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We study the quantum geometry of the class of Calabi–Yau three-
folds, which are elliptic fibrations over a two-dimensional toric base.
A holomorphic anomaly equation for the topological string free
energy is proposed, which is iterative in the genus expansion as
well as in the curve classes in the base. T -duality on the fibre
implies that the topological string free energy also captures the
BPS-invariants of D4-branes wrapping the elliptic fibre and a class
in the base. We verify this proposal by explicit computation of the
BPS invariants of 3 D4-branes on the rational elliptic surface.
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1. Introduction

Topological string theory on local Calabi–Yau manifolds has been a remark-
able success story. It counts the open and closed instantons corrections to
topological numbers, which can be seen as an extension from classical geom-
etry to quantum geometry. By now we can solve it in very different ways,
namely by localisation, by direct integration of the holomorphic anomaly
equations, by the topological vertex [1] or by the matrix model techniques
in the remodelled B-model [12]. Topological string theory on local Calabi–
Yau manifolds gives deep insights in the interplay between large N gauge
theory/string theory duality, mirror duality, the theory of modular forms
and knot theory and is by geometric engineering [37] intimately related to
the construction of effective N = 2 and N = 1 rigid supersymmetric theories
in four dimensions.

On global, i.e., compact, Calabi–Yau manifolds, which give rise to N = 2
and N = 1 effective supergravity theories in four dimensions, the situation is
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less understood. Direct integration extends the theory of modular objects to
the Calabi–Yau spaces and establishes that closed topological string ampli-
tudes can be written as polynomial in modular objects, but the boundary
conditions for the integration are in contrast to the local case not completely
known. As an example, on the quintic surface the closed topological string
can be solved up to genus 51 [33].

In [17] mirror symmetry was made local in the decompactification limit
of fibred Calabi–Yau threefolds. Here we want to do the opposite and study
how the quantum geometry extends from the local to the global case, when a
class of local Calabi–Yau geometries is canonically compactified by an elliptic
Calabi–Yau fibration with projection π : M → B. This easy class of local to
global pairs, will be described to a large extend by complete intersections in
explicit toric realizations. As we review in Section 2, if the elliptic fibration
has only I1 fibres the classical cohomology of M is completely determined
by the classical intersection of the base B and the number of sections, which
depends on the Mordell Weyl group of the elliptic family.

The decisive question to which extend this holds for the quantum geome-
try is addressed in Section 3 using mirror symmetry. The instanton numbers
are counted by (quasi)-modular forms of congruence subgroups of SL(2,Z)
capturing curves with a fixed degree in the base for all degrees in the fibre.
The weights of the forms depend on the genus and the base class. This struc-
ture has been discovered for elliptically fibred surfaces in [39] and for ellip-
tically fibred threefolds in [40]. We establish here a holomorphic anomaly
Equation (3.9) based on the non-holomorphic modular completion of the
quasi-modular forms which is iterative in the genus, as in [9], and also in
the base classes generalizing [32,57].

Our construction can be viewed also as a step to a better understanding
of periods and instanton corrections in F -theory compactifications and a
preliminary study using the data of [38,41,56] reveals that the structure at
the relevant generera g = 0, 1 extends.

A holomorphic anomaly equation is also known to appear for generat-
ing functions of Bogomolny-Prasad-Sommerfield (BPS) invariants of higher
dimensional D-branes, in particular D4-branes on a surface [2,20,49,53,59].
Interestingly, on elliptic Calabi–Yau fibrations, double T -duality on the ellip-
tic fibre (or Fourier–Mukai transform) [3, 4, 7, 57] transforms D2-branes
wrapped on base classes into D4-branes that also wrap the elliptic fibre
and vice versa. The D4-brane holomorphic anomaly is therefore related to
the one of Gromov–Witten theory for these geometries. Moreover, the mirror
periods provide predictions for D4-brane BPS invariants which correspond
to those of (small) black holes in supergravity.
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We discuss higher dimensional branes on Calabi–Yau elliptic fibrations in
Sections 5 and 6. We compare the predictions from the periods for D4-brane
BPS invariants with existing methods in the literature for the computation
of small charge BPS invariants [11, 16, 19, 22, 23, 52, 54]. The predictions of
the periods are in many cases compatible with these methods. We leave a
more precise study of D4-brane BPS states on general elliptic fibrations to
future work.

Section 6 specializes to the elliptic fibration over the Hirzebruch sur-
face F1. The periods of its mirror geometry provide the BPS invariants
of D4-branes on the rational elliptic surface (also known as 1

2K3) as pro-
posed originally by Minahan et al. [57]. We revisit and extend the verifica-
tion of this proposal for ≤ 3 D4-branes using algebraic-geometric techniques
[25,26,51,53,55,60,62].

2. Classical geometry of elliptically fibred Calabi–Yau spaces

In this section, we study the classical geometry of elliptically fibered Calabi–
Yau threefolds M with base B and projection map π : M → B. We pro-
vide expressions for the Chern classes as well as the construction of such
Calabi–Yau three manifolds by means of toric geometry. Elliptic fibrations
are locally described by a Weierstrass form

(2.1) y2 = 4x3 − xw4g2(u) − g3(u)w6,

where u are coordinates on the base B. A global description can be defined
by an embedding as a hypersurface or complete intersection in an ambient
space W . Explicitly, we consider cases, which allow a representation as a
hypersurface or complete intersection in a toric ambient space. We restrict
our attention to the case where the fibre degenerations are only of Kodaira
type I1, which means that the discriminant Δ = g3

2 − 27g2
3 of (2.1) has only

simple zeros on B, which are not simultaneously zeros of g2 and g3. It was
observed in [38] that such tame fibrations can be constructed torically over
toric bases, which are given themselves defined by reflexive polyhedra. These
tame fibrations are not enough to address immediately phenomenological
interesting models in F-theory, due to the lack of non-abelian gauge sym-
metry in the effective four-dimensional physics, which come precisely from
more singular fibres in the Kodaira classification. However, we note that the
examples discussed here have a particular large number of complex moduli.
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Adjusting the latter and blowing up the singularities, not necessarily tor-
ically, is a more local operation, at least of co-dimension one in the base,
which can be addressed in a second step.

2.1. The classical geometrical data of elliptic fibrations

Let W → B be a fibre bundle whose fibre is an r − 1 dimensional weighted
projective space P(w1, . . . , wr) and B an almost toric Fano surface. We define
elliptically fibred Calabi–Yau threefolds M → B as hypersurfaces or com-
plete intersections in W . We consider the following choices of weights

(2.2) (w1, . . . , wr) = {(1, 2, 3), (1, 1, 2), (1, 1, 1), (1, 1, 1, 1)}.

In particular, the elliptic fibres are degree 6, 4, 3 hypersurfaces and a bide-
gree (2, 2) complete intersection in the coordinates of the given weighted
projective space. In the case of rational elliptic surfaces these fibres lead to
E8, E7, E6 and D5 del Pezzo surfaces, named so as the integers cohomology
lattice of the surface contains the intersection form of the Cartan-matrix of
the corresponding Lie algebras. In the following we keep these names for the
fibration types.

Let us discuss the first case. This leads canonically to an embedding with
a single section; however, most of the discussion below applies to the other
cases with minor modifications. Denote by α = c1(O(1)) with O(1) the line
bundle on W induced by the hyperplane class of the projective fibre and
K = −c1 the canonical bundle of the base.

The coordinates w, x, y are sections of O(1), O(1)2 ⊗K−2 and O(1)3 ⊗
K−3 while g2 and g3 are sections of K−4 and K−6 respectively so that (2.1)
is a section of O(1)6 ⊗K−6. The corresponding divisors w = 0, x = 0, y = 0
have no intersection, i.e., α(α+ c1)(α+ c1) = 0 in the cohomology ring of
W and

(2.3) α(α+ c1) = 0

in the cohomology ring ofM . Let us assume that the discriminant Δ vanishes
for generic complex moduli only to first order in the coordinates of B at loci,
which are not simultaneously zeros of g2 and g3. In this case, its class must
satisfy

(2.4) [Δ] = c1(B) = −K
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Table 1: Chern classes Ci of regular elliptic Calabi–Yau manifolds. Integrat-
ing α over the fibre yields a factor a =

∏
i di∏
i wi

, i.e., the number of sections
1, 2, 3, 4 for the three fibrations in turn.

Fibre C2 C3 C4

E8 12αc1 + (11c21 + c2) −60αc21 − (60c31 + c2c1 − c3) 12αc1(30c21 + c2)

E7 6αc1 + (5c21 + c2) −18αc21 − (18c31 + c2c1 − c3) 6αc1(12c21 + c2)

E6 4αc1 + (3c21 + c2) −8αc21 − (8c31 + c2c1 − c3) 4αc1(6c21 + c2)

D5 3αc1 + (2c21 + c2) −4αc21 − (4c31 + c2c1 − c3) 3αc1(3c21 + c2)

to obey the Calabi–Yau condition and the fibre over the vanishing locus
of the discriminant is of Kodaira type I1. For this generic fibration, the
properties of M only depend on the properties of B.

For example, using the adjunction formula and the relation (2.3) to
reduce to linear terms in α allows us to write the total Chern
class as1

(2.5) C =

(

1 +
dM−1∑

i=1

ci

)
(1 + α)(1 + w2α+ w2c1)(1 + w3α+ w3c1)

1 + dα+ dc1
.

The Chern forms Ck of M are the coefficients in the formal expansion of
(2.5) of the degree k in terms of a and the monomials of the Chern forms ci
of base B. The formulas (2.3) and (2.5) apply for all projectivisations.

In the following, the results for various dimensions dM are presented.
For dM = 2, one gets from table 1 by integrating over the fibre in all cases
χ(M) = 12

∫
B c1 and P

1 is the only admissible base. Similar for dM = 3 one
gets for the different projectivisations χ(M) = −60

∫
B c

2
1, χ(M) = −36

∫
B c

2
1,

χ(M) = −24
∫
B c

2
1 and χ(M) = −16

∫
B c

2
1.

The following discussion extends to all dimensions but for the sake of
brevity we specialize to Calabi–Yau threefolds. Let Ki, i = 1, . . . , b2(B),
span the Kähler (or ample) cone of B with intersection numbers KiKj =
cij . Moreover, let Ci be a basis for the dual Kähler cone. We expand the

1In the D5 complete intersection case d1 = d2 = 2. One has to add a factor
(1 + α+ c1) in the numerator and a factor (1 + 2α+ 2c1) in the denominator.
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canonical class of B in terms of Ki and Ci as:

(2.6) KB = −c1 = −
∑

i

aiKi = −
∑

aiC
i,

with ai and ai in Z. We denote by Ka, a = 1, . . . , h1,1(M), the divisors of the
total space of the elliptic fibration and distinguish between Ke the divisor
dual to the elliptic fibre curve and Ki, i = 1, . . . , b = b2(B), which are π∗(Ci)

K3
e = a

∫

B
c21,

K2
eKi = aai,

KeKiKj = acij .

(2.7)

Here, a denotes the number of sections; see table 1. The intersection with
the second Chern class of the total space can be calculated using table 1 for
the elliptic and other fibres as

∫

M
c2Je =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫

B
(11c21 + c2) E8,

2
∫

B
(5c21 + c2) E7,

3
∫

B
(3c21 + c2) E6,

4
∫

B
(2c21 + c2) D5,

∫

M
c2Ji = 12ai.

(2.8)

Here, we denoted by Ji the basis of harmonic (1, 1) forms dual to the Ki.
Let us note two properties about the intersection numbers. These prop-

erties can be established using the properties of the toric almost Fano bases
B and (2.7), which follows from the construction of the elliptic fibration
summarized in (2.20). To start, define the matrix

(2.9) Ce =

⎛

⎜
⎜
⎜
⎝

∫
B c

2
1 a1 . . . ab

a1
... cij
ab

⎞

⎟
⎟
⎟
⎠
,
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then we can conclude from properties of the intersection numbers and the
canonical class that

(2.10) det(Ce) = 0.

A further property concerns a decoupling limit between base and fibre
in the Kähler moduli space. Generally, we can make a linear change in the
basis of Mori vectors li, which results in corresponding linear change of the
basis in dual spaces of the Kähler moduli ti and the divisors Di

(2.11) l̃i =
∑

j

mijlj , t̃i =
∑

(mT )ijt
j .

To realize a decoupling between the base and the fibre, we want to find a
not necessarily integer basis change, which eliminates the couplings K̃2

eK̃i

and leaves the couplings K̃eK̃iK̃j invariant. It follows from (2.6), (2.7) and
the obvious transformation of the triple intersections that there is a unique
solution

(2.12) m =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
a1

2
. . .

ab

2
0 1 0 . . . 0
...

...
0 0 . . . 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

such that

K̃3
e = a

(∫

B
c21 −

3
2
aia

i +
3
4
cija

iaj

)

,

K̃2
eK̃i = 0,

K̃eK̃iK̃j = acij .

(2.13)

As we have seen the classical topological data of the total space of the
elliptic fibration follows from simple properties of the fibre and the topology
of the base. We want to extend these results in the next section to the quan-
tum cohomology of the elliptic fibration. We focus again on the Calabi–Yau
threefold case, where the instanton contributions to the quantum cohomol-
ogy is richest. To actually calculate quantum cohomology we need an explicit
realisation of a class of examples, which we discuss in the next subsection.
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Figure 1: These are the 16 reflexive polyhedra ΔB in two dimensions, which
build 11 dual pairs (ΔB,Δ∗

B). Polyhedron k is dual to polyhedron 17 − k
for k = 1, . . . , 5. The polyhedra 6, . . . , 11 are self-dual.

2.2. Realizations in toric ambient spaces

In this subsection, we discuss the toric basesB leading to the above described
tame elliptically fibered Calabi–Yau dM -folds with only I1 fibre singularities.
It was observed in examples in [38], that they can be defined over toric bases
defined themselves by reflexive polyhedra [6] ΔB in dM − 1 dimensions. Here
we explore a class of elliptic Calabi–Yau fibrations, which are defined from
a reflexive polyhedra ΔB as the canonical hypersurface in the toric ambient
space defined by the reflexive polyhedra (2.20) following Batyrev’s work [6].
Note that for each ΔB, one has the choice of the elliptic fibre as discussed
in the previous section. We provide the toric data, including a basis for the
Mori cone for this class of elliptic Calabi–Yau fibrations. The construction of
the Mori cone from the star triangulation and the associated secondary fan
follows the discussion in [8,30]. Throughout the subsection we assume some
familiarity with the construction of the toric ambient spaces from polyhedra
as described, e.g., in [21, 58].

