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The Mathieu twisted twining genera, i.e., the analogues of Norton’s
generalized Moonshine functions, are constructed for the elliptic
genus of K3. It is shown that they satisfy the expected consistency
conditions, and that their behaviour under modular transforma-
tions is controlled by a 3-cocycle in H3(M24, U(1)), just as for the
case of holomorphic orbifolds. This suggests that a holomorphic
VOA may be underlying Mathieu Moonshine.

1. Introduction 147

1.1. Monstrous Moonshine 147

1.2. Mathieu Moonshine 148

1.3. Generalized Monstrous Moonshine 149

1.4. Generalized Mathieu Moonshine 149

1.5. Outline 150

2. Twisted twining genera 151

2.1. Properties of the twisted twining genera 152

2.2. Cohomological obstructions 154

2.3. Classification of independent twisted
twining genera 156

2.4. Modular properties of the twisted twining genera 158

2.5. Explicit twining genera 159

145



146 Matthias R. Gaberdiel et al.

3. Holomorphic orbifolds and group cohomology 160

3.1. Review of holomorphic orbifolds 161
3.1.1 Twisted twining characters. 162
3.1.2 Projective representations. 162
3.1.3 The underlying cohomology. 163

3.2. Application to Mathieu Moonshine 164

3.3. Determining the cohomology class 166

3.4. Computation of the twisted twining characters:
an example 171

3.5. Projective representations 174

4. K3 Orbifolds 175

4.1. The relabelling phenomenon 176

4.2. An example 178

4.3. Computation of a twisted twining genus 180

5. Conclusions 183

5.1. Summary 183

5.2. Open problems and future work 184

Acknowledgments 186

Appendix A. Details on the unobstructed twisted
twining genera 186

Appendix A.1.The characters φ2B,4A2
(group 13)

φ4B,4A3
(group 23) and φ4B,4A4

(group 24) 186

Appendix A.2.The cases φ3A,3A3
(group 33)

and φ3A,3B1
(group 34) 189

Appendix B. Some group cohomology 191



Generalized Mathieu Moonshine 147

Appendix C. Projective representations of finite groups 194

Appendix C.1.Central extension and orbifolds 196

Appendix D. Centralizers CM24
(g) and (projective)

character tables 197

Appendix D.1.Character Tables 198

Appendix E. Decompositions of twisted sectors 211

References 217

1. Introduction

1.1. Monstrous Moonshine

In mathematics and physics the word ‘Moonshine’ has come to represent
various surprising and deep connections between a priori unrelated fields,
such as number theory, representation theory of finite groups, algebra and
quantum field theory. The first and most well-known example of such a
connection is, of course, Conway and Norton’s Monstrous Moonshine conjec-
ture [1]. Their starting point was the observation of McKay that the first few
Fourier coefficients of the modular invariant J-function J(τ) are dimensions
of representations of the Monster group M, the largest finite simple sporadic
group. Conway and Norton then conjectured that to each element g ∈ M

of the Monster, one can associate a function Tg(τ) (the so-called McKay–
Thompson series) on the upper half-plane H+ that is invariant under some
subgroup Γg ⊂ SL(2,R). They also conjectured that the invariance group
Γg must be genus zero, meaning that, as a Riemann surface, the quotient
Γg\H+ is topologically a sphere. Furthermore, they conjectured that Tg(τ)
is in fact the Hauptmodul for Γg.

Subsequently, Frenkel, Lepowsky and Meurman (FLM) [2] constructed
a graded M-module V � =

⊕∞
n=−1 V

�
n , such that the dimension of the graded

subspaces a(n) = dimV �
n reproduce precisely the Fourier coefficients in the

q-expansion of the J-function, J(τ) =
∑∞

n=−1 a(n)q
n, q = e2πiτ . The coeffi-

cients ag(n) in the Fourier expansion of the McKay–Thompson series are
then identified with the characters TrV �

n
(g). Physically, the FLM-module is

the Z2-orbifold of the open bosonic string compactified on the Leech torus
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(R24/ΛLeech), where ΛLeech is the Leech lattice. The FLM-construction pro-
vided important clues into the moonshine conjectures, but fell short of prov-
ing them. The final proof was found by Borcherds [3], making heavy use of
the FLM-module V �, but also introducing yet another set of ingredients to
the story, namely generalized Kac–Moody algebras and automorphic denom-
inator identities. Thus, by the time the original conjectures were proven,
Monstrous Moonshine encompassed not only the realms of finite groups and
modular forms, but also string theory and infinite-dimensional algebras, for
a nice review see [4].

1.2. Mathieu Moonshine

Recently, a very interesting new moonshine phenomenon was conjectured by
Eguchi, Ooguri and Tachikawa (EOT) [5]: they observed that the first few
Fourier coefficients of the elliptic genus of K3 are dimensions of representa-
tions of the largest Mathieu groupM24. This suggests the existence of a new
moonshine-type connection between Mathieu groups, Jacobi forms and K3
surfaces. The analogues of the McKay–Thompson series, the twining elliptic
genera φg(τ, z), g ∈M24, were constructed in a series of papers [6–9], and
it was shown that they are all weak Jacobi forms of weight 0 and index 1
(with multiplier system) for subgroups Γ0(Ng) ⊂ SL(2,Z), where Ng is the
order of the element g. (The elliptic genus φK3 itself corresponds to taking
g to be the identity element.) The compatibility with M24-representations
was checked up to the first 600 coefficients [8, 9]; according to Gannon [10]
this is sufficient to prove that all Fourier coefficients of the elliptic genus of
K3 are dimensions of M24 representations. It is also shown in [10] that the
multiplicities of the real M24 representations are always even; see also [11].

Although in a certain sense the above results establish the Mathieu
Moonshine conjecture, there are many aspects of it that are much less
understood compared to Monstrous Moonshine. For instance, the genus zero
property of Monstrous Moonshine does not seem to hold for theM24-twining
genera since some of the invariance groups Γ0(Ng) are not genus zero.1 More
importantly, the analogue of the FLM module V � is not yet known for Math-
ieu Moonshine, i.e., we do not know of any Conformal Field Theory (CFT)
with automorphism group M24 whose elliptic genus reproduces the elliptic
genus of K3. In particular, none of the K3-sigma models have this property
since M24 is not contained in the automorphism group of any of them [13].

1It was proposed in [12] that the correct generalization of the genus zero property
is a certain Rademacher-summability condition, which is indeed satisfied in all cases.
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1.3. Generalized Monstrous Moonshine

A few years after the original Monstrous Moonshine conjectures, Norton
proposed a generalization that he dubbed Generalized Moonshine [14]. He
suggested that for each commuting pair of Monster group elements g, h ∈ M

there exists a function f(g, h; τ) that is also invariant under a genus zero sub-
group of SL(2,R). These functions generalize the McKay–Thompson series
to which they reduce for g = e. Furthermore, they transform into one another
under a simultaneous action of SL(2,Z) on (τ ; g, h) ∈ H+ × P(M), where
P(M) ⊂ M×M is the set of pairs of commuting elements of M. Finally,
the Fourier coefficients in the q-expansion of f(g, h; τ) are conjectured to
be dimensions of (projective) representations of the centralizer of g in M,
CM(g) = {k ∈ M : gk = kg}. Although this conjecture has been proven in
special cases [15–17], the general case is still open.2

The Generalized Moonshine conjecture was given a physical interpreta-
tion by Dixon, Ginsparg and Harvey [24] that was later elaborated upon
by Ivanov and Tuite [17–19]. They showed that the Norton series f(g, h; τ)
arises naturally as the character in the twisted sector V �

g of an orbifold of
the Monster CFT V � by the element g ∈ M, ‘twined’ by the group element
h; in standard CFT language, they can therefore be interpreted as

(1.1) f(g, h; τ) = g

h

= TrV �
g
(h qL0−1).

Many of the properties conjectured by Norton can be proved from holomor-
phic orbifold considerations [15].

1.4. Generalized Mathieu Moonshine

In this paper, we show that Norton’s generalization also applies to Math-
ieu Moonshine. More specifically, for every pair of commuting group ele-
ments g, h ∈M24, we construct “twisted twining genera” φg,h : H+ × C →
C that either vanish or are weak Jacobi forms of weight 0 and index 1
for some Γg,h ⊂ SL(2,Z). For g = e, they reduce to the twining genera
of [6–9], and they transform under the modular group SL(2,Z) into one
another. The multiplier phases that appear in these transformations behave
as though these twisted twining genera were twisted twining characters of
a holomorphic orbifold; in particular, they are controlled by a 3-cocycle

2Carnahan has announced a series of papers [20–23] which he claims will lead to
a complete proof.
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α ∈ H3(M24, U(1)) via a formula that was first written down by Dijkgraaf
and Witten in [25]. Furthermore, the Fourier coefficients of the twisted
elliptic genera φg,e(τ, z) equal dimensions of projective representations of
the centralizer CM24(g), and the central extension that characterizes the
projective representation is again determined by the cohomology class α ∈
H3(M24, U(1)).

The idea for using the cohomology group H3(M24, U(1)) and the formal-
ism of Dijkgraaf and Witten in order to understand the multiplier phases
of the twisted twining genera was first suggested to us by Terry Gannon in
2011 [26], see also [10]. Mason has also speculated [27] that H3(M, U(1))
should play a similar role in the context of Generalized Monstrous Moon-
shine, although this has, to our knowledge, not yet been worked out (par-
tially, because H3(M, U(1)) is unknown).

We should also mention that Mason has previously proposed a ver-
sion of Generalized Moonshine for M24 [28], where the role of the Norton
series f(g, h; τ) is played by products of eta functions η(τ). The precise rela-
tion between our twisted twining genera and Mason’s eta products will be
explained elsewhere [29].

1.5. Outline

The paper is organized as follows. In Section 2, we introduce the twisted
twining genera φg,h, and discuss their general properties, in particular the
expected behaviour under modular transformations. Based on these prop-
erties we then explain how many independent twisted twining genera there
are, and list all of them explicitly; see Table 3. The detailed derivation of
these genera is illustrated in Section 3. First, we review the structure of
holomorphic orbifolds and explain in particular, the role of the 3-cocycle
in characterizing the various transformation properties of the twisted twin-
ing characters. We then postulate that the transformation properties of the
twisted twining genera are similarly constrained. In support of this assump-
tion, we prove that there exists a unique 3-cocycle inH3(M24, U(1)) compat-
ible with the known properties of the (untwisted) twining genera of [6–9].
This then allows us to find all twisted twining genera explicitly. We also
check that, up to the first 500 levels in each twisted sector, the resulting
functions are compatible with the requirement that they arise from the
appropriate projective representation of the centralizer. In Section 4, we
subject our results to two independent consistency checks. First, for group
elements whose orbifold leads again to a K3 sigma-model, we calculate the
twining genera of the orbifold from the twisted twining genera of the original
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theory, and show that we reproduce answers from [8,9]. However, as it turns
out, the relevant group element is sometimes different from what one would
have expected, and we explain this ‘relabelling’ phenomenon in quite some
detail in Section 4.1, see also Section 4.2 for an explicit example. Secondly,
we explain the vanishing of some of the twisted twining genera from a geo-
metrical point of view, see Section 4.3. Finally, we end with some conclusions
and open problems in Section 5. We have relegated some of the more tech-
nical material to various appendices to which we refer throughout the main
body of the paper. Moreover, the appendices contain the character tables
of the centralizers and the decompositions of the twisted sectors, up to the
first 20 levels. The decompositions up to 500 levels, as well as the details of
the computations requiring computer support, are collected in the ancillary
files in the arXiv repository of this paper. Tables 4–35 in the appendices are
all generated using the software GAP [4].

2. Twisted twining genera

Let us begin by introducing the twisted twining genera that are the main
object of this paper. Suppose we are given a K3 sigma-model H, i.e., a CFT
describing string propagation on K3, whose automorphism group contains
two commuting elements g, h ∈M24. Then, we can consider the orbifold of
the sigma-model by g, and in particular, define the g-twisted sector Hg.
Since g and h commute, h gives rise to an action on Hg, and we can define
the twisted twining genus φg,h(τ, z) by

(2.1) φg,h(τ, z) = TrHg

(
h(−1)J0+J̄0qL0− c

24 q̄L̄0− c̄

24 yJ0

)
,

where q = e2πiτ and y = e2πiz. We expect that φg,h : H+ × C → C is holo-
morphic in both τ and z. Furthermore, since the elliptic genus is independent
of the choice of the underlying K3 sigma-model, we expect that the same
is true for these twisted twining genera, i.e., we expect that (2.1) does not
depend on the choice of H (as long as g and h are automorphisms of H).
By construction, for g = e the identity element in M24, the twisted twining
genus φe,h agrees with the twining genus φh considered in [6–9]; in particular,
for g = h = e φe,e is just the elliptic genus of K3.

Unfortunately, while for some commuting pairs (g, h) an actual K3 sigma-
model for which both g and h are automorphisms can be found, this is not
true in general [13]; in fact, this problem already arises for the usual twin-
ing genera, i.e., for the pairs (e, h). In the spirit of the EOT conjecture, we
shall nevertheless assume that twisted twining genera φg,h can be defined —
albeit not directly by a formula of the form (2.1) — for all commuting pairs
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g, h ∈M24. The fact that our construction will be successful is an a posteriori
justification for this assumption.

2.1. Properties of the twisted twining genera

The definition of the twisted twining genera φg,h in terms of (2.1) suggests
that they should satisfy the following properties:

(A) Elliptic and modular properties:

φg,h(τ, z + �τ + �′) = e−2πi(�
2τ+2�z) φg,h(τ, z) �, �′ ∈ Z(2.2)

φg,h

(
aτ + b

cτ + d
,

z

cτ + d

)
= χg,h

(
a b
c d

)
e2πi

cz2

cτ+d φhcga,hdgb(τ, z),

where
(

a b
c d

) ∈ SL(2,Z)(2.3)

for a certain multiplier χg,h : SL(2,Z)→ U(1). In particular, each φg,h

is a weak Jacobi form of weight 0 and index 1 with multiplier χg,h under
a subgroup Γg,h of SL(2,Z) (see [30] for the definitions).

(B) Invariance under conjugation of the pair g, h in M24,

(2.4) φg,h(τ, z) = ξg,h(k)φk−1gk,k−1hk(τ, z), k ∈M24,

where ξg,h(k) is a phase.

(C) If g ∈M24 has order N , the twisted twining genera φg,h have an expan-
sion of the form

(2.5) φg,h(τ, z) =
∑

r∈λg+Z/N
r≥0

TrHg,r
(ρg,r(h)) chh= 1

4
+r,�(τ, z),

where λg ∈ Q, and chh,�(τ, z) are elliptic genera of Ramond represen-
tations of the N = 4 superconformal algebra at central charge c = 6.
(Here � = 1

2 , except possibly for h =
1
4 , where � = 0 is also possible —

if both � = 0, 12 appear for r = 0, it is understood that there are two
such terms in the above sum. We use the same conventions for the
elliptic genera as, e.g., in [31].) Furthermore, each vector space Hg,r

is finite dimensional, and it carries a projective representation ρg,r of
the centralizer CM24(g) of g in M24, such that

(2.6) ρg,r(g) = e2πir, ρg,r(h1) ρg,r(h2) = cg(h1, h2) ρg,r(h1h2),
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for all h1, h2 ∈ CM24(g). Here cg : CM24(g)× CM24(g)→ U(1) is inde-
pendent of r, and satisfies the cocycle condition

(2.7) cg(h1, h2) cg(h1h2, h3) = cg(h1, h2h3) cg(h2, h3)

for all h1, h2, h3 ∈ CM24(g).

(D) For g = e, where e is the identity element of M24, the functions φe,h

correspond to the twining genera considered in [6–9]. In particular,
φe,e is the K3 elliptic genus.

Since the elliptic genus behaves essentially like the character of a holo-
morphic CFT — in particular, it is modular invariant and holomorphic by
itself — it is natural to believe that the same will be true for the twisted
twining genera, i.e., that they will be analogous to twisted twining charac-
ters of a holomorphic CFT. As we will review in more detail in Section 3,
the modular properties of the twisted twining characters of a holomorphic
CFT are controlled by a 3-cocycle α : G×G×G→ U(1) representing a
cohomology class in the third cohomology group H3(G,U(1)). (Some back-
ground material about group cohomology can be found in Appendix B.) We
will therefore postulate that

(E) The multipliers χg,h, the phases ξg,h, and the 2-cocycles cg associated
with the projective representations ρg,r are completely determined (by
the same formulas as for holomorphic orbifolds) in terms of a 3-cocycle
α representing a class in H3(M24, U(1)).

