. By the same argument as for proof of Theorem
4.6, X is of CM type if and only if each component, E and S, is of CM type.
Since we already know that S is of CM type, X is of CM type if and only if
E is a CM elliptic curve over Q.
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(a) If we choose an appropriate elliptic curve E, then the twist map of
Proposition 4.3 works for x2

0 = −f(x1, x2, x3)/xi. Depending on the
parity of w0, we obtain the equations as claimed.

(b) Since the variable associated with the involution σ carries an odd
weight, we may choose E = E2. Then the twist map of Proposition 4.3
(a) works for x2

0 =
√−f(x1, x2, x3) or x2

0 =
√−f(x1, x2, x3)/xi and

we obtain the equations as asserted. �

Remark 4.2. Note that K3 surfaces S0 realized by Yonemura in weighted
projective 3-spaces are often singular. To have smooth K3 surfaces, we ought
to consider minimal resolutions S. The involution σ is lifted to S and we
use S to carry out the above construction of Calabi–Yau threefolds X. The
procedure is shown as follows:

E × S0 ←− E × S
↓

E × S/ι× σ ←− X.

Remark 4.3. The above constructions work with any elliptic curves, not
only with E2 and E3.

4.3. Singularities and resolutions on Calabi–Yau threefolds of
Borcea–Voisin type

Let S0 be a K3 surface defined by a weighted hypersurface

S0 : x2
0 = f(x1, x2, x3) ⊂ P3(w0, w1, w2, w3)

of degree deg(f) = w0 + w1 + w2 + w3. The involution σ is given by σ(x0) =
−x0. The singularities on S0 are determined by the weight. Let S be the
minimal resolution of S0. The involution σ is extended to S. Let Sσ be the
fixed part of S by σ.

Let E be an elliptic curve

E2 : y2
0 = y4

1 + y4
2 ⊂ P2(2, 1, 1)

or

E3 : y2
0 = y3

1 + y6
2 ⊂ P2(3, 2, 1),
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defined in Section 4.2. The involution ι is given by ι(y0) = −y0. The fixed
part Eι consists of four points

Eι = {P1, P2, P3, P4}.

We use for E either E2 if w0 is even, or E3 if w0 is odd. Take the quotient
threefold E × S/ι× σ.

Remark 4.4. In fact, the above statement is true for any elliptic curve

E : y2 = x3 + ax + b ∈ P2(1, 1, 1) with a, b ∈ Q.

E has the involution y → −y and the fixed points consists of 4 points. Thus,
there is no need to confine our discussions to E2 or E3. We will get extra
singularities working in weighted projective spaces, but this is not intrinsic
to the Borcea–Voisin construction.

Let X be a smooth resolution of E × S/ι× σ. Then the singular loci
{Pi} × Sσ are determined from the weight of S0 and the singularity data of
the ambient space.

Here are examples.

Example 4.7. Let

S0 : x2
0 = x5

1 + x5
2 + x10

3 ⊂ P3(5, 2, 2, 1).

(This is #6 in Yonemura = #2 in Borcea.) Let

E2 : y2
0 = y4

1 + y4
2 ⊂ P2(2, 1, 1).

• Then S0 is a singular K3 surface and the singular locus is:

Sing(S0) = {(0 : x1 : x2 : 0) |x5
1 + x5

2 = 0 } = {Q1, Q2, Q3, Q4, Q5}

where every Qi is a cyclic quotient singularity of type A1.
• Let C ′ be a curve on S0 defined by x0 = 0, that is,

C ′ = {x0 = 0} : x5
1 + x5

2 + x10
3 = 0 ⊂ P2(2, 2, 1).

Since P2(2, 2, 1) � P2(1, 1, 1), C ′ is identified with

C ′ : x5
1 + x5

2 + x5
3 = 0 ⊂ P2

which is a smooth curve of genus 6.
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Figure 2: Exceptional divisors and the fixed locus.

• Let L′ be a curve on S defined by x3 = 0, that is,

L′ = {x3 = 0 } : x2
0 = x5

1 + x5
2 ⊂ P2(5, 2, 2).

Since P2(5, 2, 2) � P2(5, 1, 1), L′ is identified with

L′ : x0 = x5
1 + x5

2 ⊂ P2(5, 1, 1)

and hence L′ is a rational curve.
• We see that

C ′ ∩ L′ = {Q1, Q2, Q2, Q4, Q5}.
• Let S be the minimal resolution of S0. The involution σ is lifted to

S. Let C6 and L1 be the respective strict transforms of C ′ and L′ to the
minimal resolution S. Let E1, . . . , E5 be the exceptional divisors on S arising
from singularities Qi, (i = 1, . . . , 5), respectively.

Then C6 and L1 are fixed by σ, but not the exceptional divisors Ei for
any i ∈ {1, 2, . . . , 5}. Hence

Sσ = C6 ∪ L1

and we see g = 6 and k = 1 (so r = 6, a = 4 in Nikulin’s notation). The
resolution picture is given in figure 2, where the curves in boldface are fixed
by σ.

Proposition 4.8. Let X be a crepant resolution of the quotient threefold
E2 × S/ι× σ of Example 4.7. Then X is a Calabi–Yau threefold correspond-
ing to the triplet (6, 4, 0), and its exceptional divisors are four copies of the
ruled surfaces

(C6 × P1) ∪ (L× P1).

Furthermore, X is of CM type, and has a (quasi-smooth) model

z4
0 + z4

1 = z5
2 + z5

3 + z10
4 ⊂ P4(5, 5, 4, 4, 2).
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The Hodge numbers are given by

h1,1(X) = 15, h2,1(X) = 39.

Example 4.9. Consider the surface

S0 : x2
0 = x3

1x3 + x7
2 + x28

3 ⊂ P3(14, 9, 4, 1).

This is #45 in Yonemua = #36 in Borcea. Let

E3 : y2
0 = y3

1 + y6
2 ⊂ P2(3, 2, 1).

• The surface S0 is a singular K3 surface. There are two singular points:

Q := (0 : 1 : 0 : 0) of type A9,8,

and

R := (1 : 0 : 1 : 0) of type A2,1.

• Let C ′ be the curve on S0 defined by x0 = 0

C ′ = {x0 = 0} : x3
1x3 + x7

2 + x28
3 = 0 ⊂ P2(9, 4, 1).

Then C ′ is a quasi-smooth curve with singularity Q.
• No other curves defined by xi = 0 (i �= 0) are fixed by the involution

σ.
• Let S be the minimal resolution of S0. Then S is a smooth K3 surface

and the involution σ is lifted to S. Let C6 be the strict transform of C ′ to S;
it has genus 6. Let E1, . . . , E8 be exceptional divisors arising from singularity
Q. Let E9 be the exceptional divisor arising from R. Then E2i (i = 1, 2, 3, 4)
and E9 are fixed by σ, but others are not.

Put Li := E2i (i = 1, 2, 3, 4) and L5 := E9. Then

Sσ = C6 ∪ L1 ∪ · · · ∪ L5.

So g = 6 and k = 5 (so r = 10, a = 0 in Nikulin’s notation). The resolution
picture is given in figure 3, where the curves in boldface are fixed by σ.

• The quotient threefold E3 × S/ι× σ has singularities along {Pi} × Sσ

where Eι
3 = {P1, P2, P3, P4}.
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Figure 3: Exceptional divisors and the fixed locus.

Summarizing the above, we have

Proposition 4.10. A crepant resolution X of the quotient threefold E3 ×
S/ι× σ of Example 4.9 is a Calabi–Yau threefold corresponding to the triplet
(10, 0, 0), and its exceptional divisors are four copies of

(C6 × P1) ∪ (L1 × P1) ∪ · · · ∪ (L5 × P1).

Furthermore, X is of CM type, and has a (quasi-smooth) model

z3
0 + z6

1 = z3
2z4 + z7

3 + z28
4 ⊂ P4(28, 14, 27, 12, 3).

The Hodge numbers are given by

h1,1(X) = 35, h2,1(X) = 35.

Example 4.11. Consider the surface

S0 : x2
0 = x3

1 + x10
2 + x15

2 ⊂ P3(15, 10, 3, 2).

This is #11 in Yonemura = #18 in Borcea. Let

E2 : y2
0 = y4

1 + y4
2 ⊂ P2(2, 1, 1).

• S0 is a singular K3 surface and singularities are

Q1, Q2, Q3 = (0 : x1 : 0 : x3) of type A2,1,
R := (x0 : x1 : 0 : 0) of type A5,4,

and
T1, T2 := (x0 : 0 : x2 : 0) of type A3,2.

• Let C ′ be the curve on S0 defined by x0 = 0:

C ′ = {x0 = 0} : x3
1 + x10

2 + x15
3 = 0 ⊂ P2(10, 3, 2).
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Figure 4: Exceptional divisors and the fixed locus.

Via the isomorphism P2(10, 3, 2) � P2(5, 3, 1), C ′ is identified with

C ′ : x3
1 + x5

2 + x15
3 = 0 ⊂ P2(5, 3, 1).

• Let L′ be the curve on S0 defined by x2 = 0:

L′ = {x2 = 0} : x2
0 = x3

1 + x15
3 ⊂ P2(15, 10, 2).

Via the isomorphism P2(15, 10, 2) � P2(3, 1, 1), L′ is identified with

L′ : x0 = x3
1 + x3

3 ⊂ P2(3, 1, 1).

• C ′ has genus 4 and L′ is rational with

C ′ ∩ L′ = {Q1, Q2, Q3} and R ∈ L′.

• Let S be the minimal resolution of S0. The involution σ is lifted
to S. Let C4 and L1 be the strict transforms of C ′ and L′ on S, respec-
tively. Let Ei (i = 1, 2, 3) be the exceptional divisors arising from singular-
ities Qi (i = 1, 2, 3), E4+j (j = 0, 1, 2, 3) be the exceptional divisors arising
from R, and E8+t (t = 0, 1, 2, 3) be the exceptional divisors arising from sin-
gularities T1, T2.

• C, L1, E5 =: L2 and E7 =: L3 are fixed by σ, but all others are not.
Hence

Sσ = C4 ∪ L1 ∪ L2 ∪ L3.

So g = 4 and k = 3 (so r = 10, a = 4 in Nikulin’s notation). The resolution
picture is given in figure 4, where the curves in boldface are fixed by σ.

• The quotient threefold E2 × S/ι× σ has singularities {Pi} × Sσ (i =
1, 2, 3, 4) where Eι

2 = {P1, P2, P3, P4}.

Proposition 4.12. A crepant resolution X of the quotient threefold E2 ×
S/ι× σ of Example 4.11 is a Calabi–Yau threefold corresponding to the
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triplet (10, 4, 0), and its exceptional divisors are four copies of ruled sur-
faces:

(C4 × P1) ∪ (L1 × P1) ∪ (L2 × P1) ∪ (L3 × P1).

Furthermore, X is of CM type, and has a (quasi-smooth) model

z4
0 + z4

1 = z3
2 + z10

3 + z15
4 ⊂ P4(15, 15, 20, 6, 4).

The Hodge numbers are given by

h1,1(X) = 27, h2,1(X) = 27.

5. Automorphy of Calabi–Yau threefolds of Borcea–Voisin
type over Q

5.1. The L-series

Let X be a Calabi–Yau variety defined over Q of dimension d where d ≤ 3.
Hence X is an elliptic curve for d = 1, a K3 surface for d = 2 and a Calabi–
Yau threefold for d = 3.

We may assume that X has defining equations with integer coefficients.
A prime p is said to be good if the reduction Xp = X ⊗ Fp is smooth and
defines a Calabi–Yau variety over Fp. A prime p is said to be bad if it is not
a good prime. There are only finitely many bad primes and we denote by
S the product of bad primes. Then a Calabi–Yau variety X has an integral
model over Z[1/S].

Put X̄ := X ⊗Q Q̄. We will consider the Galois representation associated
to the �-adic étale cohomology groups H i

et(X̄, Q�) (0 ≤ i ≤ 2d) of X, where
� is a prime.

The absolute Galois group GQ := Gal(Q/Q) acts on X̄. For each i, 0 ≤
i ≤ 2d, one has a Galois representation on the cohomology group H i

et(X̄, Q�)
where � is a prime different from p. This defines a continuous �-adic repre-
sentation ρ : GQ → GLr(Q�) of some finite rank r′ where r′ = dimQ�

H i
et(X̄,

Q�) = Bi(X) (the ith Betti number of X).
For a good prime p the structure of this Galois representation can be

studied by passing to the reduction Xp = X ⊗ Fp. The Frobenius morphism
Frobp induces a Q�-linear map ρ(Frobp) on H i

et(X̄, Q�) (i, 0 ≤ i ≤ 2d). Let

P i
p(X, ρ, t) := det(1− ρ(Frobp) t |H i

et(X̄, Q�))
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be the characteristic polynomial of ρ(Frobp), where t is an indeterminate.
By the validity of the Weil conjectures, one knows that

• P i
p(X, ρ, t) ∈ 1 + Z[t] has degree Bi(X).

• The reciprocal roots of P i
p(X, ρ, t) are algebraic integers with complex

absolute value pi/2 (the Riemann Hypothesis for Xp).

• The zeta-function of Xp is a rational function of t over Q and is given
by

ζ(Xp, t) =
P 1

p (X, ρ, t)P 3
p (X, ρ, t) · · ·P 2d−1

p (X, ρ, t)
P 0

p (X, ρ, t)P 2
p (X, ρ, t) · · ·P 2d

p (X, ρ, t)
.

Now putting all local data together, we can define the (incomplete) global
L-series and the (incomplete) zeta-function of X.

Definition 5.1. For each i, 0 ≤ i ≤ 2d, we define the ith (incomplete) L-series
by

Li(X, s) := L(H i
et(X̄, Q�), s) =

∏
p �∈S

1
P i

p(X, ρ, p−s)
.

