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Certain helicity trace indices of charged states in N = 4 and 8
superstring theory have been computed exactly using their explicit
weakly coupled microscopic description. These indices are expected
to count the exact quantum degeneracies of black holes carrying
the same charges. In order for this interpretation to be consistent,
these indices should be positive integers. We prove this positivity
property for a class of four/five-dimensional black holes in type II
string theory compactified on T 6/T 5 and K3 × T 2/S1. The proof
relies on the mock modular properties of the corresponding gener-
ating functions.

1. Introduction and statement of results

The study of supersymmetric black holes in string theory has been very
effective in shedding light on the issue of black hole entropy. The strength
of the string theoretic approach lies in the fact that there are two related
descriptions of charged black holes. The first (strong string coupling, macro-
scopic) description is a low-energy effective description as general relativity
coupled to a set of matter fields. In the second (weak string coupling, micro-
scopic) description, a generic state of the theory with the same charges as the
black hole is identified as a collection of fundamental objects of string theory
namely fundamental strings and branes. The fluctuations of these objects
make up the elementary excitations (microstates) of the theory, which can be
described by conventional quantum field theoretic methods. The key idea is
to identify these two descriptions valid at strong and weak couplings, respec-
tively. At strong coupling, the excitations of the strings and branes exert a
gravitational force on each other, and the black hole can be thought of as a
quantum mechanical bound state of these microstates.

In a class of supersymmetric string theories with 16 or more unbro-
ken supercharges, we now have a practically complete understanding of
the spectrum of Bogomol’nyi-Prasad-Sommerfield (BPS) states (see [27] for
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16 Kathrin Bringmann and Sameer Murthy

a relatively recent review). One can therefore subject the above idea to
high-precision tests, by comparing the statistical entropy of the ensemble
of states and an appropriately defined thermodynamic entropy of the cor-
responding BPS black hole, beyond a large charge approximation. Since
we know the microscopic degeneracies exactly, one can even aim for an
exact comparison for finite charges using the framework of the quantum
entropy formalism [30, 34]. The first such comparisons have been success-
fully performed in highly supersymmetric examples [13, 14], and this has
been expressed as an exact (finite N) AdS2/CFT1 correspondence:

(1.1) dhor(ni) = dmicro(ni),

where {ni} are the quantized charges of the black hole, dhor is the macro-
scopic black hole entropy, and dmicro is the microscopic degeneracy.

In carrying out such a comparison there is an important subtlety. On the
macroscopic side, the black hole entropy is supposed to calculate the loga-
rithm of the absolute degeneracy of states dhor according to the Boltzmann
relation. On the other hand, on the microscopic side, one normally com-
putes a supersymmetric index (like a helicity supertrace), and so dmicro is
a difference of the number of bosonic and fermionic multiplets. These two
quantities are a priori not the same, but as we review below, it has been
argued that holography gives an explanation of their equality [15,33].

Owing to the interpretation of dhor as computing the number of states
of the black hole, an immediate consequence of the equality (1.1) is that
the microscopic index dmicro should be a positive integer. The known exam-
ples of exact BPS (indexed) counting formulas are all related to Fourier
coefficients of automorphic forms of various types, and for the explicit auto-
morphic forms under consideration (discussed below), it is not at all obvi-
ous that their Fourier coefficients obey this positivity criterion. Positivity
can thus be thought of as a prediction from the quantum theory of black
holes1 for Fourier coefficients of automorphic forms. Checking the predic-
tion for positivity is therefore a (perhaps coarse, but) important check of
our understanding of black holes in quantum gravity. Our aim in this paper

1Strictly speaking, one has a notion of a black hole in the gravitational theory
only in a large charge approximation. At infinite charges, one is in a classical two
derivative theory with a well-defined notion of a horizon. The 1/ni corrections can
be thought of as slightly changing the location of the horizon in spacetime. However,
at small values of the charges, spacetime is highly curved and it is possible that
classical notions completely break down. The prediction assumes that there is still
some sense in semi-classical reasoning for all charges.



“CNTP-7-1-A2-BRI” — 2013/9/21 — 13:02 — page 17 — #3
�

�

�

�

�

�

�

�

On the positivity of black hole degeneracies in string theory 17

is to prove the positivity criterion for a class of black holes in theories with
N ≥ 4 supersymmetry.

Index = Degeneracy
The supersymmetric index receives contribution only from BPS states and
hence is protected from any change under continuous deformations of the
moduli of the theory, so (in the absence of wall-crossings) the microscopic
index is the same as the macroscopic index. In the macroscopic theory, the
index can be argued to be equal to the degeneracy as follows. The near-
horizon geometry of the supersymmetric black hole always has an AdS2

factor, which has an SU(1, 1) symmetry. If the black hole geometry leaves
at least four supersymmetries unbroken, then the closure of the supersym-
metry algebra requires that the near horizon symmetry must contain the
supergroup SU(1, 1|2), the bosonic SU(2) R-symmetry being identified with
spatial rotations. This means that the horizon states on an average have
zero charge under the Cartan generator J of this SU(2). The AdS2 geom-
etry further fixes the theory to be in the microcanonical ensemble, which
implies that, in fact, every state in the ensemble has J = 0. So, we have

(1.2) Tr(−1)J = Tr(1),

that is, index equals degeneracy. For a more detailed discussion see [15].
Note that the index equals degeneracy only for the horizon degrees of

freedom, but usually one does not compute the index of the horizon degrees
of freedom directly. It is easier to compute the index of the asymptotic states
as a spacetime helicity supertrace that receives contribution also from the
degrees of freedom external to the horizon. It is crucial that the contribu-
tion of these external modes is removed from the helicity supertrace before
checking the equality (1.2). Typically, modes localized outside the horizon
come from three sources [35] — fluctuations of supergravity fields around
the black hole solution, non-linear gravitational configurations like multi-
centered black holes and fermion zero modes.

The field fluctuations localized outside the horizon come from fields that
carry NS–NS charges such as the momentum, but not from those that carry
D-brane charges [1, 25]. In a duality frame where all charges come from
D-branes, one therefore does not have to worry about these external field
fluctuations. The contributions of multi-centered black holes, when present,
have to be explicitly subtracted. For theories that preserve 16 or more super-
charges, black hole solutions with three or more centers are expected not to
contribute to the index [16]. In these situations, one still has to subtract the
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contribution from two-centered configurations, as we do in explicit exam-
ples in this paper. The third source, i.e., fermion zero modes are generically
present and one has to deal with them explicitly. We assume that the only
fermion zero modes present are those arising from broken supersymmetry.
In that case, they contribute an overall (positive or negative) rational con-
stant to the index, which one has to factor out as is done in [15,35].

The positivity conjecture
Putting together the above discussion, one can make the following precise
conjecture about the sign of the index of BPS states in any given string
theory: dmicro(ni) > 0 whenever a black hole solution carrying the corre-
sponding charges (ni) can exist. This positivity conjecture was presented by
Ashoke Sen at the ASICTP school on modular forms and their applications
in March 2011. In this paper, we prove this conjecture for a class of black
hole in N = 4 and 8 string theory.

We now make a brief list of the various black holes that we study in
this paper, along with the corresponding automorphic form that controls
their degeneracies. The formulas for the microscopic degeneracies dmicro as
a function of the black hole charges in each case will be given in the bulk of
the paper. We will study four and five-dimensional string theories with 32
supercharges (case 1) and 16 supercharges (case 2). The four-dimensional
black holes are:

1a. 1/8-BPS black holes in type II string theory on T 6. These black holes
are labeled by an integer Δ, and d(1a)

micro is given in terms of the Fourier
coefficients c(n, r) with Δ = 4n− r2 of ϕ−2,1(τ, z), a weight k = −2
and index m = 1 weak Jacobi form.

2a. 1/4-BPS black holes in type II string theory on K3 × T 2. Here, the
black holes are labeled by three integers (n, r,m), and d

(2a)
micro is given

in terms of the Fourier coefficients of the Siegel modular form 1/Φ10

(σ, τ, z) expanded in the “attractor region”.

In the corresponding five-dimensional situations (1b, 2b), the theories are
related to their four-dimensional counterparts by a decompactification of
one of the circles of the T 2, and the black holes in these theories are related
to their four-dimensional counterparts by the 4d–5d lift [22].

For the automorphic forms written above, the existence of the black hole
solution implies that the discriminant 4mn− r2 > 0. Case (1a) is very simple
to prove, the proof is simply a statement of the positivity of the Fourier
coefficients of the canonical Jacobi theta function and negative powers of the
eta function, as was already mentioned in [14]. Case (1b) follows with little
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On the positivity of black hole degeneracies in string theory 19

work, we present the proof below. Cases (2a) and (2b) are more difficult
to prove, the main reason being that the expansion of the Siegel form in
the attractor region destroys the automorphic properties of the generating
function. Numerical evidence for case (2a) was first written in [35]. We can
perform a Fourier expansion in the τ ′ variable without a problem and the
Fourier coefficient of e2πımτ ′

is a Jacobi form of weight −10 and index m.
This Jacobi form is meromorphic in the z variable, and one therefore needs to
specify the contour to define its Fourier expansion, and the Fourier expansion
breaks the modular properties. However, it has been shown that d(2a)

micro is a
Fourier coefficient of a mock Jacobi form [17], and one can recover a remnant
of the modular properties in a very elegant way. Although the full theory for
these objects is not known, enough is known to do a case-by-case analysis
in the magnetic charge invariant m.