The third cohomology group of M24 was only recently computed with
the result [32]3

(2.8) H3(M24, U(1)) ∼= Z12.

The fact that this group is known explicitly plays a crucial role in our anal-
ysis. The specific cohomology class [α] ∈ H3(M24, U(1)) that is relevant in
our context is uniquely determined by the condition that it reproduces the

3Note that for a finite group G one has the isomorphisms

Hn−1(G,Z) ∼= Hn(G,Z), Hn(G,Z) ∼= Hn−1(G,U(1)),

which in particular imply that H3(M24,Z) ∼= H3(M24, U(1)).
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multiplier system for the twining genera φe,h as described in [8], namely

(2.9) χe,h( a b
c d ) = e

2πicd

o(h)�(h) ,
(

a b
c d

) ∈ Γ0(o(h)).
Here, o(h) is the order of h and �(h) is the length of the smallest cycle,
when h ∈M24 is regarded as a permutation of 24 symbols [12]. Indeed, since
�(12B) = 12, it follows that α must correspond to the primitive generator of
H3(M24, U(1)). The main result of our paper can now be stated as follows:

There exists a unique set of functions φg,h (unique up to redefinitions
by (g, h)-dependent but otherwise constant phases) and a unique cohomol-
ogy class [α] ∈ H3(M24, U(1)) such that all conditions (A)–(E) are satisfied
(condition (C) has been verified only for the first 500 representations ρg,r

for each g ∈M24).
When g = e is the trivial element ofM24, the existence of all representa-

tions ρe,r fitting Equation (2.5) has been recently proven in [10]. When g �= e,
condition (C) is, strictly speaking, still a conjecture. However, we provide
compelling numerical evidence in favour of it, by verifying Equation (2.5)
for the first 500 representations ρg,r in each twisted sector. A complete proof
of (2.5) should be possible along the lines of [10].

In the following we want to illustrate how the set of functions φg,h can be
determined, and which explicit form it takes. As it turns out, a surprisingly
large number of the twisted twining genera vanish, as we shall now explain.

2.2. Cohomological obstructions

For some pairs of commuting elements g, h ∈M24, the transformation prop-
erties above can only be satisfied if φg,h vanishes identically. In this case, we
will say that the corresponding twisted twining genus is obstructed. As will
be shown in more detail in Section 3, these obstructions are also controlled
by the cohomology class of the cocycle α ∈ H3(M24, U(1)).4

In order to understand the origin of these obstructions, let us first derive
some general consequences of our assumptions (A)–(E). First, we note that
the SL(2,Z) action on the twisted twining characters can be extended to
GL(2,Z) by setting

(2.10) φ∗g,h(τ, z) = χg,h( 1 0
0 −1 )φg,h−1(τ, z),

4The fact that such obstructions might exist was first suggested to us by
T. Gannon.
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where φ∗g,h(τ, z) is obtained by taking the complex conjugate of all Fourier
coefficients of φg,h(τ, z)

(2.11) φ∗g,h(τ, z) = φg,h(−τ̄ ,−z̄).

The identity (2.10) follows from Equation (2.5), together with the observa-
tion that, for any projective representation R of a finite group G, TrR(h−1)
equals TrR(h) up to a phase, which we have denoted by χg,h( 1 0

0 −1 ). As we
will see, this phase also depends on the 3-cocycle α. We also note that since
the N = 4 characters are invariant under z → −z, we have the identity

(2.12) φg,h(τ,−z) = φg,h(τ, z).

With these preparations we can now describe two possible kinds of obstruc-
tions.

Obstruction 1: Let us consider pairwise commuting g, h, k. Then, by (2.4),
we have

(2.13) φg,h(τ, z) = ξg,h(k)φg,h(τ, z),

and if

(2.14) ξg,h(k) �= 1,

it follows that φg,h(τ, z) = 0.

Obstruction 2: Suppose there are g, h, k ∈M24, with g and h commuting
and

(2.15) k−1g−1k = g, k−1h−1k = h,

i.e., the commuting pair (g, h) is conjugate withinM24 to the pair (g−1, h−1).
Then, by Equations (3.21) and (3.12) (see Section 3 for details), we obtain
the relations

φg,h(τ, z) = χg,h(−1 0
0 −1 )φg−1,h−1(τ,−z)(2.16)

= χg,h(−1 0
0 −1 ) ξg−1,h−1(k)φg,h(τ,−z).(2.17)

Therefore, if

(2.18) χg,h(−1 0
0 −1 ) ξg−1,h−1(k) �= 1,

Equation (2.12) implies φg,h(τ, z) = 0.
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As we shall see, these two obstructions are responsible for the fact that
most twisted twining genera vanish.

2.3. Classification of independent twisted twining genera

Our next aim is to enumerate all possible independent twisted twining gen-
era. Let us denote the set of commuting group elements by

(2.19) P = {(g, h) ∈M24 ×M24 | gh = hg}.

This set carries an action of GL(2,Z)×M24, given by

(2.20) (g, h) �→ (k−1(gahc)k, k−1(gbhd)k),
(

a b
c d

) ∈ GL(2,Z), k ∈M24,

and the twisted twining genera associated to different (g, h)’s in the same
orbit are related to one another by modular transformations, see Equa-
tions (2.3), (2.4), and/or by complex conjugation, see Equation (2.10). We
therefore want to describe the set of orbits of P under the action (2.20).

First, we note that the GL(2,Z) orbit of a pair (g, h) consists of all possi-
ble pairs of generators of the abelian group 〈g, h〉 ⊂M24. Thus the orbits of
GL(2,Z)×M24 are in one-to-one correspondence with the conjugacy classes
of abelian subgroups of M24 generated by two elements, i.e.,

P̄ = P/(GL(2,Z)×M24)
= {M24 − conjugacy classes of groups 〈g, h〉 ⊂M24, gh = hg}.(2.21)

This description allows a complete classification of the orbits [g, h] ∈ P̄:
there are 55 such orbits, 21 of which correspond to cyclic subgroups, i.e.,
to subgroups of the form [e, h]. The associated twisted twining genera are
therefore just the twining genera φe,h, for which explicit expressions were
already derived in [8, 9]. Thus, we only need to construct the remaining
34 genuinely twisted twining genera. We have tabulated the corresponding
conjugacy classes of groups 〈g, h〉 in Table 1. There we have described their
structure as an abelian group, i.e., as Zm × Zn, the M24 classes of all its
elements (excluding the identity), the order of the centralizer C(g, h), the
index |N(g, h)|/|C(g, h)| of the centralizer in the normalizer of 〈g, h〉 inM24,
and the lengths of the orbits of 〈g, h〉 ⊂M24 when acting as a group of
permutations of 24 objects. Finally, the last column gives the conjugacy
classes of the non-cyclic maximal subgroups. For example, group 24 has
three distinct non-cyclic maximal subgroups, all of the form Z2 × Z4; two of
them are conjugated to group 11 and one is conjugated to group 18.
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Table 1: The 34 conjugacy classes of abelian subgroups of rank 2 in M24.

# Structure Elements |C(g, h)| |N(g,h)|
|C(g,h)| Orbits on 24 Max subgr.

1. Z2 × Z2 (2A)3 1536 6 18 · 44

2. Z2 × Z2 (2A)3 1536 6 212

3. Z2 × Z2 (2A)3 128 6 14 · 26 · 42

4. Z2 × Z2 (2B)3 3840 6 46

5. Z2 × Z2 (2B)3 96 6 46

6. Z2 × Z2 (2B)3 64 6 46

7. Z2 × Z2 (2A)2(2B) 256 2 28 · 42

8. Z2 × Z2 (2A)(2B)2 512 2 24 · 44

9. Z2 × Z2 (2A)(2B)2 128 2 24 · 44

10. Z2 × Z4 (2A)3(4A)4 64 8 24 · 82 1
11. Z2 × Z4 (2A)3(4A)4 64 8 46 2
12. Z2 × Z4 (2A)2(2B)(4A)2(4B)2 32 2 22 · 43 · 81 7
13. Z2 × Z4 (2A)(2B)2(4A)4 64 8 42 · 82 8
14. Z2 × Z4 (2A)(2B)2(4A)4 32 8 42 · 82 8
15. Z2 × Z4 (2A)(2B)2(4C)4 32 4 42 · 82 8
16. Z2 × Z4 (2A)(2B)2(4C)4 16 4 42 · 82 9
17. Z2 × Z4 (2A)3(4B)4 64 8 14 · 22 · 82 1
18. Z2 × Z4 (2A)3(4B)4 64 8 24 · 44 2
19. Z2 × Z4 (2A)3(4B)4 16 8 12 · 23 · 42 · 81 3
20. Z2 × Z4 (2A)(2B)2(4B)4 64 8 24 · 82 8
21. Z2 × Z4 (2A)(2B)2(4B)4 16 8 24 · 82 9
22. Z4 × Z4 (2A)(2B)2(4A)4(4C)8 16 16 81 · 161 13, 15, 15
23. Z4 × Z4 (2A)3(4A)8(4B)4 16 32 22 · 41 · 161 10, 10, 17
24. Z4 × Z4 (2A)3(4A)8(4B)4 16 32 42 · 82 11, 11, 18
25. Z4 × Z4 (2A)3(4B)12 16 96 14 · 41 · 161 17, 17, 17
26. Z4 × Z4 (2A)3(4B)12 16 96 46 18, 18, 18
27. Z2 × Z8 (2A)(2B)2(4B)4(8A)8 16 8 22 · 41 · 161 20
28. Z2 × Z6 (2A)3(3A)2(6A)6 12 12 12 · 32 · 41 · 121 1
29. Z2 × Z6 (2A)3(3A)2(6A)6 12 12 23 · 63 2
30. Z2 × Z6 (2B)3(3B)2(6B)6 12 12 122 4
31. Z2 × Z6 (2B)3(3B)2(6B)6 12 12 122 5
32. Z2 × Z10 (2B)3(5A)4(10A)12 20 12 41 · 201 4
33. Z3 × Z3 (3A)8 9 48 13 · 34 · 91

34. Z3 × Z3 (3A)2(3B)6 9 12 32 · 92

For M24 it turns out that the orbits of P under SL(2,Z)×M24 are
exactly the same as those under GL(2,Z)×M24, i.e.,5

(2.22) P̄ = P/(GL(2,Z)×M24) = P/(SL(2,Z)×M24).

5For a generic group G different from M24, some SL(2,Z)×G orbits might be
strictly smaller than the GL(2,Z)×G orbits.
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Thus, the twisted twining genera in each orbit in P̄ are just related by phases,
see Equations (2.3) and (2.4), and we do not need to invoke Equation (2.10).

2.4. Modular properties of the twisted twining genera

For each commuting pair (g, h) ∈ P, let us denote by Γ̃g,h ⊂ SL(2,Z)×M24

the group of elements (γ, k) that leave the pair (g, h) fixed or map it to its
inverse (g−1, h−1)

Γ̃g,h =
{((

a b
c d

)
, k

)
∈ SL(2,Z)×M24 |

(
k−1(gahc)k, k−1(gbhd)k

)
= (g, h) or (g−1, h−1)

}
.(2.23)

It follows from (2.3) and (2.4), together with (2.12) as well as (3.21) below,
that the corresponding twisted twining genus φg,h will be invariant (up to a
phase) under Γg,h ≡ π(Γ̃g,h), where π denotes the projection of SL(2,Z)×
M24 onto its first factor, i.e., onto SL(2,Z).

Each twisted twining genus φg,h belongs to a (finite-dimensional) vector
representation of SL(2,Z), that is spanned by the functions {φ(g,h)γ(τ, z)},
where γ ∈ SL(2,Z). Since every γ ∈ Γg,h acts trivially (i.e., up to a phase) on
φg,h, the SL(2,Z) representation is spanned by {φ(g,h)γ(τ, z)}γ∈Γg,h\SL(2,Z),
where γ runs over a set of representatives for the cosets in Γg,h\SL(2,Z).
Each of these functions φ(g,h)γ is a weak Jacobi form of weight 0 and index
1 for the congruence subgroup γ−1Γg,hγ ⊆ SL(2,Z). We have tabulated for
each orbit [g, h] ∈ P̄ the functions φ(g,h)γ (starting from φg,h) and the invari-
ance group Γg,h in Table 2. (Note, however, that some of these functions
vanish identically; in particular, this will be the case if there is an obstruc-
tion.) Each φg,h is denoted by the M24 class of g and the CM24(g)-class of
h, named as in Appendix D.

Group 27 is the only case where the pairs (g, h) and (g−1, h−1) are
not conjugated within M24. Thus, charge conjugation gives the identities
φ2B,8A1 = φ2B,8A2 , φ8A,2B1 = φ8A,2B2 , and so on, and the respective functions
are denoted in Table 2 by φ2B,8A1,2 , φ8A,2B1,2 , etcetera.

Because of (2.10), most of the functions satisfy a ‘reality’ condition of
the form

(2.24) φ∗g,h = ζ φg,h,

for some constant phase ζ, which implies that the Fourier coefficients of
ζ1/2φg,h are all real. Note that even if φ∗g,h and φg,h are not proportional
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to one another, they are necessarily related by a modular transformation
because of (2.22); if this is the case, they are listed as distinct functions in
the same orbit in P̄.

Most of the modular groups Γg,h are of the form Γ(1) = SL(2,Z) or

(2.25) Γ0(N) := {
(

a b
c d

) ∈ SL(2,Z) | c ≡ 0 mod N},

or conjugates of Γ0(N) in SL(2,Z). The exceptions are the group in case
32, where

(2.26) Γ2B,10A =
⋃

i∈Z/3Z,j∈Z/4Z

(
1 1−5 −4

)i (−3 −1
10 3

)j Γ2,10,

is a subgroup of index 12 in SL(2,Z) and

Γ2,10 := {
(

a b
c d

) ∈ SL(2,Z) | a ≡ 1, b ≡ 0 mod 2, c ≡ 0, d ≡ 1 mod 10},
(2.27)

is the group of elements γ ∈ SL(2,Z) such that (g, h) · γ = (g, h); the group
in case 12, with

(2.28) Γ2A,4A = {( a b
c d

) ∈ SL(2,Z) | b ≡ 0 mod 2, c ≡ 0 mod 4},

which is a conjugate of Γ0(8) in SL(2,R); and the group in case 22, with

(2.29) Γ4A,4C = 〈
(−1 1
−2 1

)
, ( 1 20 1 ) , (

1 0
4 1 ) ,

(
3 −2
−4 3

)〉.
2.5. Explicit twining genera

We have now reduced our problem to finding 34 functions φg,h that are weak
Jacobi forms with respect to Γg,h up to some multiplier phases. As will be
explained in the following Section 3, our assumption (E) allows us to deter-
mine the precise form of these multipliers explicitly. Then most of the 34
functions vanish because of the obstructions; see Table 3. For those that do
not, the modular properties are strong enough to determine them explicitly;
see also Table 3. These explicit results are one of the main results of this
paper, and their derivation is sketched in Section 3, see in particular Sec-
tion 3.4, as well as Appendix A. As will be explained below in Section 3.5,
these functions are also compatible with the expected projective represen-
tation of the centralizer CM24(g) on the g-twisted sector, see property (C)
in Section 2.
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Table 2: The independent functions and the group Γg,h for each [g, h] ∈ P̄ .