The (Hasse–Weil) zeta-function of X is then defined by

ζ(X, s) =
∏d

i=0 L2i−1(X, s)∏d
i=1 L2i(X, s)

.

The use of the terminology of “incomplete” L-series is based on the fact
that it does not include a few Euler factors corresponding to bad primes.
We can also define Euler factors for primes p ∈ S to complete the L-series
bringing in the Gamma factor corresponding to the prime at infinity, and
also factors corresponding to bad primes.

We denote by ζ(Q, s) =
∑∞

n=1
1
ns =

∏
p:prime

1
1−p−s the Riemann zeta-

function.

Example 5.1. We consider an elliptic curve E defined over Q. Let S be a
set of bad primes. Then one knows that the L-series of E is given by

L0(E, s) = ζ(Q, s), L2(E, s) = ζ(Q, s− 1),
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L1(E, s) = L(H1(E), s) =
∏
p �∈S

P 1
p (E, ρ, p−s)−1 =

∏
p �∈S

1
1− app−s + pp−2s

,

where ap = p + 1−#E(Fp) = trace(ρ(Frobp)).
The zeta-function of E is then given by

ζ(E, s) =
L1(E, s)

ζ(Q, s)ζ(Q, s− 1)
.

These assertions are true a priori for good primes, but they can be
extended to include bad primes and also prime at infinity.

This is a classical result and can be found, for instance, in Silverman
[38].

Example 5.2. We consider a K3 surface S defined over Q. The zeta-
function of S is given by

ζ(S, s) =
L1(S, s)L3(S, s)

L0(S, s)L2(S, s)L4(S, s)
=

1
L0(S, s)L2(S, s)L4(S, s)

,

where L4(S, s) = L0(S, s− 2) by Poincaré duality. The L2(S, s) factors as a
product

L2(S, s) = L(H2(S, Q�), s) = L(NS(S)⊗Q�, s)L(T (S)⊗Q�, s)

in accordance with the decomposition H2
et(S̄, Q�) = (NS(S)⊕ T (S))⊗Q�

where NS(S) is the Néron–Severi group spanned by algebraic cycles and
T (S) is its orthogonal complement, and this decomposition is Galois invari-
ant. Also this factorization is independent of the choice of �. The Tate con-
jecture [39] (Theorem 5.6) further asserts that

NS(S)⊗Q Q� = H2
et(S̄, Q�)G

where G denotes the Galois group Gal(Q̄/Q). (We follow the proof in [39],
due to D. Ramakrishnan. It rests on the facts: (1) the existence of an abelian
variety A and the absolute Hodge cycle on S ×A inducing an injection
H2

et(S, Q�) ↪→ H2
et(A, Q�) (Deligne [11]), (2) the theorem of Faltings that the

Tate conjecture is true for A, and (3) the theorem of Lefschetz that rational
classes of type (1, 1) are algebraic.) Therefore, the Picard number ρ(S) of
S is equal to the dimension of the G-invariant subspace H2

et(S̄, Q�)G. With
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the validity of the Tate conjecture the zeta-function of S takes the form

ζ(S, s) = [ζ(Q, s)ζ(Q, s− 2)ζ(Q, s− 1)ρ(S)L(T (S)⊗Q�, s)]−1.

Now NS(S̄) �= NS(S) in general. In that case, not all algebraic cycles in
NS(S̄) are defined over Q, let L be the smallest algebraic number field over
which all ρ(S) algebraic cycles are defined. Let ζ(L, s) denote the Dedekind
zeta-function of L, that is,

ζ(L, s) =
∑

I⊆OL

1
NL/Q(I)s

=
∏

P⊆OL

1
1−NL/Q(P )−s

whereOL is the ring of integers of L, I (resp. P ) is an ideal (resp. prime ideal)
of OL, and N(I) (resp. N(P )) denotes the norm. Then ζ(L, s) is a product
of the Artin L-functions over the irreducible complex representations of the
Galois group, whereas only some need to occur in NS(S̄) and the multiplicity
of an irreducible representation in NS(S̄)C depends on the geometry. Then
the zeta-function of S is of the form

ζ(S, s) = [ζ(Q, s)ζ(Q, s− 2)ζ(L, s− 1)tL(ρ, s)L(T (S)⊗Q�, s)]−1,

where the exponent t is some integer 1 ≤ t ≤ ρ(S̄), which is rather difficult
to determine explicitly, and L(ρ, s) is the Artin L-series of the irreducible
complex representation. (In general, the automorphy of the Artin L-function
is still an open problem.)

For example, let S be a K3 surface with NS(S̄)Q
∼= Q2 so ρ(S̄) = 2. Let

L be a quadratic extension of Q so that NS(SL)Q
∼= Q, and the Galois group

acts trivially on it, but acts by a non-trivial character on a complementary
one-dimensional subspace. Then

L(NS(S̄), s) = ζ(L, s− 1) = ζ(Q, s− 1)L(L, s− 1),

where L(L, s) is the Dirichlet L-function of L.

Example 5.3. We now consider a Calabi–Yau threefold X over Q. The
zeta-function of X is given by

ζ(X, s) =
L1(X, s)L3(X, s)L5(X, s)

L0(X, s)L2(X, s)L4(X, s)L6(X, s)

=
L3(X, s)

L0(X, s)L2(X, s)L4(X, s)L6(X, s)
,
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where L6(X, s) = L0(X, s− 3), L4(X, s) = L2(X, s− 1) by Poincaré duality.
The zeta-function of X is of the form

ζ(X, s) =
L3(X, s)

ζ(Q, s)ζ(Q, s− 3)L2(X, s)L2(X, s− 1)
.

Conjecture 5.4 (Langlands reciprocity conjecture [23]). Let X be a
Calabi–Yau variety defined over Q. Then the zeta-function ζ(X, s) is auto-
morphic.

Remark 5.1. For our Calabi–Yau varieties over Q, we know the form of
their zeta-functions, and the Riemann zeta-function ζ(s) = ζ(Q, s) (and its
translates) are trivially automorphic as they correspond to the identity rep-
resentation. The automorphy question for our K3 surfaces and our Calabi–
Yau varieties over Q is then for the automorphy of the L-series Li(X, s) for
each i, 0 ≤ i ≤ dim(X).

Are there any automorphic forms (representations) such that Li(X, s) for
each i (0 ≤ i ≤ dim(X)) are determined by the L-series of such automorphic
objects?

First we will discuss some examples in support of the Langlands reci-
procity conjecture.

5.2. Elliptic curves over Q

For dimension 1 Calabi–Yau varieties over Q, we have the well-known cele-
brated results of Wiles [42], Taylor and Wiles [40].

Theorem 5.5. Let E be an elliptic curve defined over Q. Then there exists
a normalized weight 2 new form fE of level NE which is an eigenvector of
the Hecke operators, such that

L1(E, s) = L(fE , s).

Here NE is the conductor of E and fE has the q-expansion (q = e2πiz, z =
x + iy with y > 0)

fE = q + a2q
2 + · · ·+ apq

p + · · · ,

where ap is the same as defined in Example 5.1.
In terms of Galois representations, let ρE,� be an �-adic representation

of Gal(Q/Q) on the �-adic Tate module T�(E) of E/Q. Then ρE,� is modular
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for some �. That is, there exists a cusp form fE and a representation ρfE
of

Gal(Q/Q) such that ρE,� = ρfE
. We will denote this representation simply

by ρE.

Remark 5.2. If E is an elliptic curve over Q with CM by an imaginary
quadratic field K/Q, then L1(E, s) is equal to a Hecke L-series of K with a
suitable Grossencharacter of K (Deuring [12]).

5.3. K3 surfaces over Q of CM type

For dimension 2 Calabi–Yau varieties, namely, K3 surfaces, our results on
automorphy is formulated as follows. We can establish the automorphy of
K3 surfaces over Q of CM type. This generalizes the result of Shioda and
Inose [35] for singular K3 surfaces, and also the results of Livné–Schütt–Yui
[25] for certain K3 surfaces with non-symplectic group actions.

Theorem 5.6. Let (S, σ) be one of the 86 pairs (S, σ) of K3 surfaces in
Theorem 2.5. Then (S, σ) is defined over Q, and there exists a quadruple
(ρ, K, ι, χ) with the following properties:

(a) ρ is an (Artin) Galois representation of Gal(Q/Q), and the degree of ρ
is ρ(S̄) (the geometric Picard number of S),

(b) K is a CM abelian extension of Q,

(c) ι : K → C is an embedding,

(d) χ is a Hecke character of K of ∞ type z → ι(z)2,

(e) dim ρ + [K : Q] = 22 where [K : Q] = dim T (S̄)Q.

such that the zeta-function ζ(S, s) and the L2(S, s) of S/Q are given by

ζ(S/Q, s) = [ζ(Q, s)ζ(Q, s− 2)L2(S, s)]−1

where

L2(S, s) = L(ρ, s− 1)L(χ, s).

Proof. We follow an argument similar to the one in [25], to which we refer
for further details. Since S is a surface defined over Q, its Q�-cohomology is
1-dimensional in dimensions 1 and 4, which contribute the factors ζ(s) and
ζ(s− 2), respectively. Since S is a K3 surface the first and the third coho-
mology groups vanish, giving no contribution to the L-function. The second
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cohomology group is a direct sum NS ⊕ TS of the algebraic part, spanned
by the subspace NS of algebraic cycles and its orthogonal complement TS ,
called the space of transcendental cycles. This direct sum decomposition is
Galois invariant. Since NS is the Q�-span of the image by the cycle map of
the Néron–Severi group NS(S̄) (with scalars extended to Q�), the Galois
group acts on NS(S̄) through a finite quotient. Hence it acts on NS by the
Tate twist ρ(1) of the corresponding Artin representation ρ.

To obtain the last factor we first consider the cohomology with complex
coefficients. Since the defining equation for S uses only four monomials, it is
a Delsarte surface. Hence it is a quotient of a surface in P3 with a (homoge-
neous) diagonal equation

∑
i=1,...,4 aiw

r
i = 0 by some diagonal action of roots

of unity. Moreover in our case, the monomials in the (diagonal) equation for
S have coefficients 1, which implies that the ai’s can also be taken to be
all 1’s. Weil’s calculation (see [25], Section 6) gives that over an appropri-
ate cyclotomic field the Galois representation on the transcendental cycles
is a sum of one-dimensional representations coming from Jacobi sums, of
infinity type as in the statement of Theorem 5.3, which the absolute Galois
group permutes transitively. The Theorem follows. (For detailed discussion
on Jacobi sums, the reader is referred to the Appendix section below, or
Gouvêa and Yui [17].) �

Corollary 5.7. Let (S, σ) be as in Theorem 5.6. Then S has CM by a
cyclotomic field K = Q(ζt) for some t. (Here ζt denotes a primitive t-th root
of unity.)

Proof. This follows from Theorem 5.6. S is realized by a finite quotient of
some Fermat surface of some degree, however this finite group may have
a rather large order and it requires more work to determine its precise
form. The field K that corresponds to the transcendental cycles is isomor-
phic to T (S)⊗Q � Q(ζt) for some t. Moreover, it is generated by Jacobi
sum Grossencharacters of Q(ζt). This is because the Galois representation
defined by T (S) is a sum of one-dimensional representations induced from
the Jacobi sum Grossencharacters corresponding to the unique character a
with ‖a‖ = 0 (See [25]). �

In general, the automorphy of the Artin L-function is still a conjecture.
However, in our cases, we have the following result.

Corollary 5.8. Let (S, σ) be as in Theorem 5.6. Then the Artin L-function
L(ρ, s) is automorphic.
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Proof. We know that S is dominated by some Fermat surface

Fm : xm
0 + xm

1 + xm
2 + xm

3 = 0 ⊂ P3

of degree m. Here we review Shioda’s treatment (cf. Shioda [37] or Gouvêa–
Yui [17]). The cohomology group H2(Fm, Q�) is the direct sum of one-
dimensional spaces. More precisely, let

H2(Fm, Q�) = ⊕α∈{0}∪Am
V (α), dimV (α) = 1,

where

Am :=

{
a = (a0, a1, a2, a3) ∈ (Z/mZ)4 | ai �= 0,

3∑
i=0

ai = 0 ∈ Z/mZ

}
.

This implies that the Néron–Severi group NS(Fm) and the group of tran-
scendental cycles T (Fm) of Fm are also described as direct sums of one-
dimensional spaces:

NS(Fm)⊗Q� = ⊕α∈{0}∪Bm
V (α)

and

T (Fm)⊗Q� = ⊕α∈Cm
V (α),

where

Bm :=

{
a = (a0, a1, a2, a3) ∈ Am |

3∑
i=0

〈
tai

m

〉
= 2

for all t such that (t, m) = 1
}

,

and

Cm := Am \Bm.

Since S is realized as a Fermat quotient of some Fermat surface Fm by a
finite group, say, H, the irreducible Galois representation ρ is also induced
from one-dimensional subspaces belonging to NS(Fm), which are invariant
under the action of H, and hence L(ρ, s) is automorphic. (Indeed, working
through all the examples, we are able to show that Artin L-functions are
indeed automorphic.) �
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5.4. Calabi–Yau threefolds over Q of Borcea–Voisin type

For dimension 3 Calabi–Yau varieties over Q of Borcea–Voisin type, our
automorphy results are formulated in the following theorems.

Theorem 5.9. Let (S, σ) be one of the 86 pairs of K3 surfaces with involu-
tion given in Theorem 2.5. Let E be an elliptic curve over Q with involution
ι. Let X be a crepant resolution of the quotient threefold E × S/ι× σ with
a model defined over Q. Then X is automorphic.

We reformulate the above assertion in more concrete fashion as follows.

