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Dihedral symmetries of multiple polylogarithms

SUSAMA AGARWALA

This paper finds relationships between multiple polylogarithms
with a dihedral group action on the arguments. I generalize the
combinatorics developed in Gangl, Goncharov and Levin’s R-deco
polygon representation of multiple polylogarithms to find these
relations. These relations between R-deco polygons, and between
R-deco polygons and iterated integrals, can only be defined up to
a primitive co-ideal.
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This paper studies the relationships between multiple polylogarithms
that differ by a dihedral permutation on their arguments. Goncharov has
shown [8] dihedral relations between multiple zeta values, and has conjec-
tured such a relation on the level of multiple polylogarithms. To study the
dihedral symmetries of multiple polylogarithms, I use a technique developed
by Gangl et al. [7], that represents multiple polylogarithms as decorated
rooted oriented polygons, R-deco polygons. Goncharov [9] has shown a Hopf
algebra structure underlying multiple polylogarithms. The authors of [7] give
a Hopf algebra structure to the R-deco polygons and construct a coalgebra
homomorphism between their Hopf algebra of polygons and the Hopf alge-
bra of multiple polylogarithms. The R-deco polygon structure of multiple
polygons has recently become interesting objects in physics. These polygons
are used to define symbols of multiple polylogarithms [6]. These symbols and
their Hopf algebraic structure have important applications in understanding
amplitudes in super Yang—Mills theories in 4 dimensions [5, 11].

Multiple polylogarithms are interesting number theoretical objects in
their own right. As a nested sum they are written

]Linl,---,nr (331, Ce ,mT) = E 1
0<kr<..<k, L 277"

The multiple polylogarithm, evaluated at x; = 1 gives the multiple zeta value
¢(n1,...,ny). The weight of the multiple polylogarithm is w = > _;_, n; and
its depth is r. In [9], this multiple sum is written in terms of Chen’s iterated
integrals. Thus multiple polylogarithms inherit the bar complex defined on
iterated integrals [3]. There is a motivic generalization of Chen’s iterated
integrals. Bloch and Kriz [1] define a Hopf algebra of algebraic cycles, xiot,
over a field F' formed by taking the Oth cohomology of a bar complex based
on a differential graded algebra (DGA) associated to the cycles. In [7], the
authors determine that there are elements of yiot that correspond to mul-
tiple polylogarithms.

Iterated integrals also make their appearance in physics. Goncharov
[10] shows a relationship between the Hopf algebra of multiple polyloga-
rithms, via iterated integrals, and the Hopf algebra of rooted trees devel-
oped by Connes and Kreimer for renormalizing Feynman integrals [4]. Brown
[2] develops a method for evaluating Feynman integrals, under Schwinger
parametrization, in terms of iterated integrals, although the arguments for
these iterated integrals are more complicated than those for multiple poly-
logs. In short, there is a lot of activity suggesting a close tie between multiple
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polylogarithms and the calculations that appear in various quantum field
theories.

This paper studies multiple polylogarithms from a combinatorial point
of view, primarily on the level of R-deco polygons. Let Dy, be the dihedral
group on r elements,

Dy, = (o, 7|72 =0" = 1,07 =710 }).
In this paper, I study the relationship between the multiple polylogarithms

Linl,...,nr(xl, cee 7:1:7“) and Lig(nl,...,nr)(g(xlv cee 7$r))

for any g € Ds,.. Section one of this paper generalizes the algorithm defined
in [7] for assigning decorated trees to multiple polylogarithms. There the
authors associate to each multiple polylogarithm an R-deco polygon, and a
family of dissections to each polygon. The differential structure of the iter-
ated integral associated to each multiple polylogarithm defines a dual tree
structure to the dissections, and a Hopf algebra structure to the
R- deco polygons. Each polygon is mapped to an element of the bar complex
on the algebra of R-deco polygons, 73.(*) (R). I introduce a generalization of a
rooted tree, called a multi-rooted tree. I show that if the dual trees associated
to dissections generate a Hopf algebra, the trees dual to single dissections
define a differential on the PS*)(R). Combinatorial relationships between
these different tree structures allow me to compare multiple polylogarithms
of weight r under the action of the dihedral group Ds,.. Section 2 of this
paper calculates the action of 7 and o in Da, on PS*)(R). Contrary to a
conjecture by Gangl and Levin, I find that the difference between the bar
element associated to an R-deco polygon and its image under the action of
the dihedral group cannot completely be expressed as a sum of products of
bar elements associated to subpolygons. On the level of R-deco polygons,
this result holds up to a primitive coideal.

1. The various Hopf algebras of R-deco polygons

This paper studies multiple polylogarithms by studying the iterated integral
associated to them. Let w = >~ k; be the weight of the iterated integral

Ikh Lk ) vala'- xnaxn+1)
k:l 1 k,—1

/ dn_ Spdn, M,
tl_xl i:l tll tn — Tp ie1 tn,;




60 Susama Agarwala

with v a path in C such that v(0) = 0, v(1) = x,,41. The value of this integral
depends on the homotopy class of «y [3]. If 7 is a straight path in the real
line, v(t) € R, from x; to x;41 € R T drop the notation . These iterated
integrals can be related to multiple logarithms

. ) T Tn41
(1)”11,...,1(0;$1,~--,wn;$n+1)=L11,...,1(a--- e )
——— ———

n times n times

These iterated integrals live in the Oth cohomology of the associated bar
complex defined by Chen. The general class of iterated integrals, I4(R) have
a Hopf algebra structure, as shown by Goncharov in [8]. The space of iterated
integrals can be endowed with an algebra structure, under path composi-
tion. In [10], the author further shows that these iterated integrals have a
motivic counterpart, I™(0,x1,...,2,41) with 2; € F, for a field I, that is
an element of the fundamental motivic Hopf algebra over F'. The natural dif-
ferential on the iterated integrals defines a bar complex on algebra of iterated
integrals. Those iterated integrals corresponding to multiple polylogarithms
live in the Oth cocycle of this bar complex.

In [7], Gangl et al. associate to each multiple polylogarithm an R-deco
polygon. For instance, the integral

IL‘_"1(0;371,...,37”;:1;”“)
——

n times

is associated to an oriented n + 1-gon with sides labeled from x; to xp41.
Note that in this case, z; # 0 by construction. The authors define a dif-
ferential on the algebra of R-deco polygons, that mimics the differential
on iterated integrals. This defines a bar complex on R-deco polygons. The
authors of loc. cit. associate a bar element to each polygon. They define a
family of dual trees to the R-deco polygons which induce a Hopf algebra
structure on the algebra of R-deco polygons. This translates to a Hopf alge-
bra sitting in the the Oth cocycle of the bar complex of R-deco polygons. In
this paper, I call this Bg,. This structure on the R-deco polygons is com-
patible with the parallel structure on iterated integrals in that there is a
coalgebra homomorphism from this to I4(R),

(1.1) O : A(By,) — I.(R).
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Specifically, if 0 ¢ R, and the polygon P has sides labeled {z1,...,zp41}
then

O(Tg,(P)) =11, ... 10521, Zn; Tpy1).
Relating dihedral symmetries of multiple polylogarithms can be simpli-
fied to a combinatorial problem on the dihedral symmetries of decorated
polygons.

This section generalizes the above construction. I define a class of Hopf
algebras associated to these decorated polygons that are useful in solving
the combinatorics of how polylogarithms vary as their order of the argu-
ments are changed. Section 1.1 gives a definition of R-deco polygons and
their dissections, the vector space they generate, V4 (R), its exterior product
algebra P.(*)(R), and the associated bar complexes. Section 1.2 defines the
Hopf algebra of multi-rooted trees, 7*(R) , and the linearization map A.
I show that A is a bialgebra homomorphism from 7°*(R) to the commu-
tative Hopf algebra of words on R-deco polygons. Section 1.3 introduces a
family of dissection compatible Hopf algebras of 7°(R) generated by sets
associated to dissections of R-deco polygons. Section 1.4, shows that these
generating sets define differentials on PS*)(R). It also introduces a fam-
ily of almost compatible algebras. Finally, Section 1.5 defines a relation-
ship between the linearizations of dissection compatible Hopf algebras and
almost compatible algebras that is useful for the calculations in Section 2.
Furthermore, I show that the linearization of the latter also gives rise a Hopf
algebra.

1.1. Bar constructions on R-deco polygons

Let R be a set. Usually, R is the set underlying a field.

Definition 1. Let P, be the convex oriented polygon with n + 1 > 2 sides,
with sides labeled by elements in R. One of those sides is a distinguished
side, called a root side. One of the endpoints of the root side is marked as
the first vertex. Orient P, by starting at the first vertex and ending at the
root side. The polygon P, is an R-deco polygon, as defined in [7].

In this paper, I draw polygons to be oriented counterclockwise. I some-
times specify a polygon in terms of its labels, proceeding counterclockwise
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and ending with the root side. Therefore,
4

5 = 1234

2
The R-deco polygons generate a vector space.

Definition 2. Let V4(R) be the graded vector space over Q generated by
R-deco polygons. Let V,,(R) be the vector space over QQ generated by R-deco
n + 1-gons, with n > 0 and Vp(R) identified with Q

Vo(R) = Q < {1, P|P is an R-deco polygon} >= &>V, (R); Vo(R) = Q.

The ‘weight’ of an element in V,,(R) is n.

An R-deco polygon can be equipped with arrows, as in [7]. An arrow
of a polygon is drawn from a vertex of a polygon to a side of a polygon.
It divides the interior of the polygon into two regions. A trivial arrow of a
polygon P goes from a vertex to an adjacent side. A non-trivial arrow of P
is an arrow that does not end on a side adjacent to its starting vertex. Two
arrows are said to be non-intersecting if they share no points in common
other than possibly the starting vertex.

Definition 3. Arrows of P, are defined by their starting vertex and ending
edge. Write ;a; for an dissecting arrow of the polygons P that starts at the
ith vertex and ends on the jth edge. For non-trivial arrows, j # 4,7 —1
mod (n + 1). Call ;a; a backwards arrow if j < i. Otherwise it is a forwards
arrow.

Example 4. The arrow 1a4 is a trivial arrow in the first polygon below.
In the second polygon, a4 and 40 are non-intersecting, non-trivial arrows.

4 4

10

Regions associated to dissection arrows can be viewed as polygons in
their own right. If «, is an arrow of P, contracting « to a point results in a
set of two polygons {P,, Q.} associated to the two regions of P as follows.

(1) The labels of the sides and the orientations of P, and @), are inherited
from P.
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(2) If o lands on a non-root side of P, then the subpolygon corresponding
to the region that contains the root side of the original polygon inherits
the root, and the side that « lands on becomes the new root for the
other subpolygon.

(3) If @ ends on the root side of P, then both subpolygons inherit the
original root side as their root. See Example 6.

Under this construction, dissection preserves the polygon weight of the. If
« is a trivial arrow, then one of the resulting subpolygons is the trivial
subpolygon, 1 € Vy(R) = Q whereas the other subpolygon is the original
polygon. For this reason, for most of the discussion in this paper, we ignore
the presence of trivial arrows.

Definition 5. A dissection d of P is a set of non-intersecting arrows of P.
Denote by D(P) the set of dissections of the polygon P, including the trivial
dissection (no arrows). The cardinality of a dissection, |d| is the number of
non-trivial arrows in d.

Example 6. For example, consider P = 123456, and dissection d = {a,
B,v} as drawn. Contracting along the arrows in d gives the a set of four
polygons.

The arrow [ is an arrow not ending on the root side of P. Contracting
along ( gives the pair of polygons

b=, 27Qﬁ:3 5

4

One can think of o now as an arrow in Pg = 126. It ends on the root
side of P. Contracting along both arrow a and 3 gives the three polygons

6 6
5 3 5
1 2
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Finally, consider v as an arrow in Qg = 3452. It does not end on the
root side of either Q3 or P. Contracting all arrows in d gives

2

6 6 N/ 5
e ;& 3\ /5 —>
4

’
1 2

The order of contracting arrows in d does not affect the set of polygons
associated to it.

The polygons P, and @), above are called the polygons associated to
the dissecting arrow «. If d € D(P) is a dissection with i arrows, there is a
set of i + 1 subpolygons, { Py, ... P} associated to the dissection d, formed
by contracting the arrows in d. Since dissection preserves weight, if each
P; € V,,(R), and P € V,(R), then Zj‘:o n; = n. Two polygons P; and P;
associated to a dissection are adjacent if regions they correspond to share a
dissecting arrow as a boundary.

When discussing polygons associated to dissections, it is useful to label
the regions associated to dissection consisting of a single arrow. For a = d €
D(P), the subpolygons associated to « are sometimes referred to as the root
polygon, PS5, which is the subpolygon that contains the root side and first
vertex of P, and the cut off polygon, P5, which is the other subpolygon.
At other times, it is convenient to consider whether the subpolygon lies to
the left or the right of the arrow, as determined by the orientation of the
arrow. In this case, the left polygon is indicated Pol[ and the right polygon
is indicated P[. Note that if o is a forwards arrow, P, = P*. If it is a
backwards arrow, P(i = P-. In Example 6, since 3 is a backwards arrow,

2 6

l -
Pﬁngzg 5, Pp=P§= S Z.

Definition 7. Let P{* (R) be the exterior product algebra of V4(R). It is
bigraded, the subscript e corresponds to the weight, or Adams grading, of
the vector space Vo(R), and the superscript (%) corresponds to the exterior
product grading, also referred to as the degree.