# Structure Functions Γg,h

1. Z2 × Z2 φ2A,2A2 Γ(1)

2. Z2 × Z2 φ2A,2A3 Γ(1)

3. Z2 × Z2 φ2A,2A5 Γ(1)

4. Z2 × Z2 φ2B,2B2 Γ(1)

5. Z2 × Z2 φ2B,2B4 Γ(1)

6. Z2 × Z2 φ2B,2B6 Γ(1)

7. Z2 × Z2 φ2B,2A1 , φ2A,2B3 , φ2A,2A4 Γ0(2)

8. Z2 × Z2 φ2A,2B1 , φ2B,2A2 , φ2B,2B1 Γ0(2)

9. Z2 × Z2 φ2A,2B2 , φ2B,2A3 , φ2B,2B5 Γ0(2)

10. Z2 × Z4 φ2A,4A2 , φ4A,2A2 , φ4A,4A3 Γ0(2)

11. Z2 × Z4 φ2A,4A3 , φ4A,2A3 , φ4A,4A7 Γ0(2)

12. Z2 × Z4
φ2A,4A4 , φ2A,4B4 , φ2B,4A1 , φ2B,4B1 , φ4A,2A1 , φ4A,2B1 ,

φ4B,2A4 , φ4B,2B2 , φ4B,4A1 , φ4B,4A2 , φ4A,4B3 , φ4A,4B4

Γ2A,4A

13. Z2 × Z4 φ2B,4A2 , φ4A,2B3 , φ4A,4A5 Γ0(2)

14. Z2 × Z4 φ2B,4A3 , φ4A,2B2 , φ4A,4A2 Γ0(2)

15. Z2 × Z4 φ2A,4C1 , φ4C,2A2 , φ4C,2B3 , φ2B,4C2 , φ4C,4C4 , φ4C,4C6 Γ0(4)

16. Z2 × Z4 φ2A,4C2 , φ4C,2A1 , φ4C,2B2 , φ2B,4C3 , φ4C,4C3 , φ4C,4C5 Γ0(4)

17. Z2 × Z4 φ2A,4B2 , φ4B,2A2 , φ4B,4B8 Γ0(2)

18. Z2 × Z4 φ2A,4B3 , φ4B,2A5 , φ4B,4B9 Γ0(2)

19. Z2 × Z4 φ2A,4B5 , φ4B,2A3 , φ4B,4B3 Γ0(2)

20. Z2 × Z4 φ2B,4B2 , φ4B,2B3 , φ4B,4B1 Γ0(2)

21. Z2 × Z4 φ2B,4B3 , φ4B,2B1 , φ4B,4B5 Γ0(2)

22. Z4 × Z4 φ4A,4C1 , φ4A,4C2 , φ4C,4A1 , φ4C,4A2 , φ4C,4C7 , φ4C,4C8 Γ4A,4C

23. Z4 × Z4 φ4B,4A3 , φ4A,4B1 , φ4A,4A1 Γ0(2)

24. Z4 × Z4 φ4B,4A4 , φ4A,4B2 , φ4A,4A4 Γ0(2)

25. Z4 × Z4 φ4B,4B4 Γ(1)

26. Z4 × Z4 φ4B,4B7 Γ(1)

27. Z2 × Z8 φ2B,8A1,2 , φ8A,2B1,2 , φ4B,8A2,3 , φ8A,4B1,3 , φ8A,8A2,8 , φ8A,8A6,7 Γ0(4)

28. Z2 × Z6 φ2A,6A2 , φ6A,2A1 , φ6A,6A1 , φ6A,6A2 Γ0(3)

29. Z2 × Z6 φ2A,6A3 , φ6A,2A2 , φ6A,6A3 , φ6A,6A4 Γ0(3)

30. Z2 × Z6 φ2B,6B2 , φ6B,2B1 , φ6B,6B2 , φ6B,6B5 Γ0(3)

31. Z2 × Z6 φ2B,6B3 , φ6B,2B2 , φ6B,6B1 , φ6B,6B3 Γ0(3)

32. Z2 × Z10
φ2B,10A1 , φ2B,10A3 , φ10A,10A1 , φ10A,10A2 , φ10A,10A3 , φ10A,10A5 ,

φ10A,10A7 , φ10A,10A9 , φ10A,10A10 , φ10A,10A11 , φ10A,2B2 , φ10A,2B3

Γ2B,10A

33. Z3 × Z3 φ3A,3A3 Γ(1)

34. Z3 × Z3 φ3A,3B1 , φ3B,3A1 , φ3B,3B3 , φ3B,3B4 Γ0(3)

3. Holomorphic orbifolds and group cohomology

In this section, we review the modular properties of holomorphic orbifolds
since, according to our assumption (E), these are also relevant for the twisted
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Table 3: For each of the 34 cases we give here the explicit result for the
twisted twining genus, as well as where applicable, the obstruction that it
responsible for its vanishing.

# φg,h Obstr.

1. 0 1

2. 0 1

3. 0 1

4. 0 2

5. 0 2

6. 0 1

7. 0 1

8. 0 1

9. 0 1

10. 0 1

11. 0 1

12. 0 1

13. φ2B,4A2 = 4 η(2τ)2

η(τ)4
ϑ1(τ, z)2 no

14. 0 1

15. 0 1

16. 0 1

17. 0 1

# φg,h Obstr.

18. 0 1

19. 0 1

20. 0 2

21. 0 1

22. 0 2

23. φ4B,4A3 = 2
√
2 η(2τ)2

η(τ)4
ϑ1(τ, z)2 no

24. φ4B,4A4 = 2
√
2 η(2τ)2

η(τ)4
ϑ1(τ, z)2 no

25. 0 2

26. 0 2

27. φ2B,8A1,2 = 2 η(2τ)2

η(τ)4
ϑ1(τ, z)2 no

28. 0 2

29. 0 2

30. 0 2

31. 0 2

32. 0 2

33. φ3A,3A3 = 0 no

34. φ3A,3B1 = 0 no

twining genera of K3. We then explain how, in our context, the known
multiplier phases of the twining genera determine the underlying 3-cocycle
α ∈ H3(M24, U(1)) uniquely, and how to obtain from this our explicit results
given in Table 3. Finally, we shall check that these formulae indeed give rise
to the appropriate projective representations of the centralizer CM24(g).

3.1. Review of holomorphic orbifolds

Suppose C is a self-dual VOA, and G is a group of C-automorphisms. We are
interested in the ‘orbifold’ of C by G. To this end we consider the G-invariant
sub-VOA of C,

(3.1) CG = {ψ ∈ C : gψ = ψ, ∀g ∈ G}.

Each representation of C gives rise to a representation of CG. In addition,
there are new representations of CG that appear in the different twisted
sectors CA; since C is holomorphic there is a unique twisted sector CA for
each conjugacy class A in G.
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3.1.1. Twisted twining characters. Each twisted sector CA defines a
representation of the G-invariant sub-VOA CG, but it is typically not irre-
ducible. In particular, for each gA in the conjugacy class gA ∈ [A], we can
project CgA

onto a CG-invariant subspace using any (projective) character
χ of CG(gA). Thus, we can label the irreducible representations of CG by
pairs (A,χ). In physics, by the orbifold of C by G one usually means the
theory where one chooses χ = 1 in each twisted sector, i.e., the full partition
function takes the form

(3.2) Zorb(τ) =
∑
A

1
|CG(A)|

∑
h∈CG(gA)

ZgA,h(τ),

where

(3.3) Zg,h(τ) ≡ g

h

= TrCg

(
ρg(h) qL0− c

24
)
,

and ρg denotes the action of CG(g) on Cg. We should mention that this action
is usually not canonically defined; for example, what is usually referred to as
discrete torsion [33] can be thought of as being an ambiguity in the definition
of ρg. Incidentally, the fact that the action is not canonically defined will be
important to us later; see in particular Section 4.1. For the moment though,
we want to assume that such an action has been chosen.

3.1.2. Projective representations. As alluded to above, the twisted
sectors Cg typically do not form genuine representations of CG(g) but only
projective representations. A projective representation ρ of a finite group G
is characterized by the relation (see also Appendix C for some introductory
comments)

(3.4) ρ(g1) ρ(g2) = c(g1, g2) ρ(g1g2),

where c : G×G→ U(1) is a (normalized) 2-cocycle representing a coho-
mology class in H2(G,U(1)). Genuine representations of finite groups are
classified, up to equivalence, by their characters Trρ(h). This is, however,
no longer true for projective representations since taking the trace over a
projective representation does not lead to a class function, i.e., a function
that is invariant under conjugation by elements in G. Instead, for projective
representations one has

(3.5) Trρ(hgh−1) =
c(h, h−1gh)
c(g, h)

Trρ(g),
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as follows from the defining relation (3.4) together with the cyclicity of the
trace (see e.g., [34] for a nice discussion). For the case of the holomorphic
orbifold, this then results in the conjugation relation

(3.6) Zg,h(τ) =
cg(h, k)

cg(k, k−1hk)
Zk−1gk,k−1hk(τ),

where the 2-cocycle cg represents a class in H2(CG(g), U(1)) specifying
the projective representation of the centralizer CG(g) on Cg, and we have
assumed that k and g commute so that both expressions are evaluated in the
same twisted sector. (In fact, (3.6) is even true if k and g do not commute,
see [25].) If in addition k commutes with h, (3.6) reduces to

(3.7) Zg,h(τ) =
cg(h, k)
cg(k, h)

Zg,h(τ),

which therefore implies that Zg,h vanishes unless the 2-cocycle is regular,

(3.8) cg(h, k) = cg(k, h).

This is the holomorphic orbifold version of the first type of obstruction
discussed in Section 2.2 above.

3.1.3. The underlying cohomology. The possible choices for the 2-
cocycles cg in the various twisted sectors are constrained; for example this
follows from demanding consistency of the OPE involving fields from differ-
ent twist sectors.6 In particular, it was argued in [25] that the various con-
sistent choices are in one-to-one correspondence with elements in the third
cohomology group [α] ∈ H3(G,U(1)), see also [35–38] for subsequent work.
The 3-cocycle α determines distinguished elements cg ∈ H2(CG(g), U(1)) via
the formula [25,35]

(3.9) cg(h1, h2) =
α(g, h1, h2)α(h1, h2, (h1h2)−1g(h1h2))

α(h1, h−11 gh1, h2)
.

Since α fixes all 2-cocylces cg via (3.9), it is clear that the choice of α deter-
mines the behaviour of the twisted twining characters under conjugation
(3.6). Furthermore, α also determines all the multiplier phases that appear

6This origin of the constraint was suggested in [36].
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under modular transformations, since it follows from [35] that7

Zg,h(τ + 1) = cg(g, h)Zg,gh(τ),

Zg,h(−1/τ) = ch(g, g−1)Zh,g−1(τ).
(3.10)

The choice of a particular representative α in the class [α] ∈ H3(G,U(1))
corresponds to a choice of normalization for the action of h on the g-twisted
sector. To see this, let α̃ represent a 3-cocycle in the same cohomology
class [α] ∈ H3(G,U(1)), so that α̃ = α · ∂β (see Equation (B.7)) for some
2-cochain β. Then the associate 2-cocycles cg and c̃g differ (for each g ∈ G)
only by a 2-coboundary, i.e., c̃g = cg · ∂γg, with γg(h) =

β(h,g)
β(g,h) , see Appen-

dix B. Thus, the 3-cocycle α̃ is associated with the modular properties of the
functions Z̃g,h = γg(h)Zg,h, which, by (3.3), simply correspond to a different
normalization ρ̃g(h) = γg(h)ρg(h) for the action of h on the g-twisted sector.

3.2. Application to Mathieu Moonshine

Given what we said before, it is now natural to postulate that for the twisted
twining genera of K3, the various multiplier phases also come from a 3-
cocycle α ∈ H3(M24, U(1)). This is to say, we postulate that the projective
representation appearing in (C) is the one determined by cg, given by (3.9).
Furthermore, χg,h

(
a b
c d

)
in (2.3) is determined by (3.10), and ξg,h(k) in (2.4)

agrees with (3.7), where in both cases cg is again the function determined by
(3.9) for a fixed α ∈ H3(M24, U(1)). More explicitly, we therefore propose
that

φg,h

(− 1
τ ,

z
τ

)
= ch(g, g−1) e2πi z2

τ φh,g−1(τ, z),
φg,h(τ + 1, z) = cg(g, h)φg,gh(τ, z),(3.11)

with cg(h1, h2) given by (3.9), and

(3.12) φg,h(τ, z) =
cg(h, k)

cg(k, k−1hk)
φk−1gk,k−1hk(τ, z), k ∈M24.

7Note that (3.10) is obtained from [35] upon working with the inverse 3-
cohomology element. We also thank Terry Gannon for explaining these formulae
to us. It is believed (and we have verified this in simple cases) that (3.10) follows
from the transformation rules for the irreducible orbifold characters, see [37, Equa-
tions (5.23) and (5.24)], but we have not proven this in complete generality.
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Moreover, we postulate that

(3.13) φg,h−1(τ, z) = cg(h, h−1)φ∗g,h(τ, z),

where φ∗g,h(τ, z) is defined in (2.11).
Combining modular transformations with conjugation one obtains a

whole set of relations among the twisted twining genera, where the mul-
tipliers are given by

χg,h(γ1γ2) = χg,h(γ1)χ(g,h)γ1
(γ2), γ1, γ2 ∈ SL(2,Z),(3.14)

χg,h

(
0 −1
1 0

)
=

1
ch(g, g−1)

,(3.15)

χg,h ( 1 10 1 ) = cg(g, h),(3.16)

χg,h

(
1 0
0 −1

)
=

1
cg(h, h−1)

,(3.17)

ξg,h(k) =
cg(h, k)

cg(k, k−1hk)
.(3.18)

Since SL(2,Z) is generated by S =
(
0 −1
1 0

)
and T = ( 1 10 1 ) with the only rela-

tions being S4 = 1 and (ST )3 = S2, it follows that Equations (3.14)–(3.17)
determine the multiplier χg,h(γ), γ ∈ SL(2,Z), provided that the following
consistency conditions are satisfied

(3.19) χg,h(S4) = 1, χg,h((ST )3) = χg,h(S2).

Furthermore, since the actions of SL(2,Z) and M24 on the set P commute
with one another, there are two more consistency conditions

ξg,h(k)χk−1gk,k−1hk(γ) = χg,h(γ) ξ(g,h)γ(k)(3.20)

ξg,h(k) ξk−1gk,k−1hk(k′) = ξg,h(kk′),

for all γ ∈ SL(2,Z) and k, k′ ∈M24. In fact, conditions (3.19) and (3.20) hold
for a generic group G, and can be easily checked using standard identities for
the cocycle cg, in particular, Equations (3.2.5)–(3.2.9) of [36] (see also [35]).

Note that the charge conjugation operator C = S2 acts on the genera
φg,h(τ, z) by flipping the sign of the second argument z. In fact, writing
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τ = − 1
τ̃ and z = z̃

τ̃ , we get from twice applying (3.11)

φg,h(τ, z) = φg,h(− 1
τ̃ ,

z̃
τ̃ ) =

e2πi z̃2

τ̃

ch(g, g−1)
φh,g−1(τ̃ , z̃)(3.21)

=
e−2πi z2

τ

ch(g, g−1)
φh,g−1(− 1

τ ,− z
τ )

=
1

ch(g, g−1)cg−1(h, h−1)
φg−1,h−1(τ,−z),

so that

(3.22) χg,h

(−1 0
0 −1

)
=

1
ch(g, g−1)cg−1(h, h−1)

.

Together with (2.12), this then leads to

(3.23) φg,h(τ, z) =
1

ch(g, g−1) cg−1(h, h−1)
φg−1,h−1(τ, z),

thus reproducing (2.16). This identity played a key role in the derivation of
obstruction 2 in Section 2.2.

While our proposal about the multiplier phases is certainly natural, we
do not have a direct proof for it. However, the fact that with this assumption
we shall find consistent answers is in our opinion very convincing evidence
in favour of this ansatz.

3.3. Determining the cohomology class

In order to have explicit formulae for the multipliers, the next step consists
of determining [α] ∈ H3(M24, U(1)). In this subsection, we will prove (with
some computer support) that there exists a unique cohomology class [α] that
reproduces (2.9) for all the untwisted twining genera φe,g(τ, z). Since this is
an overdetermined problem, the existence of such class already represents a
non-trivial consistency check for our proposal. In the following subsections,
we will then explain how the remaining twisted twining characters can be
computed, once the class [α] is known.

First, we note that the normalization condition for α, see Equation (B.8),
implies that ce(g, h) = 1 for all g, h ∈M24. Thus φe,g(τ + 1, z) = φe,g(τ, z),
φe,g−1(τ, z) = φe,g(τ, z) and φe,g(τ, z) = φe,k−1gk(τ, z) for all k ∈M24, as
expected. Furthermore, the representation ρe in the decomposition (2.5) is
a genuine representation of CM24(e) =M24.
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Next, we observe that Equation (3.11) implies

(3.24) φga,gb(τ + o(ga), z) = κ(ga, gb)φga,gb(τ, z),

where

(3.25) κ(ga, gb) :=
o(ga)∏
k=1

cga(ga, gb+ak) =
o(ga)∏
k=1

α(ga, gb+ak, ga).

More precisely, the phases κ(ga, gb) are the multipliers of φe,g under certain
parabolic elements of the form

(3.26) γ

(
1 n
0 1

)
γ−1 ∈ Γ0(o(g)),

where γ ∈ SL(2,Z) is such that (e, g)γ = (ga, gb) and n = o(ga). By com-
paring such a multiplier with the one expected from (2.9), one obtains the
following condition:

(3.27) κ(ga, gb) = e−
2πi

�(ga) ,

for all a, b ∈ Z, where �(ga) is the length of the smallest cycle of ga when
considered as a permutation of 24 objects. It is easy to verify that κ(ga, gb)
only depends on the cohomology class of the 3-cocycle α. Thus, we have to
prove that there is a unique class [α] ∈ H3(M24, U(1)) such that (3.27) is
satisfied for all g ∈M24, a, b ∈ Z.

