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Dihedral symmetries of multiple polylogarithms

Susama Agarwala

This paper finds relationships between multiple polylogarithms
with a dihedral group action on the arguments. I generalize the
combinatorics developed in Gangl, Goncharov and Levin’s R-deco
polygon representation of multiple polylogarithms to find these
relations. These relations between R-deco polygons, and between
R-deco polygons and iterated integrals, can only be defined up to
a primitive co-ideal.
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This paper studies the relationships between multiple polylogarithms
that differ by a dihedral permutation on their arguments. Goncharov has
shown [8] dihedral relations between multiple zeta values, and has conjec-
tured such a relation on the level of multiple polylogarithms. To study the
dihedral symmetries of multiple polylogarithms, I use a technique developed
by Gangl et al. [7], that represents multiple polylogarithms as decorated
rooted oriented polygons, R-deco polygons. Goncharov [9] has shown a Hopf
algebra structure underlying multiple polylogarithms. The authors of [7] give
a Hopf algebra structure to the R-deco polygons and construct a coalgebra
homomorphism between their Hopf algebra of polygons and the Hopf alge-
bra of multiple polylogarithms. The R-deco polygon structure of multiple
polygons has recently become interesting objects in physics. These polygons
are used to define symbols of multiple polylogarithms [6]. These symbols and
their Hopf algebraic structure have important applications in understanding
amplitudes in super Yang–Mills theories in 4 dimensions [5, 11].

Multiple polylogarithms are interesting number theoretical objects in
their own right. As a nested sum they are written

Lin1,...,nr
(x1, . . . , xr) =

∑
0<k1<...<kr

xk1
1 , . . . , x

kr
r

kn1
1 , . . . , knr

r
.

The multiple polylogarithm, evaluated at xi = 1 gives the multiple zeta value
ζ(n1, . . . , nr). The weight of the multiple polylogarithm is w =

∑r
i=1 ni and

its depth is r. In [9], this multiple sum is written in terms of Chen’s iterated
integrals. Thus multiple polylogarithms inherit the bar complex defined on
iterated integrals [3]. There is a motivic generalization of Chen’s iterated
integrals. Bloch and Kriz [1] define a Hopf algebra of algebraic cycles, χMot,
over a field F formed by taking the 0th cohomology of a bar complex based
on a differential graded algebra (DGA) associated to the cycles. In [7], the
authors determine that there are elements of χMot that correspond to mul-
tiple polylogarithms.

Iterated integrals also make their appearance in physics. Goncharov
[10] shows a relationship between the Hopf algebra of multiple polyloga-
rithms, via iterated integrals, and the Hopf algebra of rooted trees devel-
oped by Connes and Kreimer for renormalizing Feynman integrals [4]. Brown
[2] develops a method for evaluating Feynman integrals, under Schwinger
parametrization, in terms of iterated integrals, although the arguments for
these iterated integrals are more complicated than those for multiple poly-
logs. In short, there is a lot of activity suggesting a close tie between multiple
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polylogarithms and the calculations that appear in various quantum field
theories.

This paper studies multiple polylogarithms from a combinatorial point
of view, primarily on the level of R-deco polygons. Let D2r be the dihedral
group on r elements,

D2r = 〈σ, τ |τ2 = σr = 1, στ = τσ−1〉.

In this paper, I study the relationship between the multiple polylogarithms

Lin1,...,nr
(x1, . . . , xr) and Lig(n1,...,nr)(g(x1, . . . , xr))

for any g ∈ D2r. Section one of this paper generalizes the algorithm defined
in [7] for assigning decorated trees to multiple polylogarithms. There the
authors associate to each multiple polylogarithm an R-deco polygon, and a
family of dissections to each polygon. The differential structure of the iter-
ated integral associated to each multiple polylogarithm defines a dual tree
structure to the dissections, and a Hopf algebra structure to the
R- deco polygons. Each polygon is mapped to an element of the bar complex
on the algebra of R-deco polygons, P(�)

• (R). I introduce a generalization of a
rooted tree, called a multi-rooted tree. I show that if the dual trees associated
to dissections generate a Hopf algebra, the trees dual to single dissections
define a differential on the P(�)

• (R). Combinatorial relationships between
these different tree structures allow me to compare multiple polylogarithms
of weight r under the action of the dihedral group D2r. Section 2 of this
paper calculates the action of τ and σ in D2r on P(�)

• (R). Contrary to a
conjecture by Gangl and Levin, I find that the difference between the bar
element associated to an R-deco polygon and its image under the action of
the dihedral group cannot completely be expressed as a sum of products of
bar elements associated to subpolygons. On the level of R-deco polygons,
this result holds up to a primitive coideal.

1. The various Hopf algebras of R-deco polygons

This paper studies multiple polylogarithms by studying the iterated integral
associated to them. Let w =

∑n
i ki be the weight of the iterated integral

Ik1,...,kn
(γ)(0;x1, . . . , xn;xn+1)

=
∫
γ

dt1
t1 − x1

∧
k1−1∧
i=1

dt1i

t1i

· · · ∧ dtn
tn − xn

kn−1∧
i=1

dtni

tni
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with γ a path in C such that γ(0) = 0, γ(1) = xn+1. The value of this integral
depends on the homotopy class of γ [3]. If γ is a straight path in the real
line, γ(t) ∈ R, from xi to xi+1 ∈ R I drop the notation γ. These iterated
integrals can be related to multiple logarithms

(−1)nI1, . . . , 1︸ ︷︷ ︸
n times

(0;x1, . . . , xn;xn+1) = Li1, . . . , 1︸ ︷︷ ︸
n times

(
x2

x1
, . . . ,

xn
xn−1

,
xn+1

xn

)
.

These iterated integrals live in the 0th cohomology of the associated bar
complex defined by Chen. The general class of iterated integrals, I•(R) have
a Hopf algebra structure, as shown by Goncharov in [8]. The space of iterated
integrals can be endowed with an algebra structure, under path composi-
tion. In [10], the author further shows that these iterated integrals have a
motivic counterpart, IM(0, x1, . . . , xn+1) with xi ∈ F , for a field F , that is
an element of the fundamental motivic Hopf algebra over F . The natural dif-
ferential on the iterated integrals defines a bar complex on algebra of iterated
integrals. Those iterated integrals corresponding to multiple polylogarithms
live in the 0th cocycle of this bar complex.

In [7], Gangl et al. associate to each multiple polylogarithm an R-deco
polygon. For instance, the integral

I1, . . . , 1︸ ︷︷ ︸
n times

(0;x1, . . . , xn;xn+1)

is associated to an oriented n+ 1-gon with sides labeled from x1 to xn+1.
Note that in this case, xi �= 0 by construction. The authors define a dif-
ferential on the algebra of R-deco polygons, that mimics the differential
on iterated integrals. This defines a bar complex on R-deco polygons. The
authors of loc. cit. associate a bar element to each polygon. They define a
family of dual trees to the R-deco polygons which induce a Hopf algebra
structure on the algebra of R-deco polygons. This translates to a Hopf alge-
bra sitting in the the 0th cocycle of the bar complex of R-deco polygons. In
this paper, I call this Bφ2 . This structure on the R-deco polygons is com-
patible with the parallel structure on iterated integrals in that there is a
coalgebra homomorphism from this to I•(R),

(1.1) Φ : Λ(Bφ2) → I•(R).
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Specifically, if 0 �∈ R, and the polygon P has sides labeled {x1, . . . , xn+1}
then

Φ(Tφ2(P )) = I1, . . . , 1︸ ︷︷ ︸
n times

(0;x1, . . . , xn;xn+1).

Relating dihedral symmetries of multiple polylogarithms can be simpli-
fied to a combinatorial problem on the dihedral symmetries of decorated
polygons.

This section generalizes the above construction. I define a class of Hopf
algebras associated to these decorated polygons that are useful in solving
the combinatorics of how polylogarithms vary as their order of the argu-
ments are changed. Section 1.1 gives a definition of R-deco polygons and
their dissections, the vector space they generate, V•(R), its exterior product
algebra P(�)

• (R), and the associated bar complexes. Section 1.2 defines the
Hopf algebra of multi-rooted trees, T •(R) , and the linearization map Λ.
I show that Λ is a bialgebra homomorphism from T •(R) to the commu-
tative Hopf algebra of words on R-deco polygons. Section 1.3 introduces a
family of dissection compatible Hopf algebras of T •(R) generated by sets
associated to dissections of R-deco polygons. Section 1.4, shows that these
generating sets define differentials on P(�)

• (R). It also introduces a fam-
ily of almost compatible algebras. Finally, Section 1.5 defines a relation-
ship between the linearizations of dissection compatible Hopf algebras and
almost compatible algebras that is useful for the calculations in Section 2.
Furthermore, I show that the linearization of the latter also gives rise a Hopf
algebra.

1.1. Bar constructions on R-deco polygons

Let R be a set. Usually, R is the set underlying a field.

Definition 1. Let Pn be the convex oriented polygon with n+ 1 ≥ 2 sides,
with sides labeled by elements in R. One of those sides is a distinguished
side, called a root side. One of the endpoints of the root side is marked as
the first vertex. Orient Pn by starting at the first vertex and ending at the
root side. The polygon Pn is an R-deco polygon, as defined in [7].

In this paper, I draw polygons to be oriented counterclockwise. I some-
times specify a polygon in terms of its labels, proceeding counterclockwise
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and ending with the root side. Therefore,
• 4

3

2

1
= 1234

The R-deco polygons generate a vector space.

Definition 2. Let V•(R) be the graded vector space over Q generated by
R-deco polygons. Let Vn(R) be the vector space over Q generated by R-deco
n+ 1-gons, with n ≥ 0 and V0(R) identified with Q

V•(R) = Q < {1, P |P is an R-deco polygon} >= ⊕∞n=0Vn(R); V0(R) = Q.

The ‘weight’ of an element in Vn(R) is n.
An R-deco polygon can be equipped with arrows, as in [7]. An arrow

of a polygon is drawn from a vertex of a polygon to a side of a polygon.
It divides the interior of the polygon into two regions. A trivial arrow of a
polygon P goes from a vertex to an adjacent side. A non-trivial arrow of P
is an arrow that does not end on a side adjacent to its starting vertex. Two
arrows are said to be non-intersecting if they share no points in common
other than possibly the starting vertex.

Definition 3. Arrows of Pn are defined by their starting vertex and ending
edge. Write iαj for an dissecting arrow of the polygons P that starts at the
ith vertex and ends on the jth edge. For non-trivial arrows, j �= i, i− 1
mod (n+ 1). Call iαj a backwards arrow if j < i. Otherwise it is a forwards
arrow.

Example 4. The arrow 1α4 is a trivial arrow in the first polygon below.
In the second polygon, 2α4 and 4α2 are non-intersecting, non-trivial arrows.

• 4

3

2

1
1α4

�� • 4

3

2

1

2α4
���������� 4α2����

��
��
��

Regions associated to dissection arrows can be viewed as polygons in
their own right. If α, is an arrow of P , contracting α to a point results in a
set of two polygons {Pα, Qα} associated to the two regions of P as follows.

(1) The labels of the sides and the orientations of Pα and Qα are inherited
from P .
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(2) If α lands on a non-root side of P , then the subpolygon corresponding
to the region that contains the root side of the original polygon inherits
the root, and the side that α lands on becomes the new root for the
other subpolygon.

(3) If α ends on the root side of P , then both subpolygons inherit the
original root side as their root. See Example 6.

Under this construction, dissection preserves the polygon weight of the. If
α is a trivial arrow, then one of the resulting subpolygons is the trivial
subpolygon, 1 ∈ V0(R) = Q whereas the other subpolygon is the original
polygon. For this reason, for most of the discussion in this paper, we ignore
the presence of trivial arrows.

Definition 5. A dissection d of P is a set of non-intersecting arrows of P .
Denote by D(P ) the set of dissections of the polygon P , including the trivial
dissection (no arrows). The cardinality of a dissection, |d| is the number of
non-trivial arrows in d.

Example 6. For example, consider P = 123 456, and dissection d = {α,
β, γ} as drawn. Contracting along the arrows in d gives the a set of four
polygons.

• 6
5
��

��
�

4��
��
�

3
2

�����

1

��
��
�α

�����������
β

����
��
��
��
�

γ
��������

The arrow β is an arrow not ending on the root side of P . Contracting
along β gives the pair of polygons⎧⎪⎪⎨

⎪⎪⎩Pβ =

6

2
��
��
��

1 		
		

		•
, Qβ =

2

5

4

3

•
⎫⎪⎪⎬
⎪⎪⎭ .

One can think of α now as an arrow in Pβ = 126. It ends on the root
side of P . Contracting along both arrow α and β gives the three polygons⎧⎪⎪⎨

⎪⎪⎩
6•
1

,
6•
2

,

2

5

4

3

•
⎫⎪⎪⎬
⎪⎪⎭ .
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Finally, consider γ as an arrow in Qβ = 3452. It does not end on the
root side of either Qβ or P . Contracting all arrows in d gives⎧⎪⎨

⎪⎩ 6•
1

,
6•
2

,

2

5
��
��
��

3 		
		

		•
,

5•
4

⎫⎪⎬
⎪⎭ .

The order of contracting arrows in d does not affect the set of polygons
associated to it.

The polygons Pα and Qα above are called the polygons associated to
the dissecting arrow α. If d ∈ D(P ) is a dissection with i arrows, there is a
set of i+ 1 subpolygons, {P0, . . . Pi} associated to the dissection d, formed
by contracting the arrows in d. Since dissection preserves weight, if each
Pj ∈ Vnj

(R), and P ∈ Vn(R), then
∑i

j=0 nj = n. Two polygons Pi and Pj
associated to a dissection are adjacent if regions they correspond to share a
dissecting arrow as a boundary.

When discussing polygons associated to dissections, it is useful to label
the regions associated to dissection consisting of a single arrow. For α = d ∈
D(P ), the subpolygons associated to α are sometimes referred to as the root
polygon, P •=α , which is the subpolygon that contains the root side and first
vertex of P , and the cut off polygon, P�α , which is the other subpolygon.
At other times, it is convenient to consider whether the subpolygon lies to
the left or the right of the arrow, as determined by the orientation of the
arrow. In this case, the left polygon is indicated P lα and the right polygon
is indicated P rα. Note that if α is a forwards arrow, P lα = P •=α . If it is a
backwards arrow, P lα = P�α . In Example 6, since β is a backwards arrow,

P lβ = P�β =

2

5

4

3

•
, P rβ = P •=β =

6

2
��
��
��

1 		
		

		•
.

Definition 7. Let P(�)
• (R) be the exterior product algebra of V•(R). It is

bigraded, the subscript • corresponds to the weight, or Adams grading, of
the vector space V•(R), and the superscript (	) corresponds to the exterior
product grading, also referred to as the degree.

The algebra P(�)
• (R) can be endowed with a degree 1 differential operator

to form a DGA (P(�)
• (R), ∂). There are several such operators on this algebra,



Dihedral symmetries of multiple polylogarithms 65

which I discuss in Section 1.4. I consider the bar constructions associated to
each DGAs, B∂(P(�)

• (R)).

Definition 8. Let (A, ∂) be a DGA with A a connected graded exterior
product algebra, and ∂ a degree 1 differential operator. The bar construction
B∂(A) associated to (A•, ∂) is the reduced tensor algebra T̄ (A•) = ⊕∞i=0A

|i
≥1,

commutative under the shuffle product, 

 , with tensor symbol denoted by
|. The bicomplex structure of B∂(A) is given by the differential operators
D1 and D2.

The coproduct on B∂(A) is induced from the deconcatenation coproduct
on T̄ (A)

(1.2) Δ[a1| · · · |an] =
n∑
i=0

[a1| · · · |ai]⊗ [ai+1| · · · |an].

It is compatible with the shuffle product on T (A).
In this paper, I consider A• = P(�)

• (R). Given a differential operator
∂, the bar construction B∂(P(�)

• (R)) is generated by terms of the form
[a1| · · · |an] where each ai ∈ P(ki)

• (R) is homogeneous in the exterior product
grading of degree ki.

(1) Define D1 : P(�)
• (R)|n → P(�)

• (R)|n−1 to be the operator defined

D1([a1| · · · |an]) =
n−1∑
i=1

−(−1)
∑

j≤i(deg aj−1)[a1| · · · |ai ∧ ai+1| · · · |an].