The algebra ’P.(*) (R) can be endowed with a degree 1 differential operator
to form a DGA (73.(*) (R), d). There are several such operators on this algebra,
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which I discuss in Section 1.4. I consider the bar constructions associated to
each DGAs, Ba(P.(*) (R)).

Definition 8. Let (A,0) be a DGA with A a connected graded exterior
product algebra, and d a degree 1 differential operator. The bar construction
Bg(A) associated to (A,, ) is the reduced tensor algebra T'(A,) = @fioA‘;p
commutative under the shuffle product, III, with tensor symbol denoted by

|. The bicomplex structure of By(.A) is given by the differential operators
D1 and DQ.

The coproduct on By(.A) is induced from the deconcatenation coproduct

on T(A)

n

(1.2) Ala] -+ Jag] = Y Jar] -+ |ai] ® i1 - |an].
1=0

It is compatible with the shuffle product on T'(A).
In this paper, I consider A, = PE*)(R). Given a differential operator
0, the bar construction Ba(PS*) (R)) is generated by terms of the form

[a1] - - |an] where each a; € Pe i)(R) is homogeneous in the exterior product
grading of degree k;.

(1) Define D; : PE*)(R)‘” — Pf*)(R)m*l to be the operator defined

n—1

Du([al -+ lan]) = 3 (=)= 050 Dlay | fag A aga )
i=1

~

(2) Define Dy : PS*)(R)‘” — ,(*)(R)|” to be the operator defined

n

Dy([ar] -+ |an]) = Z(—l)zm(degak—l)[al\ - |Oag] - - - an).
7j=1

Since D; does not involve the differential defining the DGA, this differ-
ential is the same for all Ba(P.(*)(R)). If 9 and & are different differential
operators on P (R), the differential Dy is different on By( .(*)(R)) and
By (P (R)).

Remark 9. The bar construction defined in this paper is different than
the one defined in [7], specifically they differ by the overall sign of D;. The
objects in this paper have different weights than those considered in [12],
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Chapter 2, Section 2.2, otherwise, the construction in this paper and Loday
and Valette agrees. It is worth noting that this bar construction also differs
from that of Bloch and Kriz [1], where the shuffle product and coproduct
have a very different sign convention.

1.2. Multi-rooted trees

In this paper, I define several Hopf algebras associated to the vector space
of R-deco polygons V4(R). These are defined by introducing dual tree struc-
tures to polygons and their dissections. In this subsection, I define these
trees.

Definition 10. A tree is a finite contractible graph with oriented edges.
Vertexes with all edges flowing away from them are called roots. Vertexes
with all edges flowing into it are called leaves. A tree may have many roots,
in which case is called a multi-rooted tree. If a tree has a single vertex, that
vertex is both a root and a leaf.

Unlike for single-rooted trees, leaves on multi-rooted trees can have
multiple edges coming into them.

Remark 11. In this paper, root vertexes are marked by a circle. I do not
explicitly indicate the orientation of the edges, and leave it to be assumed
from the pictures. Generally, root vertexes are drawn at the top of the tree,
while the edges flow down.

Let 7°(R) be the augmented bialgebra over Q of multi-rooted non-planar
trees with vertexes decorated by R-deco polygons. As with trees, a multi-
rooted tree T' € 7°(R) induces a partial order on its vertexes. A path in T
from the vertex vy in 1" to v in T, is a linear subtree with v as a root and
vy as leaf vertex, with orientation inherited from 7. If v; and vy are two
vertexes of a tree T,

v1 <9 in T <= da path in T from v to vs.

A linear order of T is a total ordering of the vertexes of T' that respects the
partial order.

The algebra structure of 7°(R) is given as follows. It is graded by number
of vertexes in the tree

T°(R) = @T"(R) = Q(T|T has n vertexes ); T°(R) = Q.
n=0
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The unit is the empty tree,

HT.(R) — T@.

The sum of two trees 77 and 15 is formal.
The algebra 7°(R) is a commutative algebra with the product of trees
being the disjoint union of trees, or a forest.

Definition 12. For a tree T' € T°*(R), let ¢ be a non-empty subset of edges
of T, and {t1,...t;} be the set of trees formed by removing the edges in
c. The subset c is a proper admissible cut of T' if, for any individual ¢;, the
edges of ¢ that have endpoints in ¢; either all flow into ¢; or all flow from ¢;.

A (®D
Example 13. For example for the tree T'=  */5\ /4  the set {a, v}

B C
is not a proper admissible cut, but the set {«a, 5} is.

Let ¢ be a proper admissible cut of 7°(R), and {t1,...,%;} the set of
subtrees of T' formed by removing the edges in ¢ from T. The definition
of a proper admissible cut partitions the trees {t1,...,tx} by whether they
are connected to the edges in ¢ by terminal vertexes, or initial vertexes.
This partitions the set of subtrees in two, the set {¢;,,...,%;, } of subtrees
which the elements of ¢ share at most a terminal vertex in ¢;,, and the set
{tr,,...,tr, } of subtrees which the elements of ¢ share at most an initial
vertex in t,.,.

Definition 14. e The leaf forest of a proper admissible cut is

n

L(c) =[]t
i=1

e The root forest is

m

R(c) = H ty,.
i=1

In the above example, for ¢ = {«, 5}, the pruned forest is

D
L(c) = ?
B® eC
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and the root forest is

R(c) = @A

In addition to proper admissible cuts, one considers two other cuts. The
empty cut is defined such that Lempty (7)) = 1 and Rempty (7)) = T'. The full

cut is defined such that Ly (7)) = T and Req(7') = 1. The set of admissible
cuts consists of proper admissible cuts, the empty cut and the full cut.

Definition 15. The coproduct on 7°*(R) is defined

(1.3) A(T)= )Y R()®L(c).

¢ admis.

I denote the contribution of the admissible cut ¢ to the coproduct as
A.(T) = R(c) ® L(c).
In this notation A(T) = > A (T).

¢ admis. —¢

Recall that in a coassociative bialgebra 7*(R), for every T € 7*(R),
(1.4) (ARDA(T) = ITe A)A(T).
Lemma 16. The algebra T*(R) is a coassociative Hopf algebra.

Proof. Since T*(R) is connected and graded, if it is a bialgebra, it is a Hopf
algebra.

First I show that 7°(R) is a bialgebra. The coproduct defined in (1.3)
is compatible with multiplication on 7°(R):

A(TS) = A(T)A(S)

for S,T € T*(R). Let L, Lg be the pruned forests of T and S, and Ry and
Rg the root forests of T and S. Then

AMAS) = S Y Rs(@Rr(d) ® Ls(e)Lr(d).

d admis. of T' ¢ admis. of S

Since the product of trees is the disjoint union, an admissible cut of T'S is
an element of the form d U ¢, where d is an admissible cut of T, and ¢ is an
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admissible cut of S. Therefore,

ATS) = Y Rs(Rr(d) ® Ls(e)Lr(d) = AT)A(S).
dUc admis. of T'S

To see coassociativity, consider ¢, an admissible cut of T'. Write
A(T) = R(c) ® L(c).
Let ¢, be an admissible cut of the forest R(c). Then
(1.5) (A, ®DAT) = Re, (Re(T)) @ Le, (Re(T)) @ Le(T).

Since the trees in the forest R(c) are subtrees of T', ¢, is also an admissible cut
of T'. The edges in ¢ are an admissible cut of the forest formed by the product
R. (T)- L. (T). Write ¢ = ¢; U co, with ¢; an admissible cut of R, (T') and
¢ and admissible cut of L. (T'). Then ¢/ = ¢, U ¢ is an admissible cut of T
The components of Ry (T') = R, (R, (T')) are attached to the source vertexes
of the edges in ¢ while the edges in L., (R, (7)) are attached only to the
terminal vertexes of the edges in ¢;. Furthermore, note that by construction,

(1.6) Re(T) = Re, (R, (T)) = Re, (Re(T)).
Since Le, (R.,(T')) is part of the forest L. (T),
(1.7) Le(T) = Le, (Re, (T)) - Le, (T) = Ley (L (T)-
Since cg is an admissible cut of L. (T),
(1.8) Le, (Re(T)) = Re, (Lo (T)).
Combining Equations (1.5) (1.6) (1.7) and (1.8) gives

Re(T) @ Re, (L (T)) © Le, (Ler(T)) = (1@ A, )Acr(T). O
Remark 17. Note that if T € 7°(R) is a single-rooted tree, the coproduct
defined above matches the coproduct and definition of admissible cut in [4].
For a single-rooted tree, R(c) is always a tree. If T' is multi-rooted, R(c) may

be a forest.

Definition 18. Let W(R) be the algebra of non-commutative words on
R-deco polygons.
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The algebras W (R) and T'(Ve(R)) are isomorphic as commutative Hopf
algebras. There is a commutative product given by the shuffle product and
a coproduct given by deconcatenation. This is the same as given in the bar
construction in (1.2). If w =wy,...,w, € W(R), with the w; non-trivial
R-deco polygons,

n
Awl---wn:Z(w1®---®wz)®(wi+1®"'®wn)-
i=0

There is a natural identification
(W(R), I, A) = (T(Va(R)), I, A) = (T(P{V(R)), 111, A).

There is an algebra homomorphism from the algebra of trees, 7°(R), to
the algebra of words, W (R), which identifies the partial order represented
by T with a sum of words in W(R). I first need to define linearizations of
trees.

Definition 19. For T'€ 7"(R), a partial order preserving a linearization
of T is a word on R-deco polygons

AT) =M ® A& - @\, € W(R)

where each ); is an R deco polygon labeling a vertex of T'. If \; < \; as
vertexes in T, then ¢ < j.

Let Lin(7T) be the set of partial order preserving linearizations of trees.
For any A € Lin(T'), the polygon \; is always the label of a root of 7" and A,
is always the label of a leaf of T'. A forest in 7°(R) also represents a partial
order on its vertexes. The linearization of trees extends naturally to forests.

In this paper, the partial order of T' is viewed as the sum of its par-
tial order preserving linearizations. I define a map from trees to words by
mapping each tree to the sum of its linearizations:

A:T*(R) — W(R)
T Y MNT)

A€ELin(T)
T T > N@T)I Y NT)=AT)IIAT),
A €eLin(T") A€Lin(T)

where III is the shuffle product on W(R).
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Example 20. Let T be the tree,

T7=c* DI

E

It has two root vertexes A and B. Then
MT)=A®BC®@D®FE and N(T)=BRA®D®E®C

are two partial order preserving linearizations of T'. The sum of all partial
ordered preserving linearizations is

AMT)=(AUIB)® (CII(DR®E))+ A2 C®B®D® E.

Theorem 21. The map A : T*(R) — W(R) is a bialgebra homomorphism.

Proof. The algebra homomorphism comes from the construction of the map
A. The coalgebra homomorphism is shown here.
For T € T"(R), the coproduct on T is

A(T)= Y R(c)®L(c)

¢ admis.

and the coproduct on the image, A(T), is

Z Y M@ @M)ON 8. B\

1=0 AeLin(T)

Any decomposition of a partial order preserving linearization A(T"), [A\; ®
@ N] and [N\j41 ® - -+ ® Ay], can be written as a tensor product of partial
order preserving linearization of forests of the form p(R) and n(L) with R
and L sub-forests of T" defined by the vertex sets {1 --- \;} and {X\i11 - A},
respectively. The set of edges of T' that connect the vertexes A; to A; for
j <14 and k > ¢ define an admissible cut of T
For each admissible cut ¢, the trees in the forests L(c) and R(c) are sub-
trees of T'. Let 1. € Lin(L(c)) and p. € Lin(R(c)) be partial order preserving
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linearizations. Then

ARA)AT) = > pe @ e,

¢ admis. (Meype) €
Lin(R(c))xLin(L(c))

where the interior sum is taken over all partial order preserving linearizations
of R(c) and L(c). By definition of admissible cut, each pair of partial order
preserving linearizations p. ® 7., corresponds to a decomposition of a par-
tial order preserving linearizations A of ', [\ ® - - @ \i| @ [Ait1 ® -+ - @ \y)]
where the vertexes of R(c) precede the vertexes of L(c). O

Remark 22. Words in W (R) represent a partial order on its letters. For u
and v lettersin W = " W; € W(R), u < vifu = x;, and v = z;, in W; with
ij < ig. Similarly, v < wif u = z;; and v = x;, in W; with i; > i;. Under this
definition, the map A is an order preserving Hopf algebra homomorphism.

To complete the analysis in this paper, I need to introduce a method of
inserting letters into words.

Definition 23. Define two insertion products on W (R)

ux<y : W(R) — W(R)

T1Q - QTp — § i<k

0, v {x, ..., Tk}
and
Uxsey : W(R) — W(R)
Zm@---xi@u---@xn, if v=uxp
T1Q - QTp — § i>k .
0 v {x, ..., Tk}
If w =1 then

Ukl =uxe1 1 =u.

To see this as a product, generalize the insertion of a letter to the inter-
twining of a word with another.
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Definition 24. Let w and w’ be two words. Define a set of words {W;|i € I'}
such that wIlw' =Y, ; W,

*u<v : W(R) @ W(R) - W(R)
Z W;, if u and v letters of w and w’ resp.
(w’w/) N ieuljl.}t.

0, if u or v not letters of w and w’ resp.

Similarly,

*ysy : W(R) @ W(R) — W(R)
Z Wi, if u and v letters of w and w’ resp.

(w7w/) N i€u1>.sz.}t.