Theorem 5.10. Let (S, σ) be (the minimal resolution of) one of the 86
K3 surfaces with involution σ listed in Theorem 2.5. Then S is defined
over Q, and is of Delsarte type, and hence S is of CM type. Let E be an
elliptic curve E2 or E3 with involution ι (or any elliptic curve with complex
multiplication). Consider the quotient threefold E × S/ι× σ, and let X be
its crepant resolution. Then X is a Calabi–Yau threefold and has a model
defined over Q.

Furthermore, the following assertions hold:

• X is of CM type,

• The L-series L2(X, s) and L3(X, s) are automorphic.

• The zeta-function ζ(X, s) is automorphic, and hence X is automor-
phic.

Since all elliptic curves E defined over Q are modular, without the
assumption that E is of CM type, we have the following more general results.

Theorem 5.11. Let (S, σ) be one of the 86 pairs of K3 surfaces with invo-
lution σ defined over Q in Theorem 2.5. Let (E, ι) be an elliptic curve defined
over Q. Let X be a crepant resolution of the quotient threefold E × S/ι× σ,
which has a model defined over Q.

Then the following assertions hold:

(a) Let E be an elliptic curve Q. Then there is the automorphic represen-
tation ρE. Equivalently, there is a cusp form fE of weight 2 associated
to ρE.

(b) Take S to be a K3 surface of CM type (cf. Theorem 2.7). There is
an Artin representation ρ of an algebraic extension K over Q where
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we put m := [K : Q]. Put GQ = Gal(Q/Q) and GK = Gal(Q/K). Let
ρGK

be the compatible system of 1-dimensional �-adic representation
of GK. Then the m-dimensional Galois representation associated to
the group of transcendental cycles T (S)σ is given by IndGQ

GK
ρGK

. We
denote by fT (S) the “fictitious” automorphic form associated to this
representation (though we cannot write it down explicitly).

(c) Let X be a Calabi–Yau threefold over Q of Borcea–Voisin type. Then
there is the 2m-dimensional Galois representation

π := ρE ⊗ IndGQ

GK
ρGK

� IndGQ

GK
(ρGK

⊗ ResGQ

GK
ρE).

π is an automorphic cuspidal irreducible representation of GL(2, K),
and

L(π, s) = L(IndGQ

GK
π, s) = L(πE ⊗ IndGal(Q/Q)

Gal(Q/K)
ρ, s)

= L(fE ⊗ fT (S), s).

(d) The Galois representation associated to the twisted sectors (the excep-
tional divisors) is automorphic.

Therefore, X is automorphic.

5.5. Preparation for proof of automorphy for Calabi–Yau
threefolds of Borcea–Voisin type

We need to compute the cohomology groups of our Calabi–Yau threefolds
of Borcea–Voisin type. For this, first we compute the cohomology groups of
the product E × S.

Lemma 5.12. The Künneth formula for the product E × S gives:

H i(E × S, Q�) = ⊕p+q=iH
p(E, Q�)⊗Hq(S, Q�)

for 0 ≤ i ≤ 6. Then for each i, 0 ≤ i ≤ 3, we obtain

• H0(E × S, Q�) = Q�.

• H1(E × S, Q�) = H1(E, Q�)⊗Q�.

• H2(E × S, Q�) = Q� ⊗H2(S, Q�)⊕Q� ⊗Q�.

• H3(E × S, Q�) = H1(E, Q�)⊗H2(S, Q�).
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The higher cohomologies for i = 4, 5, 6 can be determined by Poincaré
duality.

Proof. These follow from the definition of E and S and the Künneth formula.
In fact, we have

H0(E × S, Q�) = H0(E, Q�)⊗H0(S, Q�) = Q�.

H1(E × S, Q�) = H1(E, Q�)⊗H0(S, Q�)⊕H0(E, Q�)⊗H1(S, Q�)

= H1(E, Q�)⊗Q�.

H2(E × S, Q�) = H0(E, Q�)⊗H2(S, Q�)⊕H1(E, Q�)⊗H1(S, Q�)

⊕H2(E, Q�)⊗H0(S, Q�) = Q� ⊗H2(S, Q�)⊕Q� ⊗Q�.

H3(E × S, Q�) = H0(E, Q�)⊗H3(S, Q�)⊕H1(E, Q�)⊗H2(S, Q�)

⊕H2(E, Q�)⊗H1(S, Q�)⊕H3(E, Q�)⊗H0(S, Q�)

= H1(E, Q�)⊗H2(S, Q�).
�

In order to determine the cohomology groups for the Calabi–Yau three-
folds E × S/ι× σ of Borcea–Voisin type, we need to compute the cohomol-
ogy groups of “non-twisted” sector and the cohomology groups arising from
singularities of “twisted” sector. For this we will use the orbifold Dolbeault
cohomology theory developed by Chen and Ruan [8]. We will give a brief
description of orbifold cohomology formulas relevant to our calculations.

Definition 5.2. Let X0 = E × S/ι× σ be a singular Calabi–Yau threefold
of Borcea–Voisin type. Then the cohomology group of X0 is given by

Hp,q

orb(X̄0) = Hp,q(E × S)⊕Hp−1,q−1((E × S)ι×σ)

for 0 ≤ p, q ≤ 3 with p + q = 3, where X̄0 = X0 ⊗ C.
The twisted sectors are the cohomology groups that correspond to h �= 1

(the second term), and the non-twisted sector corresponds to h = 1 (the first
term).

First we calculate the non-twisted sector of the cohomology.

Lemma 5.13. Let X0 := E × S/ι× σ be a singular Calabi–Yau threefold
over C of Borcea–Viosin type. Then we have

• H1,0(X0) = H1,0(E)ι ⊗ C = 0.

• H2,0(X0) = C⊗H2,0(S)σ = 0.
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• H3,0(X0) = C.

• H1,1(X0) = C⊗H1,1(S)σ=1 ⊕ C.

• H2,1(X0) = C⊕H1,1(S)σ=−1 ⊗ C.

Therefore, the Hodge numbers of the singular Calabi–Yau threefold X0

are given by
h1(X0) = 0, h2,0(X0) = 0, h3,0(X0) = 1

and
h1,1(X0) = 1 + r, h2,1(X0) = 1 + (20− r),

where r = rankNS(S)σ.

Proof. Let ωE and ωS be the non-trivial holomorphic 1-form and 2-form on
E and S, respectively. Then ωE ∧ ωS descends to a holomorphic 3-form on
X. Now the involution ι : E → E acts on ωE non-symplectically, and the
involution σ : S → S acts on ωS non-symplectically. This gives

H0(X0, Ω3
X0

) = C

so that h3,0(X0) = 1, indeed. H3,0(X0) is spanned by ωE × ωS . Then the
Künneth formula gives that

H0(X0, Ω1
X0

) = H0(E, Ω1
E)ι ⊗ C = 0,

so that h1(X0) = 0. Also we have

H0(X0, Ω2
X0

) = C⊗H0(S, Ω2
S)σ = 0,

so that h2,0(X0) = 0. Hence X0 is indeed a (singular) Calabi–Yau threefold.
Now we compute H1,1(X0) = H2(X0).

H1,1(X0) = H0,0(E)ι ⊗H1,1(S)σ=1 ⊕H1,1(E)ι ⊗H0,0(S)σ

= C⊗H1,1(S)σ=1 ⊕ C

so that h1,1(X0) = 1 + r. Now note that

H3,0(X0) = (H1,0(E)⊗H2,0(S)ι×σ),

so that h3,0(X0) = 1. By the Künneth formula, we get

H2,1(X0) = (H1,0(E)⊗H1,1(S)⊕H0,1(E)⊗H2,0(S))ι×σ.
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Let H1,1(S, C)σ=−1 denote the −1 eigenspace for the action of σ on H1,1(S).
Since ι induces −1 on H1(E) and σ acts by −1 on H2,0(S), this gives that

H2,1(X) = C⊗H1,1(S)σ=−1 ⊕ C

and hence we have h2,1(X0) = 1 + (20− r). �
Now we pass onto a smooth resolution X of X0. We need to calculate

the cohomology groups of X, in particular, the twisted sectors.

Lemma 5.14. Let X = ˜E × S/ι× σ be a smooth Calabi–Yau threefold over
C of Borcea–Voisin type. Let Sσ be the fixed locus of S of σ. Then the twisted
sectors consist of 4 copies of Sσ, and

h0,0(Sσ) = k + 1, h1,0(Sσ) = g.

Therefore,

h1,0(X) = h2,0(X) = 0, h3,0(X) = 1,

h1,1(X) = 1 + r + 4(k + 1), h2,1(X) = 1 + (20− r) + 4g.

Proof. The Hodge numbers h1,0, h2,0 and h3,0 of X are the same as those
for the singular X0. For h1,1(X) and h2,1(X) we need to bring in resolutions
of singularities. The twisted sectors consist of 4 copies of Sσ. We know that
Sσ = Cg ∪ L1 ∪ · · · ∪ Lk for (r, a, δ) �= (10, 10, 0), (10, 8, 0) and Sσ = C1 ∪ C̃1

for (r, a, δ) = (10, 8, 0). Therefore, h1,1(X) = 1 + r + 4(k + 1). For h2,1(X),
the contribution from the twisted sectors is the four copies of P1 × Cg, and
hence h2,1(X) = 1 + (20− r) + 4g. �

Remark 5.3. Voisin [41] gave more geometrical computations for the Hodge
numbers h1,1(X) and h2,1(X). We will recall briefly her calculations. Recall
that the fixed locus of ι on E consists of four points {Pi, i = 1, . . . , 4}, and
that the fixed locus of S under the action of σ is Sσ = Cg ∪ L1 ∪ · · · ∪ Lk

where Cg is a genus g curve and Li (i = 1, . . . , k) are rational curves. Let
N be the number of components in Sσ, that is, N = k + 1, and let N ′ be
the sum of genera of the components, that is, N ′ = g. The fixed point locus
of the action ι× σ on E × S consists of 4N curves {Pi} × Cg, {Pi} × Lj .
We blow up E × S along these 4N curves to obtain a smooth Calabi–Yau
threefold X with exceptional divisors arising from the 4N curves.

Now compute h1,1(X). First the exceptional divisors give 4N classes
in H1,1(X). From the quotient surface S/σ we get h0 = 1 = h4, h1 = h3 =
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0, h2,0 = h0,2 = 0 and h1,1 = 10 + N −N ′. Then by the Künneth formula,

H1,1(X) = C− span of 4N exceptional divisors⊕H1,1(S/σ)⊕H1,1(E).

Hence
h1,1(X) = 4N + 10 + N −N ′ + 1 = 11− 5N −N ′.

For h2,1(X), we first note that the 4N curves give rise to the classes
H1,0(Cg)⊕k

j=1 H1,0(Lj) in H2,1(X). Next, let H2(S)− denote the −1
eigenspace for the action of σ on H2(S). Then again by the Künneth formula,
we obtain

H2,1(X) � H1,0(Cg)⊕k
j=1 H1,0(Lj)⊕H1,1(S)−1 ⊕H2,0(S)

and this shows that

h2,1(X) = 4N ′ + h1,1(S)− + 1 = 4N ′ + 10 + N ′ −N + 1 = 11 + 5N ′ −N.

We now compute the L-series of our Calabi–Yau threefolds of Borcea–
Voisin type.

Theorem 5.15. Let X be a Calabi–Yau threefold of Borcea–Voisin type,
X = ˜E × S/ι× σ. The Betti numbers of X are given by

B0(X) = 1, B1(X) = 1, B2(X) = h1,1(X) = 1 + r + 4(k + 1),

B3(X) = 2(1 + h2,1(X)) = 2(1 + (20− r) + 4g).

The �-adic étale cohomological L-series Li(X, s) (0 ≤ i ≤ 6) can be computed
as follows:

• L0(X, s) = ζ(Q, s).

• L1(X, s) = 1.

• L2(X, s) = ζ(Q, s− 1)h1,1(X) provided that all algebraic cycles in
NS(S)σ are defined over Q. Otherwise, let t < r be the number of
algebraic cycles in NS(S)σ that are defined over Q and let F be the
smallest field of definition for all ρ(S̄)− t algebraic cycles in NS(S̄)σ \
NS(S)σ. Also suppose that all 4 points in Eι are defined over Q. Then
L2(X, s) = ζ(Q, s− 1)1+t+4(k+1)L(ρ′, s), where ρ′ is an irreducible rep-
resentation of dimension r − t and L(ρ′, s) is its Artin L-function.

(Without knowing the field of definitions of algebraic cycles and four
fixed points in Eι explicitly, it is very difficult to write down an explicit
formula for the L-function L2(X, s).)
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• L3(X, s) = L(E ⊗ χ, s)L(E ⊗ ρ, s)L(J(Cg), s− 1)4.

The higher cohomologies are determined by Poincaré duality.

Proof. For the calculation of L-series, we ought to pass onto étale cohomol-
ogy groups. Obivously,

L0(X, s) = ζ(Q, s), and L1(X, s) = 1.

For L2(X, s), note that

h1,1(X) = 1 + r + 4(k + 1).

So if all the r algebraic cycles in NS(S̄)σ are defined over Q, then we have

L2(X, s) = L2(H2(X, Q�), s) = ζ(Q, s− 1)h1,1(X).

Otherwise, t algebraic cycles are defined over Q so the Galois group acts
trivially on 1 + t + 4(k + 1) algebraic cycles so that the exponent is 1 + t +
4(k + 1). But the Galois group acts non-trivially on the r − t-dimensional
subspace of algebraic cycles and this gives rise to an irreducible representa-
tion of dimension r − t and the Artin L-function. Therefore,

L2(X, s) = ζ(Q, s− 1)1+t+4(k+1)L(ρ′, s).

Finally for L3(X, s), note that

H3(X, Q�) = H1(E, Q�)⊗H2(S, Q�).

Under the action of ι, H1(E, Q�) is the direct sum of two eigenspaces:

H1(E, Q�) = H1(E, Q�)ι=1 ⊕H1(E, Q�)ι=−1 = H1(E, Q�)ι=−1.