(2) Define D2 : P(�)
• (R)|n → P(�)

• (R)|n to be the operator defined

D2([a1| · · · |an]) =
n∑
j=1

(−1)
∑

k<j(deg ak−1)[a1| · · · |∂aj | · · · an].

Since D1 does not involve the differential defining the DGA, this differ-
ential is the same for all B∂(P(�)

• (R)). If ∂ and ∂′ are different differential
operators on P(�)

• (R), the differential D2 is different on B∂(P(�)
• (R)) and

B∂′(P(�)
• (R)).

Remark 9. The bar construction defined in this paper is different than
the one defined in [7], specifically they differ by the overall sign of D1. The
objects in this paper have different weights than those considered in [12],
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Chapter 2, Section 2.2, otherwise, the construction in this paper and Loday
and Valette agrees. It is worth noting that this bar construction also differs
from that of Bloch and Kriz [1], where the shuffle product and coproduct
have a very different sign convention.

1.2. Multi-rooted trees

In this paper, I define several Hopf algebras associated to the vector space
of R-deco polygons V•(R). These are defined by introducing dual tree struc-
tures to polygons and their dissections. In this subsection, I define these
trees.

Definition 10. A tree is a finite contractible graph with oriented edges.
Vertexes with all edges flowing away from them are called roots. Vertexes
with all edges flowing into it are called leaves. A tree may have many roots,
in which case is called a multi-rooted tree. If a tree has a single vertex, that
vertex is both a root and a leaf.

Unlike for single-rooted trees, leaves on multi-rooted trees can have
multiple edges coming into them.

Remark 11. In this paper, root vertexes are marked by a circle. I do not
explicitly indicate the orientation of the edges, and leave it to be assumed
from the pictures. Generally, root vertexes are drawn at the top of the tree,
while the edges flow down.

Let T •(R) be the augmented bialgebra over Q of multi-rooted non-planar
trees with vertexes decorated by R-deco polygons. As with trees, a multi-
rooted tree T ∈ T •(R) induces a partial order on its vertexes. A path in T
from the vertex v1 in T to v2 in T , is a linear subtree with v1 as a root and
v2 as leaf vertex, with orientation inherited from T . If v1 and v2 are two
vertexes of a tree T ,

v1 ≺ v2 in T ⇐⇒ ∃ a path in T from v1 to v2.

A linear order of T is a total ordering of the vertexes of T that respects the
partial order.

The algebra structure of T •(R) is given as follows. It is graded by number
of vertexes in the tree

T •(R) =
∞⊕
n=0

T n(R) = Q〈T |T has n vertexes 〉; T 0(R) = Q.
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The unit is the empty tree,

IT •(R) = T∅.

The sum of two trees T1 and T2 is formal.
The algebra T •(R) is a commutative algebra with the product of trees

being the disjoint union of trees, or a forest.

Definition 12. For a tree T ∈ T •(R), let c be a non-empty subset of edges
of T , and {t1, . . . tk} be the set of trees formed by removing the edges in
c. The subset c is a proper admissible cut of T if, for any individual ti, the
edges of c that have endpoints in ti either all flow into ti or all flow from ti.

Example 13. For example for the tree T =
•�������	A

α

��
��
��

•B
β 









•
γ

��
��
��

C

•�������	D
the set {α, γ}

is not a proper admissible cut, but the set {α, β} is.

Let c be a proper admissible cut of T •(R), and {t1, . . . , tk} the set of
subtrees of T formed by removing the edges in c from T . The definition
of a proper admissible cut partitions the trees {t1, . . . , tk} by whether they
are connected to the edges in c by terminal vertexes, or initial vertexes.
This partitions the set of subtrees in two, the set {tl1 , . . . , tln} of subtrees
which the elements of c share at most a terminal vertex in tli , and the set
{tr1 , . . . , trm

} of subtrees which the elements of c share at most an initial
vertex in tri

.

Definition 14. • The leaf forest of a proper admissible cut is

L(c) =
n∏
i=1

tli .

• The root forest is

R(c) =
m∏
i=1

tri
.

In the above example, for c = {α, β}, the pruned forest is

L(c) =
•�������	B •

γ

C

•�������	D
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and the root forest is

R(c) =
•�������	A

In addition to proper admissible cuts, one considers two other cuts. The
empty cut is defined such that Lempty(T ) = 1 and Rempty(T ) = T . The full
cut is defined such that Lfull(T ) = T and Rfull(T ) = 1. The set of admissible
cuts consists of proper admissible cuts, the empty cut and the full cut.

Definition 15. The coproduct on T •(R) is defined

(1.3) Δ(T ) =
∑

c admis.

R(c)⊗ L(c).

I denote the contribution of the admissible cut c to the coproduct as

Δc(T ) = R(c)⊗ L(c).

In this notation Δ(T ) =
∑

c admis. Δc(T ).

Recall that in a coassociative bialgebra T •(R), for every T ∈ T •(R),

(1.4) (Δ⊗ I)Δ(T ) = (I⊗Δ)Δ(T ).

Lemma 16. The algebra T •(R) is a coassociative Hopf algebra.

Proof. Since T •(R) is connected and graded, if it is a bialgebra, it is a Hopf
algebra.

First I show that T •(R) is a bialgebra. The coproduct defined in (1.3)
is compatible with multiplication on T •(R):

Δ(TS) = Δ(T )Δ(S)

for S, T ∈ T •(R). Let LT , LS be the pruned forests of T and S, and RT and
RS the root forests of T and S. Then

Δ(T )Δ(S) =
∑

d admis. of T

∑
c admis. of S

RS(c)RT (d)⊗ LS(c)LT (d).

Since the product of trees is the disjoint union, an admissible cut of TS is
an element of the form d ∪ c, where d is an admissible cut of T , and c is an
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admissible cut of S. Therefore,

Δ(TS) =
∑

d∪c admis. of TS

RS(c)RT (d)⊗ LS(c)LT (d) = Δ(T )Δ(S).

To see coassociativity, consider c, an admissible cut of T . Write

Δc(T ) = R(c)⊗ L(c).

Let cr be an admissible cut of the forest R(c). Then

(1.5) (Δcr
⊗ I)Δc(T ) = Rcr

(Rc(T ))⊗ Lcr
(Rc(T ))⊗ Lc(T ).

Since the trees in the forest R(c) are subtrees of T , cr is also an admissible cut
of T . The edges in c are an admissible cut of the forest formed by the product
Rcr

(T ) · Lcr
(T ). Write c = c1 ∪ c2, with c1 an admissible cut of Rcr

(T ) and
c2 and admissible cut of Lcr

(T ). Then c′ = cr ∪ c1 is an admissible cut of T .
The components ofRc′(T ) = Rc1(Rcr

(T )) are attached to the source vertexes
of the edges in c′ while the edges in Lc1(Rcr

(T )) are attached only to the
terminal vertexes of the edges in c1. Furthermore, note that by construction,

(1.6) Rc′(T ) = Rc1(Rcr
(T )) = Rcr

(Rc(T )).

Since Lc1(Rcr
(T )) is part of the forest Lc′(T ),

(1.7) Lc(T ) = Lc1(Rcr
(T )) · Lc2(T ) = Lc2(Lc′(T )).

Since c2 is an admissible cut of Lcr
(T ),

(1.8) Lcr
(Rc(T )) = Rc2(Lc′(T )).

Combining Equations (1.5) (1.6) (1.7) and (1.8) gives

Rc′(T )⊗Rc2(Lc′(T ))⊗ Lc2(Lc′(T )) = (I⊗Δc2)Δc′(T ). �

Remark 17. Note that if T ∈ T •(R) is a single-rooted tree, the coproduct
defined above matches the coproduct and definition of admissible cut in [4].
For a single-rooted tree, R(c) is always a tree. If T is multi-rooted, R(c) may
be a forest.

Definition 18. Let W (R) be the algebra of non-commutative words on
R-deco polygons.
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The algebras W (R) and T̄ (V•(R)) are isomorphic as commutative Hopf
algebras. There is a commutative product given by the shuffle product and
a coproduct given by deconcatenation. This is the same as given in the bar
construction in (1.2). If w = w1, . . . , wn ∈W (R), with the wi non-trivial
R-deco polygons,

Δw1 · · ·wn =
n∑
i=0

(w1 ⊗ · · · ⊗ wi)⊗ (wi+1 ⊗ · · · ⊗ wn).

There is a natural identification

(W (R), 

 ,Δ) � (T̄ (V•(R)), 

 ,Δ) � (T̄ (P(1)
• (R)), 

 ,Δ).

There is an algebra homomorphism from the algebra of trees, T •(R), to
the algebra of words, W (R), which identifies the partial order represented
by T with a sum of words in W (R). I first need to define linearizations of
trees.

Definition 19. For T ∈ T n(R), a partial order preserving a linearization
of T is a word on R-deco polygons

λ(T ) = λ1 ⊗ λ2 ⊗ · · · ⊗ λn ∈W (R)

where each λi is an R deco polygon labeling a vertex of T . If λi ≺ λj as
vertexes in T , then i < j.

Let Lin(T ) be the set of partial order preserving linearizations of trees.
For any λ ∈ Lin(T ), the polygon λ1 is always the label of a root of T and λn
is always the label of a leaf of T . A forest in T •(R) also represents a partial
order on its vertexes. The linearization of trees extends naturally to forests.

In this paper, the partial order of T is viewed as the sum of its par-
tial order preserving linearizations. I define a map from trees to words by
mapping each tree to the sum of its linearizations:

Λ : T •(R) →W (R)

T �→
∑

λ∈Lin(T )

λ(T )

T ′ · T �→
∑

λ′∈Lin(T ′)

λ′(T ′)


∑

λ∈Lin(T )

λ(T ) = Λ(T )

Λ(T ′),

where 

 is the shuffle product on W (R).
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Example 20. Let T be the tree,

T =

•�������	
��
�� ��
��

A

•
C

•�������	
��
��
B

•
D•
E

It has two root vertexes A and B. Then

λ(T ) = A⊗B ⊗ C ⊗D ⊗ E and λ′(T) = B⊗A⊗D⊗ E⊗ C

are two partial order preserving linearizations of T . The sum of all partial
ordered preserving linearizations is

Λ(T ) = (A

B)⊗ (C 

 (D ⊗ E)) +A⊗ C ⊗B ⊗D ⊗ E.

Theorem 21. The map Λ : T •(R) →W (R) is a bialgebra homomorphism.

Proof. The algebra homomorphism comes from the construction of the map
Λ. The coalgebra homomorphism is shown here.

For T ∈ T n(R), the coproduct on T is

Δ(T ) =
∑

c admis.

R(c)⊗ L(c)

and the coproduct on the image, Λ(T ), is

ΔΛ(T ) =
n∑
i=0

∑
λ∈Lin(T )

(λ1 ⊗ . . .⊗ λi)⊗ (λi+1 ⊗ . . .⊗ λn) .

Any decomposition of a partial order preserving linearization λ(T ), [λ1 ⊗
· · · ⊗ λi] and [λi+1 ⊗ · · · ⊗ λn], can be written as a tensor product of partial
order preserving linearization of forests of the form ρ(R) and η(L) with R
and L sub-forests of T defined by the vertex sets {λ1 · · ·λi} and {λi+1 · · ·λn},
respectively. The set of edges of T that connect the vertexes λj to λk for
j ≤ i and k > i define an admissible cut of T .

For each admissible cut c, the trees in the forests L(c) and R(c) are sub-
trees of T . Let ηc ∈ Lin(L(c)) and ρc ∈ Lin(R(c)) be partial order preserving
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linearizations. Then

(Λ⊗ Λ) ◦Δ(T ) =
∑

c admis.

∑
(ηc,ρc)∈

Lin(R(c))×Lin(L(c))

ρc ⊗ ηc,

where the interior sum is taken over all partial order preserving linearizations
of R(c) and L(c). By definition of admissible cut, each pair of partial order
preserving linearizations ρc ⊗ ηc, corresponds to a decomposition of a par-
tial order preserving linearizations λ of T , [λ1 ⊗ · · · ⊗ λi]⊗ [λi+1 ⊗ · · · ⊗ λn]
where the vertexes of R(c) precede the vertexes of L(c). �

Remark 22. Words in W (R) represent a partial order on its letters. For u
and v letters inW =

∑
iWi ∈W (R), u ≺ v if u = xij and v = xik inWi with

ij ≤ ik. Similarly, v ≺ u if u = xij and v = xik in Wi with ij ≥ ik. Under this
definition, the map Λ is an order preserving Hopf algebra homomorphism.

To complete the analysis in this paper, I need to introduce a method of
inserting letters into words.

Definition 23. Define two insertion products on W (R)

u	≺v : W (R) →W (R)

x1 ⊗ · · · ⊗ xn →

⎧⎨
⎩
∑
i<k

x1 ⊗ · · ·u⊗ xi · · · ⊗ xn, if v = xk

0, v �∈ {x1, . . . , xk}

and

u	
v : W (R) →W (R)

x1 ⊗ · · · ⊗ xn →

⎧⎨
⎩
∑
i>k

x1 ⊗ · · ·xi ⊗ u · · · ⊗ xn, if v = xk

0 v �∈ {x1, . . . , xk}
.

If w = 1 then

u 	≺1 1 = u 	
1 1 = u.

To see this as a product, generalize the insertion of a letter to the inter-
twining of a word with another.
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Definition 24. Let w and w′ be two words. Define a set of words {Wi|i ∈ I}
such that w

w′ =∑i∈IWi,

	u≺v : W (R)⊗W (R) →W (R)

(w,w′) →

⎧⎪⎨
⎪⎩
∑

i∈I s.t.
u≺v

Wi, if u and v letters of w and w′ resp.

0, if u or v not letters of w and w′ resp.

Similarly,

	u
v : W (R)⊗W (R) →W (R)

(w,w′) →

⎧⎪⎨
⎪⎩
∑

i∈I s.t.
u
v

Wi, if u and v letters of w and w′ resp.

0, if u or v not letters of w and w′ resp.

In the product w 	u≺v w′, the letter u ≺ v, while v � u in w 	u
v w′. In
this notation, u 	≺v w := u 	u≺v w and u 	
v w := u 	u
v w.

For further analysis, I extend this product for shuffles of words. For v a
letter of the word w and v′ a letter of the word w′, define

(u 	≺{v,v′} w

w′) := (u 	≺v w) 	u≺v′ w′,

and

(u 	
{v,v′} w

w′) := (u 	
v w) 	u
v′ w′.

These operators can be lifted to grafting operators on trees. If w = Λ(T ),
and w′ = Λ(T ′), for T , and T ′ in T •(R),

(u 	≺{v,v′} w

w′) = Λ(S)

where S is the multi-rooted tree formed by connecting the vertex labeled
v in T and the vertex labeled v′ in T ′ to a new root vertex labeled u. The
other insertion operator corresponds to connecting the two marked vertexes
to a new leaf, with the label u.

The coproduct on the images of these insertion operators behaves as
follows.
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Lemma 25. Write w = x1 ⊗ · · · ⊗ xn. The coproduct

Δ(u 	≺xk
w) =

k−1∑
a=0

(x1 ⊗ · · · ⊗ xa)⊗ u 	≺xk
(xa+1 ⊗ · · · ⊗ xn)

+ (x1 ⊗ · · · ⊗ xk−1)

u⊗ (xk ⊗ · · · ⊗ xn)

+
n∑
a=k

u 	≺xk
(x1 ⊗ · · · ⊗ xa)⊗ (xa+1 ⊗ · · · ⊗ xn).

Similarly, the coproduct The coproduct

Δ(u 	
xk
w) =

k−1∑
a=0

(x1 ⊗ · · · ⊗ xa)⊗ u 	
xk
(xa+1 ⊗ · · · ⊗ xn)

+
n∑
a=k

u 	
xk
(x1 ⊗ · · · ⊗ xa)⊗ (xa+1 ⊗ · · · ⊗ xn)

+ (x1 ⊗ · · · ⊗ xk)⊗ u

 (xk+1 ⊗ · · · ⊗ xn).

Proof. The proof is straight forward from the definition of coproduct on all
words in the sum u

w, such that the letter u appears to the left of xk, in
the case of 	≺xk

, or to the right of xk, in the case of 	
xk
. �

1.3. Hopf algebras of trees associated to dissected polygons

To continue to generalizing the construction in [7], I associate a family of
(multi-rooted) tree structures to each dissection of a polygon. In Section 1.4,
I define a family of bar complexes on P(�)

• (R) and associate to each polygon
a bar element in each bar complex.

