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A chord diagram expansion coming from some

Dyson–Schwinger equations

Nicolas Marie and Karen Yeats

We give an expression for the solution to propagator-type Dyson–
Schwinger equations with one primitive at 1 loop as an expansion
over rooted connected chord diagrams. Along the way we give a
refinement of a classical recurrence of rooted connected chord dia-
grams, and a representation in terms of binary trees.

1. Introduction

Dyson–Schwinger equations are integral equations in quantum field theory
which have a recursive structure that mirrors the recursive decomposition of
Feynman diagrams into subdiagrams. They are also very difficult to solve in
general, and even partial information can provide physically valuable results.

This paper looks at the special case where the underlying decomposition
of diagrams has the same shape as the standard recurrence for rooted trees.
This occurs in Dyson–Schwinger equations for propagators built from one
diagram with one loop inserted in one place. For an example and more
details, see Section 2. This one diagram must be a primitive graph in the
renormalization Hopf algebra, and so will be referred to as the primitive
of the Dyson–Schwinger equation.

The analytic contribution of the primitive can be given in the form of
an expansion

F (ρ) =
f0

ρ
+ f1 + f2ρ + · · · .

We will view the fi as known, given to us by physics. The Dyson–Schwinger
equation we are interested in is

(1.1) G(x, L) = 1− xG

(
x,

d

d(−ρ)

)−1

(e−Lρ − 1)F (ρ)
∣∣
ρ=0

and the problem we consider is to give an explicit expression for G(x, L) in
terms of the fj .
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LetRCCD be the set of rooted connected chord diagrams, or equivalently
connected arc diagrams of matchings. Let the size of a chord diagram be
the number of chords. For details and definitions on chord diagrams see
Section 3. The main result of this paper is that

G(x, L) = 1−
∑
i≥1

(−L)i

i!

∑
C∈RCCD
b(C)≥i

x|C|fCfb(C)−i

solves (1.1), where fC is a monomial in the fj given by the chord diagram,
and b(C) is a parameter of C which can be read off the intersection graph of
C. The proof of this result is a mix of explicit combinatorial constructions
and recurrences.

Our main result gives us G(x, L), which is a physically meaningful quan-
tity, as a sort of multivariate generating function of chord diagrams. Having
an explicit solution, albeit as a series expansion, is unusual in such prob-
lems, even more so for solutions where we have a handle on the coefficients,
as we obtain in this paper. We are optimistic that this level of understanding
will allow us to derive physically interesting consequences, such as analytic
information about G(x, L), and about the β function of the model. Some
initial observations on the consequences are given in Section 5. Furthermore,
there are some initial hints that more general Dyson–Schwinger equations
will have solutions with a very similar shape. We hope that the results of
this paper will be the beginning of a much larger program to solve analytic
Dyson–Schwinger equations with explicit combinatorial techniques.

For the reader who wishes to jump directly to the constructions and the
proof of the main result, Sections 3 and 4 can be read independently of the
motivation from Section 2.

The paper is organized as follows. Section 2 briefly runs through the
physical set up which gives rise to the problem considered in the paper. It
is written with the mathematical reader in mind and contains references
to more comprehensive sources. Section 3 sets out the definitions and con-
structions we need on rooted chord diagrams. Section 4 begins by proving
two recurrences, one of which refines a classical recurrence of Stein, and the
other of which is a consequence of our tree representation for rooted chord
diagrams. Together these two recurrences let us conclude Section 4 with a
proof of our main result. Section 5 gives an elementary account of conse-
quences of the result. These consequences can be divided in an analytic and
a combinatorial part, each of which will be explored further in a subsequent
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work. The paper concludes with Appendix A which gives a table of examples
of rooted chord diagrams and their associated trees.

2. Dyson–Schwinger equations

Let F be the set of forests of rooted trees. Such forests have a size given by
the number of vertices. Let H be the graded vector space span(F) over a
base field of characteristic 0. Defining the product of two forests to be their
disjoint union and extending linearly makes H into an algebra: the polyno-
mial algebra generated by rooted trees. The identity element is the empty
tree and will be denoted 1. In fact, H has a nice coproduct and is the
Connes–Kreimer Hopf algebra of rooted trees [9]. This Hopf algebra struc-
ture underlies the quantum field theoretic context of the problem currently
at hand, however we don’t need it for the purposes of this paper and so it
will be left to the references.

Definition 2.1. Let B+ : H → H be the operation which takes a forest
T1T2 · · ·Tk and returns the rooted tree where the subtrees rooted at children
of the root are T1, T2, . . . , Tk, and extended linearly to all of H.

Using this notation we can capture the recursive decomposition of a tree
into the subtrees of the root by the following equation

(2.1) X(x) = 1− xB+

(
1

X(x)

)
.

Note that since X(x) begins with 1, 1/X(x) is well defined simply by expand-
ing the geometric series. The solution to this equation in H[[x]], which can
be constructed recursively and checked inductively, is

X(x) = 1−
∑
T

x|T |p(T )T,

where the sum runs over all rooted trees and p(T ) is the number of dis-
tinct plane representations of a tree T , or equivalently the number of non-
isomorphic orderings of the children of each vertex. Other such equations
yield other classes of trees [6]. Mapping each tree to 1 we would get the
usual generating function; we will be interested in more subtle maps from
trees and graphs to numbers.

The same basic structure, although in general considerably more intri-
cate, is seen in the nesting of subdivergent Feynman diagrams in larger
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Feynman diagrams. This observation is the beginning of the algebraic or
combinatorial approach to Dyson–Schwinger equations as found in papers
such as [11,12,17,19]. Combinatorial Dyson–Schwinger equations are
equations such as (2.1) and its generalizations that describe this recursive
structure for a given class of Feynman graphs.

In some simple instances, the combinatorial Dyson–Schwinger equation
will be exactly in the same form as (2.1). For example, Broadhurst and
Kreimer [7] consider two such cases. One of these cases is the case where

is inserted into itself in all possible ways, yielding graphs such as

which have a tree structure to its insertions. This form will appear whenever
we are interested in iterating a propagator graph into itself along one internal
edge. More general Dyson–Schwinger equations are more complicated as
different sorts of graphs can be inserted in different places, and subgraphs
can overlap.

Feynman rules give a map from Feynman graphs into (formal) inte-
grals. One can then regularize the integrals, renormalize them, and sum
over appropriate graphs to obtain physically meaningful values. A reference
in more or less the language used here is [10].

