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Dual torus fibrations and homological mirror
symmetry for A,-singularities

KwokwAl CHAN AND KAzusHI UEDA
We study homological mirror symmetry for not necessarily com-
pactly supported coherent sheaves on the minimal resolutions of

A, -singularities. An emphasis is put on the relation with the
Strominger—Yau—Zaslow conjecture.

1. Introduction

Let Y be the affine hypersurface
(1.1) Y = {(z,u,v) € C* XC2‘uvzz_1f(z)},
where f(z) =(z —ap)(z—a1)---(z —ay) is a polynomial of degree n + 1

with mutually distinct positive real zeros 0 < ag < a1 < -+ < a,. We equip
Y with the symplectic form

= —\/? (dz|z/\|2dz +du/\du+dv/\dv) y
The projection
(1.2) 7:Y = C*, (z,u,v)— z
is a conic fibration whose discriminant is given by the zeros A = {ag,...,a,}

of the polynomial f. Using this, one can show that the map
Lo 2
(13) p Y =B, (su0) e (loglel, 5(luf ~ of?)

is a Lagrangian torus fibration over the base B = R?, whose discriminant
locus is given by

I':= {(50,0), (Sla 0)’ ceey (Sna 0)}7
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where s; = loga; for i = 0,...,n. Each fiber L of this Lagrangian torus fibra-
tion is special in the sense that one has

Jm (eﬁgQ) ‘L =0

for some 0 € R, where

(1.4) Q:Resw:dlogz/\dlogu
zuv — f(2)
is a nowhere-vanishing holomorphic 2-form on Y.

Strominger, Yau and Zaslow (SYZ) [35] conjectured that any Calabi—
Yau manifold admits a special Lagrangian torus fibration, and its mirror is
obtained as the dual torus fibration. In this paper, we apply their ideas on
the fibration (1.3), which we will refer to as the SYZ fibration.

Given the SYZ fibration p:Y — B, one can equip the complement
Bs™ := B\ T of the discriminant with two tropical affine structures. One
is called the symplectic affine structure, and the other is called the complex
affine structure. Here a manifold with a tropical affine structure is a manifold
which is obtained by gluing open subsets of R™ by the action of the affine
linear group R™ x GL,,(Z) (or R™ x SL,,(Z) if the manifold is oriented).
An integral affine manifold is the special case when the gluing maps belong
to Z™ x GLy,(Z). The symplectic affine structure is defined by first taking
a basis {71,72} of the space of local sections of the relative homology bun-
dle (R'p,Z)V and integrating the symplectic form w along these cycles to
obtain 1-forms on B; dx; = f% w. Local affine coordinate on B are prim-
itives of these 1-forms. The complex affine structure is defined similarly by
using Sm(eﬁeﬂ) instead of w, and is Legendre dual to the symplectic affine
structure [20].

Following earlier works (cf. e.g. [1,6,7,11, 18,19, 24] and references
therein), the mirror Y of Y is identified in [10] with the complement of
an anti-canonical divisor in the minimal resolution of the A,-singularity.
This mirror Y admits a special Lagrangian torus fibration, which is an SYZ
mirror in the sense that the symplectic and complex affine structures are
interchanged between Y and Y.

Let Ei,...,E, CY be the irreducible components of the exceptional
divisor in the minimal resolution. Then there is an isomorphism

deg: PicY — "
(1.5) w W
L = (deg£ Ei)?:l
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of abelian groups. We write the line bundle associated with d € Z" as Lq4.

Given an SYZ fibration, it is expected that Lagrangian sections of the
original manifold and holomorphic line bundles on the mirror manifold are
related by a kind of Fourier transform [4,27], which we refer to as the
SYZ transform. We introduce the notion of a strongly admissible path in
C*\ A, and associate an exact Lagrangian section L, C Y of the SYZ fibra-
tion (1.3) to each strongly admissible path. The winding number w(vy) =
(w1(y), .-, wn()) € Z" of a strongly admissible path is defined as the inter-
section numbers with the closed intervals [a;—1,a;] for i =1,... n.

The first main result in this paper is the following:

Theorem 1.1. For a strongly admissible path v, the SYZ transform of the

Lagrangian L., is given by the line bundle L_ ).

Next we consider another symplectic manifold defined by

(1.6) Y = {(z,u,v) e CX x C?

1
uv:—i—z”}.
z

Note that Y’ is related to Y by moving a; to the roots of unity, and hence
is symplectomorphic to it. The map (1.3) gives a special Lagrangian torus
fibration on Y, whose discriminant consists only of the origin.

The mirror ) for Y is the smooth stack obtained by removing an anti-
canonical divisor from the total space K of the canonical bundle of the
weighted projective line P(1,n). Although the McKay correspondence [26]
gives a derived equivalence

(1.7) DbcohY = D’coh Y,
the Picard groups are not isomorphic:
PicY = PicP(n,1) 2 Z 2 Z" = PicY.
Let Oy (i) be the line bundle on Y obtained by restricting the pull-back of
Op(1,n) (4)-

Homological mirror symmetry [22,23] for P(1,n) gives an equivalence

(1.8) D cohP(1,n) = D° Fut W,
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where Fut W is a Fukaya category associated with the Lefschetz fibration

w. C* — C
w w
z = 1/z4 2"

This is a special case of (a generalization to toric stacks of) the work of
Abouzaid [2,3] on homological mirror symmetry for toric varieties. There
are also works by Fang [15] and Fang, Liu, Treumann and Zaslow [16,17] on
homological mirror symmetry for toric varieties, which are also motivated
by the SYZ conjecture but different from the work of Abouzaid.

Under the equivalence (1.8), the collection (Op(; ) (7))ig of line bundles
is mapped to Lefschetz thimbles (A;)i,. These Lefschetz thimbles can be
lifted to Lagrangian sections (L;)}_, of the SYZ fibration for Y’. Let W'
be the full subcategory of the wrapped Fukaya category of Y’ consisting of
(Li)io-

The second main result in this paper is the following:

Theorem 1.2. There is an equivalence
(1.9) D"W' = Dbcoh Y
of triangulated categories sending L; to Oy(i) fori=0,...,n.

The proof is based on an analysis of the behavior of the wrapped Fukaya
category under suspension, and depends heavily on the work of Pascaleff [29].
We expect that (L;)}"_, generates the wrapped Fukaya category, so that the
left-hand side of (1.9) is the whole wrapped Fukaya category.

Theorems 1.1 and 1.2 are compatible in the following sense: There exists

a symplectomorphism Y == Y’ which induces an equivalence
D'W = DWW,

so that the Lagrangians (L;)!"_, in Y are images of Lagrangians (L-,)!, in
Y associated with certain strongly admissible paths g, v1, ..., 7, in C* \ A.
One can then choose a derived equivalence

DP? coh Y = Dbcoh Y
in such a way that the images of (L), under the composition

i

D'W = DW= Db coh Y =5 DPcoh Y
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of equivalences are precisely given by their SYZ transforms described in
Theorem 1.1. This shows that homological mirror symmetry for non-compact
branes is realized by SYZ just as for compact branes [10].