The toric ambient spaces, which allow for smooth Calabi–Yau hypersur-
faces of complex dimension dM as section of the canonical bundle, can be
described by pairs of reflexive polyhedra (Δ,Δ∗) of real dimension dM − 1.
For the threefold case, the possibilities of two-dimensional reflexive base
polyhedra are listed in figure 1 [6]. Together with a complete star triangula-
tion of Δ, they define a complex family of Calabi–Yau threefolds. The mirror
family is given by exchanging the role of Δ and Δ∗. A complete triangulation
divides Δ in simplices of volume 1. In a star triangulation all simplices con-
tain the unique interior lattice point of the reflexive polyhedron. Let us give
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first two examples for toric smooth ambient spaces in which the canonical
hypersurface leads to the E8 elliptic fibration over P

2 and over the Hirze-
bruch surface F1. The polyhedron Δ for the E8 elliptic fibration over P

2

with χ(M) = −540 is given by the following data:

(2.14)

νi l(e) l(1)

D0 1 0 0 0 0 −6 0
D1 1 1 0 −2 −3 0 1
D2 1 0 1 −2 −3 0 1
D3 1 −1 −1 −2 −3 0 1
Dz 1 0 0 −2 −3 1 −3
Dx 1 0 0 1 0 2 0
Dy 1 0 0 0 1 3 0

.

Here, we give the relevant points νi of the four- dimensional convex reflexive
polyhedron Δ embedded into a hyperplane in a five-dimensional space and
the linear relations l(i) spanning the Mori cone. This model has an unique
star triangulation, given in (2.22). We calculate the intersection ring as fol-
lows from (2.7) with a = 1

(2.15) R = 9J3
e + 3J2

e J1 + JeJ
2
1 .

The evaluation of c2 on the basis of the Kähler cone follows from (2.8) as∫
M c2Je = 102 and

∫
M c2J1 = 36.

The polyhedron Δ for the E8 elliptic fibration over F1 with χ = −480
reads

νi l(e) l(1) l(2) l(e) + l(2) l(1) + l(2) −l(2)

D0 1 0 0 0 0 −6 0 0 −6 0 0
D1 1 1 0 −2 −3 0 0 1 1 1 −1
D2 1 0 1 −2 −3 0 1 0 0 1 0
D3 1 −1 −1 −2 −3 0 0 1 1 1 −1
D4 1 0 −1 −2 −3 0 1 −1 −1 0 1
Dz 1 0 0 −2 −3 1 −2 −1 0 −3 1
Dx 1 0 0 1 0 2 0 0 2 0 0
Dy 1 0 0 0 1 3 0 0 3 0 0

.

(2.16)

This example shows that there are two Calabi–Yau phases possible over F1,
which are related by flopping a P

1 represented by l(2). This transforms the
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half K3 to a del Pezzo eight surface, which can be shrunken to a point. In
the first phase, the triangulation is described by (2.22) the intersection ring
and
∫
M c2Ji follows by (2.7), (2.8) as

(2.17) R = 8J3
e + 3J2

e J1 + JeJ
2
1 + 2J2

e J2 + J1J2J3.

and
∫
M c2Je = 92,

∫
M c2J1 = 36 and

∫
M c2J3 = 24. For the second phase,

we flop the P
1 that corresponds to the Mori cone element l(2). Generally,

if we flop the curve C this changes the triple intersection of the divisors
KiKjKk [15] by

(2.18) Δijk = −(C · Ki)(C · Kj)(C · Kk).

Now the intersection of the curves Ci which correspond to the Mori cone
vector l(i) with the toric divisors Dk is given by (Ci ·Dk) = l

(i)
k . On the other

hand, the Kk are combinations of Dk restricted to the hypersurface so that
(Kk · Ci) = δk

i .
In addition, one has to change the basis in order to maintain positive

intersection numbers2 l̃(e) = l(e) + l(2), l̃(1) = l(1) + l(2) and l̃(2) = −l(2). For
the (1, 1) forms Ji, which transform dual to the curves, we then get the
intersection ring in the new basis of the Kähler cone

R = 8J̃3
e + 3J̃2

e J̃1 + J̃eJ̃
2
1 + 9J̃2

e J̃2 + 3J̃eJ̃1J̃2 + J̃2
1 J̃2 + 9J̃eJ̃

2
2(2.19)

+ 3J̃1J̃
2
2 + 9J̃3

2 .

The intersections with c2 are not affected by the flop, only the basis change
has to be taken into account. In the second phase, the triangulation of the
base is given in the the middle of figure 2 and the triangulation of Δ is
specified by (2.21). In this phase, an E8 del Pezzo surface can be shrunken
to get to the elliptic fibration over P

2. This identifies the classes of the latter
example as Je = J̃2, J1 = J̃1, while the divisor dual to J̃3

e is shrunken.
We denote by ΔB the toric polyhedron for the base and specifying by

{(e1, e2)} = {(−2,−3), (−1,−2), (−1,−1)}

2This is one criterion that holds in a simplicial Kähler cone. The full specification
is that

∫
C J > 0,

∫
D J ∧ J > 0 and

∫
M
J ∧ J ∧ J > 0 for J in the Kähler cone and

C, D curves and divisors. If the latter is simplicial and generated by Ji, then J =∑
diJi with di > 0.
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Figure 2: The base triangulation for the flop in second example and the
blowdown of an E8 del Pezzo surface.

the toric data for the E8, E7, E6 fibre respectively. It is easy to see that all
toric hypersurfaces with the required fibration have the following general
form of the polyhedron Δ:

(2.20)

νi l(e) l(1) . . . l(b)

D0 1 0 0 0 0
∑

i ei − 1 0 . . . 0
D1 1 e1 e2 0 ∗ . . . ∗
... 1 ΔB

...
...

... ∗ . . . ∗
Dr 1 e1 e2 0 ∗ . . . ∗
Dz 1 0 0 e1 e2 1 −∑ ∗ . . . −∑ ∗
Dx 1 0 0 1 0 −e1 0 . . . 0
Dy 1 0 0 0 1 −e2 0 . . . 0

.

We note that the fibre elliptic curve is realized in a two-dimensional toric
variety, which can be defined also by a reflexive two-dimensional polyhedron
ΔF . It is embedded into Δ, so that the inner of ΔF is also the origin of Δ.
Its corners are given by

{(0, 0, e1, e2), (0, 0, 1, 0), (0, 0, 0, 1)}.

The E6, E7 and E8 fibre types correspond to the polyhedra in figure 1 with
numbers 1, 4 and 10. To check the latter equivalence requires an change
of coordinates in SL(2,Z). The dual reflexive polyhedron Δ∗ contains Δ∗

F

embedding likewise in the coordinate plane spanned by the 3rd and
4th axes.
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A triangulation of ΔB as in figures 1 or 2 lifts in a universal way to a star
triangulation of Δ as follows. To set the conventions denote by (νB

i , e1, e2)
the points of the embedded base polyhedron ΔB and label them as the
points of ΔB starting with the positive x-axis, which points to the right
in the figures, and label points of ΔB counter clockwise from 1, . . . , r. The
inner point in ΔB, (0, 0, e1, e2) is labelled z. The two remaining points of Δ;
(0, 0, 1, 0) and (0, 0, 0, 1) are labelled by x and y.

Denote the k-th d-dimensional simplex in ΔB by the labels of its vertices,
i.e.,

sim(d)
k := (λk

1, . . . , λ
k
d+1)

and in particular denote the outer edges of ΔB by

{edk|k = 1, . . . , r} := {(1, 2), . . . , (r, 1)}.

Any triangulation of ΔB is lifted to a star triangulation of Δ, which is
spanned by the simplices containing besides the inner point (0, 0, 0, 0) of Δ
the points with the labels

TrΔ = {(sim(2)
k , x), (sim(2)

k , y)|k = 1, . . . , p} ∪ {(edk, x, y)|k = 1, . . . r}.
(2.21)

In particular for star triangulations of ΔB, one has

(2.22) TrΔ = {(edk, z, x), (edk, z, y), (edk, x, y)|k = 1, . . . r}

and generators of the Mori cone for the elliptic phase contain the Mori cone
generators l(1), . . . , l(b), which correspond to a star triangulation of the base
polyhedron, which is the one in figure 1. We list here the Mori cones of the
first seven cases,

ΔB 1(1) 2(2) 3(2) 4(3) 5(3)
νB

i l(1) l(1) l(2) l(1) l(2) l(1) l(2) l(1) l(2) l(3)

z −3 −2 −2 −2 −1 0 −2 −1 −1 −1
1 1 1 0 1 0 0 1 −1 1 0
2 1 0 1 0 1 1 0 1 −1 1
3 1 1 0 1 −1 −2 1 0 1 −1
4 0 1 0 1 1 0 0 0 1
5 1 0 0
6

ex − − 1 − 4
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6(3) 7(4)
l(1) l(2) l(3) l(1) l(2) l(3) l(4) l(5) l(6)

−1 −1 0 −1 −1 −1 −1 −1 −1
1 0 0 −1 1 0 0 0 1

−1 1 0 1 −1 1 0 0 0
1 −1 1 0 1 −1 1 0 0
0 1 −2 0 0 1 −1 1 0
0 0 1 0 0 0 1 −1 1

1 0 0 0 1 −1

3 17

the remaining nine cases are given in Appendix A. We indicate in the brack-
ets behind the model the number of Kähler moduli. If the latter is smaller
then the number of Mori cone generators and the dual Kähler cone are
non-simplicial. This is the case for the models 7, 9 and for 11–16. In the
last column, we list the number of extra triangulations. The corresponding
phases involve non-star triangulations of Δ and can be reached by flops. By
the rules discussed above, we can find the intersection ring and the Mori
cone in phases related by flops. We understand also the blowing down of
one model. Non-reflexivity possesses a slight technical difficulty in providing
the data for the calculation of the instantons. The fastest way to get the
data for all cases is to provide for the models 15 and 16 a simplicial Kähler
cone and reach all other cases3 by flops and blowdowns. We will do this
in Appendix A.

3. Quantum geometry of elliptic fibrations

The aim of this section is to describe the quantum geometry of elliptic
fibrations. For this, we introduce the needed notions from topological string
theory and discuss two examples with base P

2 and F1. One of our key findings
is the holomorphic anomaly (3.9). This section finishes with a discussion of
the modular properties due to the monodromy group.

From the data provided in the last section, namely the Mori cone and the
intersection numbers, follow differential equations as well as particular solu-
tions, which allow us to calculate the instanton numbers as established math-
ematically for genus zero by Givental, Lian, Liu and Yau [24,46]. These can
be calculated very efficiently using the program described in [31]. In the cases

3Except for 13 which is available on request.
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at hand one can evaluate the genus one data using the genus zero results,
the holomorphic anomaly equation for the Ray Singer Torsion, boundary
conditions provided by the evaluation of

∫
M Jac2 and the behaviour of

the discriminant at the conifold to evaluate the instantons of the elliptic
fibrations.

The higher genus curves are less systematically studied on compact
threefolds. However, if the total space of the elliptic fibration over a base
class is a contractable rational surface, one can shrink the latter and obtain a
local model on which the modular structure of higher genus amplitudes has
been intensively studied. The explicit data suggest that that this structure
is maintained for all classes in the base.

We summarize in the next subsection the strategy to obtain the instan-
ton data and based on the results we propose a general form of the instan-
tons corrected amplitude in terms of modular forms coming from the elliptic
geometry of the fibre and a simple and general holomorphic anomaly for-
mula, which governs the all genus instanton corrected amplitudes for the
above discussed class of models.

In the following subsection, we use the B-model to prove some aspects of
the proposed statements. This can establish the A-model results for genus 0
and 1, since mirror symmetry is proven and the B-model techniques apply.
Higher genus B-model calculations have been first extended to compact
multi-moduli Calabi–Yau manifolds in [29].

3.1. Quantum cohomology, modularity and the anomaly
equations

The basic object, the instanton corrected triple intersections Cabc(ta) are
due to special geometry all derivable from the holomorphic prepotential
F (0), which also fixes the Kähler potential K(ta, t̄a) for the metric on the
vector moduli space. At the point of maximal unipotent monodromy [13,31]

F (0)(ta) = (X0)2
[

− t
3

3!
+Aabt

atb + cat
a +

χ(M)ζ(3)
2(2πi)3

(3.1)

+
∑

γ∈H2(M,Z)

n(0)
γ Li3(exp(2πiγat

a))

⎤

⎦,

where t3 = dabct
atbtc with dabc the triple intersection numbers, ca =

1
24

∫
M c2Ja and χ(M) is the Euler number of M . By Ja, a = 1, . . . , h1,1(M),

we denote harmonic (1, 1) forms, which form a basis of the Kähler cone and
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the complexified Kähler parameter ta =
∫
Ca

(iω + b), where Ca is a curve
class in the Mori cone dual to the Kähler cone and b is the Neveu–Schwarz
(1, 1)-form b-field. The real coefficients Aab are not completely fixed. They
are unphysical in the sense that the Kähler potential K(ta, t̄a) and Cabc(ta)
do not depend on them. The upper index (0) on the F (0) indicates the
genus of the instanton contributions. The triple couplings receive only con-
tributions from genus 0. At the point of maximal unipotent monodromy,
the classical topological data provide us with the B-model period integrals

Π = (FI , X
I) =

(∫
BI Ω,

∫
AI

Ω
)T

over an integral symplectic basis of 3-cycles

of the mirror geometry M̃ : (AI , B
I), I = 0, . . . , h2,1(M̃). This is achieved by

matching the b3(M̃) solutions to the Picard–Fuchs equation with various
powers of log(za) ∼ ta, with the expected form of the A-model period vector

Π = X0

⎛

⎜
⎜
⎝

2F (0) − ta∂taF (0)

∂taF (0)

1
ta

⎞

⎟
⎟
⎠(3.2)

= X0

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

t3

3!
+ cat

a − iχ(M)
ζ(3)
(2π)3

+ 2f(p) − ta∂taf(p)

−dabct
btc

2
+Aabt

b + ca + ∂taf(p)

1
ta

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where the lower case indices run from a = 1, . . . , h1,1(M). In the following
we will set X0 = 1.

One can define a generating function for the free energy in terms of a
genus expansion in the coupling gs

(3.3) F (gs, t
a) =

∞∑

g=0

g2g−2
s F (g)(ta),

where the upper index F (g)(ta) indicates as before the genus.
According to the split of the homology H2(M,Z) into the base and the

fibre homology, we define pβ =
∏b2(B)

k=1 exp(2πi
∫
β iω + b) = exp(2πi

∑b2(B)
i=1

βit
i), where β ∈ H2(M,Z) lies in the image of the map σ∗ : H2(B,Z) ↪→

H2(M,Z) induced by the embedding σ : B ↪→M ; and we define q =
exp(2πi

∫
e iω + b) = exp(2πiτ), where e ∈ H2(M,Z) is the curve representing
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the fibre. Now we define the following objects

(3.4) F
(g)
β (τ) = Coeff(F (g)(ta), pβ).