Similarly, under the action of σ, H2(S, Q�) is the direct sum of two
eigenspaces:

H2(S, Q�) = H2(S, Q�)σ=1 ⊕H2(S, Q�)σ=−1

= (H1,1(S̄)σ=1 ⊗Q�)⊕ (H1,1(S̄)σ=−1 ⊗Q�)

= (NS(S)σ=1 ⊗Q�)⊕ (T (S)σ=−1 ⊗Q�).

For the twisted sector, singularities occur along Sσ and for each singularity,
its smooth resolution is the sum of four copies of the ruled surface P1 × Sσ.
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So we have

L3(X, s) = L(H3(X, Q�), s)

= L((H1(E, Q�)⊗H2(S, Q�))ι×σ, s)× L(H3(P1 ⊗ J(Cg), Q�), s)4

= L((H1(E, Q�)ι=−1 ⊗H1,1(S)σ=−1)⊗Q�, s)

× L((H1(E, Q�)ι=1 ⊗H1,1(S)σ=1)⊗Q�, s)

× L(H3(P1 ⊗ J(Cg), Q�), s)4

= L(ρE ⊗ χ, s)L(ρE ⊗ ρ, s)L(J(Cg), s− 1)4.
�

5.6. Proof of automorphy of Calabi–Yau threefolds of
Borcea–Voisin type

Finally, we can give proofs for Theorems 5.7 to 5.9 on the automorphy of
Calabi–Yau threefolds over Q of Borcea–Voisin type.

Definition 5.3. (a) We will denote the orthogonal complement of NS(S)σ

in H1,1(S)σ=−1 by T (S)σ=−1. Its �-adic realization T (S)σ=−1 ⊗Q� ⊂
H2(S, Q�) is called the K3 motive and denoted by MS . This is the unique
motive with h0,2(MS) = 1.

(Note that H1,1(S)σ=1 gives rise to motives MA, which are all algebraic
in the sense that h0,2(MA) = 0.)

(b) We will call the submotive H1(E, Q�)ι=−1 ⊗ (T (S)σ=−1 ⊗Q�) of
H3(X, Q�) the Calabi–Yau motive of X, and denote by MX .

Proof. Here we will give proof for Theorem 5.8.

• X is of CM type by Theorem 4.5.

• L2(X, s) is automorphic by Proposition 5.14.
For L3(X, s), we need to show that the L-series associated to the excep-
tional divisor arising from the singular loci {Pi} × Cg (i = 1, 2, 3, 4) is
automorphic. The exceptional divisor is given by the 4 copies of the
ruled surface P1 × Cg. Now Cg is a component of Sσ where S is a finite
quotient of a Fermat or diagonal surface, hence Cg is again expressed
in terms of a diagonal or quasi-diagonal curve in weighted projective 2-
space (see Corollaries 2.14 and 3.5). Hence, the Jacobian variety J(Cg)
of Cg is also of CM type, and hence L(P1 ⊗ J(Cg), s) = L(J(Cg), s− 1)
is automorphic.
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• ζ(X, s) is automorphic, as the factors Li(X, s) (0 ≤ i ≤ 6) are all
automorphic.

�
Proof. Now we will prove Theorem 5.9. Here E can be any elliptic curve,
but S is of CM type. The resulting Calabi–Yau threefolds are not necessarily
of CM type.

• An elliptic curve factor E is modular by the results of Wiles et al. So
there is an automorphic representation ρE of dimension 2 associated
to H1(E, Q�).

• The assertion of (b) is proved in Theorem 5.6.

• We know that the GK-Galois representation ρGK
on T (S) is a direct

sum of one-dimensional representations (coming from Jacobi sums),
which the Galois group Gal(K/Q) permutes transitively. This induces
an m-dimensional irreducible Galois representation IndGQ

GK
ρGK

. Hence
we obtain the 2m-dimensional Galois representation π := ρE ⊗ IndGQ

GK

ρGK
, which is isomorphic to IndGQ

GK
(ρGK

⊗ resGQ

GK
ρE). Hence

L(π, s) = L(ρE ⊗ IndGQ

GK
ρGK

, s) = L(fE ⊗ fT (S), s).

In terms of the local p-factors, the above L-series is given as follows.
The Euler p-factor of the L-series can be written as follows, for good

prime p. Let LE,p(s) be the p-factor of L(E, s). Then

LE,p(s) = (1− α1p
−s)(1− α2p

−s),

where α1, α2 are conjugate algebraic integers with complex absolute
value p1/2.

Let LT (S),p(s) be the p-factor of L(T (S), s). Then

LT (S),p(s) =
t∏

i=1

(1− βip
−s),

where βi are algebraic integers with complex absolute value p such
that βi/p is not a root of unity.

Now for X = ˜E × S/ι× σ, let Lπ,p(s) be the p-factor of the L(π, s).
Then

Lπ,p(s) =
t∏

i=1

(1− α1βip
−s)(1− α2βip

−s).
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• The L-series L(E ⊗ χ, s) = L(ρE ⊗ χ, s) is automorphic, as E (or ρE)
is automorphic, and χ is automorphic since it is induced by a GL1-
representation of some cyclotomic field over Q.

Similarly, the L-series L((E ⊗H1,1(S)σ=1)⊗Q�, s) is automorphic
as E is automorphic, and the representation on H1,1(S)σ=1 ⊗Q� is also
induced by a GL1-representation of some cyclotomic field
over Q.

• The L-series of P1 × J(Cg) is automorphic as that of J(Cg) is auto-
morphic.

• The L-series L3(X, s) is automorphic as each component is
automorphic. �

We will give a representation theoretic proof (involving base change and
automorphic induction) for the automorphy results of our Calabi–Yau three-
folds of Borcea–Voisin type in the appendix.

Remark 5.4. In motivic formulation, our automorphy results for K3 sur-
faces and our Calabi–Yau threefolds may be reformulated as follows: The
L-series of the K3-motive is automorphic, and the L-series of the Calabi–
Yau motive is automorphic.

For our K3 surfaces S over Q, the K3 motive T (S)σ ⊗Q� is a submotive
of H2(S, Q�), and the L-series L2(S, s) factors as

L2(S, s) = L(NS(S)σ ⊗Q�, s)L(T (S)σ ⊗Q�, s).

The automorphy of L2(S, s) then boils down to the automorphy of each L-
factor. But we know that both factors are automorphic by Theorem 5.6 and
its corollaries.

For Calabi–Yau threefolds X of Borcea–Voisin type, the Calabi–Yau
motive H1(E, Q�)⊗ (T (S)σ ⊗Q�) is a submotive of H3(X, Q�), which
appears as a factor of L3(X, s). The automorphy of L3(X, s) again boils down
to the automorphy of the L-series of the Calabi–Yau motive. Indeed, the
other factors of L3(X, s) are expressed in terms of the L-series of the tensor
product of ρE and the motivesMA of K3 surfaces with h2,0(MA) = 0. These
motives are all automorphic as they are induced from GL1-representations
of some cyclotomic fields over Q.
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6. Mirror symmetry for Calabi–Yau threefolds of
Borcea–Voisin type

6.1. Mirror symmetry for K3 surfaces

There are several versions of mirror symmetry for K3 surfaces:

• Arnold’s strange duality. This version is discussed by Dolgachev,
Arnold and by others in relation to singularity theory. It is formulated
for lattice polarized K3 surfaces as follows: a pair of lattice polarized
K3 surfaces (S, S∨) is said to be a mirror pair if

Pic (S)⊥H2(S,Z) = U ⊕ Pic (S∨)

as lattices. In terms of the Picard numbers,

22− ρ(S) = 2 + ρ(S∨) ⇔ ρ(S∨) = 20− ρ(S).

(See, for instance, Dolgachev [13].)

• Berglund–Hübsch–Krawitz mirror symmetry (Berglund and Hübsch
[4] and Krawitz [22]). This version of mirror symmetry is for finite
quotients of hypersurfaces in weighted projective 3-spaces. Mirror sym-
metry for these K3 surfaces are addressed in the articles by Artebani–
Boissière and Sarti [2] and Comparin et al. [10]. It is formulated as
follows: let W be a quasihomogeneous invertible polynomial together
with a group G of diagonal automorphisms. (Here an “invertible” poly-
nomial means that it has the same number of monomials as variables.
Thus their zero loci define Delsarte surfaces. ) Let YW be the hyper-
surface {W = 0} in a weighted projective 3-space, then the orbifold
YW /G defines a K3 surface. Now define the polynomial W T by trans-
posing the exponent matrix of W . Then W T is again invertible and
let GT be the dual group of G. Then the orbifold YW T /GT is again a
K3 surface. The Berglund–Hübsch–Krawitz mirror symmetry is that
YW /G and YW T /GT form a mirror pair of K3 surfaces.

These two versions of mirror symmetry for K3 surfaces are shown to
coincide for certain K3 surfaces in [10].

Now we consider mirror symmetry for pairs (S, σ) of K3 surfaces with
involution σ classified by Nikulin in terms of triplets (r, a, δ). Let (S, σ) be
a pair of a K3 surface with involution σ corresponding to a triplet (r, a, δ).
Then the mirror pair (S∨, σ∨) corresponds to the triplet (20− r, a, δ).



Automorphy of Calabi–Yau threefolds of Borcea–Voisin type 641

For the Nikulin pyramid given in Section 2, the mirror is placed at the
vertical line r = 10, corresponding to the symmetry (r, a, δ) ↔ (20− r, a, δ).
It should be remarked that mirrors do not exist for the points located at the
utmost right outerlayer of the pyramid, (the so-called the “pale region”),
that is, (r, a, δ) is one of the following triplets (20, 2, 1), (19, 3, 1), (18, 4, 1),
(18, 4, 0), (17, 5, 1), (16, 6, 1), (15, 7, 1), (14, 8, 1), (13, 9, 1) and (12, 10, 1).
However, one particular triplet (14, 6, 0) is not in this region, but does not
have a mirror partner.

6.2. Mirror symmetry of Calabi–Yau threefolds of Borcea–Voisin
type

Now we consider our Calabi–Yau threefolds of Borcea–Voisin type obtained
as crepant resolutions of quotient threefolds E × S/ι× σ. Mirror symmetry
for these Calabi–Yau threefolds has been discussed by Voisin [41] and also
by Borcea [6].

Theorem 6.1. Given a Calabi–Yau threefold of Borcea–Voisin type X =
X(r, a, δ) = ˜E × S/ι× σ, there is a mirror family of Calabi–Yau threefolds
X∨ = X(20− r, a, δ) = ˜E × S∨/ι× σ∨ such that

e(X∨) = −e(X).

Mirror symmetry for Calabi–Yau threefolds X is purely determined by mirror
symmetry for the K3 components S.

Borcea’s formulation of mirror symmetry is:

h1,1(X∨) = 5 + 3(20− r)− 2a = 65− 3r − 2a = h2,1(X),

h2,1(X∨) = 65− 3(20− r)− 2a = 5 + 3r − 2a = h1,1(X)

and

e(X∨) = −12(r − 10) = −e(X).

That is, mirror symmetry interchanges r by 20− r.
Voisin’s formulation of mirror symmetry is given as follows: recall that

the fixed part Sσ of S under σ ia a disjoint union of a genus-g curve and k
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rational curves on S. Put

N := 1 + k = the number of components of Sσ,

and

N ′ := the sum of genera of components of Sσ.

Then

h1,1(X) = 11 + 5N −N ′,

h2,1(X) = 11 + 5N ′ −N

and

e(X) = 12(N −N ′).

Mirror symmetry interchanges N and N ′.

h1,1(X∨) = 11 + 5N ′ −N,

h2,1(X∨) = 11 + 5N −N ′

and

e(X∨) = 12(N ′ −N) = −e(X).

Remark 6.1. The mirror symmetry in the above theorem is merely a
numerical check for the topological mirror symmetry that the Hodge num-
bers of X(r, a, δ) and X(20− r, a, δ) are indeed “mirrored”. Mirror symme-
try for X = X(r, a, δ) indeed comes from the mirror symmetry of the K3
surface component. Also the mirror of X(r, a, δ) occurs in a family, so mirror
symmetry does not relate one Calabi–Yau threefold to another Calabi–Yau
threefold, rather mirror symmetry deals with families.

Remark 6.2. For the Calabi–Yau threefolds corresponding to the 11 K3
surfaces corresponding to the triplets (r, a, δ) located at the utmost right
outerlayer of the Nikulin’s pyramid (called the “pale region” by Borcea)
plus the triplet (14, 6, 0), mirror partners do not exist.

Rohde [33] and Garbagnati–van Geemen [15] considered those Calabi–
Yau threefolds of Borcea–Voisin type whose K3 surface components have
only rational curves in their fixed loci by non-symplectic involution (i.e., no
curves with higher genera). A reason for not having mirror partners is the
non-existence of boundary points in the complex structure moduli space of
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the Calabi–Yau threefold where the variation of Hodge structures on H3

has maximal unipotent monodromy, and hence there is no way of defining
mirror maps.

6.3. Mirror pairs of K3 surfaces

Now we consider the 95 K3 surfaces in the list of Reid and Yonemura.
Belcastro [3] determined the Picard lattices for these 95 K3 surfaces, and
showed that the set of these 95 K3 surfaces are not closed under mirror
symmetry.

We can fish out those K3 surfaces with involution σ which are closed
under mirror symmetry.

Lemma 6.2 (Belcastro [3]). The set of the 95 K3 surfaces of Reid and
Yonemura is not closed under mirror symmetry. Among them, the 57 K3
surfaces have mirror partners within the list.

Lemma 6.3. All 57 K3 surfaces S have non-symplectic involutions σ act-
ing as −1 on H2,0(S), and their mirror partners S∨ also have non-symplectic
involutions σ∨ acting as −1 on H2,0(S∨).