0, if u or v not letters of w and w’ resp.

In the product w xy~, w’, the letter u < v, while v = u in w *ysp w'. In
this notation, u %, W 1= U *y<p W ANA U *e gy W 1= U kg gy W

For further analysis, I extend this product for shuffles of words. For v a
letter of the word w and v’ a letter of the word w’, define

(u *<{vp W I w/) = (U K<y W) Fy<oy w/’

and
(u - {v0} W I w/) = (u *—v w) Ky’ w'.

These operators can be lifted to grafting operators on trees. If w = A(T),
and w' = A(T"), for T, and 7" in 7°*(R),

(1 <y wITTW') = A(S)

where S is the multi-rooted tree formed by connecting the vertex labeled
v in T and the vertex labeled v’ in T” to a new root vertex labeled u. The
other insertion operator corresponds to connecting the two marked vertexes
to a new leaf, with the label w.

The coproduct on the images of these insertion operators behaves as
follows.
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Lemma 25. Writew =21 ® --- ® x,. The coproduct

k—1

Ak, 0) = 301 @+ ©20) ® Uk, (Tas1 @+ B )
a=0
+ (1@ Q) Mu® (2 @ -+ @ xy)

n
+ D Uk, (11 @ D W) D (Tag1 @ B ).
a=k

Similarly, the coproduct The coproduct

N

-1
AU *y gy, w) = (71 ® - @ %) @ UAkpg, (Tar1 @ @)

e
Il
o

n

FY Uk, (T1® - @ 20) @ (Tapr @+ D Tp)
a=k

+ (21 ® - Qak) QUIT (Tpy1 @ -+ - ® Tp).

Proof. The proof is straight forward from the definition of coproduct on all
words in the sum u IITIw, such that the letter u appears to the left of xj, in
the case of x<;, , or to the right of x, in the case of .., . O

1.3. Hopf algebras of trees associated to dissected polygons

To continue to generalizing the construction in [7], I associate a family of
(multi-rooted) tree structures to each dissection of a polygon. In Section 1.4,
I define a family of bar complexes on 73.(*) (R) and associate to each polygon
a bar element in each bar complex.

The rest of this paper is concerned with subalgebras T, C 7°(R) gener-

ated by sets corresponding to polygons and their dissections.
Definition 26. A dual tree algebra T, C 7°(R) is generated by a dual
tree generating set, which assigns to each polygon dissection pair (P, d) an
element of 7°(R), Ty 4(P),

¢ = {T4,a(P)|P R — deco polygon; d & D(P)}.

In this paper, the generators, Ty 4(P) € T7*(R) are trees with an overall
sign.
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Definition 27. I write the overall sign associated to a tree sign(Ty q(P)).
For d € D(P), sometimes I write this sign (P, d). When the polygon is clear,
I write sign,(d).

I am particularly interested in the cases when T4 has a Hopf algebraic
structure.

Definition 28. The dual tree algebra T, is a dissection compatible Hopf
algebra if

(1) The dual tree algebra T, generated by the set ¢, is a sub-Hopf algebra
of T*(R).

(2) The edges of each tree Ty 4(P) correspond to non-trivial arrows in d.

(3) Let d’ be a sub-dissection of d, d' C d € D(P), corresponding to the
subtree T' of Tj, 4(P). There exists an R-deco polygon @ such that T
and Ty ¢ (Q), with d’ € D(Q), agree up to a sign. In fact

sign(Ty 4 (Q)T =Ty a (Q).

(4) Consider d' C d € D(P) as above. The generator Ty s (P) is formed
by replacing the subtree T" in Ty 4(P) with a single vertex labeled Q.

(5) For each subdissection d’ C d, with corresponding generator Ty ¢ (Q),

sign(Ty,q(P)) = sign(Ty,a (Q))sign(Ty g\ (P))-

The third condition of Definition 28 ensures that a dissection compatible
Hopf algebra is coassociative. Note that there is no requirement that the
labels of the vertexes of Ty 4(P) correspond to the subpolygons associated
to the dissection. However, conditions 3 and 4 impose strong conditions on
the vertex labels of the generators of dissection compatible Hopf algebras. In
most of the examples I consider in this paper, the vertexes of the generators
are labeled by the the subpolygons associated to the relevant dissection.
Below I give some examples of some generators of dissection compatible
Hopf algebras.

Example 29. Consider the following pair of polygon and dissection:



76 Susama Agarwala

Four possible elements of dual tree generating sets are

16 16 16

Ty a(P) = | 5 Toa(P) = | 5 Ts4(P) = — | %
? 552 ? 532 #1552

s Toss s

6 352
T47d(P) = ai /[3\7
26 45

For a fixed P and d € D(P), the generators 17 4(P) and T3 4(P) differ
only by an overall sign. The only multi-rooted tree in this example is T} 4(P).
The vertexes in T5 ¢(P) do not correspond to the set of subpolygons associ-
ated to the dissections d of P. Instead of a vertex labeled with the polygon
352, there is a polygon labeled 532.

Next I give examples of four dual tree generating sets ¢;, with i €
{1,...,4} such that Ty, is a dissection compatible Hopf algebra. The gen-
erators T; 4 in Example 29 correspond to elements in ¢;. Before defining
these Hopf algebras and the construction of the corresponding generators, 1
establish some notation.

Definition 30. Let 7 be a map that reverses the orientation of a polygon.
Specifically, for P =17y rpy1, with r; € R, 7 € Dy(y4) and 7(P) =

Tn - T1Tp+1. For example,
4 4

le

2 2

Definition 31. Define x(«) to be the weight of the cut off polygon of the
arrow «. That is, P} € Pf(l()a)(R).

Example 32. The following are four dissection compatible Hopf algebras.

%, + This is a single-rooted dual tree algebra generated by the set ¢1. The
root vertex of Ty, q(P) € ¢1 is labeled by the subpolygon that contains
the original root side and first vertex of P. The edges, corresponding to
arrows in d, are oriented to flow away from the root vertex. Since this is
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a single-rooted tree, I need only consider the final vertexes of any edge
(corresponding to the dissecting arrow «.) The initial vertex is either
the final vertex of a different arrow, or the unique root, whose label
has been defined. Consider the edge corresponding to the dissecting
arrow «. The final vertex is labeled by the subpolygon corresponding
to the region further away from the first vertex/root side of P. In
Example 29, T} 4(P) € ¢.

$4,: This is a single-rooted dual tree algebra generated by the set ¢o.
The single root vertex of Ty, 4(P) € ¢ is labeled by the subpolygon
that contains the original root side and first vertex of P. The edges,
corresponding to arrows in d, are oriented to flow away from the root
vertex. If « is a forwards arrow, then the final vertex is labeled by the
subpolygon corresponding to the region further from the root. If a is a
backwards arrow, then the final vertex is labeled by the same polygon
with reversed orientation. The generator has an overall sign

Sign(Td)z’d(P)) = (—1)2046(1 backwards X(Oé)'

In Example 29, T, 4(P) € ¢o.

Te,: This is a single-rooted dual trees algebra generated by the set ¢s3.
The single root vertex of Ty, 4(P) € ¢3 is labeled by the subpolygon
that contains the original root side and first vertex of P. The edges,
corresponding to arrows in d, are oriented to flow away from the root
vertex. The final vertex is labeled by the subpolygon corresponding
to the region further away from the first vertex/root side of P. The
generator has an overall sign

sign(T¢37d(P)) — (_1)# backwards arrows in d‘

In Example 29, T3 4(P) € ¢3.

T+ This is a multi-rooted dual tree algebra generated by the set ¢4, with
generators Ty, ¢(P) € ¢4. The edges, corresponding to arrows in d, flow
from the region to the left of the arrow to the region to the right. The
initial vertex of an edge is labeled with the subpolygon associated to
the region to the left, and the final vertex by the subpolygon associated
to the right. For the polygon pair in Example 29, Ty 4(P) € ¢4.



78 Susama Agarwala

In the dissection compatible sub-Hopf algebras in Example 32, write the
generating set of Ty,

¢i = {14, .a(P)|d € D(P); P R — deco polygon}

fori € {1,2,3,4, }. Note that the different generating sets ¢; and ¢3 generate
isomorphic Hopf algebras Ty, ~ T4, under the relation

Ty, ,a(P) = signy, (d)(Tg,,a(P))-

Each T4, satisfies conditions 2-5 of Definition 28. To see that these are
dissection compatible Hopf algebras, it remains to check that they are sub-
Hopf algebras. The Hopf algebra Ty, is exactly the Hopf algebra defined in
[7], Section 6. It remains to check that T4 , T4, and Ty, are Hopf algebras.

Lemma 33. The algebras T4,, Ty, and Ty, are Hopf algebras.

Proof. Since all three are graded subalgebras of 7°(R), it is sufficient to
show that these are sub-bialgebras. The product structure and coproduct
structure on each are inherited from 7°*(R). It remains to check that

ATy — Ty, @ %y,

for i € {1, 3,4}. For this, it is sufficient to work only with the generators.

Let {P1,..., Pgi41} be the vertexes labeling T, 4(P). Since the edges of
Ty,.a(P) correspond to arrows to the dissection d, an admissible cut, ¢, of
Ty,,d(P) can be thought of as a subdissection ¢ C d. Let {Q1,...Qn} be the
polygons associated to the dissection ¢ € D(P), with R(c) =[]/_; T; and
L(c) = [} 1 Ti. Write d = (Uj_,d;) Uc with the subdissection d; corre-
sponding to the edges in T;. It remains to check that

T; = signy, (di) Ty, 4, (Q2)-

For each 3 € d\ ¢, let P, and P; be the regions of P to the left and right
of 3, respectively. By definition, 3 € d; for some i. Then P} and P; are also
the sub-regions of Q); to the left and right of 3 € d;. Thus, Ty, = T4 4,(Q:).

The argument is similar for T4, and T4,. Since they are isomorphic, it
is sufficient to work only with ¢1. Let {Py,..., Py} be the vertex labels
of Ty, a(P) € ¢1. Consider the admissible cut ¢ with L(c) = H?;llTi and
R(c) =T,. Then {Q1,...,Qn} are the polygons associated to c¢. The dissec-
tion d can be written d = (U}'_,d;) U ¢ with d; corresponding to the edges
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of T;. For each € d\ ¢, let P; be the region of P on the root side of
and P; on the cutoff side. Let 3 € dj. Then P; and P; correspond to the
regions corresponding to the root and the cutoff sides of 8 € di € D(Qy).
Thus T; = signy, (di)Tg,.q,(Qi)- O

1.4. From generating sets to differentials

A dual tree generating set that defines a dissection compatible Hopf algebra
also defines a degree one differential on P.*)(R), 0: Pﬁz)(R) — PEHI)(R)
satisfying d o 0 = 0 and the Leibniz rule

dp(a A b) = (Oga) Nb+ (—=1)'a A y(b) ,

where a € PS”(R).
Let ¢ be a dual tree generating set. Consider the subset of dissections
d € D(P) such that |d| = 1. Write the corresponding elements of ¢

Py
qu,d(P) = sign(b(d)? .

Py
This structure defines a an operator on P (R).

Definition 34. Define

0p(P)= > signy(d)Pj AP},
deD(P);|d|=1

Theorem 35. If ¢ generates a dissection compatible Hopf algebra, Ty, then
Oy is a degree one differential operator on PS*)(R).

Proof. By construction,

05005(P)= Y (P3)aA(P3)aAP§— Py A (P)o A (PR
a’ﬂ

dis. arrow

+ (Pa)s N (Pa)j A P = Po A (P A (PR3-

Some of these terms are 0. For instance, if 3 ¢ D(P!) then D(P;)/’B =0.
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This can be calculated by considering the sum
(1.9) (A @DAg — (I®AL)AR + (Ag@T)AnL — (I® Ag)Aq

on the level of Hopf algebras, and passing from the tensor product to the
wedge product.
Ignoring the sign and the vertex labels, the generator Ty ¢, 3 (P) is one

of three possible trees
“ a)\ /( 3 0/®\5 .
g

In the case of the linear tree, the first two terms of (1.9) are equal,
and therefore cancel. The other two are 0. For the non-linear single-rooted
tree, the sum of the first and third terms in (1.9) gives (P/@l)é ® Pg 111 P2.
The other two are 0. For the non-linear multi-rooted tree, the sum of the
second and fourth terms in (1.9) gives Pﬁ1 I P? ® (PD%)% The other two are
0. In both cases, the shuffle product goes to zero as one passes to the wedge
product.

Thus, dy 0 Oy = 0 as desired. O

Since the dual tree generating sets ¢;, ¢ € {1,2,3,4} in Example 32
generate dissection compatible Hopf algebras Ty,, they define degree 1 dif-

ferential operators 0;, respectively on PS*) (R).

Example 36. The differentials defined by the sets ¢1, ¢2, ¢3 and ¢4 are
(1) 0u(P) = > aep(py,jaj=1 Pi NP7

(2) aQ(P) = Zd forwards arrow Pcf A Pdu + Zd backwards arrow(il)X(d)
Py nT(Py)

(3) 83(P) = Zd forwards arrow Pcf N Pdu - Zd backwards arrow Pcf A Pdl_I
(4) 04(P) = Xuep(pya=1 Pi N Pj

These differentials defined by dual tree generating sets are not all dis-
tinct. Specifically,

. (@) signy, (), if o forwards
signy (o) =
Eliss —sign,, (@), if a backwards.
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As a result, 03 = 4.