We have the following universal sectors:

F
(0)
0 (τ) =

(∫

B
c21

)
t3

3!
+ χ(M)

ζ(3)
2(2πi)3

− χ(M)
∞∑

n=1

Li3(qn),

(3.5)

F
(1)
0 (τ) =

(∫
B c2

24

)

Li1(q), F
(g>1)
0 (τ) = (−1)gχ(M)

2
|B2gB2g−2|

2g(2g − 2)(2g − 2)!
.

(3.6)

We note that it follows from the expression for F (0)
0 (q) that

(3.7) Cτττ =
∫

B
c21 +

χ(M)
2

ζ(−3) − χ(M)
2

ζ(−3)E4(τ).

The F (g)
β (τ) have distinguished modular properties. The F (g)

β (τ) can be writ-
ten in the following general form [32,40]:

(3.8) F
(g)
β (τ) =

(
q

1
24

η(τ)

)12
∑

i aiβi

P2g+6
∑

i aiβi−2(E2(τ), E4(τ), E6(τ)),

where η(τ) is the Dedekind eta function (C.1), and P2g+6
∑

i aiβi−2(E2, E4,

E6) are (quasi)-modular forms [36] of weight 2g + 6
∑

i aiβ
i − 2 , where

E2k(τ) are the Eisenstein series of weight 2k (C.2). The functions Pm are
quasi-modular forms since, besides being a function of the true modular
forms E4 and E6, they are also a function of E2 that does not transform as
a true modular form.

For the sectors β > 0, which describe non-trivial dependence on the
Kähler class of the base, the E2 dependence satisfies the following recur-
sive condition

∂F
(g)
β (τ)

∂E2
=

1
24

g∑

h=0

∑

β′+β′′=β

(
β′ · β′′)F (h)

β′ (τ)F (g−h)
β′′ (τ)(3.9)

+
1
24
β · (β −KB)F (g−1)

β (τ).

We derive the above relations in Section 4. For the other types of ellip-
tic fibrations E7, E6, & D5, the right-hand side is divided by a = 2, 3, 4,
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respectively. Equation (3.9) generalizes the similar Equation (1.2) in [32], to
arbitrary classes in the base and types of fibres. In particular, if one restricts
to elliptic fibrations over the blow up of P

2 and the Hirzebruch surface F1 the
rational fibre class in the base (3.9) becomes the Equation of [32] counting
curves of higher genus on the E8, E7, E6, & D5 del Pezzo surfaces. The form
(3.8) and its relation to [32] has been observed in [40] for the Hirzebruch
surface F0 as base. A derivation of Equation (3.9) is given in Section 4.

3.2. The B-model approach to elliptically fibred Calabi–Yau
spaces

We continue the discussion with some B-model aspects of elliptically fibred
Calabi–Yau manifolds. We assume some familiarity with the formalism devel-
oped in [30, 31] and concentrate on features relevant and common to the
B-model geometry of elliptic fibrations and how they emerge from the topo-
logical data of the A-model discussed in Section 2.

The vectors l(i) are the generators of the Mori cone, i.e., the cone dual
to the Kähler cone. As such they reflect classical properties of the Kähler
moduli space and the classical intersection numbers, like the Euler number
and the evaluation of

∫
M c2ωa on the basis of Kähler forms on the elliptic

fibration.
On the other hand, the differential operators

(3.10)

⎛

⎝
∏

l
(r)
i >0

∂
l
(r)
i

ai −
∏

l
(r)
i <0

∂
−l

(r)
i

ai

⎞

⎠ Π̃ = 0,

annihilate the periods Π̃ = 1
a0

Π of the mirror M̃ . Here, the ai are the coeffi-
cients of the monomials in the equation defining M̃ . They are related to the
natural large complex structure variables of M̃ by

(3.11) zr = (−1)lr0
∏

i

a
lri
i .

Note that Π is well defined on M̃ , while Π̃ is not an invariant definition
of periods on M̃ . However by commuting out a−1

0 one can rewrite Equations
(3.10) so that they annihilate Π. Further, they can be expressed in the
independent complex variables zr using the gauge condition θai

=
∑

r l
k
i θzr

,
where θx = x d

dx denotes the logarithmic derivative. Equations (3.10) reflect
symmetries of the holomorphic (3, 0) form and every positive l in the Mori
cone (3.10) leads to a differential operator annihilating Π. The operators
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obtained in this way are contained in the left differential ideal annihilating
Π, but they do not generate this ideal. There is however a factorization
procedure, basically factoring polynomials P (θ) to the left, that leads in our
examples to a finite set of generators that determines linear combinations of
periods as their solutions. It is referred to as a complete set of Picard–Fuchs
operators. In this way, properties of the instanton corrected moduli space of
M , often called the quantum Kähler moduli space are intimately related to
the l(r) and below we will relate some of it properties to the topology of M .

In particular, the Mori generator l(e) determines to a large extend
the geometry of the elliptic fibre modulus. As one sees from (2.20) the
mixing between the base and the fibre is encoded in the z row of l(i),
i = 1, . . . , h1,1(B) and l(e). Let us call this the z-component of l(i) and the
corresponding variable az.

Following the procedure described above, one obtains after factorizing
from l(e) a second-order generator Picard–Fuchs operator. For the fibrations
types introduced before it is given by

(3.12) Lk
e = θe

(

θe −
∑

i

aiθi

)

−DK ,

where k = E8, E7, E6, D5 refers to the fibration type and DK contains the
dependence on the type

DE8 = 12(6θe − 1)(6θe − 5)ze, DE7 = 4(4θe − 1)(4θe − 3)ze,

DE6 = 3(3θe − 1)(3θe − 2)ze, DD5 = 4(2θe − 1)2ze.
(3.13)

Formally setting θi = 0 corresponds to the large base limit. Then Equation
(3.12) becomes the Picard–Fuchs operator, which annihilates the periods
over the standard holomorphic differential on the corresponding family of
elliptic curves.

In the limit of large fibre one gets as local model the total space of
the canonical line bundle O(KB) → B over the Fano base B. Local mirror
symmetry associates to such non-compact Calabi–Yau manifolds a genus
one curve with a meromorphic 1-form λ that is the limit of the holomorphic
(3, 0)-form. The local Picard–Fuchs system LB

i annihilating the periods Πloc

of λ can be obtained as a limit of the compact Picard–Fuchs system for
l(i), i = 1, . . . , h1,1(B) by formally setting θe = 0. It follows directly from
(3.10), since the Mori generators of the base have vanishing first entry and
commuting out a−1

0 becomes trivial. Differently then for the elliptic curve of
the fibre, these Picard–Fuchs operators do not annihilate the periods over
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holomorphic differential one form of the elliptic curve, which are 1
az

Πloc.
Given the local Picard–Fuchs system the dependence on θe can be restored
by replacing θaz

by θe −
∑

i aiθi instead of −∑i aiθi. Since l(i) is negative
θe appears in Li

b only multiplied by at least one explicit zb
i factor.

There are important conclusions that follow already from the general
form of the Picard–Fuchs system. To see them it is convenient to rescale
xe = ckze, where cE8 = 432, cE7 = 64, cE6 = 27, cD5 = 16. It is often useful
to also rescale the zi in a similar fashion and call them xi.

The effect of this is that the symbols of the Picard–Fuchs system become
the same for all fibre types. From this, we can conclude that for all fibre types
the Yukawa-couplings and the discriminants are identical in the rescaled
variables.

The second conclusion is that the Picard–Fuchs equation of the compact
Calabi–Yau is invariant under the Z2 variable transformation

(3.14) xe → (1 − xe), xi →
(

− xe

1 − xe

)ai

xi.

This means that there is always a Z2 involution acting on the moduli space
parameterized by (xe, xi), which must be divided out to obtain the truly
independent values of the parameters.

Another consequence of this statement is that the discriminants Δi(xj)
of the base Picard–Fuchs system determine the discriminant locus of the
global system apart from the fibre related Δ(xe) components. The former
contains always a conifold component Δc(xj) and only that one, if there
are no points on the edges of the 2d polyhedron. Points on the edges cor-
respond to SU(2) or SU(3) gauge symmetry enhancement discriminants,
which contain only xi variables dual to Kähler classes, whose ai = 0. They
are therefore invariant under (3.14). Moreover the lowest order term in the
conifold discriminant is a constant and highest terms are weighted monomi-
als of degree χ(B) with weights for the xi a

i or 1 if ai = 0. It follows by (3.14)
that the transformed conifold discriminant Δ′

c(xj) ∼ (1 − xe)χ(B) + O(xi).

3.2.1. Examples: elliptic fibrations over P
2 and F1. Let us demon-

strate the above general statements with a couple of examples. We discuss
the E8 elliptic fibration with base P

2 and with base F1.
For the first example, the Mori vectors are given as

l(e) = (−6, 3, 2, 1, 0, 0, 0),

l(1) = (0, 0, 0,−3, 1, 1, 1).
(3.15)
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Form this, we can derive the following set of Picard–Fuchs equations, where
we denote θi = zi∂zi

.

Le = θe(θe − 3θ2) − 12ze(6θe + 5)(6θe + 1),

L1 = θ3
2 − z2(θe − 3θ2)(θe − 3θ2 − 1)(θe − 3θ2 − 2).

(3.16)

The Yukawa couplings for this example read as follows, where we use ze =
xe
432 , z1 = x1

27 and the discriminants Δe = 1 − 3xe + 3x2
e − x3

e − x3
ex1 and

Δ1 = 1 + x1

Ceee =
9

x3
eΔe

,

Cee1 = −3(−1 + xe)
x2

ex1Δ1
,

Ce11 =
(−1 + xe)2

xex2
1Δe

,

C111 =
1 − 3xe + 3x2

e

3x2
1ΔeΔ1

.

(3.17)

The second example over F1 has the following three generators of the Mori
cone

l(e) = (−6, 3, 2, 1, 0, 0, 0, 0),

l(1) = ( 0, 0, 0,−1,−1, 0, 1, 1),

l(2) = ( 0, 0, 0,−2, 1, 1, 0, 0),

(3.18)

and gives rise to the following Picard–Fuchs equations:

Le = θe(θe − 2θ2 − θ1) − 12ze(6θe + 5)(6θe + 1),

L1 = θ2
1 − z1(θ1 − θ2)(2θ2 + θ1 − θe),

L2 = θ2(θ2 − θ1) − z2(2θ2 + θ1 − θe)(2θ2 + θ1 − θe + 1).
(3.19)

This example contains the rational elliptic surface, which we discuss in detail
in Section 6. Furthermore, we focus on this example to give a proof of the
holomorphic anomaly at genus zero by using mirror symmetry in Section 4.1.

3.3. Modular subgroup of monodromy group

The deeper origin of the appearance of modular forms is the monodromy
group of the Calabi–Yau threefold. Candelas et al. [14] explain that in
the large volume limit of X18[1, 1, 1, 6, 9], which corresponds to the elliptic
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Figure 3: The moduli space for the elliptic Calabi–Yau fibration over P
2

X18[1, 1, 1, 6, 9].

fibration over P
2, the monodromy group reduces to an SL(2,Z) monodromy

group. This section recalls the appearance of this modular group and how it
generalizes to other elliptic fibrations. The moduli space of X18[1, 1, 1, 6, 9]
with the degeneration loci is portrayed in figure 3.

We continue by recalling the monodromy for the model in [14] adapted
to our discussion. The fundamental solution is given by

w0(ze, z1) =
∞∑

m,n=0

(18n+ 6m)!
(9n+ 3m)! (6n+ 2m)! (n!)3m!

z3n+m
e zm

1(3.20)

=
∞∑

k=0

(6k)!
k! (2k)! (3k)!

zk
e Uk(z1),
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with

Uν(z1) = zν
1

∞∑

n=0

ν!
(n!)3 Γ(ν − 3n+ 1)

z−3n
1(3.21)

= zν
1

∞∑

n=0

Γ(3n− ν)
Γ(−ν) (n!)3

z−3n
1 ,

which is a finite polynomial for positive integers ν, since Γ(ν − 3n+ 1) = ∞
for sufficiently large n. The translation to the parameters in [14] is (ze, z1) =
( (18ψ)−6,−3φ). The natural coordinates obtained from toric methods are
z̃e = zez1 and z̃1 = z−3

1 . Note that the second line (3.20) makes manifest
the presence of the elliptic curve in the geometry. For this regime of the
parameters one can easily find logarithmic solutions by taking derivatives to
k and n [30]

2πiw(1)
e (ze, z1) = log(zez1)w0 + · · · ,(3.22)

2πiw(1)
1 (ze, z1) = −3 log(z1)w0 + · · · .

The periods are defined by τ = w
(1)
e /w0 and t1 = w

(1)
1 /w0 and q = e2πiτ ,

q1 = e2πit1 .
The two monodromies which generate the modular group are

M0 : (ze, z1) → (e2πize, z1), ze small, z1 large,
M∞ : (ze, z1) → (e2πize, z1), ze large, z1 large.

The monodromy around ze = 0 follows directly from (3.22), it acts as

(3.23) M0 =
(

1 1
0 1

)

on (w(1)
e , w0)T. To determine the action on the periods of M∞, we need to

analytically continue w0 and w(1)
1 to large ze. To this end, we write w0 as a

Barnes integral

(3.24) w0(ze, z1) =
1

2πi

∫

C
ds

Γ(−s) Γ(6s+ 1)
Γ(2s+ 1) Γ(3s+ 1)

eπis zs
e Us(z1),

where C is the vertical line from −i∞− ε to i∞− ε. For small |ze| the
contour can be deformed to the right giving back the expression in (3.20).
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For large |ze| one instead obtains the expansion

(3.25) w0(ze, z1) =
1

6π2

∑

r=1,5

sin(πr/3)
∞∑

k=0

ar(k) (−ze)−k− r

6 U−k−r/6(z1),

with

ar(k) = (−1)k Γ(k + r/6)Γ(2k + r/3)Γ(3k + r/2)
Γ(6k + r)

.