In this paper, we prove that dmicro > 0 in the cases (2a) and (2b) for
m = 1, 2 for all values of (n, r) with 4mn− r2 > 0. We present two proofs
of the positivity in the case m = 2. The first proof uses the Circle Method.
In the case of modular forms this method only requires knowing the weight
and the principal part of the modular form in all cusps. This was extended
by Bringmann and Ono [6,7] to mock modular forms and by the first author
and Manschot to mixed mock modular forms [5]. The second method is
complementary in that we use the explicit knowledge of the full functions,
but we can write down an algebraic proof that holds for all coefficients.
It relies on the explicit knowledge of the modular and mock modular forms
in our examples, and simple algebraic facts about the basic building blocks of
modular forms — theta functions, eta functions, and the Eisenstein series —
and a simple estimate for the Hurwitz–Kronecker class numbers. Both these
methods need us to specify the value of the index m. Although we work out
the first two cases m = 1, 2 here, both our proofs can be extended to higher
values of m case-by-case. It would be nice, however, to come up with a proof
that tackles all values of m at one shot.

The remainder of the paper is structured as follows. In Section 2, we
use the concrete set up of the string theory on T 6 (Case 1) to briefly review
Jacobi forms and some of their properties useful for our application. Using
the same set up, we then discuss the lift to five dimensions, and the different
ensembles of rotating black holes. In Section 3, we address the theories on
K3 × T 2 (Case 2), and analyze the explicit mock Jacobi forms which arise
for index m = 1, 2. In Section 4, we prove the positivity property for m = 1,
and in Sections 5 and 6, we prove the positivity property for m = 2 in two
different ways. In an appendix, we give some tables listing the first few values
of the black hole degeneracies in Case 2 for m = 1, 2, 3, 4.
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2. Black hole degeneracies and Jacobi forms

2.1. Review of Jacobi forms

The black hole microstate degeneracies in all the cases that we study are
related to Fourier coefficients of Jacobi (or mock Jacobi) forms. We therefore
begin by recalling a few relevant facts about Jacobi forms [20]. We use the
notation e(x) := e2πıx, q := e(τ), and ζ := e(z), which is fairly standard in
the modular forms literature.

Definition 2.1. A Jacobi form of weight k ∈ Z and index m ∈ Z is a
holomorphic function ϕ : H × C → C which is “modular in τ and elliptic
in z” in the sense that it transforms under the modular group as

ϕ

(
aτ + b

cτ + d
,

z

cτ + d

)
(cτ + d)k e

(
mcz2

cτ + d

)
ϕ(τ, z)

(∀ ( a b
c d

) ∈ SL2(Z)
)
,

(2.1)

and under the translations of z by Zτ + Z as

(2.2) ϕ(τ, z + λτ + μ) = e
(−m (λ2τ + 2λz

))
ϕ(τ, z) (∀λ, μ ∈ Z) .

Fourier expansion: Equations (2.1) and (2.2) include the periodicities ϕ(τ +
1, z) = ϕ(τ, z) and ϕ(τ, z + 1) = ϕ(τ, z), thus ϕ has a Fourier expansion

ϕ(τ, z) =
∑
n,r

c(n, r) qn ζr.

Equation (2.2) is then equivalent to the periodicity property

c(n, r) = C
(
4nm− r2, r

)
, where C(Δ, r) depends only on r (mod 2m).

(2.3)

The function ϕ(τ, z) is called a holomorphic Jacobi form (or simply a
Jacobi form) of weight k and index m if it satisfies the condition

(2.4) c(n, r) = 0 unless 4mn ≥ r2.

The function is called a weak Jacobi form if it satisfies the condition

(2.5) c(n, r) = 0 unless n ≥ 0.
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The Jacobi forms that arise as the generating functions of black hole degen-
eracies are always weak, which is related to the fact that the condition (2.5)
is equivalent to an exponential growth of C(Δ, r) as Δ → ∞.

Theta expansion: Using the transformation property (2.2) one obtains that
the Fourier expansion of a Jacobi form may be written as

(2.6) ϕ(τ, z) =
∑
�∈Z

q
�2

4m h�(τ) e(�z).

where h�(τ) is periodic in � with period 2m. In terms of the coefficients (2.3),
we have for � ∈ Z/2mZ

h�(τ) =
∑
Δ

C�(Δ) q
Δ
4m .

Because of the periodicity property of h�, Equation (2.6) can be rewritten
in the form

(2.7) ϕ(τ, z) =
∑

�∈Z/2mZ

h�(τ)ϑm,�(τ, z),

where ϑm,�(τ, z) denotes the standard index m theta function

(2.8) ϑm,�(τ, z) :=
∑
λ∈Z

λ ≡ � (mod 2m)

q
λ2

4m ζλ =
∑
n∈Z

qm(n+ �

2m)2

ζ�+2mn.

The expansion (2.7) is called the theta expansion of ϕ. The vector
h := (h1, . . . , h2m) transforms like a modular form of weight k − 1

2 under
SL2(Z) with respect to the Weyl representation.

Hecke-like operators: We will require the Hecke-like operator Vt (t ≥ 1),
which sends Jacobi forms of weight k and index m to Jacobi forms of weight
k and index tm. It is given in terms of its action on Fourier coefficients by

(2.9) Vt :
∑
n,r

c(n, r) qn ζr �→
∑
n,r

⎛
⎝ ∑

d|(n,r,t)

dk−1c

(
nt

d2
,
r

d

)⎞
⎠ qn ζr.

Jacobi forms of index one: If m = 1, (2.3) reduces to c(n, r) = C
(
4n− r2

)
,

where C(Δ) is a function of a single argument. Two examples of index 1
Jacobi forms, which play an important role in the theory, are the following
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Table 1: The first few Fourier coefficients of A and B

k Ck(−1) Ck(0) Ck(3) Ck(4) Ck(7) Ck(8) Ck(11) Ck(12) Ck(15)
−2 1 −2 8 −12 39 −56 152 −208 513
0 1 10 −64 108 −513 808 −2752 4016 −11775

two Jacobi forms of weight −2 and 0, respectively:

A(τ, z) = ϕ−2,1(τ, z) :=
ϑ2

1(τ, z)
η6(τ)

,(2.10)

B(τ, z) = ϕ0,1(τ, z) := 4
(
ϑ2

2(τ, z)
ϑ2

2(τ)
+
ϑ2

3(τ, z)
ϑ2

3(τ)
+
ϑ2

4(τ, z)
ϑ2

4(τ)

)
,(2.11)

where ϑi, i = 1, . . . , 4 are the four classical Jacobi theta functions

ϑ1(τ, z) :=
∑
n∈Z

(−1)nq
1
2(n− 1

2)
2

ζn− 1
2 , ϑ2(τ, z) :=

∑
n∈Z

q
1
2(n− 1

2)
2

ζn− 1
2 ,

ϑ3(τ, z) :=
∑
n∈Z

q
n2

2 ζn, ϑ4(τ, z) :=
∑
n∈Z

(−1)nq
n2

2 ζn,

and η is the Dedekind eta function

(2.12) η(τ) := q
1
24

∏
n≥1

(1 − qn).

By the property mentioned above, these functions have a Fourier expan-
sion (k = −2, 0):

(2.13) ϕk,1(τ, z) =
∑

n, r∈Z

Ck(4n− r2) qn ζr.

The first few Fourier coefficients of A and B are given in Table 1 below. Note
the alternating sign pattern of Ck(Δ). This is related to the positivity of the
black hole degeneracies, and we will prove that this is true for all Δ > 0.

It is a fact that A and B generate the ring of weak Jacobi forms of even
weight freely over the ring of modular forms of level 1 [20], which means
that any weak Jacobi form can be written as a sum of products of A and B
with coefficients being modular forms.

2.2. 1/8 BPS black holes in type II string theory on T 6

On compactifying type-II string on a 6-torus T 6, the resulting four-
dimensional theory has N = 8 supersymmetry with 28 massless U(1) gauge
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fields. A charged state is therefore characterized by 28 electric and 28 mag-
netic charges, that combine into the 56 representation of the U-duality group
E7,7(Z). We are interested in one-eighth BPS dyonic states in this theory
which perserve four of the 32 supersymmetries.

We consider the 6-torus to be the product T 4 × S1 × S̃1 of a 4-torus
and two circles. Using the U-duality, we can go to a frame where the four-
dimensional system contains Q5 D5-branes along T 4 × S1, Q1 D1-branes
along S1, and K Kaluza–Klein monopoles associated with S̃1, carrying n
units of momentum along S1 and J units of momentum along S̃1. The black
holes are thus labeled by these five charges (Q1, Q5, n,K, J).

We restrict our analysis here to the case gcd
(
Kn,Q1Q5,KQ1,KQ5,

nQ1, nQ5

)
= 1. The degeneracies of the 1/8-BPS dyonic states in the type

II string theory on a T 6 are given in terms of the Fourier coefficients of
A(τ, z) [26, 28,31,38]:

d
(1b)
micro(Q1, Q5,K, n, J) = (−1)J+1

∑
s|Q1,nQ5,J

sC−2

((
4Q1Q5Kn− J2

)
/s2
)
,

where C−2(D) is defined in Equation (2.13). The factor of (−1)J+1 arises due
to the fermion zero modes mentioned in the Introduction section, which one
has to strip off since they live outside the horizon. For convenience of anal-
ysis, we shall restrict further to the case gcd(n,Q1, Q5) = 1, which reduces
the above sum over s to s = 1. The more general case can be analyzed using
the estimation methods that we use in the following sections, but applied to
the case of regular (instead of mock) modular forms. Since this is relatively
straightforward, we shall omit the analysis here.

To read off C−2(D) more systematically, we use the theta expansion

A(τ, z) = h0(τ)ϑ1,0(τ, z) + h1(τ)ϑ1,1(τ, z).