Definition 37. The difference set between two dual tree generating sets ¢
and 1 is

P,
S = {a € D(P)||la| =1; P R —deco; Ty o(P) = sign(b(a)?

P
P:
and Ty (P) = —sign(p(a)? } .

Pl

@

This condition on single dissections can be generalized to general trees.

Definition 38. Let T4 be a dissection compatible Hopf algebra. Let S
be the difference set between ¢ and another dual tree generating set 1. The
dual tree algebra Ty, is almost ¢ compatible if, for any dissection d of any R-
deco polygons P, sign,, (P, d) = (—1)|dm‘5|sign¢(P, d), and the tree underlying
the generator Ty, q(P) is formed by reversing the orientation of the edges of
T¢7d(P) indNS.

The dissection compatible Hopf algebra, T is trivially an almost ¢ com-
patible algebra.

Corollary 39. Let Ty be a dissection compatible Hopf algebra, and Ty an
almost ¢ compatible algebra. Then Oy = Oy .

Proof. Let S be the difference set between ¢ and ¢’. By definition,
0p(P)= > signy(d)Pj AP}
deD(P);|d|=1

= Z sign¢(d)PC} AP? — Z sign(b(al)Pd2 A P}
d¢D(P)NS deD(P)NS

= Oy (P).
Since Ty is almost ¢ compatible, Oy o Jy = 0. U

Almost compatible algebras are particularly important for the calcula-
tions in Section 2. I give an example of a such below.

Definition 40. Let re(P) be the set of non-trivial arrows ending on the
root side of an R-deco polygon P (the root ending arrows). To fix notation,
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for P an n-gon, write re(P) = {20, ..., 10}, where ;a starts at the ith
vertex.

Example 41. I define a dual tree algebra, T, = generated by the set of
single-rooted trees ¢,e. For any dissection d € D(P), the root vertex of
Ts,. d(P) € ¢rc is labeled by the subpolygon that contains the original root
side and last vertex of P. The edges of the generator are oriented to flow
away from the root vertex. Consider the edge corresponding to the dissecting
arrow «. The initial vertex of « is labeled by the subpolygon corresponding
to the region closer to the last vertex/root side of P. If « is a forwards
arrow, then the final vertex is labeled by the subpolygon corresponding to
the region further away. If a is a backwards arrow, then the final vertex is
labeled by the same polygon with reversed orientation. The generator has
an overall sign

sign(Td)md(P)) = (_1)|dﬁre(P)|(_1)zaed backwards X (@)
= (—1)lrePlsign , (d).

The algebra Ty  is almost ¢ compatible. The difference set between
¢re and ¢o is

S = U re(P).

P R—deco

If v is a backwards arrow, then a & re(P) by construction, and

P> pP*

@

i Tg,a(P) = (—1)"(‘“)?

(PY)

Ty,..0(P) = (_1)X(a)?

r(PY)

a

Similarly, if « is a forwards arrow a & re(P),

P P
Tqbreya(P) = ?PU ; T¢27Q(P) = ? U °

a4 e

On the other hand, if a € re(P),
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To see that T4 is not a dissection compatible Hopf algebra of 7°(R),
consider the polynomial dissection pair

6
1 5
po LN
2 —__ 4
3
In %, ., the generator
6
a/\B
Ty,..a(P) = 14 542
gl
32

Consider the admissible cut ¢ = {}. The corresponding summand of

the coproduct is
26 42
Ac(Ty,.a(P)) = ? ®<? -
16 32

26 42
While C? =Ty, (126), ? =Ty, ~(5432). However, the generator
16 32

T4,(5432) € T,
Lemma 42. The algebra T _ is not a dissection compatible Hopf algebra.

Proof. In fact, I show that T _ is not a Hopf algebra at all. Consider the gen-
erator Ty, q(P) € T4, , and an admissible cut consisting of a single arrow,
¢ = a & re(P). The dissection d € D(P) can be decomposed into the sets

d=d*UcUd”

where d* € D(PY) and d" € D(PY). Since ¢ = a & re(P), the root side of
P does not correspond to the root side of P. Furthermore, d- Nre(P) = (.
Thus, the above discussion shows that the corresponding summand in the
coproduct is

A(Ta(P)) = Ty, .= (Pa ) @ T a0 (Py)-

If d“n re(Po'f) # (), then T4, av (Poljl) Z%yp,., and A(Ty(P)) ¢ Lo %y, .-
U
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A class of differentials on PE*)(R),

{04|%4 dissection compatible Hopf algebra},

defines a class of bar complexes {Bj, (Pﬁ*)(R))}. Continuing to generalize

the construction of [7], I associate to each R-deco polygon an element of
each By, (PS*)(R)).

Definition 43. If T4 defines a differential 0y, define

Ay :Va(R) — By, (PP (R))
P — Z A(T¢7d(P)).

deD(P)

There is a natural way of identifying a subalgebra of T(V(R)) that is
generated by R-deco polygons

Definition 44. A polygon algebra defined by the dual tree generating set
¢ is

By = Q[{A4(P)|P R - deco}].
Its generators are in one to one correspondence with R-deco polygons.

In general, B, is a subalgebra of T((V(R))

Proposition 45. If the dual tree generating set ¢ defines a dissection com-
patible Hopf algebra, then

By = Q[{Ay(P)|P R — deco polygon}]
is a sub-Hopf algebra of T(V(R)).

Proof. This is evident from the fact that the linearization map A : 7*(R) —
T(V4(R)) is a Hopf algebra homomorphism. O

For ¥, a dissection compatible Hopf algebra, I show that Ay4(P) is con-
tained in the Oth cocycles By, , that is, Ay(P) € HO(Ba(P.(*)(R)).

Theorem 46. Let the dual tree generating set ¢ generate a dissection com-
patible Hopf algebra T4. Let Oy be the associated differential. For P an R-

deco polygon, Ay(P) is a 0 cocycle of D1+ Dy in By, (77.(*) (R)).
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Proof. Let 7y, be the projection of A4(P) onto its kth direct sum component,
Tt Ag(P) — P (R)F,

The elements of Ay(P) € T(P.(l)(R)). In general, if all a; € P.(l)(R), the
differentials D; and D5 are

i
L

Di(lar]---lan]) = )  —lar] - la; A aiya] -+ |ay)]

=1

NE

Da(lar]---lan]) = )} _laa|---0s(aj)| -- - |an]

.
Il
—

Let P be a polygon of weight n. The term m, o Ay(P) is a sum of n-
fold tensors of 2-gons. Therefore Do(7, o Ay(P)) = 0. Furthermore, the term
Dy (7 0 Ag(P)) = 0 by construction.

For d € D(P) with |d| =k — 1, the dual tree Ty 4(P) has k vertexes,
labeled by the set {P},..., P¥}. Write

MTya(P)) =signg(d) > [P].. [P,
Lin.(Ty,a(P))

Comparing D1 (7 0 Ay(P)) to Da(mp—1 0 Ay(P)) for k € {2,...,n} gives the
expressions

Di(mg 0 Ag(P))
k

! A Ait1 Ak
= > > D —signg(d)[P)]... | Py APy [Py
dGD P)Ln( a(P)) i=1
jdl=k

and
Dy (w10 Ay(P))

k—1
. N N, N,
> S D signg(d) [Pyt |05y - [Pyt
d’eD(P) Lin.(T,, 4 (P)) i=1
|d'|=k—2

If PCE\T‘ and Pé"'“ are not adjacent in Tj 4(P), then there exists a unique
partial order preserving linearization p € Lin(Ty4(P)) that switches only
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the order in which those two terms are written: P;i = Pg . Pji“ = Py
and P;‘j = P if j & {i, i + 1}. Therefore the terms

A1 A Aig1 A 1 i i1 k]
[Pd |"'|Pd /\Pd+ |"'|Pdk]+[P£|---|P5 /\P5+ |"'|P5]—0

in the sum for D;. In the remaining terms for D, the polygons Pj‘i is
adjacent to Pé\i“.

Consider d € D(P) such that |d| =k —1 and d' = d\ a. For each such
pair of dissections, « is a dissecting arrow of Pd, for some i. Therefore, the

term
A . Y Al
9p(Py') = Z 51gn¢(a)(Pd,1)a NPy )A
a€D(P))

appears in the expression for Ds. The polygons (P;‘//) and (P )2 are adja-
cent in Ty 4(P). There is a unique linear order of Tj 4(P), A, such that

Py ifj<i
N, oo .
ph — (Pd/])élszl
a (P2 ifj=i+1
PP it > il
That is
X, X X, M Ao phis A
[P [(Py) A (P )2] -+ [Py = [P ] | P AP [P

Since the right-hand side appears with the sign (—sign,(d)) in D1(Ag(P))
and the left-hand side with the sign sign,(d')sign,(a) in Da(Ay(P)) these
terms cancel. O

The coproduct on the Hopf algebras By has a particularly nice form. If
the dual tree generating set ¢ generates a dissection compatible Hopf alge-
bra T4, the duality between dissections d € D(P) and edges of a generator
Ty q(P) € ¢ gives a concept of an admissible dissection for the polygon P.

Lemma 47. Let Ty be a dissection compatible Hopf algebra. The following
are equivalent:

(1) The dissection ¢ € D(P ) has a generator, Ty .(P), with only leaf and
root vertexzes labeled {PL, .. P'CHI}
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(2) The dissection ¢ € D(P) is an admissible cut of Ty 4(P), for any
= cU (U} di). Furthermore,

le|+1

A(Ty.a(P)) = signg(c HT¢d ) ® H Tya, (P,
k=m+1

Proof. For 2 = 1, note that from the definition of admissible cut, if ¢ is
an admissible cut of T} 4(P), the generator Ty .(P) has only root and leaf
vertexes. The vertex labels {P!} come from the fact that Ty is a dissection
compatible Hopf algebra.

For 1 =2, let {P! ..., PC|C|+1} be the R-deco polygons decorating
Tye(P). For c Cd, let {Ty,,...,Tq,,,} be the root and leaf subtrees of
Ty q(P) formed by removing the edges in c. Since the subtrees Ty, are either
only connected to initial vertexes of the edges in ¢, or only to the final
vertexes, ¢ is an admissible cut of Ty 4(P). Therefore,

le]+1

Ac(Tya(P)) = signy(c HTd ® [ Tu-
j=m+1

The dissection d € D(P) can be written

le|+1

d=cU Ud ,

with d; corresponding to the edges in Tj,. Since Ty is a dissection compat-
ible Hopf algebra, d; € D(P;) and signg(d;)Ty, = Tyq,(P%), and signg(d) =

signg(c) [T107 " sign,(dy). O

Definition 48. The dissection ¢ € D(P) is an admissible dissection of P
in ¢ if the generator Ty .(P), has only leaf or root vertexes.

This definition is Hopf algebra (i.e., ¢) specific. Consider two dissection
compatible Hopf algebras, T4 and Ty . An admissible cut of Ty 4(P) need
not be an admissible cut of Ty 4(P). For instance, the dissection d = {«, 3}

of the polygon
P — 1 /ﬁ 3

2

is an admissible cut in T4, but not in Ty, .
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Theorem 49. Let T, be a dissection compatible Hopf algebra. For ¢ an
admissible dissection of P in ¢, let {PL, ..., P™} be the labels of roots
vertezes, and {P™TL ... ,PCMH} the decorations of the leaf vertexes. Then

m i c|+1 j
ST AP @ I Ay (PY).

¢ admis.

Proof. Fix an admissible dissection ¢ of P in T4. By Lemma 47 and Def-
inition 48, for any d € D(P), such that ¢ C d, write d = cUljcrgl d; with
d; € D(P?) and

le|+1
ATya(P) = ) HT¢d )@ [ Toa, (P
¢ admis. =1 j=m+1
Write
AoAy(P)=AoA| Y TyaP)| =(A@A)oA| Y TM :
deD(P) deD(P

where the first equality comes from the definition of A4(P) and the second
equality from Theorem 21. Expanding this,

(A®A)A D" Tya(P)

deD(P)
le]+1

=(A®A) Z Z H o.d. (Pe) ® H Tpa, (P,
deD(P) ccd admis. i=1 Jj=m+1

Reorganizing terms and changing the order of summation gives

Soomr > ATpa (P e mi N ATy (PD)

¢ admis. d;€D(P}) d;€D(P?)
7 C 1
§ HI 1A¢(P ) ® Hll] l—:n+1A¢( c)' O

¢ admis.

1.5. Properties of almost compatible algebras

In this subsection, I show that if the dual tree generating set vy defines an
almost ¢ compatible algebra, T, the polygon algebra By, is a Hopf algebra,
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even if T, is not. First I show a relationship between the image of A acting
on general trees that differ on the orientation of the edges connecting certain
vertexes.

Definition 50. Let I be a subset of the edges of a tree T. Let T be the
tree obtained from T' by reversing the orientation of the edges in I.

Lemma 51. Let T € T*(R) be a decorated multi-rooted tree. Let I be a
subset of n edges of the tree T'. Let F' = H?:Jrll t; be the forest of multi-rooted
trees created by removing the edges in I in T. Then

> ATY) = A,
JCI

Remark 52. The set I need not be an admissible cut of 7.

Proof. Write I = {ey,...,ey} with vj; and v;2 the endpoints of the edge e;,
such that vj1 < vjoin T. If e; € J then vjs < vj;1 in T/, and v;1 < vj2 if not.