In order to show that such an α exists, we first need two basic facts about
group cohomology. Given two finite groups G and H and a homomorphism
ι : H → G, we can define the induced map ι∗ from U(1)-cochains α for G to
U(1)-cochains ι∗(α) for H

(3.28) ι∗(α)(g1, . . . , gn) = α(ι(g1), . . . , ι(gn)),

which induces a well-defined map on cohomologies ([43], Chapter III.8). A
particular case is when H = G and the map H → G is conjugation ιk(g) =
k−1gk by an element k ∈ G. In this case, the induced map on the cohomology
ι∗k acts as the identity, i.e., [ι∗(α)] = [α] (see [43], Chapter III Proposition
8.3). A second interesting case is when H is a subgroup of G with ι the natu-
ral inclusion; in this case, Res ≡ ι∗ is called a restriction map. In particular,
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if H is a Sylow p-subgroup SylpG of G,8 then the image of the restriction
map

(3.29) Resp : Hn(G,U(1))→ Hn(Sylp(G), U(1))

is isomorphic to the p-part of Hn(G,U(1)) ([43], Chapter III Theorem 10.3).
For G =M24, using that H3(M24, U(1)) ∼= Z12 [32], this implies

(3.30) Res2(H3(M24, U(1))) ∼= Z4, Res3(H3(M24, U(1))) ∼= Z3,

while Resp(H3(M24, U(1))) is trivial for all primes p > 3.
With these preparations we can now turn to the proof that a unique

class [α] ∈ H3(M24, U(1)) satisfying (3.27) exists. From the invariance of
the cohomology classes under the conjugation map ι∗k, it follows that the
multiplier in (3.27) only depends on the conjugacy class of g. Next we note
that in order to compute κ(ga, gb), it is sufficient to consider the restriction
of the cocycle α to the group 〈g〉 generated by g. For a cyclic group ZN , the
third cohomology H3(ZN , U(1)) is isomorphic to ZN , and a set of cocycle
representatives for the cohomology classes are given by [37,44]

(3.31) ωq(ga, gb, gc) = e2πi qa

o(g)2
([b]+[c]−[b+c])

, q = 0, . . . , o(g)− 1,

where [·] : Z → {0, . . . , o(g)− 1} is the reduction modulo o(g).
Let us assume, without loss of generality, that 1 ≤ a < o(g)− 1 and 0 ≤

b < a, and that a divides o(g); in fact, if this was not true, we can rewrite
both ga and gb as powers of another g̃ in 〈g〉 for which this is then true. The
multiplier corresponding to a 3-cocycle ωq is

κ(ga, gb) =
o(ga)−1∏

k=0

ωq(ga, gb+ak, ga) = e2πi qa

o(g)2

∑ o(ga)−1
k=0 ([b+ak]+[a]−[b+a(k+1)])

(3.32)

= e2πi qa

o(g)2
([b]+o(ga)[a]−[b+ao(ga)]) = e2πi qa

o(g) ,

where we have used that o(ga) = o(g)/a when a divides o(g). Thus, κ(ga, gb) ≡
κ(ga) is independent of b, and κ(ga) = κ(g)a whenever a divides o(g). The

8Recall that a p-group (p prime) is a finite group with order a power of p; a
Sylow p-subgroup of a group G is a p-subgroup of G that is maximal, i.e., that is
not properly contained in any other p-subgroup. For each p, all Sylow p-subgroups
of G are isomorphic and conjugate to one another inside G.
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latter property is consistent with (3.27) thanks to the identity

(3.33)
1

�(ga)
≡ a

�(g)
mod 1,

that holds for all elements g ∈M24 and for all divisors a of o(g).9

It therefore follows that it is sufficient to prove (3.27) for a = 1 and
b = 0, and for one representative g for each conjugacy class. Furthermore,
thanks to κ(ga) = κ(g)a, we can restrict to classes whose order is a prime
power. In other words, we only need to check (3.27) for a Sylow p-subgroup
Sylp(M24) and for each prime p.

Using the software GAP [41] with the package HAP [42] implemented, we
have computed a basis of cocycle representatives for H3(Syl2(M24), U(1))
and H3(Syl3(M24), U(1)). Note that any 3-cocycle in the image of Resp has
the property that, for any g ∈ Sylp(M24), the corresponding multiplier κ(g)
depends only on the conjugacy class of g inM24. We have verified that there
is a unique Z4 subgroup of H3(Syl2(M24), U(1)) and a unique Z3 subgroup
of H3(Syl3(M24), U(1)) satisfying this property. Therefore, these subgroups
must correspond to the restrictions Resp(H3(M24, U(1))), for p = 2 and p =
3, respectively. Finally, for both p = 2 and p = 3, we have verified that there
is a unique cohomology class [αp] ∈ Resp(H3(M24, U(1))) that satisfies (3.27)
for all g in Sylp(M24). Thus, the unique class [α] ∈ H3(M24, U(1)) that has
the property that Resp([α]) = [αp] for all primes p, satisfies (3.27) for all
g ∈M24.

We have thus proven that there exists a unique class [α] ∈ H3(M24, U(1))
satisfying (3.27). It remains to show that this class exactly reproduces (2.9)
for all φe,g. First, we notice that the multiplier (2.9) of φe,g is trivial whenever
the class of g restricts to a class inM23. SinceH3(M23, U(1)) is trivial, this is
consistent with any choice of the cocycle α. Thus, we only need to check (2.9)
for the classes that do not restrict toM23. The corresponding characters φe,g

are Jacobi forms under Γ0(o(g)), where the possible orders o(g) are 2, 3, 4, 6
and 12. For N = 2, 3, 4, the group Γ0(N) is generated by

T =
(
1 1
0 1

)
, C =

(−1 0
0 −1

)
,

(
1 0
−N 1

)
=

(
0 1
−1 0

)
TN

(
0 −1
1 0

)(3.34)

9Note that this property is special for M24, and is not true for a generic permu-
tation.
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while Γ0(6) is generated by T , C, together with

(3.35)
(
1 0
−6 1

)
,

( −5 3
−12 7

)
=

(
1 0
2 1

)
T 3

(
1 0
−2 1

)
.

The correct modular properties (2.9) under T and C are automatic for any
normalized cocycle α. The remaining generators are of the form (3.26) with
(e, g)γ = (ga, gb) and n = o(ga), and hence (2.9) follows again
from (3.27).

The group Γ0(12) is generated by T,C and10

α1 =
(
0 1
−1 0

)(
1 12
0 1

)(
0 −1
1 0

)
, α2 =

(
1 0
3 1

)(
1 4
0 1

)(
1 0
−3 1

)
,

(3.36)

α3 =
(
1 0
6 1

)(
1 1
0 1

)(
1 0
−6 1

)
, α4 =

(
1 0
2 1

)(
1 3
0 1

)(
1 0
−2 1

)
.

(3.37)

The generators α1, . . . , α4 are of the form (3.26) with (e, g)γ = (ga, gb), but
only for α1, α2 is the condition n = o(ga) satisfied, and thus only in these
cases is condition (3.27) sufficient to establish (2.9). The generators α3, α4
satisfy (e, g)αi = (e, g7), i = 3, 4, so one needs to conjugate by an element k ∈
M24 such that k−1g7k = g. In order to compute the multiplier under these
generators, one needs to determine the restriction of [α] ∈ H3(M24, U(1)) to
the subgroup of M24 generated by g and k. Using GAP, we computed a basis
for the third cohomology of the group 〈g, k〉 and looked for those classes that
satisfy condition (3.27) for all elements of the group. It turns out that there
is only one such class, and hence it must correspond to the restriction of
[α] ∈ H3(M24, U(1)) to the cohomology of 〈g, k〉. Then it is straightforward
to check that this class reproduces indeed the multipliers (2.9) under α3
and α4; this is true for both the M24 conjugacy classes of order 12. This
completes the proof.

The GAP-files containing the computations described above are available
online [45].

10It is straightforward to check that T,C, α1, . . . , α4 actually generate Γ0(12) by
simply comparing them to a minimal set of generators obtained by some standard
method, such as the Farey symbol algorithm.
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3.4. Computation of the twisted twining characters:
an example

In the previous subsection, we proved that there is a unique cohomology
class [α] ∈ H3(M24, U(1)) that reproduces the multipliers (2.9) for all the
untwisted twining genera φe,g. In this section, we shall explain how
the remaining twisted twining genera φg,h can be determined, leading to
the results collected in section 2.5.

The first step is to compute the obstructions and the multipliers for a
given twisted twining genus φg,h. To this end we note that it is sufficient to
consider the restriction of the cocycle α to the normalizer N(g, h) of 〈g, h〉.
If this normalizer is contained in some Sylow p-subgroup, one can simply
use the cocycle αp determined in the previous subsection. Otherwise, one
can use GAP to compute a basis for the cohomology of N(g, h) and check
which cohomology classes reproduce the correct multipliers (and in partic-
ular (3.27)) for all genera of the form φe,k, k ∈ N(g, h). In all cases we con-
sidered, there was only one cohomology class with this property, which must
therefore be the restriction of the class [α] ∈ H3(M24, U(1)) to the cohomol-
ogy of N(g, h). Once the restriction of [α] to N(g, h) is determined, one can
check the existence of obstructions for all 34 groups of Table 1. The results
are collected in Table 3 and the GAP-files containing these computations are
available online [45].

For the six unobstructed twisted twining genera φg,h, one can com-
pute the precise multiplier system. It turns out that this information is
sufficient to determine φg,h up to normalization. The normalization can be
fixed (up to a phase) by requiring that a decomposition (2.5) exists. In the
remainder of this subsection, we illustrate how one of these non-zero twisted
twining genera, namely the one associated to g ∈ 2B and h ∈ 8A, can be
determined explicitly; the other five cases are completely analogous and are
dealt with in Appendix A. Let us work with the conventions that the three
permutations

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23)(24),

(3, 17, 10, 7, 9)(4, 13, 14, 19, 5)(8, 18, 11, 12, 23)(15, 20, 22, 21, 16)

(1)(2)(6)(24),

(1, 24)(2, 23)(3, 12)(4, 16)(5, 18)(6, 10)(7, 20)(8, 14)(9, 21)

(11, 17)(13, 22)(15, 19)
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generate M24 ⊂ S24. As representative for g ∈ 2B we can then take

g = (1, 10)(2, 14)(3, 8)(4, 5)(6, 22)(7, 20)(9, 18)(11, 23)(12, 24)(3.38)
(13, 19)(15, 16)(17, 21),

while for h ∈ 8A we consider

h = (2, 14)(3, 9, 8, 18)(4, 6, 21, 19, 15, 24, 20, 11)(3.39)
(5, 22, 17, 13, 16, 12, 7, 23)(1)(10).

The elements g, h generate the abelian group Z2 × Z8 corresponding to case
27 of Table 1. There are two interesting conjugation relations, namely

(3.40) (k−1gh4k, k−1h−1k) = (g, h), (r−1gr, r−1ghr) = (g, h),

where

k = (1, 10)(2, 14)(3, 18)(4, 11)(5, 13)(6, 20)(7, 12)(8, 9)(15, 19)(3.41)
(16, 23)(17, 22)(21, 24),

r = (1, 2)(3, 9)(6, 22)(8, 18)(10, 14)(11, 23)(12, 24)(13, 19)(4)(5)(7)
(15)(16)(17)(20)(21).

Thus, we can use the general formulae (3.11) and their inverses to deduce
that11

φg,h(τ + 1) = cg(g, h)φg,gh(τ) = cg(g, h)
cg(gh, r)
cg(r, h)

φg,h(τ) = iφg,h(τ),(3.42)

where we have used the explicit form of the multiplier factors from Sec-
tion 3.3. We also have (recall that g = g−1)

φg,h( τ
−4τ+1) =

φh,g(4− 1
τ )

ch(g, g)
=

∏3
i=1 ch(h, gh

i)
ch(g, g)

φh,gh4(− 1
τ )(3.43)

=
∏3

i=1 ch(h, gh
i)

ch(g, g)cgh4(h, h−1)
φgh4,h−1(τ)

=
∏3

i=1 ch(h, gh
i)

ch(g, g)cgh4(h, h−1)
cg4h(h−1, k)
cg4h(k, h)

φg,h(τ) = −φg,h(τ).

11For brevity of presentation we omit the dependence of z, as well as the factors
e2πi cz2

cτ+d , in the following formulae.
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This implies that φg,h(τ, z) is a Jacobi form under the group Γ0(4) with the
above multipliers.

Let us consider now the dependence of φg,h(τ, z) on z, for a fixed τ ∈ H+.
The characters chh,�(τ, z) of the N = 4 algebra are even functions of z and
chh,�(τ, z = 0) is independent of τ (in particular, chh,�(τ, 0) = 0 for h > 1/4)
[31]. By (2.5), all twisted-twining genera must satisfy the same properties.
Since the multiplier system for φg,h is non-trivial, the constant φg,h(τ, 0)
must vanish and by φg,h(τ, z) = φg,h(τ,−z) it follows that φg,h has a double
zero at z = 0 (mod Z+ τZ). Every (weak) Jacobi form of index 1 has exactly
two zeros (counting multiplicity) in each fundamental domain of C/(Z+ τZ)
[30], so that these are the only zeroes of φg,h(τ, z). On the other hand, the
function

(3.44) ψ(τ, z) ≡ ϑ1(τ, z)2

ϑ2(τ, 0)2

is also a Jacobi form weight 0 and index 1 under Γ0(4) (with trivial multi-
plier) and has only a double zero at z = 0 (mod Z+ τZ). It therefore follows
that

(3.45) F (τ) ≡ φg,h(τ, z)
ψ(τ, z)

is independent of z and is a modular function of weight 0 under Γ0(4)
(with multiplier system (3.42)–(3.43)) that is holomorphic in the interior
of H+. Let us consider the asymptotic behaviour of F (τ) at the boundary
Γ0(4)\(Q ∪ {∞}) of the compactification Γ0(4)\H̄+. This boundary consists
of three points (cusps) of the form γc · ∞, where γ∞ = ( 1 00 1 ), γ0 =

(
0 −1
1 0

)
and γ1/2 = ( 1 02 1 ). The twisted twining genus φg,h has the Fourier expansion
at these cusps

φg,h(γ∞(τ, z)) = φg,h(τ, z) = A∞ q1/4(2− y − y−1) +O(q5/4)(3.46)

φg,h(γ0(τ, z)) ∼ φh,g(τ, z) = A0 q
1/8(2− y − y−1) +O(q3/8)(3.47)

φg,h(γ1/2(τ, z)) ∼ φgh2,h(τ, z) = A1/2 q
1/4(2− y − y−1) +O(q3/4),(3.48)

where ∼ denotes equality up to a phase, and we have included the lowest
non-negative powers of qr that are compatible with the multiplier system.
It follows from (2.5) that the constants A∞, A0, A1/2 equal

A∞ = TrHg,r= 1
4
(ρg, 1

4
(h)), A0 = TrHh,r= 1

8
(ρh, 1

8
(g)),(3.49)

A1/2 = TrHgh2,r= 1
4
(ρgh2, 1

4
(h)),
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and from the Fourier expansion of φh,e we know that dimHh,r= 1
8
= 1, so

that |A0| = 1. On the other hand, at the cusps ψ(τ, z) satisfies

ψ(γ∞(τ, z)) = ψ(γ1/2(τ, z)) =
ϑ1(τ, z)2

ϑ2(τ, 0)2
=
1
4
(2− y − y−1) +O(q)(3.50)

ψ(γ0(τ, z)) =
ϑ1(τ, z)2

ϑ4(τ, 0)2
= q1/4(2− y − y−1) +O(q3/4),(3.51)

and we therefore obtain

F (γ∞ · τ) = 4A∞ q1/4 +O(q5/4)(3.52)

F (γ0 · τ) ∼ A0 q
−1/8 +O(q1/8)(3.53)

F (γ1/2 · τ) ∼ 4A1/2 q
1/4 +O(q3/4).(3.54)

Up to a phase, there is a unique modular form with the correct modular
properties and the expected Fourier expansion at the cusps, namely

(3.55) F (τ) = 8
η(2τ)6

η(τ)6
.

Thus we conclude that, up to an overall phase, we have

(3.56) φ2B,8A1,2(τ, z) = 8
η(2τ)6

η(τ)6
ϑ1(τ, z)2

ϑ2(τ, 0)2
= 2

η(2τ)2

η(τ)4
ϑ1(τ, z)2,

where we used the identity ϑ2(τ, 0)2 = 4η(2τ)4

η(τ)2 . The other non-trivial cases
can be worked out similarly; see Appendix A for the details.