The logarithmic solution w(1)
e is given similarly by

w(1)
e (ze, z1) =

1
2πi

∫

C
ds

Γ(−s)2 Γ(6s+ 1) Γ(s+ 1)
Γ(2s+ 1) Γ(3s+ 1)

e2πis zs
e Us(z1),

(3.26)

=
1

6π2i

∑

r=1,5

e−πir/6 cos(πr/6)
∞∑

k=0

ar(k) (−ze)−k− r

6 U−k−r/6(z1).

To determine the action of M∞, we define the basis fr(ze, z1) =
∑∞

n=0

ar(k) (−ze)−k− r

6 U−k−r/6(z1) for r = 1, 5, and the matrix A that relates the
two bases: (w(1)

e , w
(1)
1 )T = A (f1, f5)T. Clearly, M∞ acts diagonally on the

fr: T = diag(α−1, α−5) with α = e2πi/6, which gives for M∞

(3.27) M∞ = ATA−1 =
(

0 −1
1 1

)

∈ SL2(Z).

This gives for the monodromy around the conifold locus

(3.28) M1 = M0M−1
∞ =

(
1 0
1 1

)

.

The generator S =
(

0 1−1 0

)
of SL2(Z) corresponds to M0M−1∞ .

The large volume limit is such that u = q3/2p→ 0. We see that M0 and
M∞ map small u to small u. The monodromies act on u by [14]

(3.29) M0u = −u, M∞u = u

Thus we have established an action of SL2(Z) on the boundary of the moduli
space.

The above analysis can be extended straightforwardly to the other types
of fibrations using the expansions (B.2). The matrix M0 is for all fibre
types the same. We find that M∞ =

(
1−a −1

a 1

) ∈ Γ0(a) for a = 2, 3 and 4
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corresponding to the fibre types E7, E6 and D5. Note that M∞ has order
4 and 3 for a = 2 and 3, respectively, while the order is infinite for a = 4.
Generalization to other base surfaces B is also straightforward. In case of
multiple 2-cycles in the base, it is natural to define parameters for each base
class: ui = qai/2pi, with pi = exp(2πi ti), i = 1, . . . , b2(B). This is precisely
the change of parameters given by (2.12). These transform under the action
of M0 and M∞ as:

(3.30) M0ui = (−)aiui, M∞ui = ui.

4. Derivation of the holomorphic anomaly equation

4.1. The elliptic fibration over F1

In this section, we discuss the holomorphic anomaly equation that arises
for elliptically fibered Calabi–Yau threefolds. By using mirror symmetry the
anomaly for genus 0 is proven for the base being F1. We further establish a
derivation from the BCOV holomorphic anomaly equations.

We start by deriving the holomorphic anomaly equation at genus zero by
adapting the proof which appeared in [32] for a similar geometry. For this, we
determine the solution to the Picard–Fuchs equation and express the solution
in terms of modular forms. After determining the mirror map, we find a
recursive relation in the functions cm(xe), which are related to the genus 0
topological amplitude. This can be used to prove the holomorphic anomaly
equation for genus 0. Furthermore, the genus 0 topological amplitude can
be expressed in terms of standard Eisenstein series of the elliptic parameter.
We start by studying the Picard–Fuchs operator associated to the elliptic
fiber X6[1, 2, 3] only. Denoting by θe = ze∂ze the Picard–Fuchs operator can
be written as

(4.1) L = θ2
e − 12ze(6θe + 5)(6θe + 1).

One can immediately write down two solutions as power series expansions
around ze = 0. They are given by

(4.2) φ(ze) =
∑

n≥ 0

anz
n
e , φ̃(ze) = log(ze)φ(ze) +

∑

n≥ 0

bnz
n
e ,
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with

an =
(6n)!

(3n)!(2n)!n!
,(4.3)

bn = an(6ψ(1 + 6n) − 3ψ(1 + 3n) − 2ψ(1 + 2n) − ψ(1 + n)),

where ψ(z) denotes the digamma function. The mirror map is thus given by

(4.4) 2πiτ =
φ̃(ze)
φ(ze)

.

Using standard techniques from the Gauss–Schwarz theory for the Picard–
Fuchs equation (cf. [45]) one observes

(4.5) j(τ) =
1

ze(1 − 432ze)
,

which can be inverted to yield

(4.6) ze(τ) =
1

864
(1 −

√
1 − 1728/j(τ)) = q − 312q2 + O(q3).

Further, the polynomial solution φ(xe) can be expressed in terms of modular
forms as

(4.7) φ(ze) = 2F1

(
5
6
,
1
6
, 1; 432ze

)

= 4
√
E4(τ),

from which one can conclude that

E4(τ) = φ4(ze),

E6(τ) = φ6(ze)(1 − 864ze),

Δ(τ) = φ12(ze)ze(1 − 432ze),
1

2πi
dze
dτ

= φ2(ze)ze(1 − 432ze).

(4.8)

Let us now examine the periods of the mirror geometry M̃ in the limit
that the fibre f over the Hirzebruch surface F1 becomes small. At ze =
z1 = z2 we have a point of maximal unipotent monodromy. In particular,
this implies that one has among the eight periods one holomorphic one,
w0(ze, z1, z2), one that starts with log(ze), w

(1)
e (ze, z1, z2), and one that starts

with log(z1), w
(1)
1 (ze, z1, z2). In the limit of small fibre f , i.e., z2 = 0, one



“CNTP-6-4-A5-KLEMM” — 2013/6/5 — 15:56 — page 875 — #27
�

�

�

�

�

�

�

�

Quantum geometry of elliptic Calabi–Yau manifolds 875

obtains for these periods [32]:

w0(ze, z1, 0) = φ(ze),

w(1)
e (ze, z1, 0) = φ̃(ze),

w
(1)
1 (ze, z1, 0) = log(z1)φ(ze) + ξ(ze) +

∑

m≥ 1

(Lmφ(ze))zm
1 ,

(4.9)

with

(4.10) ξ(ze) =
∑

n≥ 0

an(ψ(1 + n) − ψ(1))zn
e ,

and

(4.11) Lm =
(−)m

m(m!)

m∏

k=1

(θze − k + 1).

This can be obtained by applying the Frobenius method to derive the period
integrals, see, e.g., [31]. The mirror map reads

(4.12) 2πitj =
w

(1)
j (ze, z1, 0)
w0(ze, z1, 0)

, j = e, 1.

Comparing this with our previous discussion about the Picard–Fuchs opera-
tor of the elliptic fibre we see that for te = τ there is nothing left to discuss.
Hence, let us study the mirror map associated to t1 = t. We observe that
by formally inverting, the inverse mirror map can be determined iteratively
through the relation [32]

(4.13) z1(q, p) = p ζe−
∑

m≥1 cm(ze)zm
1 ,

where ζ = e−
ξ(ze)
φ(ze) , p = exp(2πi t) and

(4.14) cm(ze) =
Lmφ(ze)
φ(ze)

.

Using Equation (4.8) c1(ze) is given by

c1(ze) = − 1
12

(f1 − 2) − f1

12
E2(τ)
φ2(ze)

= − 1
φ6

f1

12
(E2E4 − E6),

(4.15)
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where we introduced f1 = (1 − 432ze)−1. In order to obtain the other cm(ze)
one uses

θef1 = f1(f1 − 1),

θe

(
E2

φ2

)

= − 1
φ8

f1

12
(
E2

2E4 − 2E2E6 + E2
4

)
,

θe

(
E6

φ6

)

= − 1
φ12

f1

12
(
6E3

4 − 6E2
6

)
,

(4.16)

and finds the following kind of structure. One can show inductively that

(4.17) cm(ze) =
1
φ6m

(
f1

12

)m

Q6m(E2, E4, E6),

where Q6m is a quasi-homogeneous polynomial of degree 6m and type
(2, 4, 6), i.e.,

Q6m(λ2ze, λ
4z1, λ

6z2) = λ6mQ6m(ze, z1, z2).

Also by induction, it follows from (4.15) and (4.16) that Q6m is linear in
E2. This allows us to write a second structure which is analogous to the one
appearing in [32] and given by

(4.18) cm(ze) = Bm
E2

φ2
+Dm,

where the coefficients Bm, Dm obey the following recursion relation:

Bm+1 = − m

(m+ 1)2
[(θze −m)Bm +D1Bm −B1Dm] ,

Dm+1 = − m

(m+ 1)2
[(θze −m)Dm −D1Dm +B1Bm] ,

(4.19)

with B1 = − f1

12 and D1 = − 1
12(f1 − 2). A formal solution to the recursion

relation (4.19) can be given by

Bm = −fm

12
,

Dm =
1
f1

[
(m+ 1)2

m
fm+1 + (θe −m− 1

12
(f1 − 2))fm

]

,
(4.20)

where we define fm to be

(4.21) fm(ze) = φ̃(ze)Lmφ(ze) − φ(ze)Lmφ̃(ze).
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Owing to the relations (4.16) we conclude, that the fm as well as Bm and Dm

are polynomials in f1. Since f1 is a rational function of ze, it transforms well
under modular transformations. Therefore, modular invariance is broken
only by the E2 term in cm. We express this via the partial derivative of cm

(4.22)
∂cm(ze)
∂E2

= − 1
12
fm(ze)
φ2(ze)

.

In order to prove the holomorphic anomaly Equation (3.9), one first
shows using the general results about the period integrals in [31] that the
instanton part of the prepotential can be expressed by the functions fm(ze).
A tedious calculation reveals

(4.23)
1

2πi
∂

∂t
F (0)(τ, t) =

∑

m≥ 1

fm(ze)
φ2(ze)

zm
1 .

Using the inverse function theorem and Equations (4.22), (4.13) yields

(4.24)
∂z1
∂E2

=
1
12

(
1

2πi
∂z1
∂t

)(
1

2πi
∂F (0)

∂t

)

.

Now, we have

(4.25)
∂

∂E2

(
1

2πi
∂F (0)

∂t

)

=
1
12

(
∂2F (0)

∂(2πit)2

)(
1

2πi
∂F (0)

∂t

)

,

which implies that up to a constant term in p one arrives at

(4.26)
∂F (0)

∂E2
=

1
24

(
1

2πi
∂F (0)

∂t

)2

.

By definition of F (0)
n , Equation (3.4), we have 1

2πi
∂
∂tF

(0)(τ, t) =
∑

m≥ 1m

F
(0)
m pm and hence obtain by resummation

(4.27)
∂F

(0)
n

∂E2
=

1
24

n−1∑

s=1

s(n− s)F (0)
s F

(0)
n−s.

This almost completes the derivation of (3.9). We still need to determine the
explicit form of F (0)

n . To achieve this we proceed inductively. Using (4.8),
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(4.23) and (4.13) one obtains

(4.28) F
(0)
1 =

ζf1

φ2
= q

1
2
E4

η12
.

Employing the structure (4.17) one can evaluate (4.23) and calculate that

F (0)
n =

ζnfn
1

φ6n
P6n−2(E2, E4, E6),

=
(
ζf1

φ2

)n 1
φ4n

P6n−2(E2, E4, E6),

=
q

n

2

η12n
P6n−2(E2, E4, E6),

(4.29)

where P6n−2 is of weight 6n− 2 and is decomposed out of (parts of) Qm’s.
This establishes a derivation of the holomorphic anomaly Equation (3.9)
at genus zero for the elliptic fibration over Hirzebruch surface F1 with
large fibre class. We collect some results for the other fibre types in
Appendix B.

4.2. Derivation from BCOV

The last section provided a derivation of the anomaly Equation (3.9) for
genus 0 from the mirror geometry. More fundamental is a derivation purely
within the context of moduli spaces of maps from Riemann surfaces to a
Calabi–Yau manifold. This is the approach taken by Bershadsky et al. [9]
(BCOV) to derive holomorphic anomaly equations for genus g n-point cor-
relation function with 2g − 2 + n > 0. The correlation functions are given
by covariant derivatives to the free energies F (g): C(g)

a1a2...an = Da1 . . . Dan
F g,

with Da covariant derivatives of for sections of the bundle L2−2g ⊗ Symn T ,
with T the tangent bundle of the coupling constant moduli space, and L a
line bundle over this space whose Chern class corresponds to Gab̄.

The holomorphic anomaly equation reads for the n-point functions

∂̄aC
(g)
a1...an

=
1
2
C̄āb̄c̄e

2KGbb̄Gcc̄C
(g−1)
bca1...an

+

+
1
2
C̄āb̄c̄e

2KGbb̄Gcc̄
g∑

r=0

n∑

s=0

1
s!(n− s)!
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×
∑

σ∈Sn

F
(r)
baσ(1)...aσ(s)

C(g−r)
caσ(s+1)...aσ(n)

− (2g − 2 + n− 1)
n∑

s=1

Gaās
C(g)

a1...as−1as+1...an
.(4.30)

This equation can be summarized in terms of the generating function

F (gs, t
a;xa) =

∞∑

g=0

∞∑

n=0

g2g−2
s

1
n!
C(g)

a1...an
xa1 . . . xan(4.31)

+
(
χ(M)

24
− 1
)

log gs.

Contrary to [9], we take the terms with 2g − 2 + n ≤ 0 as given by D1 . . .
DnF

(g) instead of setting them to 0. Equation (4.30) implies that F satisfies

∂̄a exp(F ) =
[
g2
s

2
F̄āb̄c̄e

2KGbb̄Gcc̄ ∂2

∂xb∂xc
(4.32)

− Gābx
b

(

gs
∂

∂gs
+ xc ∂

∂xc

)]

exp(F ).

To relate (4.32) to the holomorphic anomaly Equation (3.9) for this geome-
try, we split again the Kähler parameters ta into the fibre parameter τ and
base parameters ti. Then, we write F (gs, τ, t

i;xi) as a Fourier expansion
instead of a Taylor expansion in xi:

F (gs, τ, t
i;xi) =

∞∑

g=0

∑

β∈H2(B,Z)

g2g−2
s F

(g)
β (τ) f (g)

β (xi, ti) e2πiβ·xpβ(4.33)

+
(
χ(M)

24
− 1
)

log gs,

with as before pβ = exp(2πi tiβi), q = exp(2πi τ). Moreover, the functions
f

(g)
β (xi, ti) satisfy DiF |x=0 = ∂xi

F |x=0 and f
(g)
β (0, ti) = 1. In the large vol-

ume limit, the covariant derivatives Di become flat derivatives ∂
∂ti and thus

fg
β(xi, ti) → 1. Therefore, to deduce (3.9) from (4.32) we can set xi = 0 and

replace the ∂
∂xi by ∂

∂ti .