This paper is organized as follows: In Section 2, we briefly recall the SYZ
construction of the mirror manifold ¥ from [10, Section 3]. In Section 3, we
introduce the notion of a strongly admissible path to which we associate a
noncompact Lagrangian submanifold in (Y, w), which is a section of the SYZ
fibration p. In Section 4, we describe holomorphic line bundles on Y obtained
as SYZ transforms of noncompact Lagrangian submanifolds associated with
strongly admissible paths and prove Theorem 1.1. The proof of Theorem 1.2
is given in Section 5.

2. SYZ mirror symmetry
We start with the Hamiltonian S'-action on (Y,w):
2Vt (u,v,2) = (e%ﬁtu,e_%ﬁtv, z) ,
whose moment map is given by
(Iuf? = [of?)

Let B := R?. Then the map p:Y — B defined by

w(u, v, z2) =

N =

plu,2) = (og 2} = (10g 21 (l? = 0P )

is a Lagrangian torus fibration on Y, whose discriminant locus is given by
the finite set

I':={(s0,0), (51,0),...,(sn,0)} C B,

where we denote s; :=loga; for ¢ = 0,...,n. This is usually called an SYZ
fibration of (Y,w).

Let B := B\ T be the smooth locus. Then the fiber T}  over a point
(s,A\) € BS™ is a smooth Lagrangian torus in Y, and each of the fiber T}, o
over (s;,0) € T is singular with one nodal singularity. Furthermore, the locus
of Lagrangian torus fibers which bound nonconstant holomorphic disks is
given by a union of vertical lines:

H:={(s,\) € B|s=s; forsomei=0,1,...,n}.

Each connected component of H is called a wall in B.
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The Lagrangian torus fibration p:Y — B induces an integral affine
structure on B"™, called the symplectic affine structure. As we have men-
tioned, integrality of the affine structure means that the transition maps
between charts on B%™ are elements of the integral affine linear group

Af{(Z?) := GLo(Z) x Z2.

This ensures that A C TB*™, the family of lattices locally generated by
0/0x1,0/0xy where z1, x5 are local affine coordinates on B¥™, is well-defined.

The SYZ conjecture [35] suggested that a mirror of (Y,w) can be con-
structed by fiberwise-dualizing an SYZ fibration on (Y, w). More precisely,
one defines the semi-flat mirror of (Y,w) as the moduli space Yj of pairs
(Ts,\, V) where V is a flat U(1)-connection (up to gauge equivalence) on
the trivial line bundle C := C x T} ) over a smooth Lagrangian torus fiber
T . Topologically, Yy is simply the quotient 7B%™ /A of the tangent bundle
TB™ by A. This is naturally a complex manifold where the local complex
coordinates are given by exponentiations of complexifications of local affine
coordinates on B¥ (while the quotient T*B*™ /A" of the cotangent bundle
T*B*" by the dual lattice AV, which is canonically a symplectic manifold,
is contained in Y as an open dense subset such that the restriction of w to
it gives the canonical symplectic structure). However, this is not quite the
correct mirror manifold because the natural complex structure on Yy is not
globally defined due to nontrivial monodromy of the affine structure around
each singular point (s;,0) € I

A more concrete description of this phenomenon is as follows. For
i=0,1,...,n, consider the strip B; := (s;_1, Si+1) X R (where we set s_1 :=
—00 and $p41 := +00). A covering of B™ is given by the open sets

Ui = Bi \ [SZ‘, Si-i—l) X {0}, Vz = Bi \ (31‘—1; Si] X {0}

1=20,1,...,n. The intersection U; NV, consists of two connected compo-
nents:

UiNV;=B"UB,,

where B;" (resp. B; ) corresponds to the component in which A > 0 (resp.
A <0).

On U; (resp. V;), denote by u; (resp. v;4+1) the exponentiationof the com-
plexification of the left-pointing (resp. right-pointing) affine coordinate. (Our
convention is that for a real number x € R, its complexification is given by
—x + v/—1y.) Also, denote by w the exponentiation of the complexification
of the upward-pointing affine coordinate. See figure 1.
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Figure 1: The base affine manifold B.

Now w is a globally defined coordinate. Geometrically, it can be writ-
ten as
exp (—f, w) holy (Da)  for A >0,
exp ([, w) holy(—da)  for A <0,

where o € ma(Y, T, ») is the class of the holomorphic disk in Y bounded by
T, » for some i = 0,1,...,n, and holy(O«) is the holonomy of the flat U(1)-
connection V around the boundary da € (7%, ). The class a changes to
—a when one moves from A > 0 to A < 0.

But the other coordinates u; and v;+1 are not globally defined: since the
monodromy of the affine structure going counter-clockwise around (s;,0) € I’

is given by the matrix
11
0 1)’

the coordinates (u;, w) and (v;4+1,w) glue on U; N'V; according to

w(Ts,)u V) = {

U; = v;ll on Bj,
U; = v;rllw on B; .
Hence, the monodromy of the complex coordinates going counter-clockwise
around the point (s;,0) is nontrivial and given by

-1

-1
Ui = UW, VU W,

In particular, these complex coordinates on T'B;/A do not form a globally
defined complex structure on Yj.
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The examples in [1,6,7,11] suggest the following construction (we should
mention that these are all special cases of the constructions in Kontsevich
and Soibelman [25] and Gross and Siebert [19], but those general construc-
tions largely ignore the symplectic aspects and hence Lagrangian torus fibra-
tion structures — they build the mirror family directly from tropical data in
the base B): in order to get the genuine mirror manifold, we need to mod-
ify the gluing of complex charts on Yy by quantum corrections from disk
instantons

w = v+ jw=v(1+w) on B,

u; = vijrllw + v;_ll = vijrllw(l +w™)  on B;.
Geometrically, the term v;llw in the first formula (2.1) should be viewed as
multiplying vijrll by w where w corresponds to the unique nonconstant holo-
morphic disk bounded by the Lagrangian torus Tp » whose area is given by

A = —log|w| > 0.

This means that we are correcting the term v;rll by adding the contribu-
tion from the holomorphic disk bounded by 7 » when we cross the upper
half of the wall {s;} x R C H. In the same way, the term v;}l in the sec-
ond formula (2.2) is given by multiplying ’Ul-jrllw by w~! where w~! now
corresponds to the unique nonconstant holomorphic disk bounded by the
Lagrangian torus T , whose area is equal to

—X=log|w| = —log|w!| > 0.
So we are correcting vijrllw by the disk bounded by Ty » when we cross the
lower half of the wall {s;} x R C H.