3.5. Projective representations

As we have argued above, see property (C) in Section 2, the twisted sector
Hg should carry a projective representation of the centralizer CM24(g), whose
2-cocycle is given by cg as determined in (3.9). Given our explicit knowledge
of all twisted twining genera as well as cg, this can now be tested as in
[8] (where the corresponding analysis was performed for the case of the
twining genera): if each Hg,r is a projective representation of CM24(g), we
can decompose it as

(3.57) Hg,r =
⊕

j

h(j)g,r Rj ,
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where h(j)g,r is the multiplicity with which the irreducible projective repre-
sentation Rj (whose projectivity is characterized by cg) appears in Hg,r.
On the other hand, using the orthogonality of group characters (see App-
endix C), we can calculate h(j)g,r from the knowledge of the twisted twining
genera explicitly. The consistency condition is then that all h(j)g,r are indeed
(non-negative) integers. We have done this analysis for all twisted sectors
and for the first 500 levels (i.e., the first 500 values for r), and the multiplici-
ties are indeed always non-negative integers. The explicit results for the first
20 levels as well as the (projective) character tables of all non-isomorphic
centralizers CM24(g) are given in Appendix D. The decompositions for all g
and for the first 500 levels are available online [45].

4. K3 Orbifolds

There are at least two further consistency checks on our proposal that can
be fairly easily analysed. Suppose we consider a K3 sigma-model C whose
automorphism group contains the cyclic subgroup generated by g. Then we
can consider the orbifold of C by G = 〈g〉. A priori, it is not guaranteed that
this orbifold is consistent — indeed, since these symmetries effectively act
asymmetrically, they generically suffer from the level-matching problem, and
hence may be inconsistent [39]. However, as was already mentioned in [40],
the level-matching condition is satisfied provided that the twining genus φg

has a trivial multiplier system. This is in particular the case if g ∈M23. In
that case, the resulting orbifold theory Ĉ = C/G is again a K3 sigma model,
as was also shown in [40].

Suppose then that the original C has, in addition to g ∈M23, another
commuting group element h in its automorphism group. Then h also gives
rise to a symmetry ĥ of the orbifold theory Ĉ, and we can calculate the
twining genus of ĥ by the usual orbifold formula

(4.1) φe,ĥ =
1
o(g)

o(g)−1∑
i,j=0

φgi,hgj .

This leads to a non-trivial consistency condition: given our explicit knowl-
edge of all twisted twining genera, we can calculate the right-hand side
explicitly, and this must agree, for every h, with one of the twining genera
of [8, 9]. We have checked that this is indeed true; an example is illustrated
in Section 4.2.
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Naively, one may have guessed that ĥ should simply agree with h, i.e.,
that the left-hand-side of (4.1) is the twining genus associated to the same
group element h ∈M24. However, this is in general not the case, as will be
explained in the following Section 4.1, see also Section 4.2 for an explicit
example. Whenever this happens we will say that the group element h has
been relabelled in the orbifold theory.

The other consistency check is even more obvious. As was mentioned at
the beginning of Section 2, there exist K3 sigma-models with a commuting
pair of automorphisms (g, h). For them (2.1) can be calculated directly,
and thus compared to our answers. We shall perform this computation for
some simple cases in Section 4.3. In particular, we shall concentrate on
examples where our obstruction analysis predicts that the associated twisted
twining genus must vanish. The fact that we can reproduce this result using
elementary methods is a good consistency check on our analysis.

4.1. The relabelling phenomenon

Suppose that a K3 sigma-model C contains in its automorphism group an
element g such that the orbifold of C by g, Ĉ = C/〈g〉 is consistent. In general,
each gr-twisted sector carries a projective representation of H ≡ CM24(g).
Equivalently, we can think of the untwisted and twisted sectors as carrying
genuine representations of some central extension H̃ ofH. In fact, the central
extension can be chosen to be of the form (see also Appendix C.1 for more
details)

(4.2) 1→ 〈Q̃〉 ∼= ZN → H̃
ρ→ H → 1.

Here ρ is the representation in the untwisted sector, i.e., on the spectrum of
C, N is the order o(g) of g and the generator Q̃ (that we call the quantum
symmetry) of the central ZN acts by e2πir/N on the gr-twisted sector. Note
that there is always a lift g̃ ∈ H̃ of g that acts by e2πik/N on the states of
conformal weight h− 1/4 = k/N .

In the orbifold theory Ĉ, all states are invariant under the action of
g̃ — this is just the precise way of imposing the usual requirement that the
orbifold theory consists of ‘g-invariant’ states only. Since g̃ is in the centre of
H̃, the spectrum of Ĉ carries a well-defined representation ρ̂ of H̃, such that
ρ̂(g̃) is the identity. In fact, it is easy to see that ker ρ̂ = 〈g̃〉, because Q̃ acts
non-trivially on the twisted sectors, and each non-trivial element in H/〈g〉
lifts to an element of H̃ that acts non-trivially on the g-invariant untwisted
sector, which in turn is part of the spectrum of Ĉ. Thus, we have an exact
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sequence

(4.3) 1→ 〈g̃〉 ∼= ZN → H̃
ρ̂→ Ĥ → 1.

The group Ĥ ≡ H̃/〈g̃〉 defines a full-fledged symmetry of the orbifold CFT
Ĉ. For the case at hand, both the original theory and the orbifold are K3
sigma models, and thus all of these symmetry groups should be subgroups
of M24,12

(4.4) Ĥ ⊆M24.

This assumption allows us to determine Ĥ (at least as an abstract group).
In fact, the order of Ĥ is given by

(4.5) |Ĥ| = |H̃|
N

= |H| = |CM24(g)|.

The quantum symmetry Q ≡ ρ̂(Q̃) must be in the sameM24-conjugacy class
as g, since it has the same eigenvalues on the 24-dimensional representation
of RR ground states. Since all elements of Ĥ commute with Q, we can
conclude by (4.5) that

(4.6) Ĥ = CM24(Q) ∼= CM24(g) = H.

This construction allows us to give a precise interpretation of (4.1). For
each symmetry h ∈ H in the model C, one chooses a lift h̃ ∈ H̃, with ρ(h̃) = h
(this amounts to choosing the phases of the twisted twining genera φg,h).
Then the formula for the twining genus of the symmetry ρ̂(h̃) in the orbifold
model Ĉ takes the form

(4.7) φe,ρ̂(h̃) =
1
o(g)

o(g)−1∑
i,j=0

φgi,h̃g̃j .

After these preparations we can now explain the relabelling phenomenon.
While it follows from (4.6) that Ĥ andH are isomorphic, they are not canon-
ically isomorphic; in fact, we only have a canonical isomorphism between

(4.8) H/〈g〉 ∼= H̃/〈g̃, Q̃〉 ∼= Ĥ/〈Q〉,

12We are assuming here that the relevant K3 sigma model is “non-exceptional”
in the terminology of [40].
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but this does not necessarily lift to a canonical isomorphism Φ : Ĥ → H,
with Φ(Q) = g. Put differently, in general it is not possible to find an iso-
morphism Φ : Ĥ → H, with Φ(Q) = g such that the following diagram com-
mutes:

H̃

Ĥ H

H̃/〈g̃, Q̃〉

ρ̂ ρ

Φ

For example, this will be the case if for any lift h̃ with ρ(h̃) = h, the cor-
responding symmetry ρ̂(h̃) is not in the same M24 conjugacy class as h. In
that case, the twining genus obtained by formula (4.7) does not agree with
φe,h. Whenever this is the case, we shall say that the conjugacy class of h
has been relabelled in the orbifold theory.

4.2. An example

As an explicit example of the relabelling phenomenon let us consider the case
where g is in the class 2A of M24 (so that N = o(g) = 2). Then the group
H̃ is a central extension of H by the Z2 group generated by Q̃. We denote
by g̃ the lift of g in H̃, such that g̃ and Q̃ have the following eigenvalues:

(4.9)

Q̃ g̃ Sector Model

+1 +1 untwisted C, Ĉ
+1 −1 untwisted C
−1 +1 twisted, qZ Ĉ
−1 −1 twisted, qZ+ 1

2 −

As expected from the discussion in the previous section, the group H̃/Q̃ is
isomorphic to the centralizer in M24 of an element of class 2A.

Now consider an element h ∈ H in class 8A, with h4 = g. The trace of
h over the 24-dimensional representation of ground states in the original
model C is +2. Furthermore, since hg is in the same class, also the trace
over hg equals +2, from which we conclude that on the ground states of C
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we have

(4.10) TrH0
Q̃=1,g̃=1

(h) = +2, TrH0
Q̃=1,g̃=−1

(h) = 0,

where H0
Q̃=±1,g̃=±1 are the eigenspaces of Q̃ and g̃ at conformal weight

hL − 1
4 = 0. The lifts h̃ and Q̃h̃ in H̃ are such that h̃4 = (Q̃h̃)4 = g̃. On

dimensional grounds, the twisted sector at hL − 1/4 = 0 must correspond
to a certain eight-dimensional irreducible representation of H̃, where the
lifts h̃ and Q̃h̃ have trace ±2. We notice that, up to a sign, this trace is
independent of the choice of the central extension, and is in agreement with
the expectation from the twisted twining genus φg,h ≡ φh4,h. On the ground
states in the orbifold theory Ĉ, the trace of h̃ is now

(4.11) TrH0
Q̃=1,g̃=1

(h̃) + TrH0
Q̃=−1,g̃=1

(h̃) = 2± 2,

and thus there is no choice for h̃ such that the trace is equal to +2, as required
for an element in class 8A. In fact, the images ĥ and Qĥ in Ĥ ∼= CM24(Q)
have order 4 and belong to the classes 4A and 4B. In particular, while the
pair of commuting elements g, h in the original model generate the cyclic
group

(4.12) 〈g, h〉 = 〈h〉 ∼= Z8,

both the groups 〈Q, ĥ〉 and 〈Q,Qĥ〉 correspond to group 12 in our gen-
eral list. Thus, there cannot exist an isomorphism Φ : Ĥ → H such that
Φ(ρ̂(h̃)) = h or Φ(ρ̂(Q̃h̃)) = h.

Let us verify the consistency of Equation (4.7) for this case, see the
comments at the beginning of Section 4. The twining genera φe,ρ̂(h̃) and
φe,ρ̂(Q̃h̃) are given by

φe,ρ̂(h̃)(τ, z) =
1
2
(φe,h(τ, z) + φe,h5(τ, z) + φh4,h(τ, z) + φh4,h5(τ, z)),(4.13)

φe,ρ̂(Q̃h̃)(τ, z) =
1
2
(φe,h(τ, z) + φe,h5(τ, z)− φh4,h(τ, z)− φh4,h5(τ, z)).

(4.14)

Using the identity

(4.15) φe,8A(τ, z) =
1
2
(φe,4B(τ, z) + φe,4A(τ, z)),
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it is easy to verify that

(4.16) φe,ρ̂(h̃) = φe,4B, φe,ρ̂(Q̃h̃) = φe,4A,

as expected. This example also shows that the consistency of Equation (4.7)
gives, in general, highly non-trivial conditions on the twisted twining genera.

We have verified explicitly that a similar phenomenon also occurs for
the orbifold by an element g in class 4B.

4.3. Computation of a twisted twining genus

In this section, we shall calculate some twisted twining genera directly. In
particular, we shall concentrate on some simple cases where our general
analysis predicts that they must vanish (because of some obstruction). As
we shall see, we can reach the same conclusion from first principles.

Let us consider a K3 σ-model C whose automorphism group contains
two commuting elements g, h of order m and n, respectively, generating the
non-cyclic group G = 〈g, h〉. If these symmetries have a geometric origin,
i.e., if they are induced by automorphisms of the K3 target space that fix
the holomorphic 2-form, then the group G must be a subgroup of M23 with
at least five orbits over the 24-dimensional representation, as follows from
the Mukai theorem [46]. These conditions are satisfied by the groups 1 and
3 (Z2 × Z2), groups 17 and 19 (Z2 × Z4), group 25 (Z4 × Z4), group 28
(Z2 × Z6) and group 33 (Z3 × Z3) of our Table 1. In all these cases, the
twisted twining genus vanishes, φg,h = 0; see Table 3. In the following we
want to verify this independently.

In the general Zn × Zm case, the twisted twining genus φg,h is expected
to be a weak Jacobi form of weight 0 and index 1 under the congruence
subgroup

Γm,n ≡ {
(

a b
c d

) ∈ SL(2,Z) | a ≡ 1, b ≡ 0 mod m, c ≡ 0, d ≡ 1 mod n}.
(4.17)

Note that this group is in general smaller than the group Γg,h defined below
(2.23), because we are not using the identifications under conjugation (2.4).
Since both g and h are elements of M23, the multiplier system for φg,h must
be trivial (since H3(M23, U(1)) ∼= 0).

Because of the triviality of the multiplier system, it follows that any
modular image φg′,h′ of φg,h, where (g′, h′) = (g, h) · γ for some γ ∈ SL(2,Z),
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has a Fourier expansion of the form

(4.18) φg′,h′(τ, z) =
∞∑

n=0

∑
�

cg′,h′(n, �) q
n

o(g′) y�,

where o(g′) is the order of g′. Let us assume

(4.19) cg′,h′(0, �) = 0 ∀� ∈ Z,

for any modular image (g′, h′) = (g, h) · γ; we will prove this below. Then it
follows that

(4.20) φg,h(τ, 0) =
∑

�

cg,h(0, �) = 0.

Because of (2.12), φg,h(τ, z) = φg,h(τ,−z), and we can conclude that φg,h

has a double zero at z = 0 (mod Z+ τZ). Since Jacobi forms of index 1
have only two zeroes on each fundamental domain of C/(Z+ τZ) [30], φg,h

is nowhere else vanishing. Next we recall that ϑ1(τ, z)2/η(τ)2 is a Jacobi
form of weight 0 and index 1 under SL(2,Z) (with a non-trivial multiplier).
It has a double zero at z = 0 (mod Z+ τZ), and is non-vanishing elsewhere,
so that

(4.21) Fg,h(τ) =
η(τ)2φg,h(τ, z)
ϑ1(τ, z)2

is a modular function of weight 0 under Γm,n (with non-trivial multiplier),
which is holomorphic in the interior of the upper-half plane H+. Let us
consider the asymptotics of Fg,h at the boundary Γm,n\(Q ∪∞) of the com-
pactification Γm,n\H̄+. The boundary is the union of points (cusps) of the
form γ(∞), where γ runs through the representatives of the double cosets
Γm,n\SL(2,Z)/Γ∞. Here, Γ∞ is the parabolic subgroup of SL(2,Z) that
fixes ∞ ∈ H̄+ and is generated by ( 1 10 1 ). The Jacobi form ϑ1(τ, z)2/η(τ)2

has the same asymptotic behaviour at each cusp, namely

(4.22)
ϑ1(γ · (τ, z))2
η(γ · τ)2

τ→∞∼ q1/6(2− y − y−1) +O(q7/6),

up to a constant coefficient. By (4.18) and (4.19), it then follows that

(4.23) Fg,h(γ · τ) ∼ η(τ)2φg′,h′(τ, z)
ϑ1(τ, z)2

τ→∞∼ O(q
1

o(g′)− 1
6 ),
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where (g′, h′) = (g, h)γ and o(g′) is the order of g′. For all the groups we are
interested in, we have o(g′) ≤ 6, and the inequality is strict for at least one
g′. It follows that Fg,h has no poles and at least one zero at the boundary
of Γm,n\H̄+. Since it is holomorphic in the interior, it must therefore vanish
identically, and we conclude that

(4.24) φg,h(τ, z) = 0,

as predicted by our results.
It therefore only remains to prove (4.19). The coefficient cg,h(0, �) cor-

responds to the trace of h (or, more generally, of the lift h̃ to a central
extension of the group 〈g, h〉) on the RR g-twisted states with conformal
weight hL = hR = 1/4 and weight � under the su(2)L subalgebra of the left-
moving N = 4 algebra. The g-twisted ground states are g-invariant (the
conformal weight satisfies hL − 1/4 ∈ Z), so they belong to the spectrum of
the orbifold theory C/〈g〉.

Any sigma-model whose target space is a K3 manifold X contains 24
RR ground states corresponding to the harmonic forms on X. Thus, the
real vector space spanned by these states can be identified with the real
cohomology H∗(X,R) on X. The orbifold model Ĉ = C/〈g〉 corresponds to
a non-linear sigma-model on the geometric orbifold X̂ = X/〈g〉, which is a
singular K3 surface. In particular, for each point of X that is fixed by some
non-trivial subgroup 〈gr〉 ⊆ 〈g〉, the orbifold X̂ has a singularity of type
An−1, where n is the order of gr. By blowing up all these singularities, one
obtains again a smooth K3 manifold.