The rest of this paper is concerned with subalgebras Tφ ⊂ T •(R) gener-
ated by sets corresponding to polygons and their dissections.

Definition 26. A dual tree algebra Tφ ⊂ T •(R) is generated by a dual
tree generating set, which assigns to each polygon dissection pair (P, d) an
element of T •(R), Tφ,d(P ),

φ = {Tφ,d(P )|P R− deco polygon; d ∈ D(P )}.

In this paper, the generators, Tφ,d(P ) ∈ T •(R) are trees with an overall
sign.
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Definition 27. I write the overall sign associated to a tree sign(Tφ,d(P )).
For d ∈ D(P ), sometimes I write this signφ(P, d). When the polygon is clear,
I write signφ(d).

I am particularly interested in the cases when Tφ has a Hopf algebraic
structure.

Definition 28. The dual tree algebra Tφ is a dissection compatible Hopf
algebra if

(1) The dual tree algebra Tφ, generated by the set φ, is a sub-Hopf algebra
of T •(R).

(2) The edges of each tree Tφ,d(P ) correspond to non-trivial arrows in d.

(3) Let d′ be a sub-dissection of d, d′ ⊂ d ∈ D(P ), corresponding to the
subtree T of Tφ,d(P ). There exists an R-deco polygon Q such that T
and Tφ,d′(Q), with d′ ∈ D(Q), agree up to a sign. In fact

sign(Tφ,d′(Q))T = Tφ,d′(Q).

(4) Consider d′ ⊂ d ∈ D(P ) as above. The generator Tφ,d\d′(P ) is formed
by replacing the subtree T in Tφ,d(P ) with a single vertex labeled Q.

(5) For each subdissection d′ ⊂ d, with corresponding generator Tφ,d′(Q),

sign(Tφ,d(P )) = sign(Tφ,d′(Q))sign(Tφ,d\d′(P )).

The third condition of Definition 28 ensures that a dissection compatible
Hopf algebra is coassociative. Note that there is no requirement that the
labels of the vertexes of Tφ,d(P ) correspond to the subpolygons associated
to the dissection. However, conditions 3 and 4 impose strong conditions on
the vertex labels of the generators of dissection compatible Hopf algebras. In
most of the examples I consider in this paper, the vertexes of the generators
are labeled by the the subpolygons associated to the relevant dissection.
Below I give some examples of some generators of dissection compatible
Hopf algebras.

Example 29. Consider the following pair of polygon and dissection:

P =
• 6

5
��

��
�

4��
��
�

3
2

�����

1

��
��
�α

�����������
β

����
��
��
��
�

γ
��������

.
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Four possible elements of dual tree generating sets are

T1,d(P ) =

•�������	

α

16

•
β

26

•
γ

352

• 45

T2,d(P ) =

•�������	

α

16

•
β

26

•
γ

532

• 45

T3,d(P ) = −
•�������	

α

16

•
β

26

•
γ

352

• 45

T4,d(P ) =
•�������	

α 







 16

•
β

������ 26

•�������	
γ








 352

• 45

For a fixed P and d ∈ D(P ), the generators T1,d(P ) and T3,d(P ) differ
only by an overall sign. The only multi-rooted tree in this example is T4,d(P ).
The vertexes in T2,d(P ) do not correspond to the set of subpolygons associ-
ated to the dissections d of P . Instead of a vertex labeled with the polygon
352, there is a polygon labeled 532.

Next I give examples of four dual tree generating sets φi, with i ∈
{1, . . . , 4} such that Tφi

is a dissection compatible Hopf algebra. The gen-
erators Ti,d in Example 29 correspond to elements in φi. Before defining
these Hopf algebras and the construction of the corresponding generators, I
establish some notation.

Definition 30. Let τ be a map that reverses the orientation of a polygon.

Specifically, for P = r1 · · · rn+1, with ri ∈ R, τ ∈ D2(n+1) and τ(P ) =
rn · · · r1rn+1. For example,

P =
• 4

3

2

1
τ(P ) =

• 4

1

2

3

Definition 31. Define χ(α) to be the weight of the cut off polygon of the
arrow α. That is, P�α ∈ P

(1)
χ(α)(R).

Example 32. The following are four dissection compatible Hopf algebras.

Tφ1: This is a single-rooted dual tree algebra generated by the set φ1. The
root vertex of Tφ1,d(P ) ∈ φ1 is labeled by the subpolygon that contains
the original root side and first vertex of P . The edges, corresponding to
arrows in d, are oriented to flow away from the root vertex. Since this is
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a single-rooted tree, I need only consider the final vertexes of any edge
(corresponding to the dissecting arrow α.) The initial vertex is either
the final vertex of a different arrow, or the unique root, whose label
has been defined. Consider the edge corresponding to the dissecting
arrow α. The final vertex is labeled by the subpolygon corresponding
to the region further away from the first vertex/root side of P . In
Example 29, T1,d(P ) ∈ φ1.

Tφ2: This is a single-rooted dual tree algebra generated by the set φ2.
The single root vertex of Tφ2,d(P ) ∈ φ2 is labeled by the subpolygon
that contains the original root side and first vertex of P . The edges,
corresponding to arrows in d, are oriented to flow away from the root
vertex. If α is a forwards arrow, then the final vertex is labeled by the
subpolygon corresponding to the region further from the root. If α is a
backwards arrow, then the final vertex is labeled by the same polygon
with reversed orientation. The generator has an overall sign

sign(Tφ2,d(P )) = (−1)
∑

α∈d backwards χ(α).

In Example 29, T2,d(P ) ∈ φ2.

Tφ3: This is a single-rooted dual trees algebra generated by the set φ3.
The single root vertex of Tφ3,d(P ) ∈ φ3 is labeled by the subpolygon
that contains the original root side and first vertex of P . The edges,
corresponding to arrows in d, are oriented to flow away from the root
vertex. The final vertex is labeled by the subpolygon corresponding
to the region further away from the first vertex/root side of P . The
generator has an overall sign

sign(Tφ3,d(P )) = (−1)# backwards arrows in d.

In Example 29, T3,d(P ) ∈ φ3.

Tφ4: This is a multi-rooted dual tree algebra generated by the set φ4, with
generators Tφ4,d(P ) ∈ φ4. The edges, corresponding to arrows in d, flow
from the region to the left of the arrow to the region to the right. The
initial vertex of an edge is labeled with the subpolygon associated to
the region to the left, and the final vertex by the subpolygon associated
to the right. For the polygon pair in Example 29, T4,d(P ) ∈ φ4.
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In the dissection compatible sub-Hopf algebras in Example 32, write the
generating set of Tφi

φi = {Tφi,d(P )|d ∈ D(P ); P R− deco polygon}

for i ∈ {1, 2, 3, 4, }. Note that the different generating sets φ1 and φ3 generate
isomorphic Hopf algebras Tφ1 � Tφ3 under the relation

Tφ1,d(P ) = signφ3
(d)(Tφ3,d(P )).

Each Tφi
satisfies conditions 2–5 of Definition 28. To see that these are

dissection compatible Hopf algebras, it remains to check that they are sub-
Hopf algebras. The Hopf algebra Tφ2 is exactly the Hopf algebra defined in
[7], Section 6. It remains to check that Tφ1 , Tφ3 and Tφ4 are Hopf algebras.

Lemma 33. The algebras Tφ1, Tφ3 and Tφ4 are Hopf algebras.

Proof. Since all three are graded subalgebras of T •(R), it is sufficient to
show that these are sub-bialgebras. The product structure and coproduct
structure on each are inherited from T •(R). It remains to check that

Δ : Tφi
→ Tφi

⊗ Tφi

for i ∈ {1, 3, 4}. For this, it is sufficient to work only with the generators.
Let {P1, . . . , P|d|+1} be the vertexes labeling Tφ4,d(P ). Since the edges of

Tφ4,d(P ) correspond to arrows to the dissection d, an admissible cut, c, of
Tφ4,d(P ) can be thought of as a subdissection c ⊂ d. Let {Q1, . . . Qn} be the
polygons associated to the dissection c ∈ D(P ), with R(c) =

∏j
i=1 Ti and

L(c) =
∏n
i=j+1 Ti. Write d = (∪nk=1di) ∪ c with the subdissection di corre-

sponding to the edges in Ti. It remains to check that

Ti = signφ4
(di)Tφ4,di

(Qi).

For each β ∈ d \ c, let Pk and Pj be the regions of P to the left and right
of β, respectively. By definition, β ∈ di for some i. Then Pk and Pj are also
the sub-regions of Qi to the left and right of β ∈ di. Thus, Tdi

= T4,di
(Qi).

The argument is similar for Tφ1 and Tφ3 . Since they are isomorphic, it
is sufficient to work only with φ1. Let {P1, . . . , P|d|+1} be the vertex labels
of Tφ1,d(P ) ∈ φ1. Consider the admissible cut c with L(c) =

∏n−1
i=1 Ti and

R(c) = Tn. Then {Q1, . . . , Qn} are the polygons associated to c. The dissec-
tion d can be written d = (∪ni=1di) ∪ c with di corresponding to the edges
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of Ti. For each β ∈ d \ c, let Pi be the region of P on the root side of β
and Pj on the cutoff side. Let β ∈ dk. Then Pi and Pj correspond to the
regions corresponding to the root and the cutoff sides of β ∈ dk ∈ D(Qk).
Thus Ti = signφ1

(di)Tφ1,di
(Qi). �

1.4. From generating sets to differentials

A dual tree generating set that defines a dissection compatible Hopf algebra
also defines a degree one differential on P(�)

• (R), ∂ : P(i)
• (R) → P(i+1)

• (R)
satisfying ∂ ◦ ∂ = 0 and the Leibniz rule

∂φ(a ∧ b) = (∂φa) ∧ b+ (−1)ia ∧ ∂φ(b) ,

where a ∈ P(i)
• (R).

Let φ be a dual tree generating set. Consider the subset of dissections
d ∈ D(P ) such that |d| = 1. Write the corresponding elements of φ

Tφ,d(P ) = signφ(d)
•�������	P 1

d

•P 2
d

.

This structure defines a an operator on P(�)
• (R).

Definition 34. Define

∂φ(P ) =
∑

d∈D(P );|d|=1

signφ(d)P
1
d ∧ P 2

d .

Theorem 35. If φ generates a dissection compatible Hopf algebra, Tφ, then
∂φ is a degree one differential operator on P(�)

• (R).

Proof. By construction,

∂φ ◦ ∂φ(P ) =
∑
α, β

dis. arrow

(P 1
β )1α ∧ (P 1

β )2α ∧ P 2
β − P 1

β ∧ (P 2
β )1α ∧ (P 2

β )2α

+ (P 1
α)1β ∧ (P 1

α)2β ∧ P 2
α − P 1

α ∧ (P 2
α)1β ∧ (P 2

α)2β .

Some of these terms are 0. For instance, if β �∈ D(P iα) then D(P iα)iβ = 0.
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This can be calculated by considering the sum

(1.9) (Δα ⊗ I)Δβ − (I⊗Δα)Δβ + (Δβ ⊗ I)Δα − (I⊗Δβ)Δα

on the level of Hopf algebras, and passing from the tensor product to the
wedge product.

Ignoring the sign and the vertex labels, the generator Tφ,{α,β}(P ) is one
of three possible trees

•�������	

α

•
β

•

•�������	

α 









•
β

������

•�������	 •�������	
α

��
��
��

•
β










•
.

In the case of the linear tree, the first two terms of (1.9) are equal,
and therefore cancel. The other two are 0. For the non-linear single-rooted
tree, the sum of the first and third terms in (1.9) gives (P 1

β )1α ⊗ P 2
β 

P 2

α.
The other two are 0. For the non-linear multi-rooted tree, the sum of the
second and fourth terms in (1.9) gives P 1

β 

P 2
α ⊗ (P 2

α)2β . The other two are
0. In both cases, the shuffle product goes to zero as one passes to the wedge
product.

Thus, ∂φ ◦ ∂φ = 0 as desired. �
Since the dual tree generating sets φi, i ∈ {1, 2, 3, 4} in Example 32

generate dissection compatible Hopf algebras Tφi
, they define degree 1 dif-

ferential operators ∂i, respectively on P(�)
• (R).

Example 36. The differentials defined by the sets φ1, φ2, φ3 and φ4 are

(1) ∂1(P ) =
∑

d∈D(P ),|d|=1 P
•=
d ∧ P�d

(2) ∂2(P ) =
∑

d forwards arrow P
•=
d ∧ P�d +

∑
d backwards arrow(−1)χ(d)

P •=d ∧ τ(P�d )

(3) ∂3(P ) =
∑

d forwards arrow P
•=
d ∧ P�d −

∑
d backwards arrow P

•=
d ∧ P�d

(4) ∂4(P ) =
∑

d∈D(P ),|d|=1 P
l
d ∧ P rd

These differentials defined by dual tree generating sets are not all dis-
tinct. Specifically,

signφ3
(α) =

{
signφ4

(α), if α forwards
−signφ4

(α), if α backwards.
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As a result, ∂3 = ∂4.

Definition 37. The difference set between two dual tree generating sets φ
and ψ is

S =

{
α ∈ D(P )||α| = 1; P R− deco; Tφ,α(P ) = signφ(α)

•�������	P 1
α

•P 2
α

and Tψ,α(P ) = −signφ(α)
•�������	P 2

α

•P 1
α

}
.

This condition on single dissections can be generalized to general trees.

Definition 38. Let Tφ be a dissection compatible Hopf algebra. Let S
be the difference set between φ and another dual tree generating set ψ. The
dual tree algebra Tψ is almost φ compatible if, for any dissection d of any R-
deco polygons P , signψ(P, d) = (−1)|d∩S|signφ(P, d), and the tree underlying
the generator Tψ,d(P ) is formed by reversing the orientation of the edges of
Tφ,d(P ) in d ∩ S.

The dissection compatible Hopf algebra, Tφ is trivially an almost φ com-
patible algebra.

Corollary 39. Let Tφ be a dissection compatible Hopf algebra, and Tφ′ an
almost φ compatible algebra. Then ∂φ = ∂φ′.

Proof. Let S be the difference set between φ and φ′. By definition,

∂φ(P ) =
∑

d∈D(P );|d|=1

signφ(d)P
1
d ∧ P 2

d

=
∑

d�∈D(P )∩S
signφ(d)P

1
d ∧ P 2

d −
∑

d∈D(P )∩S
signφ(d)P

2
d ∧ P 1

d

= ∂φ′(P ).

Since Tφ′ is almost φ compatible, ∂φ′ ◦ ∂φ′ = 0. �

Almost compatible algebras are particularly important for the calcula-
tions in Section 2. I give an example of a such below.

Definition 40. Let re(P ) be the set of non-trivial arrows ending on the
root side of an R-deco polygon P (the root ending arrows). To fix notation,
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for P an n-gon, write re(P ) = {2α, . . . , n−1α}, where iα starts at the ith
vertex.

Example 41. I define a dual tree algebra, Tφre
generated by the set of

single-rooted trees φre. For any dissection d ∈ D(P ), the root vertex of
Tφre,d(P ) ∈ φre is labeled by the subpolygon that contains the original root
side and last vertex of P . The edges of the generator are oriented to flow
away from the root vertex. Consider the edge corresponding to the dissecting
arrow α. The initial vertex of α is labeled by the subpolygon corresponding
to the region closer to the last vertex/root side of P . If α is a forwards
arrow, then the final vertex is labeled by the subpolygon corresponding to
the region further away. If α is a backwards arrow, then the final vertex is
labeled by the same polygon with reversed orientation. The generator has
an overall sign

sign(Tφre,d(P )) = (−1)|d∩re(P )|(−1)
∑

α∈d backwards χ(α)

= (−1)|d∩re(P )|signφ2
(d).

The algebra Tφre
is almost φ2 compatible. The difference set between

φre and φ2 is

S =
⋃

P R−deco

re(P ).

If α is a backwards arrow, then α �∈ re(P ) by construction, and

Tφre,α(P ) = (−1)χ(α)
•�������	P •=

α

•τ(P�
α )

; Tφ2,α(P ) = (−1)χ(α)
•�������	P •=

α

•τ(P�
α )
.

Similarly, if α is a forwards arrow α �∈ re(P ),

Tφre,α(P ) =
•�������	P •=

α

•P�
α

; Tφ2,α(P ) =
•�������	P •=

α

•P�
α

.