The functions h�(τ) in this case are given explicitly by:

h0(τ) = −ϑ1,1(τ, 0)
η6(τ)

= −2 − 12q − 56q2 − 208q3 − 684q4 − 2032q5 −O
(
q6
)
,

h1(τ) =
ϑ1,0(τ, 0)
η6(τ)

= q−
1
4
(
1 + 8q + 39q2 + 152q3 + 513q4 + 1560q5 +O

(
q6
))
.

From the definition (2.8) of the functions ϑm,�, and the product representa-
tion (2.12) of the function η, it is clear that the Fourier coefficients of −h0

and h1 are all positive, thus proving the positivity of dmicro in this case (1a).
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2.3. Lift to five dimensions, and ensembles with varying
and fixed JR

In the above charge representation, zooming in on the tip of the KK
monopole gives us the five-dimensional theory. These five-dimensional black
holes are therefore labelled by four integers (Q1, Q5, n, J). Near the tip of
the monopole, the circle S̃1 has decompactified, and J becomes an angular
momentum charge. To compute the generating function for the index, one
has to remove the modes that are outside the horizon of the black hole. The
only such modes in this case are the bound states of angular momentum,
removing them gives the generating function for dmicro [36]:

∑
J

(−1)J+1 d
(1a)
micro(n,Q1, Q5, J) ζJ = ζ−2(ζ − 1)4

∑
j∈Z

C−2

(
4Q1Q5n− j2

)
ζj .

We have already seen that (−1)d+1C−2(d) > 0. The prefactor

ζ−2(ζ − 1)4 =
∑

r

cpf(r) ζr

also has the positivity property

(−1)rcpf(r) > 0.

Putting these two facts together, we obtain d(1b)
micro > 0.

So far, we have been working with superconformal indices with fixed val-
ues for all the charges including the angular momentum J , but in computing
the index, one lets J2 vary. In [36], Sen also defined a new index for rotating
black holes with fixed value of J , as well as fixed J2 (and fixed value of all
other charges) as:

drot
micro(. . . , J) := dmicro(. . . , J) − dmicro(. . . , J + 2),

where the . . . indicate all the other charges that are held fixed, and con-
jectured that this should also be a positive integer. To prove this, we need to
show that d(1a)(n,Q1, Q5, J)>d(1a)(n,Q1, Q5, J + 2). For the case (Q1, Q5n)
= 1, we need to show that |C−2(D)| are monotonic, which can be seen from
the fact that the function ϑm,� has coefficients one, and the Fourier coeffi-
cients of the function η−6, which count partitions, are monotonic.
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3. 1/4 BPS black holes in type II string theory
on K3 × T 2

The four-dimensional theory in R
1,3 resulting from the K3 × T 2 compact-

ification has N = 4 supersymmetry. The bosonic duality group of the the-
ory is SL2(Z) ×O(22, 6,Z), the two factors are called the S-duality group,
and the T -duality group, respectively. The integral electric and magnetic
charges (N i,M i), (i = 1, 2, . . . , 28), are in a (2, 28) representation of this
group, and the degeneracies are written in terms of the T -duality invariants
(N2/2, N ×M,M2/2, ) ≡ (n, �,m), formed using a certain inner product on
the lattice of charges. The degeneracy formula was first conjectured in [21],
and the complete degeneracy formula was derived in [18, 22, 37]. As in the
previous subsection, we shall restrict our attention here to the case to prim-
itive charges, the corresponding formulas for non-primitive charges [3,4,12]
are related to the primitive degeneracies.

The main novelty (and difficulty) in this case arises because the 1/4-BPS
spectrum of the theory depends not only on the charges, but also the moduli
fields at infinity. For given charges (Qi, P i), one has, at a generic point in
moduli space, not only the dyonic black hole solution, but also two-centered
black hole bound state solutions with the two centers carrying, e.g., electric
and magnetic charges [19]. These bound states only exist inside a certain
region of moduli space bounded by codimension one surfaces called walls,
and cease to exist (decay) on crossing these walls.

On the microscopic side, the (indexed) degeneracies of the 1/4-BPS
states are Fourier coefficients of the meromorphic Siegel modular form Φ−1

10 ,
the reciprocal of the Igusa cusp form of weight 10. The meromorphicity
means that the Fourier coefficients depend on the order of expansion, or,
in other words, on the contour of integration one uses to define them. This
contour depends on the moduli fields of the theory, in such a way that the
jumps in the degeneracies across the divisors of Φ10 are exactly equal to
the degeneracies of the two-centered black hole bound state that decays on
crossing the corresponding wall in moduli space [10,11,32].

Our interest is in the degeneracies of the single-centered black hole, and
we would like to throw away the contribution from all the multi-centered
black holes to the generating function. This latter contribution is not mod-
ular invariant by itself, and so this step breaks the modular invariance of
the original generating function. However, quite remarkably, the remaining
function that one gets has the property of being a mock Jacobi form [17],
and this is what we use to prove the positivity of the single centered black
hole degeneracies.
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3.1. Wall crossing and mock Jacobi forms

For basic facts about Siegel modular forms, we refer the reader to [23]. The
Igusa cusp form Φ10, the unique Siegel modular form of weight 10, is the
Borcherds (multiplicative) lift of the function 2B(τ, z):

(3.1) Φ10(Z) = qζw
∏

(n,�,m)>0

(
1 − qnζ�wm

)2C0(4mn−�2)
,

where the coefficients C0(Δ) are defined in (2.13). Here the notation (n, �,m)
> 0 means that n, �, m ∈ Z with either m > 0 or m = 0 and n > 0, or
m = n = 0 and l < 0. In terms of the Hecke-like operators Vm, (3.1) can
be rewritten in the form

Φ10(Z) = wΔ(τ)A(τ, z) exp

⎛
⎝−2

∑
m≥1

B|Vm(τ, z)wm

⎞
⎠ ,

where Δ(τ) is the weight 12 modular form:

Δ(τ) := q
∏
n≥1

(1 − qn)24 = q − 24q2 + 252q3 − 1472q4 + 4830q5 +O
(
q6
)
.

The function Φ10 can also be written as the Saito–Kurokawa (additive) lift
of the Jacobi form ϕ10,1 = ΔA.

We are interested in the Fourier coefficients of the microscopic partition
function Φ−1

10 , with respect to the three chemical potentials (τ, z, τ ′) that are
conjugate to the three T -duality invariant integers (n, �,m). The Igusa cusp
form has double zeros at z = 0 and its Sp2(Z)-images. The partition function
is therefore a meromorphic Siegel modular form of weight −10 with double
poles at the divisors. As mentioned above, this meromorphicity is responsible
for the wall-crossing behavior of these functions.

The first step to analyze the Fourier coefficients [17] is to expand the
microscopic partition function in w:

(3.2)
1

Φ10(Z)
=
∑

m≥−1

ψm(τ, z)wm.

Using (3.1), one can compute the coefficients ψm. The first few are given
by [17]

Δψ−1 = A−1,

Δψ0 = 2A−1B,
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Δψ1 =
(
9A−1B2 + 3E4A

)
/4,(3.3)

Δψ2 =
(
50A−1B3 + 48E4AB + 10E6A

2
)
/27,

Δψ3 =
(
475A−1B4 + 886E4AB

2 + 360E6A
2B + 199E2

4A
3
)
/384,

Δψ4 =
(
51A−1B5 + 155E4AB

3 + 93E6A
2B2

+ 102E2
4A

3B + 31E4E6A
4
)
/72,

where, for even k ≥ 2, the Eisenstein series Ek of weight k is defined as

(3.4) Ek(τ) := 1 − 2k
Bk

∑
n≥1

σk−1(n)qn

with Bk the kth Bernoulli number and σk−1(n) :=
∑

d|n d
k−1. Note that for

k ≥ 4 even the function Ek is a modular form, whereas E2 is a so-called
quasimodular form. The first few Eisenstein series are:

E2(τ) = 1 − 24
∑
n≥1

nqn

1 − qn
= 1 − 24q − 72q2 −O

(
q3
)
,(3.5)

E4(τ) = 1 + 240
∑
n≥1

n3qn

1 − qn
= 1 + 240q + 2160q2 +O

(
q3
)
,

E6(τ) = 1 − 504
∑
n≥1

n5qn

1 − qn
= 1 − 504q − 16632q2 −O

(
q3
)
.

The double zero of Φ10 at z = 0 is reflected by the double zeros of the
denominator A in the A−1Bm+1 terms in formulas (3.3). These meromorphic
Jacobi forms were analyzed in [17], following a theorem of Zwegers [40,
41] who showed that the Fourier coefficients of meromorphic Jacobi forms
are related to mock modular forms. The analysis, which we sketch below,
uniquely associates a mock Jacobi form (first systematically studied by the
first author and Richter [8]) to a meromorphic Jacobi form of the type ψm

above.
The first step is to define the polar part of ψm

ψP
m(τ, z) :=

p24(m+ 1)
η24(τ)

∑
s∈Z

qms2+sζ2ms+1

(1 − ζqs)2
,

where p24(n) counts the number of partitions of an integer n allowing 24
colors. The function ψP

m is the average over the lattice Zτ + Z of the leading
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behavior of the function near the pole z = 0

p24(m+ 1)
η24(τ)

ζ

(1 − ζ)2
.

The function ψP
m is an example of an Appell–Lerch sum, and it encodes

the physics of all the wall-crossings due to the decay of two-centered black
holes.