The RR ground states in the untwisted sector of Ĉ are obtained by pro-
jecting onto the g-invariant subspace of H∗(X,R), while the ground states in
the twisted sectors are the Poincaré duals of the cycles corresponding to the
exceptional divisors in the blow-up of X̂. More precisely, the resolution of
each An−1 singularity of Ĉ gives rise to n− 1 rational curves P1, representing
elements in the homology of the blow-up. The cohomology classes dual to
these cycles span an (n− 1)-dimensional subspace of RR ground states for
Ĉ, one in each gir twisted sector, for i = 1, . . . , n− 1. Thus, we arrive at the
usual statement that the ground states of the gk-twisted sector are in one
to one correspondence with the gk-fixed points of the target space.

Any other symplectic automorphism h of X that commutes with g acts
as a permutation on the gr-fixed points. This action induces a permutation
on the singularities of X̂, and therefore on the twisted RR ground states
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dual to the exceptional cycles.13 Therefore, the trace of h over the g-twisted
sector only gets a non-zero contribution from the singularities of X̂ that are
fixed by h, i.e., only from the points of X that are fixed by both g and h.
It is known (see, for example Proposition 1.5 of [46]) that a finite group
of symplectic automorphisms of a K3 manifold X that fixes at least one
point must be a subgroup of SL(2,C). On the other hand, all finite abelian
subgroups of SL(2,C) are cyclic. Thus we conclude that if 〈g, h〉 is abelian
but not cyclic, the trace of h over the g-twisted ground fields is 0 and (4.19)
follows.

Our results also agree with the analysis of [47], where it was shown
that the twisted twining genus φg,h for a pair of commuting symplectic
automorphisms g, h of a K3 manifold X is given by a sum of contributions
corresponding to the points fixed by both g and h. If the abelian group 〈g, h〉
is not cyclic, then there are no fixed points and φg,h = 0.

5. Conclusions

5.1. Summary

Inspired by the generalized Monstrous Moonshine idea of Norton [14] we
have in this paper established ‘generalized Mathieu Moonshine’ for the
elliptic genus of K3. More specifically, we have found, for each commuting
pair (g, h) ∈M24, explicit expressions for the twisted twining genera φg,h :
H+ × C → C, and we have verified that these functions satisfy conditions
(A), (B), (D) of Section 2.1, and given convincing evidence that condition
(C) is also met. In particular, the twisted twining genera φg,h(τ, z) are weak
Jacobi forms of weight 0 and index 1 for certain subgroups Γg,h ⊂ SL(2,Z)
with a multiplier system χg,h : Γg,h → U(1).

One of the key insights of our work is that these multiplier phases are
all determined in terms of a class [α] ∈ H3(M24, U(1)) via a formula (see
Equation (3.9)) that was first derived by Dijkgraaf and Witten in the context
of holomorphic orbifolds [25]. We have also shown that the twisted twining
genera φg,h are compatible with a decomposition of the g-twisted sector
into (projective) representations of the centraliser CM24(g), up to the first
500 levels. The particular central extension of CM24(g) associated with this

13More precisely, one should choose a lift h̃ of h to a central extension of the
group of symmetries of C; then, h̃ acts on the g-twisted sector by a permutation
times an overall phase that depends on the particular lift. Since the phase is not
important for our argument, we will neglect this subtlety.
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projective representation is also determined by the cohomology class [α] ∈
H3(M24, U(1)).

As it turned out, many of the twisted twining genera vanish, and in most
cases this follows from the structure of the class [α] ∈ H3(M24, U(1)). While
these sorts of cohomological obstructions should also arise in the context
of other holomorphic orbifolds (in particular in Monstrous Moonshine), our
results provide, to our knowledge, the first example where they have been
explicitly verified. We have also confirmed the vanishing of some of these
twisted twining genera independently, using geometrical arguments.

5.2. Open problems and future work

The elliptic genus of K3 is closely related to the physics of 1/4 BPS-dyons in
N = 4 string theory. The generating function of elliptic genera of symmetric
products of K3’s is the famous Igusa cusp form Φ10, whose inverse is the
partition function of N = 4 dyons [48, 49]. This fact lies at the heart of
the recent progress in understanding wall-crossing of multi-centred BPS-
states in N = 4 string theory using mock modular forms [50]. It is therefore
natural to wonder about the corresponding physical interpretation of the
twisted twining genera φg,h. In the special case of a trivial twist g = e, it
has been shown that for some elements h the twining genera φe,h correspond
to BPS-indices in CHL-orbifolds [6, 51–53]. We may therefore expect that
the twisted twining genera φg,h should be related to the counting of ‘twisted
dyons’ in CHL-models. Indeed for some pairs (g, h) we have verified this by
showing that the twisted CHL-indices of Sen [47] are compatible with our
φg,h. It would be interesting to determine more generally whether φg,h have
a physical interpretation in terms of CHL-models or some generalization
thereof.

In Borcherds’ proof of the Monstrous Moonshine conjecture he intro-
duced a new class of infinite-dimensional (super-)Lie algebras that he called
generalzed Kac–Moody algebras (GKM) [3]. The key idea was that the
multiplicative lift of the modular J-function could be interpreted as the
denominator formula for a specific GKM, now commonly called the Monster
Lie algebra, whose root system carries an action of the Monster group M.
The generalized moonshine ideas of Norton [14] suggest that similar GKMs
should exist for each class [g] ∈ M [20, 21, 54]. In the context of Mathieu
Moonshine the role of generalized Kac–Moody algebras has so far not been
understood. Although there is a GKM associated with the elliptic genus
of K3 [55], this algebra does not seem to carry any natural action of M24

due to the fact that its denominator formula is 1/
√
Φ10 rather than 1/Φ10.
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For some conjugacy classes [g] ∈M24 the associated second-quantized twin-
ing genera Φg also give rise to denominator formulas of GKMs [56], which
should presumably be identified with the wall-crossing algebras found in
CHL-models [51,57–60]. Although these observations are very suggestive, the
precise role of the GKMs for Mathieu Moonshine remains to be understood.

A crucial point in our analysis was that the multiplier phases are con-
trolled by a class [α] ∈ H3(M24, U(1)), from which also the various obstruc-
tions could be read off. It follows from the work of [25, 37] that similarly
a cohomology class in H3(M, U(1)) should underly generalized Monstrous
Moonshine, and it would be very interesting to see whether this point of view
may lead to new insights. In particular, some of Norton’s generalized Moon-
shine functions f(g, h; τ) are known to vanish, and it would be natural to
expect that this is due to some cohomological obstructions similar to those
we have found in this paper.14 Some related ideas were already put forward
some time ago by Mason [27], but very little has been done explicitly, mainly
because the group H3(M, U(1)) seems to be poorly understood.

In a similar vein, it would also be interesting to investigate the general-
ized versions of the recently discovered Umbral Moonshine observations [61],
of which the M24/K3-moonshine is a special case. In particular, one might
expect that there is a relation between the Rademacher summability condi-
tion of [12] and the cohomological obstructions we have described here.

The fact that there is a class in H3(M24, U(1)) determining the prop-
erties of the twisted twining genera φg,h represents strong evidence for the
idea that a holomorphic VOA H underlies Mathieu Moonshine. Indeed, the
original motivation for suspecting the relevance of the cohomology group
H3(M24, U(1)) was based on the formal analogy with holomorphic orb-
ifolds [25, 37]. In a sense, we are therefore in a similar situation now as
for Monstrous Moonshine before the discovery of the Monster VOA V � [2].
However, the story appears to be more subtle since the natural expectation
that H would arise as a superconformal σ-model on K3 does not hold [13].
On the other hand, this is perhaps not too surprising, given the fact that
the modular J-function corresponds to the full partition function of a CFT,
while the elliptic genus of K3 only receives contribution from a subset of
the physical states of the N = (4, 4) superconformal theory on K3. Hence
it is tempting to speculate that H should correspond to something like the
algebra of BPS-states of string theory on K3 (in the sense of Harvey and
Moore [62,63]). In particular, one might therefore hope that H can be con-
structed using some kind of topological sigma model, e.g., the ‘half-twisted’

14We thank Terry Gannon for suggestions along these lines; see also [10].
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topological σ-model on K3 [64]. Mathematically, this sigma model (or rather
its large radius limit) can be viewed as a bundle of VOAs known as the chiral
de Rham complex, Ωch

X [65], and in [66] it was shown that the elliptic genus
of K3 can be obtained by taking the graded trace over the corresponding
cohomology H∗(Ωch

X ). It is therefore tempting to speculate that one may be
able to construct an action of M24 on the cohomology of Ωch

X , at least for
some choice of K3 surface X.

We hope to return to these and related issues in future work.
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Appendix A. Details on the unobstructed twisted
twining genera

In this appendix, following the example of Section 3.4, we will determine the
twisted twining genera φg,h for the groups 13, 23, 24, 33 and 34 in Table 1.
The genus φ2B,8A1,2 for group 27 was obtained in Section 3.4, while for all
the other groups φg,h vanishes due to some obstruction.

Appendix A.1. The characters φ2B,4A2
(group 13) φ4B,4A3

(group
23) and φ4B,4A4

(group 24)

In this section, we will consider the twisted twining genera φg,h for groups
13, 23 and 24; as we will see, it turns out that these three characters have
exactly the same modular properties. For group 13 g is in class 2B and h in
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class 4A, and we can choose

g = (1, 10)(2, 14)(3, 8)(4, 16)(5, 15)(6, 12)(7, 21)(9, 18)(11, 13)(A.1)
(17, 20)(19, 23)(22, 24),

h = (1, 2)(3, 18)(4, 7, 15, 17)(5, 20, 16, 21)(6, 19, 24, 11)(8, 9)
(10, 14)(12, 23, 22, 13).

For the groups 27 and 28, g is in class 4B and h in class 4A and we can
choose

(A.2) g = (3, 8)(4, 21, 15, 20)(5, 17, 16, 7)(6, 19, 24, 11)(9, 18)(12, 23, 22, 13),

for both groups (from now on, we drop the trivial cycles). For group 23 we
can take

h = (1, 10)(2, 14)(3, 9)(4, 11, 5, 13)(6, 17, 12, 21)(7, 22, 20, 24)(A.3)
(8, 18)(15, 19, 16, 23).

and for group 24

h = (1, 2, 10, 14)(3, 9, 8, 18)(4, 5, 15, 16)(6, 13)(7, 21, 17, 20)(A.4)
(11, 22)(12, 19)(23, 24),

In all the three cases we have the relations

(A.5) (k−1gk, k−1ghk) = (g, h), (r−1gh−2r, r−1hr) = (g, h),

where, for group 13

k = (1, 9, 2, 3)(6, 13, 22, 19)(7, 21)(8, 10, 18, 14)(11, 24, 23, 12)(17, 20),(A.6)
r = (3, 8)(4, 11, 5, 13)(6, 20, 12, 7)(9, 18)(15, 19, 16, 23)(17, 24, 21, 22),(A.7)

for group 23

k = (1, 2, 10, 14)(3, 9, 8, 18)(5, 16)(6, 11, 24, 19)(7, 17)(12, 23, 22, 13),(A.8)
r = (1, 2)(3, 8)(6, 12)(7, 20)(9, 18)(10, 14)(17, 21)(22, 24),(A.9)
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and for group 24

k = (3, 9)(4, 12, 5, 6)(7, 11, 20, 13)(8, 18)(15, 22, 16, 24)(17, 19, 21, 23),
(A.10)

r = (1, 3)(2, 9)(4, 20)(5, 7)(8, 10)(14, 18)(15, 21)(16, 17).
(A.11)

Using the explicit knowledge of the 3-cocycle α we can derive the modular
properties of the twisted twining genus φg,h, including the multiplier system.
It turns out that in all these three cases φg,h is invariant under Γ0(2) with
the same multiplier

φg,h(τ + 1) = cg(g, h)
cg(gh, k)
cg(k, h)

φg,h(τ) = iφg,h(τ),(A.12)

φg,h

(
τ

2τ + 1

)
=

1
ch(h, h−1g)ch(h, h−2g)

ch(h−2g, r)
ch(r, g)

φg,h(τ)(A.13)

= −iφg,h(τ).

By arguments similar to the ones in Section 4.3, φg,h(τ, z) has only a double
zero at z = 0 (mod Z+ τZ). This implies that φg,h can be expressed as

(A.14) φg,h(τ, z) =
ϑ1(τ, z)2

ϑ2(τ, 0)2
F (τ)

for some Γ0(2)-invariant function F (τ) that is holomorphic in H+. The
group Γ0(2) has two cusps at∞ and 0. To proceed we study the asymptotic
behaviour at infinity

φg,h(τ, z) = A∞ q1/4(2− y − y−1) + · · ·(A.15)
ϑ1(τ, z)2

ϑ2(τ, 0)2
=
1
4
(2− y − y−1) + · · · ,(A.16)

which implies that F (τ) ∼ 4A∞ q1/4 + · · · has a zero at τ →∞. The behaviour
at τ = 0 is

φg,h(γ0(τ, z)) ∼ φh,g−1(τ, z) = A0 q
1/8 (2− y − y−1) + · · ·(A.17)

ϑ1(τ, z)2

ϑ4(τ, 0)2
= q1/4 (2− y − y−1) + · · · ,(A.18)
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implying that F (γ0 · τ) ∼ A0 q
−1/8 + · · · has a pole at 0. A function with

the correct modular properties and behaviour at the cusps is

(A.19) F (τ) = 4A∞
η(2τ)6

η(τ)6
,

so that

(A.20) φg,h(τ, z) = 4A∞
η(2τ)6

η(τ)6
ϑ1(τ, z)2

ϑ2(τ, z)2
= A∞

η(2τ)2

η(τ)4
ϑ1(τ, z)2.

The constants A∞ for the three cases are determined (up to the phase) by
ensuring a decomposition into projective characters of CM24(g). In particu-
lar, A∞ = 4 for group 13 and A∞ = 2

√
2 for groups 23 and 24.

Appendix A.2. The cases φ3A,3A3
(group 33) and φ3A,3B1

(group 34)

In this section, we show that the unobstructed twisted twining genera φ3A,3A3

and φ3A,3B1 must vanish by modular arguments.
Let us consider first the group 〈g, h〉 = 〈3A, 3B1〉 (type 34), generated

by

(A.21) g = (2, 23, 11)(3, 20, 10)(5, 14, 9)(6, 16, 13)(7, 19, 22)(12, 24, 18)

in class 3A and

h = (1, 15, 17)(2, 19, 16)(3, 18, 5)(4, 21, 8)(6, 11, 7)(9, 10, 24)(12, 14, 20)
(A.22)

(13, 23, 22)

in class 3B. The following conjugation relation holds:

(A.23) (k−1gk, k−1ghk) = (g, h),

where

(A.24) k = (2, 7, 16)(3, 20, 10)(4, 21, 8)(5, 9, 14)(6, 11, 22)(13, 23, 19).

The modular properties of the associated twisted twining genus are

(A.25) φg,h(τ + 1) = cg(g, h)
cg(gh, k)
cg(k, h)

φg,h(τ) = e
4πi

3 φg,h(τ),
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and

(A.26) φg,h

(
τ

−3τ + 1

)
=

2∏
i=0

ch(h, hig−1)φg,h(τ) = e
4πi

3 φg,h(τ),

where we have used the explicit form for the multiplier phases as determined
in terms of the 3-cocycle α ∈ H3(M24, U(1)). We conclude that, up to the
multiplier, φg,h is invariant under Γ0(3). Furthermore, as in the previous
subsection and in Section 4.3, for each fixed τ ∈ H+, φg,h(τ, z) has only a
double zero at z = 0 (mod Z+ τZ). Since ϑ1(τ,z)2

η(τ)2 is a weak Jacobi form of
weight 0 and index 1 with non-trivial multiplier under SL(2,Z) and only a
double zero at z = 0, we have

(A.27) φg,h(τ, z) =
ϑ1(τ, z)2

η(τ)2
Fg,h(τ)

for some function Fg,h(τ) that is Γ0(3)-invariant (up to a multiplier). The
asymptotics for τ →∞ is

(A.28) φg,h(τ, z) ∼ A∞ q
2
3 + · · · ,

for some (possibly vanishing) constant A∞, while the asymptotic behaviour
at 0 is given by

(A.29) φh,g(τ, z) ∼ A0 q
2
9 + · · · .