On the other hand, if α ∈ re(P ),

Tφre,α(P ) = −
•�������	P�

α

•P •=
α

; Tφ2,α(P ) =
•�������	P •=

α

•P�
α

.
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To see that Tφre
is not a dissection compatible Hopf algebra of T •(R),

consider the polynomial dissection pair

P =
• 6

5
��

��
�

4��
��
�

3
2

�����

1

��
��
�α

�����������
β����

��
��
��
�

γ		�������

.

In Tφre
, the generator

Tφre,d(P ) = •
α

������16

•�������	•
β








 26

•
γ

542

• 32

Consider the admissible cut c = {β}. The corresponding summand of
the coproduct is

Δc(Tφre,d(P )) =
•�������	 26

• 16
⊗
•�������	542

• 32
.

While
•�������	 26

• 16
= Tφre,α(126),

•�������	542

• 32
= Tφ2,γ(5432). However, the generator

Tφ2,γ(5432) �∈ Tφre
.

Lemma 42. The algebra Tφre
is not a dissection compatible Hopf algebra.

Proof. In fact, I show that Tφre
is not a Hopf algebra at all. Consider the gen-

erator Tφre,d(P ) ∈ Tφre
, and an admissible cut consisting of a single arrow,

c = α �∈ re(P ). The dissection d ∈ D(P ) can be decomposed into the sets

d = d•= ∪ c ∪ d�

where d•= ∈ D(P •=α ) and d� ∈ D(P�α ). Since c = α �∈ re(P ), the root side of
P� does not correspond to the root side of P . Furthermore, d� ∩ re(P ) = ∅.
Thus, the above discussion shows that the corresponding summand in the
coproduct is

Δc(Td(P )) = Tφre,d•=(P •=α )⊗ Tφ2,d�(P�α ).

If d� ∩ re(P�α ) �= ∅, then Tφ2,d�(P�α ) �∈ Tφre
, and Δ(Td(P )) �∈ Tφre

⊗ Tφre
.

�
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A class of differentials on P(�)
• (R),

{∂φ|Tφ dissection compatible Hopf algebra},

defines a class of bar complexes {B∂φ
(P(�)
• (R))}. Continuing to generalize

the construction of [7], I associate to each R-deco polygon an element of
each B∂φ

(P(�)
• (R)).

Definition 43. If Tφ defines a differential ∂φ, define

Λφ : V•(R) → B∂φ
(P(�)
• (R))

P →
∑

d∈D(P )

Λ(Tφ,d(P )).

There is a natural way of identifying a subalgebra of T̄ (V (R)) that is
generated by R-deco polygons

Definition 44. A polygon algebra defined by the dual tree generating set
φ is

Bφ = Q[{Λφ(P )|P R− deco}].
Its generators are in one to one correspondence with R-deco polygons.

In general, Bφ is a subalgebra of T̄ ((V (R))

Proposition 45. If the dual tree generating set φ defines a dissection com-
patible Hopf algebra, then

Bφ = Q[{Λφ(P )|P R− deco polygon}]

is a sub-Hopf algebra of T̄ (V (R)).

Proof. This is evident from the fact that the linearization map Λ : T •(R) →
T (V•(R)) is a Hopf algebra homomorphism. �

For Tφ a dissection compatible Hopf algebra, I show that Λφ(P ) is con-
tained in the 0th cocycles B∂φ

, that is, Λφ(P ) ∈ H0(B∂(P(�)
• (R)).

Theorem 46. Let the dual tree generating set φ generate a dissection com-
patible Hopf algebra Tφ. Let ∂φ be the associated differential. For P an R-
deco polygon, Λφ(P ) is a 0 cocycle of D1 +D2 in B∂φ

(P(�)
• (R)).
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Proof. Let πk be the projection of Λφ(P ) onto its kth direct sum component,

πk : Λφ(P ) → P(�)
• (R)|k.

The elements of Λφ(P ) ∈ T̄ (P(1)
• (R)). In general, if all ai ∈ P (1)

• (R), the
differentials D1 and D2 are

D1([a1| · · · |an]) =
n−1∑
i=1

−[a1| · · · |ai ∧ ai+1| · · · |an]

D2([a1| · · · |an]) =
n∑
j=1

[a1| · · · |∂φ(aj)| · · · |an]

Let P be a polygon of weight n. The term πn ◦ Λφ(P ) is a sum of n-
fold tensors of 2-gons. ThereforeD2(πn ◦ Λφ(P )) = 0. Furthermore, the term
D1(π1 ◦ Λφ(P )) = 0 by construction.

For d ∈ D(P ) with |d| = k − 1, the dual tree Tφ,d(P ) has k vertexes,
labeled by the set {P 1

d , . . . , P
k
d }. Write

Λ(Tφ,d(P )) = signφ(d)
∑

Lin.(Tφ,d(P ))

[P λ1
d | . . . |P

λk

d ].

Comparing D1(πk ◦ Λφ(P )) to D2(πk−1 ◦ Λφ(P )) for k ∈ {2, . . . , n} gives the
expressions

D1(πk ◦ Λφ(P ))

=
∑

d∈D(P )
|d|=k−1

∑
Lin.(Tφ,d(P ))

k∑
i=1

−signφ(d)[P
λ1
d | . . . |P

λi

d ∧ P λi+1

d | . . . |P λk

d ]

and

D2(πk−1 ◦ Λφ(P ))

=
∑

d′∈D(P )
|d′|=k−2

∑
Lin.(Tφ,d′ (P ))

k−1∑
i=1

signφ(d
′)[P λ

′
1

d′ | · · · |∂φP
λ′

i

d′ | · · · |P
λ′

k

d′ ].

If P λi

d and P
λi+1

d are not adjacent in Tφ,d(P ), then there exists a unique
partial order preserving linearization ρ ∈ Lin(Tφ,d(P )) that switches only
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the order in which those two terms are written: P λi

d = P
ρi+1

d , P λi+1

d = P ρi

d

and P λj

d = P
ρj

d if j �∈ {i, i+ 1}. Therefore the terms

[P λ1
d | · · · |P

λi

d ∧ P λi+1

d | · · · |P λk

d ] + [P ρ1

d | . . . |P
ρi

d ∧ P
ρi+1

d | · · · |P ρk

d ] = 0

in the sum for D1. In the remaining terms for D1, the polygons P λi

d is
adjacent to P λi+1

d .
Consider d ∈ D(P ) such that |d| = k − 1 and d′ = d \ α. For each such

pair of dissections, α is a dissecting arrow of P λ
′
i

d′ for some i. Therefore, the
term

∂φ(P
λ′

i

d′ ) =
∑

α∈D(P
λ′

i
d′ )

signφ(α)(P λ
′
i

d′ )1α ∧ (P λ
′
i

d′ )2α

appears in the expression for D2. The polygons (P λ
′
i

d′ )1α and (P λ
′
i

d′ )2α are adja-
cent in Tφ,d(P ). There is a unique linear order of Tφ,d(P ), λ, such that

P
λj

d =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

P
λ′

j

d′ if j < i

(P
λ′

j

d′ )1α if j = i

(P λ
′
i

d′ )2α if j = i+ 1

P
λ′

j−1

d if j > i+ 1

.

That is

[P λ
′
1

d | · · · |(P
λ′

i

d′ )1α ∧ (P λ
′
i

d′ )2α| · · · |P
λ′

k

d ] = [P λ1
d | · · · |P

λi

d ∧ P λi+1

d | · · · |P λk

d ].

Since the right-hand side appears with the sign (−signφ(d)) in D1(Λφ(P ))
and the left-hand side with the sign signφ(d′)signφ(α) in D2(Λφ(P )) these
terms cancel. �

The coproduct on the Hopf algebras Bφ has a particularly nice form. If
the dual tree generating set φ generates a dissection compatible Hopf alge-
bra Tφ, the duality between dissections d ∈ D(P ) and edges of a generator
Tφ,d(P ) ∈ φ gives a concept of an admissible dissection for the polygon P .

Lemma 47. Let Tφ be a dissection compatible Hopf algebra. The following
are equivalent:

(1) The dissection c ∈ D(P ) has a generator, Tφ,c(P ), with only leaf and
root vertexes labeled {P 1

c , . . . , P
|c|+1
c }.
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(2) The dissection c ∈ D(P ) is an admissible cut of Tφ,d(P ), for any
d = c ∪ (

⋃n
1 di). Furthermore,

Δc(Tφ,d(P )) = signφ(c)
m∏
j=1

Tφ,dj
(P jc )⊗

|c|+1∏
k=m+1

Tφ,dk
(P kc ).

Proof. For 2⇒ 1, note that from the definition of admissible cut, if c is
an admissible cut of Tφ,d(P ), the generator Tφ,c(P ) has only root and leaf
vertexes. The vertex labels {P ic} come from the fact that Tφ is a dissection
compatible Hopf algebra.

For 1⇒ 2, let {P 1
c , . . . , P

|c|+1
c } be the R-deco polygons decorating

Tφ,c(P ). For c ⊆ d, let {Td1 , . . . , Td|c|+1} be the root and leaf subtrees of
Tφ,d(P ) formed by removing the edges in c. Since the subtrees Tdi

are either
only connected to initial vertexes of the edges in c, or only to the final
vertexes, c is an admissible cut of Tφ,d(P ). Therefore,

Δc(Tφ,d(P )) = signφ(c)
m∏
i=1

Tdi
⊗

|c|+1∏
j=m+1

Tdj
.

The dissection d ∈ D(P ) can be written

d = c ∪

⎛
⎝|c|+1⋃

1

di

⎞
⎠ ,

with di corresponding to the edges in Tdi
. Since Tφ is a dissection compat-

ible Hopf algebra, di ∈ D(Pi) and signφ(di)Tdi
= Tφ,di

(P ic), and signφ(d) =
signφ(c)

∏|c|+1
i=1 signφ(di). �

Definition 48. The dissection c ∈ D(P ) is an admissible dissection of P
in φ if the generator Tφ,c(P ), has only leaf or root vertexes.

This definition is Hopf algebra (i.e., φ) specific. Consider two dissection
compatible Hopf algebras, Tφ and Tφ′ . An admissible cut of Tφ,d(P ) need
not be an admissible cut of Tφ′,d(P ). For instance, the dissection d = {α, β}
of the polygon

P =
• 4

3

2

1 α




β

��




is an admissible cut in Tφ4 but not in Tφ2 .
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Theorem 49. Let Tφ be a dissection compatible Hopf algebra. For c an
admissible dissection of P in φ, let {P 1

c , . . . , P
m
c } be the labels of roots

vertexes, and {Pm+1
c , . . . , P

|c|+1
c } the decorations of the leaf vertexes. Then

Δ(Λφ(P )) =
∑

c admis.



m
i=1Λφ(P

i
c)⊗ 

 |c|+1

j=m+1Λφ(P
j
c ).

Proof. Fix an admissible dissection c of P in Tφ. By Lemma 47 and Def-
inition 48, for any d ∈ D(P ), such that c ⊂ d, write d = c ∪|c|+1

j=1 di with
di ∈ D(P ic) and

ΔTφ,d(P ) =
∑

c admis.

m∏
i=1

Tφ,di
(P ic)⊗

|c|+1∏
j=m+1

Tφ,dj
(P jc ).

Write

Δ ◦ Λφ(P ) = Δ ◦ Λ

⎛
⎝ ∑
d∈D(P )

Tφ,d(P )

⎞
⎠ = (Λ⊗ Λ) ◦Δ

⎛
⎝ ∑
d∈D(P )

Tφ,d(P )

⎞
⎠ ,

where the first equality comes from the definition of Λφ(P ) and the second
equality from Theorem 21. Expanding this,

(Λ⊗ Λ)Δ
∑

d∈D(P )

Tφ,d(P )

= (Λ⊗ Λ)

⎛
⎝ ∑
d∈D(P )

∑
c⊂d admis.

m∏
i=1

Tφ,di
(P ic)⊗

|c|+1∏
j=m+1

Tφ,dj
(P jc )

⎞
⎠ .

Reorganizing terms and changing the order of summation gives∑
c admis.



m
i=1

∑
di∈D(P i

c )

Λ(Tφ,di
(P ic))⊗ 

 |c|+1

j=m+1

∑
dj∈D(P j

c )

Λ(Tφ,dj
(P jc ))

=
∑

c admis.



m
i=1Λφ(P

i
c)⊗ 

 |c|+1

j=m+1Λφ(P
j
c ). �

1.5. Properties of almost compatible algebras

In this subsection, I show that if the dual tree generating set ψ defines an
almost φ compatible algebra, Tψ, the polygon algebra Bψ is a Hopf algebra,
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even if Tψ is not. First I show a relationship between the image of Λ acting
on general trees that differ on the orientation of the edges connecting certain
vertexes.

Definition 50. Let I be a subset of the edges of a tree T . Let T I be the
tree obtained from T by reversing the orientation of the edges in I.

Lemma 51. Let T ∈ T •(R) be a decorated multi-rooted tree. Let I be a
subset of n edges of the tree T . Let F =

∏n+1
i=1 ti be the forest of multi-rooted

trees created by removing the edges in I in T . Then

∑
J⊆I

Λ(T J) = 

 n+1
i=1 Λ(ti).

Remark 52. The set I need not be an admissible cut of T .

Proof. Write I = {e1, . . . , en} with vj1 and vj2 the endpoints of the edge ej ,
such that vj1 ≺ vj2 in T . If ej ∈ J then vj2 ≺ vj1 in T J , and vj1 ≺ vj2 if not.

If tk and tl are two trees in the forest F , the vertexes of tk are incom-
parable to the vertexes of tl in F . By construction, no tree tk has both vj1
and vj2 as vertexes, for any j. Group Λ(F ) into sums of those terms where
vj1 is to the left of vj2 and sums of those where the opposite is true. The
relative positions of vj2 and vj1 correspond to the two orientations of the
edge ej . Since there are two choices for each pair, this divides the terms of
Λ(F ) into 2n sums. This groups Λ(F ) into the sums in the statement of the
lemma. �

Example 53. (1) If I = {e} is a single edge of a tree T , removing e gives
two subtrees, {R,P}. Under this notation,

Λ(T ) + Λ(T e) = Λ(R)

Λ(P )

(2) Let T be multi-rooted tree formed by connecting the trees in the forest
F =
∏n
i=1 Ti to a new root with label s at the vertex vi of Ti. For n = 3,

T =
•�������	

��
��
�

��
��

�
s

• • •
T1 T2 T3

.
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Define I = {e1, e2, e3} to be the edges that connect s to vi. Then

Λ(T ) + Λ(

•�������	T1

•s
��

��
�

��
��
�

• •
T2T3

) + Λ(

•�������	T2

•s
��

��
�

��
��
�

• •
T1T3

) + Λ(

•�������	T3

•s
��

��
�

��
��
�

• •
T1T2

) + Λ(

•�������	

��
��

�T1 •�������	

��
��
�
T3

•s
•
T2

)+

Λ(

•�������	

��
��

�T3 •�������	

��
��
�
T2

•s
•
T1

) + Λ(

•�������	

��
��

�T2 •�������	

��
��
�
T1

•s
•
T3

) + Λ( •
�����

�����
s

•�������	 •�������	 •�������	T1 T2 T3

)

= [s

Λ(T1)

Λ(T2)

Λ(T3)].

I use Lemma 51 to show a relationship between the polygon algebras Bφ
and Bψ, where Tψ is almost φ compatible, and Tφ is a dissection compatible
Hopf algebra.

Theorem 54. Let φ and ψ be two dual tree generating sets that define the
same differential ∂φ = ∂ψ. Let Tφ be a dissection compatible Hopf algebra
and Tψ an almost φ compatible algebra. Let S be their difference set. Let
P be an R-deco polygon. For d ∈ D(P ), let {P 1

d , . . . , P
|d|+1
d } be the polygons

decorating Tφ,d(P ). Then

(1.10) Λψ(P )− Λφ(P ) =
∑
d⊂S

∅�=d∈D(P )

(−1)|d|signφ(d)


|d|+1
j=1 Λφ(P

j
d ).

for all P ∈ V•(R).

Proof. For any d ∈ D(P ), let I(d) = d ∩ S. Write the generator

Tφ,d(P ) = signφ(d)T.

Using the notation from Lemma 51,

T
I(d)
φ,d (P ) = signφ(d)T

I(d).