Applying Feynman rules to the combinatorial Dyson–Schwinger equa-
tions gives analytic Dyson–Schwinger equations which are integral
equations for the Green functions of the system in question. They have
the same basic recursive structure that the combinatorial Dyson–Schwinger
equations did. Continuing the above example [7] the combinatorial Dyson–
Schwinger equation

X(x) = I− xB+

(
1

X(x)

)
interpreted as inserting the graph



A chord diagram expansion 255

into itself iteratively in all possible ways, yields the analytic Dyson–
Schwinger equation

G(x, L) = 1− x

q2

∫
d4k

k · q
k2G(x, log k2)(k + q)2

− · · ·
∣∣∣∣
q2=μ2

,

where L = log(q2/μ2). See [19] (also available as [18]) Example 3.5 for further
details.

The analytic Dyson–Schwinger equations are still not in the form we
need. Example 3.7 of [18, 19] begins with the above example, proceeds to
expand G(x, L) in L, convert logarithms to powers using dkyρ

dρk |ρ=0 = logk(y),
swap the order of the operators, and thus obtains

G(x, L) = 1− xG

(
x,

d

d(−ρ)

)−1

(e−Lρ − 1)F (ρ)
∣∣
ρ=0

,

where F (ρ) is the Feynman integral of the primitive with the propagator we
are inserting on regularized, and the integral evaluated at q2 = 1.

Rather than set up appropriate hypotheses on the original analytic
Dyson–Schwinger equations so as to guarantee that these transformations
are always possible (which they will be in physically reasonable circum-
stances), we will now follow [19] by defining the analytic Dyson–Schwinger
equation associated to (2.1) to be

(2.2) G(x, L) = 1− xG

(
x,

d

d(−ρ)

)−1

(e−Lρ − 1)F (ρ)
∣∣
ρ=0

,

where

F (ρ) =
f0

ρ
+ f1 + f2ρ + f3ρ

2 + · · · ,

which is the integral of the primitive graph regularized by raising the inser-
tion propagator to the power 1 + ρ, evaluated with external momentum
equal to 1, and expanded in ρ. F (ρ) is viewed as given.

Write

G(x, L) = 1−
∑
k≥1

γk(x)Lk

and view the γk(x) as unknown series in x. The γk(x) are simply the coef-
ficients of G(x, L) when expanded as a series in L. Expanding out G(x, L)
in (2.2), one can see that (2.2) determines the γk(x) in terms of the fi, but
only in a quite unwieldy way.
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The goal of [18, 19] was to convert considerably more general Dyson–
Schwinger equations into a more workable form at the cost of introducing
a new unknown function P . This new form proved quite useful, in [15, 16]
one of us along with Dirk Kreimer, Guillaume van Baalen, and David Umin-
sky use the new form to investigate quantum electrodynamics (QED) and
quantum chromodynamics (QCD) showing in the former case that it is pos-
sible to avoid the Landau pole. Marc Bellon and Fidel Schaposnik [2–5] have
investigated approximation schemes based on this method.

The present paper is more modest in the sense that only the Dyson–
Schwinger equation (2.2) is considered. However in another sense it is better;
the result gives an explicit solution to this Dyson–Schwinger equation as
an expansion indexed by rooted chord diagrams; no mystery functions or
recurrences. In the last section, we give some consequences of this expansion
and we will pursue the physical consequences more fully in future work with
Dirk Kreimer.

3. Rooted chord diagrams

In this section, we will define the objects and constructions we need.
At the heart of the proof that the formal solution to the Dyson–Schwinger

equation (1.1) is given by

G(x, L) = 1−
∑
i∈N∗

(−L)i

i!

∑
C∈RCCD
b(C)≥i

fC fb(C)−i x
|C|

is the combinatorics of rooted connected chord diagrams. In particular, the
monomials in the fj appearing in this expansion are indexed by the sequences
of gaps between distinguished chords called the terminal chords of the dia-
grams.

We will describe these structures as well as a representation of the chord
diagrams by planar binary trees whose decomposition is the main ingredient
of the recurrences in Section 4.

3.1. Chord diagrams

Definition 3.1. A chord diagram of order n is the data of 2n points
(p1, . . . , p2n) arranged on a circle, together with n distinct pairs of distinct
points {(pi1 , pin+1), . . . , (pin

, pi2n
)} forming a partition of (p1, . . . , p2n), where

(pik
, pin+k

) is represented by a chord joining the points pik
and pin+k

on the
circle. Additionally we say that:
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A B

Figure 1: (A) is a rooted connected chord diagram of degree 4, while (B) has
degree 3 but is not connected. Here the root is the circled vertex, the root
chord is numbered 1 and the rest is labelled in the counterclockwise order.

• Two distinct chords (pik
, pin+k

) and (pil
, pin+l

) intersect each other if
and only if pik

< pil
< pin+k

< pin+l
or pil

< pik
< pin+l

< pin+k
;

• A chord diagram is rooted when we distinguish one of the points
p1, . . . , p2n on the circle;

• A chord diagram is disconnected if we can partition the set of chords
in two sets so that no chord of the first set intersect any chord of the
second. Otherwise we will say that the chord diagram is connected.
Figure 1 shows some examples.

In the following, RCCD denote the set of rooted connected chord dia-
grams. We say that a diagram with n chords has degree n and we denote by
RCCD(n) the family of these diagrams. Unless stated otherwise our chord
diagrams are oriented counterclockwise, meaning that the points on the
outer circle are numbered p1, p2, . . . , p2n with p1 corresponding to the root
and continuing counterclockwise from this point. This counterclockwise ori-
entation induces an order on the chords which we naturally call the coun-
terclockwise order. In our representation of chord diagrams in RCCD(n), we
label the chords from 1 to n in this counterclockwise order.

Observe that in general a chord diagram is distinct from its mirror image
as can be seen in the following example:
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Definition 3.2. Let X be a rooted connected chord diagram of degree
n. We denote by I(X) the labelled directed graph whose set of vertices
{1, 2, . . . , i, . . . , n} corresponds to the set of chords of X where i stands for
the ith chord in the counterclockwise order and there is a directed edge from
i to j if the ith chord intersects the jth chord with i < j. The graph I(X)
is called the directed intersection diagram of X.

Here is an example of a rooted connected chord diagram and its directed
intersection graph:

Definition 3.3. Let X be a rooted connected chord diagram and I(X) its
directed intersection diagram. A chord i is said to be terminal if the vertex
i of I(X) has no outgoing edges.

Hence, a terminal chord does not intersect any chord with a larger index.
As one can see in the examples presented below, the linear order on the
vertices of the directed intersection graphs makes it easy to observe the
gaps between terminal chords.

But unfortunately things are not straightforward and at this point we
need to relabel the chords of our diagrams in a new order called the inter-
section order.

This order is defined recursively directly on the chord diagrams or on
their intersection diagrams. We choose this second option and we express
this new order as a permutation of the counterclockwise order.