“CNTP-6-4-A5-KLEMM” — 2013/6/5 — 15:56 — page 880 — #32
�

�

�

�

�

�

�

�

880 Albrecht Klemm, Jan Manschot & Thomas Wotschke

Equation (3.9) follows now by considering 1
2πi∂τ̄ exp(F ) on the right-

hand side of (4.32). As discussed earlier, all τ̄ dependence arises from com-
pleting the weight 2 Eisenstein series Ê2(τ) = E2(τ) − 3

πτ2
, which gives:

(4.34)
∂

∂E2
=

4π2τ2
2

3
∂

2πi∂τ̄
.

We first discuss how the right-hand side of (3.9) can be derived from
Equation (4.32) for the geometry X18[1, 1, 1, 6, 9]. We use the basis (2.7)
and choose as parameters the “base” parameter t = B + iJ and the fibre
parameter τ = τ1 + iτ2. We are interested in the large volume limit τ → i∞,
t→ i∞ in such a way that J � τ2. In this limit, the Kähler potential is well
approximated by the polynomial form

(4.35) K ≈ − log(4
3 d̃abcJ aJ bJ c) = − log(4

3(ατ3
2 + 3τ2J 2)),

with α = K̃3
e (2.7). This gives for the metric

(
Gτ τ̄ Gtτ̄

Gτ t̄ Gtt̄

)

≈

⎛

⎜
⎜
⎝

1
4τ2

2

ατ2
3J 3

ατ2
3J 3

1
2J 2

⎞

⎟
⎟
⎠,

which gives for the matrix eKGij̄

(4.36) eKG−1 ≈

⎛

⎜
⎜
⎝

1
J 2

−2ατ2
2

3J 3

− ατ2
2

3J 3

1
2τ2

⎞

⎟
⎟
⎠.

Thus in the limit J → ∞, one finds that only eKGtt̄ ≈ 1
2τ2

does not vanish.
Therefore, C̄τ̄ b̄c̄e

2KGbb̄Gcc̄ ∂2

∂xb∂xc ≈ 1
4π2

1
4τ2

2

∂2

∂xt∂xt .4 Using (4.34), this shows
that (4.32) reduces to:

(4.37)
∂

∂E2
exp(F ) =

g2
s

24

(

p
∂

∂p

)2

exp(F ).

Expansion of both sides in p and taking the pn coefficient gives a holomor-
phic anomaly Equation as (3.9) for g = 0. It also gives the correct (3.9) for
g > 0 except for the appearance of KB. We belief that a more thorough

4The factor 1
4π2 appears due to a factor −2πi between the moduli in [9] and ours.
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analysis of the covariant derivatives will explain this term. Assuming the
form f

(g)
β (x, t) → 1 + x2 β ·KB + · · · would give the shift in (3.9).

The derivation is very similar for the other types of fibres discussed in
Section 2. The right hand side of Equation (4.37) is simply divided by a, in
agreement with [32].

5. T -duality on the fibre

In this section, we discuss properties of T -duality on the elliptic fibre in order
to relate the result from our period calculations to D4-brane counting. One
can perform two T -dualities around the circles of the elliptic fibre. Due to the
freedom in choosing the circles, this leads to an SL(2,Z) (or a congruence
subgroup) group of dualities mapping IIA branes to IIA branes. This duality
group is equal to the modular subgroup of the monodromy group which leave
invariant the F (g)

β ’s discussed in Section 3.3.
Let D2e/β be a D2-brane wrapped either on the elliptic fibre e or on a

class β in the base. Moreover, we denote by D4e a D4-brane wrapped around
the base and by D4β a D4-brane wrapped around the cycle β in the base
and the elliptic fibre e. The double T-duality on both circles of the elliptic
fibre transforms pairs of D-brane charges heuristically in the following way:

(
D6
D4e

)

= γ

(
D̃6
D̃4e

)

,

(
D4β

D2β

)

= γ

(
D̃4β

D̃2β

)

,(5.1)
(
D2e

D0

)

= γ

(
D̃2e

D̃0

)

,

with γ in SL2(Z) or a congruence subgroup. See for more a more formal
treatment of T -duality on Calabi–Yau manifolds [3,4]. In the following sec-
tions, we will always consider the element γ =

(
0 −1
1 0

)
. T-duality is not valid

for every choice of the Kähler parameter. One way to see this is that the
BPS invariants of D2 branes do not depend on the choice of the Kähler
moduli but those of D4 and D6 branes do through wall-crossing. The choice
where the two are related by T -duality is sufficiently close to the class of
the elliptic fibre, this is called a suitable polarization in the literature [34].
Sufficiently close means that no wall is crossed between the fibre class and
the suitable polarization.

The equality of invariants of D0 branes and D2 branes wrapping the
fibre can be easily verified. The BPS invariant of an arbitrary number n > 0
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of D0 branes is known to be equal to the Euler number of the Calabi–
Yau [42, Section 6.5]:

(5.2) Ω( (0, 0, 0, n),M) = −χ(M).

One can verify that these equal the BPS invariants of n D2 branes wrapping
the E8 elliptic fibre of M . See for example the tables with GW-invariants for
X18(9, 6, 1, 1, 1) and X24(12, 8, 2, 1, 1) in Appendix B of [30]. If the
modular group is a congruence subgroup of level k then only the BPS
invariant corresponding to n = 0 mod k D2 branes wrapping the fibre
equals (5.2).

Our interest is in the D4-branes which can be obtained from D2γ with
γ = β + ne by T -duality. These D4-branes wrap classes in the base times
the fibre, and have D0 brane charge n. D4-branes on Calabi–Yau manifolds
correspond to black holes in four-dimensional space-time and are well studied
[47]; in particular,M -theory relates the degrees of freedom ofD4-brane black
holes to those of a N = (4, 0) conformal field theory (CFT) with left and
right central charges:

(5.3) cL = P 3 + 1
2c2 · P, cR = P 3 + c2 · P,

with P the 4-cycle wrapped by the D4-brane, and c2 the second Chern
class of the Calabi–Yau threefold. Typically, the number of 2-cycles in the
D4-brane is larger than the number of 2-cycles in the Calabi–Yau
threefold.

In the following, we will use the notation of [49]. The homology class P
naturally gives rise to a quadratic form Dab = dabcP

c which has signature
(1, b2(M) − 1). Let Λ be the lattice Z

b2 with quadratic form Dab. The dual
lattice with quadratic form D−1

ab is denoted by Λ∗. The Kähler modulus
J =

∫
X ω gives the natural projection of a vector k ∈ Λ to the positive-

definite subspace of Λ ⊗ R

(5.4) k+ =
k · J
J 2

J ,

with J 2 = dabcP
aJ bJ c.
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The supergravity partition function of D4-branes generically takes the
following form [10,19,49]:

ZP (CR, τ ; t) =
∑

Q0,Q

Ω̄(Γ; t) (−1)P ·Q(5.5)

× e
(
−τ̄ Q̂0̄ + τ(Q−B)2+/2 + τ̄(Q−B)2−/2

+ CR · (Q−B/2)
)
.

where P,Q and Q0 correspond to the homology classes of respectively the
D4-, D2- and D0-branes. The parameter CR ∈ Λ ⊗ R is related to the
Ramond–Ramond 3-form that couples to D2-branes: CR,3 = Ci

RJi ∧ dt in
terms of the basis Ji of (1,1)-forms on M introduced below Equation (2.8).
Furthermore, τ is the modular parameter valued in the upper-half plane
H, and t = B + iJ ∈ Λ ⊗ C the complexified Kähler modulus. On the right
hand side, the coefficients Ω̄(Γ; t) are rational invariants and related to the
integer invariants Ω(Γ; t) by the multi-cover formula

(5.6) Ω̄(Γ; t) =
∑

m|Γ,m≥1

Ω(Γ/m; t)
m2

.

Note that the multi-cover contributions come here with a factor m−2,
whereas the generating function F (0)(ta) (3.1) of genus 0 Gromov–Witten
invariants n̄(0)

γ weights the Gopakumar–Vafa invariants n(0)
γ/m, bym−3: n̄(0)

γ =
∑

m|γ,m≥1 n
(0)
γ/m/m

3. The invariants Ω(Γ; t) are related to the Euler number
of the appropriate moduli space Mt(Γ) by

(5.7) Ω(Γ; t) = (−1)dimC Mt(Γ) χ(Mt(Γ)).

Furthermore, the quantity Q̂0̄ is a shorthand notation for −Q0 + 1
2Q

2. This

quantity determines the horizon area of the black hole Abh = 4π
√

2
3cRQ̂0̄,

which is the classical manifestation of the entropy of the black hole.
Physical arguments imply that ZP (CR, τ ; t) transforms as a modular

form of weight (1
2 ,−3

2). If the B-field decouples from the stability condition,
ZP (CR, τ ; t) allows a theta function decomposition:

(5.8) ZP (CR, τ ; t) =
∑

μ

hP,μ(τ) ΘP,μ(τ, CR, B),
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and hP,μ(τ) is a vector valued modular form of weight −1 − b2(M)/2
given by

(5.9) hP,μ(τ) =
∑

Q0

ΩP (Q̂0̄) q
Q̂0̄

with Q̂0̄ = −Q0 + 1
2μ

2. This symmetry is also present in the Maldacena-
Strominger-Witten (MSW) conformal field theory which arises in the near
horizon geometry of a single centre D4-brane black hole [10]. We refer to [49]
for a discussion of the relation between the supergravity partition and the
CFT partition function. In terms of the central charges cL/R of this conformal
field theory, hP,μ(τ) typically takes the form

(5.10) hP,μ(τ) =
fP,μ(τ)
η(τ)cR

with fP,μ(τ) a vector-valued modular form of weight −1 − b2(M)/2 + cR/2.
We continue by specializing to the elliptic Calabi–Yau fibrations. We

denote the four-cycle obtained by T-duality from a curve βi in the base by βi

or simply β. Whether β denotes a two- or four-cycle should be clear from the
context. One derives from the triple intersection numbers (2.13) that these
four-cycles βi, have a vanishing triple intersection number (β)3 = 0. These
D4-branes correspond therefore not to large black holes, but to “small” black
holes. This means that only after addition of higher derivative corrections
to the supergravity effective action one finds a non-vanishing area of the
horizon. It is very intriguing that we can obtain detailed knowledge about
the spectrum of these black holes using mirror symmetry.

Let ι : β →M be the embedding of the divisor β into M , which provides
a pull back map on the second cohomology ι∗ : H2(M,Z) → H2(β,Z). Since
the divisors β are not positive, this map is not injective. One deduces from
(2.13) that the rank of the quadratic form Dab = dabjβ

j is 2 independent
of M . Therefore, the image of the map ι∗ is two-dimensional, and we find
consequently that the modular weight of hβ,μ(τ) is equal to −2. More details
of the modular properties of hβ,μ(τ) can be derived. If β is primitive, i.e.,
β/n /∈ H4(M,Z) for n ≥ 2, one can find another divisor β̃ such that K · β ·
β̃ = 1. The quadratic form Dab then takes the form:

(5.11)
(

0 1
1 K · β̃2

)

.
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With this information one can precisely determine the modular transfor-
mation properties of the vector-valued modular form hβ,μ(τ). See Equa-
tion (4.17) of [48]. The elements of the modular vector are modular forms
of a congruence subgroup Γ(m).

The genus 0 free energies F (0)
β (3.8) give a prediction hpr

β,0(τ) for hβ,0(τ).
Correcting the power by which non-primitive charges are weighted, we find
for hpr

β,0(τ) in terms of F (0)
β (τ):

(5.12) hpr
β,0(τ) =

∑

m|β

1
m2

⎛

⎝
∑

n|m

μ(n)
n

⎞

⎠F
(0)
β/m(mτ),

where μ(m) is the Möbius function, which is defined for m ≥ 1 by μ(m) =
(−1)
 if m is the product of � distinct primes ≥ 2 and μ(m) = 0 otherwise).
The modular properties of hP,0(τ) defined this way are precisely consistent
with the structure found for the genus 0 amplitudes obtained from the mirror
periods, see Equation (3.8) combined with Equation (2.8). As explained in
Section 3, the free energy F (0)

β is a modular form of weight −2, in agreement

with the weight of hβ,μ(τ). Due to contributions to hpr
β,0(τ) (5.12) of F (0)

β (mτ)
with m > 1, hpr

β,0(τ) is in general an element of the congruence subgroup
Γ(m) in agreement with the analysis of the modular properties of (5.5).
Generically, one cannot determine uniquely from hpr

β,0(τ) the other elements
of the modular vector, but in simple examples this can be done.

Besides verifying that the modular properties of hpr
β,0(τ) agree with

hβ,0(τ), it is also possible to verify the agreement for the first few coeffi-
cients, for small D0 and D4-brane charge, the BPS invariants can be com-
puted either from the microscopic D-brane perspective or the supergravity
context [5,11,16,19,22,23,25,52,54]. For example from the microscopic point
of view, the moduli space of a single D4-brane is given by projective space
P

n. Using index theorems one can compute that n = 1
6P

3 + 1
12c2 · P − 1 [47].

Therefore, the first coefficient of hP,0(τ) is expected to be

(5.13) ΩP (− 1
24cR) = 1

6P
3 + 1

12c2 · P.

The second coefficient corresponds to adding a unit of (anti) D0-brane
charge. Now the linear system for the divisor of the D4-brane is constrained
to pass through the D0-brane. This gives with Equation (5.2) [22]

(5.14) ΩP (1 − 1
24cR) ∼= χ(M)( 1

12c2 · P − 1).
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Here we have written a “∼=” instead of “=” since if 1 − 1
24cR ≥ 0 the formula

for the horizon area (given below Equation (5.7)) gives a positive value,
such that the BPS states might correspond to black holes with intrinsically
gravitational degrees of freedom, which are less well understood.

Continuing with two units of D0 charge, one finds

(5.15) ΩP (2 − 1
24cR) ∼= 1

2χ(M)(χ(M) + 5)( 1
12c2 · P − 2).

One can in principle continue along these lines, which becomes increasingly
elaborate for three reasons. First effects of D2-branes become important,
second single centre black holes contribute for Q̂0̄ > 0 and third the index
might depend on the background moduli t.