The formulas (2.1), (2.2) can actually be interpreted as wall-crossing for-
mulas for the counting of Maslov index two holomorphic disks in Y bounded
by Lagrangian torus fibers. To see this, we need to partially compactify Y
by allowing z to take values in C and replacing p by the map

(ur0.2) = (al) = (I 5 (1l = o))

Then the base becomes an affine manifold with both singularities and bound-
ary: it is a right half-space B in R?, and the boundary 9B corresponds to the
divisor in Y defined by z = 0. In this situation, each of the local coordinates
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Uj, v;rll and v;&lw can be expressed as in the form

exp (— /ﬁ w) holy (99),

for a suitable relative homotopy class € m(Y, T ) of Maslov index two
(cf. Auroux [6,7]).

In any case, the modification of gluing cancels the monodromy and
defines global complex coordinates wu;, v;, w on T'B; /A (topologically, TB; /A
>~ (C*)?) related by
(2.3) u; = v; !

—1
iy Wikl =V and u;vi41 = 1+ w.

The instanton-corrected mirror Y is then obtained by gluing together the
pieces TB;/A (i=0,1,...,n) according to (2.3). On the intersection
(T'Bi—1/A) N (T'B;/A), we have

U = 'U._l

i Wi =1+ w=u;v;.

We remark that, by our definition, the mirror manifold Y will have “gaps”
because for instance u, v, w are C*-valued. A natural way to “complete” the
mirror manifold and fill out its gaps is by rescaling the symplectic struc-
ture of Y and performing analytic continuation; see [6, Section 4.2] for a
discussion of this “renormalization” process.

Finally, one observes that this is precisely the gluing of complex charts in
the toric resolution X — C2?/Z, 1 of the A,-singularity. We thus conclude
that the mirror is precisely given by the complex manifold

Y :=X\D,

where X = Xy, is the toric surface defined by the 2-dimensional fan ¥ € R?
generated by

{fvi=(G—-1,1)eN|i=0,1,...,n+1},

and D is the hypersurface in Xy, defined by h := x(®Y) = 1. Here h: X — C
is the holomorphic function whose zero locus is the union of all the toric
divisors in X. For ¢ =1,...,n, if we let S; denote the interval (s;_1,s;) X
{0} C B, then (the closure of) the quotient T'S;/T'S; N A in Y is one of the
n exceptional divisors in Xy, each of which is a (—2)-curve. We denote this
exceptional divisor by E; C Y.
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Let M = Hom(N,Z) be the lattice of characters of the dense torus of
Xy and X(1) = {vo,...,vnt1} be the set of one-dimensional cones of the
fan X. If we write the toric divisor on Xy corresponding to v; € ¥(1) as D;,
then we have D; = E; for i = 1,...,n, and Dg and D, are non-compact
divisors. One can easily show from the divisor sequence

0— M — 7Y - Pic X5, — 0
that Pic Xy, is generated by O(D;) for i =0,...,n — 1, and the map

deg: PicXy — "
w w
L —  (deg L

Di)?:l

is an isomorphism of abelian groups. Since ¥ = Xy, \ D is the complement
of a principal divisor, the restriction map Pic Xy, — PicY and hence the
map (1.5) is an isomorphism of abelian groups.

3. Lagrangian submanifolds fibered over paths

Consider the projection map
7Y - C*, (u,v,2) — 2.

Each fiber is a conic {(u,v) € C? | uv = 271 f(2)} which degenerates to the
cone uv = 0 over a zero of the polynomial f. Recall that we denote by

A ={ag,a1,...,an}

the set of zeros of the polynomial f(z), which we have assumed to be real
and positive, and in the ordering

O<agp<ar <...<ay.

The symplectic fibration 7 : Y — C* induces a connection on the tan-
gent bundle of Y where the horizontal subspace at y € Y| is given by the
symplectic orthogonal complement to the vertical subspace:

H, := Ker(dm,)"*.

Given a smooth embedded path v : I — C* \ A where I C R is an inter-
val, parallel transport with respect to the above connection along ~ yields
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symplectomorphisms between smooth fibers

T (y(t) — 7 (v (t),

for t; <ty € I. These symplectomorphisms are S'-equivariant since the S'-
action is Hamiltonian. The vanishing cycle V; in a smooth fiber m=1(v(t))
is given by its equator p =0 (i.e. |u| = |v|). Vanishing cycles are invariant
under parallel transport, so that the Lefschetz thimble L. along v, given by
the union of all vanishing cycles V; C m=1(v(¢)) for ¢ € I, is a Lagrangian
submanifold in (Y,w). If v is a matching path, i.e., a path connecting two
critical values of 7 in C*, then L, is a Lagrangian sphere in (Y,w).

Other Lagrangian submanifolds can be constructed in a similar way, as
in the work of Pascaleff [29].

Definition 3.1. Let v : R — C* \ A be a smooth embedded path. We call
the path v admissible if the following conditions are satisfied:

(1) (boundary conditions) limy_, o |v(¢)] = 0 and limy_, o |y(t)| = 0.

(2) ~ intersects transversally with each of the line segments €; := [a;_1, a;]
fori=1,...,n.

Given an admissible path v : R — C*, we fix ty € R and choose a Lagran-
gian cycle Cp in the conic fiber 7= !(y(¢p)). Then the submanifold L. ¢,
contained inside 7~1(7) swept out by the parallel transport of Cy along =
is a Lagrangian submanifold in (Y,w) (cf. [6, Section 5.1] and [29, Section
3.3]).

Definition 3.2. Let v: R — C* \ A be an admissible path. Fori =1,...,
n, we define the ith winding number w;(7y) of « to be the topological inter-
section number between v(R) and the line segment ¢; = [a;_1, a;] C C*.

Notice that the winding numbers of v are invariant when we deform v in a
fixed homotopy class relative to the boundary conditions lim;_,_ |y(¢)| = 0
and lim;_,« |y(t)| = co. In particular, we can deform 7 so that ~y(¢) lies on
the negative real axis for t < —T for some fixed positive T'. Then we consider
the Lagrangian (real locus)

Cy:={(u,v,2) € 71 (y(t)) | u,v € R}.

in the conic fiber 7=!(y(t)) for each t < —T, which is ‘dual’ to the vanishing
cycle V;. Note that C; is invariant under symplectic parallel transport for
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all t < —T', meaning that
TfQ (Ctl) = Ctz

1

for all t; < ta < —T'. Let L, be the submanifold in Y swept out by parallel
transport of Cy (t < —T):

Ly= |J au | rcoo)

te(—oo0,—T) te[—T,00)

This defines a Lagrangian submanifold in (Y, w) which is homeomorphic to
R2. Note that the curve C_7 := {(u,v,2) € 71 (y(=T)) | u,v € R} in the
conic fiber 771(y(=T)) is being twisted by Dehn twists in vanishing cycles
(i.e. the equator A =0 in a fiber of 7 : Y — C*) as one goes along +.