Definition 3.4. Let X be a rooted connected chord diagram of degree n
with its sequence of chords (1, 2, . . . , n) in the counterclockwise order and
I(X) its intersection diagram. Apply the following recursive procedure:
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(1) consider the graph I(X) and delete the edges going out of its smallest
vertex, the vertex 1;

(2) obtain k connected components I1(X) = {1}, I2(X), . . . , Ik(X) where
the smallest vertex of Ip(X) is larger than the smallest vertex of Iq(X)
when q < p;

(3) then each connected component Ip(X) is associated to its sequence of
vertices (x1,p, x2,p, . . .) in counterclockwise order. This defines a per-
mutation (1, 2, . . . , n) �→ (1, x1,1, x2,1, . . . , x1,2, x2,2, . . . , x1,k, x2,k, . . .);

(4) apply this procedure recursively to each Ip(X), (x1,p, x2,p, . . .) until we
are left with n singleton;

This defines a permutation σX : (1, 2, . . . , n) �→ (σ1, σ2, . . . , σn) that
we call the intersection order of X.

This procedure is easily understood on an example:

where each step corresponds to rearranging the elements of each block with
respect to their smallest label as prescribed in the definition.

So finally we obtain the chord diagram and its corresponding intersection
diagram now labelled in the intersection order given by σX = (1243):
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Here is another example of calculation of the intersection order illustrating
this time what happens in general:

So finally we get the following chord diagram together with its intersection
diagram in the intersection order given by σX = (12368745):

If I(X) is a directed intersection graph we denote by Iσ(X) the graph
obtained by relabelling the vertices with the permutation σX . This operation
is an automorphism of the graph I(X) so if i was a terminal (respectively
initial) chord of X in the counterclockwise order, σi = σX(i) is a terminal
(respectively initial) chord of X in the intersection order.

For chord diagrams of small degree the intersection order and the coun-
terclockwise order coincide most of the time. It is only at higher degrees
that we start to see the differences between these orders as one can observe
on some families of examples given below.

Definition 3.5. Let X be a rooted connected chord diagram with intersec-
tion order σX = (σ1, . . . , σn). The sequence of terminal chords of X in the
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intersection order is denoted by Terσ(X) = (σi1 , . . . , σik
) with σi1 < σi2 <

· · · < σik
. We associate to Terσ(X) the sequence of consecutive gaps between

terminal chords in the intersection order:

δ(X) = (σi2 − σi1 , σi3 − σi2 , . . . , σik
− σik−1).

We denote by b(X) the first element of Terσ(X), i.e, the smallest ter-
minal chord in the intersection order.

It is easier to handle sequences of gaps δ(X) with constant lengths over
the chord diagrams with constant degree. So if X has degree n and δ(X) =
(δ1, . . . , δk) we introduce:

δ̄(X) = (0, . . . , 0,︸ ︷︷ ︸
n−k−1times

δ1, . . . , δk),

so that δ̄(X) has length n− 1 if X has degree n. The gaps are then linked
to the size of the diagram by a simple relation.

Lemma 3.6. For X a rooted connected chord diagram let g(X) be the sum
of its gaps, i.e., the sum of the elements of δ(X). We have the relation:

g(X) + b(X) = |X|.

Proof. Using the notation of the previous definition the sum over all the
gaps reduces to a telescopic sum:

g(X) = δ1 + · · ·+ δk = σi2 − σi1 + σi3 − σi2 + · · ·+ σik
− σik−1 = σik

− σi1 .

But by definition σi1 = b(X) and σik
= |X| since the last chord is always

terminal. So we get g(X) = |X| − b(X). �

These are the objects that index the monomials in fj appearing in the
γk expansions and we define:

fX = fn−k−1
0 fδ1 fδ2 . . . fδk

.

Now that we understand the correspondence between the monomials
in the chord diagram expansion and the gaps separating terminal chords
we need to describe a decomposition of the chord diagrams. Any rooted
connected chord diagram of degree n defines 2n intervals on the outer circle
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that we label 0, 1, 2, . . . , 2n− 1 starting with 0 for the interval preceding the
root and progressing counterclockwise:

3.2. Decomposition and trees

The rest of the constructions are based on the following insertion operation
defined on rooted connected chord diagrams.

Definition 3.7. Let m, n ∈ N
∗ and 0 < i ≤ 2n− 1. Define the operation

�

(0, i): RCCD(m)×RCCD(n) −→ RCCD(m + n) for all X ∈ RCCD(m) and
Y ∈ RCCD(n) by

that is the operation of insertion of X in Y by placing the root of X in
the interval 0 of Y and the rest of X in the ith interval of Y . The root of
X

�

(0, i) Y is the root of X.

Observe that any rooted connected chord diagram can be decomposed
canonically using this insertion operation. A share in a chord diagram is
formed by two arcs on the outer circle such that if one endpoint of a chord
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is in the share the other endpoint must also be in the share, e.g.,

the grey area corresponds to the share of the arcs (a−, a+).

Definition 3.8. Let X be a rooted connected chord diagram and Ẋ the
share of X formed on one side by the root and on the other side by what
is left of the diagram after deleting consecutively the root-chord of X then
the first connected component, for the induced counterclockwise order, of X
minus the root-chord. Then the root-share decomposition of X is

X = Ẋ
�

(0, i) (X \ Ẋ)

where X \ Ẋ is the diagram obtained by removing the chords of Ẋ from X
and taking the root to be the second chord in the counterclockwise order
of X.

Here is an example of root-share decomposition:

Then we can use the root-share decomposition to construct planar binary
trees from those chord diagrams. Let PBT denote the set of rooted planar
binary trees counted by their number of leaves. We label the edges of those
trees from 1 to 2n− 1 by a preorder traversal starting with 1 for the root
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edge. Here are some examples:

Then we can define the following insertion operation on trees.

Definition 3.9. Let m, n ∈ N
∗ and 0 < i ≤ 2n− 1. Define the operation

�

i :
PBT (m)× PBT (n) −→ PBT (n + m) for all A ∈ PBT (m) and B ∈
PBT (n) by

that is the operation of insertion by the root edge of A on the left of the ith
edge in B. The root of A

�

i B is the root of B if i �= 1 or the newly created
vertex if i = 1.

Matching the insertion operations on the trees and chord diagrams we
obtain a correspondence defined recursively.

Definition 3.10. The map T : RCCD −→ PBT c, the set of rooted planar
binary trees with leaves coloured by the integers, is defined recursively on
the chord diagrams labelled in the intersection order by:

It is very important that the T -map is defined for rooted connected
chord diagrams with chords labelled in the intersection order, and not the
counterclockwise order, as it gives a simple characterisation of the image of
T . We will come back to that in the next section.
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These are all the objects we need to introduce in order to prove the chord
diagrams expansion giving the formal solution to the Dyson–Schwinger equa-
tion (1.1) however there are still many interesting combinatorial questions,
like the statistical distribution of the sequences of gaps, that will need further
study.

3.3. Examples

Next we give some examples of families of rooted connected chord diagrams
for which all the objects introduced above are easily computed.