We now briefly explain which bound states appear in the supergravity
picture for small D0/4-brane charge. The first terms in the q-expansion
cannot correspond to single centre black holes since Q̂0̄ < 0. The first terms
correspond to bound states of D6 and D6-branes [19]. If P is an irreducible
cycle (i.e., it cannot be written as P = P1 + P2 with P1 and P2 effective
classes) then the charges Γ1 and Γ2 of the constituents are

(5.16) Γ1 = (1, P, 1
2P

2 − c2
24 ,

1
6P

3 + c2·P
24 ), Γ2 = (−1, 0, c2

24 , 0),

The index of a 2-centre bound state is given by:

〈Γ1,Γ2〉 Ω(Γ1) Ω(Γ2),

with 〈Γ1,Γ2〉 = −P 0
1Q0,2 + P1 ·Q2 − P2 ·Q1 + P 0

2Q0,1 the symplectic inner
product. Since the constituents are single D6-branes with a non-zero flux,
their index is Ω(Γi; t) = 1. Therefore, ΩP (− 1

24cR) = 〈Γ1,Γ2〉 = 1
6P

3 + 1
12c2 ·

P , which reproduces Equation (5.13).
One can continue in a similar fashion with adding other constituents to

compute indices with higher charge. For example, BPS states with charge
Γ = (0, 2P, 0, 1

3P
3 + c2·P

12 ) corresponds to Γ1 as in (5.16) and

(5.17) Γ2 = (−1, P,−1
2P

2 + c2
24 ,

1
6P

3 + c2·P
24 ).

One obtains then Ω2P (− 1
24cR) = 8

6P
3 + 2

12c2 · P . Similarly, one could also
add D0 charges, and find the right hand sides of Equations (5.13) to (5.15)
with P replaced by 2P .
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Example: X18[1, 1, 1, 6, 9]

We now consider the periods for X18[1, 1, 1, 6, 9], i.e., a elliptic fibration
over P

2 and compare with the above discussion. This Calabi–Yau has a
two-dimensional Kähler cone, and lends it self well to studies of D4-branes.
We consider D4-branes wrapping the divisor whose Poincaré dual is the
hyperplane class H of the base surface P

2. The number of wrappings is
denoted by r.

As explained in Section 3, the genus 0 Gromov–Witten invariants are
well-studied [14, 30]. Using (5.12), the F (0)

β (τ) provide the following predic-
tions for hnH,0(τ):

hpr
H,0(τ) =

31E4
4 + 113E4E

2
6

48η(τ)36

= q−3/2(3 − 1080 q + 143770 q2 + 204071184 q3 + · · · ),
hpr

2H,0(τ) =
−196319E4E

5
6 − 755906E4

4E
3
6 − 208991E7

4E6

221184 η(τ)72

− 1
24
E2h

pr
H,0(τ)

2 +
1
8
hpr

H,0(2τ)

= q−3(−6 + 2700 q − 574560 q2 + · · · ) +
1
4
hpr

H,0(2τ),

hpr
3H,0(τ) = q−9/2(27 − 17280 q + 5051970 q2 + · · · ) +

1
9
hpr

H,0(3τ).

We want to compare this to the expressions derived above from the point of
view of D4-branes. For r = 1, we have

(5.18) Ω(Γ;J ) =
1
12
c2 ·H = 3,

in agreement with the first coefficient of hH(τ). The second term in the
q-expansion corresponds to

(5.19) Ω(1, 1
2H,−1) = χ(M)( 1

12c2 · P − 1) = 1080,

which is also in agreement with the periods. For two D̄0 branes, we find a
small discrepancy, one finds:

(5.20) 1
2( 1

12c2 · P − 2)χ(M) (χ(M) + 5) = 144450.

This is an excess of 1080 = −2χ(M) states compared to the 3rd coefficient
in h1(τ). This number is very suggestive of a bound state picture, possibly
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involving D2 branes. Since Q̂0̄ > 0 one could argue that these states are due
to intrinsic gravitational degrees of freedom, but it seems actually a rather
generic feature if we consider other elliptic fibrations (e.g., over F1).

For r = 2, also the first two coefficients of the spectrum match with the
D4-brane indices, and the 3rd differs by −6χ(M). Something non-trivial
happens for r = 3. We leave an interpretation of these indices from multi-
centre solutions for a future publication, and continue with the example of
the local elliptic surface [57].

6. BPS invariants of the rational elliptic surface

This section continues with the comparison of the D4- and D2-brane spectra
for the E8 elliptic fibration over the Hirzebruch surface F1, which was first
addressed by Refs. [57,63]. Let σ : F1 →M be the embedding of F1 into the
Calabi–Yau threefold. The surface F1 is itself a fibration π : F1 → C ∼= P

1

with fibre f ∼= P
1, with intersections C2 = −1, C · f = 1 and f2 = 0. The

Kähler cone of M is spanned by the elliptic fibre class J1, and the classes
J2 = σ∗(C + f) and J3 = σ∗(f). The Calabi–Yau intersections and Chern
classes are given by (2.17).

A few predictions from the periods for the D4-brane partition functions
are

hpr
C,0(τ) =

E4(τ)
η(τ)12

= q−1/2(1 + 252q + · · · ),(6.1)

hpr
f,0(τ) =

2E4(τ)E6(τ)
η(τ)24

= −2q−1 + 480 + 282888q + · · · ,
hpr

2C,0(τ) =
E2(τ)E4(τ)2 + 2E4(τ)E6(τ)

24η(τ)24
+

1
8
hpr

C,0(2τ)

= −9252 q − 673760 q2 + · · · + 1
4
hC(2τ),

hpr
3C,0(τ) =

54E2
2E

3
4 + 216E2E

2
4E6 + 109E4

4 + 197E4E
2
6

15552η36
+

2
27
hpr

C,0(3τ)

= 848628 q3/2 + 115243155 q5/2 + · · · + 1
9
hpr

C,0(3τ).

Since c2(M) · f = 24, explicit expressions in terms of modular forms for
the divisors hC+nf (τ) become rather lengthy. Interestingly, one finds that for
this class the first coefficients (checked up to n = 12), are given by 1 + 2n in
agreement with Equation (5.13). Moreover, the second and third coefficients
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are respectively given by χ(M)( 1
12c2 · P − 1) and 1

2χ (χ+ 9) ( 1
12c2 · P − 2)

as long as the corresponding Q̂0̄ < 0.
Another interesting class are r D4 branes wrapped on the divisor C,

which is however not an ample divisor since C = J2 − J3. The Euler number
of this divisor is c2 · C = 12, it is in fact the rational elliptic surface F9, which
is the 9-point blow-up of the projective plane P

2, or equivalently, the 8-point
blow-up of F1.

For r D4 branes we have P = rC. Equation (2.17) shows that the
quadratic form DabcP

c restricted to J1 and J3 is

(6.2) r

(
1 1
1 0

)

.

The other 8 independent classes of H2(P,Z) are not “visible” to the com-
putation based on periods, since these two-cycles of P do not pull back
to 2-cycles of M . We continue by confirming the expressions found from
the periods with a computation of the Euler numbers of the moduli spaces
of semi-stable sheaves as in [57, 63]. The algebraic computations are more
naturally performed in terms of Poincaré polynomials, and thus give more
refined information about the moduli space [55]. Moreover, the eight inde-
pendent classes which are not visible from the Calabi–Yau point of view,
can be distinguished from this perspective.

One might wonder whether the extra parameter appearing with the
Poincaré polynomial is related to the higher genus expansion of topological
strings. However, the refined information of the genus expansion is differ-
ent. Roughly speaking, the D2-brane moduli space is a torus fibration over
a base manifold [28]. The genus expansion captures the cohomology of the
torus, whereas the D4-brane moduli space gives naturally the cohomology
of the total moduli space. For r = 1, [32] argues that the torus fibration is
also present for moduli spaces of rank 1 sheaves on F9, but it is non-trivial to
continue this to higher rank. Another approach to verify the Fourier–Mukai
transform at a refined level is consider the refined topological string partition
function with parameters ε1 and ε2, and then take the Nekrasov–Shatashvili
limit ε1 = 0, ε2 � 1 instead of the topological string limit ε1 = −ε2 = gs.

The structure described in Section 5 for D4-brane partition functions
simplifies when one specializes to a (local) surface. The charge vector Γ
becomes (r, ch1, ch2) with r the ranks and chi the Chern characters of
the sheaf. Other frequently occurring quantities are the determinant Δ =
1
r (c2 − r−1

2r c
2
1), and μ = c1/r ∈ H2(S,Q). In terms of the Poincaré polyno-

mial p(M, w) =
∑2 dimC(M)

i=0 bi(M)wi of the moduli space M, the (refined)
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BPS invariant reads

Ω(Γ, w;J ) :=
w−dimC MJ (Γ)

w − w−1
p(MJ (Γ), w).

In the case of surfaces, a formula is available for the dimension of the moduli
space

dimC MJ (Γ) = 2r2Δ − r2χ(OS) + 1.

One can verify that the Poincaré polynomials computed later in this section
are in agreement with this formula.

The rational invariant corresponding to Ω(Γ, w;J ) is [51]

(6.3) Ω̄(Γ, w;J ) =
∑

m|Γ

Ω(Γ/m,−(−w)m;J )
m

.

The numerical BPS invariant Ω(Γ;J ) follows from the Ω(Γ, w;J ) by

(6.4) Ω(Γ;J ) = lim
w→−1

(w − w−1) Ω(Γ, w;J ),

and similarly for the rational invariants Ω̄(Γ;J ).
The generating function (5.5) becomes for a complex surface S

Zr(ρ, z, τ ;S,J ) =
∑

c1,c2

Ω̄(Γ, w;J ) (−1)rc1·KS

(6.5)

× q̄rΔ(Γ)− rχ(S)
24

− 1
2r

(c1+rKS/2)2−q
1
2r

(c1+rKS/2)2+e2πiρ·(c1+rKS/2),

with ρ ∈ H2(S,C), w = e2πiz and q = e2πiτ . Twisting by a line bundle leads
to an isomorphism of moduli spaces. It is therefore sufficient to determine
Ω(Γ, w;J ) only for c1 mod r, and it moreover implies that Zr(ρ, z, τ ;S,J )
allows a theta function decomposition as in (5.8)

(6.6) Zr(ρ, z, τ ;S,J ) =
∑

μ∈Λ∗/Λ

hr,μ(z, τ ;S,J ) Θr,μ(ρ, τ ;S),

with

(6.7) hr,μ(z, τ ;S,J ) =
∑

c2

Ω̄(Γ, w;J ) qrΔ(Γ)− rχ(S)
24 ,
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and

Θr,μ(ρ, τ ;S) =
∑

k∈H2(S,rZ)+rKS/2+μ

(−1)rk·KSqk
2
+/2r q̄−k2

−/2r e2πiρ·k.

Note that Θr,μ(ρ, τ ;S) depends on J through k± and does not depend on z.
The generating function of the numerical invariants Ω(Γ;J ) follows sim-

ply from Equation (6.4)

(6.8) Zr(ρ, τ ;S,J ) = lim
z→ 1

2

(w − w−1)Zr(z, ρ, τ ;S,J ).

Physical arguments imply that this function transforms as a multivariable
Jacobi form of weight (1

2 ,−3
2) [48, 59] with a non-trivial multiplier system.

For rank > 1, this is only correct after the addition of a suitable non-
holomorphic term [57,59].

This section verifies the agreement of the BPS invariants obtained from
the periods and vector bundles for hr,c1(z, τ ; F9,Jm,n) for r ≤ 3. The results
for r ≤ 2 are due to Göttsche [25] and Yoshioka [63]. The computations
apply notions and techniques from algebraic geometry as Gieseker stability,
Harder–Narasimhan filtrations and the blow-up formula. We refer to [51,55]
for further references and details. The most crucial difference between the
computations for F9 and those for Hirzebruch surfaces in [51,55] is that the
lattice arising from H2(F9,Z) is now ten-dimensional. We continue therefore
with giving a detailed description of different bases of H2(F9,Z), gluing
vectors and theta functions.

6.1. The lattice H2(F9, Z)

The second cohomologyH2(F9,Z) gives naturally rise to a unimodular basis,
it is in fact isomorphic to the unique unimodular lattice with signature (1, 9),
which we denote by Λ1,9. For this paper, three different bases (C, D and E)
of Λ1,9 are useful. The first basis is the geometric basis C, which keeps
manifest that F9 is the 9-point blow-up of the projective plane P

2. The basis
vectors of C are H (the hyperplane class of P

2) and ci (the exceptional
divisors of the blow-up).5 The quadratic form is diag(1,−1, . . . ,−1). The

5We will use in general boldface to parameterize vectors.



“CNTP-6-4-A5-KLEMM” — 2013/6/5 — 15:56 — page 892 — #44
�

�

�

�

�

�

�

�

892 Albrecht Klemm, Jan Manschot & Thomas Wotschke

canonical class K9 of F9 is given in terms of this basis by

(6.9) K9 = −3H +
9∑

i=1

ci.

One can easily verify that K2
9 = 0. Note that −K9 is numerically effective

but not ample.
The second basis D parameterizes Λ1,9 as a gluing of the two non-

unimodular lattices A and D. The basis D is given in terms of C by

a1 = −K9, a2 = H − c9,

di = ci − ci+1, 1 ≤ i ≤ 7,(6.10)
d8 = −H + c7 + c8 + c9.

The ai are basis elements of A and di of D. Since A and D are not unimod-
ular, integral lattice elements of C do not correspond to integral elements
of D. For example, c9 is given by

(6.11) c9 =
1
2

(

a1 + a2 +
6∑

i=1

idi + 3d7 + 4d8

)

.

The other ci are easily determined using c9. The quadratic form QA of the
lattice A is

(6.12) QA =
(

0 2
2 0

)

,

and QD of the lattice D is minus the D8 Cartan matrix

(6.13) QD = −QD8 = −

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 −1
0 0 0 0 0 −1 2 0
0 0 0 0 0 −1 0 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Gluing ofA andD to obtain Λ1,9 corresponds to an isomorphism between
A∗/A and D∗/D. This isomorphism is given by 4 gluing vectors gi, since
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the discriminants of A and D are equal to 4. We choose them to be

g0 = 0,

g1 = 1
2(1, 0, 1, 0, 1, 0, 1, 0, 0, 1),

g2 = 1
2(0, 1, 0, 0, 0, 0, 0, 0, 1, 1),

g3 = 1
2(1, 1, 1, 0, 1, 0, 1, 0, 1, 0).

Theta functions which sum over D will play an essential role later in
this section. The theta functions ΘrD8,µ(τ) are defined by

(6.14) ΘrD8,μ(τ) =
∑

k=µ mod rZ

q
k2

2r .

Such sums converge rather slowly. Therefore, we also give their expression
in terms of unary theta functions θi(τ) = θi(0, τ) (defined in Appendix C).
For r = 1 and the glue vectors gi, one has

ΘD8,g0
(τ) = 1

2

(
θ3(τ)8 + θ4(τ)8

)
,

ΘD8,g1
(τ) = 1

2θ2(τ)
8,

ΘD8,g2
(τ) = 1

2

(
θ3(τ)8 − θ4(τ)8

)
,

ΘD8,g3
(τ) = 1

2θ2(τ)
8.