Furthermore, given an admissible path «, we can deform it (again with
respect to the boundary conditions lim;—,_ |y(¢)| = 0 and lim;_~ |7(t)| =
00) so that the following condition is satisfied:

Definition 3.3. An admissible path v: R — C* \ A is strongly admissible
if the modulus || : R — R>Y is strictly increasing.

Proposition 3.4. Let v : R — C* be a strongly admissible path. Then the
Lagrangian submanifold L., is a section of the SYZ fibration p: Y — B.

Proof. By definition, L, is invariant under parallel transport, so it is a
Lagrangian submanifold in (Y,w). Moreover, it is clear that the moment
map p when restricted to Cy for t < —T is a one-to-one map. Since the
symplectomorphisms 7¢ . are all S L_equivariant, the value of 4 is preserved
under parallel transport. Thus the restriction of p to 7! (C_7) remains a
one-to-one map. Together with the condition that |y(¢)| is strictly increasing,
this implies that L, intersects each fiber T ) of the SYZ fibration p: Y — B

at one point. Hence L, is a section of p: Y — B. U

By deforming v in a fixed homotopy class if necessary, one can fur-
thermore assume that a strongly admissible path v: R — C* \ A satisfies
|v(s)] = e® for any s € R and 7(s;) = —a; for i =0,...,n (recall that s; =
log a; for each 7). Then there exists a unique lift 7 : R — R of v/|y| : R — S*
such that ¥(sp) = 0, and the winding numbers of v can be computed as

1

wi(y) = or ((si) —4(si-1))

fori=1,...,n.
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As an example, consider the path
v R —C*, t— —é,

which is clearly strongly admissible. The corresponding Lagrangian subman-
ifold Ly := L, is simply the Cartesian product of the real locus Cj, inside
the conic fiber Cs, = 77 1(—ap) with the negative real axis (which is the
image vo(R) of the path). As a section of the SYZ fibration p: Y — B, the
Lagrangian Ly can be explicitly written as

oc:B—=Y, (s,A)— (u(s,\),v(s,N),2(s,A)),

where

3 = VR 4
o(s, ) = (=11 VAT (=) — A,

4. SYZ transforms

Consider AV C T*B®™, the family of lattices locally generated by dx1, dxs.
As before, x1, x5 here denote local affine coordinates on B*™. As in [10], we
will assume that o = —A\ is the globally defined coordinate. Let

wo = dx1 N d&1 + dxo A déo

be the canonical symplectic structure on the quotient T*B™/AV of the
cotangent bundle T*B™ by AV, where (£1,&;) are fiber coordinates on
T*B™ so that (x1,x2,&1,&2) € T*B™ denotes the cotangent vector & dxy +
&odro at the point (z1,z9) € BS™. In the previous section, we have
constructed a global Lagrangian section Ly of the SYZ fibration p: Y — B.
Then a theorem of Duistermaat [13] says that there exists a fiber-preserving
symplectomorphism

~

O : (I"B™ /N, wo) — (p~ ' (B™),w),

so that Lg corresponds to the zero section of T* B /AV.
This symplectomorphism can be constructed as follows. Let b € B5™.
Then for every o € T B, we can associate a vector field v, on the fiber
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p~(b) by

Ly, w = pFa.

Let ¢}, be the flow of v, at time 7 € R. Then we define an action 6, of a on
p~1(b) by the time-1 flow

Oaly) = 6L(w), e p ' (b).
Now the covering map
T*B™ — p~{(B™), o fa(o(pr(e)),

where pr : 7% B™ — B denotes the projection map, induces a symplecto-
morphism © : T*BS™/AY — p~1(Bs™m).

Now let yi1,y2 be the fiber coordinates on TB%™ dual to &1,&o, i.e.
(x1,x2,y1,y2) € TB™ denotes the tangent vector y;0/0x1 + y20/0xs at
the point (z1,x2) € B™. Given a strongly admissible path v : R — C*, the
noncompact Lagrangian submanifold L is a section of the SYZ fibration
p: Y — B by Proposition 3.4 (and as we mentioned before, every admissible
path can be deformed to a strongly admissible one). Via the symplectomor-
phism ©, we can write L, in the form

Ly = {(z1,22,61,&) € T*B™ /A | (21,22) € B™,
gj = 5j($1,l‘2) for ] = 172}7

where & = &j(x1,22), j = 1,2, are smooth functions on B¥". Since L is
Lagrangian, the functions &1, & satisfy

& _ 98

63:; N ij

for j,1 =1,2 (see [4,10,27]).

Lying at the basis of the SYZ proposal [35] is the fact that the dual 7 of
a torus T’ can be viewed as the moduli space of flat U(1)-connections on the
trivial line bundle C:=Cx7T over T. So a Lagrangian section
L={(z,&(z)) e T*U/T*UNAY | x € U} over an open set U C B™ corre-
sponds to a family of connections {V¢(, | * € U} patching together to give
a U(1)-connection which can locally be written as

Vu =d+2mv—1(&dys + &dys)
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over TU/TU N A CY. As shown in [4,27] (see also [10, Section 2]), the
(0,2)-part F(©2) (and also (2,0)-part F(20) of the curvature two form of
Vy is trivial.

Recall that a covering of B%™ is given by the open sets

Ui = Bi \ [Si,57;+1) X {0}, V2 = Bi \ (Sifl,si] X {0}

for:=0,1,...,n. Now, the restriction of the Lagrangian section L. to each
U; (resp. V;) is transformed to a U(1)-connection Vy, over TU;/TU; N A
(resp. Vv, over TV;/TV;N A). These connections can be glued together
according to the gluing formulas (2.1), (2.2). Since the (0,2)-part F(0:2)
of the curvature two form vanishes, this defines a holomorphic line bundle
L., over Y.

Definition 4.1. Let v:R — C* be a strongly admissible path and L, be
the noncompact Lagrangian submanifold in (Y, w) associated to . We define
the SYZ transform of L, to be the holomorphic line bundle £, over Y, ie.

Notice that the isomorphism class of £, is unchanged when we deform L.,
in a fixed Hamiltonian isotopy class (or deforming  is a fixed homotopy class
relative to the boundary conditions lim;_,_ |[y(¢)| = 0 and lim; o |y(2)] =
o0). Henceforth, we will regard this as defining the SYZ transform of the
Hamiltonian isotopy class of the Lagrangian submanifold L, CY as an
isomorphism class of holomorphic line bundle over Y.

As an immediate example, the SYZ transform of the zero section Lg =
L., gives the structure sheaf Oy, over Y.