Example 3.11. One of the simplest family of rooted connected chord dia-
grams consists in the cycloids. It is an example of a family of diagrams which
are minimally connected since removing any of the chords (except the first
and the last one) results in a disconnected chord diagram. They are the
diagrams such that the ith chord intersects only the i + 1th chord:

The directed intersection diagram of the cycloid with n chords is simply
the line:

I(Cycn) 1 −→ 2 −→ 3 −→ . . . . . . . . . −→ n.

In particular, its intersection order coincide with the counterclockwise
order so we get the identity permutation σCycn

= (123, . . . , n). Moreover
there is only one terminal chord, Terσ(Cycn) = (n), which is then the small-
est terminal chord of (Cycn). With only one terminal chord the sequence of
gaps is empty, δ(X) = ∅. We associate to this chord diagram the sequence
with length n− 1:

δ̄(Cycn) = (0, 0, . . . , 0).
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Finally, it is easy to compute the planar binary tree corresponding to the
cycloid with n chords. An easy induction gives that for all n ∈ N

∗ we have:

Example 3.12. Another very simple family of diagrams is given by the
wheels with n spokes. If the cycloids formed a family of minimally connected
diagrams the wheel spokes are then maximally connected since removing any
chord leaves us with a connected chord diagram.

Any pair of chords intersects in (Wn) so its intersection diagram is a
directed version of the complete graph on n vertices:

Once more the counterclockwise order coincides with the intersection
order and we get the identity permutation σWn

= (123, . . . , n). Also there
is only one terminal chord, Terσ(Wn) = (n) which is the smallest terminal
chord of Wn. With only one terminal chord the sequence of gaps is empty
δ(X) = ∅ and we associate to this chord diagram the sequence with length
n− 1:

δ̄(Wn) = (0, 0, . . . , 0).

It is also easy to compute the planar binary tree corresponding to the
wheel spoke with n chords. An induction on the number of chords gives for
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all n ∈ N
∗

Example 3.13. We can also construct the family of ladders which max-
imize the number of terminal chords one can get for a connected chord
diagram with a fixed number of chords:

In Ln the first chord intersects all the other ones so its intersection
diagram has one edge (1, k) for each k ∈ [[2, n]]:

So in Ln we have n− 1 terminal chords, Ter(Ln) = {2, 3, . . . , n} and
the gap between any two consecutive chords is 1 hence δ(Ln) = (1, 1, . . . , 1).
Once more the counterclockwise order coincide with the intersection order
so σLn

= (123, . . . , n).
We can compute inductively the planar binary tree corresponding to Ln.

For all n ∈ N
∗ we have:

Example 3.14. Here is a family of rooted connected chord diagrams that
shows we can get any sequence of gaps and also illustrates the difference
between the counterclockwise order and the intersection order:
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Here CWn(β1, . . . , βn) is formed by a wheel spoke with n chords such
that the target of the kth spoke lies in the first interval of a block Bk

consisting of cycloid with βk chords.
The intersection diagram of CWn(β1, . . . , βn) consists of two main parts

mixing what we already know for the wheels and for the cycloids. First, the
vertices from 1 to n form a directed version of the complete graph on n
vertices then we have n disjoint lines corresponding to the cycloids B1 to
Bn and for each k ∈ [[1, n]] an edge directed from the kth vertex to the initial
vertex of the block I(Bk).

The terminal chords of CWn(β1, . . . , βn) are the last chords of each of
the n cycloids. This time the intersection order does not corresponds to the
counterclockwise order. The first n chords are in a wheel spokes configuration
so their counterclockwise order is preserved. Inside each block Bk, since we
have cycloids, the counterclockwise order is preserved. However, the first
spoke lies in the block B1, so in the intersection order this is the last block.
The second spoke lies in B2 which becomes the next to last block, and so
on. We end up with the permutation:

σCWn
= (1 · · ·n Bn · · ·B2 B1).

In particular we obtain CW3(2, 1, 3) in the intersection order:
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The sequence of gaps is then the list of the differences between the
consecutive terminal chords of the cycloid blocks in their intersection order:

δ(CWn(β1, . . . , βn)) = (σCWn
(βn−1)− σCWn

(βn), . . . ,
σCWn

(β1)− σCWn
(β2)).

A simple induction gives the corresponding planar binary tree. For all n ∈ N
∗

we have:

where T (Bk) corresponds to the tree of the kth cycloid block.

4. Recurrences

In this section, we will use the constructions above to prove some technical
lemmas and then the main theorem.

4.1. A refinement of a recurrence of Stein

Let cn = |RCCD(n)|. A classical recurrence for cn is

cn = (n− 1)
n−1∑
k=1

ckcn−k for n ≥ 2 c1 = 1

due to Stein [14]. Nijenhuis and Wilf [13] give a proof of this recurrence
using the root-share decomposition. What their proof naturally gives is the
equivalent recurrence

cn =
n−1∑
k=1

(2k − 1)ckcn−k for n ≥ 2 c1 = 1

By following essentially the same proof while keeping track of the ter-
minal chords, we get the following:
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Proposition 4.1. Let

gi =
∑

C∈RCCD
b(C)≥i

x|C|fCfb(C)−i

then

gk = g1

(
2x

d

dx
− 1

)
gk−1 for k ≥ 2.

Before proving the recurrence lets see how it refines the classic chord
diagram recurrence. Note that the lowest power of x appearing in gk is k.
Write

gk =
∑
i≥k

gk,ix
i

so

gk,i =
∑
C

|C|=i
b(C)≥i

fCfb(C)−i.

Then Proposition 4.1 is the statement

(4.1) gk,i =
i−1∑
�=1

(2�− 1)g1,i−�gk−1,� for 2 ≤ k ≤ i,

which has the same form as the classic chord diagram recurrence, but with
the gk,i rather than simple counts.

The key to the proof is the behaviour of δ̄ in the root-share decomposi-
tion. This is encapsulated in the following lemma.

Lemma 4.2. Let C1 and C2 be rooted connected chord diagrams, and take
1 ≤ m ≤ 2|C2| − 1. Let

C = C1

�

(0, m) C2.

Then for any k for which all terms are defined we have

fCfb(C)−k = fC1fb(C1)−1fC2fb(C2)−k+1.

Proof. The terminal chords of C are the terminal chords of C1 along with
the terminal chords of C2. Furthermore, if c is a chord in C2 with index i
in the intersection order, then c has index i + 1 in the intersection order in
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C, and if c is a terminal chord in C1 with index j in the intersection order
then c has index j + |C2| in the intersection order in C. This gives that

b(C) = b(C2) + 1.

Also the last terminal chord of C2 is the last chord of C2 which has index
|C2|+ 1 in C and the next terminal chord in C is the first terminal chord of
C1, which has index b(C1) + |C2| in C.