For r = 2, the μ in the Θ2D8,μ(τ) take values in D/2D. The 28 elements
are naturally grouped in six classes with multiplicities 1, 56, 140, 1, 56 and
two depending on the corresponding theta function Θ2D8,μ(τ). We choose as
representative for each class

d0 = 0,

d1 = (1, 0, 0, 0, 0, 0, 0, 0),
d2 = (1, 0, 1, 0, 0, 0, 0, 0),
d3 = (0, 0, 0, 0, 0, 0, 1, 1),
d4 = (1, 0, 1, 0, 1, 0, 0, 0),
d5 = (1, 0, 1, 0, 1, 0, 1, 0).

Elements µ ∈ gi +D/2D fall similarly in conjugacy classes corresponding
to their theta functions. We let mi,j denote the number of elements in the
class represented by gi + dj . The non-vanishing mi,j are given in table 2.
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Table 2: The number of elements mi,j in gi +D/2D with equal theta func-
tions Θ2D8,gi+dj

(τ).

mi,j 0 1 2 3 4 5
0 1 56 140 1 56 2
1 128 128
2 16 112 112 16
3 128 128

The corresponding theta functions are given by

Θ2D8,d0(τ) = 1
2

(
θ3(2τ)8 + θ4(2τ)8

)
,

Θ2D8,d1(τ) = 1
16

(
θ3(τ)8 − θ4(τ)8

)− 1
2θ2(2τ)

6θ3(2τ)2,(6.15)
Θ2D8,d2(τ) = 1

32θ2(τ)
8,

Θ2D8,d3(τ) = 1
2

(
θ3(2τ)8 − θ4(2τ)8

)
,

Θ2D8,d4(τ) = 1
2θ2(2τ)

6θ3(2τ)2,
Θ2D8,d5(τ) = 1

2θ2(2τ)
8,

For g1

Θ2D8,g1
(τ) = 1

8θ2(τ)
4
(
θ3(2τ)4 − 1

2θ4(2τ)
4
)
,

Θ2D8,g1+d3(τ) = Θ2D8,d2(τ),

for g2

Θ2D8,g2
(τ) = 1

4θ2(τ)
2 θ3(2τ)6,

Θ2D8,g2+d1(τ) = 1
16θ2(τ)

6 θ3(2τ)2,(6.16)
Θ2D8,g2+d2(τ) = 1

16θ2(τ)
6
(
θ3(2τ)2 − θ4(τ)2

)
,

Θ2D8,g2+d4(τ) = 1
4θ2(2τ)

6θ2(τ)2,

and for g3:

Θ2D8,g3
(τ) = Θ2D8,g1

(τ),
Θ2D8,g3+d3(τ) = Θ2D8,g1+d1(τ).

The third basis is basis E corresponding to the representation of Λ1,9

as the direct sum of the two lattices B and E, whose basis vectors bi
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and ei are

b1 = −K9, b2 = c9,

ei = ci − ci+1, 1 ≤ i ≤ 7,(6.17)
e8 = −H + c6 + c7 + c8.

The elementH of basis C is in terms of this basis:H = (3, 3, 3, 6, 9, 12, 15,
10, 5, 2). The intersection numbers for bi are b2

1 = 0, b2
2 = −1 and b1 · b2 =

1. The quadratic form QE for E is minus the E8 Cartan matrix, which is
given by

(6.18)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 −1
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 0
0 0 0 0 −1 0 0 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

The 256 elements in E/2E fall in 3 inequivalent Weil orbits with vec-
tors of length 0, 2 and 4, which have multiplicities m0 = 1, m1 = 120 and
m2 = 135 respectively. We choose as representatives

e0 = 0,

e1 = (1, 0, 0, 0, 0, 0, 0, 0),
e2 = (1, 0, 1, 0, 0, 0, 0, 0).

The corresponding theta functions ΘrE8,e0 are for r = 1, 2:

ΘE8,e0(τ) = E4(τ),
Θ2E8,e0(τ) = E4(2τ),

Θ2E8,e1(τ) =
1

240
(E4(τ/2) − E4(τ/2 + 1/2) ) ,

Θ2E8,e2(τ) =
1
15

(E4(τ) − E4(2τ) ) .
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6.2. BPS invariants for r ≤ 3

Rank 1 The results from the periods for hpr
C,0(τ) is (6.1)

(6.19) hpr
C,0(τ) =

E4(τ)
η(τ)12

.

This can easily be verified with the results for sheaves on surfaces. The result
for r = 1 and a complex, simply connected surface S is [25]

(6.20) h1,c1(z, τ ;S) =
i

θ1(2z, τ) η(τ)b2(S)−1
.

The dependence on J can be omitted for r = 1 since all rank 1 sheaves
are stable. If we specialize to S = F9, take the limit w → −1, and sum over
all c1 ∈ E = H2(F9,Z)/ι∗H2(M,Z) one obtains hC,0(τ) = E4(τ)/η(τ)12 in
agreement with Equation (6.19).

Rank 2 The prediction by the periods for r = 2 is given by hpr
2C,0(τ) in

(6.1). This is a sum over all BPS invariants for c1 · ai = 0, i = 1, 2. In order
to verify this result, it is useful to decompose hpr

2C,0(τ) according to the three
conjugacy classes of E/2E ∈ H2(F9)/(ι∗H2(M,Z)). One obtains hpr

C,0(τ) =
∑

i=0,1,2mi h
pr
2,ei

(τ ; F9,a1) Θ2E8,ei
(τ) with [57]:

hpr
2,e0

(τ ; F9,a1) =
1

24 η(τ)24

[
E2(τ) Θ2E8,e0(τ) +

(
θ3(τ)4θ4(τ)4 − 1

8θ2(τ)
8
)

(6.21)

× (θ3(τ)4 + θ4(τ)4
)]

+
1
8
hpr

1,e0
(2τ ; F9),

hpr
2,e1

(τ ; F9,a1) =
1

24 η(τ)24

[
E2(τ) Θ2E8,e1(τ) − 1

8E4(τ) θ2(τ)4
]
,

hpr
2,e2

(τ ; F9,a1) =
1

24 η(τ)24

[
E2(τ) Θ2E8,e2(τ) − 1

8θ2(τ)
8
(
θ3(τ)4 + θ4(τ)4

)]
.

In the following we will omit the argument “F9” in the from the generating
functions.

Verification of the expressions (6.21) is much more elaborate then for
r = 1. We will use the approach of [60, 61, 63]. The main issues are the
determination of the BPS invariants for a polarization close to the class a2
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(a suitable polarization) and wall-crossing from the suitable polarization to
J = −K9 = a1. These issues are dealt with for the Hirzebruch surfaces [60,
61], and for F9 in [63]. The main difficulty for F9 compared to the Hirzebruch
surfaces is that that the class f and K9 span the lattice A, which is related
to Λ1,9 by a non-trivial gluing with the lattice D.

Before turning to the explicit expressions, we briefly outline the com-
putation; we refer for more details about the used techniques to [55]. The
polarization J is parameterized by Jm,n = ma1 + na2. In order to deter-
mine the BPS invariants for the suitable polarization Jε,1, view F9 as the
8-point blow-up of the Hirzebruch surface F1: φ : F9 → F1. We choose to
perform this blow-up for the polarization JF1 = f , with f the fibre class of
the Hirzebruch surface. The pull back of this class to F9 is φ∗f = J0,1. The
generating function of the BPS invariants for this choice takes a relatively
simple form: it either vanishes or equals a product of eta and theta func-
tions [55, 61] depending on the Chern classes. This function represents the
sheaves whose restriction to the rational curve a2 is semi-stable. The gener-
ating function hr,c1(z, τ ; F9,J0,1) is therefore this product formula multiplied
by the factors due to blowing-up the 8 points. To obtain the BPS invari-
ants from this function, one has to change J0,1 to Jε,1 and subtract the
contribution due to sheaves which became (Gieseker) unstable due to this
change [55]. Consequently, we can determine the BPS invariants for any
other choice of J by the wall-crossing formula [35, 42, 62]. In particular, we
determine the invariants for J1,0 = −K9 and change to the basis E in order
to compare with the expression from the periods.

We continue with determining the BPS invariants for J = J0,1. The BPS
invariants vanish for c1 · a2 = 1 mod 2

(6.22) h2,c1(z, τ ;Jε,1) = 0, c1 · a2 = 1 mod 2.

Since BPS invariants depend on c1 mod 2Λ1,9, we distinguish further
c1 · a2 = 0 mod 4 and c1 · a2 = 2 mod 4. For these cases, we continue as
in [55] using the (extended) Harder-Narasimhan filtration. A sheaf F which
is unstable for Jε,1 but semi-stable for J0,1, can be described as a HN-
filtration of length 2 whose quotients we denote by Ei, i = 1, 2. If we param-
eterize the first Chern class of E2 by k = (kA,kD ), then the discriminant
Δ(F ) is given by

(6.23) 2Δ(F ) = Δ(E1) + Δ(E2) − 1
4
(2kA − c1|A)2 − 1

4
(2kD − c1|D)2.
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The choice of kD does not have any effect on the stability of F as long
as J is spanned by J0,1 and J1,0. Therefore (6.23) shows that the sum
over kD gives rise to the theta functions Θ2D8,μ(τ). The condition for semi-
stability for J0,1 but unstable for Jε,1 implies (c1(E1) − c1(E2)) · a2 = 0.
This combined with c1 · a2 = 0 mod 4 gives for c1(Ei) = 0 mod 2, which
shows that c1(Ei) = gj mod 2Λ1,9 only for j = 0, 2. One obtains after a
detailed analysis for c1 · a2 = 0 mod 4

h2,c1(z, τ ;Jε,1) =
−i η(τ)

θ1(2z, τ)2 θ1(4z, τ)

8∏

i=1

B2,
i
(z, τ)(6.24)

+

(
w4{( 1

2
g0− 1

4
c1)·a1}

1 − w4
− 1

2
δ0,{( 1

2
g0− 1

4
c1)·a1}

)

× Θ2D8,c1−2g0
(τ)h1,0(z, τ)2

+

(
w4{( 1

2
g2− 1

4
c1)·a1}

1 − w4
− 1

2
δ0,{( 1

2
g2− 1

4
c1)·a1}

)

× Θ2D8,c1−2g2
(τ)h1,0(z, τ)2,

where {λ} = λ− �λ� and �i = c1 · ci. The right-hand side on the first line
correspond to the sheaves whose restriction to a2 are semi-stable. The func-
tions B2,
(z, τ) =

∑
n∈Z+
/2 q

n2
wn/η(τ)2 are due to the blow-up formula

[27,43,55,62]. The second and third line are the subtractions due to sheaves
that are unstable for Jε,1.

Similarly, one obtains for c1 · a2 = 2 mod 4

h2,c1(z, τ ;Jε,1) =
−i η(τ)

θ1(2z, τ)2 θ1(4z, τ)

8∏

i=1

B2,
i
(z, τ)(6.25)

+

(
w4{( 1

2
g1− 1

4
c1)·a1}

1 − w4
− 1

2
δ0,{( 1

2
g1− 1

4
c1)·a1}

)

× Θ2D8,c1−2g1
(τ)h1,0(z, τ)2

+

(
w4{( 1

2
g3− 1

4
c1)·a1}

1 − w4
− 1

2
δ0,{( 1

2
g3− 1

4
c1)·a1}

)

× Θ2D8,c1−2g3
(τ)h1,0(z, τ)2.

What remains is to change the polarization J from Jε,1 to J1,0 and
determine the change of the invariants using wall-crossing formulas. For
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Table 3: The Betti numbers bn (with n ≤ dimC M) and Euler numbers χ
of the moduli spaces of semi-stable sheaves on F9 with r = 2, c1 = ei, and
1 ≤ c2 ≤ 4 for J = J1,0.

c1 c2 b0 b2 b4 b6 b8 b10 b12 b14 b16 χ

e0 2 1 10 55 132
3 1 11 76 396 1356 3680
4 1 11 78 428 1969 7449 20124 60120
5 1 11 78 430 2012 8316 30506 95498 221132 715968

e1 1 1 9 20
2 1 11 75 309 792
3 1 11 78 426 1843 5525 15768
4 1 11 78 430 2010 8150 27777 68967 214848

e2 1 1 2
2 1 11 60 144
3 1 11 78 404 1386 3760
4 1 11 78 430 1981 7495 20244 60480

J = (m,n,0) ∈ A⊕D, we obtain the following expression:

h2,c1(z, τ ;Jm,n) =
−i η(τ)

θ1(2z, τ)2 θ1(4z, τ)

8∏

i=1

B2,
i
(z, τ)(6.26)

+
∑

j=0,...,3

hA
2,c1−2gj

(z, τ ;Jm,n) Θ2D,c1−2gj
(τ),

with

hA
2,c1

(z, τ ;Jm,n) = hA
2,c1

(z, τ ;Jε,1) + 1
2

∑
(a1,a2)∈A+c1

1
2 ( sgn(a1n+ a2m) − sgn(a1 + a2ε) )

× (w4a2 − w−4a2) q−4a1a2h1,0(z, τ)2.

The functions hA
2,c1

(z, τ ;Jε,1) are rational functions in w multiplied by
h1,0(z, τ)2, which can easily be read off from Equation (6.24). For J = J1,0

the functions can be expressed in terms of modular functions.
Table 3 presents the BPS invariants for J = J1,0. As expected, the Euler

numbers are indeed in agreement with the predictions (6.21). One can also
verify that for increasing c2, the Betti numbers asymptote to those of r = 1
or equivalently the Hilbert scheme of points of F9.
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We define the functions hA
2,c1

(z, τ) := hA
2,c1

(z, τ ;J1,0), which only depend
on c1|A = α1 a1 + α2 a2 with α1, α2 ∈ 0, 1

2 , 1,
3
2 . One finds for α2 = 0 mod 4

(6.27)
hA

2,c1
(z, τ)

h1,0(z, τ)2
= −1

8
1

2πi
∂

∂z
ln ( θ1(4τ, 4z + 2α1) θ1(4τ, 4z − 2α1) ) ,

and for α2 �= 0 mod 4 using (C.3)

hA
2,c1

(z, τ)
h1,0(z, τ)2

=
i

2
q−α1α2 η(4τ)3

θ1(4τ, 2α2τ)

(
w−2α2 θ1(4τ, 4z + 2(α1 − α2)τ)

θ1(4τ, 4z + 2α1τ)
(6.28)

− w2α2 θ1(4τ,−4z + 2(α1 − α2)τ)
θ1(4τ, 4z + 2α1τ)

)

.