If ¢}, and t; are two trees in the forest F', the vertexes of t; are incom-
parable to the vertexes of ¢; in F'. By construction, no tree ¢, has both vj;;
and vjy as vertexes, for any j. Group A(F') into sums of those terms where
vj1 is to the left of vjo and sums of those where the opposite is true. The
relative positions of v and v;; correspond to the two orientations of the
edge e;. Since there are two choices for each pair, this divides the terms of
A(F) into 2™ sums. This groups A(F') into the sums in the statement of the
lemma. O

Example 53. (1) If I = {e} is a single edge of a tree T, removing e gives
two subtrees, {R, P}. Under this notation,

A(T) + A(T®) = A(R) IIL A(P)

(2) Let T be multi-rooted tree formed by connecting the trees in the forest
F = H?Zl T; to a new root with label s at the vertex v; of T;. For n = 3,

T:/%.
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Define I = {e1, ea,e3} to be the edges that connect s to v;. Then

AT)+A( 3 Y+A( s J+A( s Y+ A( 3 )+

Ts 1> 3 1 T T T2
) A D) A( \()/ )

’ S
= [sTITA(T}) TITA(T) LT A(T3)].

I use Lemma 51 to show a relationship between the polygon algebras By
and By, where T, is almost ¢ compatible, and T is a dissection compatible
Hopf algebra.

Theorem 54. Let ¢ and ¢ be two dual tree generating sets that define the
same differential Oy = Oy. Let Ty be a dissection compatible Hopf algebra
and Ty an almost ¢ compatible algebra. Let S be their difference set. Let

P be an R-deco polygon. For d € D(P), let {P1,... ,Plldlﬂ} be the polygons
decorating Ty 4(P). Then

. d ;
(110)  Ap(P)=As(P) = > (=1)lsigny(a) LT AL(P)).
dcS
0£deD(P)

for all P € V4(R).
Proof. For any d € D(P), let I(d) = dNS. Write the generator
T¢7d(P) = sign¢(d)T.

Using the notation from Lemma 51,

d .
Té’(d)(P) = 51gn¢(d)TI(d).

By the definition of almost ¢ compatible algebras,
(—1)|I(d)‘T¢7d(P) — Tvi,(:ll)(P)
and

(1.11) Ty.4(P) = Tya(P) < I(d) = 0.
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Write the left-hand side of (1.10) as

> ((COINTE (P)) - AT, (P)) -

d’eD(P)

By Equation (1.11), I can ignore the dissections d’ that do not intersect the
set S,

(1.12) > (OINTE ) - AT, (PY) -

d'eD(P),I(d)#£0

Write the right-hand side of (1.10) as

(1.13) ST DMsigng (@t ST AT, (P)),
dcs d;eD(P?)
0+£deD(P)

Since T4 is a dissection compatible Hopf algebra, write any subdissection
dcd eD(P),asd =dU (Uljdzlj;ldj) with d; € D(PJ). The forest

|d]+1

H Tya,(P])
j=1

comes from to cutting T 4 (P) at the edges corresponding to d. Furthermore,

d+1
signg (P, d') = signg(P, d) H sign, Pd, dj)
7j=1

Using Lemma 51, rewrite Equation (1.13) as

(1.14) > > (1)ldl > AT (P

dCS dCd’eD(P 0Cd
0#deD(P)
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I do not consider dissections d’ such that ' NS = I(d') = (, since this implies
0 = d = 0. I reorganize the expression in (1.14) to

Yo Y (DA .(P))

d'eD(P) p£dCI(d")
raned e

[1(d")] /
-2 2 (M),
d'eD(P) ¢ i=max{l,|6|}
I(d)#0

For any fixed § & {0), I(d’)}, this expression vanishes, leaving

> ()OI (P) - AT (P)),
d'eD(P)
I(d)#0

to match (1.12). The first term corresponds to the case where 6 = I(d'). The
second term corresponds to the case, where § = (). O

The following corollary shows that that By and B, are isomorphic as
Hopf algebras. The generators {A4(P)} and {Ay(P)} define different bases
of this vector space underlying By.

Corollary 55. Let ¢, ¢ and S be as in Theorem 54. Then By ~ By as
Hopf algebras

Proof. The product and coproduct structure on By, is induced by the prod-

uct and coproduct structures on By and Equation (1.10). Therefore, By, is

a Hopf algebra. In fact, Equation (1.10) shows that every generator, Ay (P)

of By, can be written in terms of sums of shuffles of generators of Bj.

It remains to show that the map defined by this equation can be inverted.
By Theorem 54, write

Ap(P)=Ap(P)— 3 (~1)sign,(d) 1 F A4 (P)).

dcs
0£deD(P)

where {P],... ,Pg‘ld‘H'} is the set of polygons decorating Ty 4(P) and Ty, 4
(P). If P € Vi(R), that is, it is a 2-gon,

Ay(P) = Ay (P).
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If P € V5(R),

Ap(P)=Ay(P)+ ) signg(d)Ay(P) LLAL(PY)
dcS
0#deD(P)
where P}, P? € Vi(R). Therefore,

Ag(P) = Ay(P)+ Y signg(d)Ay(P}) LAy (PY).
0¢§lecbs(P)

By induction, suppose A4(P) € By, for all P of weight less than n. If P €
VH(R)a

. d 1

Ap(P) = Ap(P) — S (=D)Mlsign,(a) 1 A4 (P)).
dcs
0#deD(P)

Since each PC{ has weight less than n, A¢(P§) € By. Thus Ag(P) can be
written in terms of sums of shuffles of elements in By,. Therefore, Ay(P) €
By, and there is a one to one correspondence between the generators of B,
and By,. O

Under these conditions, if, for all polygon dissection pairs (P,d) every
tree of the form Ty gns(P) is linear, then the result of Theorem 54 simplifies
greatly.

Corollary 56. If in addition to the conditions for ¢, ¥ and S above,
Ty dns(P) is a linear tree with sign, for all d € D(P), then

Ag(P) = Ay(P) = signg(a)Ag(Pa) TILA(P2),
a€ES

Proof. For P an R-deco polygon, fix an a € D(P) such that a € S. Consider
all d C S such that « is dual to the edge attached to the root in Ty 4(P).
Then the dissection {d \ a} € D(P?). Let

pa = {0 #d e D(P)|d C S,a € d, P root label of Ty 4(P)}

be the set of all such d. Let {P},... ,PJ;Z'H} be the polygons decorating
the generator T} 4(P) enumerated such that P! = PJ labels the vertex of
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Ty q(P). From Theorem 54,

(1.15) Ag(P) — Ay (P)
= Y (~D)Msign,(d) M A, (P
dcS
P#de D(P)

= _Z Z |d|51gn¢ (d)Ay(P, )Hlljdl—gl/\ (Pj)-

a€eS dep,

If d = «, then P? = P2. Break the sum in the last line of Equation (1.15) as

> signg(@)Ag(Pa) T | Ag(P2)

a€SND(P)
+ > ()M signg (d\ o) I AL ()
d€pa, d#a
Since d \ a € D(P?), by Theorem 54
1. d j
Ap(PD) = Ao(PD) + 37 (~1)"signy(d\ o)) I A (P)).
d€pq,d#a
This gives
Ag(P) = Ay(P) = D signg(a)Ag(Pa) T A, (PY).
aeSeD(P)

g

Corollary 57. Under the same conditions as the previous corollary, one
can also write

Ag(P)—Ay(P)= Y signg(e)Ay(P)) LI A4(P2).
aeSND(P)

Proof. This result comes from the same argument as above, replacing the
edge connected to the single root vertex of Ty 4(P), for d C S with the edge
connected to the single leaf vertex. O

2. Permutations of a polygon

In this section, I examine the actions of ¢ and 7 on the Hopf algebra
Ag,. Recall that o and 7 are linear automorphisms on V4(R) such that
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for P=12---n, 7(P) = (n—1)---21n reverses the orientation of P and
o(P) =2---nl rotates the labels of the edges one position. Restricted to
the sub-vector space V,,(R), oy, (r) and 7|y, r) generate the dihedral group
Dyj19. 1 can extend o and 7 to automorphisms of By, by defining
(A, (P)) = Ag,(0P)) and 7(Ay,(P)) = Ay, (TP). After defining relations
between Ay, (0P), Ag,(7P) and Ag,(P), one can apply the coalgebra
homomorphism

@ : A(%T2) — To(R)

defined in [7] to establish relationships between iterated integrals with the
appropriate dihedral action on the arguments.

2.1. Order 2 generator of the dihedral group

First I calculate Ag,(P) 4 Ay, (7P). Since 7 fixes the label of the root side
of the polygon P, it is useful to examine an almost ¢o compatible algebra
%y such that the difference set between ¢2 and ¢ consists of arrows ending
on the root side. This is exactly the algebra €, discussed in Example 41.

Lemma 58. If P is an R-deco polygon of weight n,

(2.1) Mg (P) = Ay, (P) =) Ao, (PT)) LA, (PL).
=2

Proof. For i < j, ja € D(Py) and ;a € D(PY). If d = {;a, ja} € D(P),
Ty,..a(P) and Ty, 4(P) are linear, as are the trees for and dissection d C
re(P). The arrows ja are forwards, so signg, (ja) = 1. The result follows
from Corollary 56. U

Extend the action of 7 to dissecting arrows and their associated sets of
subpolygons.

Let a be a dissecting arrow of P, a polygon of weight n. Using the nota-
tion in Definition 3, if a & re(P), write a = ;a; (for j # n +1). The map
7 sends the polygon P to 7(P) and the arrow ;o to Tav = p_jyo0n—j11 €
D(7(P)). For a root ending arrow o = jap+1 € re(P), Ta = p_i120n41 €
D(7(P)). For a forward (backward) arrow « & re(P), the arrow T« is
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backward (forward). The map 7 take re(P) to itself. All arrows in re(P)
are forward. The following is an example for P of weight 5.

Example 59. Recall that I use the shorthand ;« to indicate the root end-
ing arrow ja,41 € re(P) (for P € V,,(R)). Let P = 123456, and d = {3, 3}.
Then 7d = {4a, 75}. Below are diagrams of P and 7P with the dissections
d and 7d drawn in.

6 6
1 5 5 1
2 4 4N\T8 2

3 3

The arrows 3« 4« are in re(P) and re(7(P)), respectively. The subpoly-
gons associated to 3a and 4« are

T(P%) =216 = (7P), ; (7P)%, =5436 =7(P,)
The subpolygons associated to 8 and 70 are

(TP)33 =5216 = 7(P§) ; 7P5 =435=(7P);s.

For a general dissection of an arbitrary polygon, d € D(P), write d N
re(P) = {i,a...;,a}, with i1 <ip--- <i;. Let {PJ,.. .,P(‘id‘} be the set of
polygons labeling the vertexes of Ty, 4(P) and Ty, 4(P). Enumerate the set
such that for m < j, P(;”_l and PJ* are adjacent, connected by ; a with
PP < P in Ty, 4(P) and PP < P‘Zl”_l‘ in Ty, 4(P). The set of polygons
labeling Ty, 4(rP) is {rPY,..., 7P}, P! . P} with 7Py, < 7Pp 1
connected by 7;, «. If dNre(P) = 0 then Py is the label of the single root of
all three generators. If 8 ¢ re(P), write dg = d N D(P3). The pruned sub-
trees of the admissible cut ¢ = 3 in Ty, 4(P), Tpy,. o(P) and Ty, r4(7P) are
the same: Ty, 4,(P5) if 3 is a forwards arrow, and Ty, 4,(7P5) if B is a
backwards arrow.

I summarize this in the following diagrams. Here (3, v, §, and € are
assumed to be forward arrows. For backwards arrows, replace P/g’ with T(Plﬁ‘,)
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and dﬁ with ng.

Ty, 7a(TP) = signy, (1d)

The generators Ty, 4(P) and Ty, q(P) have different signs and different

underlying tree structures, with labels {PY, ... ,Pclldl}. On the other hand,
the generators Ty, r4(7P) and Ty 4(P) have different signs, but the same

underlying tree structure, if one exchanges PJ* with 7P} for m < j. For any
dissection d € D(P),

signg, . (d) = (—1)|dﬁT6(P)|Sig]%52 (d) = (—1)Zacta vwX(@)(_1)ldOre(P)]

and
Sign¢2 (Td) = (—1)Eu6d\re(1’).a fw X(a).
Recall that a coideal, C, of a coalgebra (H, A, ¢) has the structure

AC)CH®C+C®H
and £(C) = 0. It is a primitive coideal if
Alg)=1®¢+c®1

for all generators of C.
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Definition 60. Let I,, C 73.(1)(R) be the linear subspace generated by {P +
(—1)"7P|P polygon of weight n}.

Note that I; = 0 is the trivial co-ideal. Each I, is a primitive co-ideal
in B¢2.

Definition 61. Define a set of quotient maps

qn:T(V(R))HT(V(R))/(ZIQ :
k=1

Theorem 62. Let P be an R-deco polygon of weight n. Let g, be the quo-
tient map defined above. For P € V,(R),

(2.2) Ay (P)+ (—1)"Ag,(TP) € ker gy,.

Proof. If P is a polygon of weight 2, Ay (P) — Ag,(TP) = 0. For P = abc €

WWTTW

(P) = +[bclab] —[bclac] —[ac|ba] ,

While for 7P,

DV AR AR AT/
Ag,(tP)= 7P  +aclba] +[bclac] —[bclab].

Therefore,
Aqbre(P) —I—A¢2(TP) =P+71P €l

Suppose the theorem holds for all k& < n.