So δ̄(C) is the concatenation of δ̄(C2), b(C1) + |C2| − (|C2|+ 1)− 1, and
δ̄(C1). Simplifying

δ̄(C) = (δ̄(C2), b(C1)− 2, δ̄(C1)).

The result follows. �
Proof of Proposition 4.1. Take k ≥ 2.

Take two rooted connected chord diagrams C1 and C2, where |C2| = �.
Take 1 ≤ m ≤ 2�− 1 and let

C = C1

�

(0, m) C2.

By Lemma 4.2

fCfb(C)−k = fC1fb(C1)−1fC2fb(C2)−k+1,

so the term contributed to the right-hand side of (4.1) by C is the same as
the term contributed to the left-hand side of (4.1) by C1 and C2. Since the
root share decomposition is unique and there are 2�− 1 choices for m, we
thus obtain (4.1) that gives the proposition. �

Scaling to match what we will ultimately need, if we let

γi =
(−1)i

i!
gi

then Proposition 4.1 gives

(4.2) γk(x) =
1
k
γ1(x)

(
−1 + 2x

d

dx

)
γk−1(x) for k ≥ 2.

4.2. A tree recurrence

The goal of this subsection is the following somewhat technical recurrence.
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Proposition 4.3.

(4.3)
∑

C∈RCCD
|C|=i+1

b(C)=j+1

fC =
i∑

k=1

j∑
�=1

(
j

�

)
⎛
⎜⎜⎜⎜⎜⎝

∑
C∈RCCD
|C|=k
b(C)≥�

fCfb(C)−�

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

∑
C∈RCCD
|C|=i−k+1

b(C)=j−�+1

fC

⎞
⎟⎟⎟⎟⎟⎠

for i ≥ 1 and j ≥ 1.

This recurrence comes from the decomposition of T (C) into the left and
right subtrees of the root. This is a very natural decomposition at the level
of trees, but it is not at all apparent at the level of chord diagrams as can
be seen on the following examples where the chords coloured in grey are in
the right subtree, the chords in black are in the left subtree and the subtree
of the root-share has dotted edges:

In order to prove Proposition 4.3 we need to characterize T (RCCD) and
then we need some technical lemmas.

Definition 4.4. The branch of a planar binary tree which follows the right
child at each vertex will be called the fully right branch. The number of
leaves of a tree t will be denoted �(t)

The elements of T (RCCD) are built inductively by insertions. These
insertions shift the labels of the leaves in the intersection order in a very
simple manner. This is what the following property encodes.

Lemma 4.5. Trees in T (RCCD) have the following property:

P1: At any vertex w, the smallest label in the left subtree of w is smaller
than the label at the end of the fully right branch from w.

Proof. After we have made a critical observation concerning the properties
of the intersection order, the proof follows from an elementary induction.
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Let X and Y be elements of RCCD whose sequence of chords labelled in
the intersection order are respectively (σi1 , . . . , σin

) and (πi1 , . . . , πim
). Then

for any 0 < k ≤ 2m− 1, the chords of X
�

(0, k) Y in the intersection order
are labelled:

σi1 < πi1 + 1 < · · · < πim
+ 1 < σi2 + m < · · · < σin

+ m

since the connected component attached to the root coming from X comes
last in the definition of the intersection order.

The rest follows immediately by induction on the number of leaves of
our trees. The base case is obvious:

So assume that any element of T (RCCD) with at most n− 1 leaves has
the desired property and now consider a tree T with n leaves.

Because of the root-share decomposition there is some integer k so that
we can write T = T0

�

k T1 with T0, T1 ∈ T (RCCD) having less than n leaves.
There are three possibilities:

(1) if w is the insertion vertex in T then the left subtree must contain the
label 1 and the property is true;

(2) if w is a vertex of T that was a vertex of T0 then by the induction
hypothesis the property must hold since by the preliminary remark the
labels in the subtree at w have all been shifted by �(T1);

(3) if w is a vertex of T that was a vertex of T1 then by the induction
hypothesis the property must hold since by the preliminary remark the
labels in the subtree at w have all been shifted by 1;

So the property holds at any vertex of T which concludes the induction.
�

Definition 4.6. Given T ∈ PBT c, by removing the subtree rooted at a
vertex w we mean deleting this subtree and replacing the parent of w with
its other child.

Given T ∈ PBT c which satisfies P1, define the smallest removable
subtree containing 1 to be the minimal subtree rooted at some w of T
which has 1 as a leaf and which can be removed while maintaining P1.
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Here are some trees where the smallest removable subtrees have been marked
in grey:

Lemma 4.7. A tree T in T (RCCD) has the following property:

P2: Let H be the smallest removable subtree of T containing 1. H has leaf
labels 1, �(T )− �(H) + 2, �(T )− �(H) + 3, . . . , �(T ).

Proof. Let T , T1, T2 as in the previous proof, v be a vertex of T and C, C1,
C2 the chord diagrams corresponding to T , T1, T2 respectively.

H cannot be strictly contained in T2 as if it were then when H is removed
the leaves of the left child of v are labelled with some labels from |C2|+ 1
to |C| while all other labels in the tree are at most |C2|. Thus P1 is not
satisfied.

T2 cannot be strictly contained in H as T2 is a removable subtree of T
by construction.

Thus T2 = H and as a consequence H has P2. �
Say a tree satisfies P2 recursively if it satisfies P2 and what remains

after removing the largest removable subtree containing 1 satisfies P2 and
so on.

Theorem 4.8. T (RCCD) is the set of T ∈ PBT c which satisfy P1 and
satisfy P2 recursively.

Proof. By the preceding lemmas every T ∈ T (RCCD) satisfies P1 and sat-
isfies P2 recursively.

To show that these properties characterize the image, we will inductively
define the inverse of T . Map the tree with only one vertex to the rooted chord
diagram with only one chord. Consider T ∈ PBT c with at least 2 vertices
and which satisfies P1 and satisfies P2 recursively. Let T2 be the largest
removable subtree of T containing 1. Let T1 be T with T2 removed. Let k
be the index of the vertex where T2 was inserted. Shift the vertex labels of
T1 and T2 preserving their orders. Inductively associate T1 and T2 to chord

diagrams C1 and C2. Associate T to C1

�

(0, k) C2.
This construction is clearly inverse to T . �
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Next, we need one further nice observation and three technical lemmas.

Proposition 4.9. Let C be a connected rooted chord diagram. Then b(C)
is the label of the leaf of the fully right branch of T (C).

Proof. The result is clear if |C| = 1.
Suppose |C| > 1. Let C1, C2, T , T1, and T2 be as in the above proofs. By

construction b(C) = b(C2) + 1. The insertion of T2 into T1 does not affect
the fully right branch except to shift the labels of T2 up by 1. By induction
the label of the leaf of the fully right branch of T2 is b(C2) and so the label
of the leaf of the fully right branch of T is b(C2) + 1 = b(C). �

Lemma 4.10. Let C ∈ RCCD with |C| ≥ 2. Let T = T (C), and let H1 and
H2 be the left and right subtrees, respectively, of T . Suppose D1 and D2 are
chord diagrams with T (Di) = Hi. Then

b(D1) ≥ b(C)− b(D2).