By the definition of almost φ compatible algebras,

(−1)|I(d)|Tφ,d(P ) = T
I(d)
ψ,d (P )

and

(1.11) Tφ,d(P ) = Tψ,d(P ) ⇔ I(d) = ∅.
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Write the left-hand side of (1.10) as

∑
d′∈D(P )

(
(−1)|I(d

′)|Λ(T I(d
′)

φ,d′ (P ))− Λ(T ∅φ,d′(P ))
)
.

By Equation (1.11), I can ignore the dissections d′ that do not intersect the
set S,

(1.12)
∑

d′∈D(P ),I(d′) �=∅

(
(−1)|I(d

′)|Λ(T I(d
′)

φ,d′ (P ))− Λ(T ∅φ,d′(P ))
)
.

Write the right-hand side of (1.10) as

(1.13)
∑
d⊂S

∅�=d∈D(P )

(−1)|d|signφ(d)


|d|+1
j=1

∑
dj∈D(P j

d )

Λ(Tφ,dj
(P jd )),

Since Tφ is a dissection compatible Hopf algebra, write any subdissection
d ⊂ d′ ∈ D(P ), as d′ = d ∪ (∪|d|+1

j=1 dj) with dj ∈ D(P jd ). The forest

|d|+1∏
j=1

Tφ,dj
(P jd )

comes from to cutting Tφ,d′(P ) at the edges corresponding to d. Furthermore,

signφ(P, d
′) = signφ(P, d)

⎛
⎝d+1∏
j=1

signφ(P
j
d , dj)

⎞
⎠ .

Using Lemma 51, rewrite Equation (1.13) as

(1.14)
∑
d⊂S

∅�=d∈D(P )

∑
d⊆d′∈D(P )

(−1)|d|

⎛
⎝∑
δ⊆d

Λ(T δφ,d′(P ))

⎞
⎠ .
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I do not consider dissections d′ such that d′ ∩ S = I(d′) = ∅, since this implies
δ = d = 0. I reorganize the expression in (1.14) to∑

d′∈D(P )
I(d′) �=∅

∑
∅�=d⊆I(d′)

δ⊆d

(−1)|d|Λ(T δφ,d′(P ))

=
∑

d′∈D(P )
I(d′) �=∅

∑
δ

|I(d′)|∑
i=max{1,|δ|}

(−1)i
(|I(d′) \ δ|

i− |δ|

)
Λ(T δφ,d′(P )).

For any fixed δ �∈ {∅, I(d′)}, this expression vanishes, leaving∑
d′∈D(P )
I(d′) �=∅

(
(−1)|I(d

′)|Λ(T I(d
′)

φ,d′ (P ))− Λ(T ∅φ,d′(P ))
)
,

to match (1.12). The first term corresponds to the case where δ = I(d′). The
second term corresponds to the case, where δ = ∅. �

The following corollary shows that that Bφ and Bψ are isomorphic as
Hopf algebras. The generators {Λφ(P )} and {Λψ(P )} define different bases
of this vector space underlying Bφ.

Corollary 55. Let φ, ψ and S be as in Theorem 54. Then Bψ � Bφ as
Hopf algebras

Proof. The product and coproduct structure on Bψ is induced by the prod-
uct and coproduct structures on Bφ and Equation (1.10). Therefore, Bψ is
a Hopf algebra. In fact, Equation (1.10) shows that every generator, Λψ(P )
of Bψ, can be written in terms of sums of shuffles of generators of Bφ.
It remains to show that the map defined by this equation can be inverted.

By Theorem 54, write

Λφ(P ) = Λψ(P )−
∑
d⊂S

∅�=d∈D(P )

(−1)|d|signφ(d)


|d|+1
j=1 Λφ(P

j
d ).

where {P 1
d , . . . , P

|d|+1|
d } is the set of polygons decorating Tφ,d(P ) and Tψ,d

(P ). If P ∈ V1(R), that is, it is a 2-gon,

Λφ(P ) = Λψ(P ).
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If P ∈ V2(R),

Λφ(P ) = Λψ(P ) +
∑
d⊂S

∅�=d∈D(P )

signφ(d)Λφ(P
1
d )

Λφ(P 2

d )

where P 1
d , P

2
d ∈ V1(R). Therefore,

Λφ(P ) = Λψ(P ) +
∑
d⊂S

∅�=d∈D(P )

signφ(d)Λψ(P 1
d )

Λψ(P 2

d ).

By induction, suppose Λφ(P ) ∈ Bψ for all P of weight less than n. If P ∈
Vn(R),

Λφ(P ) = Λψ(P )−
∑
d⊂S

∅�=d∈D(P )

(−1)|d|signφ(d)


|d|+1
j=1 Λφ(P

j
d ).

Since each P jd has weight less than n, Λφ(P
j
d ) ∈ Bψ. Thus Λφ(P ) can be

written in terms of sums of shuffles of elements in Bψ. Therefore, Λφ(P ) ∈
Bψ, and there is a one to one correspondence between the generators of Bφ
and Bψ. �

Under these conditions, if, for all polygon dissection pairs (P, d) every
tree of the form Tφ,d∩S(P ) is linear, then the result of Theorem 54 simplifies
greatly.

Corollary 56. If in addition to the conditions for φ, ψ and S above,
Tφ,d∩S(P ) is a linear tree with sign, for all d ∈ D(P ), then

Λφ(P )− Λψ(P ) =
∑
α∈S

signφ(α)Λφ(P 1
α)

Λψ(P 2

α),

Proof. For P an R-deco polygon, fix an α ∈ D(P ) such that α ∈ S. Consider
all d ⊂ S such that α is dual to the edge attached to the root in Tφ,d(P ).
Then the dissection {d \ α} ∈ D(P 2

α). Let

ρα = {∅ �= d ∈ D(P )|d ⊂ S, α ∈ d, P 1
α root label of Tφ,d(P )}

be the set of all such d. Let {P 1
d , . . . , P

|d|+1
d } be the polygons decorating

the generator Tφ,d(P ) enumerated such that P 1
α = P 1

d labels the vertex of
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Tφ,d(P ). From Theorem 54,

Λφ(P )− Λψ(P )(1.15)

= −
∑
d⊂S

∅�=d∈D(P )

(−1)|d|signφ(d)


|d|+1
j=1 Λφ(P

j
d )

= −
∑
α∈S

∑
d∈ρα

(−1)|d|signφ(d)Λφ(P
1
α)

 |d|+1

j=2 Λφ(P
j
d ).

If d = α, then P 2
d = P 2

α. Break the sum in the last line of Equation (1.15) as

∑
α∈S∩D(P )

signφ(α)Λφ(P 1
α)



⎛
⎝Λφ(P 2

α)

+
∑

d∈ρα,d�=α
(−1)|d|−1signφ(d \ α)

 |d|+1

j=2 Λφ(P
j
d )

⎞
⎠ .

Since d \ α ∈ D(P 2
α), by Theorem 54

Λψ(P 2
α) = Λφ(P 2

α) +
∑

d∈ρα,d�=α
(−1)|d|−1signφ(d \ α))

 |d|+1

j=2 Λφ(P
j
d ).

This gives

Λφ(P )− Λψ(P ) =
∑

α∈S∈D(P )

signφ(α)Λφ(P 1
α)

Λψ(P 2

α).

�

Corollary 57. Under the same conditions as the previous corollary, one
can also write

Λφ(P )− Λψ(P ) =
∑

α∈S∩D(P )

signφ(α)Λψ(P 1
α)

Λφ(P 2

α).

Proof. This result comes from the same argument as above, replacing the
edge connected to the single root vertex of Tφ,d(P ), for d ⊂ S with the edge
connected to the single leaf vertex. �

2. Permutations of a polygon

In this section, I examine the actions of σ and τ on the Hopf algebra
Λφ2 . Recall that σ and τ are linear automorphisms on V•(R) such that
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for P = 12 · · ·n, τ(P ) = (n− 1) · · · 21n reverses the orientation of P and
σ(P ) = 2 · · ·n1 rotates the labels of the edges one position. Restricted to
the sub-vector space Vn(R), σ|Vn(R) and τ |Vn(R) generate the dihedral group
D2n+2. I can extend σ and τ to automorphisms of Bφ2 by defining
σ(Λφ2(P )) = Λφ2(σP )) and τ(Λφ2(P )) = Λφ2(τP ). After defining relations
between Λφ2(σP ), Λφ2(τP ) and Λφ2(P ), one can apply the coalgebra
homomorphism

Φ : Λ(T2) → I•(R)

defined in [7] to establish relationships between iterated integrals with the
appropriate dihedral action on the arguments.

2.1. Order 2 generator of the dihedral group

First I calculate Λφ2(P )± Λφ2(τP ). Since τ fixes the label of the root side
of the polygon P , it is useful to examine an almost φ2 compatible algebra
Tψ such that the difference set between φ2 and ψ consists of arrows ending
on the root side. This is exactly the algebra Tφre

discussed in Example 41.

Lemma 58. If P is an R-deco polygon of weight n,

(2.1) Λφ2(P )− Λφre
(P ) =

n∑
i=2

Λφ2(P
•=
iα))

Λφre

(P�
iα).

Proof. For i < j, jα ∈ D(P�
iα) and iα ∈ D(P •=

jα). If d = {iα, jα} ∈ D(P ),
Tφre,d(P ) and Tφ2,d(P ) are linear, as are the trees for and dissection d ⊂
re(P ). The arrows jα are forwards, so signφ2

(jα) = 1. The result follows
from Corollary 56. �

Extend the action of τ to dissecting arrows and their associated sets of
subpolygons.

Let α be a dissecting arrow of P , a polygon of weight n. Using the nota-
tion in Definition 3, if α �∈ re(P ), write α = iαj (for j �= n+ 1). The map
τ sends the polygon P to τ(P ) and the arrow iαj to τα = n−i+2αn−j+1 ∈
D(τ(P )). For a root ending arrow α = iαn+1 ∈ re(P ), τα = n−i+2αn+1 ∈
D(τ(P )). For a forward (backward) arrow α �∈ re(P ), the arrow τα is
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backward (forward). The map τ take re(P ) to itself. All arrows in re(P )
are forward. The following is an example for P of weight 5.

Example 59. Recall that I use the shorthand iα to indicate the root end-
ing arrow iαn+1 ∈ re(P ) (for P ∈ Vn(R)). Let P = 123456, and d = {3α, β}.
Then τd = {4α, τβ}. Below are diagrams of P and τP with the dissections
d and τd drawn in.

P =
• 6

5
��

��
�

4��
��
�

3
2

�����

1

��
��
�

3α

���������� β

���������

τP =
• 6

1
��

��
�

2��
��
�

3
4

�����

5

��
��
�

4α

����������τβ

�����������

The arrows 3α, 4α are in re(P ) and re(τ(P )), respectively. The subpoly-
gons associated to 3α and 4α are

τ(P •=
3α) = 216 = (τP )�

4α ; (τP )•=
4α = 5436 = τ(P�

3α)

The subpolygons associated to β and τβ are

(τP )•=τβ = 5216 = τ(P •=β ) ; τP�β = 435 = (τP )�τβ .

For a general dissection of an arbitrary polygon, d ∈ D(P ), write d ∩
re(P ) = {i1α . . . ijα}, with i1 < i2 · · · < ij . Let {P 0

d , . . . , P
|d|
d } be the set of

polygons labeling the vertexes of Tφ2,d(P ) and Tφre,d(P ). Enumerate the set
such that for m ≤ j, Pm−1

d and Pmd are adjacent, connected by imα with
Pm−1
d ≺ Pmd in Tφ2,d(P ) and Pmd ≺ Pm−1

d in Tφre,d(P ). The set of polygons
labeling Tφ2,τd(τP ) is {τP 0

d , . . . , τP
j
d , P

j+1
d , . . . , P

|d|
d }, with τPm ≺ τPm−1

connected by τ imα. If d ∩ re(P ) = ∅ then P0 is the label of the single root of
all three generators. If β �∈ re(P ), write dβ = d ∩D(P�β ). The pruned sub-
trees of the admissible cut c = β in Tφ2,d(P ), Tφre,d(P ) and Tφ2,τd(τP ) are
the same: Tφ2,dβ

(P�β ) if β is a forwards arrow, and Tφ2,dβ
(τP�β ) if β is a

backwards arrow.
I summarize this in the following diagrams. Here β, γ, δ, and ε are

assumed to be forward arrows. For backwards arrows, replace P�β with τ(P�β )
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and dβ with τdβ .

Tφ2,d(P ) = signφ2
(d)

•�������	P0

β

��
��
� i1α

��
��

�

•• P1
Tφ2,dβ

(P�
β ) γ

��
��
�

•Tφ2,dγ (P�
γ ) •Pj−1

δ

��
��
� ij

α

��
��

�

• •Tφ2,dδ
(P�

δ )
Pj

Tφ2,dε (P�
ε )

ε

��
��
�

•

Tφre,d(P ) = (−1)jsignφ2
(d)

•�������	Pj

ε

��
��
� ij

α

��
��

�

•• Pj−1
Tφ2,dε (P�

ε )
δ

��
��
�

•Tφ2,dδ
(P�

δ ) •P1

γ

��
��
� i1α

��
��

�

• •Tφ2,dγ (P�
γ )

P0

Tφ2,dβ
(P�

β )

β

��
��
�

•

Tφ2,τd(τP ) = signφ2
(τd)

•�������	τPj

τε

��
��
� ij

α

��
��

�

•• τPj−1
Tφ2,dε (P�

ε )
τδ

��
��
�

•Tφ2,dδ
(P�

δ ) •τP1

τγ

��
��
� i1α

��
��

�

• •Tφ2,dγ (P�
γ )

τP0

Tφ2,dβ
(P�

β )

τβ

��
��
�

•

The generators Tφ2,d(P ) and Tφre,d(P ) have different signs and different
underlying tree structures, with labels {P 0

d , . . . , P
|d|
d }. On the other hand,

the generators Tφ2,τd(τP ) and Tφre,d(P ) have different signs, but the same
underlying tree structure, if one exchanges Pmd with τPmd for m ≤ j. For any
dissection d ∈ D(P ),

signφre
(d) = (−1)|d∩re(P )|signφ2

(d) = (−1)
∑

α∈d,α bw χ(α)(−1)|d∩re(P )|

and
signφ2

(τd) = (−1)
∑

α∈d\re(P ),α fw χ(α).

Recall that a coideal, C, of a coalgebra (H,Δ, ε) has the structure

Δ(C) ⊂ H⊗ C + C ⊗H

and ε(C) = 0. It is a primitive coideal if

Δ(ci) = 1⊗ ci + ci ⊗ 1

for all generators of C.
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Definition 60. Let In ⊂ P(1)
• (R) be the linear subspace generated by {P +

(−1)nτP |P polygon of weight n}.

Note that I1 = 0 is the trivial co-ideal. Each In is a primitive co-ideal
in Bφ2 .

Definition 61. Define a set of quotient maps

qn : T̄ (V (R)) → T̄ (V (R))

/(
n∑
k=1

Ik

)
.

Theorem 62. Let P be an R-deco polygon of weight n. Let qn be the quo-
tient map defined above. For P ∈ Vn(R),

(2.2) Λφre
(P ) + (−1)nΛφ2(τP ) ∈ ker qn.

Proof. If P is a polygon of weight 2, Λφre
(P )− Λφ2(τP ) = 0. For P = abc ∈

V2(R),

c

b��
��
��

a 		
		

		• c

b��
��
��

a 		
		

		
��

�����
• c

b��
��
��

a 		
		

		 ��• c

b��
��
��

a 		
		

		
��

�����
•

Λφre
(P ) = P +[bc|ab] −[bc|ac] −[ac|ba] ,

While for τP ,

c

a
��
��
��

b 		
		

		• c

a
��
��
��

b 		
		

		
��

�����
• c

a
��
��
��

b 		
		

		 ��• c

a
��
��
��

b 		
		

		
��

�����
•

Λφ2(τP ) = τP +[ac|ba] +[bc|ac] −[bc|ab].

Therefore,
Λφre

(P ) + Λφ2(τP ) = P + τP ∈ I2.
Suppose the theorem holds for all k < n.