Proof. We tabulate the 57 K3 surfaces with involutions, and their mirror
partners in tables B.10 and B.10. �

6.4. Examples of mirror pairs of Calabi–Yau threefolds of
Borcea–Voisin type

Example 6.4. Let E = E2 be the elliptic curve with involution ι as in
Section 4.3, and let S0 be the K3 surface, #14 in Yonemura and #26 in
Borcea, given by

S0 : x2
0 = x3

1 + x7
2 + x42

3 ⊂ P3(21, 14, 6, 1)

of degree 42 and involution σ(x0) = −x0. Let S be the minimal resolution of
S0. S has Nikulin’s triplet (10, 0, 0). Thus, S is its own mirror. Recall from
Example 6.4 that the fixed locus Sσ is Sσ = C6 ∪ L1 ∪ · · · ∪ L5. Also S is of
CM type. This is because S is dominated by the Fermat surface of degree 42.
Hence the field K corresponding to the transcendental cycles T (S) of S is the
cyclotomic field Q(ζ42) with [K : Q] = ϕ(42) = 12. (Here ζ42 is a primitive
42th root of unity and ϕ is the Euler phi-function.) Note that 10 = 22− 12 =
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r, so that NS(S) ∼= NS(S)σ. (Or equivalently, 12 = 22− r = 22− 10 so that
T (S) ∼= T (S)σ.) The K3-motive is automorphic and hence S is automorphic
by Theorem 4.5.

The Calabi–Yau threefold X = ˜E2 × S/ι× σ has a birational model
defined over Q

X : z4
0 + z4

1 = z3
2 + z7

3 + z42
4 ⊂ P4(21, 21, 28, 12, 2)

of degree 84. Since E and S are both of CM type, so is X. The Hodge
numbers and the Euler characteristic are

h1,1(X) = 35 = 1 + 10 + 4(1 + 5), h2,1(X) = 35 = 1 + 10 + 4 · 6, e(X) = 0,

so that X is its own topological mirror.
Obviously Li(X, s) and L6−i(X, s) for i = 0, 1, 2 are all automorphic.

To show the automorphy of L3(X, s), we have only to show the automor-
phy of the L-series corresponding to the Calabi–Yau motive H1(E, Q�)⊗
T (S)σ ⊗Q�. The Galois representation associated to the Calabi–Yau motive
has dimension 24, and is given by the tensor product of the two-dimensional
Galois representation associated to H1(E, Q�) and the 12-dimensional irre-
ducible Galois representation associated to T (S)σ ⊗Q� induced from a
Jacobi sum Grossencharacter of K = Q(ζ42). Hence it is automorphic. We
repeat the argument in motivic formulation. The Calabi–Yau motive MX

has dimension ϕ(84) = 24, and the Jacobi sum Grossencharacter of K =
Q(ζ84) gives GL1-representations and its automorphic induction gives rise
to the GL24 irreducible representation forMX over Q, and hence it is modu-
lar (automorphic). (Compare the Calabi–Yau motiveMX with the Ω-motive
constructed by Schimmrigk in [34].)

Example 6.5. Let E = E2 be the elliptic curve with involution ι as in
Section 4.3 and let S0 be the K3 surface, #40 in Yonemura and = #5 in
Borcea, given by

S0 : x2
0 = x3

1x2 + x3
1x

2
3 + x7

2 − x14
3 ⊂ P2(7, 4, 2, 1)

of degree 14 with involution σ(x0) = −x0. Its minimal resolution S has
Nikulin’s triplet (7, 3, 0). By Theorem 2.5, we may remove the monomial
x3

1x
2
2 from the defining equation, we get

S0 : x2
0 = x3

1x2 + x7
2 − x14

3
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making S0 of CM type. This is a weighted hypersurface of degree 14, and
lcm(3, 2, 14) = 42, and hence S0 is dominated by the Fermat surface of degree
42 (cf. [16], Corollary 8.1). The field K corresponding to T (S) is the cyclo-
tomic field Q(ζ42) of degree ϕ(42) = 12, and we obtain the induced Galois
representation of dimension 12. Thus, the K3-motive is automorphic, and
hence S is automorphic.

In this case, r = 7 �= 10 = 22− 12 so NS(S)σ �∼= NS(S). (Or equiva-
lently, 22− r = 22− 7 = 15 �= 12 = ϕ(42) so T (S)σ �∼= T (S).)

The Calabi–Yau threefold X has a birational model defined over Q:

X : z4
0 + z4

1 = z3
2z3 + z7

3 − z14
4 ⊂ P4(7, 7, 8, 4, 2)

of degree 28, and lcm(4, 3, 14) = 84. (See [16], Theorem 9.2.) Since E and S
are of CM type, so is X. The Hodge numbers and the Euler characteristic
are

h1,1(X) = 20 = 1 + 7 + 4(2 + 1),

h2,1(X) = 38 = 1 + (20− 7) + 4 · 6,

e(X) = −36.

Now we apply Theorem 5.9. We pass from Q(ζ42) to Q(ζ84) to take H1(E2)
into account. The Calabi–Yau motive MX has dimension 24 = ϕ(84).
Indeed, the Jacobi sum Grossencharacter of K = Q(ζ84) gives rise to the
GL24 irreducible automorphic cuspidal representation for the Calabi–Yau
motive MX over Q. Hence the Calabi–Yau motive MX is automorphic.
Hence L3(X, s) is automorphic, and consequently X is automorphic.

To find a mirror family of Calabi–Yau threefolds, we first look for a
mirror S∨ of K3 surface S. We may take for S∨ the K3 surface #47 in
Yonemura =#24 in Borcea. S∨ is a K3 surface defined by

S∨ : x2
0 = x3

1 + x1x
7
2 + x9

2x
2
3 + x14

3 ⊂ P3(21, 14, 4, 3)

of degree 42. It has a non-symplectic involution σ∨ that sends x0 to −x0.
The pair (S∨, σ∨) corresponds to the triplet (13, 3, 0). By Theorem 4.3, we
may remove the monomial x9

2x
2
3 from the defining equation, which makes S∨

to be of CM type. So S∨ : x2
0 = x3

1 + x1x
7
2 + x14

3 is a weighted hypersurface
of degree 28. Since lcm(2, 7, 4) = 28, the field K corresponding to T (S∨) is
the cyclotomic field Q(ζ28) of degree ϕ(28) = 12, and we obtain the induced
Galois representation of dimension 12. Thus, the K3-motive is automor-
phic, and hence S∨ is automorphic. In this case, 22− r = 22− 13 = 9 �=
12 = ϕ(28) so T (S∨)σ �∼= T (S∨). (Or equivalently, r = 13 �= 10 = 22− 12 so
that NS(S∨)σ �∼= NS(S∨).)
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A candidate for mirror family for X might be a deformation of
˜E2 × S∨/ι× σ∨. One member of this mirror family denoted by, X∨, may

be chosen to have a birational model defined over Q by the following equa-
tion:

X∨ : z4
0 + z4

1 = z3
2 + z2z

7
3 + z14

4 ⊂ P4(21, 21, 28, 8, 6)

of degree 84. The Hodge numbers and the Euler characteristic of X∨ are

h1,1(X∨) = 38 = 1 + 13 + 4(5 + 1),

h2,1(X∨) = 20 = 1 + (20− 13) + 4 · 3,

e(X∨) = 36.

We pass from Q(ζ28) to Q(ζ56) to take H1(E2) into account. Then the
Calabi–Yau motive MX∨ has dimension 24 = ϕ(56). Again, by Theorem
5.9, the Jacobi sum Grossencharacter of K = Q(ζ28) gives rise to a GL1 rep-
resentations for Gal(Q/K) and its automorphic induction yields the GL24

irreducible cuspidal automorphic representation for the Calabi–Yau motive
MX∨ over Q. Hence the Calabi–Yau motive MX∨ is automorphic. Conse-
quently, we conclude that L3(X∨, s) is automorphic, and hence the auto-
morphy of X∨.

For these two examples, it happens that L(MX , ρ, s) = L(MX∨ , ρ∨, s).
That is the L-series of the Calabi–Yau motives of X and X∨ coinside.

6.5. Automorphy and mirror symmetry for Calabi–Yau
threefolds of Borcea–Voisin type

Mirror symmetry for Calabi–Yau threefolds is not the correspondence for
one Calabi–Yau threefold to another, rather it is a correspondence between
families. At the moment, we do not know how to compute the zeta-functions
and L-series of a deformation family of mirror Calabi–Yau threefolds. So we
will consider one particular member of this mirror family and compare the
L-series of the Calabi–Yau motives.

Theorem 6.6. Let (S, σ) be one of the 57 K3 surfaces in Lemma 6.2 with
involution σ, which are closed under mirror symmetry. Then S is of CM
type. Let X = X(r, a, δ) be a Calabi–Yau threefold corresponding to a triplet
(r, a, δ) as in Section 4.1, so X = ˜E × S/ι× σ. Then a mirror family of
Calabi–Yau threefolds exists and corresponds to a triplet (20− r, a, δ), and
may be obtained as a deformation of a crepant resolution of the quotient
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E × S∨/ι× σ∨, where σ∨ is a non-symplectic involution on S∨. Then a
special member X∨ of this mirror family has the following properties:

(a) X∨ has a model defined over Q provided that E is defined over Q.

(b) X∨ is of CM type if and only if E is of CM type.

(c) If X∨ is of CM type, then X∨ is automorphic.

Observation 1. Under the situation of the above theorem, we have

(d) If the K3 motives of S and S∨ are isomorphic (in the sense that they
correspond to the same Jacobi sum Grossencharacter), then they have
the same L-series. Furthermore, the Calabi–Yau motives of X and X∨

are invariant under mirror symmetry.

The two examples 6.4 and 6.5 are in support of this observation. It
appears that when the original Calabi–Yau threefold and a member of its
mirror Calabi–Yau threefolds are both of CM type and are realized as
finite quotients of the same Fermat or quasi-diagonal hypersurface, then
the Calabi–Yau motives are the same and hence are invariant under mirror
symmetry.

6.6. Berglund–Hübsch–Krawitz mirror symmetry for
Calabi–Yau threefolds

Here are other examples of Calabi–Yau threefolds of CM type due to Kelly
[19]. For the computations of zeta-functions and L-series, we use the method
developed in Goto et al. [16].

Consider the polynomials

FA : x8
0 + x8

1 + x4
2 + x3

3 + x6
4 = 0,

FA′ : x8
0 + x8

1 + x4
2 + x3

3 + x3x
4
4 = 0.

Both are hypersurfaces of degree 24 in the weighted projective 4-space
P4(3, 3, 6, 8, 4). Let ζ = ζ24 be a primitive 24th root of unity. Both FA and
FA′ are covered by the Fermat hypersurface of degree 24 (see Theorem 9.2
in [16]), and hence FA and FA′ are both of CM type.

Let JFA
= Aut(FA) ∩ C∗. Then JFA

is generated by (ζ3, ζ3, ζ6, ζ8, ζ4) ∈
(C∗)5. Define the group SL(FA) := { (λ0, λ1, . . . , λ4) ∈ Aut(FA) | ∏4

j=0 λj =
1 }. Fix a group G so that JFA

⊆ G ⊆ SL(FA). Put G̃ := G/JFA
. Define

ZA,G := XFA
/G̃. Then ZA,G is a Calabi–Yau threefold (orbifold).
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For our FA and F ′A, choose G and G′ to be the same group given by

G = G′ =< (ζ3, ζ3, ζ6, ζ8, ζ4), (ζ18, 1, ζ6, 1, 1), (1, 1, ζ12, 1, ζ12) > .

Then ZA,G and ZA′,G′ are Calabi–Yau threefolds which are in the same
family of hypersurfaces in P4(3, 3, 6, 8, 4)/G̃. Since both are realized as finite
quotients of the Fermat hypersurface of degree 24, both ZA,G and ZA′,G′ are
of CM type.

The Hodge numbers are given by:

h1,1(ZA,G) = 7, h2,1(ZA,G) = 55

and

h1,1(ZA′,G′) = 55, h2,1(ZA′,G′) = 7.

Now recall the construction of the Berglund–Hübsch–Krawitz mirrors of
these Calabi–Yau threefolds. Let

FAT = FA : x8
0 + x8

1 + x4
2 + x3

3 + Y 6
4 = 0 ⊂ P4(3, 3, 6, 8, 4),

F(A′)T : x8
0 + x8

1 + x4
2 + x3

2x3 + x4
4 = 0 ⊂ P4(1, 1, 2, 2, 2).

Then FAT is a hypersurface of degree 24 in the weighted projective 4-space
P4(3, 3, 8, 6, 4) but F(A′)T is a hypersurface of degree 8 in the weighted pro-
jective 4-space P4(1, 1, 2, 2, 2). The groups JFA

, JF(A′)T , GT , (G′)T are com-
puted:

JFA
=< (ζ3, ζ3, ζ6, ζ8, ζ4) >; JF(A′)T =< (ζ3, ζ3, ζ6, ζ6, ζ6) >;

GT = JFA
; (G′)T =< (ζ3, ζ3, ζ6, ζ6, ζ6), (1, 1, 1, ζ12, ζ12) > .

Then taking the quotients, we obtain Calabi–Yau orbifolds ZAT ,GT and
Z(A′)T ,(G′)T which are the topological mirrors of ZA,T and ZA′,G′ , respec-
tively.

h1,1(ZAT ,GT ) = 55, h2,1(ZAT ,GT ) = 7

and

h1,1(Z(A′)T ,(G′)T ) = 7, h2.1(Z(A′)T ,(G′)T ) = 55.

The Berglund–Hübsch–Krawitz mirror symmetry is that ZA,G and
ZAT ,GT are mirror partners in the sense of interchanging Hodge numbers.
Similarly, ZA′,G′ and Z(A′)T ,(G′)T are mirror pairs. However, the latter two
do not live in the same weighted projective 4-spaces.
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Theorem 6.7 (Kelly [19]). Let ZA,G and ZA′,G′ be the Calabi–Yau orb-
ifolds constructed above. Let ZAT ,GT and Z(A′)T ,(G′)T be Berglund–Hübsch–
Krawitz mirrors, respectively. If G = G′, then ZAT ,GT and Z(A′)T ,(G′)T are
birational.