The single-centered black hole degeneracies are found by subtracting the
polar part from the original meromorphic Jacobi form ψm. The two func-
tions ψm and ψP

m have, by construction, the same poles and residues, so the
difference is holomorphic in z, and has an unambiguous Fourier expansion.
The finite or Fourier part of ψm

ψF
m := ψm − ψP

m,

is a mock Jacobi form of index m. It was shown in [17] that the indexed
degeneracies of the single-centered black hole of magnetic charge invariant
N2/2 = m, as defined by the attractor mechanism, are Fourier coefficients
of the function ψF

m. More precisely, we have that, for n ≥ m, the microscopic
indexed degeneracies dmicro(n, r,m) corresponding to the single-centered
black holes are related to the Fourier coefficients of this function ψF

m =∑
n,r c(n, r)q

nζr, as dmicro(n, r,m) = (−1)r+1c(n, r), the overall sign coming
from an analysis of the fermion zero modes described in the Introduction
section. We now analyze the positivity of the numbers dmicro(n, r,m).

We work out the first two cases m = 1, 2. The analysis of [17] explicitly
identified the mock Jacobi forms arising as the finite parts of the meromor-
phic Jacobi forms for many cases. We have the following explicit formulas
for the finite parts of the mock Jacobi forms Bm+1/A:

(
B2

A

)F

= E4A− 288H,
(
B3

A

)F

= 3E4AB − 2E6A
2 − 123H|V2,

in terms of the Hecke-like operator defined in (2.9), and the function

H(τ, z) :=
∑
n,r

H
(
4n− r2

)
qnζr,
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where for N ≥ 0, H(N) denotes the Hurwitz–Kronecker class numbers. The
function H can be expanded as:

H(τ, z) := H0(τ)ϑ1,0(τ, z) + H1(τ)ϑ1,1(τ, z),

where

Hj(τ) :=
∑
n≥0

H(4n+ 3j) qn+ 3j

4 .

From work of Hirzebruch and Zagier [24, 39] one can conclude that these
functions are mock modular forms. For later purposes, we note that
H(0) = −1/12 and H(n) > 0 for n ∈ N.

Using the formulas in (3.3), we obtain:

ψF
1 =

1
Δ

(3E4A− 648H),(3.6)

ψF
2 =

1
3Δ
(
22E4AB − 10E6A

2 − 9600H|V2

)
.(3.7)

In the next few sections, we prove that the coefficients c(n, r) of these two
functions ψF

1 , ψF
2 obey the positivity property2:

(3.8) (−1)r+1c(n, r) > 0, for 4mn− r2 > 0.

The relation of the microscopic degeneracies of these five-dimensional black
holes [2,9,15] to their four-dimensional counterparts in the N = 4 theories is
exactly as in the N = 8 theories, as described in Section 2.3. The positivity
in the ensemble with varying J2 simply follows from the positivity of the
four-dimensional case. In the ensemble with fixed J2, one needs to show
that the Fourier coefficient c(n, r) of the functions ψF

1 , ψF
2 obey the property

c(n, r) > c(n, r + 2). This property will also be seen to be true in the course
of presenting the proofs below.

2For general m, the (n, r) Fourier coefficient of ψm has an obvious black hole
interpretation for n ≥ m. For m = 2, the n = 1 coefficient also has a black hole
interpretation, as can be seen from the table in the appendix. (The (n, r) = (1, 1)
coefficient of ψ2 are equal to the (2, 1) coefficient of ψ1, and the (1, 2) coefficient
of ψ2 are equal to the (1, 0) coefficient of ψ1). The general pattern remains to be
fleshed out fully.
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4. The positivity property for m = 1

In this section, we show (3.8) for m = 1. By (3.6), we have that

1
3
Δ(τ)ψF

1 (τ, z) = E4(τ)A(τ, z) − 216H(τ, z).

A direct calculation shows that A has the following theta decomposition:

(4.1) A(τ, z) =
1

η6(τ)
(θ0(τ)ϑ1,1(τ, z) − θ1(τ)ϑ1,0(τ, z)) .

Here, we define for j ∈ {0, 1}

θj(τ) := ϑ1,j(τ, 0).

This immediately implies that

ψF
1 (τ, z) = k1(τ)ϑ1,1(τ, z) − k0(τ)ϑ1,0(τ, z)

with

k1(τ) :=
3

Δ(τ)

(
E4(τ)θ0(τ)
η6(τ)

− 216H1(τ)
)
,

k0(τ) :=
3

Δ(τ)

(
E4(τ)θ1(τ)
η6(τ)

+ 216H0(τ)
)
.

To prove (3.8), we have to show that the positive Fourier coefficients of k1

and k0 are positive. To treat the coefficients of k0, we require the following
general lemma. For this define as usual

(q; q)∞ = (q)∞ :=
∏
�≥1

(
1 − q�

)
.

Lemma 4.1. Assume that f(q) =
∑

n≥0 a(n)qn satisfies a(n) > 0 for n ≥
1. Then the function f(q)

(q)k∞
has positive coefficients for n ≥ 1.

Proof. We may assume that

f(q) = −1 +
∑
n≥1

a(n)qn
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satisfies a(n) > k. We may view this function as the r = 1 case of the more
general family of functions

(4.2) fr(q) = −1 +
∑
n≥1

ar(n)qn

that satisfies ar(n) > 0 for 1 ≤ n ≤ r and ar(n) > k for n ≥ r. To be more
precise, we define the functions fr inductively as

fr+1(q) :=
1

(1 − qr)k
fr(q).

Note that the coefficients of fr+1 that are not divisible by r may be bounded
below by those of fr. The remaining coefficients have the shape of f1 (with
q �→ qr); thus the claim follows inductively as soon as we show it for r = 1.
For this recall that

1
(1 − q)k

=
∑
�≥0

(
�+ k − 1
k − 1

)
q�.

Thus in f2, the first coefficient equals a(1) − k > 0 and for n > 1, the nth
coefficient equals

∑
0≤j≤n−1

(
j + k − 1
k − 1

)
a(n− j) −

(
n+ k − 1
k − 1

)

≥ a(n) +
(
n+ k − 2
k − 1

)
k −

(
n+ k − 1
k − 1

)
> k.

This yields the claim of the lemma. �

To apply Lemma 4.1, we write

q

48
k0(τ)Δ(τ) = −1 +

∑
n≥1

a(n)qn.

Since the coefficients of θ1/η6 are non-negative, and the class numbers H(n)
> 0 for n > 0, we may, using (3.4), bound the coefficients a(n) for n > 1 by

a(n) ≥ 15σ3(n) > 24,

and we can check that a(1) > 24. Thus, we directly obtain from Lemma 4.1
with k = 24 and n0 = 1 that the n > 0 coefficients of k0 are positive.



“CNTP-7-1-A2-BRI” — 2013/9/21 — 13:02 — page 32 — #18
�

�

�

�

�

�

�

�

32 Kathrin Bringmann and Sameer Murthy

We next turn to k1. It is clearly enough to show that for n > 0 the nth
coefficient of q

1
4

24 Δk1 is positive. This may be bounded from below by

(4.3) 10σ3(n) − 9H(4n− 1).

Clearly
σ3(n) ≥ n3.

Moreover, it is not hard to show that

(4.4) H(n) < n.

Thus (4.3) may be bounded from below by

10n3 − 9(4n− 1),

which is positive for n ≥ 2. The claim then follows since

1
24

Δ(τ)k1(τ) = q−
1
4
(
1 + 176q +O

(
q2
))
.

5. The positivity property for m = 2

In this section, we prove (3.8) for m = 2 relying on the Circle Method and
asymptotic formulas as shown by Manschot and Bringmann [5]. In the next
section, we will present a second, more elementary proof. Both proofs make
use of the theta decompositions of the functions involved.

5.1. Certain theta decompositions

We first show the following theta decomposition
(5.1)

1
η6(τ)

(
11E4(τ)A(τ, z)B(τ, z) − 5E6(τ)A2(τ, z)

)
=
∑

0≤j≤3

hj(τ)ϑ2,j(τ, z)

with

h0(τ) := − 1
η18(τ)

(θ0(2τ)θ1(τ)f0(τ) + θ1(2τ)θ0(τ)f1(τ)) ,

h1(τ) := h3(τ) =
1

2η18(τ)
θ1

(τ
2

)
(f0(τ)θ0(τ) + f1(τ)θ1(τ)) ,

h2(τ) := − 1
η18(τ)

(θ1(2τ)θ1(τ)f0(τ) + θ0(2τ)θ0(τ)f1(τ)) .
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Here

f0(τ) := 264θ′1(τ)E4(τ) + (5E6(τ) − 11E2(τ)E4(τ)) θ1(τ),(5.2)
f1(τ) := 264θ′0(τ)E4(τ) + (5E6(τ) − 11E2(τ)E4(τ)) θ0(τ),(5.3)

where the prime denotes 1
2πi

d
dτ . In particular, the above representations

imply that

h0(τ) = −q− 1
4

(
228 + 39096q + 1205988q2 + 21844152q3(5.4)

+ 278145540q4 + 2742795528q5 + 22290285288q6

+ 155617854912q7 + 960737806812q8 +O
(
q9
))
,

h1(τ) = q−
3
8

(
108 + 15420q + 669192q2 + 14367108q3(5.5)

+ 198499812q4 + 2050094076q5 + 17163958500q6

+ 122388860268q7 + 767849126316q8 +O
(
q9
))
,

h2(τ) = −q− 3
4

(
− 6 − 4020q + 81390q2 + 4075236q3(5.6)

+ 72603588q4 + 856025184q5 + 7805050218q6

+ 59195535780q7 + 389556957342q8 +O
(
q9
))
.