Let P be an R-deco polygon of weight n. Consider the dissections d ∈
D(P ), with d ∩ re(P ) = {i1α, . . . , ijα}. Let {P 0

d , . . . , P
|d|
d } be the set of poly-

gons decorating Tφre,d(P ) and Tφ2,d(P ), with each P id ∈ Vni
(R) with

∑|d|
i=0

ni = n. For m ≤ j, the polygons Pm−1
d and Pmd are adjacent, connected by

imα, and Pmd ≺ Pm−1
d in Tφre,d(P ) and Pm−1

d ≺ Pmd in Tφ2,d(P ). I define
a series of trees (with sign) {Tm,d(P )}, with m ≤ j formed by replacing
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the polygons {P 0
d , . . . , P

m
d } in Tφre,d(P ) with the polygons {(−1)n0τP 0

d , . . . ,
(−1)nmτPmd }. In this series, Tφre,d(P ) = T−1,d(P ). For example

T0,d(P ) = signφre
(d)(−1)n0

•�������	Pj

��
��
�

��
��

�

•• Pj−1
Tφ2,dε (P�

ε )

��
��
�

•Tφ2,dδ
(P�

δ ) •P1

��
��
�

��
��

�

• •Tφ2,dγ (P�
γ )

τP0

Tφ2,dβ
(P�

β ) ��
��
�

•

T1,d(P ) = signφre
(d)(−1)n0+n1

•�������	Pj

��
��
�

��
��

�

•• Pj−1
Tφ2,dε (P�

ε )

��
��
�

•Tφ2,dδ
(P�

δ ) • τP1

��
��
�

��
��

�

• •Tφ2,dγ (P�
γ )

τP0

Tφ2,dβ
(P�

β ) ��
��
�

•

.

For m ≤ j, Λ(Tm−1,d(P ) + Tm,d(P )) ∈ ker qnm
. The alternating sum,

j∑
m=0

(−1)mΛ(Tm−1,d(P ) + Tm,d(P )) = Λ(Tφre,d(P ) + (−1)jTj,d(P ))

is in ker q∑ j
m=1 nm

. Since

(−1)jsign(Tj,d) = (−1)
∑ j

i=0 nisignφ2
(d)

= (−1)
∑ j

i=0 ni(−1)
∑

α∈d,α bw χ(α) = (−1)nsignφ2
(τd),

for all d ∈ D(P ), d �= ∅,

(−1)jTj,d(P ) = (−1)nTφ2,τd(τP ).

Applying Λ on these trees and generators gives

(2.3) Λ

⎛
⎜⎜⎝ ∑
d∈D(P )
d�=∅

Tφre,d(P ) + (−1)nTφ2,τd(τP )

⎞
⎟⎟⎠ ∈ ker(qn−1).

Writing Λ(Tφre,∅(P )) = [P ] Equation (2.3) gives

Λφre
(P )− [P ] + (−1)n (Λφ2(τP )− [τP ]) ∈ ker qn−1,
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and

Λφre
(P ) + (−1)nΛφ2(τP ) ∈ ker qn. �

Combining Theorem 62 with Lemma 58 gives the following result.

Theorem 63. If P is an R-deco polygon of weight n,

qn(Λφ2(P ) + (−1)nΛφ2(τP )) = qn

(
n−1∑
i=2

(−1)n−iΛφ2(P
•=
iα)

Λφ2(τ(P

�
iα))

)
.

Proof. Let P be a polygon of weight n. Apply qn to both sides of (2.1)

qn(Λφ2(P )− Λφre
(P )) = qn

(
n∑
i=2

Λφ2(P
•=
iα)

Λφre

(P�
iα)

)
.

By Equation (2.2) replace the terms Λφre
(P ) and Λφre

(P�
iα) with (−1)n−1

Λφ2(τP ) and (−1)n−iΛφ2(τP
�
iα) to get

qn(Λφ2(P ) + (−1)nΛφ2(τP )) = qn

(
n∑
i=2

(−1)n−iΛφ2(P
•=
iα)

Λφ2(τ(P

�
iα))

)

as desired. �

This show that Λφ2(P ) and Λφ2(τP ) can be compared up to a primitive
coideal. This relation between decorated polygons of different orientation is
reminiscent of a relation between iterated integrals on R ⊂ C×. Recall that
for iterated integrals, there is the relation [10]

I(0;x1, . . . , xn; y)I(0;w1, . . . , wm; y) = I(0; (x1, . . . , xn)

 (w1, . . . , wm); y).

Lemma 64. For ri ∈ R,

I(0; r1, . . . , rn; rn+1) + (−1)nI(0; rn, . . . , r1; rn+1)(2.4)

=
n∑
i=2

(−1)n−iI(0; r1, . . . , ri−1; rn+1)I(0; rn, . . . , ri; rn+1).
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Proof. This proof is also presented in [10]. Rewrite the right hand side of
(2.4) as

n∑
i=2

(−1)n−iI(0; (r1, . . . , ri−1)

 (rn, . . . , ri); rn+1).

For a fixed i each term in the shuffle product in Equation (2.4) can be broken
down into two groups, the terms where ri−1 comes before ri and the terms
where it comes after. By the alternating signs, the former cancel with a term
in the shuffle

I(0; (r1, . . . , ri)

 (rn, . . . , ri+1); rn+1),

and the latter in the shuffle

I(0; (r1, . . . , ri−2)

 (rn, . . . , ri, ri−1); rn+1).

What remains are the terms (from i = 2) (−1)nI(0; rn, . . . , r1; rn+1) and
(from i = n) I(0; r1, . . . , rn; rn+1), which are the terms on the left-hand side
of (2.4). �

Remark 65. The relationship expressed in (2.4) is exact on iterated inte-
grals, while there is a relation only up to a primitive coideal on the level of
polygons, as shown in Theorem 63. This is in contradiction to the conjec-
ture by Gangl and Brown that relationships between dihedral symmetries
of R-deco polygons can be expressed purely in terms of shuffle products of
polygons of lower weights. It also shows that the coalgebra map between the
bar elements associated to polygons and iterated integrals, (1.1)

Φ : Bφ2 → I•(R),

is not injective: the coideals In ∈ ker Φ for n ≥ 1.

2.2. Order n generator of the dihedral group

In this subsection, I consider the rotation map, σ on P(�)
• (R) that sends

the R-deco polygon P to σP . For P = 12 . . . n, σP = 2 . . . n1 is the polygon
rotated clockwise, changing the root side. When restricted to Vn(R), σ|Vn(R)

is the order n generator of the dihedral group. In order to examine this
rotation, I work with ∂φ4 , which reflect the symmetry of the change, and
relate the corresponding elements of the bar construction to Bφ2 .
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2.2.1. Relating Bφ2
to Bφ4

To understand the action of σ on I(R), one
wants to calculate Λφ2(P )− Λφ2(σP )). This is a difficult calculation, and it
is easier to break down into intermediate steps. I use the results of the last
section to relate the algebras Λφ2(P )− Λφ4(P ). I then study the action of σ
on the algebra Bφ4 .

Definition 66. Let b(P ) = { backwards arrows of P}.

Recall that Tφ4 and Tφ3 are both dissection compatible Hopf algebras,
and that φ3 and φ4 define the same differential. The difference set between
the dual tree generating sets φ3 and φ4 is S =

⋃
P R−deco b(P ). The algebra

Tφ3 is almost φ4 compatible.

Theorem 67. For P an R-deco polygon of weight n, and d ∈ D(P ), let
{P 1

d , . . . , P
|d|+1
d } be the set of polygons decorating the generator Tφ4,d(P ).

Then, for the map qn as defined in Definition 61

(2.5) qn−1(Λφ2(P )) = qn−1

⎛
⎝Λφ4(P ) +

∑
d⊆b(P )

(−1)|d|

 |d|+1
j=1 Λφ4(P

j
d )

⎞
⎠ .

Proof. For all arrows d ⊂ b(P ), signφ4
(d) = +1. By Theorem 54

(2.6) Λφ3(P ) = Λφ4(P ) +
∑

d⊆b(P )

(−1)|d|

 |d|+1
j=1 Λφ4(P

j
d ).

For d ∈ D(P ), with |b(P ) ∩ d| = j, let the set {P 1
d , . . . , P

|d|+1
d } decorate

the vertexes of Tφ3,d(P ) and Tφ4,d(P ) enumerated {P 1
d , . . . , P

|d|+1
d } so that

{P 1
d , . . . , P

j
d} decorate the terminal vertexes of the edges associated to a

backwards arrow in Tφ3,d(P ). Then the set

{τP 1
d , . . . , τP

j
d , P

j+1
d , . . . , P

|d|+1
d }

decorates the vertexes of Tφ2,d(P ). The generators Tφ2,d(P ) and Tφ4,d(P )
have different signs, but the same underlying trees, with Pmd replacing τPmd
for m ≤ j. Let P id ∈ Vni

(R) with
∑|d|+1

i=1 ni = n.
Recall that

signφ2
(d) = (−1)

∑ j
i=1 ni and signφ3

(d) = (−1)j .

Define a series of signed trees {Ti,d(P )}, 1 ≤ i ≤ j by replacing the polygons
{τP 1

d , . . . , τP
i
d} in Tφ2,d(P ) with the set {(−1)n1P1, . . . , (−1)niP id}. In this
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series, Tφ2,d(P ) = T0,d(P ), Tj,d(P ) = (−1)jTφ3,d(P ), and

Λ(Ti−1,d(P ) + Ti,d(P ))

is in ker(qni
). The alternating sum

j∑
i=1

(−1)i−1Λ (Ti−1,d(P ) + Ti,d(P )) = Λ (Tφ2,d(P )− Tφ3,d(P ))

is in ker(q∑ j
i=1 ni

). Summing over all dissections d ∈ D(P ) gives

Λφ2(P )− Λφ3(P ) ∈ ker qn−1.

Plugging this into Equation (2.6) gives

qn−1(Λφ2(P )) = qn−1

⎛
⎝Λφ4(P )) +

∑
d⊆b(P )

(−1)|d|

 |d|+1
j=1 Λφ4(P

j
d )

⎞
⎠ .

�

Example 68. Let P2 = abc, P3 = abcd be R-deco polygons of weight 2 and
3. The following are the explicit calculations for P2, abd P3.

d =

c

b��
��
��

a 		
		

		
��

�����
•

q1(Λφ2(P2)− Λφ4(P2)) = −q1(Λφ4(ac)

Λφ4(ba))
.

Since ker q1 = 0, this is an exact relation:

Λφ2(P2))− Λφ4(P2)) = −Λφ4(ac)

Λφ4(ba)

For P3, q3 (Λφ2(P3)− Λφ4(P3))) =

d =

d

c

b

a

•
��������

d =

d

c

b

a

•
�����

���
d =

d

c

b

a

•

����
��
��

−q3(Λφ4(acd)

Λφ4(ba)+ Λφ4(bca)

Λφ4(ad)+ Λφ4(abd)

Λφ4(cb))
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d =

d

c

b

a

•
��������

�����
���

d =

d

c

b

a

•
�����

���

����
��
��

+q3(Λφ4(ad)

Λφ4(ba)

Λφ4(ca)+ Λφ4(ad)

Λφ4(ba)

Λφ4(cb))

.

Since ker q2 �= 0, computing the difference explicitly gives

Λφ2(P3)− Λφ4(P3) = −Λφ4(acd)

Λφ4(ba)− Λφ4(bca)

Λφ4(ad)
− Λφ4(abd)

Λφ4(cb) + Λφ4(ad)

Λφ4(ba)

Λφ4(ca)
+ Λφ4(ad)

Λφ4(ba)

Λφ4(cb) + [ad|bca+ cba]

The Hopf algebra Bφ4 is contained in H0(B∂3(P
(�)
• (R))) by Theorem 46.

2.2.2. Introducing a new symmetry. Instead of directly comparing
Λφ2(P ) and Λφ2(σP ) in this subsection, I compare Λφ4(P ) and Λφ4(σP ).
Theorem 67 then relates these terms to Λφ2(P ) and Λφ2(σP ), respectively,
as desired.

Definition 69. For P the R-deco polygon 12 . . . n, let (σP ) be the R-deco
polygon 2 . . . n1 with labels rotated one place in a clockwise direction.

Example 70. For the weight 3 polygon P = 1234 one has

P =
• 4

3

2

1 and σP =
• 1

4

3

2

Example 71. For a weight 1 polygon, P = ab, σP = ba, applying the map
Φ from Equation (1.1)

Φ(Λφ4(P )− Λφ4(σP )) = Φ(Λφ2(P )− Λφ2(σP ))(2.7)

= Li1
(a
b

)
− Li1

(
b

a

)
= ln(b)− ln(a).

The last equality holds up to a power of iπ.
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Direct calculation shows that for P = abc,

Λφ4(P )− Λφ4(σP )(2.8)
= P − σP + [ab

 bc]− [ba

 cb] + [(ac− ca+ ba− ab)|bc]

+ [ba|(ac− ca+ cb− bc)].

Applying Theorem 67 gives

Λφ2(P )− Λφ2(σP )
= P − σP + [ab

 bc]− [ac

 ba] + [(ac− ca+ ba− ab)|bc]

+ [ba|(ac− ca+ cb− bc)].

Subsequent direct calculations get increasingly complex.

To calculate this relation for higher weight polygons, I examine the
action of σ on the dissecting arrows of an R-deco polygon P of weight
n. The rotation map σ acts on dissecting arrows, rotating the starting ver-
tex and ending edge one position backwards, as defined by the orientation
of the polygon. Therefore, σ(iαj) = i−1αj−1 if i or j �= 1, σ(1αj) = n+1αj−1

and σ(iα1) = i−1αn+1.

Example 72. For the 4-gons P and σP , the dissecting arrows α and σα
are as follows:

P =
• 4

3

2

1 α





σP =
• 1

4

3

2 σα ����
���

��
.

For a general d ∈ D(P ), write d = {α1, . . . αk} and σd = {σα1, . . . , σαk}.
To compare Λφ4(P ) and Λφ4(σP ), I start with dissections of P with one
arrow. There are two cases to consider.

(1) The dissecting arrow α starts at the first vertex. The first vertex is in
both P rα and in P lα. The associated subpolygons P are related to the
subpolygons of σP by

σ(P rα) = (σP )rσα; σ(P lα) = (σP )lσα
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as illustrated in the following example:

P =
• 4

3

2

1 α ����
���

��

→ P lα = 34; P rα = 123

σP =
• 1

4
σα

��




3

2 → (σP )lσα = 43; (σP )rσα = 231.

(2) The dissecting arrow α does not start at the first vertex: There are
three sub-cases.
(a) The dissecting arrow α ends on the first edge in P (labeled 1). The

first vertex is in P rα. The dissected polygons of P and σP are

σ(P rα) = (σP )rσα; P lα = (σP )lσα

as illustrated in the following example:

P =
• 4

3

2

α
���������

1 → P lα = 21; P rα = 134

σP =
• 1

4

3

2 σα





→ (σP )lσα = 21; (σP )rσα = 341

(b) The dissecting arrow α ends on the root edge in P (labeled n). The
first vertex is in P lα. The dissected polygons of P and σP are

P rα = (σP )rσα; σ(P lα) = σP lσα

as illustrated in the following example:

P =
• 4

3

2

α

���������
1 → P lα = 124; P rα = 34



Dihedral symmetries of multiple polylogarithms 107

σP =
• 1

4σα
�������

3

2 → σP lσα = 241; (σP )rσα = 34.

(c) The dissecting arrow α ends on neither the first edge or root edge
in P . The root vertex is in P lα if α is forward (P rα if α backward).
The dissected polygons of P and σP are

σ(P lα) = (σP )lσα; P rα = (σP )rσα

if α is forwards, and

σ(P rα) = (σP )rσα; P lα = (σP )lσα

if α is backwards. This is illustrated in the following example:

P =
• 4

3

2

1
α

�������

→ P lα = 134; P rα = 23

σP =
•

σα

���
��

��
��

1

4

3

2 → (σP )lσα = 341; (σP )rσα = 23.

This exhaustively categorizes all possible dissecting arrows. I summarize
the results as follows.

Lemma 73. Let P be an R-deco polygon. For arrows of the form 1αj,
starting at the first vertex, both subpolygons P rα and P lα contain the first
vertex. The subpolygons of P associated to a single dissecting arrow can be
classified in the following way:

(σP )rσα =

{
σ(P rα) if P rα contains the first vertex of P
P rα otherwise

The same is true if r is replaced with l.

To calculate the action of the operator σ on the Hopf algebra Bφ4 , I
compare terms in the Hopf algebra Bφ4 to two new algebras Bφfv

and Bφσfv
,

defined by new generating sets φfv and φσfv that exploit the symmetries
defined in Lemma 73.