Proposition 6.8. Both ZA,G and ZA′,G′ are of CM type and hence auto-
morphic. The mirrors ZAT ,GT and Z(A′)T ,(G′)T are again of CM type and
hence automorphic. The L-series of the Calabi–Yau motives of ZA,G and
ZAT ,GT are invariant under the mirror symmetry. Similar assertions hold
for ZA′,G′ and Z(A′)T ,(G′)T .

Proof. We have only to show the last claim. Since the Calabi–Yau motives
of Calabi–Yau threefolds ZA,G and ZAT ,GT come from the unique Fermat
motive associated to the weight of the same Fermat hypersurface, the Calabi–
Yau motive is invariant under the mirror symmetry. For ZA′,G′ and
Z(A′)T ,(G′)T , they do not sit in the same family of hypersurfaces, but they are
birational. The Calabi–Yau motives are left invariant under birational map.
The L-series of the Calabi–Yau motives are invariant under mirror symme-
try. For details about Fermat motives, see the Appendix section below or
Goto et al. [16], and Kadir and Yui [20]. �

Remark 6.3. Rohde [33] (see Appendix A, page 209) constructed many
examples of Calabi–Yau threefolds of CM type (CMCY threefolds), by
Borcea–Voisin construction. The automorphy of his CMCY 3-folds should
follow by studying Galois representations associated to them. This is left to
the reader for exercise.
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Appendix A. Base change and automorphic induction, and
Rankin–Selberg L-series of convolution

Appendix A.1. Base change and automorphic induction maps

For the proof of automorphy of our Calabi–Yau threefolds via representation
theory, we need the three ingredients, (the existence of) base change and
automorphic induction maps for solvable extensions over Q, and the Rankin–
Selberg L-series of convolution.

In this subsection, we will explain the result of Arthur and Clozel [1]
on base change and automorphic induction proved for cyclic extensions of
prime degree over Q, and their generalization by Rajan [31] (see also Murty
[M93]) to solvable extensions over Q.

Definition A.1. Let k be a number field with the ring Ok of integers. Let
K be a Galois extension of k with the ring of integers OK and Galois group
G = Gal(K/k). If ρ is an irreducible (finite-dimensional) representation of
G, we can associate to it a Dirichlet series with Euler product, called the
Artin L-series L(s, ρ, K/k) as follows. Let v be a (finite) place of Ok, pv the
associated prime ideal in Ok, qv the cardinality of the residue field Ok/pv,
and Φv the conjugacy class of Frobenius elements attached to pv, for v
unramified in the extension K/k. Let S be the finite set of (finite) places
ramified in K/k. The Artin L-series is defined by

L(s, ρ, K/k) =
∏
v �∈S

1
det(1ρ − q−s

v ρ(Φv))
.

The definition of the Artin L-series can be extended to arbitrary represen-
tations of G by additivity:

L(s, ρ1 ⊕ ρ2, K/k) = L(s, ρ1, K/k)L(s, ρ2, K/k).

Let Ak be the adele ring of k and A(GLn(Ak)) be the set of automorphic
representations of GLn(Ak) for some n.
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The Langlands philosophy predicts that an Artin L-series should be
equal to an L-series associated to some automorphic form (e.g., cusp form)
on GLn. More concretely, for each ρ, the Langlands reciprocity conjecture
states that there exists an automorphic representation π(ρ) ∈ A(GLn(AK))
(n = deg(ρ)) such that

L(s, ρ, K/k) = L(s, π(ρ)).

We assert that the Artin L-functions of the Calabi–Yau threefolds of
Borcea–Voisin type which are of CM type are indeed automorphic.

Now we need to introduce the notion of “base change” and “automorphic
induction”.

Lemma A.1. Let H be a subgroup of G, and let KH be the fixed sub-
field of K by H. Let ψ be an Artin representation of Gal(K/KH) = H.
Let L(s, ψ, K/KH) be the Artin L-series of the extension K/KH . Then the
Artin L-series is invariant under induction, that is, if IndH

G is the induced
representation, then

L(s, IndH
Gψ, K/KH) = L(s, ψ, K/KH).

When L(s, ρ, K/k) = L(s, π(ρ)), then L(s, ρ|H , K/KH) = L(s, ρ
⊗ IndG

H1, K/k). But IndG
H1 = regH is nothing but the permutation repre-

sentation on the cosets of H in G. Let π ∈ A(GLn(Ak)). For each unram-
ified πv, let Av ∈ GLn(C) be a semi-simple conjugacy class defined by the
representation π. If v is unramified in K, define

Lv(s, B(π)) = det(1−Av ⊗ regH(σv)Nv−s)−1

where σv is the Artin symbol of v.

Conjecture A.2. (a) (Base change) There exists a base change map

B : A(GLn(AK)) → A(GLn(A(KH)))

and the Artin L-series L(s, B(π), K/KH) such that its v-factor coin-
cides with Lv(s, B(π)) defined above.



652 Yasuhiro Goto, Ron Livné and Noriko Yui

(b) (Automorphic induction) Now let ψ be a representation of H. Then
there exists an automorphic induction map

I : A(GLn(AKH )) → A(GLnr(Ak))

such that for I(π) ∈ A(GLnr(Ak)),

L(s, I(π)) = L(s, IndG
H , K/k).

Here n = deg(ψ), and r = [G : H].

We now recall a theorem of Arthur and Clozel [1] on the existence of
base change and automorphic induction maps for GLn, when K/k is a cyclic
extension of prime degree, and representations are automorphic cuspidal
representations.

Theorem A.3 (Arthur–Clozel). Suppose that K/k is a cyclic extension
of prime degree �. Let π and Π denote cuspidal unitary automorphic repre-
sentations of GLn(Ak) and GLn(AK), respectively. Then

• the base change lift of π, denoted by B(π), exists, and it is an auto-
morphic representation in A(GLn(AK)),

• the automorphic induction I(Π) of Π exists, and it is an automorphic
representation in A(GLn�(Ak)).

A.2. Rankin–Selberg L-series of convoluton

We can reformulate the Arthur–Clozel theorem in terms of the L-series.
In this subsection, we will consider Rankin–Selberg L-series of convolution.
These L-series are needed from the fact that the eigenvalues of the Frobenius
morphism of our Calabi–Yau threefolds of Borcea–Voisin type are given
by tensor products of eigenvalues of those of the components. We need to
consider Rankin–Selberg L-series of convolution.

Let π and π′ be two cuspidal, unitary automorphic representations of
GLn(Ak) and GLm(Ak), respectively. Let S be a finite set of primes of
k such that π and π′ are unramified outside S. Let L(s, π ⊗ π′) be the
Rankin–Selberg L-series of convolution. Then the result of Arthur and Clozel
mentioned above is formulated in terms of the Rankin–Selberg L-series as
follows:
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Lemma A.4. Let K/k be cyclic extension of prime degree, and suppose that
π ∈ A(GLn(Ak)) and Π ∈ A(GLm(AK)) are cuspidal unitary automorphic
representations, respectively. Then the Rankin–Selberg L-series satisfies the
formal identity:

L(s, B(π)⊗Π) = L(s, π ⊗ I(Π)).

A.3. Generalizations of base change and automorphic induction
to solvable extensions over Q

Arthur and Clozel’s results are proved for cyclic extensions of prime degree
over Q. For our application, we need base change and automorphic induc-
tion results for abelian extensions (e.g., cyclotomic fields) over Q. In fact,
the existence of base change and automorphic induction is established for
solvable extensions over Q by Rajan [31], see also Murty [28].

A.4. Weighted Jacobi sums and Fermat motives

We recall now the definition of weighted Jacobi sums and weighted Fermat
motives from Gouvêa and Yui [17].

We consider a weighted Fermat hypersurface of dimension n + 1, degree
m and a weight w = (w0, w1, . . . , wn+1) defined by

xm0
0 + xm1

1 + · · ·+ x
mn+1

n+1 = 0 ⊂ Pn(w)

where miwi = m for every i, 0 ≤ i ≤ n + 1.
If w = (1, 1, . . . , 1), this is nothing but the Fermat hypersurface of dimen-

sion n + 1 and degree m.

Definition A.2. (a) Let K = Q(ζm) be the mth cyclotomic field over Q,
OK the ring of integers of K. Let p ∈ Spec(OK). For every x ∈ OK relatively
prime to p, let χp(x mod p) = (x

p) be the mth power residue symbol on K.
If x ≡ 0 (mod p), we put χp(x mod p) = 0. Let (w0, w1, w2, . . . , wn+1) be a
weight. Define the set

Ad(w0, w1, . . . , wn+1)

:=
{
a = (a0, a1, . . . , an+1) | ai ∈ (wiZ/mZ), ai �= 0,

n+1∑
i=0

ai = 0
}

.



654 Yasuhiro Goto, Ron Livné and Noriko Yui

For each a = (a0, a1, . . . , an+1) ∈ Ad(w0, w1, . . . , wn+1), the weighted Jacobi
sum is defined by

jp(a) = jp(a0, a1, . . . , an+1) = (−1)n
∑

χp(v1)a1χp(v2)a2 · · ·χp(vn+1)an+1

where the sum is taken over (v1, v2, . . . , vn+1) ∈ (OK/p)× × · · · × (OK/p)×

subject to the linear relation 1 + v1 + v2 + · · ·+ vn+1 ≡ 0 (mod p).
Weighted Jacobi sums are elements of OK with complex absolute value

equal to qn/2 where q =| Norm p |≡ 1 (mod m).
(b) The Galois group Gal(K/Q) � (Z/mZ)× acts on weighted Jacobi

sums, by multiplication by t ∈ (Z/mZ)× on each component of a. Let A
denote the (Z/mZ)×-orbit of a. For a weighted Jacobi sum jp(a), the
(Z/mZ)×-orbit of jp(a) is called the weighted Fermat motive, and denoted
by MA.

To each a = (a0, a1, . . . , an+1) ∈ Ad(w0, w1, . . . , wn+1), define the length
of a to be

‖a‖ :=

(
1
m

n+1∑
i=0

ai

)
− 1.

Via cohomological realizations of these motives, we can compute the
numerical characters of MA.

• The ith Betti number is

Bi(MA) := dimQ�
H i(MA, Q�) =

⎧⎪⎨
⎪⎩

#A if i = n,

1 if i is even and A = [0],
0 otherwise.

• The (i, j)th Hodge number is

hi,j(MA) := dimCHj(MA, Ωi) =

⎧⎪⎨
⎪⎩

#{a ∈ A | ||a|| = i} if i + j = n,

1 if A = [0],
0 otherwise

where we put MA :=MA ⊗ C.

For the Fermat hypersurface of dimension n + 1 and degree m, we simply
write An for A(1, 1, . . .).

Lemma A.5. (a) Let S be a K3 surface of degree d in a weighted projective
3-space P3(w0, w1, w2, w3) and suppose that S is dominated by a Fermat
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surface (so S is of CM type). Then there is the unique motiveMw associated
to the weight w = (w0, w1, w2, w3) such that h0,2(Mw) = 1 and B2(Mw) =
ϕ(d). For all other motives h0,2(MA) = 0.

(b) Let X be a Calabi–Yau threefold of degree d in a weighted projective
4-space P4(w0, w1, w2, w3, w4), and suppose that X is dominated by a Fer-
mat threefold (so X is of CM type). Then there is the unique motive Mw

associated to the weight w = (w0, w1, . . . , w4) such that h0,3(Mw) = 1 and
B3(Mw) = ϕ(d). For all other motives, h0,3(MA) = 0.

Here ϕ denotes the Euler ϕ-function.

Proposition A.6. Under the situation of Lemma 7.5, the following asser-
tions hold.

(a) The Fermat motiveMw associated to the weight contains the K3 motive
MS as a submotive.

(b) The Fermat motive Mw associated to the weight contains the Calabi–
Yau motive MX as a submotive.

Proof. S is realized as the quotient of a Fermat surface Fm by some finite
subgroup G of the automorphism group of Fm. That is, S is birationally
equivalent to Fm/G. Furthermore, the transcendental part of H2(S) can be
identified with the transcendental part of H2(Fm) that is invariant under G.
We know that H2(Fm) is a direct sum of one-dimensional subspaces. The
Fermat motive associated to the weight is the unique motive of Hodge type
(0, 2), and hence its G-invariant transcendental part must contain the K3
motive, the unique motive MS of S of Hodge type (0, 2).

Similarly for the Calabi–Yau motive MX , it corresponds to the tensor
product E ⊗ T (S)σ and it must be contained in the G-invariant part of the
Fermat motive associated to the weight, which is the unique motive of X of
Hodge type (0, 3). �

(Compare the Fermat motive associated to the weight to the Ω motive
defined by Schimmrigk in [34].)

Proposition A.7. Let (S, σ) be one of the 86 K3 surfaces with involution
σ defined in Theorem 2.5 by a hypersurface over Q in a weighted projec-
tive 3-space P3(w0, w1, w2, w3). Then S is of CM type. The L-series of S
is determined by the Jacobi sum Grossencharacter of some cyclotomic field
K := Q(ζd) over Q.
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(a) Let w = (w0, w1, w2, w3) be the weight defining S, and let Mw be the
unique motive associated to w. Let jp(w) be the Jacobi sum associ-
ated to it. Then jp(w) is an algebraic integer in OK with absolute value
| Norm p |. The motive Mw associated to w is transcendental and cor-
responds to the single (Z/dZ)×-orbit of jp(w). Therefore the Galois
representation associated to Mw is induced by a GL1 automorphic rep-
resentation of K = Q(ζd), and it is irreducible over Q of dimension
ϕ(d). Consequently, the Galois representation of MS is the automor-
phic induction of the GL1 Grossencharacter representation of K.