To prove (5.1), we first recall the theta decomposition (4.1) of A. To find
the theta decomposition of B, we write

(5.7) B(τ, z) = g0(τ)ϑ1,0(τ, z) + g1(τ)ϑ1,1(τ, z).

Since B is a Jacobi form of weight 0 and index 1, the functions hj are
components of a two-dimensional vector-valued modular form which one
can show lies in a one-dimensional space. From this one may conclude that

g0(τ) =
1

η6(τ)
(
24θ′1(τ) − E2(τ)θ1(τ)

)
,(5.8)

g1(τ) =
1

η6(τ)
(−24θ′0(τ) + E2(τ)θ0(τ)

)
.(5.9)

This yields that

11E4(τ)B(τ, z) − 5E6(τ)A(τ, z) =
1

η6(τ)
(f0(τ)ϑ1,0(τ, z) − f1(τ)ϑ1,1(τ, z)) ,

(5.10)
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with f0 and f1 defined in (5.2) and (5.3), respectively. Multiplying (4.1) and
(5.7) and using that

ϑ2
1,0(τ, z) = θ0(2τ)ϑ2,0(τ, z) + θ1(2τ)ϑ2,2(τ, z),

ϑ2
1,1(τ, z) = θ1(2τ)ϑ2,0(τ, z) + θ0(2τ)ϑ2,2(τ, z),

ϑ1,0(τ, z)ϑ1,1(τ, z) =
1
2
θ1

(τ
2

)
(ϑ2,1(τ, z) + ϑ2,3(τ, z)) ,

then easily gives the claimed representations for the functions hj .
We next turn to the contribution coming from the class numbers. Using

the definition of V2, we obtain that

(5.11) H(τ, z)|V2 =
∑

0≤j≤3

Fj(τ)ϑ2,j(τ, z)

with

Fj(τ) :=
∑
Δ≥0

c

(
Δ + j2

8
, j

)
q

Δ
8 .

Here, c(n, r) = 0 unless n ∈ N0 in which case it is defined by

c(n, r) :=
∑

d|(n,r,2)
d>0

dH

(
8n− r2

d2

)
.

The first few Fourier coefficients of the functions Fj are given by

F0(τ) = −1
4

+ q +
5
2
q2 + 2q3 + 5q4 + 2q5 + 6q6 + 4q7 +

13
2
q8

+ 3q9 +O
(
q10
)
,

F1(τ) = q−
1
8
(
q + 2q2 + 3q3 + 3q4 + 4q5 + 5q6 + 4q7 + 5q8 + 7q9 +O

(
q10
))
,

F2(τ) = q−
1
2

(
1
2
q + 2q2 + 2q3 + 4q4 +

5
2
q5 + 6q6 + 2q7 + 8q8

+ 4q9 +O
(
q10
))

.

Using the notation above we now aim to show that for n > 0 the nth
coefficient of

(5.12) (−1)j+1 1
η18

(
hj − 4800

Fj

η6

)

is positive.
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5.2. Asymptotic formulas for the coefficients of hj

We write

h∗j (τ) := qαjhj(τ) =
∑
n≥0

αj(n)qn

with α0 := 1
4 , α1 = α3 := 3

8 , and α2 := 3
4 . The goal of this section is to

asymptotically bound the coefficients αj(n).

Proposition 5.1. We have that

αj(n) = mj(n) + ej1(n) + ej2(n)

with

mj(n) := (−1)j+12−
3
2 3

9
4π (n− αj)

− 5
4 I 5

2

(
2π
√

3 (n− αj)
)
,

|ej1(n)| < 216π (n− αj)
− 3

4 I 5
2

(
π
√

6 (n− αj)
)
,

|ej2(n)| < 47352π (n− αj)
− 3

4 .

Here I� is the usual I-Bessel function of order �.

Proof. We use the usual setup for the Circle Method. To be more precise,
we assume that 0 ≤ h < k with (h, k) = 1, hh′ ≡ −1 (mod k) and z ∈ C with
Re(z) > 0. Using this notation, we have the transformation law

hj

(
1
k
(h+ iz)

)
= z

3
2

∑
0≤�≤3

χj,�(h.k)h�

(
1
k

(
h′ +

i

z

))
,

where χj,� is a multiplier satisfying

|χj,�(h, k)| ≤ 1, χj,�(0, 1) = − i
j�

2
.

Moreover, from (5.4), (5.5) and (5.6) we obtain that

hj(τ) = q−αj (δj +O (q))
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with α0 = 1/4, α1 = α3 = 3/8, α2 = 3/4, δ0 = −228, δ1 = δ3 = 108 and
δ2 = 6. Using the classical Circle Method (see, e.g., [29]) then gives that

αj(n) = 2π
∑

0≤�≤3

δ�
∑
h,k

1
k
e

2πi

k

(
h(αj−n)−h′α�

)
χj,�(h, k)

×
(
n− αj

α�

)− 5
4

I 5
2

(
4π
√
α� (n− αj)
k

)
,

where the sum runs over all 0 ≤ h < k with (h, k) = 1. Using that for r ∈ R

Ir(x) ∼ ex√
2πx

(x→ ∞)

gives that the dominant term arises from k = 1 and � = 2 and is given by
mj(n) as stated in the theorem.

The remaining sums may be bounded by

2π (n− αj)
− 5

4

∑
0≤�≤3

|δ�|α
5
4
�

∗∑
k

I 5
2

(
4π
√
α� (n− αj)
k

)
,

where
∑∗

k denotes the sum on k with the k = 1 term dropped in the case
� = 2. We first split off those k for which k ≤ √

n− αj . It is easy to see
that

√
α�

k is maximized for k = 1 and � = 1, 3 in which case it equals
√

3
2
√

2
.

Using that I 5
2
(x) is increasing, the contribution from k ≤ √

n− αj may be
estimated against

2π (n− αj)
− 3

4 I 5
2

(
π
√

6(n− αj)
) ∑

0≤�≤3

|δ�|α
5
4
� .

Bounding the sum on � gives the bound for ej1(n) as stated in the theorem.
Using the integral comparison criterion, the terms from k >

√
n− αj

can be bounded by

2π (n− αj)
− 5

4

∑
0≤�≤3

|δ�|α
5
4
�

∫ ∞
√

n−αj

I 5
2

(
4π
√
α�(n− αj)
x

)
dx.
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Using the series representation of the Bessel function it is not hard to see that
I�(x)
x� is monotonically increasing. Therefore, we may estimate the integral

against

I 5
2
(4π

√
α�) (n− αj)

5
4

∫ ∞
√

n−αj

x−
5
2dx.

Explicitly evaluating the integral and estimating the sum on � gives the
bound for ej2(n) as stated in the theorem. �

5.3. Bounding the class number contribution

In this section, we bound for j = 0, 1 the contribution

4800
η6(τ)

Fj(τ) =:
∑
n≥0

βj(n)qn−αj .

Note that in the case j = 2, the coefficients of the class number function will
later be ignored and are thus not considered in this section.

In the case j = 1, we relate the coefficients β1(n) to the coefficients of a
function studied by Bringmann and Manschot [5]. To be more precise, we
define

4800
η6(τ)

H1(q) =:
∑
n≥0

γ(n)qn− 1
2 .

Moreover, we denote by p6(n) the number of partitions of n allowing six
colors. Note that

1
(q)6∞

=
∑
n≥0

p6(n)qn.

Using that H(n) > 0 for n ∈ N and that p6(n) is monotonically increasing,
it is not hard to show

Lemma 5.2. We have

−β0(n) ≤ 1200p6(n),
β1(n) ≤ γ(2n).

We first bound the coefficients p6(n).
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Lemma 5.3. We have

p6(n) = e1(n) + e2(n)

with

e1(n) <
π

8

(
n− 1

4

)− 3
2

I4

(
2π

√
n− 1

4

)
,

e2(n) < π

(
n− 1

4

)− 3
2

.

Proof. Firstly, we may show by the classical Circle Method that

p6(n) =
π

8

(
n− 1

4

)−2∑
h,k

1
k
χ(h, k)I4

⎛
⎝2π

√
n− 1

4

k

⎞
⎠ ,

where the sum runs over all 0 ≤ h < k with (h, k) = 1. Now the claim follows
as in the proof of Lemma 5.1. �

Lemma 5.4. We have the bounds

γ(n) ≤ ρ1(n) + ρ2(n) + ρ3(n) + ρ4(n) + ρ5(n) + ρ6(n)

with

ρ1(n) < 400π (4n− 2)−
3
4 I 5

2

(
π
√

4n− 2
)
,

ρ2(n) < 13603π (4n− 2)−
3
4 ,

ρ3(n) < 541π (4n− 2)−1 I3
(
π
√

4n− 2
)
,

ρ4(n) < 10330π (4n− 2)−
3
4 ,

ρ5(n) < 244π (4n− 2)−
5
4 I 7

2

(
π
√

4n− 2
)
,

ρ6(n) < 2519π (4n− 2)−
3
4 .

Proof. In [5] Bringmann and Manschot proved an exact formula for γj(n).
We employ this formula and bound all occurring Kloosterman sums trivially
to obtain

γ(n) = μ1(n) + μ2(n) + μ3(n)
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with

|μ1(n)| < 800π(4n− 2)−
5
4

∞∑
k=1

I 5
2

(π
k

√
4n− 2

)
,

|μ2(n)| < 4800√
2

(4n− 2)−
3
2

∞∑
k=1

√
kI3

(π
k

√
4n− 2

)
,

|μ3(n)| < 600
π

(4n− 2)−
7
4

∞∑
k=1

1
k

∑
�∈{0,1}
−k<g≤k

g≡� (mod 2)

|Ik,g(n)| .