Another way to say this is that the leaf label of the fully right branch
of H1, with labels shifted to be consecutive, is ≥ b(C)− b(D2). That is, this
lemma tells us that D1 and D2 decompose C into pieces, which satisfy the
correct conditions to be from a term on the right-hand side of (4.3).

Proof. Let b(C) = j + 1 and let b(D2) = j − � + 1, so � = b(C)− b(D2). b(C)
is the label of the leaf of the fully right branch of T and b(D2) is the label
of the leaf of the fully right branch of H2, but these are the same leaf, the
only difference is the label shifting. Thus there must be � labels on the H1

side of t which are less than b(C).

Let C = C1

�

(0, k) C2 be the root-share decomposition of C. Let Ti =
T (Ci), and let v be the kth vertex of T , that is the insertion vertex. The
proof of the lemma is an induction on the size of C2.

If |C2| = 1 then C2 = D2 and b(C) = 2. Also b(D2) = 1, so � = 1, and
since 1 is the smallest label b(D1) ≥ 1 = �.

Now suppose |C2| > 1. By induction the result holds for C2. Let D′
1 and

D′
2 be the chord diagrams corresponding to the left and right subtrees of T2.

Now consider how C1 is inserted into C2. There are three cases

(1) If v is the root of T , then C1 = D1 and |D1| = 1, so the lemma is true.

(2) If v is in D1 then b(D1) = b(D′
1) + 1 and b(C) = b(C2) + 1 as label 1

causes additional shifting while b(D2) = b(D′
2) since the right subtree
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is not affected. The induction hypothesis says b(D′
1) ≥ b(C2)− b(D′

2).
Thus

b(D1) ≥ b(C2)− b(D′
2) + 1 = b(C)− 1− b(D1) + 1 = b(C)− b(D1).

(3) If v is in D2 then b(D1) = b(D′
1) since the right subtree is not affected,

while b(D2) = b(D′
2) + 1 and b(C) = b(C2) + 1. Thus

b(D1) ≥ b(C2)− b(D′
2) = b(C)− b(D2).

This completes the proof. �

Lemma 4.11. Let C ∈ RCCD with |C| ≥ 2. Let T = T (C), and let H1 and
H2 be the left and right subtrees, respectively, of T . Suppose D1 and D2 are
chord diagrams with T (Di) = hi. Then

fC = fD1fb(D1)+b(D2)−b(C)fD2 .

Proof. Let C = C1

�

(0, k) C2 be the root-share decomposition of C. Let Ti =
T (Ci), and let v be the kth vertex of T . Lemma 4.2 gives

(4.4) fCfb(C)−k = fC1fb(C1)−1fC2fb(C2)−k+1.

If |C2| = 1 then C1 = D1, C2 = D2, k = 1, b(C) = 2, and b(D2) = 1,
so (4.4) gives the result.

Now assume |C2| > 1. Let D′
1 and D′

2 be the chord diagrams correspond-
ing to the left and right subtrees of T2. By induction the result holds for C2,
that is

(4.5) fC2 = fD′1fb(D′1)+b(D′2)−b(C2)fD′2 .

There are again three cases

(1) If v is the root of T , then k = 1 so C1 = D1 and C2 = D2. Also b(C2) =
b(C)− 1, and so (4.4) becomes the statement of the lemma.

(2) If v is in D1 then D1 is C1 inserted into the (k − 1)st slot of D′
1, and so

(4.6) fD1fb(D1)−k+1 = fC1fb(C1)−1fD′1fb(D′1)−k+2.
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Next, note that b(C) = b(C2) + 1 and b(D1) = b(D′
1) + 1 because insert-

ing shifts the labels up by 1 in the tree being inserted into. Then sub-
stituting (4.5) and (4.6) into (4.4) we get

fCfb(C)−k =
fD1fb(D1)−k+1

fD′1fb(D′1)−k+2
fD′1fb(D′1)+b(D′2)−b(C2)fD′2fb(C2)−k+1

= fD1fb(D1)+b(D2)−b(C)fD2fb(C)−k,

which implies the statement of the lemma.

(3) If v is in D2 then D2 is C1 inserted into the (k − 1− |D1|)st slot of D′
2,

and so

fD2fb(D2)−k+1+|D1| = fC1fb(C1)−1fD′2fb(D′2)−k+|D1|+2.

Similarly to the previous case, b(C) = b(C2) + 1 and b(D2) = b(D′
2) + 1.

So substituting

fCfb(C)−k =
fD2fb(D2)−k+1+|D1|
fD′2fb(D′2)−k+|D1|+2

fD1fb(D1)+b(D′2)−b(C2)fD′2fb(C2)−k+1

= fD2fD1fb(D1)+b(D2)−b(C)fb(C)−k,

which implies the statement of the lemma.

All together, by induction, the result is proved. �

Lemma 4.12. Let D1, D2 ∈ RCCD and let Gi = T (Di). For every choice
of j with j ≥ b(D2)− 1 and b(D1) ≥ j − b(D2) + 1 and for every shuffle of
the first j labels of G1 and the first b(D2)− 1 labels of G2, there is a unique
T in T (RCCD) with G1 as left child and G2 as right child.

Proof. Proceed again by induction. Suppose G1 and G2 both have just one
vertex. So T is the tree with a root with two leaves. In view of P1 there is
exactly one way to label this so that it is in the image of T . Furthermore,
b(D2)− 1 = 1− 1 = 0, so the shuffle is trivial.

Take |g1|+ |g2| > 2. Build a tree T with G1 as right child, G2 as left
child, but only label the vertices which had the first j labels in G1 and the
first b(D2)− 1 labels in G2, and label these leaves by the specified shuffle.
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With this labelling there is a leaf with label 1. Say 1 is on the Gi side
(i = 1 or i = 2). Let G′i be Gi with the smallest removable subtree of Gi

containing 1 removed. Let T ′ be T built with G′i in place of Gi. By induction
we have a unique labelling of T ′ consistent with the given shuffle.

Shift all the labels in T ′ up by one, and reinsert the smallest removable
subtree containing 1 with all labels other than 1 shifted to be larger than
all labels in T ′. This gives a labelling of T which is in the image T .

To show uniqueness, suppose there were another labelling of T consistent
with the given shuffle. By removing largest removable subtrees containing
1 as long as they match, we may assume that the two labellings of T have
different largest removable subtrees containing 1. However removability of a
subtree is not sensitive to whether the labels are consecutive, but the two
labellings of T only differ by how they shuffle the labels of G1 and G2, so
this is impossible. �

Now we are ready to prove Proposition 4.3.