The main goal of this section is to compute (the isomorphism class of ) the
line bundle £, in terms of the winding numbers of the path «. To begin with,
note that the isomorphism class of a line bundle over Y is determined by
the degrees of its restrictions to the exceptional divisors E; for i =1,...,n.
Given integers dy,...,d, € Z, let us denote by Ly, . 4, the line bundle on
Y such that deg La, .. .d. e =di.

Now, given a Lagrangian section

Ly = {(z1,32,&1,&) € T*B™ /N | (21,22) € B™,
& = &j(x1,32) for j = 1,2},
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of the SYZ fibration p : Y — B, its SYZ transform is the connection V which
can locally be expressed as

Vu =d+ 2nv—=1(&1dy; + Eadys).

Let £ be the line bundle determined by V. Then the degree of its restriction
to Ej; is given by

deg L ;1F

B E; 2T v
= _/ (dé1 A dyr)
= —(&u(si) — &1(si-1))-
We have the second equality because 9 is constant (and xo = —\ = 0) on Ej.

Hence the isomorphism class of the line bundle £ is completely determined
by the increment of the angle coordinate £; on the Lagrangian section L as
one moves from (s;-1,0) to (s;,0).

Now we prove Theorem 1.1:

Proof of Theorem 1.1. Recall that the Hamiltonian isotopy class of the Lagr-
angian submanifold L, remains unchanged when we deform v in a fixed
homotopy class relative to the boundary conditions lim;—,_ |[y(t)| = 0 and
limy o0 [¥(t)| = 00. So, up to a re-parametrization of v, we can deform the
restriction of v to (s;—1, $;) to a path arbitrary close to the concatenation of
70\(31_71781_) (the negative axis) with a loop winding around the circle [ := {z €
C*||z| = e®} for w;(7y) times. Along g, the angle coordinate £; is constantly
zero, and £ increases by one when we wind around I; once in the anti-
clockwise direction. Hence, the increment & (s;) — &1(s;—1) is precisely given
by the i-th winding number w; (7). O

One way to visualize the Lagrangian submanifold L is to observe that
the curve 75 (Cs,) is given by twisting C, in the vanishing cycle for >},
w;(y) times. Correspondingly, the increment of the angle coordinate &; as
one goes from (s;—1,0) to (s;,0) is given by the ith winding number w; ()
of .
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5. Homological mirror symmetry

Let X be a smooth toric Fano stack of dimension d and X be the total space
of its canonical bundle. The mirror of X is given by a Laurent polynomial

W (C)?—C

whose Newton polytope coincides with the fan polytope of X. By choosing
sufficiently general W, one may assume that

e 1V is tame in the sense that the gradient | VW/|| is bounded from below
by a positive number outside of a compact set,

e all the critical points of W are non-degenerate in the sense that the
Hessian at each critical point is a non-degenerate quadratic form,

e all the critical values of W are distinct, and

e the origin is not a critical value of W.

When X = P(1,n) is the weighted projective line of weight (1,n), one can
take

W:C*—=C, z—z+1/2"

as its mirror. This is related to the function 1/z 4 z™ appearing in (1.6)
by an automorphism z — 1/z of the torus, and our choice here is made
only for aesthetic reason (figure 6 below looks nicer for this choice). The
critical points of W are given by z = "RI/ECT?LH, 1 =20,...,n, with critical
values "/n(1+ 1/n)¢, ;. Here (11 = exp(2mv/—1/(n + 1)) is a primitive
(n + 1)-st root of unity.

We equip (C*)? with the Kihler form

—1 5 5
w:_\/ <d21/\dZ1 4. +dZd/\dZd>

2 |z1]? | zq|?

and define a horizontal distribution on (C*)? as the orthogonal complement
to the tangent spaces to fibers of W. Choose a sufficiently large closed disk
B C C and a point * on the boundary of B, so that all the critical values of
W is contained in the interior of B. The restriction W|s : S — B of W to
the intersection S of W~1(B) and a sufficiently large closed ball in (C*)?
is a compact convexr Lefschetz fibration [28, Definition 2.14], i.e., a family
of compact convex symplectic manifolds with at worst non-degenerate crit-
ical points. Here, a compact conver symplectic manifold (also known as a
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Figure 2: Admissible Lagrangians.

Liouville domain) is an exact symplectic manifold with boundary whose
Liouville vector field points strictly outward along the boundary. We will
write W|g as W by abuse of notation. By rounding the corners of S, one
obtains a Liouville domain M. Tts completion M = M Ugpr (OM x [1,00)),
obtained by gluing the positive half of the symplectization to the boundary,
is symplectomorphic to (C*)<.

When W = z+1/2", we fix a large positive real number * as a base
point, and let B to be a closed disk of radius * centered at the origin. Its
inverse image S := W~1(B) is symplectomorphic to a cylinder [0, L] x S!
for some L, equipped with the standard symplectic form w = dr A df. The
fiber S, := W~1(%) consists of n 4 1 points, one of which is approximately
« and n of which are approximately n-th roots of 1/x.

With a compact convex Lefschetz fibration, Abouzaid [2, 3] associates
a category F(S,S,) consisting of exact Lagrangian submanifolds L with
boundaries, which are admissible in the sense that

e the boundary JL is a Lagrangian submanifold in the interior of S,
e [ projects by W to a curve v C B in a neighborhood of 0L, and

e [ coincides with the parallel transport of L along ~ in this neighbor-
hood.

See figure 2 for a schematic picture of admissible Lagrangians.

For a pair (L1, Ly) of admissible Lagrangian submanifolds, the space
homg(g g,y(L1, L2) of morphisms is defined as the Lagrangian intersection
Floer complex CF(LY', L2) between L' and Lo. Here L7' is the Lagrangian
submanifold obtained by perturbing the part of L; fibered over ~; to another
Lagrangian submanifold fibered over the curve 4{"' starting from = such that
arg 75 (0) < arg74(0) < arg~{"'(0) + 7 as in figure 3, and one only looks at
intersection points in the interior of S. For a sequence (L1, ..., L) of admis-
sible Lagrangians, the A-operation is defined by perturbing L; to L;* such
that argv{*'(0) < argys*’(0) < -+ < arg~;*'(0) < arg~7*'(0) + 7 and count-
ing virtual numbers of holomorphic disks bounded by these Lagrangian
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Figure 3: Perturbing L;.

submanifolds. This gives an A,-precategory, which can be promoted to an
Aso-category by [14, Theorem 1.2].