Let P be an R-deco polygon of weight n. Consider the dissections d €
D(P), withdNnre(P) = {;,a,...,;a}. Let {PY,.. P|d|} be the set of poly-
gons decorating Ty _ 4(P) and Ty, 4(P), with each Pj € V,,(R) with Z‘dl
n; = n. For m < j, the polygons Pénfl and PJ" are adjacent, connected by
i, and P < PPl in Ty 4(P) and P~ < P in Ty, o(P). T define
a series of trees (with sign) {1, 4(P)}, with m < j formed by replacing
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the polygons {PY,..., P} in Ty, 4(P) with the polygons {(—1)"7PY, ...

(=1)"7P7"}. In this series, Ty, q(P) = T-1 4(P). For example

P
Ty, 4. (PY) T
b2,de \L¢ .
Toq(P) =sign, (d)(—1)™ P
o,d( ) g ¢T8( )(=1) Ty, 0 (PY) P
T¢2d,y(P,\\7‘)./>TPO
Tyy.a5(P5)
P
P,

. No+n T¢2’de(Peu) ..
T1.q4(P) = sign,, (d)(—1)""™ .

Toy.a4 (Ps")
TPO
T¢2vd~r (PﬂlfJ)
T¢’2’d[a’ (P/?)

For m < j, AM(Ty—1,4(P) + Tpn,a(P)) € ker gy,,. The alternating sum,

D DA Tn1,4(P) + Tna(P)) = ATy, a(P) + (1) Tja(P))

m=0

is in kergs~; ., . Since
Ty

- 1)23:0 "signg, (d)
— )Xo (1) Zeeae w MO = (— 1) sign,, (rd),

(—1)jsign(Tj,d) =

(
(
for all d € D(P), d # 0,

(=1)YT;4(P) = (—=1)"Ty, -a(TP).

Applying A on these trees and generators gives

(2.3) A YT Ty a(P)+ (—1)"Ts, ra(7P) | € ker(gn_1).
deD(P)
d£0
Writing A(Ty,, 9(P)) = [P] Equation (2.3) gives

Ay, (P) = [P]+ (=1)" (Ag,(7P) — [T P]) € ker gn1,

99
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and

Ay, (P)+ (—1)"Ag,(TP) € ker gy.

Combining Theorem 62 with Lemma 58 gives the following result.

Theorem 63. If P is an R-deco polygon of weight n,
n—1 '

4n(Ag, (P) + (=1)"Ag, (TP)) = ¢n (Z(—l)"ZA%(RZ)LUA@(T(Ri))) :
i=2

Proof. Let P be a polygon of weight n. Apply ¢, to both sides of (2.1)
4n(Ag, (P) = Ag, . (P)) = qn (Z Ag, (PL) T A, , (Rﬂ)) :
=2

By Equation (2.2) replace the terms Ay (P) and Ay, (P3) with (—1)"~*
Ay, (TP) and (—1)"""Ay, (TP3) to get

(N, (P) + (=1)"Ag, (TP)) = ¢ (Z(—l)””\@ (P%) HTAg, (T(Rﬁ)))
=2

as desired. 0

This show that Ay, (P) and Ag,(7P) can be compared up to a primitive
coideal. This relation between decorated polygons of different orientation is
reminiscent of a relation between iterated integrals on R C C*. Recall that
for iterated integrals, there is the relation [10]

10521, .., 2n; ) 1O w1, s wis y) = (05 (21, - - @) O (w1, wim )5 y).
Lemma 64. Forr; € R,

(2.4) 10571, .y v 1) + (1) I(05 70, oy 713 T0g1)
n
= (=)' 10571, o« oy Tt 1) L (05 7y o oy T35 i)
=2
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Proof. This proof is also presented in [10]. Rewrite the right hand side of
(2.4) as

n

Z(—U"*U(o; (r1y e ric ) I (P 75)3 g1 )-
=2

For a fixed i each term in the shuffle product in Equation (2.4) can be broken
down into two groups, the terms where r;_1 comes before r; and the terms
where it comes after. By the alternating signs, the former cancel with a term
in the shuffle

I(O; (7’1, . ,T’Z‘) 11T (Tn, e ,TZ'_H); Tn—i—l);

and the latter in the shuffle

I(0; (rey oo yrimo) I (rpyy o oy 7, Tim1); g1 ) -

What remains are the terms (from i =2) (—1)"I(0;7rp,...,71;7n41) and
(from i =n) I(0;71,...,70;Tht1), which are the terms on the left-hand side
of (2.4). O

Remark 65. The relationship expressed in (2.4) is exact on iterated inte-
grals, while there is a relation only up to a primitive coideal on the level of
polygons, as shown in Theorem 63. This is in contradiction to the conjec-
ture by Gangl and Brown that relationships between dihedral symmetries
of R-deco polygons can be expressed purely in terms of shuffle products of
polygons of lower weights. It also shows that the coalgebra map between the
bar elements associated to polygons and iterated integrals, (1.1)

®: By, — Lo (R),

is not injective: the coideals I,, € ker ® for n > 1.

2.2. Order n generator of the dihedral group

In this subsection, I consider the rotation map, o on PE*)(R) that sends
the R-deco polygon P to o P. For P=12...n, cP = 2...n1 is the polygon
rotated clockwise, changing the root side. When restricted to V,,(R), oy, (r)
is the order n generator of the dihedral group. In order to examine this
rotation, I work with Jy,, which reflect the symmetry of the change, and
relate the corresponding elements of the bar construction to By, .
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2.2.1. Relating By, to By, To understand the action of o on I(R), one
wants to calculate Ay, (P) — Ay, (0 P)). This is a difficult calculation, and it
is easier to break down into intermediate steps. I use the results of the last
section to relate the algebras Ag, (P) — Ay, (P). I then study the action of o
on the algebra By,.

Definition 66. Let b(P) = { backwards arrows of P}.

Recall that Ty, and T4, are both dissection compatible Hopf algebras,
and that ¢3 and ¢4 define the same differential. The difference set between
the dual tree generating sets ¢3 and ¢4 is S = Up p_qeco O(P)- The algebra
T, is almost ¢4 compatible.

3

Theorem 67. For P an R-deco polygon of weight n, and d € D(P), let
{P],.. .,P(‘ld‘ﬂ} be the set of polygons decorating the generator Ty, q(P).
Then, for the map g, as defined in Definition 61

(25)  Guo1(Agy(P) = gt | Ap(P) + > (~D)MIIIT T A, (P))
dCh(P)

Proof. For all arrows d C b(P), sign,, (d) = +1. By Theorem 54

(2.6) Apo(P) = Mg, (P)+ > (=1l A, (P)).
dCb(P)

For d € D(P), with [b(P) Nd| = j, let the set {P},..., P!} decorate
the vertexes of Ty, 4(P) and Ty, 4(P) enumerated {Py, ..., P(‘jd‘ﬂ} so that
{P],.. ., P} decorate the terminal vertexes of the edges associated to a
backwards arrow in Ty, 4(P). Then the set

1 J pitl |d]+1
{tP;,....,TP;, P, ..., P, }

decorates the vertexes of Ty, 4(P). The generators Ty, 4(P) and Ty, 4(P)
have different signs, but the same underlying trees, with P}* replacing 7P}"

for m < j. Let P} € V,,,(R) with Zlﬂ?l n; = n.
Recall that

signy, (d) = (—1)25:1’“ and  sign, (d) = (—1).

Define a series of signed trees {T; 4(P)}, 1 <14 < j by replacing the polygons
{rP},..., 7P} in Ty, 4(P) with the set {(=1)"Py,...,(—1)"P;}. In this
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series, Ty, a(P) = To,a(P), Tj.a(P) = (—1)7Ty, 4(P), and
A(Ti-1,4(P) + T;a(P))

is in ker(gy,). The alternating sum

J
> (“D)TA(Tim1,4(P) + T,4(P)) = A (T, a(P) — Ty, a(P))
i=1
is in ker(gs~ i n,)- Summing over all dissections d € D(P) gives

A¢2(P) - A¢3(P) € ker qn—1-

Plugging this into Equation (2.6) gives

Gn-1(0g,(P)) = qnot | Mg (P) + Y (~)M 5 A, (P))
dCb(P) O

Example 68. Let P, = abc, Ps = abcd be R-deco polygons of weight 2 and
3. The following are the explicit calculations for P», abd Ps.

d= 4 b .
71(Ag, (P2) = Mg, (P2)) = —qu(Ag, (ac) ITT Ag, (ba))

Since ker g; = 0, this is an exact relation:
A¢2 (PQ)) - A¢4 (PQ)) = _A¢4 ((IC) H1A¢4 (b(l)

For P3, q3 (Ag,(P3) — Ay, (P3))) =

d d d
d:a c d:a/c d:a c
b b b

—q3(Ag, (acd) T Ay, (ba)+ Ay, (bea) IT Ay, (ad)+ Ay, (abd) T Ay, (cb))
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d d
d:a/c d:a/c
b b

+q3(Ag,(ad) HI Ay, (ba) T Ay, (ca)+ Ay, (ad) T Ay, (ba) I Ay, (cb))
Since ker g2 # 0, computing the difference explicitly gives

A¢2 (P3) - A¢4 (P3) = _A¢4 (aCd) il A¢4 (ba’) - A¢4 (bca) il A¢4 (CLd)
— Ag, (abd) IIT Ay, (cb) + Ay, (ad) T Ay, (ba) IIT Ay, (ca)
+ Ay, (ad) T Ay, (ba) T Ay, (cb) + [ad|bca + cba]

The Hopf algebra By, is contained in H°(Bj, (77.(*) (R))) by Theorem 46.

2.2.2. Introducing a new symmetry. Instead of directly comparing
Ay, (P) and Ay, (o P) in this subsection, I compare Ay, (P) and Ay, (o P).
Theorem 67 then relates these terms to Ag,(P) and Ag, (0 P), respectively,
as desired.

Definition 69. For P the R-deco polygon 12...n, let (¢ P) be the R-deco
polygon 2...nl with labels rotated one place in a clockwise direction.

Example 70. For the weight 3 polygon P = 1234 one has

Example 71. For a weight 1 polygon, P = ab, 0 P = ba, applying the map
® from Equation (1.1)

(2.7) (A4, (P) = Ay, (0P)) = B(Ag, (P) — Ay, (0 P))

= Li; (%) — Li (Z) = In(b) — In(a).

The last equality holds up to a power of 4.
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Direct calculation shows that for P = abe,

(28) A¢4 (P) - A¢4 (UP)
=P — 0P + [abIIlbc] — [ba Il ¢b] + [(ac — ca + ba — ab)|bc]
+ [ba|(ac — ca + ¢b — bc)].

Applying Theorem 67 gives

Ag,(P) = Mg, (o P)
=P — 0P + [abIIl bc] — [acIIT ba] + [(ac — ca + ba — ab)|bc]
+ [ba|(ac — ca + ¢b — bc)].

Subsequent direct calculations get increasingly complex.

To calculate this relation for higher weight polygons, I examine the
action of o on the dissecting arrows of an R-deco polygon P of weight
n. The rotation map ¢ acts on dissecting arrows, rotating the starting ver-
tex and ending edge one position backwards, as defined by the orientation
of the polygon. Therefore, o(;a;) = j—1cj—1 if i or j # 1, 0(10j) = np10j—1
and O'(i()él) = i—10n+1.

Example 72. For the 4-gons P and oP, the dissecting arrows a and o«

are as follows:
4 1

P=l 3 0P =, leaxy |1 -

2 3

For a general d € D(P), writed = {a1,...a;} and od = {oaq,...,00;}.
To compare Ay, (P) and Ay, (0P), I start with dissections of P with one
arrow. There are two cases to consider.

(1) The dissecting arrow « starts at the first vertex. The first vertex is in
both P’ and in P.. The associated subpolygons P are related to the
subpolygons of o P by

o(Ph) = (0P)ge;  (Pa) = (0P)gq

oo’
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as illustrated in the following example:

4
P= | a~3 — P.,=34; PL =123

2

1
oP =, o}c// , — (oP)L, =43; (oP), = 231.

3

(2) The dissecting arrow « does not start at the first vertex: There are
three sub-cases.
(a) The dissecting arrow « ends on the first edge in P (labeled 1). The
first vertex is in P. The dissected polygons of P and o P are
o(Py) = (0P)e;  Po=(0P)gq

ofe 2]

as illustrated in the following example:

4
P= 1|~ o |3 = P,=21; PL =134
2
1
oP =, 4 — (O'P)éa =21; (oP)), = 341
o
3

(b) The dissecting arrow « ends on the root edge in P (labeled n). The
first vertex is in P!. The dissected polygons of P and o P are

Py = (0P)ge; 0(Fa) =0Fs,

as illustrated in the following example:

4
P=, o3 — P\ =124; PT =34
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1

oP =, 4 — 0P, =241; (cP)", = 34.

ox

3

(¢) The dissecting arrow « ends on neither the first edge or root edge
in P. The root vertex is in P. if o is forward (P if o backward).
The dissected polygons of P and oP are

0(P) = (0P)gas P = (0P)jq

o)

if « is forwards, and

o(Ph) = (0P)pa;  Fo=(0P)gq

O'Oé;
if « is backwards. This is illustrated in the following example:

4
P= 5 — PL=134; Pr =23

oP = 4|\ |, — (O‘P)éa = 341; (oP),, = 23.

This exhaustively categorizes all possible dissecting arrows. I summarize
the results as follows.