Here,

Ik,g(n) :=
∫ 1

−1
fk,g

(u
2

)
I 7

2

(π
k

√
(4n− 2) (1 − u2)

) (
1 − u2

) 7
4 du

with

fk,g(u) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

π2

sinh2
(

πu
k − πig

2k

) if g �≡ 0 (mod 2k),

π2

sinh2
(

πu
k

) − k2

u2
if g ≡ 0 (mod 2k).

The terms in μ1(n) may now be bounded as before, splitting the sum on
k at 1

2

√
4n− 2, giving the estimates for ρ1(n) and ρ2(n) as stated in the

lemma. For the terms in μ2(n), we proceed similarly to obtain the bounds
for ρ3(n) and ρ4(n) as stated in the lemma.

To complete the proof, we have to estimate the terms in μ3(n). First by
the proof of Lemma 3.2 in [5], we may for −k < g ≤ k bound fk,g(u) ≤ hk,g

with

hk,g :=

⎧⎪⎨
⎪⎩
k2

g2
, if − k < g ≤ k, g �= 0,

1, if g = 0.

Thus,

Ik,g(n) ≤ 2hk,gI 7
2

(π
k

√
(4n− 2)

)
.

This gives the estimate

|μ3(n)| ≤ 1200
π

(4n− 2)−
7
4

∞∑
k=1

I 7
2

(
π
k

√
4n− 2

)
k

∑
�∈{0,1}
−k<g≤k

g≡� (mod 2)

hk,g.
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It is not hard to see that the sum on � and g may be bounded by 4k2 and
proceed as before yielding the estimates for ρ5(n) and ρ6(n) as given in the
lemma. �

5.4. The final estimates

In this section, we complete the proof of (5.12) by comparing the asymptotic
growth of the functions involved.

Throughout we use the easily verified rough bound for x ≥ 20

(5.13)
4ex

5
√

2πx
≤ I 5

2
(x) ≤ ex√

2πx
.

Note that the upper bound holds true for all x ≥ 0.
We start with the simplest case j = 2. We first bound the coefficients of

h2 and begin by comparing the contributions coming from the error term
e22(n) with the main term m2(n):

∣∣∣∣e22(n)
m2(n)

∣∣∣∣ < 11308

(
n− 3

4

) 1
2

I 5
2

(
2π
√

3
(
n− 3

4

)) .

Using that
I 5

2
(x)

x is monotonically increasing, we obtain that for n ≥ 4

(5.14)
∣∣∣∣e22(n)
m2(n)

∣∣∣∣ < 0.001.

We next turn to the contribution coming from e21(n). We bound

∣∣∣∣e21(n)
m2(n)

∣∣∣∣ < 52

(
n− 3

4

) 1
2 I 5

2

(
π
√

6
(
n− 3

4

))

I 5
2

(
2π
√

3
(
n− 3

4

)) .

Using (5.13) then yields that

∣∣∣∣e21(n)
m2(n)

∣∣∣∣ < 78
(
n− 3

4

) 1
2

e−π(
√

2−1)
√

6(n− 3
4).

Since eax

x is monotonically increasing for x > 1
a , we obtain that for n ≥ 4

(5.15)
∣∣∣∣e21(n)
m2(n)

∣∣∣∣ < 0.45.



“CNTP-7-1-A2-BRI” — 2013/9/21 — 13:02 — page 41 — #27
�

�

�

�

�

�

�

�

On the positivity of black hole degeneracies in string theory 41

Combining (5.14) and (5.15) gives that for n ≥ 4 the nth Fourier coefficient
of h2 is negative. Then employing (5.6) gives that for n ≥ 2 the nth Fourier
coefficient of h2 is negative. Thus for n ≥ 2, the nth Fourier coefficient of
h2 − 4800F2

η6 is negative. To complete the proof, we aim to apply Lemma 4.1.
For this, we note that

h2(τ) − 4800F2(τ)
η6(τ)

= q−
3
4
(
6 + 1620q − 105390q2 − 407236q3(5.16)

−73174788q4 +O
(
q5
))
.

We apply Lemma 4.1 with n0 = 2 and k = 18. Inspecting the first three
coefficients by hand, we are left to show that for n ≥ 4, the nth Fourier
coefficient of this function is in absolute value bigger than 18 · 1620. From
the above calculations, it immediately follows that this coefficient may be
bounded by 0.5|m2(n)|. Using that |m2(n)| is monotonically increasing, then
easily gives that for n ≥ 4 this satisfies the claimed bound. Therefore, we
have shown that (5.12) holds true for j = 2.

We next turn to the case j = 1. In this case, we have to take the class
number contribution into account. As before we may show that for n ≥ 10

|e11(n)| + |e12(n)|
|m1(n)| < 0.02.

To estimate the class number contribution, we use Lemmas 5.2 and 5.4 and
bound

|ρ2(2n)| + |ρ4(2n)| + |ρ6(2n)|
|m1(n)| < 1328

(
n− 3

8

) 5
4

(
n− 1

4

) 3
4 I 5

2

(
2π
√

3
(
n− 3

8

)) .

Since the right-hand side is monotonically decreasing as a function of n, we
obtain that for n ≥ 10

|ρ2(2n)| + |ρ4(2n)| + |ρ6(2n)|
|m1(n)| < 0.01.

Next, we see that

(5.17)
∣∣∣∣ρ1(2n)
m1(n)

∣∣∣∣ < 20.1

(
n− 3

8

) 5
4 I 5

2

(
2π
√

2
(
n− 1

4

))
(
n− 1

4

) 3
4 I 5

2

(
2π
√

3
(
n− 3

8

)) .
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Similarly,
∣∣∣∣ρ3(2n)
m1(n)

∣∣∣∣ < 16.2

(
n− 3

8

) 5
4 I3

(
2π
√

2
(
n− 1

4

))
(
n− 1

4

)
I 5

2

(
2π
√

3
(
n− 3

8

)) .

Using that for � ≥ 0

(5.18) I 5
2
+�(x) ≤

(x
2

)�
I 5

2
(x)

yields that

(5.19)
∣∣∣∣ρ3(2n)
m1(n)

∣∣∣∣ < 34.2

(
n− 3

8

) 5
4 I 5

2

(
2π
√

2
(
n− 1

4

))
(
n− 1

4

) 3
4 I 5

2

(
2π
√

3
(
n− 3

8

)) .

Finally,
∣∣∣∣ρ5(2n)
m1(n)

∣∣∣∣ < 4.4

(
n− 3

8

) 5
4 I 7

2

(
2π
√

2
(
n− 1

4

))
(
n− 1

4

) 5
4 I 5

2

(
2π
√

3
(
n− 3

8

)) .

Using again (5.18) gives that

(5.20)
∣∣∣∣ρ5(2n)
m1(n)

∣∣∣∣ < 19.6

(
n− 3

8

) 5
4 I 5

2

(
2π
√

2
(
n− 1

4

))
(
n− 1

4

) 3
4 I 5

2

(
2π
√

3
(
n− 3

8

)) .

Combining (5.17), (5.19), and (5.20) and then using (5.13) gives that

|ρ1(2n)| + |ρ3(2n)| + |ρ5(2n)|
|m1(n)| < 102.3

(
n− 3

8

) 3
2(

n− 1
4

) e
−2π

(√
3(n− 3

8)−
√

2(n− 1
4)
)
.

For n ≥ 10, we may bound

2π

(√
3 −

√
2
n− 1

4

n− 3
8

)
> 1.93.

Thus,

|ρ1(2n)| + |ρ3(2n)| + |ρ5(2n)|
|m1(n)| < 102.3

√
n− 3

8
e−1.93

√
n− 3

8 .
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From this, we obtain as before that for n ≥ 10

|ρ1(2n)| + |ρ3(2n)| + |ρ5(2n)|
|m1(n)| < 0.8.

Combining the above, we have shown that for n ≥ 10 the nth coefficient of

h1 − 4800F1

η6

may be bounded from below by 0.17m1(n) and are thus in particular posi-
tive. Using that

h1(τ) − 4800F1(τ)
η6(τ)

= q−
3
8
(
108 + 10620q + 630792q2 + 14165508q3

+ 197669412q4 + 2047146876q5 + 17154588900q6

+ 122361457068q7 + 767774193516q8

+4336015791756q9 +O
(
q10
))

gives that all Fourier coefficients of this function are positive. Thus for
j = 1, 3, also the coefficients of (5.12) are positive.

We finally consider the case j = 0. As in the case j = 2, we may bound
for n ≥ 4

|e01(n)| + |e02(n)|
|m0(n)| < 0.32.

Next, we use Lemmas 5.2 and 5.4 and bound the error terms separately.
Firstly,

1200
∣∣∣∣ e2(n)
m0(n)

∣∣∣∣ < 286.6
1(

n− 1
4

) 1
4 I 5

2

(
2π
√

3
(
n− 1

4

)) .

Using that the right-hand side is monotonically decreasing as a function of
n, we obtain that for n ≥ 4

1200
∣∣∣∣ e2(n)
m0(n)

∣∣∣∣ < 0.01.

Finally, we bound

1200
∣∣∣∣ e1(n)
m0(n)

∣∣∣∣ < 35.9
I4

(
2π
√
n− 1

4

)
(
n− 1

4

) 1
4 I 5

2

(
2π
√

3
(
n− 1

4

)) .
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Using (5.18) we then obtain

1200
∣∣∣∣ e1(n)
m0(n)

∣∣∣∣ < 200

(
n− 1

4

) 1
2 I 5

2

(
2π
√
n− 1

4

)

I 5
2

(
2π
√

3
(
n− 1

4

)) .