Since both at ∞ and 0 we have

(A.30)
ϑ1(τ, z)2

η(τ)2
∼ q1/6(2− y − y−1) + · · · ,

we deduce that Fg,h has a zero at both 0 and∞ and no poles; hence it must
vanish. We therefore conclude

(A.31) φ3A,3B1(τ, z) = 0,

as claimed.
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The (3A, 3A3)-case (group 33) is analogous. Here, the group is generated
by

(A.32) g = (2, 23, 11)(3, 20, 10)(5, 14, 9)(6, 16, 13)(7, 19, 22)(12, 24, 18)

and

(A.33) h = (2, 22, 13)(4, 21, 8)(5, 14, 9)(6, 23, 7)(11, 19, 16)(12, 18, 24),

and we have the relations

(A.34) (k−1gk, k−1ghk) = (g, h), (r−1hr, r−1g−1r) = (g, h)

where

k = (1, 17, 15)(3, 9, 24)(5, 18, 20)(6, 16, 13)(7, 22, 19)(10, 14, 12),
(A.35)

r = (3, 4, 10, 21)(5, 18)(6, 16, 19, 7)(8, 20)(9, 24, 14, 12)(11, 22, 23, 13).
(A.36)

The modular properties of φg,h are

φg,h(τ + 1) = cg(g, h)
cg(gh, k)
cg(k, h)

φg,h(τ) = e
4πi

3 φg,h(τ),(A.37)

φg,h(−1/τ) = 1
ch(g, g−1)

ch(g−1, r)
ch(r, h)

φg,h(τ) = φg,h(τ).(A.38)

Thus φg,h is invariant (up to a multiplier) under SL(2,Z), and φg,h ∼ Aq2/3

at ∞, so that

(A.39) F3A,3A3(τ) ≡ φg,h(τ, z)
η(τ)2

ϑ1(τ, z)2
∼ Aq1/2 + · · · .

Thus, F3A,3A3 has a zero and no poles and therefore must vanish, thus leading
to

(A.40) φ3A,3A3(τ, z) = 0.

Appendix B. Some group cohomology

In this section, we will review the basic definitions and properties of group
cohomology, see for example [43] for an introduction to the subject.
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In general, group cohomology is defined in terms of a finite group G and
a G-module A, i.e., an abelian group with an action of G satisfying certain
compatibility properties. For our purposes, it is sufficient to consider A =
U(1) with the trivial action of G. An n-cochain ψ (with n ≥ 0) for G with
values in U(1) is simply a function from G× · · · ×G (n times) to U(1); a
0-cochain is just an element of U(1). On the space Cn(G,U(1)) of n-cochains
one can define a coboundary operator ∂n : Cn(G,U(1))→ Cn+1(G,U(1)) by

∂nψ (g1, . . . , gn+1) = ψ(g2, . . . , gn+1)(B.1)

×
n∏

i=1

ψ(g1, . . . , gi−1, gigi+1, gi+2, . . . , gn+1)(−1)
i

× ψ(g1, . . . , gn)(−1)
n+1
.

The cochains in the kernel of ∂n are called n-cocycles (or co-closed n-
cochains), while the cochains in the image of ∂n−1 are called n-coboundaries.
The coboundary operator satisfies ∂n+1 ◦ ∂n = 1 (the trivial element of U(1))),
so that we can define the cohomology, as usual, as the quotient of the space
of cocycles modulo coboundaries

(B.2) Hn(G,U(1)) =
ker ∂n

Im ∂n−1
,

where n > 0, and we use the convention that H0(G,U(1)) = U(1), and that
every 0-cochain is coclosed, i.e., ∂0 = 1.

In particular, for a 1-cochain γ, the condition ∂1γ = 1 is simply γ(g)γ(h) =
γ(gh) for all g, h ∈ G, so that H1(G,U(1)) is just the group of homomor-
phism from G to U(1). A 2-cochain β : G×G→ U(1) is co-closed (and
hence defines a cocycle) provided it satisfies

(B.3) β(g1, g2g3)β(g2, g3) = β(g1g2, g3)β(g1, g2)

for g1, g2, g3 ∈ G. The second cohomology H2(G,U(1)) then consists of the
co-closed 2-cochains, modulo the ambiguity

(B.4) β(g1, g2)→ β(g1, g2)
γ(g1)γ(g2)
γ(g1g2)

,

where γ is an arbitrary 1-cochain, i.e., an arbitrary function γ : G→ U(1).
The second cohomology of a group G classifies the inequivalent projective



Generalized Mathieu Moonshine 193

representations of G, see Appendix C. A 3-cochain α,

(B.5) α : G×G×G→ U(1)

is closed provided it satisfies

α(g1, g2, g3)α(g1, g2g3, g4)α(g2, g3, g4) = α(g1g2, g3, g4)α(g1, g2, g3g4).
(B.6)

In the cohomology group H3(G,U(1)), the 3-cocycles are then identified
modulo

(B.7) α(g1, g2, g3)→ α(g1, g2, g3)
β(g1, g2g3)β(g2, g3)
β(g1g2, g3)β(g1, g2)

.

Note that the multiplying factor is trivial if β is closed, i.e., if it satisfies the
2-cocycle condition (B.3). We shall always work with normalized cocycles,
i.e., we shall assume that

(B.8) α(e, g1, g2) = α(g1, e, g2) = α(g1, g2, e) = 1

for all g1, g2 ∈ G, where e denotes the identity element of G.
Given a 3-cocycle α, we can define, for any h ∈ G, a 2-cochain ch : G×

G→ U(1) via

(B.9) ch(g1, g2) =
α(h, g1, g2)α(g1, g2, (g1g2)−1h(g1g2))

α(g1, g−11 hg1, g2)
.

It is shown in [25] that ch defines a 2-cocycle of the centralizer CG(h) ⊂ G
(i.e., the subgroup of all elements g1, g2 which commute with h). When
g1, g2 ∈ CG(h), we have the simplified expression

(B.10) ch(g1, g2) =
α(h, g1, g2)α(g1, g2, h)

α(g1, h, g2)
, g1, g2 ∈ CG(h).

Under the ‘gauge transformation’ (B.7), ch transforms as

(B.11) ch(g1, g2)→ ch(g1, g2)
γh(g1)γh(g2)
γh(g1g2)

, g1, g2 ∈ CG(h),

where we defined the 1-cochain γh by

(B.12) γh(g) ≡ β(g, h)
β(h, g)

.
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This is indeed of the form (B.4), and hence, for all h ∈ G, ch defines a map

(B.13) ch : H3(G,U(1))→ H2(CG(h), U(1)).

Appendix C. Projective representations of finite groups

This section follows [37, 67]. A projective representation is a map ρ : G→
End(V ) from a group G to the endomorphism group of some complex vector
space V satisfying

(C.1) ρ(g) ρ(h) = β(g, h) ρ(gh), β(g, h) ∈ U(1).

It follows from the associativity of the group multiplication that the phase
β(g, h) satisfies the 2-cocycle condition

(C.2) β(g, h)β(gh, k) = β(h, k)β(g, hk).

There is the freedom of rescaling the maps ρ(g) as

(C.3) ρ(g) �→ γ(g)ρ(g), γ(g) ∈ U(1).

For the 2-cocylce β this leads to the rescaling by a coboundary

(C.4) β(g, h)→ β(g, h) γ(gh) γ(g)−1 γ(h)−1.

In particular, one can always choose a rescaling such that ρ(e) is the iden-
tity matrix in End(V ); with this choice, the cocycle β is normalized. Two
projective representations whose 2-cocycles differ only by a coboundary are
called projectively equivalent, since their representation matrices are related
by a rescaling. Therefore, the inequivalent projective representations of G
are captured by the second group cohomology H2(G,U(1)).

As for genuine linear representations, one may define the character of a
projective representation as the trace

(C.5) χ(g) = TrV (ρ(g)).

Owing to the modified composition law, projective characters are in gen-
eral not class functions, but differ by a phase on different representatives
of one conjugacy class. However, it is always possible to choose a cocycle
representative such that the characters are indeed class functions.
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Assuming that gh = hg, we have, using the projective composition law,

(C.6) χ(g) = χ(h−1gh) =
β(gh, h−1)
β(h−1, gh)

χ(g).

Using the cocycle condition, it is easy to see that this condition on the
characters is equivalent to the obstruction of the first kind (2.13). Also, the
obstruction does not depend on the specific cocycle representative β(g, h)
or the class representative g. Classes whose projective characters vanish are
called β-irregular. It may be shown that to each cocycle β(g, h), there exist
exactly as many linearly inequivalent irreducible projective representations
as there are β-regular conjugacy classes.

Two irreducible characters belonging to representations with the same
cocycle β(g, h) satisfy an orthogonality relation of the form

(C.7)
∑
[g]

|Kg|−1 χ(g)∗ χ̃(g) =
{
1 χ = χ̃,

0 otherwise,

where the sum is taken over a set of (β-regular) class representatives of G,
and |Kg| is the size of the conjugacy class of g.

There is a natural connection between projective representations and
central extensions of a group G. We say that G̃ is a central extension of G
if there is an abelian subgroup A ⊂ Z(G̃) of the centre Z(G̃) of G̃ such that
the short sequence

(C.8) 0→ A→ G̃→ G→ 0

is exact, or equivalently that G = G̃/A. The simplest central extension is
of course G̃ = A×G, but this is in general not the only possibility. It can
be shown that the non-isomorphic central extensions of G by A are also
classified by H2(G,A). Each set of projectively inequivalent projective rep-
resentations of G corresponds to a set of genuine representations of some
extension G̃.

In some sense there exists a maximal central extension S for each G, the
Schur cover or ‘Darstellungsgruppe’. It is characterized by the property that
any projective representation of G corresponds to a genuine representation
of S. The Schur cover is, in general, not unique, unless G is a perfect group,
i.e., it coincides with the commutator subgroup. Otherwise, the Schur covers
are related by isoclinism.
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Appendix C.1. Central extension and orbifolds

Let C be a K3 sigma-model and suppose that its automorphism group con-
tains an element g such that the orbifold of C by g, Ĉ = C/〈g〉 is consis-
tent. In this subsection, we will show that all projective representations
of H ≡ CM24(g) on the gr-twisted sectors are equivalent to genuine repre-
sentations of a central extension H̃ of the form described in Section 4.1,
Equation (4.2).

By (3.24) and (3.32), the level-matching condition is satisfied if and only
if the restriction of the class [α] ∈ H3(M24, U(1)) to H3(〈g〉, U(1)) is trivial.
Each gr-twisted sector carries a, in general projective, representation ρgr

of H ≡ CM24(g), with underlying 2-cocycle cgr given by (3.9). The various
cocycles cgr are related to one another by the identity

(C.9) cgr(h, k) =
fg,r(h)fg,r(k)
fg,r(hk)

cg(h, k)r, h, k ∈ C(g),

where

(C.10) fg,r(h) =
r−1∏
i=1

ch(g, gi).

Here we have used the definition (3.9) of cg and applied repeatedly the
condition that the 3-cocycle α is closed. Thanks to the level-matching con-
dition, we can choose the representative cocycle α to be identically 1 when
restricted to 〈g〉, so that fg,r(gi) = 1 for all i. Furthermore, by changing α
by a coboundary ∂β as in (B.7), the functions fg,r(h) transform as

(C.11) fg,r(h)→ fg,r(h)
β(gr, h)β(h, g)r

β(h, gr)β(g, h)r
.

Thus, we can choose β in such a way that fg,r(h) = 1 for all h ∈ C(g), so
that

(C.12) cgr(h, k) = cg(h, k)r, h, k ∈ C(g).
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In particular, since ce(h, k) = 1, cg(h, k) is always an Nth root of unity,
where N = o(g).

Appendix D. Centralizers CM24(g) and (projective)
character tables

This section describes the projective character tables of the centralizer H ≡
CM24(g) for each conjugacy class of M24, corresponding to the projective
equivalence class determined by the 2-cocycle cg. The procedure to compute
these tables is as follows.

Let Schur(H) denote a Schur cover of H, i.e., a central extension of H
fitting into the exact sequence

(D.1) 1→M(H)→ Schur(H)→ H → 1,

whereM(H) = H2(H,Z) = (H2(H,U(1)))∗ is the Schur multiplier. The Schur
cover Schur(H) and its character table can be easily computed (we used
GAP [41] for this). Any irreducible projective representation ρ of H is equiv-
alent to a genuine irreducible representation ρ̃ of Schur(H) and vice versa.
Thus, one can associate a class of H2(H,U(1)) to each irreducible repre-
sentation of Schur(H). The projective character table we are interested in
is obtained from the one of Schur(H) by keeping only the representations
associated to the class [cg], and by choosing a lift in Schur(H) of each conju-
gacy class of H (different choices of the lifts lead to projectively equivalent
representations).

It only remains to determine which irreducible representations of Schur(H)
correspond to the class [cg]. Consider an irreducible projective representation
ρ of H associated with the 2-cocycle cg. For any commuting pair h, k ∈ H,
hk = kh, we have

(D.2) ρ(h)ρ(k)ρ(h)−1ρ(k)−1 =
cg(h, k)
cg(k, h)

.

(Note that cg(h,k)
cg(k,h) only depends on the class [cg] and not on the representative

cocycle cg.) Thus, any representation σ of Schur(H) in the class [cg] must
satisfy

(D.3) σ(h̃k̃h̃−1k̃−1) =
cg(h, k)
cg(k, h)

,
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where h̃, k̃ are some lifts of h, k in Schur(H). It is easy to see that the com-
mutator h̃k̃h̃−1k̃−1 is an element of M(H), and that it does not depend
of the choice of the lifts. In fact, the commutators of this form generate
M(H), and if a representation σ satisfies (D.3) for a set of generators of
M(H) = (H2(H,U(1)))∗, then it must be associated with the class [cg].
This condition can be easily tested for each irreducible representation of
Schur(H), given our explicit knowledge of the cocycle cg.

Appendix D.1. Character Tables

In this section, we collect some information about the centralizers CM24(g)
of representatives of each M24 conjugacy class [g], in particular a (rough)
description of the group structure and the group order. Our notation is as
follows:

G = N.Q group G containing a normal subgroup N and
such that G/N ∼= Q

N �Q (left) semidirect product of N and Q
Zn cyclic group of order n
Sn group of permutations (symmetric group) of n objects
An group of even permutations (alternating group) of

n objects
Dn dihedral group of order n

PSLn(q) projective special linear group over the n-dim. vector
space over the finite field Fq

Furthermore, for each class [g], we specify whether the representation
carried by the g-twisted sector Hg is (projectively equivalent to) a linear
representation, or whether it is genuinely projective; in the latter case we
describe a minimal central extension with respect to which the representa-
tion is linear. Finally, we provide the character table of CM24 for the rel-
evant projective equivalence class. The names of the conjugacy classes are
chosen to correspond to the ATLAS names of M24 classes, with additional
indices in case of redundancy. We adopt the following notation for algebraic
numbers

εn = e
2πi

n , e±p =
1
2
(1± i√p).
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Classes 11A, 12A, 12B, 14AB, 15AB, 21AB, 23AB

When g is in one of these classes, the centralizer CM24(g) is the cyclic
group 〈g〉 and all representations in the g-twisted sector are (projectively
equivalent to) linear representations. Thus, all irreducible representations
are one-dimensional, and a useful choice for the corresponding (projective)
characters χk, k = 1, . . . , o(g) is

(D.4) χk(ga) = e2πi
a

o(g)
(k− 1

�(g)
)
,

a = 0, . . . , o(g)− 1, where �(g) is the length of the shortest cycle of g when
considered as a permutation of 24 objects. Indeed, the characters (D.4) cor-
respond to the standard definition ρg(ga) = e2πia(L0−L̃0) for the action of 〈g〉
in the g-twisted sector.

Appendix E. Decompositions of twisted sectors

In this section we give the decomposition of the first 20 representation spaces
Hn

g for all non-isomorphic twisted sectors. In each table, the integer in the
i’th row and the r’th column is the multiplicity hi,r of the irreducible rep-
resentation χi (numbered as in the corresponding character table) in the
representation ρg,r of Equation (2.5). When the centralizer CM24(g) is a
cyclic group ZN , N = o(g) (classes 11A, 12A, 12B, 14AB, 15AB, 21AB,
23AB), the multiplicity hi,r of the (projective) irreducible characters χi (see
Equation (D.4)) is only non-zero if Nr + 1/�(g) ≡ i mod N , where �(g) is
the length of the shortest cycle of g as a permutation of 24 objects; then,
only these values of hi,r are given.