Lemma 73. Let P be an R-deco polygon. For arrows of the form ic;,
starting at the first vertex, both subpolygons P! and PL contain the first
verter. The subpolygons of P associated to a single dissecting arrow can be
classified in the following way:

o(Pr) if P. contains the first vertex of P

P otherwise

(0P)ga = {

The same is true if r is replaced with [.

To calculate the action of the operator o on the Hopf algebra B, , 1
compare terms in the Hopf algebra By, to two new algebras By, and By, ,
defined by new generating sets ¢y, and ¢4 f, that exploit the symmetries
defined in Lemma 73.
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Definition 74. Let fv(P) be set of arrows that start at the first vertex
of a polygon P. If P € V,,(R), write fv(P) = {ag,...,an+1} where a; ends
at the ith side. Define o fv(ocP) = {oag,...,00n4+1} to be the set of arrows
that start at the (n 4 1) (last) vertex of o P.

Define the generating sets ¢, and ¢, f, that define the same differential
as ¢4. Their difference set from ¢4 is Up fv(P) and Upo fv(P), respectively.
Let Ty,, and Ty . be the two almost ¢4 compatible algebras defined by the
dual tree generating sets ¢, and ¢gfy.

Let P be an R-deco polygon of weight n. Consider non-trivial dis-
sections d € D(P), with dN fo(P) = {ay, - - ay, }, with iy <ig--- <ij. Let
{Pg,...PC‘ldl} be the set of polygons decorating Ty, 4(P) and Ty, 4(P),
with each P! €V, (R) with Zlilo n; =n. For m < j, the polygons P;"~*
and PJ* are adjacent, connected by «; , and Pg‘_l <P in Ty, a(P)
and PT* < P71 in Ty, 4(P). If dn fo(P) =0, PY is the subpolygon con-
taining the first vertex of P. The set {oP?,... ,an, Pg“, . ,Pg‘ldl} deco-
rates the generator T}, ,q(0P) with oPT* < oP7"" ' and T}, ,4(cP) with
UPC’l”_1 =< o PJ". The subpolygons UPC’ZL_1 and o P}" are adjacent, connected
by ca;, . If dN fo(P) =0, then 0Py is the subpolygon containing the last
vertex of o P. Recall that

Sign(va,d(P)) = Sign(TUfU,ad(UP)) = (71)|dﬁffu(P)\,

while sign(Tys, 4(P)) = 1. If 8 ¢ fu(P), write dg = dN D(Pg). The poly-
gon Py’ does not contain the first vertex of P, therefore Pj' = (o P); ;. By
Lemma 73, the pruned subtrees corresponding to the admissible cut ¢ =
in Ty, 4(P), and Ty, 4(P) are the same: Tg, 4, (PE’) Similarly for oc = of3
in Ty, 0a(0P) and Ty, ;a(cP) the pruned trees are both Ty, 54,(cPy).
I summarize this in the following diagrams. Note that PC? and Pj need not
be a root vertex of these generators. These trees are drawn without a root
vertex specified.
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T¢4=d[3 (P,
Ty,,.a(P) = (= -
4,dy
aPj
o€ Oa"g‘_ N
oP]™
T ( P) T¢4’de(Peu) R “d
g = . pl
¢47Gd T¢4,d5 (Pau) oy . dO’OZil
o P?
Toy.a, (PY) g » "

T¢’4’d[5 (P/?)

o P}
jT¢4wd3 (Pﬁu) oy ¢
Ts.pu0a0P) = (=1) ! Pl

T¢4,d~, (P'y ) o6 oQ;;

oPJ
T<i>41d5 (Péu) d

T¢4>de (Peu)

g€

These diagrams also illustrate the following lemma.

Lemma 75. Consider c € D(P) such that Ty, .(P) (and Ty, c(cP))

only have root and leaf vertexes. Let {PCO,...PCM} be the set of labels of
Ty,,.c(P), with {P?,... P} labeling the root vertezes. Then

Achg,, (P) = I oA (P @ I, AP

i=m+1
with
Y Gpo  if (PY) contains first vertex of P
B P4 else. '
Similarly,
Asclopo(oP) = M A((0P)e) ® I, AL (0 P))
with

Y bofo if P! contains first vertex of P,
P4 else.
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Proof. For a fixed ¢ as above and any dissection d € D(P), such that ¢ C d,
write d = ¢ ULC‘l d; with d; € D(P?). By definition of ¢, d; N fv(P) = 0 if

and only if P! does not inherit the first vertex from P. That is, if and only if
Tsy0d:(P2) = Ty, a,(P2).
Varying over all dissections d containing ¢ shows that
Ag,,(Pe) = A, (P?)

if and only if P! does not inherit the first vertex of P. O

By abuse of notation, call the dissections ¢ € D(P) such that Ty, (P)
only has leaf and root vertexes the admissible dissections of P in ¢y,,.

Corollary 76. Using the definitions above, write
Alg,, (P) = Z Achg,, (P)
¢ admis. dis.

and

Ahg, (0P)= > Ay, (oP).

¢ admis. dis.

Instead of calculating Ag, (P) — Ag, (0 P), I calculate the expression

(2.9) (A6, (P)) = Ay, (P))) — (Mg, (aP)) = Ag,,, (0 P)))
+ (A¢fv(P)) - A¢ofv (UP)) .

This is done in steps. The first two terms of (2.9) are derived from Theo-
rem 54; the third term can be calculated up to a primitive coideal.

Lemma 77. Let P =1,...,n+ 1 be an R-deco polygon. Ford C fv(P), let
{PY, ..., PJ} be the polygons decorating Ty, 4(P). There are two expressions

for
(Api(P) = Ag,, (P)) = (Mg, (0P) = Ay, ;, (0 P))

(1) =301 Ag,, (PL) T A, (Pr) = Xoiig Mg, (0 P)G,) T Ay,
((0P)ga,)

(2) = = Caegory (DI T Ao, (P) = T Ay, (o(P))
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Proof. To see expression (1), note that for oy, a; € fu(P), with i < j, oy
dissects the subpolygon P , and «; dissects the subpolygon PCZY For oq;,

T

oaj € ofv(oP), with i < j, oa; dissects the subpolygon (0 P);, , and oo

dissects the subpolygon (UP)fmi. Therefore the generators Ty, ¢,(py(P) and

Ty, ,..0fo(p) (0 P) are linear, and the result follows form Corollarys 56 and 57.
To see expression (2), Theorem 54 gives

; |
(Mg, (P) = A, (P) = > (~n)ldtamnld A, (P)),
dC fv(P)
d£0

and

(Agu(0P) = Mg, (0P) = > (=DM Ay (o(P])).
dcj;q()P)

O

In the following example, I compute (Ag,(P) — Ag,, (P)) and (Ag, (0 P)
— Ay, ,,(0P)) for a polygon of weight 3.

Example 78. Consider P = 1234. By expression (1) of Lemma 77, one has

A¢4 (P) — A¢fv (P) = A¢4(12) H_[A¢4 (234) + A¢4(123) I_HA¢4 (34)
- A¢4(12) I A¢4 (23) il A¢4 (34)

Applying Theorem 67 gives

@2(Agp, (P) = Ay, (P)) = q2(Ag, (12) T (Ag, (234) + Ay, (24) IIT Ay, (32))
+ (Mg, (123) + Ay, (13) TIT Ay, (21)) TIT Ay, (34)
— Ay, (12) ITT Ay, (23) ITT Ay, (34)).

The expression involving o P = 2341 is, using expression (1) of Lemma 77,

A¢4 (O’P) — A(z,afv (UP) = A¢4 (21) H_[A(z,4 (342) + A¢4(231) H—[Acfm (43)
A, (43) T A, (32) TTT Ay, (21)
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Applying Theorem 67 gives

G2(Ng, (0P) — Ay, (0P)) = qa(Np, (21) 1T (A, (342) + Ay, (32) LT Ay, (43))
+ (Mg, (231) + Ay, (21) IIT Ay, (32)) ITT Ay, (43)
— A, (43) IIT Ay, (32) I A, (21)).

Adding the two expressions gives

02(Ap,(P) = Ao, (P) = Mg, (0P) + Mg, ;, (0 F))
= q2(Ay, (12) T Ay, (234) + Ay, (123) IIT Ay, (34)
— Ay, (231) TIT Ay, (43) — Ay, (21) I Ay, (342)
+ Ay, (12) IIT Ay, (24) IIT Ay, (32) + Ag, (13) TIT Ay, (21)) TTT Ay, (34)
— Ay, (12) I Ay, (23) IIT Ay, (34)) — Ay, (21) IIT Ay, (32) IIT A, (43).

The rest of this section calculates the third term in (2.9).

Definition 79. Let J, C 73.(1)(R) be the linear subspace generated by { P —
o P|P polygon of weight n}. These are primitive coideals in By, .

Theorem 80. Define the quotient map

o s T(V(R)) —>T(V(R))/<Z Jk> :
Then for P a polygon of weight n,

(Mg, (P)) = Ag,,. (7P))) = 0.

The coideals J,, are problematic in this context since J; is not in the
kernel of ® (Equation (1.1)),

. /a (b
(2.10) O ([ab] — [ba]) = Li (3) ~Li <a> — In(b) — In(a),
as shown in Example 71. Instead, I work with a modified quotient map.

Definition 81. Define an ideal J; = {ac — ca + cb—bc—ab+ba} to
reflect the image of ® restricted to 2-gons. Define the quotient map

Fu s TV (R)) — T(V(R) / (Jl s Jk) |
k=2
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I need the following definition to calculate 7, (Ag,, (P) — Ag, ,, (P)).

Definition 82. For P =1...n 4+ 1 be polygon of weight n, define two poly-
gons Ap=2...n+1 and Bp =2...nl of weight n — 1. The polygon Ap
can be drawn as a subpolygon of P, Ap = POZQ. Define

Ab, =P, ., and Ap, =P

Qi1 2041 "

Similarly, Bp can be drawn as a subpolygon of o P, Bp = (¢ P);,, . Define

Béj,aooi - J(Pl ) = (JP)

n+1Q;

,and Bp,, =0(P}, )= (oP),,,

l
U(7L+1ai)

Recall that in the above notation, when I write Pj, I mean 8 € D(P). For
example, when I write Aé;m, a; € D(Ap), whereas in Pém, ait1 € D(P).

l

oP,oay and

Example 83. The following diagram shows Aﬁgm, A"R%, B
B'I1

oP,ocay

Definition 84. Write {a, d, P} = {v,a, V1 o} to indicate the set of subpoly-
gons to the right and left of the dissecting arrow o € d € D(P).

Example 85. For example, {f3,d, P}, for the polygons P = 123456 and
dissection d = {«, 3,7} as drawn below,

is given by {3, P} = {v, g = 26, v, 3 = 352}

I now construct a generalization of the insertion operators x, and x,,,
defined in Definition 23 to apply to words of the form Ag(P).
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Definition 86. Consider v € V(R), and P and R-deco polygon. Define

Uriqary Ms(P) = D ursfagry Mo(Tpar (Po) I Ag(Tya (PL))
deD(P)
d=d"Ud'"Ux
where d” € D(P?) and d' € D(P!). Similarly
Uk (o.py Ap(P) = Z Uk fod.py Mp(Tpar (Po)) I Ay (T (PL))
deD(P)

d=d"Ud'Ua

The next theorem gives an expression for Ay, (P) — Ay, (0P).

Theorem 87. Let P, Ap, Bp and associated subpolygons be as above.
Define the quotient map

o NTy,) —>A(‘I¢4)/<j1+ZJk> :
k=2

For P an R-deco polygon of weight n > 2,
(2.11)

fn(Aqﬁfu (P) - A¢af'v (UP)))

=D Fal(i(n+1) = (n+ 1)) x<qa, a0} Aoy (Abg, ) TN, (A, )
1=2

— (11— l’L) *>{0'ozi,BP} A¢4 (B%’,aai) LT—IA¢an (B};,O'Oéi))‘
Remark 88. Note that
(2.12)  i(n+1) = (n+ Diksa,,,ap Aoy (Apa, ) ITAg, (A, )

= i(n + 1) *<far a0} (Mo, (Apa, ) ITA,, (AR, )
- (TL + 1)2 *'<{Oéi—1,AP} (A¢4 (A?D,ai,l) il A(z)f/u (AlP,a,i,l))'

Before proving this theorem, I use it to prove Theorem 80.