108 Susama Agarwala

Definition 74. Let fv(P ) be set of arrows that start at the f irst vertex
of a polygon P . If P ∈ Vn(R), write fv(P ) = {α2, . . . , αn+1} where αi ends
at the ith side. Define σfv(σP ) = {σα2, . . . , σαn+1} to be the set of arrows
that start at the (n+ 1)th (last) vertex of σP .

Define the generating sets φfv and φσfv that define the same differential
as φ4. Their difference set from φ4 is ∪P fv(P ) and ∪Pσfv(P ), respectively.
Let Tφfv

and Tφσfv
be the two almost φ4 compatible algebras defined by the

dual tree generating sets φfv and φσfv.
Let P be an R-deco polygon of weight n. Consider non-trivial dis-

sections d ∈ D(P ), with d ∩ fv(P ) = {αi1 · · ·αij}, with i1 < i2 · · · < ij . Let
{P 0

d , . . . P
|d|
d } be the set of polygons decorating Tφfv,d(P ) and Tφ4,d(P ),

with each P id ∈ Vni
(R) with

∑|d|
i=0 ni = n. For m ≤ j, the polygons Pm−1

d
and Pmd are adjacent, connected by αim , and Pm−1

d ≺ Pmd in Tφfv,d(P )
and Pmd ≺ Pm−1

d in Tφ4,d(P ). If d ∩ fv(P ) = ∅, P 0
d is the subpolygon con-

taining the first vertex of P . The set {σP 0
d , . . . , σP

j
d , P

j+1
d , . . . , P

|d|
d } deco-

rates the generator Tφ4,σd(σP ) with σPmd ≺ σPm−1
d , and Tφσfv,σd(σP ) with

σPm−1
d ≺ σPmd . The subpolygons σPm−1

d and σPmd are adjacent, connected
by σαim . If d ∩ fv(P ) = ∅, then σP0 is the subpolygon containing the last
vertex of σP . Recall that

sign(Tfv,d(P )) = sign(Tσfv,σd(σP )) = (−1)|d∩fv(P )|,

while sign(Tφ4,d(P )) = 1. If β �∈ fv(P ), write dβ = d ∩D(P�β ). The poly-
gon P�β does not contain the first vertex of P , therefore P�β = (σP )�σβ . By
Lemma 73, the pruned subtrees corresponding to the admissible cut c = β
in Tφ4,d(P ), and Tφfv,d(P ) are the same: Tφ4,dβ

(P�β ). Similarly for σc = σβ
in Tφσfv,σd(σP ) and Tφ4,σd(σP ) the pruned trees are both Tφ4,σdβ

(σP�β ).
I summarize this in the following diagrams. Note that P 0

d and P jd need not
be a root vertex of these generators. These trees are drawn without a root
vertex specified.

Tφ4,d(P ) =

•P
j
d

ε

��
��
� αij

��
��

�

•• P j−1
dTφ4,dε (P�

ε )
δ

��
��
�

•Tφ4,dδ
(P�

δ ) •P
1
d

γ

��
��
� αi1

��
��

�

• •Tφ4,dγ (P�
γ )

P 0
d

Tφ4,dβ
(P�

β )

β

��
��
�

•
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Tφfv,d(P ) = (−1)j

•P
0
d

β

��
��
� αi1

��
��

�

•• P 1
dTφ4,dβ

(P�
β ) γ

��
��
�

•Tφ4,dγ (P�
γ ) •P

j−1
d

δ

��
��
� αij

��
��

�

• •Tφ4,dδ
(P�

δ )
P j

d

Tφ4,dε (P�
ε )

ε

��
��
�

•

Tφ4,σd(σP ) =

•σP
j
d

σε

��
��
� σαij

��
��

�

•• σP j−1
dTφ4,dε (P�

ε )
σδ

��
��
�

•Tφ4,dδ
(P�

δ ) •σP
1
d

σγ

��
��
� σαi1

��
��

�

• •Tφ4,dγ (P�
γ )

σP 0
d

Tφ4,dβ
(P�

β )

β

��
��
�

•

Tφσfv,σd(σP ) = (−1)j

•σP
0
d

σβ

��
��
� σαi1

��
��

�

•• σP 1
dTφ4,dβ

(P�
β ) σγ

��
��
�

•Tφ4,dγ (P�
γ ) •σP

j−1
d

σδ

��
��
� σαij

��
��

�

• •Tφ4,dδ
(P�

δ )
σP j

d

Tφ4,dε (P�
ε )

σε

��
��
�

•

These diagrams also illustrate the following lemma.

Lemma 75. Consider c ∈ D(P ) such that Tφfv,c(P ) (and Tφσfv,σc(σP ))
only have root and leaf vertexes. Let {P 0

c , . . . P
|c|
c } be the set of labels of

Tφfv,c(P ), with {P 0
c , . . . P

m
c } labeling the root vertexes. Then

ΔcΛφfv
(P ) = 

m

j=0Λ∗(P
j
c )⊗ 

 |c|i=m+1Λ∗P

i
c

with

∗ =

{
φfv if (P ic) contains first vertex of P
φ4 else.

.

Similarly,

ΔσcΛσfv(σP ) = 

m
j=0Λ∗((σP )jσc)⊗ 

 |c|i=m+1Λ∗((σP )iσc)

with

∗ =

{
φσfv if P ic contains first vertex of P,
φ4 else.
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Proof. For a fixed c as above and any dissection d ∈ D(P ), such that c ⊂ d,
write d = c ∪|c|i=1 di with di ∈ D(P ic). By definition of φfv, di ∩ fv(P ) = ∅ if
and only if P ic does not inherit the first vertex from P . That is, if and only if

Tφfv,di
(P ic) = Tφ4,di

(P ic).

Varying over all dissections d containing c shows that

Λφfv
(P ic) = Λφ4(P

i
c)

if and only if P ic does not inherit the first vertex of P . �

By abuse of notation, call the dissections c ∈ D(P ) such that Tφfv,c(P )
only has leaf and root vertexes the admissible dissections of P in φfv.

Corollary 76. Using the definitions above, write

ΔΛφfv
(P ) =

∑
c admis. dis.

ΔcΛφfv
(P )

and

ΔΛφσfv
(σP ) =

∑
c admis. dis.

ΔcΛφσfv
(σP ).

Instead of calculating Λφ4(P )− Λφ4(σP ), I calculate the expression(
Λφ4(P ))− Λφfv

(P ))
)
−
(
Λφ4(σP ))− Λφσfv

(σP ))
)

(2.9)
+
(
Λφfv

(P ))− Λφσfv
(σP )
)
.

This is done in steps. The first two terms of (2.9) are derived from Theo-
rem 54; the third term can be calculated up to a primitive coideal.

Lemma 77. Let P = 1, . . . , n+ 1 be an R-deco polygon. For d ⊂ fv(P ), let
{P 0

d , . . . , P
j
d} be the polygons decorating Tφ4,d(P ). There are two expressions

for (
Λφ4(P )− Λφfv

(P )
)
−
(
Λφ4(σP )− Λφσfv

(σP )
)

(1) =
∑n

i=1 Λφfv
(P lαi

)

Λφ4(P
r
αi

)−∑n
i=2 Λφ4((σP )lσαi

)

Λφσfv

((σP )rσαi
)

(2) = −∑d∈fv(P )(−1)|d|

 |d|j=0Λφ4(P
j
d )− 

 |d|j=0Λφ4(σ(P jd )).
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Proof. To see expression (1), note that for αi, αj ∈ fv(P ), with i < j, αi
dissects the subpolygon P rαj

, and αj dissects the subpolygon P lαi
. For σαi,

σαj ∈ σfv(σP ), with i < j, σαi dissects the subpolygon (σP )rσαj
, and σαj

dissects the subpolygon (σP )lσαi
. Therefore the generators Tφfv,fv(P )(P ) and

Tφσfv,σfv(P )(σP ) are linear, and the result follows form Corollarys 56 and 57.
To see expression (2), Theorem 54 gives

(Λφ4(P )− Λφfv
(P )) =

∑
d⊂fv(P )
d�=∅

(−1)|d|+1

 |d|j=0Λφ4(P
j
d ),

and

(Λφ4(σP )− Λφσfv
(σP )) =

∑
d⊂fv(P )
d�=∅

(−1)|d|+1

 |d|j=0Λφ4(σ(P jd )).

�

In the following example, I compute
(
Λφ4(P )− Λφfv

(P )
)

and (Λφ4(σP )
− Λφσfv

(σP )) for a polygon of weight 3.

Example 78. Consider P = 1234. By expression (1) of Lemma 77, one has

Λφ4(P )− Λφfv
(P ) = Λφ4(12)

Λφ4(234) + Λφ4(123)

Λφ4(34)

− Λφ4(12)

Λφ4(23)

Λφ4(34).

Applying Theorem 67 gives

q2(Λφ4(P )− Λφfv
(P )) = q2(Λφ2(12)

 (Λφ2(234) + Λφ2(24)

Λφ2(32))

+ (Λφ2(123) + Λφ2(13)

Λφ2(21))

Λφ2(34)
− Λφ2(12)

Λφ2(23)

Λφ2(34)).

The expression involving σP = 2341 is, using expression (1) of Lemma 77,

Λφ4(σP )− Λφσfv
(σP ) = Λφ4(21)

Λφ4(342) + Λφ4(231)

Λφ4(43)

− Λφ4(43)

Λφ4(32)

Λφ4(21).
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Applying Theorem 67 gives

q2(Λφ4(σP )− Λφfv
(σP )) = q2(Λφ2(21)

 (Λφ2(342) + Λφ2(32)

Λφ2(43))

+ (Λφ2(231) + Λφ2(21)

Λφ2(32))

Λφ2(43)
− Λφ2(43)

Λφ2(32)

Λφ2(21)).

Adding the two expressions gives

q2(Λφ4(P )− Λφfv
(P )− Λφ4(σP ) + Λφσfv

(σP ))
= q2(Λφ2(12)

Λφ2(234) + Λφ2(123)

Λφ2(34)
− Λφ2(231)

Λφ2(43)− Λφ2(21)

Λφ2(342)
+ Λφ2(12)

Λφ2(24)

Λφ2(32) + Λφ2(13)

Λφ2(21))

Λφ2(34)
− Λφ2(12)

Λφ2(23)

Λφ2(34))− Λφ2(21)

Λφ2(32)

Λφ2(43).

The rest of this section calculates the third term in (2.9).

Definition 79. Let Jn ⊂ P(1)
• (R) be the linear subspace generated by {P −

σP |P polygon of weight n}. These are primitive coideals in Bφ4 .

Theorem 80. Define the quotient map

rn : T̄ (V (R)) → T̄ (V (R))

/(
n∑
k=1

Jk

)
.

Then for P a polygon of weight n,

rn((Λφfv
(P ))− Λφσfv

(σP ))) = 0.

The coideals Jn are problematic in this context since J1 is not in the
kernel of Φ (Equation (1.1)),

(2.10) Φ([ab]− [ba]) = Li
(a
b

)
− Li
(
b

a

)
= ln(b)− ln(a),

as shown in Example 71. Instead, I work with a modified quotient map.

Definition 81. Define an ideal J̃1 = {ac− ca+ cb− bc− ab+ ba} to
reflect the image of Φ restricted to 2-gons. Define the quotient map

r̃n : T̄ (V (R)) → T̄ (V (R))

/(
J̃1 +

n∑
k=2

Jk

)
.
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I need the following definition to calculate r̃n(Λφfv
(P )− Λφσfv

(P )).

Definition 82. For P = 1 . . . n+ 1 be polygon of weight n, define two poly-
gons AP = 2 . . . n+ 1 and BP = 2 . . . n1 of weight n− 1. The polygon AP
can be drawn as a subpolygon of P , AP = P lα2

. Define

AlP,αi
= P lαi+1

, and ArP,αi
= P r

2αi+1
.

Similarly, BP can be drawn as a subpolygon of σP , BP = (σP )rσαn
. Define

Bl
P,σαi

= σ(P l
n+1αi

) = (σP )lσ(n+1αi)
, and Br

P,σαi
= σ(P rαi

) = (σP )rσαi
.

Recall that in the above notation, when I write P rβ , I mean β ∈ D(P ). For
example, when I write AlP,αi

, αi ∈ D(AP ), whereas in P lαi+1
, αi+1 ∈ D(P ).

Example 83. The following diagram shows AlP,α4
, ArP,α4

, Bl
σP,σα4

and
Br
σP,σα4

4
5

������

6

7
������

8
1

��
��
��•

2

3 ��
��

�� ���
��

��
��

��
��

��
�

���
��

��
��

��
��

��
�

AlP,α4

ArP,α4

5
6

������

7

8
������

1
2

��
��
��•

3

4 ��
��

�� ����
��
��
��
��
��
��

����
��
��
��
��
��
��

Bl
P,σα4

Br
P,σα4

Definition 84. Write {α, d, P} = {vr,α, vl,α} to indicate the set of subpoly-
gons to the right and left of the dissecting arrow α ∈ d ∈ D(P ).

Example 85. For example, {β, d, P}, for the polygons P = 123 456 and
dissection d = {α, β, γ} as drawn below,

• 6
5
��

��
�

4��
��
�

3
2

�����

1

��
��
�α

�����������
β

����
��
��
��
�

γ
��������

is given by {β, P} = {vr,β = 26, vl,β = 352}

I now construct a generalization of the insertion operators 	≺v and 	
v,
defined in Definition 23 to apply to words of the form Λφ(P ).
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Definition 86. Consider u ∈ V (R), and P and R-deco polygon. Define

u 	≺{α,P} Λφ(P ) =
∑

d∈D(P )
d=dr∪dl∪α

u 	≺{α,d,P} Λφ(Tφ,dr(P rα))

Λφ(Tφ,dl(P lα))

where dr ∈ D(P rα) and dl ∈ D(P lα). Similarly

u 	
{α,P} Λφ(P ) =
∑

d∈D(P )
d=dr∪dl∪α

u 	
{α,d,P} Λφ(Tφ,dr(P rα))

Λφ(Tφ,dl(P lα))

The next theorem gives an expression for Λφfv
(P )− Λφσfv

(σP ).

Theorem 87. Let P , AP , BP and associated subpolygons be as above.
Define the quotient map

r̃n : Λ(Tφ4) → Λ(Tφ4)

/(
J̃1 +

n∑
k=2

Jk

)
,

For P an R-deco polygon of weight n ≥ 2,

r̃n(Λφfv
(P )− Λφσfv

(σP )))

(2.11)

=
n∑
i=2

r̃n((i(n+ 1)− (n+ 1)i) 	≺{αi−1,AP } Λφ4(A
r
P,αi−1

)

Λφfv
(AlP,αi−1

)

− (i1− 1i) 	
{σαi,BP } Λφ4(B
l
P,σαi

)

Λφσfv
(Br

P,σαi
)).

Remark 88. Note that

i(n+ 1)− (n+ 1)i 	≺{αi−1,AP } (Λφ4(A
r
P,αi−1

)

Λφfv
(AlP,αi−1

))(2.12)

= i(n+ 1) 	≺{αi−1,AP } (Λφ4(A
r
P,αi−1

)

Λφfv
(AlP,αi−1

))

− (n+ 1)i 	≺{αi−1,AP } (Λφ4(A
r
P,αi−1

)

Λφfv
(AlP,αi−1

)).

Before proving this theorem, I use it to prove Theorem 80.

Proof of Theorem 80. Since every term in Theorem 26 calculation involves
a term in J1, specifically, the newly inserted difference,

r1 ◦ r̃n(Λfv(P )− Λσfv(σP )) = 0

for any R-deco polygon P . �



Dihedral symmetries of multiple polylogarithms 115

I have now computed all the necessary terms for Λφ4(P )− Λφ4(σP ).
Let P be a polygon of weight n. Combining line (2) of Lemma 77 with
Theorem 87 gives

r̃n(Λφ4(P )− Λφ4(σP ))

= −
∑

d∈fv(P )

(−1)|d|

 |d|j=0(Λφ4(P
j
d )− 

 |d|j=0Λφ4(σ(P jd )))

+ r̃n

n∑
i=2

(i(n+ 1)− (n+ 1)i 	≺{αi−1,AP } Λφ4(A
r
P,αi−1

)

Λφfv
(AlP,αi−1

))

− (i1− 1i) 	
{σαi,BP } Λφ4(B
l
P,σαi

)

Λφσfv
(Br

P,σαi
)),

where {P 0
d , . . . , P

|d|
d } decorate the vertexes of Tφ4,d(P ), for d ⊂ fv(P ).