Proof of Proposition 4.3. Take a connected rooted chord diagram C with
|C| ≥ 2, and hence b(C) ≥ 2. Let the associated tree be T = T (C). Let H1

and H2 be the left and right subtrees respectively of T . H1 and H2 satisfy
P1 and satisfy P2 recursively since T did; thus H1 and H2 are in the image
of T . Let D1 and D2 be the chord diagrams corresponding to H1 and H2.

Let b(C) = j + 1 and let b(D2) = j − � + 1, so � = b(C)− b(D2). b(C) is
the label of the leaf of the fully right branch of T and b(D2) is the label of
the leaf of the fully right branch of H2, but these are the same leaf, the only
difference is the label shifting. Thus there must be � labels on the H1 side
of T which are less than b(C).

By Lemma 4.10 D1 and D2 decompose C into pieces which satisfy the
correct conditions to be from a term on the right-hand side of (4.3). Fur-
thermore by Lemma 4.11, they contribute the correct monomial in the fi to
each side.

Now we need to argue the other way. Suppose D1, D2 ∈ RCCD. Viewing
D1 and D2 as contributing to a term on the left-hand side of the lemma, we
need to see that they can be reattached to get a chord diagram C, and that
this can be done

(
j
�

)
ways.

Let G1 = T (D1) and G2 = T (D2). Clearly, we wish to build a tree with
G1 as the right child of the root and G2 as the left child. The question is
how to shuffle the leaf labels of G1 and G2 in building the new tree. Lemma
4.12 tells us that the answer is

(
j
�

)
times, as desired. �



A chord diagram expansion 279

4.3. The main theorem

Theorem 4.13.

γi(x) =
(−1)i

i!

∑
C∈RCCD
b(C)≥i

x|C|fCfb(C)−i

solves the Dyson–Schwinger equation

G(x, L) = 1− xG(x, ∂−ρ)−1(e−Lρ − 1)F (ρ)
∣∣
ρ=0

where

F (ρ) =
f0

ρ
+ f1 + f2ρ + f3ρ

2 + · · ·

G(x, L) = 1−
∑
n≥1

γn(x)Ln.

Proof. By [19] chapter 4, the γi which solve this Dyson–Schwinger equation
satisfy

γk(x) =
1
k
γ1(x)

(
−1 + 2x

d

dx

)
γk−1(x) for k ≥ 2.

This γk recurrence is a rephrasing of the renormalization group equation for
the Dyson–Schwinger equation.

By Proposition 4.1 (see in particular the formulation in (4.2)) the γi

defined in the statement of the theorem satisfy the same recurrence. Thus it
suffices to show that γ1 as defined in the statement of the theorem satisfies
the Dyson–Schwinger equation; namely, we only need to check that

(4.7) γ1 = x

⎛
⎝1−

∑
k≥1

γk
dk

d(−ρ)k

⎞
⎠−1

(−ρ)F (ρ)
∣∣
ρ=0

.

To simplify signs let

gi = (−1)ii!γi.

This agrees with the definition of gi from Proposition 4.1. Rephrasing in
terms of the gk and expanding the geometric series, (4.7) is equivalent
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to checking

g1 = x
∑
n≥0

⎛
⎝∑

�≥1

g�
1
�!

d�

dρ�

⎞
⎠n

(f0 + f1ρ + f2ρ
2 + · · · )

∣∣
ρ=0

.

A trivial calculation gives

x
∑
n≥0

⎛
⎝∑

�≥1

g�
1
�!

d�

dρ�

⎞
⎠n

(f0 + f1ρ + f2ρ
2 + · · · )

∣∣
ρ=0

= xf0 + x
∑
n≥1

⎛
⎝∑

�≥1

g�
1
�!

d�

dρ�

⎞
⎠n

(f0 + f1ρ + f2ρ
2 + · · · )

∣∣
ρ=0

.

So it suffices to show

g1 = xf0 + x
∑
n≥1

⎛
⎝∑

�≥1

g�
1
�!

d�

dρ�

⎞
⎠n

(f0 + f1ρ + f2ρ
2 + · · · )

∣∣
ρ=0

.

This is the content of the next lemma, following which the proof is complete.
�

Lemma 4.14. Let

gi =
∑

C∈RCCD
b(C)≥i

x|C|fCfb(C)−i,

then

(4.8) g1 = xf0 + x
∑
n≥1

⎛
⎝∑

�≥1

g�
1
�!

d�

dρ�

⎞
⎠n

(f0 + f1ρ + f2ρ
2 + · · · )

∣∣
ρ=0

.

Proof. One can check directly that the linear term of g1 is correct.
For i ≥ 1 we have

[xi+1]g1 =
∑

C∈RCCD
b(C)≥1
|C|=i+1

fCfb(C)−1,
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while the coefficient of xi+1 on the right-hand side of (4.8) is

[xi]
∑
n≥1

⎛
⎝∑

�≥1

g�
1
�!

d�

dρ�

⎞
⎠n

(f0 + f1ρ + f2ρ
2 + · · · )

∣∣
ρ=0

One possible way for these to be equal is if the fj explicitly showing on the
right-hand side matches with the fb(C)−1 from the left-hand side. That is it
would suffice to show for 1 ≤ j ≤ i

(4.9)
∑

C∈RCCD
b(C)=j+1
|C|=i+1

fC = [xi]
∑
n≥1

⎛
⎝∑

�≥1

g�
1
�!

d�

dρ�

⎞
⎠n

ρj
∣∣
ρ=0

.

To save space, let Gρ =
∑

�≥1 g�
1
�!

d�

dρ� , and let Fi,j = [xi]
∑

n≥0

(∑
�≥1 g�

1
�!

d�

dρ�

)n
ρj

∣∣
ρ=0

. Note that for j ≥ 1, the n = 0 term does not contribute and
so Fi,j is the right-hand side of (4.9). Calculate, for 1 ≤ j ≤ i

Fi,j = [xi]
∑
n≥1

(Gρ)
n ρj

∣∣
ρ=0

=
i∑

k=1

(
[xk]Gρ

)⎛
⎝[xi−k]

∑
n≥0

(Gρ)
n

⎞
⎠ ρj

∣∣
ρ=0

=
i∑

k=1

j∑
�=1

(
j

�

)(
[xk]Gdρ

�
∣∣
ρ=0

)⎛
⎝[xi−k]

∑
n≥0

(Gρ)
n ρj−�

∣∣
ρ=0

⎞
⎠

=
i∑

k=1

j∑
�=1

(
j

�

)(
[xk]g�

)
Fi−k,j−�

=
i∑

k=1

j∑
�=1

(
j

�

)
⎛
⎜⎜⎜⎜⎜⎝

∑
C∈RCCD
b(C)≥�
|C|=k

fi(C)fb(C)−�

⎞
⎟⎟⎟⎟⎟⎠Fi−k,j−�.
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Thus, we have a recurrence which gives Fi,j . To prove the lemma it
suffices to prove (4.9); i.e., it suffices to prove that