In other words, Mw is automorphic, that is, L(Mw, s) is determined
by an automorphic representation over Q.

(b) Let MA be a motive associated to S other than Mw. Then MA is auto-
morphic, that is, L(MA, s) is the Artin L-function determined by an
automorphic representation over Q.

Proof. Our K3 surface S is defined by a hypersurface of degree d over Q in
a weighted projective 3-space. S is of CM type. The characteristic polyno-
mial of the Frobenius of the motive Mw has reciprocal roots jp(w) and its
Galois conjugates, that is, the (Z/dZ)×-orbit of jp(w). We know that jp(w)
and its Galois conjugates are elements of the cyclotomic field K = Q(ζd).
The restriction Gal(Q̄/K) is a sum of GL1-dimensional representations cor-
responding to Jacobi sum Grossencharacters.

For (a), the automorphic induction process yields the automorphic repre-
sentation I(Mw) in A(GLϕ(d)(Q)), which is irreducible over Q of dimension
ϕ(d). Therefore, Mw is automorphic.

For (b), a similar argument establishes the automorphy of MA. �
Now we consider Calabi–Yau threefolds of Borcea–Voisin type, and

establish their automorphy.

Lemma A.8. Let K = Q(ζd) be the d-th cyclotomic field over Q. Let ψ be
a Jacobi sum Grossencharacter of K. Let φ ∈ A(GL2(AQ)) be an automor-
phic representation. Then there is the base change representation BK/Q(φ) ∈
A(GL2(AK)).

Furthermore, there exists the automorphic induction

I(BK/Q(φ))⊗ ψ ∈ A(GL2ϕ(d)(AQ)).

Finally, the Rankin–Selberg L-series is given by

L(s, ψ ⊗BK/Q(φ)) = L(s, I(BK/Q(φ))⊗ ψ).
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Proposition A.9. Let d1, d2 ∈ N. Let K1 = Q(ζd1) and K2 = Q(ζd2) be
d1th and d2th cyclotomic fields over Q. Let ψ1 and ψ2 be Jacobi sum Grossen-
characters of K1 and K2, respectively. Then they are automorphic forms in
A(GL1(AK1)) and A(GL1(AK2)), respectively. Consider the induced auto-
morphic representation ψ1 ⊗ ψ2.

(a) If K1 � K2, then ψ1 ⊗ ψ2 corresponds to an automorphic representa-
tion in A(GL1(AK1K2)), and

L(s, ψ1 ⊗ ψ2) = L(s, ψ1)L(s, ψ2).

(b) If K1 = K2, then ψ1 ⊗ ψ2 corresponds to the induced automorphic rep-
resentation I(ψ1 ⊗ ψ2) in A(GL2(AK1)), and

L(s, ψ1 ⊗ ψ2) = L(s, I(ψ1 ⊗ ψ2)).

(c) If K1 ⊃ K2 but K1 �= K2, then ψ2 corresponds to a representation of
a subgroup, H, of Gal(K1/Q) := G, and ψ1 ⊗ ψ2 corresponds to the
induced representation in A(GL1(AK1)), and

L(s, ψ1 ⊗ ψ2) = L(s, ψ1 ⊗ IndG
Hψ2).

To prove these results, we apply the base change and automorphic induc-
tion method of Arthur and Clozel (and Rajan) to our situation. Also, confer
Murty [28].

Appendix B. Tables

Some clarifications might be in order how to read the tables.

• In the tables B.1 to B.3, we use two numbering systems, one from
Borcea B# and the other from Yonemura Y #. We matched up the
numbers in two lists.

• We use two sets of notations for variables, one is x0, x1, . . . , xn, and
the other is x, y, z, w, . . .. In relevant tables, we indicated identification
of these two sets of variables.

• The equations in tables B.1 to B.3 are taken from Borcea’s paper [6].
“Terms removed” indicates the terms we may remove from the equa-
tions (or deformation) in [6] to create those of Fermat or Delsarte
type.
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Table B.1: K3 weights in Borcea’s list with odd w0.

Terms
f(x1, x2, x3) removed from

Y # B# (w0, w1, w2, w3) = f(y, z, w) r a equations of [B]

5 1 (3, 1, 1, 1) y6 + z6 + w6 1 1
6 2 (5, 2, 2, 1) y5 + z5 + w10 6 4

42 3 (5, 3, 1, 1) y3z + z10 + w10 3 1 y3w
32 4 (7, 3, 2, 2) y4z + z7 + w7 10 6 y4w
40 5 (7, 4, 2, 1) y3z + z7 + w14 7 3 y3w2

33 6 (9, 4, 3, 2) y4w + z6 + w9 10 6 y3z2

39 7 (9, 5, 3, 1) y3z + z6 + w18 7 3 y3w3

12 8 (9, 6, 2, 1) y3 + z9 + w18 6 2
75 9 (11, 5, 4, 2) y4w + z5w + w11 13 5 y2z3

78 10 (11, 6, 4, 1) y3z + yz4 + w22 10 2 y3w4, z5w2

82 11 (11, 7, 3, 1) y3w + yz5 + w22 9 1 z7w
76 12 (13, 6, 5, 2) y4w + yz4 + w13 14 4 z4w3

77 13 (13, 7, 5, 1) y3z + z5w + w26 11 1 y3w5

81 14 (13, 8, 3, 2) y3w + yz6 + w13 13 3 z8w
29 15 (15, 6, 5, 4) y5 + z6 + yw6 12 6 z2w5

34 16 (15, 7, 6, 2) y4w + z5 + w15 14 4
38 17 (15, 8, 6, 1) y3z + z5 + w30 11 1 y3w6

11 18 (15, 10, 3, 2) y3 + z10 + w15 10 4
50 19 (15, 10, 4, 1) y3 + yz5 + w30 9 1 z7w2

90 20 (17, 7, 6, 4) y4z + y2w5 17 3 no Delsarte
+z5w + zw7 form

93 21 (17, 10, 4, 3) y3z + yz6 + yw8 16 2 no Delsarte
+z7w2 + zw10 form

91 22 (19, 8, 6, 5) y4z + yz5 no Delsarte
+yw6 + z3w4 18 2 form

92 23 (19, 11, 5, 3) y3z + yw9 + z7w 17 1 zw11

47 24 (21, 14, 4, 3) y3 + yz7 + w14 13 3 z9w2

49 25 (21, 14, 5, 2) y3 + z8w + w21 14 2
14 26 (21, 14, 6, 1) y3 + z7 + w42 10 0
73 27 (25, 10, 8, 7) y5 + yz5 + zw6 19 1
83 28 (27, 18, 5, 4) y3 + yw9 + z10w 17 1 z2w11

46 29 (33, 22, 6, 5) y3 + z11 + zw12 18 0

• The equations in table B.4 are taken from Yonemura’s paper [43].
“Terms removed” indicates the terms we may remove to specialize
the equations into Delsarte type. In Case #1, there is no choice of
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Table B.2: K3 weights in Borcea’s list with even w0.

Terms
f(x1, x2, x3) removed from

Y # B# (w0, w1, w2, w3) = f(y, z, w) r a equations of [B]

7 30 (4, 2, 1, 1) y4 + z8 + w8 2 2
37 31 (8, 4, 3, 1) y4 + yz4 + w16 6 4 z5w
44 32 (8, 5, 2, 1) y3w + z8 + w16 6 2 y2z3

36 33 (10, 5, 3, 2) y4 + yz5 + w10 8 6 z6w
9 34 (10, 5, 4, 1) y4 + z5 + w20 6 4

35 35 (14, 7, 4, 3) y4 + z7 + yw7 10 6 zw8

45 36 (14, 9, 4, 1) y3w + z7 + w28 10 0
74 37 (16, 7, 5, 4) y4w + yz5 + w8 14 4 z4w3

79 38 (16, 9, 5, 2) y3z + z6w + w16 14 2 y2w7

30 39 (20, 8, 7, 5) y5 + z5w + w8 14 4
80 40 (22, 13, 5, 4) y3z + z8w + w11 18 0

Table B.3: K3 weights in Borcea’s list with w0 divisible by 6.

Terms
f(x1, x2, x3) removed from

Y # B# (w0, w1, w2, w3) = f(y, z, w) r a equations of [B]

8 41 (6, 3, 2, 1) y4 + z6 + w12 4 4
10 42 (6, 4, 1, 1) y3 + z12 + w12 2 0
31 43 (12, 5, 4, 3) y4z + z6 + w8 10 6 y3w3

41 44 (12, 7, 3, 2) y3z + z8 + w12 10 4 y2w5

13 45 (12, 8, 3, 1) y3 + z8 + w24 6 2
43 46 (18, 11, 4, 3) y3w + z9 + w12 14 2
51 47 (18, 12, 5, 1) y3 + z7w + w36 10 0
48 48 (24, 16, 5, 3) y3 + z9w + w16 14 2

equations of the form x2
0 = f(x1, x2, x3) or x2

0xi = f(x1,
x2, x3).

• In table B.5, the equations are taken from Yonemura’s paper [43]. In
order to make the equations into Delsarte type, we slightly generalize
the original equations and then remove some terms, if necessary. In
other words, we first add a few terms to the original equation and



660 Yasuhiro Goto, Ron Livné and Noriko Yui

Table B.4: Delsarte-type K3 surfaces with involutions σ(x) = −x, NOT in
Borcea’s list, after removal of several terms.

Terms
removed from

Y # (w0, w1, w2, w3) f(x1, x2, x3) = f(y, z, w) r a equations of [Y]

1 (1, 1, 1, 1) x4 + y4 + z4 + w4 8 8
19 (3, 2, 2, 1) x2y + y4 + z4 + w8 10 6 x2w2 and x2z
20 (9, 8, 6, 1) x2z + y3 + z4 + w24 10 6 x2w6

21 (2, 1, 1, 1) x2y + y5 + z5 + w5 6 4 x2z, x2w
22 (6, 5, 3, 1) x2z + y3 + z5 + w15 10 4 x2w3

23 (5, 3, 2, 2) x2z + y4 + z6 + w6 12 6 x2w
24 (5, 4, 2, 1) x2z + y3 + z6 + w12 10 4 x2w2

25 (4, 3, 1, 1) x2z + y3 + z9 + w9 6 2 x2w
26 (9, 5, 4, 2) x2w + y4 + z5 + w10 14 4
27 (11, 8, 3, 2) x2w + y3 + z8 + w12 14 2
28 (10, 7, 3, 1) x2w + y3 + z7 + w21 11 1
55 (7, 6, 5, 2) x2y + y3w + z4 + w10 14 4 x2w3

56 (11, 8, 6, 5) x2y + y3z + z5 + w6 19 1
57 (9, 6, 5, 4) x2y + y4 + z4w + w6 18 2 xz3

58 (6, 5, 4, 1) x2z + y3w + z4 + w16 14 2 x2w4, xy2

59 (8, 7, 5, 1) x2z + y3 + z4w + w21 14 2 x2w5

60 (7, 6, 4, 1) x2z + y3 + yz3 + w18 13 3 x2w4, z4w2

61 (11, 7, 6, 4) x2z + y4 + z4w + w7 18 2
62 (8, 5, 4, 3) x2z + y4 + yw5 + z5 14 4 xw4, z2w4

63 (4, 3, 2, 1) x2z + y3w + z5 + w10 10 4 x2w2, xy2, y2z2

64 (10, 7, 4, 3) x2z + y3w + z6 + w8 18 0 xy2

65 (14, 11, 5, 3) x2z + y3 + z6w + w11 18 0
66 (3, 2, 1, 1) x2z + y3w + z7 + w7 7 3 x2w, xy2, y3z
67 (9, 7, 3, 2) x2z + y3 + yw7 + z7 13 3 xw6, zw9

68 (13, 10, 4, 3) x2z + y3 + yz5 + w10 17 1 z6w2

69 (7, 4, 3, 2) x2w + y4 + yz4 + w8 14 4 xz3, z4w2

70 (8, 5, 3, 2) x2w + y3z + z6 + w9 14 2 xy2, y2w4

71 (7, 4, 3, 1) x2w + y3z + z5 + w15 11 1 xy2, y3w3

72 (7, 5, 2, 1) x2w + y3 + yz5 + w15 9 1 xz4, z7w
86 (9, 7, 5, 4) x2y + y3w + z5 + zw5 19 1 xw4

87 (5, 4, 3, 1) x2z + y3w + yz3 + w13 13 3 x2w3, xy2, z4w
88 (11, 9, 5, 2) x2z + y3 + yw9 + z5w 17 1 xw8, zw11

89 (5, 3, 2, 1) x2w + y3z + yz4 + w11 10 2 xy2, xz3, y3w2, z5w
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Table B.5: K3 surfaces with involution σ(x) = −x, NOT in Borcea’s list,
after change and/or removal of several terms.

Terms
removed from

Y # (w0, w1, w2, w3) f(x1, x2, x3) = f(y, z, w) r a equations of [Y]

3 (2, 2, 1, 1) x2y + y3 + z6 + w6 7 7 x3 → x2y
4 (4, 4, 3, 1) x2y + y3 + z4 + w12 7 7 x3 → x2y

17 (5, 5, 3, 2) x2y + y3 + z5 + zw6 12 6 xw5, yw5, x3 → x2y
18 (3, 3, 2, 1) x2y + y3 + z4w + w9 10 6 xz3, yz3, x3 → x2y

Table B.6: K3 surfaces with a different kind of involution.

F (x0, x1, x2, x3) Terms
Y # (w0, w1, w2, w3) = F (x, y, z, w) r a removed Involution

2 (4, 3, 3, 2) x3 + y4 + z4 + w6 10 8 None y → −y
16 (8, 7, 6, 3) x3 + y3w + z4 + w8 14 6 None z → −z
52 (12, 9, 8, 7) x3 + y4 + xz3 + zw4 19 3 None y → −y
84 (9, 7, 6, 5) x3 + xz3 + y3z + yw4 20 2 z2w3 w → −w

Table B.7: K3 surfaces with involution σ(x) = −x, but not realized as quasi-
smooth hypersurfaces in four monomials.