Table 16: Multiplicities of irreducible representations for the 2A-twisted
sector.

i 2r
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1 0 0 0 0 0 0 0 4 0 2 0 14 0 18 0 52 0 96 0 204
2 0 0 0 0 0 0 0 0 0 4 0 6 0 14 0 34 0 72 0 132 0
3,4 0 1 0 0 0 0 0 1 0 2 0 6 0 18 0 32 0 72 0 137 0
5,6 0 0 1 0 0 0 2 0 4 0 16 0 28 0 72 0 141 0 306 0 570
7,8 0 0 0 0 0 2 0 2 0 10 0 18 0 50 0 96 0 216 0 408 0
9 0 0 0 0 2 0 2 0 12 0 22 0 68 0 130 0 304 0 578 0 1184
10 0 0 0 0 0 0 6 0 10 0 30 0 72 0 166 0 332 0 702 0 1346
11 0 0 0 2 0 2 0 6 0 20 0 48 0 106 0 240 0 486 0 972 0
12,13 0 0 0 0 0 2 0 8 0 18 0 48 0 108 0 236 0 486 0 978 0
14 0 0 0 0 2 0 4 0 14 0 36 0 80 0 184 0 392 0 788 0 1550
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Table 17: Multiplicities of irreducible representations for the 2B-twisted
sector.

i 4r
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

1 0 0 0 0 0 0 2 0 2 0 8 0 16 0 42 0 76 0 172 0
2,3 1 0 0 0 0 0 1 0 4 0 6 0 21 0 36 0 84 0 160 0
4 0 0 0 0 0 0 2 0 2 0 8 0 16 0 42 0 76 0 172 0
5,8 0 0 1 0 0 0 6 0 10 0 32 0 68 0 162 0 318 0 670 0
6,7 0 0 0 0 2 0 4 0 14 0 26 0 76 0 150 0 334 0 648 0
9,10 0 1 0 0 0 2 0 8 0 18 0 47 0 108 0 224 0 466 0 924
11,14 0 0 0 0 2 0 4 0 16 0 38 0 90 0 192 0 414 0 814 0
12,13 0 0 1 0 2 0 6 0 14 0 40 0 86 0 198 0 406 0 826 0
15,16 0 0 0 0 2 0 6 0 18 0 46 0 106 0 234 0 490 0 986 0
17 0 0 0 2 0 4 0 14 0 40 0 94 0 210 0 456 0 932 0 1836
18 0 0 0 2 0 8 0 22 0 58 0 140 0 318 0 682 0 1396 0 2760

Table 18: Multiplicities of irreducible representations for the 3A-twisted
sector.

i 3r
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 0 0 0 0 0 0 0 0 2 0 0 2 0 0 10 0 0 16 0 0
2,3 0 1 0 0 0 0 0 2 0 0 6 0 0 20 0 0 41 0 0 104
4,5 0 0 0 0 0 0 1 0 0 6 0 0 10 0 0 34 0 0 74 0
6,7 0 0 0 0 0 0 0 0 6 0 0 14 0 0 42 0 0 92 0 0
8 0 0 0 0 2 0 0 2 0 0 16 0 0 30 0 0 94 0 0 194
9 1 0 0 0 0 0 4 0 0 6 0 0 28 0 0 60 0 0 162 0
10,11 0 0 0 0 0 2 0 0 8 0 0 24 0 0 64 0 0 154 0 0
12 0 0 2 0 0 2 0 0 10 0 0 24 0 0 74 0 0 172 0 0
13 0 0 0 0 2 0 0 6 0 0 20 0 0 50 0 0 134 0 0 298
14 0 0 0 0 0 0 4 0 0 12 0 0 40 0 0 94 0 0 236 0
15 0 0 0 0 0 4 0 0 8 0 0 32 0 0 76 0 0 200 0 0
16 0 0 0 0 2 0 0 10 0 0 30 0 0 88 0 0 216 0 0 510
17 0 0 0 2 0 0 6 0 0 22 0 0 62 0 0 164 0 0 382 0

Table 19: Multiplicities of irreducible representations for the 3B-twisted
sector.

i 9r
2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53 56 59 62

1 0 0 0 0 0 2 0 0 2 0 0 10 0 0 18 0 0 54 0 0 108
2 0 0 0 0 0 0 0 2 0 0 4 0 0 18 0 0 36 0 0 90 0
3 0 0 0 0 0 0 0 0 0 6 0 0 10 0 0 30 0 0 62 0 0
4,5 0 0 0 0 0 2 0 0 10 0 0 22 0 0 65 0 0 146 0 0 344

(continued)
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Table 19: Continued.

i 9r
2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53 56 59 62

6,7 0 0 0 0 2 0 0 5 0 0 18 0 0 44 0 0 118 0 0 254 0
8,9 1 0 0 0 0 0 4 0 0 10 0 0 36 0 0 82 0 0 202 0 0
10 0 0 0 0 0 6 0 0 14 0 0 50 0 0 122 0 0 308 0 0 666
11 0 2 0 0 2 0 0 12 0 0 32 0 0 96 0 0 220 0 0 526 0
12 0 0 0 2 0 0 6 0 0 26 0 0 64 0 0 174 0 0 390 0 0
13 0 0 2 0 0 4 0 0 20 0 0 54 0 0 150 0 0 346 0 0 794
14 0 0 0 0 4 0 0 12 0 0 42 0 0 104 0 0 268 0 0 600 0
15 0 0 0 2 0 0 10 0 0 26 0 0 80 0 0 194 0 0 468 0 0
16 0 0 2 0 0 6 0 0 22 0 0 64 0 0 168 0 0 400 0 0 902
17 0 0 0 0 4 0 0 14 0 0 46 0 0 122 0 0 304 0 0 690 0
18 0 0 0 2 0 0 10 0 0 32 0 0 90 0 0 224 0 0 530 0 0

Table 20: Multiplicities of irreducible representations for the 4A-twisted
sector.

i 8r
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

1,2 1 0 0 0 0 0 0 0 4 0 0 0 10 0 0 0 26 0 0 0
3,4 0 0 0 0 0 0 2 0 0 0 4 0 0 0 16 0 0 0 44 0
5 0 0 0 0 2 0 0 0 6 0 0 0 18 0 0 0 54 0 0 0
6 0 0 0 0 0 0 2 0 0 0 12 0 0 0 32 0 0 0 84 0
7,11 0 1 0 0 0 2 0 0 0 7 0 0 0 26 0 0 0 68 0 0
8,12 0 0 0 0 0 0 0 4 0 0 0 14 0 0 0 40 0 0 0 110
9,10 0 0 0 0 2 0 0 0 8 0 0 0 28 0 0 0 80 0 0 0
13 0 0 2 0 0 0 4 0 0 0 16 0 0 0 48 0 0 0 130 0
14 0 0 0 0 0 0 4 0 0 0 16 0 0 0 48 0 0 0 128 0
15 0 0 0 2 0 0 0 8 0 0 0 28 0 0 0 84 0 0 0 216
16 0 0 0 0 0 4 0 0 0 16 0 0 0 48 0 0 0 136 0 0

Table 21: Multiplicities of irreducible representations for the 4B-twisted
sector.

i 4r
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1,6 0 1 0 0 0 3 0 0 0 10 0 0 0 33 0 0 0 90 0 0
2,3,4,5,7,8 0 0 0 0 0 2 0 0 0 10 0 0 0 32 0 0 0 90 0 0
9,10 0 0 0 2 0 0 0 10 0 0 0 36 0 0 0 110 0 0 0 290
11 1 0 0 0 2 0 0 0 16 0 0 0 46 0 0 0 146 0 0 0
12 0 0 0 0 4 0 0 0 12 0 0 0 52 0 0 0 136 0 0 0
13 0 0 0 0 0 0 8 0 0 0 24 0 0 0 88 0 0 0 224 0
14 0 0 2 0 0 0 6 0 0 0 30 0 0 0 80 0 0 0 236 0
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Table 22: Multiplicities of irreducible representations for the 4C-twisted
sector.

i 16r
3 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79

1,2 0 0 0 2 0 0 0 8 0 0 0 30 0 0 0 90 0 0 0 228
3,4 0 0 0 0 0 4 0 0 0 18 0 0 0 52 0 0 0 144 0 0
5,6 0 0 1 0 0 0 7 0 0 0 22 0 0 0 68 0 0 0 184 0
7,8 1 0 0 0 2 0 0 0 12 0 0 0 41 0 0 0 112 0 0 0
9 0 0 0 4 0 0 0 18 0 0 0 60 0 0 0 176 0 0 0 460
10 0 2 0 0 0 8 0 0 0 32 0 0 0 106 0 0 0 288 0 0
11 0 0 2 0 0 0 12 0 0 0 46 0 0 0 136 0 0 0 364 0
12 0 0 0 0 6 0 0 0 24 0 0 0 80 0 0 0 228 0 0 0

Table 23: Multiplicities of irreducible representations for the 5A-twisted
sector.

i 5r
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0 0 0 0 0 0 0 0 0 8 0 0 0 0 20 0 0 0 0 60 0
2 0 0 0 0 0 0 0 2 0 0 0 0 14 0 0 0 0 42 0 0 0
3 1 0 0 0 0 2 0 0 0 0 6 0 0 0 0 28 0 0 0 0 74
4 0 0 0 2 0 0 0 0 4 0 0 0 0 16 0 0 0 0 50 0 0
5 0 0 0 0 0 0 2 0 0 0 0 10 0 0 0 0 30 0 0 0 0
6,7 0 0 0 0 1 0 0 0 0 6 0 0 0 0 20 0 0 0 0 63 0
8,12 0 0 0 0 0 0 0 4 0 0 0 0 12 0 0 0 0 42 0 0 0
9,13 0 0 0 0 0 2 0 0 0 0 7 0 0 0 0 26 0 0 0 0 74
10,14 0 0 0 0 0 0 0 0 4 0 0 0 0 18 0 0 0 0 48 0 0
11,15 0 1 0 0 0 0 2 0 0 0 0 10 0 0 0 0 32 0 0 0 0
16 0 0 0 0 4 0 0 0 0 16 0 0 0 0 64 0 0 0 0 180 0
17 0 0 0 2 0 0 0 0 14 0 0 0 0 46 0 0 0 0 154 0 0
18 0 0 0 0 0 0 8 0 0 0 0 28 0 0 0 0 100 0 0 0 0
19 0 0 2 0 0 0 0 8 0 0 0 0 40 0 0 0 0 118 0 0 0
20 1 0 0 0 0 4 0 0 0 0 24 0 0 0 0 76 0 0 0 0 230

Table 24: Multiplicities of irreducible representations for the 6A-twisted
sector.

i 6r
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1,2 0 0 0 0 0 4 0 0 0 0 0 14 0 0 0 0 0 56 0 0
3,4 0 0 0 0 0 2 0 0 0 0 0 16 0 0 0 0 0 52 0 0
5,12 0 1 0 0 0 0 0 5 0 0 0 0 0 25 0 0 0 0 0 76
6,11 0 0 0 1 0 0 0 0 0 10 0 0 0 0 0 34 0 0 0 0
7,10 0 0 0 0 0 0 0 6 0 0 0 0 0 22 0 0 0 0 0 80
8,9 0 0 0 2 0 0 0 0 0 8 0 0 0 0 0 38 0 0 0 0

(Continued)
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Table 24: Continued.

i 6r
13 0 0 2 0 0 0 0 0 14 0 0 0 0 0 58 0 0 0 0 0
14 1 0 0 0 0 0 8 0 0 0 0 0 38 0 0 0 0 0 130 0
15 0 0 0 0 4 0 0 0 0 0 24 0 0 0 0 0 88 0 0 0

Table 25: Multiplicities of irreducible representations for the 6B-twisted
sector.

i 36r

5 11 17 23 29 35 41 47 53 59 65 71 77 83 89 95 101 107 113 119 125 131 137 143

1,2 0 0 0 0 2 0 0 0 0 0 16 0 0 0 0 0 50 0 0 0 0 0 158 0

3,4 0 0 0 0 3 0 0 0 0 0 13 0 0 0 0 0 54 0 0 0 0 0 152 0

5,12 0 0 0 0 0 0 6 0 0 0 0 0 22 0 0 0 0 0 78 0 0 0 0 0

6,11 0 0 2 0 0 0 0 0 8 0 0 0 0 0 36 0 0 0 0 0 106 0 0 0

7,10 1 0 0 0 0 0 4 0 0 0 0 0 24 0 0 0 0 0 74 0 0 0 0 0

8,9 0 0 1 0 0 0 0 0 10 0 0 0 0 0 33 0 0 0 0 0 112 0 0 0

13 0 2 0 0 0 0 0 14 0 0 0 0 0 56 0 0 0 0 0 182 0 0 0 0

14 0 0 0 0 0 8 0 0 0 0 0 36 0 0 0 0 0 126 0 0 0 0 0 366

15 0 0 0 4 0 0 0 0 0 22 0 0 0 0 0 86 0 0 0 0 0 260 0 0

Table 26: Multiplicities of irreducible representations for the 7AB-twisted
sectors.

i 7r
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 0 0 0 0 0 0 2 0 0 0 0 0 0 8 0 0 0 0 0 0
2 0 0 0 0 0 0 2 0 0 0 0 0 0 10 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 15 0 0 0
4 0 0 0 0 0 2 0 0 0 0 0 0 6 0 0 0 0 0 0 28
5 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 14 0 0 0 0
6 0 0 0 0 1 0 0 0 0 0 0 6 0 0 0 0 0 0 22 0
7 0 0 0 0 0 0 0 3 0 0 0 0 0 0 10 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 20 0 0
9 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 16 0 0
10 1 0 0 0 0 0 0 2 0 0 0 0 0 0 12 0 0 0 0 0
11 0 0 0 0 2 0 0 0 0 0 0 5 0 0 0 0 0 0 24 0
12 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 12 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 26
14 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 18 0 0 0
15 0 0 0 0 0 0 4 0 0 0 0 0 0 16 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 26 0 0 0 0
17 0 0 0 0 0 2 0 0 0 0 0 0 16 0 0 0 0 0 0 52
18 0 0 1 0 0 0 0 0 0 8 0 0 0 0 0 0 32 0 0 0
19 0 0 0 2 0 0 0 0 0 0 10 0 0 0 0 0 0 36 0 0
20 1 0 0 0 0 0 0 4 0 0 0 0 0 0 22 0 0 0 0 0
21 0 0 0 0 2 0 0 0 0 0 0 11 0 0 0 0 0 0 46 0
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Table 27: Multiplicities of irreducible representations for the 8A-twisted
sector.

i 8r
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1,4 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 24 0 0 0 0
2,3 0 0 0 2 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 46
5 0 0 0 0 0 2 0 0 0 0 0 0 0 16 0 0 0 0 0 0
6 0 1 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 34 0 0
7 0 0 0 0 0 4 0 0 0 0 0 0 0 16 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 32 0 0
9,13 1 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 28 0 0 0
10,14 0 0 1 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 40 0
11,15 0 0 0 0 0 0 4 0 0 0 0 0 0 0 20 0 0 0 0 0
12,16 0 0 0 0 2 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0

Table 28: Multiplicities of irreducible representations for the 10A-twisted
sector.

i 20r
3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

1,2 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 22 0
3,4 0 0 0 2 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0
5,6 0 0 0 0 2 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0
7,8 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 24
9,10 1 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0
11,12 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 14 0 0 0 0
13,14 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 16 0 0 0
15,16 0 1 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0
17,18 0 0 1 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0
19,20 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 18 0 0

Table 29: Multiplicities of irreducible representations for the 11A-twisted
sector.

11r ≡ i − 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
hi,r 2 0 2 2 2 2 4 4 6 6 8 8 12 10 14 16 20 20 26 26

Table 30: Multiplicities of irreducible representations for the 12A-twisted
sector.

24r ≡ 2i − 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41
hi,r 1 2 2 2 2 4 4 4 6 6 8 8 10 12 12 16 18 20 22 24
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Table 31: Multiplicities of irreducible representations for the 12B-twisted
sector.

144r ≡ 12i− 1 23 35 47 59 71 83 95 107 119 131 143 155 167 179 191 203 215 227 239 251

hi,r 2 2 2 2 2 4 4 6 6 6 8 10 10 12 14 16 18 20 24 26

Table 32: Multiplicities of irreducible representations for the 14AB-twisted
sectors.

14r ≡ i − 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
hi,r 1 0 1 2 1 2 2 2 3 4 4 4 6 6 7 8 8 10 12 12

Table 33: Multiplicities of irreducible representations for the 15AB-twisted
sectors.

15r ≡ i − 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
hi,r 1 0 1 1 2 1 2 2 3 2 4 4 5 4 6 6 8 7 10 10

Table 34: Multiplicities of irreducible representations for the 21AB-twisted
sectors.

63r ≡ 3i − 1 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53 56 59 62 65
hi,r 7 7 13 0 14 7 14 7 14 26 14 14 21 14 28 21 58 28 588 28

Table 35: Multiplicities of irreducible representations for the 23AB-twisted
sectors.

23r ≡ i − 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
hi,r 1 0 0 1 1 0 1 0 2 1 2 2 2 1 2 2 2 2 3 2
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