Fi,j =
∑

C∈RCCD
b(C)=j+1
|C|=i+1

fC

for 1 ≤ j ≤ i. It still suffices to prove it with extended bounds 0 ≤ j ≤ i. To
do this we check the initial terms directly and then check that

∑
C∈RCCD
b(C)=j+1
|C|=i+1

fC

satisfies the recurrence for Fi,j . The second of these is the content of Propo-
sition 4.3. For the first of these, if j = 0 then

Fi,0 = [xi]
∑
n≥0

⎛
⎝∑

�≥1

g�
1
�!

d�

dρ�

⎞
⎠n

ρ0
∣∣
ρ=0

= [xi]1 =

{
1 if i = 0,

0 otherwise,

while

∑
C∈RCCD
b(C)=0+1
|C|=i+1

fC =

{
1 if i = 0,

0 otherwise,

as the only rooted connected cord diagram with b(C) = 1 is the diagram
with exactly one chord. This completes the proof. �

5. Consequences and conclusions

5.1. Analytic properties

Given the Laurent series expansion F (ρ) we obtained a formal solution
G(x, L) of the analytic Dyson–Schwinger equation (2.2):

{
G(x, L) = 1−∑

k∈N∗ γk(x)Lk,

γk(x) ∈ C[[x]]
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with an explicit expression for the series γk(x) in terms of the coefficients
of F (ρ),

γk(x) =
∑

X∈RCCD
b(x)≥k

fX fb(X)−k x|X|.

So by choosing the analytic properties of F (ρ) we are on good grounds
to study the analytic properties of the γk. This will be done in a future work.

As a preview lets look at an example of Gevrey classification of the γk.
Remember that we say γk(x) is a series of Gevrey class q ∈ R+ if there are
positive constants Kk and Ak such that for all n ∈ N its coefficients satisfy

|γk,n| ≤ AkK
n
k (n!)q.

We have the following result.

Proposition 5.1. Assume that there is a positive constant C such that for
all n ∈ N the coefficients of F (ρ) satisfy |fn| ≤ Cn+1, then for all k ∈ N

∗ the
formal power series γk(x) is of Gevrey class 1.

Proof. We need to show that for all k ∈ N
∗ and n ∈ N

∣∣∣∣∣∣
∑

|X|=n,b(X)≥k

fX fb(X)−k

∣∣∣∣∣∣ ≤ Ak Bn
k n!

with Ak, Bk ∈ R+. To do so we write the monomial fX = f
p0(X)
0 · · · fpn(X)

n

with pi(X) the number of times the factor fi appears in the product fX .
We have p0(X) + · · ·+ pn(X) = n− 1, the length of δ̄(X). So we get:

∣∣∣∣∣∣
∑

|X|=n, b(X)≥k

f
p0(X)
0 · · · fpn(X)

n fb(X)−k

∣∣∣∣∣∣
≤

∑
|X|=n, b(X)≥k

|f0|p0(X) · · · |fn|pn(X) |fb(X)−k|

≤
∑

|X|=n, b(X)≥k

Cp0(X)+2 p1(X)+···+(n+1) pn(X) Cb(X)−k+1.
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We can decompose the exponent of C as

p0(X) + 2p1(X) + · · ·+ (n + 1)pn(X)
= [p0(X) + · · ·+ pn(X)] + [p1(X) + 2p2(X) + · · ·+ npn(X)]
= (n− 1) + g(X),

where g(X) is the sum over the gaps of X. Using Lemma 3.6 in the second
inequality we get∣∣∣∣∣∣

∑
|X|=n, b(X)≥k

fX fb(X)−k

∣∣∣∣∣∣ ≤
∑

|X|=n, b(X)≥k

Cg(X)+n−1+b(X)−k+1 ≤ C2n−k cn,k

with cn,k the number of rooted connected chord diagrams of degree n with
smallest terminal chord larger than k. So for all k ∈ N this is bounded by
the total number of rooted chord diagrams of degree n i.e.

cn,k ≤ (2n− 1)!! ≤ (2n)!! = 2n n!.

Putting everything together we get the desired bound:∣∣∣∣∣∣
∑

|X|=n, b(X)≥k

fX fb(X)−k

∣∣∣∣∣∣ ≤ C−k (2C2)n n!.

�

For the γk satisfying the conditions of this proposition, applying the
Borel transform gives series with a non zero radius of convergence so that
they are amenable to a study of their Borel summability properties (see [1]).
In particular, for γ1, this observation opens the road for a study of the
global analytic properties (value distribution, asymptotics at infinity) of the
β function of this model.

5.2. P and the differential equations

In [19] more general Dyson–Schwinger equations, including the one case
considered in the present paper, are converted into differential equations
which are then analysed in some particular cases in [15, 16]. The principle
difficulty of this method is that this conversion process builds a new series
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P (x) out of the primitive graphs. P is not generally well understood and so
all results must be conditional on assumptions on P .

The chord diagram techniques considered above give a solution to the
one particular Dyson–Schwinger equation (2.2), and so in that case give

P (x) =
∑

C∈RCCD
b(C)≥1

x|C|fC(fb(C)−2 − fb(C)−1)

This shows us that in this case P (x) has an expansion which is a modified
form of the expansion γ1(x), with the final factor of fk replaced by fk−1 −
fk. We expect a similar overall shape to hold for other Dyson–Schwinger
equations which gives us some basis on which to evaluate the reasonableness
of assumptions on P .

5.3. Four-term relation

We are tempted to try to make a connection with the classical subject of
the study of algebraic structures on chord diagrams (and their linear/rooted
version) linked to the theory of Vassiliev invariants of knots [8]. Indeed non
connected chord diagrams do not appear in the γk expansions, which we can
interpret as saying that the monomials already satisfy a one-term relation.
Hence it seems legitimate to ask whether or not these monomials define
weight systems on rooted chord diagrams. So do these products of fk satisfy
a four-term relation? The answer is no in general. One can write down the
four-term sums for chord diagrams of small degrees and already observe that
if the fk are arbitrary then certain sums will not vanish.

Of course this does not rule out the possibility of a four-term relation
holding for some specific F (ρ) and it would be interesting to exhibit non
trivial examples of such a situation. Investigating these questions would
require a more detailed understanding of the distribution of terminal chords
in the rooted connected chord diagrams and will be done in a future work.

Appendix A. The objects

The following table contains all the rooted connected chord diagrams up to 4
chords together with their corresponding rooted planar binary trees, smallest
terminal chords b(C) and monomials fC . The chords of the diagrams and
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the leaves of the trees are labelled in the intersection order.
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