A wanishing path is an embedded path v : [0, 1] — B from the base point
* to a critical value of m avoiding other critical values. We assume that ~
does not pass through the origin. By arranging the vanishing cycles along
a vanishing path, one obtains an admissible Lagrangian submanifold of S
called the Lefschetz thimble. A distinguished basis of vanishing paths is a
sequence ¥ = (71, ..., Vm) of mutually non-intersecting vanishing paths, one
for each critical value and ordered according to — arg~,(0). The correspond-
ing sequence of Lefschetz thimbles will be written as A = (Ay,...,A,,), and
the full subcategory of F(S, S.) consisting of A will be denoted by F(A).
It is expected that

e A is a full exceptional collection in D°F(S,S,), so that D*F(A) is
equivalent to DY (S, S,) and hence is independent of the choice of A,
and

e DVF(S,S,) is equivalent to the derived category D°F(W) of the
Fukaya-Seidel category of W, defined in [32, Definition 18.12] as the
7./27Z-invariant part of the Fukaya category of a branched double cover
of a slight enlargement of S.

Homological mirror symmetry for toric Fano stacks can be formulated
as follows:

Conjecture 5.1 Kontsevich [23]. There exists an equivalence
(5.1) W : DYF(A) — Db coh X
of triangulated categories.
Let 0 : § — S be a Hamiltonian diffeomorphism, which covers the Dehn
twist @ : B — B along a circle near the boundary of B. The resulting push-

forward functor o, : F(S, Sx) — F(S, Sx) is an autoequivalence of the Fukaya
category, which wraps a Lagrangian as shown in figure 4.
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Figure 4: The functor o,.

One can equip the direct sum
m o
k
A= P P Hompss,)(0"(Ai), A;)
4,j=0 k=0
with a ring structure given by

Hom(o*2(Ay,),A;,) ® Hom(c®(A;),A;) — Hom(oF*2(A;), Ay)
w w w
T9 €1 — mg(acg,a,’?(xl)).

The continuation map
t: Homyp(s 5. (0"(A:),4;) — Homp(g s,y (a1 (A), A))

in Floer theory, obtained by counting solutions to inhomogeneous Cauchy—
Riemann equation (cf. e.g [5, (3.35)]), induces an endomorphism ¥ of this
ring.

On the mirror side, there is a distinguished autoequivalence

S(—) = —®@wy[d] : D’coh X — D’coh X

called the Serre functor [8]. Let s € H°(wY,) be a section characterized by
the property that the zero locus s~1(0) is the union of all the toric divisors
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of X'. This section induces a natural transformation
(5.2) s:8[—d] —id

which acts on objects by multiplication by s : S[—d](X) = X @ wy — id
(X) = X. One can equip the direct sum

B = @ @HomX(Ei ®w§\6an)

i,j=0 k=0
with a ring structure given by

Hom(E;, ®wX,E ) ® Hom(E;, ® wX,E )
= Hom(E;, ®wX,E )
® Hom(E;, ® wk1+k2 E;, X)
— Hom(E;, ® wk1+k2 E;,).

The natural transformation (5.2) induces a ring endomorphism & of B.
Assume that the collection (E;)”, is cyclic in the sense that

Ext!(E}, ®wf\g,Eg) =0 for any i # 0, any j > 0 and any k,¢ € {1,...,m}.

This implies that the ring B is concentrated in degree zero, so that there are
no higher A..-operations for degree reason. Although cyclicity is a strong
condition, it is known that any toric Fano stack in dimension two has a cyclic
full exceptional collection of line bundles [21]. It is not known whether any
toric Fano stack has a cyclic full exceptional collection of complexes.

Conjecture 5.2 Kontsevich, Seidel [33, Example 5]. There is a ring
isomorphism A = B sending the ring endomorphism ¥ to &.

It is further expected that t is the first component of a canonical natural
transform

(5.3) t:o.—id

which is mirror to the natural transformation (5.2).

When W = z+41/2", we take a distinguished basis (v;), of vanish-
ing paths as in figure 5. The corresponding Lefschetz thimbles (A;)", are
Lagrangian submanifolds of S with boundaries on S, as shown in Figure 6.
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Figure 5: Vanishing paths on the W-plane.

Figure 6: Lefschetz thimbles on the z-plane.

The Hamiltonian diffeomorphism o : S — S behaves as z — exp(2my/—1)z
for [z| > 1, and 2z — exp(—2my/—1/n)z for |z| < 1. We write the images of
the Lefschetz thimbles as A_ ¢, 1yp4i = ok (A;).

On the mirror side, we write the homogeneous coordinate ring of X =
P(1,n) as Clz,y] where degz =1 and degy = n. The canonical bundle is
given by wy = Ox(—n — 1), and the full exceptional collection

(Eo, El, e 7En) = (O)(, OX(I), ce ,O,‘y(n))
of line bundles is cyclic.
Theorem 5.3. Conjecture 5.2 holds for X =P(1,n) and W = z 4+ 1/z".

Proof. The Lefschetz thimble A_jq, 1)4; starts from the critical point
"/n¢}, .1 and extends in two directions: one wraps around the origin k/n
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(0, ) (L, )

' —1)n+1’ - A
o=ty / 0

. . Ik'n-H"
2(i—k)7r_[ h AT
"Afk(n+1)+i
(07 _ﬂ-) (L7 —ﬂ')

Figure 7: Intersections of Lefschetz thimbles.

times and goes to the point in S, approximated by ¢i=* - %=1/ The other
wraps around infinity £ times and asymptotes to the point in S, approxi-
mated by *. Figure 7 shows the picture of two Lefschetz thimbles. Here the
top and the bottom edges of the rectangle are identified to form the cylinder
[0, L] x S', which is symplectomorphic to S. The vertical dotted line shows
the locus where the absolute value is "/n. The Lefschetz thimble Ay is
just the real line, and the Lefschetz thimble A_j,,41)4, is obtained from the
Lefschetz thimble A; by wrapping k times.

Write k(n+ 1) —i = k'n +4' for ¥ € Zand ' € {0,...,n — 1}. Then the
thimbles A_j(,41)4; and Ag intersect at k' 4 1 points, and we label these
intersection points by the basis of Hom(Op(y ;) (—=k(n + 1) + 1), Op( ) as
shown in figure 7. Intersections between other Lefschetz thimbles can be
labeled similarly. By choosing the standard grading on S determined by
the holomorphic volume form dz/z and suitable gradings on A;’s, one can
arrange that Homg(gg)(A;, Aj) for i < j have degree zero (and those for
i > j have degree one). It follows that the ring A = ;" Dr=o Homzr(s s,
(¥ (A;), Aj) is concentrated in degree zero, so that there are no higher A,-
operations on A. The multiplication on A comes from a triangle on .S, which
is either of the ones shown in figures 8 and 9. This clearly matches the
multiplication on B (which is just the multiplication of polynomials), and
Theorem 5.3 is proved. U

For ¢ € Homz(g g,y (0" (A, ), Aj, ), we define ord(g) as the maximal inte-
ger d such that z is in the image of

t*: Homg(s,s.) (Uwfd(Aio)Ail) — Hompg(s 5,y (0(As), Aiy) -

Proposition 5.4 below is an analogue of [29, Proposition 4.3], which will be
useful later.
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Ak‘o Akl

Figure 9: Another triangle.