Proof of Theorem 87. Let cr be an admissible dissection of ArP,αi−1 in Λφ4

and cl of AlP,αi−1 in Λφfv
. By Definition 86 and Lemma 25,

Δ(i(n+ 1)− (n+ 1)i) 	≺{αi−1,AP } (Λφ4(A
l
P,αi−1

)

Λφfv
(ArP,αi−1

))
(2.13)

=
∑
cr,cl

Λφ4(Rcr
(ArP,αi−1

))

Λφfv
(Rcl

(AlP,αi−1
))⊗ (i(n+ 1)

− (n+ 1)i) 	≺{αi−1,AP }
(
Λφ4(Lcr

(ArP,αi−1
))

Λφfv

(Lcl
(AlP,αi−1

))
)

+
∑
cr,cl

(i(n+ 1)− (n+ 1)i) 	≺{αi−1,AP }
(
Λφ4(Rcr

(ArP,αi−1
))



(2.14)

Λφfv
(Rcl

(AlP,αi−1
))
)
⊗ Λφ4(Lcr

(ArP,αi−1
))

Λφfv

(Lcl
(AlP,αi−1

))

+
∑
cr,cl

(i(n+ 1)− (n+ 1)i) 	≺vr,αi−1
(Λφ4(Rcr

(ArP,αi−1
))



(2.15)

Λφfv
(Rcl

(AlP,αi−1
)))⊗ Λφ4(Lcr

(ArP,αi−1
))

Λφfv

(Lcl
(AlP,αi−1

))

+
∑
cr,cl

Λφ4(Rcr
(ArP,αi−1

))

 (i(n+ 1)− (n+ 1)i)	≺vl,αi−1

(2.16)

Λφfv
(Rcl

(AlP,αi−1
))⊗ Λφ4(Lcr

(ArP,αi−1
))

Λφfv

(Lcl
(AlP,αi−1

)).

There is a similar expression for

Δ((i1− 1i) 	
{σαi,BP } Λφσfv
(Bl

P,αi
)

Λφ4(B

r
P,αi

)).
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This proof proceeds by comparing the coproduct of both sides of (2.11).
In fact, I only consider the coproduct of terms involving the inserted sum
i(n+ 1)− (n+ 1)i. The arguments for i1− 1i are similar, and not done here.

This proof proceeds by induction. Note from Example 71 that this the-
orem holds for n = 2, with P = 123. By expression (1) of Lemma 77

(Λφ4(P )− Λφfv
(P ))− (Λφ4(σP )− Λφσfv

(σP )) = 23

 12− 21

 32.

Comparing this to expression (2.8) in Example 71 gives

Λφfv
(P )− Λφσfv

(σP )
= [123]− [231] + [13− 31− 12 + 21|23] + [21|13− 31− 23 + 32].

In this case, the polygons A = 23, and B = 21. Recall that modulo J̃1,
13− 31− 12 + 21 = 23− 32 and 13− 31− 23 + 32 = 12− 21. Therefore,
under the quotient map r̃n,

Λφfv
(P )− Λφσfv

(σP ) = [23− 32|23]− [21|21− 12],

as desired. Suppose Equation (2.11) holds for all polygons of weight m for
m < n.

Consider a general polygon P of weight n. Let c be an admissible dis-
section of P in φfv as in Corollary 76. Since the generator Tφfv,fv(P )(P ) is
linear, c contains at most one arrow in fv(P ). Therefore, there are two cases
to consider: c ∩ fv(P ) = ∅, and |c ∩ fv(P )| = 1.

If c ∩ fv(P ) = ∅, there is only one label of Tφfv,c(P ) which inherits
its first vertex from P , P •=c . By Lemma 75, the generators Tφfv,c(P ) and
Tφσfv,σc(σP ) are identical after replacing P •=c with σP •=c . The dissection c
contains either an arrow ending on the root side, γc(n+ 1), or one ending
on the first side γc(1), but not both. If P •=c is a root (resp. leaf) label of
Tfv,c(P ), c contains γc(n+ 1) (resp. γc(1)). Either arrow may be trivial.
Write c′ = c \ {γc(n+ 1), γc(1)} and

P •=c′ = 1a2 · · · aln+ 1

the polygon associated to the dissection c′ that inherits the first vertex of
P . Write a1 = 1, c1 = c′ ∪ γc(a1), al+1 = n+ 1, cl+1 = c′ ∪ γc(al+1). Define
polygons Qi and Ti such that Qi = (P •=c′ )lγc(ai)

, and Ti = (P •=c′ )rγc(ai)
for
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i ∈ {1, l + 1}. Write the polygon

Ql+1 = 1a2 · · · aq(n+ 1).

for later use, define a family of arrows

(2.17) γc(am) = aq+1αam
.

By construction P •=c ∈ {Qi, Ti}. If γ(al+1) is trivial, aq = n and P •=c = Ql+1

decorates a root vertex of Tφfv,c(P ), and Tl+1 a trivial polygon. If γ(a1) is
trivial, a1 = 1 and P •=c = T1 is a leaf polygon of Tφfv,c(P ), and Q1 a trivial
polygon.
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Q6 = 1348, T6 = 578 , P •=c′ = 134578

Let {R1, . . . , Rl, Qi, Ti, L1, . . . , Ln} be the labels of Tfv,ci
(P ) for i ∈

{1, l + 1}, with the Rk and Lj corresponding to root and leaf labels respec-
tively. By Lemma 75, I write

Δc1 + Δcl+1(Λφfv
(P )− Λφσfv

(σP ))
(2.18)

= 

 kΛφ4(Rk)

Λφfv
(Q1)⊗ (Λφfv

(T1)− Λφσfv
(σT1))

 jΛφ4(Lj)

+ (Λφfv
(Ql+1)− Λφσfv

(σQl+1))

 kΛφ4(Rk)⊗ 

 jΛφ4(Lj)


Λφσfv

(σTl+1).

Consider the case of admissible cuts such that c ∩ fv(P ) = 1. Specifi-
cally, consider admissible dissections of P in Λfv(P ) of the form cm = c′ ∪
αam

, γc(am) for m ∈ {2 . . . l} (where γc(am) defined as in Equation (2.17)).
For d ⊇ {αam

, γc(am)}, let the polygons Qm, Tm and Sm decorate the ver-
texes of Tφfv,d(P

•=
c′ ) such that Qm ≺ Tm in Tφfv,d(P ) are adjacent to the

arrow αam
and Qm ≺ Sm, with both adjacent to the arrow γc(αm). The

polygon Sm decorates the remaining vertex. If m = q + 1 (or q), then Sm is
trivial, and Tm = Tl+1 (or Qm = Q1).
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Q3 = 134 T3 = 4578 = T
Q5 = 1347 T5 = 78 S5 = 57

Write

l∑
m=2

Δcm
(Λφfv

(P ))− Λφσfv
(σP ))(2.19)

= −
l∑

m=2



 kΛφ4(Rk)

Λφfv
(Qm)⊗ (Λφfv

(Tm)− Λφσfv
(σTm))



 jΛφ4(Lj) + 

 kΛφ4(Rk)

 (Λφfv
(Qm)− Λφσfv

(σQm))
⊗ Λφσfv

(σTm)

 jΛφ4(Lj)

where the negative sign comes from signfv(cm) and the fact that cm ∩
fv(P ) = αm. In this expression, I have included the term Λφ4(Sm) in the set
{Λφ4(Rk)} if m ≤ q and in the set {Λφ4(Lk)} if m > q.

The set of non-trivial admissible dissections of P in φfv can be par-
titioned into sets of the form {ci}l+1

i=1. For the remainder of the proof, I
calculate the contribution to the coproduct from

∑l+1
m=1 Δci

. The result can
be derived by summing over all such subsets.

From expression (1) of Lemma 77,

Λφ4(Tl+1)− Λφσfv
(Tl+1) =

l∑
m=q+2

Λφσfv
(Tm)

Λφ4(Sm).

Since Tq+1 = Tl+1, and Sq+1 is trivial,

(2.20) Λφ4(Tl+1) =
l∑

m=q+1

Λφσfv
(Tm)

Λφ4(Sm).
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Similarly,

(2.21) Λφ4(Q1) =
q∑

m=2

Λφfv
(Qm)

Λφ4(Sm).

Inserting Equations (2.20) and (2.21) into (2.18) gives

(Δc1 + Δcl+1)(Λφfv
(P )− Λφσfv

(σP ))(2.22)
= 

 kΛφ4(Rk)



(
Λφfv

(Ql+1)− Λφσfv
(σQl+1)

)
⊗

l∑
m=q+1

[Λφσfv
(σTm)

Λφ4(Sm)]

 jΛφ4(Lj)

+ 

 kΛφ4(Rk)


q∑

m=2

[Λφfv
(Qm)

Λφ4(Sm)]

⊗
(
Λφfv

(T1)− Λφσfv
(σT1)
)


 jΛφ4(Lj)

Combining (2.22) with (2.19) gives an expression for

l+1∑
m=1

Δcm
(Λφfv

(P )− Λφσfv
(σP ))

(2.23)

=
l∑

m=q+1

(Λφfv
(Ql+1)− Λφσfv

(σQl+1)− Λφfv
(Qm) + Λφσfv

(σQm))



 kΛφ4(Rk)⊗ [Λφσfv
(Tm)

Λφ4(Sm)]

 jΛφ4(Lj)

−
q∑

m=2



 iΛφ4(Ri)

 (Λφfv
(Qm)− Λφσfv

(σQm))

Λφ4(Sm)

⊗ Λφσfv
(Tm)

 jΛφ4(Lj))

+
q∑

m=2



 kΛφ4(Rk)

 [Λφfv
(Qm)

Λφ4(Sm)]

(2.24)

⊗ (Λφfv
(T1)− Λφσfv

(σT1)− Λφfv
(Tm) + Λφσfv

(σTm))

 jΛφ4(Lj)

−
l∑

m=q+1



 iΛφ4(Ri)

Λφfv
(Qm)

⊗ Λφ4(Sm)

 (Λφfv
(Tm)− Λφσfv

(σTm))

 jΛφ4(Lj)
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Consider the sum in (2.23). The following arguments are similar for the
terms in 2.24. By induction,

r̃n

l∑
m=q+1

(Λφfv
(Ql+1)− Λφ(σQl+1)− Λφfv

(Qm) + Λφ(σQm))

(2.25)

= r̃n

l∑
m=q+1

q∑
i=2

(ai(n+ 1)− (n+ 1)ai) 	≺{αi−1,AQ} (Λφ4(A
r
Qm,αi−1

)



Λφfv
(AlQm,αi−1

))− (aiam − amai)	≺{αi−1,AQm}

(Λφ4(A
r
Qm,αi−1

)

Λφfv
(AlQm,αi−1

)).

Since

BQ = BQm
= a2 · · · aq1

for all j, all terms involving ai1− ai1 cancel. Similarly

r̃n

q∑
m=2

(Λφfv
(Qm)− Λφ(σQm))(2.26)

= r̃n

(
q∑

m=2

m−1∑
i=2

(aiam − amai)	≺{αi−1,AQm}

(Λφ4(A
r
Qm,αi−1

)

Λφfv
(AlQm,αi−1

))

− (ai1− 1ai) 	≺{σαi,BQm} (Λφ4(B
l
Qm,σαi

)

Λφ(Br
Qm,σαi

))

)
.

Use the coideal J̃1 to rewrite

aiam − amai = ai(n+ 1)− (n+ 1)ai − am(n+ 1) + (n+ 1)am.

Inserting this into expressions (2.25) and (2.26) and substituting into (2.23)
gives an expression for

∑l+1
m=2 Δcm

Λφfv
(P )− Λσfv(σP )

q∑
i=2

(ai(n+ 1)− (n+ 1)ai) 	≺{αi−1,AQl+1} (Λφ4(A
r
Ql+1,αi−1

)

Λφfv
(AlQl+1,αi−1

))

(2.27)



 k(Λφ4Rk)⊗ Λφ4(Tl+1)

 j(Λφ4Lj)
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+
q∑

m=2

m−1∑
i=2

(ai1− 1ai) 	
{αi,BQm} (Λφ4(B
l
Qm,αi

)

Λφ(Br
Qm,αi

))

(2.28)



 k(Λφ4Rk)⊗ Λφ(Tm)

 jΛφ4(Lj))

−
l∑

m=2

min(m−1,q)∑
i=2

(ai(n+ 1)− (n+ 1)ai) 	≺{αi−1,AQm} (Λφ4(A
r
Qm,αi−1

)

(2.29)



Λφfv
(AlQm,αi−1

))

 i(Λφ4Ri)⊗ Λφ(Tm)

 jΛφ4(Lj)

+
l∑

m=2

(am(n+ 1)− (n+ 1)am) 	≺A•=
Qm

Λφ4(AQm
)

(2.30)



 i(Λφ4Ri)⊗ Λφ(Tm)

 jΛφ4(Lj)).

Expression for (2.27) is derived with the aid of Equation (2.20). Line
(2.28) is derived from line (2.26). In lines (2.28), (2.29) and (2.30) the Sm
terms are absorbed in to the set of Ri (if m ≤ q) or Li (if m > q). Finally,
line (2.30) is derived from statement (1) of Lemma 77, namely that

Λφ4(AQm
) =

weight Qm∑
i=2

(Λφ4(A
r
Qm,αi−1

)

Λφfv
(AlQm,αi−1

)).

I use this lines (2.27), (2.28), (2.29) and (2.30) to compare (2.23) to
the coproduct of the terms involving i(n+ 1)− (n+ 1)i in Equation (2.11).
Line (2.28) I ignore, as it contributes to the coproduct of terms involving
ai1− 1ai. Instead, I consider

−
l∑

m=q+1

l∑
i=m+1



 i(Λφ4Ri)

Λφ(Qm)⊗ 

 jΛφ4(Lj))



(2.31)

(ai(n+ 1)− ai(n+ 1)) 	≺{αi−1,ATm} (Λφ4(A
l
Tm,αi−1

)

Λφfv
(ArTm,αi−1

))

which comes from expression (2.24).
Note that {cm|1 ≤ m ≤ l + 1} are admissible dissections of P in φfv.

They need not be admissible dissections of AP or BP in either φ4 of φfv.
However, each can be partitioned into admissible dissections of the sub-
polygons AlP,αi−1

and ArP,αi−1
. Line (2.27) corresponds to the admissible cut
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cl+1. This can be partitioned cl+1 = cAr
P,αai−1

∪ cAl
P,αai−1

for 2 ≤ i ≤ q, where

cAr
P,αai−1

is an admissible dissection of AlP,αai−1
in Λφfv

and cAr
P,αai−1

is an
admissible dissection of ArP,αi−1

in Λφ4 . It cannot be partitioned admissible
dissections of Br

P,αai
and Bl

P,αai
for any i, as the arrow αq+1α ∈ c is not in

D(BP ). For instance, for i = 3,

AP =
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i = 3, m = l + 1

.

The terms in (2.27) correspond to terms in (2.14) with cr = cAr
P,αai−1

and
cl = cAl

P,αai−1
.

Consider the admissible dissections contributing to (2.31). Here, i > m >
q; therefore αam

∈ D(Br
P,αai

).

AP =
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AQ4

i = 5, m = 4

.

The terms of (2.31) correspond to terms in (2.13), with cr = cAr
P,αai

and
cl = cAl

P,αi
; cm = cAr

P,αai

∪ cAl
P,αi

.
For 2 ≤ m ≤ l, and 2 < i < wt Qm,

AP =
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""""" T5

AQ5 i = 3, m = 5

the terms of (2.29) corresponds to terms of (2.14), with cr = cAr
P,αi−1

and
cl = cAl

P,αi−1
∪ αam

. For i = 2 the subpolygon (AQm
)rαa2−1

is trivial. The
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admissible dissection can be written cm = cAr
P,αi−1

∪ cAl
P,αi−1

∪ αa2 . In this
case, the terms of (2.29) corresponds to terms of (2.15), with cr = cAr

P,αai−1

and cl = cAl
P,αai−1

.
Finally, the terms of (2.30) corresponds to terms of (2.15), with

cr = cAr
P,αam−1

and cl = cAl
P,αam−1

.
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AQ5 m = 5

Varying the dissections c and associated cm account for all terms in the
expressions (2.14), (2.13), (2.15) and (2.16), showing that the coproduct of
the two sides of (2.11) are equal. �
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