Y # (w0, w1, w2, w3) F (x0, x1, x2, x3) = F (x, y, z, w) r a

85 (5, 4, 3, 2) x2y + x2w2 + y3w + y2z2 + yw5 + z4w + w7 15 5
90 (17, 7, 6, 4) x2 + y4z + y2w5 + z5w + zw7 17 3
91 (19, 8, 6, 5) x2 + y4z + yz5 + yw6 + z3w4 18 2
93 (17, 10, 4, 3) x2 + y3z + yz6 + yw8 + z7w2 + zw10 16 2
94 (7, 5, 4, 3) x2y + y3z + y2w3 + z4w + zw5 18 2
95 (7, 5, 3, 2) x2z + y3w + yz4 + yw6 + z5w + zw7 16 2

Table B.8: K3 weights with no obvious involution.

Y # (w0, w1, w2, w3) F (x0, x1, x2, x3) = F (x, y, z, w)

15 (5, 4, 3, 3) x3 + y3z + y3w + z5 + w5

53 (6, 5, 4, 3) x3 + y3w + y2z2 + xz3 + z3w2 + w6

54 (7, 6, 5, 3) x3 + y3w + yz3 + z3w2 + w7
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Table B.9: Nikulin’s invariant associated with other types of involutions.

F (x0, x1, x2, x3)
Y # (w0, w1, w2, w3) = F (x, y, z, w) σ(xi) = −xi r a

2 (4, 3, 3, 2) x3 + y4 + z4 + w6 y 10 8
(4, 3, 3, 2) x3 + y4 + z4 + w6 w 18 4

3 (2, 2, 1, 1) x2y + y3 + z6 + w6 z 10 8
4 (4, 4, 3, 1) x2y + y3 + z4 + w12 z 14 6
5 (3, 1, 1, 1) x2 + y6 + z6 + w6 y 9 9
6 (5, 2, 2, 1) x2 + y5 + z5 + w10 w 6 4

(5, 2, 2, 1) x2 + y5 + yz4 + w10 z 10 8
7 (4, 2, 1, 1) x2 + y4 + z8 + w8 y 10 6

(4, 2, 1, 1) x2 + y4 + z8 + w8 w 10 8
8 (6, 3, 2, 1) x2 + y4 + z6 + w12 y 12 6

(6, 3, 2, 1) x2 + y4 + z6 + w12 z 12 8
9 (10, 5, 4, 1) x2 + y4 + z5 + w20 y 14 4

(10, 5, 4, 1) x2 + y4 + z5 + w20 w 14 4
10 (6, 4, 1, 1) x2 + y3 + z12 + w12 z 10 8
12 (9, 6, 2, 1) x2 + y3 + z9 + w18 w 6 2
13 (12, 8, 3, 1) x2 + y3 + z8 + w24 z 14 6
16 (8, 7, 6, 3) x3 + y3w + z4 + w8 z 14 6
17 (5, 5, 3, 2) x2y + y3 + z5 + zw6 w 17 5
18 (3, 3, 2, 1) x2y + y3 + z4w + w9 z 14 6
19 (3, 2, 2, 1) x2y + y4 + z4 + w8 z 10 8
23 (5, 3, 2, 2) x2z + y4 + z6 + w6 w 12 6
29 (15, 6, 5, 4) x2 + y5 + z6 + yw6 w 18 4
31 (12, 5, 4, 3) x2 + y4z + z6 + w8 y 18 4
33 (9, 4, 3, 2) x2 + y4w + z6 + w9 y 14 6

(9, 4, 3, 2) x2 + y4w + z6 + w9 z 10 6
36 (10, 5, 3, 2) x2 + y4 + yz5 + w10 w 16 6
37 (8, 4, 3, 1) x2 + y4 + yz4 + w16 z 10 8
39 (9, 5, 3, 1) x2 + y3z + z6 + w18 w 15 7
40 (7, 4, 2, 1) x2 + y3z + z7 + w14 w 7 3
41 (12, 7, 3, 2) x2 + y3z + z8 + w12 w 15 7
42 (5, 3, 1, 1) x2 + y3z + z10 + w10 w 11 9
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Table B.9: Nikulin’s invariant associated with other types of involutions.

F (x0, x1, x2, x3)
Y # (w0, w1, w2, w3) = F (x, y, z, w) σ(xi) = −xi r a

44 (8, 5, 2, 1) x2 + y3w + z8 + w16 z 14 6
52 (12, 9, 8, 7) x3 + y4 + xz3 + zw4 y 20 2

(12, 9, 8, 7) x3 + y4 + xz3 + zw4 w 19 3
75 (11, 5, 4, 2) x2 + y4w + z5w + w11 y 13 5
84 (9, 7, 6, 5) x3 + xz3 + y3z + yw4 w 20 2

then remove several terms to make the equation into a form of Delsarte
type. This procedure is indicated as “terms changed/removed.”

For instance, in the case #17, we first add a term x2y and then
remove x3, xw5 and yw5. In effect, this procedure interchanges x3

with x2y, and remove xw5 and yw5. It results in a new equation x2y +
y3 + z5 + zw6.

• In table B.6, the equations are taken from Yonemura’s paper [43]. For
the K3 surfaces on this table, there is no way to define the involution
σ(x) = −x by using equations of Delsarte type. We therefore define
an involution on some other variable. This alternative involution is
indicated in the column “involution.” Nikulin’s invariants r and a for
such (S, σ) are calculated in table B.9.

• The K3 surfaces in Table B.7 are taken from Yonemura’s paper [43].
They have involution σ(x) = −x, but no matter what terms we add
or remove from the equations, we cannot transform them into quasi-
smooth equations of Delsarte type (cf. Remark 2.5).

• The K3 surfaces in table B.8 are also taken from Yonemura’s paper [43].
For them, we do not know how to define a non-symplectic involution
on the K3 surfaces by preserving their quasi-smoothness (even if we
allow more than four monomials in the equations).

• Table B.9 lists K3 surfaces with involution at x1, x2 or x3 (i.e., not at
the variable x0 of highest weight). The variable we choose is indicated
under the column σ(xi) = −xi. For some K3 surfaces, we consider two
involutions.
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Table B.10: K3 surfaces and their mirror partners.

S : Y # S : B# Weight r S∨Y # S∨B# 20− r Weight for mirror

1 (1, 1, 1, 1) 8 56 12 (11, 8, 6, 5)
73 27 12 (25, 10, 8, 7)

4 (4, 4, 3, 1) 10 4 10 (4, 4, 3, 1)
5 1 (3, 1, 1, 1) 1 52 19 (12, 9, 8, 7)
6 2 (5, 2, 2, 1) 6 26 14 (9, 5, 4, 2)

34 16 14 (15, 7, 6, 2)
76 12 14 (13, 6, 5, 2)

8 41 (6, 3, 2, 1) 3 64 17 (10, 7, 4, 5)

9 (10, 5, 4, 1) 10 9 10 (10, 5, 4, 1)
71 10 (7, 4, 3, 1)

10 42 (6, 4, 1, 1) 2 65 18 (14, 11, 5, 3)
46 29 18 (53, 22, 6, 5)
80 40 18 (22, 13, 5, 4)

11 17 (15, 10, 3, 2) 12 24 8 (5, 4, 2, 1)

12 8 (9, 6, 2, 1) 6 27 14 (11, 8, 3, 2)
49 25 14 (21, 14, 5, 2)

13 45 (12, 7, 3, 1) 8 20 12 (9, 8, 6, 1)
59 12 (8, 7, 5, 1)

14 26 (21, 14, 6, 1) 10 14 26 10 (21, 14, 6, 1)
28 10 (10, 7, 3, 1)
45 36 10 (14, 9, 4, 1)
51 47 10 (18, 12, 5, 1)

20 (9, 8, 6, 1) 12 17 8 (12, 8, 3, 1)
72 8 (7, 5, 2, 1)

21 (2, 1, 1, 1) 2 30 39 18 (20, 8, 7, 5)
86 18 (9, 7, 5, 4)

22 (6, 5, 3, 1) 10 22 10 (6, 5, 3, 1)
24 (5, 4, 2, 1) 8 11 18 12 (15, 10, 3, 2)
25 (4, 3, 1, 1) 8 43 46 12 (18, 11, 4, 3)

48 48 12 (24, 16, 5, 3)
88 12 (11, 9.5, 2)

26 (9, 5, 4, 2) 14 6 2 6 (5, 2, 2, 1)
27 (11, 8, 3, 2) 14 12 8 6 (9, 6, 2, 1)

28 (10, 7, 3, 1) 10 14 26 10 (21, 14, 6, 1)
28 10 (10, 7, 3, 1)
45 36 10 (14, 9, 4, 1)
51 47 10 (18, 12, 5, 1)

30 39 (20, 8, 7, 5) 18 21 2 (2, 1, 1, 1)
32 4 (7, 3, 2, 2) 10 10 42 10 (7, 3, 2, 2)
34 16 (15, 7, 6, 2) 14 6 2 6 (5, 2, 2, 1)
35 35 (14, 7, 4, 3) 16 66 4 (3, 2, 1, 1)
37 31 (8, 4, 3, 1) 9 58 11 (6, 5, 4, 1)
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Table B.10: K3 surfaces and their mirror partners (continued).

S : S : S∨ : S∨ : Weight for
Y # B# Weight r Y # B# 20− r mirror
38 17 (15, 8, 6, 1) 11 50 19 9 (15, 10, 4, 1)

82 11 9 (11, 7, 3, 1)
39 7 (9, 5, 3, 1) 9 60 11 (7, 6, 4, 1)
40 5 (7, 4, 2, 1) 7 81 14 13 (13, 8, 3, 2)
42 3 (5, 3, 1, 1) 3 68 17 (13, 10, 4, 3)

83 28 17 (27, 18, 5, 4)
92 23 17 (19, 11, 5, 3)

43 46 (18, 11, 4, 3) 16 25 4 (4, 3, 1, 1)
45 36 (14, 9, 4, 1) 10 14 26 10 (21, 14, 6, 1)

28 10 (10, 7, 3, 1)
45 36 10 (14, 9, 4, 1)
51 47 10 (18, 12, 5, 1)

46 29 (33, 22, 6, 5) 18 10 42 2 (6, 4, 1, 1)
48 48 (24, 16, 5, 3) 16 25 4 (4, 3, 1, 1)
49 25 (21, 14, 5, 2) 14 12 8 6 (9, 6, 2, 1)
50 19 (15, 10, 4, 1) 9 38 17 11 (15, 8, 6, 1)

77 13 11 (13, 7, 5, 1)
51 47 (18, 12, 5, 1) 10 14 26 10 (21, 12, 6, 1)

28 10 (10, 7, 3, 1)
45 36 10 (14, 9, 4, 1)
51 47 10 (18, 12, 5, 1)

52 (12, 9, 8, 7) 19 5 1 (3, 1, 1, 1)
56 (11, 8, 6, 5) 19 1 1 (1, 1, 1, 1)
58 (6, 5, 4, 1) 11 37 31 9 (8, 4, 3, 1)
59 (8, 7, 5, 1) 12 13 45 8 (12, 8, 3, 1)

72 8 (7, 5, 2, 1)
60 (7, 6, 4, 1) 11 39 7 9 (9, 5, 3.1)
64 (10, 7, 4, 3) 17 7 30 3 (4, 2, 1, 1)
65 (14, 11, 5, 3) 17 10 42 3 (6, 4, 1, 1)
66 (3, 2, 1, 1) 4 35 35 16 (14, 7, 4, 3)
68 (13, 10, 4, 3) 17 42 3 3 (5, 3, 1, 1)
71 (7, 4, 3, 1) 10 9 34 10 (10, 5, 4, 1)

71 10 (7, 4, 3, 1)
72 (7, 5, 2, 1) 8 20 12 (9, 8, 6, 1)

59 12 (8, 7, 5, 1)
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Table B.10: K3 surfaces and their mirror partners.

S : Y # S : B# Weight r S∨Y # S∨B# 20− r Weight for mirror

73 27 (25, 10, 8, 7) 19 1 1 (1, 1, 1, 1)
76 12 (13, 6, 5, 2) 14 6 2 6 (5, 2, 2, 1)

77 13 (13, 7, 5, 1) 11 50 19 9 (15, 10, 4, 1)
82 11 9 (11, 7, 3, 1)

78 10 (11, 6, 4, 1) 10 10 42 10 (11, 6, 4, 1)
80 40 (22, 13, 5, 4) 18 10 42 2 (6, 4, 1, 1)
81 14 (13, 8, 3, 2) 13 40 5 7 (7, 4, 2, 1)

82 11 (11, 7, 3, 1) 9 38 17 11 (15, 8, 6, 1)
77 13 11 (13, 7, 5, 1)

83 28 (27, 18, 5, 4) 17 42 3 3 (5, 3, 1, 1)
86 (9, 7, 5, 4) 18 21 2 (2, 1, 1, 1)
87 (5, 4, 3, 1) 10 87 10 (1, 3, 4, 5)
92 23 (19, 11, 5, 3) 17 42 3 3 (5, 3, 1, 1)
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Department of Mathematics
Hokkaido University of Education
1-2 Hachiman-cho
Hakodate 040-8567
Japan
E-mail address: goto.yasuhiro@h.hokkyodai.ac.jp

Institute of Mathematics
Hebrew University of Jerusalem Givat-Ram
Jerusalem 919004
Israel
E-mail address: rlivne@math.huji.ac.il

Department of Mathematics and Statistics
Queen’s University
Kingston
Ontario
Canada K7L 3N6
E-mail address: yui@mast.queensu.ca

Received February 13, 2013



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType true
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