Inserting (5.13) then gives

1200
∣∣∣∣ e1(n)
m0(n)

∣∣∣∣ < 330
(
n− 1

4

) 1
2

e−2π(
√

3−1)
√

n− 1
4 .

Using that the right-hand side is monotonically decreasing, we obtain that
for n ≥ 4

1200
∣∣∣∣ e1(n)
m0(n)

∣∣∣∣ < 0.09.

Thus we have shown that for n ≥ 4 the nth coefficient of

−h0 +
4800F0

η6

may be bounded by 0.58|m0(n)| and is in particular positive. We now apply
Lemma 4.1 with n0 = 0 and k = 18. We compute that

h0(τ) − 4800F0(τ)
η6(τ)

= q−
1
4
(
972 − 36696q − 1214388q2 +O

(
q3
))
.

Thus, we have to show that for n ≥ 1 the nth coefficient of this function
is bigger than 18 × 972. A direct inspection of the Fourier coefficients gives
that this is true for n ≤ 2. For n ≥ 3, the above calculations give that the
absolute value of the nth coefficient of this function may be bounded by
0.58|m0(n)| and the claim follows, again using that |m0(n)| is monotonically
increasing as a function of n.

6. An alternative proof for m = 2

For the second approach, we first estimate the growth of the coefficients of
the Jacobi form

(6.1) 11E4(τ)A(τ, z)B(τ, z) − 5E6(τ)A2(τ, z) =:
∑

0≤j≤3

ξj(τ)ϑ2,j(τ, z),
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to then show that for n > 0 the nth coefficient of

(6.2) (−1)j+1 1
Δ

(ξj − 4800Fj)

is positive.
From Equation (5.1), we obtain:

ξ0(τ) = − 1
η12(τ)

(θ0(2τ) θ1(τ) f0(τ) + θ1(2τ) θ0(τ) f1(τ)) ,(6.3)

ξ1(τ) = ξ3(τ) =
1

2 η12(τ)
θ1

(τ
2

)
(f0(τ)θ0(τ) + f1(τ)θ1(τ)) ,(6.4)

ξ2(τ) = − 1
η12(τ)

(θ1(2τ) θ1(τ) f0(τ) + θ0(2τ) θ0(τ) f1(τ)) ,(6.5)

with f0 and f1 defined as in (5.2) and (5.3). We have thus managed to
express the terms of the theta decomposition of (6.1) in terms of Eisenstein
series, theta functions, and eta functions.

We now address the issue of positivity of various Fourier coefficients. We
find many functions whose coefficients are all positive except for the first few
ones, and these are then multiplied by theta series and negative powers of
the eta function. In order to handle such products, we use Lemma 4.1, a gen-
eralization to allow two negative coefficients and the following lemma that
deals with multiplication by theta series and whose proof is straightforward.

Lemma 6.1. Assume that f(q) =
∑

n≥0 a(n)qn satisfies a(n) > 0 for n > n0

for some n0 ∈ N0. Then for λ ∈ {0, 1} and m ∈ N the nth coefficient of
q−mλ2/4f(q)θλ(mτ) is at least δλa(n) − 2

∑
0≤j≤n0

|a(j)|, where δ0 = 1 and
δ1 = 2. Moreover if for some n1 ∈ N we have that δλa(n) > 2

∑
0≤j≤n0

|a(j)|
for n ≥ n1, then the nth coefficient of f(q)θλ(mτ) is positive for n ≥ n1 +
mλ2

4 .

We next give a generalization of Lemma 4.1.

Lemma 6.2. Let F (q) =
∑

n≥0 a(n)qn satisfy a(0), a(1) < 0 and a(n) >
2|a(0)| + |a(1)| for n ≥ 2. Then for n ≥ 2 the nth coefficient of 1

(q)∞
F (q) =:∑

n≥0 b(n)qn satisfies

b(0) = a(0), b(1) = a(0) + a(1),
b(n) ≥ a(n) − 2|a(0)| − |a(1)|.
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Proof. Set a = −a(0), b = −a(1). Then

F1(q) :=
1

1 − q

⎛
⎝−a− bq +

∑
n≥2

a(n)qn

⎞
⎠ =: −a− (a+ b)q +

∑
n≥2

a1(n)qn,

where for n ≥ 2

a1(n) :=
∑

2≤�≤n

a(�) − (a+ b).

We now inductively define

Fr(q) :=
1

1 − qr
Fr−1(q) = −a− (a+ b)q +

∑
n≥2

ar(n)qn.

We are done once we show that

ar(n) ≥ a(n) − 2a− b for 2 ≤ n ≤ r,

ar(r + 1) ≥ a(r + 1) − a− b,

ar(n) > a(n) + a, for n ≥ r + 2.

Firstly,

a1(2) = a(2) − (a+ b).

For n ≥ 3,

a1(n) =
∑

2≤�≤n

a(�) − (a+ b) ≥ a(n) + a(n− 1) − (a+ b) > a(n) + a

by assumption. We next assume that the claim is shown for F1, . . . , Fr. Then

Fr+1(q) =
1

1 − qr+1
Fr(q)

= −a− (a+ b)q +
∑
n≥1

qn(r+1)

⎛
⎝ ∑

1≤�≤n

ar(�(r + 1)) − a

⎞
⎠

+
∑
n≥1

qn(r+1)+1

⎛
⎝ ∑

1≤�≤n

ar(�(r + 1) + 1) − (a+ b)

⎞
⎠

+
∑
n≥2

n �≡0,1 (mod r+1)

qn
∑

2≤�≤n

�≡n (mod r+1)

ar(�).
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Now for n �≡ 0, 1 (mod r + 1)

ar+1(n) =
∑

2≤�≤n

�≡n (mod r+1)

ar(�).

This implies for 2 ≤ n ≤ r

ar+1(n) = ar(n) > a(n) − 2a− b.

Moreover for n ≥ r + 3, we obtain

ar+1(n) ≥ ar(n) + a1(n− (r + 1)) > ar(n) + a.

Next,

ar+1(r + 1) = ar(r + 1) − a ≥ a(r + 1) − 2a− b

and for n ≥ 2

ar+1(n(r + 1))

=
∑

1≤�≤n

ar(�(r + 1)) − a ≥ ar (n(r + 1)) + ar ((n− 1)(r + 1)) − a

≥ a (n(r + 1)) + a ((n− 1)(r + 1)) − a− b ≥ a (n(r + 1)) + a.

Finally,

ar+1(r + 2) = ar(r + 2) − (a+ b) > a(r + 2) − b

and for n ≥ 2

ar+1(n(r + 1) + 1)

=
∑

1≤�≤n

ar(�(r + 1) + 1) − (a+ b)

≥ ar (n(r + 1) + 1) + ar ((n− 1)(r + 1) + 1) − (a+ b)
≥ a (n(r + 1) + 1) + a ((n− 1)(r + 1) + 1)

+ a− b > a (n(r + 1) + 1) + a.

�

From Lemma 6.2, we can immediately see that how dividing by powers
of eta changes the positivity property.
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Corollary 6.3. Let F (q) =
∑

n≥0 a(n)qn satisfy a(0), a(1) < 0, and

a(n) >
(

(k + 1)(k + 2)
2

− 1
)
|a(0)| + k |a(1)|

for n ≥ 2. Then for n ≥ 2, the nth coefficient of

Fk(q) :=
1

(q)k∞
F (q) =:

∑
n≥0

ak(n)qn

satisfies

ak(0) = a(0), ak(1) = ka(0) + a(1),

ak(n) ≥ a(n) −
(

(k + 1)(k + 2)
2

− 1
)
|a(0)| − k |a(1)| .

Proof. We prove the claim by induction on k. The case k = 1 is contained
in Lemma 6.2. We now assume that the claim is true for k − 1 and show it
for k. Note that

Fk(q)=
1

(q)∞
Fk−1(q).

Thus by Lemma 6.2,

ak(n) ≥ ak−1(n) − 2 |ak−1(0)| − |ak−1(1)|

provided the right-hand side is positive. By induction assumption

ak−1(n) − 2 |ak−1(0)| − |ak−1(1)|
> a(n) −

(
k(k + 1)

2
− 1
)
|a(0)| − (k − 1) |a(1)| − 2 |a(0)|

− (k − 1) |a(0)| − |a(1)|
= a(n) −

(
(k + 1)(k + 2)

2
− 1
)
|a(0)| − k |a(1)| .

Moreover,

ak(0) = ak−1(0) = a(0),
ak(1) = ak−1(0) + ak−1(1) = a(0) + (k − 1)a(0) + a(1) = ka(0) + a(1).

�
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We are now ready to look at the positivity of the Fourier coefficients
of the various functions. Recall the definitions of g0 and g1 in (5.8) and
(5.9), respectively. We claim that all coefficients of q−

1
4 g0η

6 and all but
the constant coefficient of −g1η6 are positive. Indeed, by Lemma 6.1 the
coefficients of −E2θ0 and −E2θ1q

− 1
4 are all positive except the first giving

the claim since the coefficients of θ′j , j = 0, 1, are positive and since

q−
1
4 g0(τ)η6(τ) = 10 + 48q +O

(
q2
)
,

−g1(τ)η6(τ) = −1 + 70q +O
(
q2
)
.

Multiplying by η−6, it is then clear that all coefficients of g0 are positive. For
n ≥ 1, the nth coefficient of −g1η6 is bounded by 24σ1(n) > 6. Therefore,
we have, using Lemma 4.1, that all coefficients with the exception of the
first of q

1
4 g1 are negative.