Proof of Theorem 80. Since every term in Theorem 26 calculation involves
a term in Jy, specifically, the newly inserted difference,

11 0 Tp(App(P) — Appo(0P)) =0

for any R-deco polygon P. O
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I have now computed all the necessary terms for Ay, (P) — Ay, (0P).
Let P be a polygon of weight n. Combining line (2) of Lemma 77 with
Theorem 87 gives

"n(Ag,(P) — Ag, (0 P))

=— Y (Ml Ay, (P)) — Ay, (0(P])))
de fu(P)

+ 7 Y (i(n+1) = (n+ Vi%iga,_,a0) A, (Apg, ) A, (Ap,, )
1=2

- (11 - 1Z) *>{0'OéuBP} A¢>4 (B%,aai) il A¢o'fv (B;J,aai))7
where {PY,..., Pclid‘} decorate the vertexes of Ty, 4(P), for d C fu(P).
Proof of Theorem 87. Let ¢, be an admissible dissection of A’I’% a,_1 0 Ay,
and ¢; of Alp’%_1 in Ag,,. By Definition 86 and Lemma 25,
(2.13)
Ali(n+1) = (n+ 1)) *<fa, a0} (R, (Ao, ) TAg, (AB,, )
= Z A¢>4 (RCT( %,ai,l)) H—[ A(z)f’u (Rcl (AlP,ai,l)) ® (’L(n + 1)

Cry,Ci

— (0 D) * g4y (B (Lo (Apa ) T Ay, (Ley (A, )

(2.14)
+ (i + 1) = (0 1)i) g, apy (Do, (Be, (Ap, ) LI
A¢fu (Rcz (AlP,ai,l ))) ® A¢4 (LCr (A?’,ai,l )) H-I A¢fv (LCL (AZP,ai,l ))
(2.15)

+ ) (i(n+1) = (n+ 1)) %z, , (Mo, (Re,(Ap,, ) 111

Cr,Cy

Npr,(Re, (A, ) © Mg, (Le, (Apa, ) T Ay, (Lo (Apg, )
(2.16)

+ D A (Be (Apo, ) IL(i(n+ 1) = (n+ D)ikz,..,_,

Cr,Ci

Aqsfu (Rcl (AlP,ai71 )) ® A¢4 (Lcr ( TP,Olifl )) ]I[ A¢fv (Lcl (AlP,ai,l )) °

There is a similar expression for

A((’Ll - 1Z) *>{oa;,Bp} A¢afv (B%,ai) il A¢>4 (B;D,a,i))'
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This proof proceeds by comparing the coproduct of both sides of (2.11).
In fact, I only consider the coproduct of terms involving the inserted sum
i(n+ 1) — (n 4 1)i. The arguments for i1 — 17 are similar, and not done here.

This proof proceeds by induction. Note from Example 71 that this the-
orem holds for n = 2, with P = 123. By expression (1) of Lemma 77

(A6,(P) = Mgy, (P)) = (Ag, (0P) — Ay, (o)) = 2310112 — 21 132,
Comparing this to expression (2.8) in Example 71 gives

A¢fv (P) — A¢>afv (UP)
= [123] — [231] + [13 — 31 — 12 4 21]23] + [21]13 — 31 — 23 + 32].

In this case, the polygons A =23, and B = 21. Recall that modulo .J,
13—-31—-12421=23—-32 and 13 —31 —23+ 32 =12 —21. Therefore,
under the quotient map 7,

Ay (P) = Ay, (0P) = [23 — 32(28] — [21]21 — 12],

as desired. Suppose Equation (2.11) holds for all polygons of weight m for
m < n.

Consider a general polygon P of weight n. Let ¢ be an admissible dis-
section of P in ¢y, as in Corollary 76. Since the generator Ty, ry(p) (P) is
linear, ¢ contains at most one arrow in fv(P). Therefore, there are two cases
to consider: ¢N fu(P) =0, and |cN fo(P)| = 1.

If ¢N fo(P) =0, there is only one label of Ty, .(P) which inherits
its first vertex from P, P. By Lemma 75, the generators Ty, .(P) and
Ty, ., 0cc(0P) are identical after replacing P with oPf. The dissection c
contains either an arrow ending on the root side, v.(n + 1), or one ending
on the first side 7.(1), but not both. If P¥ is a root (resp. leaf) label of
Tfyc(P), ¢ contains v.(n + 1) (resp. 7.(1)). Either arrow may be trivial.
Write ¢ = ¢\ {7.(n+1),7(1)} and

Py =lag---an+1

the polygon associated to the dissection ¢ that inherits the first vertex of
P. Write a1 =1, ¢ = U~e(ar), aqgrr =n+ 1, g1 = ¢ U~e(ais1). Define
polygons @; and T; such that Q; = (Pcf)lv.(a’_), and T; = (Pj);.(a,-) for
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i€ {1,l+ 1}. Write the polygon
Qi+1 =1laz - aq(n+1).
for later use, define a family of arrows
(2.17) Ve(@m) = a,4+10a,,-
By construction P € {Q;, T;}. If v(aj41) is trivial, a; = n and PF = Q41
decorates a root vertex of Ty  .(P), and Tj4; a trivial polygon. If y(a1) is

trivial, a; = 1 and P$ = T} is a leaf polygon of Ty, .(P), and Q1 a trivial
polygon.

Q¢ = 1348, Tg = 578 , Py = 134578

Let {Ri,...,R;,Q;,T;,L1,..., Ly} be the labels of T}, ., (P) for i€
{1,1+ 1}, with the Ry, and L; corresponding to root and leaf labels respec-
tively. By Lemma 75, I write

(2.18)
AC1 + ACH—l <A¢fv (P) - A¢crfv (UP))

= Ay, (Ry) HT Ay, (Q1) ® (Ag,, (T1) — Ag,,, (0T1)) 1L jAy, (L)
+ (Mg, (Qrr1) — A, ;, (0Q111)) L Ay, (Rg) @ T jAy, (L)
H_IA(j,va(O"IYl_H).

Consider the case of admissible cuts such that ¢ fo(P) = 1. Specifi-
cally, consider admissible dissections of P in A, (P) of the form ¢,, = ¢ U
aq,, ,Ye(am) for m € {2...1} (where v.(ay,) defined as in Equation (2.17)).
For d O {ag,, ,Ve(am)}, let the polygons @, T, and S,, decorate the ver-
texes of Ty, 4(P%) such that Q. < Ty, in Ty, 4(P) are adjacent to the
arrow o, and @, < Sp,, with both adjacent to the arrow ~.(a;,). The
polygon S;,, decorates the remaining vertex. If m = ¢+ 1 (or g), then S,, is

trivial, and T, = Tj41 (or Q= Q1).
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Qs =134 T3=4578 =T
o @5 = 1347 T5=78 S5=57

Write
l

(219) YA, (Ag,,(P)) = Ay, (oP))
m=2

Y A (R T A, (@) (e (To) = Ay, (0T)

m=2

1Ay, (Lj) + T Ay, (Ry) L (Ag,, (Qm) — Ag,,, (0Qm))
® Ag,,, (0Tm) I jAy, (L)

where the negative sign comes from signy,(c,) and the fact that ¢, N
fv(P) = . In this expression, I have included the term Ay, (Sy,) in the set
{Ag,(Ry)} if m < ¢ and in the set {Ag, (Lg)} if m > q.

The set of non-trivial admissible dissections of P in ¢y, can be par-
titioned into sets of the form {c,}l'H For the remainder of the proof, I
calculate the contribution to the coproduct from ZZH A¢,. The result can
be derived by summing over all such subsets.

From expression (1) of Lemma 77,

Ay, (Tiv1) — Ay, (Ti41) = Z Ag, ;. (Tin) LAy, (Sm).
m=q+2

Since Tyy1 = Tj41, and Sgy1 is trivial,

(220) A¢>4 T’l-l-l Z A¢afu LLIA¢4(S )
m=q+1
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Similarly,

(2.21) Ay, (Q1) = ZA¢>, (Qm) LAy, (Sim).

m=2

Inserting Equations (2.20) and (2.21) into (2.18) gives

(222) (AC1 + Acl+1)(A¢fv (P) - A¢afv (UP))
= Ay, (Re) T (Ag,, (Qi1) — Ag,,, (0Q141))

l
© Y (Mg, (0Tm) Ay, (Sm)] T jAy, (L)
m=q+1

+ I Ay, (Re) T Y [Ny, (Qm) T Ag, (Sim)]

m=2

® (Ag,, (T1) = Ay, ,, (0T1)) T jAg, (L)
Combining (2.22) with (2.19) gives an expression for

(2.23)
+1

Z A, (A, (P) = Ag,,,(aP))

l

= Z (A¢f'u (Ql-‘rl) - A(bofv (0Q1+1) - A¢fu (Qm) + A(z)af'u (UQm))

m=q+1
LAy, (Ri) @ [Ag,,, (Tin) T Ag, (Sin)] T A, (L)

- Z T iA¢4 (Rl) 11 (A(bf’u (Qm) - A¢Uf'u (UQm)) 11 A¢4 (Sm)

Mg, (To) I Ay, (L))
(2.24)

+ 3 Ay, (Re) I [Ag,, (Qm) LA, (S,)]

m=2

(A¢fU(T1)—A¢ 5o (0T1) = Ag (Tin) + Do, ;. (0Tn)) I A, (L)

Z I11; Ay, (Ri) I Ay, (Qum)

m=q+1
® Ay, (Sm) OL (Ag,, (Trm) — Mg, ,, (0Tm)) I jAy, (Ly)



120

Susama Agarwala

Consider the sum in (2.23). The following arguments are similar for the
terms in 2.24. By induction,

(2.25)
l

Tn Z (Ag,, (Qrr1) — Ap(0Qiy1) — Ay, (Qn) + Ap(0Qm))

m=q+1
l
=7, Z
m=q-+

IAg,, (A, o)) = (@itm — Gmai)*<(a, 1 A0, }
(A¢4( 7&2,”,041-,1) il A¢fv (AIQ,,L,ai,l ))

q
D (ai(n+1) = (n 4+ 1)ai) *< a4} (86, (45, 0, )
14=2

Since
BQ :BQm :a2---aql

for all 7, all terms involving a;1 — a;1 cancel. Similarly

M=

(2.26) 7

3
[
[\

(A¢fv (Qm) - Ad)(UQm))
m—1

q _
n <Z Z (aiam - amai)*<{ai—1:AQm}

m=2 =2

Rl

(A6, (45, 0, ) Ay, (4G o))

- (ail - 1ai) *<{oa;,Bg,,} (A¢4 (BéQM,Jai) LHA(i)(Bng,Jai))) :
Use the coideal jl to rewrite

Aim — ama; = a;(n+1) — (n+ 1)a; — am(n + 1) + (n 4 1)an,.

Inserting this into expressions (2.25) and (2.26) and substituting into (2.23)
gives an expression for er:iz Ac, Ny, (P) = Agpo(oP)

(2.27)

q
Z(a'L(n + 1) - (n + l)az) *.<{ai*17AQl+1} (A¢4 <A221+1,Oéi71) ]I[ A¢fv (AZC)1+1,OII'71))
=2

T4 (A, Ri) ® Ay, (Ti41) IT j(Ag, L)
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(2.28)
qg m-—1

Z D (@il = 1a;:) % qa, 5o, 1 (Mou(Bo,, o) IAG(BG )
2 1=2

( ¢ L) @ Ap(T) L Ay, (L))

(2.29)
! min(m—1,q)

- Z Z (ai(n +1) = (n+ 1)ai) *<fa, 1,40, ) (M. (4G, 0, )

UlAqsf (AQ son ) (A, Ri) @ A (T ) I jA g, (L)
(2.30)
l

+ 3 (am(n+1) = (n+ am) x<as. Ay, (Ag,)
T (Ag, Ri) @ A (T) T A, (L))

Expression for (2.27) is derived with the aid of Equation (2.20). Line
(2.28) is derived from line (2.26). In lines (2.28), (2.29) and (2.30) the Sy,
terms are absorbed in to the set of R; (if m < ¢) or L; (if m > ¢). Finally,
line (2.30) is derived from statement (1) of Lemma 77, namely that

weight Q.

A¢4 (AQ’NL) = Z <A¢4 (Aer,ai,l) ]I[Ad)fv(Al m,ai,l))'

1=2

I use this lines (2.27), (2.28), (2.29) and (2.30) to compare (2.23) to
the coproduct of the terms involving i(n + 1) — (n + 1)i in Equation (2.11).
Line (2.28) I ignore, as it contributes to the coproduct of terms involving
a;1 — la;. Instead, I consider

(2.31)

Z Z i(Ag, Ri) T Ay(Qum) @ IL1 A, (Lj)) 1T

m=q+1i=m+1
(ai(n+1) — ai(n+ 1)) %<,y an,} Ao (A 00 ) A (AT o))

which comes from expression (2.24).

Note that {c,,|1 <m <1+ 1} are admissible dissections of P in ¢y,.
They need not be admissible dissections of Ap or Bp in either ¢4 of ¢y,.
However, each can be partitioned into admissible dissections of the sub-
polygons AZP’ a,, and Ap . Line (2.27) corresponds to the admissible cut



122 Susama Agarwala

ci+1- This can be partitioned ¢4 = CAy,. U cat, for 2 <1i < g, where

car, is an admissible dissection of A Pa, _, I A¢ ;. and car, is an

admlssable dissection of A, in Ag,. It cannot be partitioned ‘admissible
dissections of B} P, and Bl s for any i, as the arrow ,, 110 € ¢ is not in

D(Bp). For instance, for i = '3,

The terms in (2.27) correspond to terms in (2.14) with ¢, = cay, | and

a;—1

The terms of (2.31) correspond to terms in (2.13), with ¢, = c4r,  and
a=ca, ;Cm=ca, Ucg . '
For2<m<l and2<z<thm,

Ap

the terms of (2.29) corresponds to terms of (2.14), with ¢, = caz, and

-1

aq=cy, Uaqg,. For i =2 the subpolygon (Ag, ), _, 18 trivial. The
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admissible dissection can be written ¢, = car, Uea, U g,. In this
1Xi— 01

case, the terms of (2.29) corresponds to terms of (2.15), with ¢, = car,

and ¢ = cq,

-1

X1

Finally, the terms of (2.30) corresponds to terms of (2.15), with
Cr=cap, and ¢; = cyt

am — Poag, —1

Varying the dissections ¢ and associated ¢, account for all terms in the
expressions (2.14), (2.13), (2.15) and (2.16), showing that the coproduct of
the two sides of (2.11) are equal. O
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