Proposition 5.4. If a holomorphic triangle ¢ : D?> — S contributes to the
composition ri2ylz = mg(xilyjl,xi"yjf) for zoylo € Homp (g 5.y (Akys Ak, ),
vyt € Homg(gg,)(Ak,, Ak, ), and 2y”> € Homg(g g.)(Ak,, Ag,), then the
intersection number between this triangle and the divisor Sy is given by

(5.4) @(D?) - Sy = ord(x"2y’?) — ord(z"y") — ord(z"y’").

Proof. Since "#/n is close to 1, one can perturb figure 7 slightly to set
the dotted vertical line to be the unit circle on C* without changing the
intersections of triangles with Sy. Then Sy is equidistributed on the dotted
vertical line with vertical coordinates (2j + 1)7/(2n +2) for j =0,...,n.
We write dy = ord(x%y7¢) and zyle = (wy)deaie=deyde=de for £ = 0,1, 2.
Ifigy—dy=0for £=0,10r j,—dy =0 for £=0,1, then the whole triangle
is either on the left or on the right of the dotted vertical line in figure 7, and
both sides of (5.4) is zero. If a :=ig — dy > 0 and b := j; — d; > 0, then the
triangle D looks as in figure 8, and the vertical dotted line cuts D into two.
The number of points in Sy on the part of the vertical dotted line bounded
by A;, and A, is given by a, and that by A;, and A,, is given by b (here we
are working on the universal cover of the cylinder S). The vertical dotted
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line is on the right or the left of the vertex x%2972 depending on whether a > b
or a < b (and exactly on the line if @ = b). It follows that both sides of (5.4)
is given by max{a, b} in this case. The case jo — dy > 0 and iy —dy > 0 is
similar, and Proposition 5.4 is proved. O

An admissible Lagrangian submanifold A of S can be completed to a
Lagrangian submanifold A := A Ua (8A x [1,00)) of the completion M.
Given a pair (A1, Ag) of admissible Lagrangians, the wrapped Floer coho-
mology [5] is defined by

HW (A1, Ag) :=lim HF (¢ (A1), Ay),
where ¢, is the time w flow by a Hamiltonian H which behaves as H (x,1) =
r on the cylindrical end (z,7) € OM x [1,00) of M.
Let

Y= {(z,u,v) € (C*)?x C? | W(z) = w}
be the fiber of the double suspension of W.

Theorem 5.5 Seidel [34, Theorem 1]. Assume that the derived Fukaya-
Seidel category DY F (W) is quasi-equivalent to the derived category of coher-
ent sheaves on X as an A -category. Then there exists a full embedding

Db cohg K — DPF(Y")

of triangulated categories, where D® cohg K is the full subcategory of D® coh K
consisting of complexres whose cohomologies are supported on the zero-
section, and F(Y') is the Fukaya category of Y'.

The manifold Y’ is an affine algebraic variety, and hence a Stein manifold
of finite type, so that it is symplectomorphic to the completion N of the
Liouville domain N obtained by intersecting it with a sufficiently large ball.
Consider the projection

w: N — (Cx)d
w w
(z,u,v) — z

and set E = NNw !(S). The restriction w|r : £ — S of the projection,
which we will write @ by abuse of notation, is a compact convex Lefschetz
fibration, whose discriminant locus is Sp := W~1(0). The completion E of
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E, obtained by first completing in the direction of the fiber of w and then
extending it to the completion of the base S, is symplectomorphic to Y”.

We define the Lagrangian submanifolds L; C F which are R-fibrations
over the Lefschetz thimbles A; C S as in Section 3. When W = 2z 4 1/2",
the Lagrangian submanifold Lg is given by

(5.5) Lo := {(z,u,v)€E|z,u,U€R>0},

and other Lagrangian submanifolds L; are given by L; = (! +1 -+ Lo, where
Chy1 acts on B by sending (2, u,v) to ({412, (11, v).

Recall from [28, Definition 2.21] that a Lefschetz admissible Hamiltonian
is a smooth function H(z,u,v) on Y’, which can be written, outside of a
compact set, as the sum Hy(z) + Hf(u,v) of admissible Hamiltonians Hy(2)
and Hy(u,v) on the base and the fiber respectively. The map w is not
an honest Lefschetz fibration but a Bott—Morse analogue of a Lefschetz
fibration in general. It is an honest Lefschetz fibration when W = z + 1/2"
for dimensional reason.

The Lefschetz wrapped Floer cohomology is defined as the direct limit

HW(Ly, L) := lim HF (¢,(Ls), Ly)

where ¢y, : Y/ — Y’ is the time w flow defined by the Hamiltonian H. Set

Ay = @ HF(¢w(£z)v£])
ij=1
and
o = h_I)Il ﬂfw = @ HW[([A/Z,.EJ)
w—00 ij=1
The map

Ot - HF (9w(Li), L) — HF ($u1(Li), Ly)

in the definition of the inductive limit is the continuation map for the Hamil-
tonian diffeomorphism ¢; : Y/ — Y’. The universal map to the inductive
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limit is denoted by
¢% w HF (pu(Li), Lj) — .
The C-vector space &7 has a ring structure coming from

HF($w,(Lj), L) ® HF (¢, (Li), Lj) —  HF(¢w,+uw,(Ls), L))
W W

q®r = ma(q, (Pu, )«(1))-

One can show the ring isomorphism [12, Theorem A.2]

o = é HW<£iO;£i1)

io,ilzl

with the ordinary wrapped Floer cohomology along the lines of [28, Theorem
2.22].

Note that the monodromy of the conic fibration @ : E — S around the
discriminant Sy is given by the Dehn twist along the vanishing cycle, which
is inverse to the wrapping on the fiber. It follows that for a positive integer
w, the intersection points qu( ,) N LZl can be parametrized as g; for some
q € ¥(Aj,) NA;, and an integer j € [0,ord(¢q) + w] indicating the position
in the fiber of @ counted from the top as shown in figures 10 and 11. The
continuation map gbifﬂw D Wy — 41 is written as gb;‘ffﬂ,w(qj) = t(q)j+1
in this parametrization. We write ¢ = t°"4(@(¢’), and consider the C-linear
map

A

¢w : HF(QSU)(IA;Z'O)? Lll) - @z’io Homy (Eio ® w]jj‘? Eh)
(5.6) w w

4 - (s =1/
where @' € Homx(E;, @ wy Ord(Q), E;,) corresponds to ¢' € Homg(gg,)
(J“”‘)rd(q)(Aio), A;,) under the ring isomorphism in Theorem 5.3.
Let

B = lim By, By:=E  Homy(E; @ wh, E))

w00 k=0 i,j=0

be the direct limit of the right-hand side of (5.6) with respect to the map

¢w+1w ‘% _><@1H>1
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Figure 10: Wrapping once.
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Figure 11: Wrapping twice.
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given by the multiplication by 1 — s

2w n L 2w+l n
P P Homx(E; @y, Ej) —> P P Homy(E; @k, E))
k=0 1,j=0 k=0 14,5=0

followed by the inclusion

2w+l n 2w+2 n
@ @ Homy (E; ® Wk, Ej) — @ @ Homy (E; @ W%, Ej).
k=0 i,j=0 k=0 i,j=0

The multiplication in £ is defined by

c@w2 ® ‘%’wl - w1 +ws 9
w %

Q®R — Q- R.
Proposition 5.6. One has an isomorphism
n
(5.7) % = P Homy (7" E;|y, 7 Ej|y)
i,j=0
of rings.