Next we look at the positivity of the coefficients of f0 and f1. Using the
easily verified identity

(6.6) E2E4 − E6 = 3E′
4,

we obtain

−11E2(τ)E4(τ) + 5E6(τ) = −33E′
4(τ) − 6E6(τ)

= −6 − 4896q − 42768q2 + 72576q3 +O
(
q4
)
.

We denote the nth coefficient of this q-series by a(n). It is given for n ≥ 1
by

a(n) = −7920nσ3(n) + 3024σ5(n) ≥ 2529n5 − 7920n4 =: P1(n),

where we used that, for n > 1,

σ5(n) > n5 σ3(n) ≤ n4

16
+ n3.

Note that P1(n) > 0 for n ≥ 4 and that

a(n) − 2 (|a(0)| + |a(1)| + |a(2)|) > P2(n) := P1(n) − 95340,

which is for n ≥ 4 strictly positive. By Lemma 6.1, it then follows that for
j = 0, 1, the nth Fourier coefficient of the function

(5E6 − 11E2E4)θjq
− j2

4
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is for n ≥ 4 positive and bounded below by P2(n). Moreover, since E4 and
θ′jq

−j2/4, j = 0, 1, have positive Fourier coefficients, we obtain that for n ≥ 4
the nth Fourier coefficients of f0q

−1/4 and f1 are positive and bounded below
by P2(n). Computing the first few coefficients gives

f0(τ)q−
1
4 = 120 + 21888q + 200760q2 + 1307520q3 +O

(
q4
)
,

f1(τ) = −6 − 4380q + 74160q2 + 1127520q3 +O
(
q4
)
.

We next aim to show that the Fourier coefficients of η12ξj are positive
for all n except for a finite number of possible exceptions. For this pur-
pose, we first consider products of f0 and f1 with theta functions. Since
the coefficients of f0q

− 1
4 are positive, it follows that for j = 0, 1, the coef-

ficients of q(−j2−1)/4f0θj are all positive and thus also the coefficients of
q(−j2−1)/2θj(2τ)θ1(τ)f0(τ) for j = 0, 1. Moreover, using again Lemma 6.1,
the nth coefficients of q−j2/4f1θj , j = 0, 1, are bounded below by

P3(n) := P2(n) − 2 × (6 + 4380),

which is positive for n ≥ 4. We determine the first coefficients as

f1(τ)θ0(τ) = −6 − 4392q + 65400q2 + 1275840q3 +O
(
q4
)
,

f1(τ)θ1(τ)q−
1
4 = −12 − 8760q + 148308q2 + 2246280q3 +O

(
q4
)
.

Thus, using that

q−
1
4 (f0(τ)θ0(τ) + f1(τ)θ1(τ))

= 108 + 13368q + 392844q2 + 3955320q3 +O
(
q4
)

gives that all coefficients of (f0θ0 + f1θ1)q−1/4 are positive and bounded
below by P3(n). Therefore, the same is true for q−3/8ξ1η

12 and thus also for
q1/8ξ1.

To treat ξ0 and ξ2, we apply Lemma 6.1 another time and find that the
nth coefficient of q−j2/2f1(τ)θj(2τ)θ0(τ) for j = 0, 1 is bounded below by

P4(n) := P3(n) − 2 × (6 + 4392),

which is positive for n ≥ 4. Recall that q(−j2−1)/2θj(2τ)θ1(τ)f0(τ) has pos-
itive coefficients. Thus, the coefficients of −q(−j2−1)/2η12ξ2j , j = 0, 1, are
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bounded below by P4(n). We determine the first coefficients as

−q− 1
2 η12(τ)ξ0(τ) = 228 + 34992q + 553040q2 + 5298048q3 +O

(
q4
)
,

−η12(τ)ξ2(τ) = −6 − 3912q + 152940q2 + 2070576q3 +O
(
q4
)
.

Since all coefficients of −q−1/2η12ξ0 are positive, the same is true for −ξ0.
Moreover, the nth Fourier coefficient of −η12ξ2 is positive for n ≥ 2 and
bounded below by P4(n) for n ≥ 4. By Corollary 6.3, we obtain that the
coefficients of −q 1

2 ξ2 are positive for n ≥ 2 and bounded below by

P5(n) := P4(n) − (90 × 6 + 12 × 3912),

which is positive for n ≥ 4.
The analysis of the three functions slightly differ from each other from

now on and we start with the case j = 2. As shown above the nth coefficient
of −q1/2ξ2 is bounded below by P5(n). Note that all Fourier coefficients of
F2 are positive and that

q
1
2 (−ξ2(τ) + 4800F2(τ)) = −6 − 1584q + 115056q2 + 3560256q3 +O

(
q4
)
.

For n ≥ 4, the nth coefficient of this function is bounded below by P5(n),
which is bounded below by (324 × 6 + 24 × 1584). Therefore, we obtain, by
Corollary 6.3 and by inspecting the first coefficients, that all coefficients with
positive exponent of (6.2) are positive.

In the case j = 0, we proceed similarly. Note that for n ≥ 1, the nth
Fourier coefficient of F0 is positive. Thus for n ≥ 1, the nth Fourier coeffi-
cients of −ξ0 + 4800F0 is positive and

−ξ0(τ) + 4800F0(τ) = −972 + 42528q + 985464q2 + 1497196q3 +O
(
q4
)
.

From the above analysis, we moreover obtain that for n ≥ 4, the nth coeffi-
cient of this function is bounded below by P5(n), which is bounded below by
24 × 972. Therefore, we obtain by Lemma 4.1 with k = 24, that all positive
coefficients of (6.2) are positive.

We finally consider the case j = 1. We have to compare the coefficients
of ξ1 with the associated contribution coming from class numbers. Recall
that for n ≥ 4 the nth coefficient of q1/8ξ1 is bounded by P3(n). Next note
that

q
1
8 (ξ1(τ) − 4800F1(τ)) = 108 + 9972q + 568044q2 + 10477416q3 +O

(
q4
)
.
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Since
F1(τ) =

∑
�≥1

H(8�− 1)q�− 1
8 ,

it is enough by the above considerations to show that for n ≥ 4

P3(n) > 4800H(8n− 1).

By (4.4) it is enough to show that

P3(n) > 4800(8n− 1)

which is indeed satisfied for n ≥ 4.
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Appendix A. Black hole degeneracies for m = 1, 2, 3, 4

For the black holes in string theory on K3 × T 2, the degeneracies are a func-
tion of the T -duality invariants (M2/2, N2/2,MṄ) = (m,n, �). As explained
in Section 3, they are the Fourier coefficient c(n, �) of the mock Jacobi
form ψm of index m for n ≥ m. By the elliptic invariance, it is enough
to consider � = 0, . . . ,m+ 1. We list the first few coefficients of the mock
Jacobi forms ψm for the first four positive values of m.

m = 1

n −1 0 1 2 3 4 5 6

� = 0 −48 648 50064 1127472 16491600 185738352 1737283968 14086119024
� = 1 3 600 25353 561576 8533821 100390104 977183520 8203464720

n 7 8 9 10
� = 0 101777516400 668043042720 4040083875024 22756537895040
� = 1 61077837780 411421124040 2544746970243 14618739930912
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m = 2

n −1 0 1 2 3 4 5

� = 0 −648 12800 1127472 32861184 632078672 9337042944 113477152800
� = 1 72 8376 561576 18458000 392427528 6216536784 79330416536
� = 2 −4 −1152 50064 3859456 110910300 2073849984 29495727056

n 6 7 8 9

� = 0 1181763743744 10838236934808 89288280271872 670746948265232
� = 1 855667882536 8055449338200 67714250601728 516898213691112
� = 2 343972015104 3437700768840 30312295881600 240704209521024

m = 3

n −1 0 1 2 3 4

� = 0 −6404 153900 16491600 632078672 16193130552 315614079072
� = 1 972 85176 8533821 392427528 11232685725 233641003920
� = 2 −96 −15600 1127472 110910300 4173501828 100673013264
� = 3 5 1728 130329 18458000 920577636 26563753008

n 5 6 7 8

� = 0 4980146121600 66223829146464 763810107420924 7808500872944344
� = 1 3838665438606 52438270948872 616509025474839 6394025215102200
� = 2 1817641213584 26523447693936 327561687731700 3530513346970608
� = 3 543037538313 8689043006928 115301073750300 1317086884043616

m = 4

n −1 0 1 2 3 4

� = 0 −51396 1410048 185738352 9337042944 315614079072 7999169992704
� = 1 9600 700776 100390104 6216536784 233641003920 6264458136216
� = 2 −1296 −154752 16491600 2073849984 100673013264 3093523125120
� = 3 120 23328 1598376 392427528 26563753008 987647838816
� = 4 −6 −2304 −209304 32861184 4173501828 203003283456

n 5 6 7 8

� = 0 161166049715136 2690630398144512 38396325233501604 479643192755712000
� = 1 130483874926824 2226273321514872 32263019501551200 407734088790024888
� = 2 70154254155648 1268909447328000 19194759843735744 250750639230059136
� = 3 25364019402816 501130864684008 8102401641823224 111544858411221936
� = 4 6153448819056 136676238618624 2415415078450044 35695523741819136

n 9 10 11

� = 0 5343131141125608240 53865362293195763712 497287540606193791776
� = 1 4583919031715817912 46559483089512998904 432557670343025950296
� = 2 2895018873817853040 30059106955693337088 284514174765163372992
� = 3 1344064501276102440 14463582110776040904 141148056895219254264
� = 4 455984813319184992 5155065821726530560 52491288465592800984
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