Proof. By combining

n n
@ Homy (7" E;, n* Ej) = @ Homy (E;, m " Ej)

1,7=0 4,7=0

= @ Homy (E;, Ej ® m.0k)

i,j=0
n (o.9]
> (P Homy (EEJ ® <€wak>>
4,j=0 k=0

w

n
lim @ @ Homy (E; ® W%, Ej)

W00 k=0 §,j=0

1

with

Hom(M|y, N|y) = lim (Hom(M, N) =% Hom(M, N) 125 .. )

389
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for any objects M and N of D’cohC (cf. [31, (1.13)]), one obtains an
isomorphism

n 2w n
P Homy(n*E;ly, 7 Ejly) 2 lim @D @D Homy (E; @k, E))
i,j=0 W—00 [=(0 i,5=0

of C-vector spaces. The multiplication in % commutes with this C-linear
isomorphism, and Proposition 5.6 is proved. ([l

Proposition 5.7. The maps 1, are compatible with the composition, i.e.,

(5-8) Q;Z)wl-i-wz (m2(Qja Tk)) = ¢w2 (Qj) : ¢w1 (Tk)

for any q; € Gw, (Li,) N Ly, and vy, € ¢, (Li,) N L, .

Proof. Since the Lagrangian submanifolds L; are fibered over A;, any
holomorphic triangle in @ : D? — E contributing to ma(gj, k) projects to
a holomorphic triangle ¢ = @ o ¢ : D?> — S contributing to ma(g, 7). Given
a holomorphic triangle ¢ : D? — S contributing to p = ma(q, ), the contri-
butions to ma(gj, ) of holomorphic triangles ¢ : D? — E projecting to ¢
is computed by Pascaleff [29, Proposition 4.4] as

¢
V4
ma(q;, k) = Z <t>pj+k+t7

where ¢ = ¢(D?) - Sy is the intersection number of the triangle and the dis-
criminant Sy of the fibration w : £ — S. It follows that

wwrf‘wz (m2 (QJv T'k)) = ¢

(f) (s — 1)Itk+tp!,

Y4
( >¢w1+w2 (Pjtk+e)

~
NHM(’\
(e

t=

o
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On the right-hand side of (5.8), one has

Yun (47) - Pu, (1) = (s = 1)Q" - (s = )R/
= (s —1)TkQ'R’
=(s— 1)j+kselP/

. ‘
— Z <t>(8 _ 1)j+k+tP/
t=0

where ¢/ = ord(p) — ord(q) — ord(r). Now one has ¢ = ¢’ by Proposition 5.4,
and Proposition 5.7 is proved. ]

Proposition 5.8. The maps 1, induce on ismorphism v : .o = B of
TINgSs.

Proof. The maps v, induce a map ¢ : &/ — % between inductive limits
since

Vw1 (B 120(0) = Yuos1 (qis1)
=(s—1)"*-qQ
= ¢l w((s—1)"- Q")
= G100 (Vw(@2)-

For any element ¢ € Homy, (7" E;|y, 7 Ej|y;), one can take sufficiently
large wy so that (s —1)"'q extends to an element of Homy (7*E;, 7" Ej).
Then one takes another sufficiently large wo so that (s — 1)“'¢q comes from
@2, Homy (E; ® wh,, Ej) C Homy(7*E;, 7 E;). Then g is in the image of
Yo ¢§.{7wl+w2 t Dy, +w, — A, which shows that 1 is surjective.

Note that the map ﬁb?é,w : By — A is injective since each map qﬁ‘fﬂ,w :
By — Bw+1 is injective. The map 1, is also injective, and hence the map
Yo gbfiw = gbgw 0y : Gy — A is injective. This implies the injectivity of
1, and Proposition 5.8 is proved. O

Now we prove Theorem 1.2.

Proof of Theorem 1.2. Recall that an object £ in a triangulated category
is acyclic if End*(€) is concentrated in degree zero. It is a generator if
Hom(&, X) = 0 implies X = 0. An acyclic generator is called a tilting object.
Since the exceptional collection (E;)! is full, the pull-back @) ,m*E;
is a generator of DPcohC. Cyclicity of (E;)f, implies the acyclicity of
@, 7*E;. This shows that @, ,7*E; is a tilting object. It follows that
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Figure 12: The dual cycles.

the restriction @;_,7*E;ly is a tilting object. (In general, the restriction
of a generator to an open subset is a generator, and the restriction of an
acyclic object to the complement of a principal divisor is acyclic.) Morita
theory for derived categories [9,30] shows that D?coh Y is equivalent to the
derived category of finitely-generated modules over End (@?:0 W*Eib}).
The direct sum €, L; is acyclic by Proposition 5.8, and it is a generator
of W' by definition. It follows that D’W' is equivalent to to the derived
category of finitely-generated modules over End (D}, IA@), which is iso-

morphic to End (@?:0 7 E| 3',) by Proposition 5.8. This concludes the proof
of Theorem 1.2. O

Finally, we discuss the compatibility of Theorem 1.1 and Theorem 1.2.
Let (e1,...,€,) be the collection of line segments on E connecting points
in W=1(0) as in figure 12, so that the intersection numbers with Lefschetz
thimbles are given by

Aj-€j=20;5, ©1=0,...,n, j=1,...,n.

One can choose a symplectomorphism ¥ = Y in such a way that these
intersection numbers correspond precisely to the winding numbers in Defi-
nition 3.2. The SYZ transforms of the resulting Lagrangians in Y are then
given by line bundles (£;)_, on Y satisfying

deg ﬁz ’E,- = 5ij

for i=0,...,n and j=1,...,n. One can easily see, either from
[26, Section 2| or by a direct calculation, that the endomorphism rings of
@D Eily and @i L; are isomorphic, so that there is an equivalence
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DPcoh Y =5 DbcohY sending 7* E;| y to L;. This gives the compatibility of
Theorem 1.1 and Theorem 1.2 discussed in Introduction.
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