To prove the agreement of the Euler numbers with the periods, we spe-
cialize to w = −1. Let Dk = 1

2πi
∂
∂τ − k

12E2(τ) be the differential operator
which maps weight k modular forms to modular forms of weight k + 2.
Then one can write h2,c1(τ ;J1,0) as

h2,c1(τ ;J1,0) =
1

η(τ)24

⎛

⎝ 1
2
δc1·a2,0D4(θ3(2τ)mθ2(2τ)8−m)(6.29)

+
∑

i=0,...,3

fA
c1−2gj

(τ) Θ2D,c1−2gj
(τ)

⎞

⎠ ,

with

fA
0,0(τ) = 1

8θ3(2τ)
4 + 1

24E2(τ),

fA
− 1

2
, 1
2
(τ) = 1

2θ2(2τ) θ3(2τ)
3,

fA
1
2
, 1
2
(τ) = 1

2θ2(2τ)
3 θ3(2τ),

fA
1,0(τ) = 1

12θ2(2τ)
4 − 1

24θ3(2τ)
4 + 1

24E2(τ),

fA
0,1(τ) = 1

24θ2(2τ)
4 − 1

12θ3(2τ)
4,

fA
1,1(τ) = −1

8θ2(2τ)
4.

If c1|B = 0, this reproduces the functions in [57, 63] depending on whether
the classes in lattice E are even or odd.

Modularity Electric-magnetic duality of N = 4 U(r) Yang-Mills theory
implies modular properties for its partition function [59]. Determination
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of the modular properties gives therefore insight about the realization of
electric–magnetic duality at the quantum level.

The expression in Equation (6.26) does not transform as a modular form
for generic choices of J . However, using the theory of indefinite theta func-
tions [64], the functions can be completed to a function ĥ2,c1(z, τ ;J ) by addi-
tion of a non-holomorphic term, such that ĥ2,c1(z, τ ;J ) does transform as
a modular form [53]. Interestingly, Equation (6.29) shows that h2,c1(z, τ ;J )
becomes a quasi-modular form for limJ→J1,0 ĥ2,c1(z, τ ;J ), i.e., it can be
expressed in terms of modular forms and Eisenstein series of weight 2. In
some cases it becomes even a true modular form. This is due to the special
form of QA.

The transition from mock modular to quasi-modular can be made pre-
cise. Owing to the gluing vectors, the function f2,c1(z, τ ;J ) = h2,c1(z, τ ;J )/
h1,c1(z, τ)2 takes the form

f2,c1(z, τ ;Jm,n) =
∑

μ

fA
2,(c1−2μ)A

(z, τ ;Jm,n) Θ2D,(2μ−c1)D
(τ)(6.30)

+ δc1·a2,0
i η(τ)3

θ1(τ, 4z)
θ3(2τ, 2z)kθ2(2τ, 2z)8−k,

where k is the number of c1 · ci = 1 mod 2 for 1 ≤ i ≤ 8. The completed
generating function f̂2,c1(z, τ ;J ) is a slight generalization of the equations
in Section 3.2 in [53]:

f̂2,c1(τ ;J ) = f2,c1(τ ;J ) +
∑

c∈−c1
+H2(Σ9,2Z)

(
K9 · J

4π
√J 2 τ2

e−πτ2c2
+(6.31)

− 1
4
K9 · c sgn(c · J )β 1

2
(c2

+ τ2)
)

(−1)K9·cq−c2/4,

where τ2 = Im(τ) and βν(x) =
∫∞
x u−ν e−πudu. We parameterize J by b1 +

v b2 and carefully study the limit v → 0 (this corresponds to the limit R→
∞ in [57]). In this limit, J approaches −K9. Moreover, J ·K9 = −v and
J 2 = v(2 − v). If one parameterizes c by (n0, n1, c⊥), only terms with n1 = 0
contribute to the sum in the limit v → 0. Therefore the term with β 1

2
(c2

+ τ2)
does not contribute to the anomaly. After a Poisson resummation on n0, one
finds that the limit is finite and given by

(6.32) f̂2,c1(τ ;J1,0) = f2,c1(τ ;J1,0) − δc1·a1,0

8π τ2

∑

c∈−c1|E
+2E

q−c2
⊥/4.
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This is in good agreement with Equation (6.21) if c1 · a1 = 0. The lattice
sum over c gives precisely the theta functions Θ2E8,ei

(τ). Recalling the mod-
ular completion of the weight 2 Eisenstein series: Ê2(τ) = E2(τ) − 3

πτ2
, we

see that the non-holomorphic term implies that in the holomorphic part of
f̂2,c1(τ ;J1,0), E2(τ) is multiplied by the Θ2E8,ei

(τ)/24 as in Equation (6.21).
We have thus verified that the non-holomorphic dependence of D4-brane
partition functions is indeed consistent with (6.21) and therefore with (3.9)
for topological strings as implied by T-duality. Note that for c1 · a1 = 1
mod 2, the non-holomorphic dependence of f2,c1(τ ;J ) vanishes in the limit
J → J1,0, in agreement with (6.29).

Rank 3 Similarly as for r = 2, [57] also decomposes hpr
3C,0(τ) into different

Weyl orbits. We will restrict in the following to the e0 = 0 orbit in E/3E
since the expressions become rather lengthy. In order to present hpr

3,e0
(τ ;a1),

define

(6.33) b3,
(τ) =
∑

m,n∈Z+
/3

qm2+n2+mn.

Then hpr
3,e0

(τ ;a1) is given by [57]

hpr
3,e0

(τ ;a1) =
1

2592 η36

[(
51 b12

3,0 − 184 b93,0b
3
3,1 + 336 b63,0b

6
3,1(6.34)

+ 288 b33,0b
9
3,1 + 32 b12

3,1

)

+ E2b3,0

(
36 b93,0 − 112 b63,0b

3
3,1 + 32 b63,0b

3
3,1 − 64 b93,1

)

+ E2
2b

2
3,0

(
9 b63,0 − 16 b33,0b

3
3,1 + 16 b63,0

)]
.

In order to verify this expression, we extend the analysis for r = 2 to
r = 3. For c1 · a2 = ±1 mod 3, the BPS invariants vanish for a suitable
polarization

(6.35) h3,c1(z, τ ;Jε,1) = 0.

The HN-filtrations for the sheaves which are unstable for Jε,1 but semi-
stable for J0,1 have length 2 or 3. From those of length 2, one obtains rational
functions in w multiplied by h1,0(z, τ)h2,µ(z, τ) Θ2D8,µ(τ), with µ = 0, a2,
di and di + a2. The theta function arising from the sum over theD8 lattice is
more involved for filtrations of length 3. Instead of a direct sum, a “twisted”
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sum of 2 D8-lattices appears; we will denote this lattice by Dt
8

Θ2Dt
8;µ1,µ2

(τ) =
∑

ki∈D8+µi,i=1,2

qk
2
1+k1·k2+k2

2(6.36)

=
∑

i

mi Θ2D8,µ1+µ2+di
(τ) Θ2D8,µ1−µ2+di

(3τ)(6.37)

where mi are the multiplicities of the theta characteristics µ1 + µ2 + di,
thus for µ1 + µ2 ∈ D, i = 1, . . . , 6, and for µ1 + µ2 ∈ D/2, i = 1, . . . , 4. For
numerical computations the second line is considerably faster than the first
line. We obtain after a careful analysis

h3,0(z, τ ;Jε,1)

(6.38)

=
iη(τ)3

θ1(2z, τ)2 θ1(4z, τ)2 θ1(6z, τ)
B3,0(z, τ)8

+ 2
(

1
1 − w12

− 1
2

)

h1,0(z, τ)
∑

i=0,3

h2,(0,0,di)(z, τ ;Jε,1)Θ2D8,di
(3τ)

+ 2
(

w6

1 − w12

)

h1,0(z, τ)
∑

i=0,3

h2,(0,1,di)(z, τ ;Jε,1)Θ2D8,di
(3τ)

+ 2
(

1
1 − w6

− 1
2

)

h1,0(z, τ)
∑

i=1,2,4,5

m0,i h2,(0,0,di)(z, τ ;Jε,1)Θ2D8,di
(3τ)

+ 2
(

w3

1 − w6

)

h1,0(z, τ)
∑

i=0,1,2,4

m2,i h2,g2+di
(z, τ ;Jε,1)Θ2D8,g2+di

(3τ)

−
(

1 + w12

(1 − w8)(1 − w12)
− 1

1 − w12
+

1
6

)

h1,0(z, τ)3 Θ2Dt
8;0,0(τ)

− 2
(

w6

(1 − w4)(1 − w12)
− w6

1 − w12

)

h1,0(z, τ)3 Θ2Dt
8;g2,0(τ)

−
(

w4 + w16

(1 − w8)(1 − w12)

)

h1,0(z, τ)3 Θ2Dt
8;0,0(τ).

The functions due to the blowing-up of eight points are now given by
B3,k(z, τ) =

∑
m,n∈Z+k/3 q

m2+n2+mnw4m+2n/η(τ)3. We have used in (6.38)
that h2,c1(z, τ ;Jm,n) only depends on the conjugacy class of c1 in D/2D,
and moreover that h2,c1(z, τ ;Jm,n) = h2,c′1(z, τ ;Jm,n) if c1 = (0, 0,di) and
c′1 = (0, 1,di) for i = 1, 2, 4, 5 (but not for i = 0, 3) and c1 = (0, 0,di) + g2

and c′1 = (0, 1,di) + g2.
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Table 4: The Betti numbers bn (with n ≤ dimC M) and the Euler number
χ of the moduli spaces of semi-stable sheaves on F9 with r = 3, c1 = 0, and
3 ≤ c2 ≤ 5 for J = J1,ε.

c2 b0 b2 b4 b6 b8 b10 b12

3 1 10 65 320 1025 1226
4 1 11 77 417 1902 7372 23962
5 1 11 78 429 2002 8260 30710
c2 b14 b16 b18 b20 b22 χ

3 4068
4 57452 68847 251235
5 103867 316586 836221 1706023 2029416 8037792

Having determined h3,0(z, τ ;Jε,1), what rests is to perform the wall-
crossing from Jε,1 to J1,0. To this end, we define

(6.39)

hA
3,c1

(z, τ ;J ) =
∑

a=c1|A mod 2A

1
2 (sgn(a1n+ a2m) − sgn(a1 + a2ε))

(
w6a2 − w−6a2

)
q−3a1a2 h2,(a,c1|D)(z, τ ;J|a1|,|a2|)h1,0(z, τ),

with a = (a1, a2). Then h3,0(z, τ ;J ) is given by [50,51]

h3,0(z, τ ;J ) = h3,0(z, τ ;Jε,1)

+
∑

a∈2A/A

mi,j h
A
3,a+gi+dj

(z, τ ;J ) Θ2D8,gi+dj
(3τ).

The Betti numbers for J = J1,0 and small c2 are presented in table 4, and
indeed agree with the Euler numbers computed from the periods.

One might wonder how to derive the modular properties h3,0(z, τ ;J ).
The completion takes in general a very complicated form due to the quadratic
condition on the lattice points [51]. One can show however that for J = J1,0

the quadratic condition disappears from the generating function due to a
special symmetry of the lattice A, and therefore one again obtains quasi-
modular forms at this point.6

6We thank S. Zwegers for providing this argument.
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Appendix A. Toric data for the elliptic hypersurfaces

Here, we collect the toric data necessary to treat all models discussed. We
list the Mori cones in the star triangulation for the bases of model 8–15 of
figure 1

ΔB 8(4) 9(4)
νB

i l(1) l(2) l(3) l(4) l(1) l(1) l(2) l(1) l(2)

z 0 −1 0 −1 −1 −1 0 −1 −1
1 0 0 0 1 −1 1 0 0 0
2 1 0 0 0 1 −1 1 0 0
3 −2 1 0 0 0 1 −2 1 0
4 1 −1 1 0 0 0 1 −1 1
5 0 1 −2 1 0 0 0 1 −1
6 0 0 1 −1 1 0 0 0 1

ex 7 12
10(4) 11(5)

l(1) l(2) l(3) l(4) l(1) l(2) l(3) l(4) l(5) l(6)

0 −1 0 0 0 −1 0 0 −1 −1
1 0 0 0 1 0 0 0 0 1

−2 1 0 0 −2 1 0 0 0 0
1 −1 1 0 1 −1 1 0 0 0
0 1 −2 1 0 1 −2 1 0 0
0 0 1 −2 0 0 1 −2 1 0
0 0 0 1 0 0 0 1 −1 1

0 0 0 0 1 −1
4 16

ΔB 12(5) 13(6)
νB

i l(1) l(2) l(3) l(4) l(5) l(6) l(7) l(1) l(2) l(3) l(4) l(5) l(6) l(7)

z −1 −1 −1 0 −1 0 −1 0 −1 0 0 0 −1 0
1 1 1 0 0 0 0 0 −2 1 0 0 0 0 0
2 0 −1 1 0 0 0 0 1 −1 1 0 0 0 0
3 0 1 −1 1 0 0 0 0 1 −2 1 0 0 0
4 0 0 1 −2 1 0 0 0 0 1 −2 1 0 0
5 0 0 0 1 −1 1 0 0 0 0 1 −2 1 0
6 1 0 0 0 1 −2 −2 0 0 0 0 1 −1 1
7 −1 0 0 0 0 1 1 0 0 0 0 0 1 −2
8 1 0 0 0 0 0 1
ex 29 20
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14(6)
l(1) l(2) l(3) l(4) l(5) l(6) l(7) l(8)

−1 0 −1 0 0 −1 0 −1
−1 1 0 0 0 0 0 1

1 −2 1 0 0 0 0 0
0 1 −1 1 0 0 0 0
0 0 1 −2 1 0 0 0
0 0 0 1 −1 1 0 0
0 0 0 0 1 −1 1 0
0 0 0 0 0 1 −2 1
1 0 0 0 0 0 1 −1

43

ΔB 15(5)
νB

i l(1) l(2) l(3) l(4) l(5) l(6) l(7) l(8)

z 0 −1 0 −1 0 −1 0 −1
1 −2 1 0 0 0 0 0 1
2 1 −1 1 0 0 0 0 0
3 0 1 −2 1 0 0 0 0
4 0 0 1 −1 1 0 0 0
5 0 0 0 1 −2 1 0 0
6 0 0 0 0 1 −1 1 0
7 0 0 0 0 0 1 −2 1
8 1 0 0 0 0 0 1 −1
9
ex 53

16(7)
l(1) l(2) l(3) l(4) l(5) l(6) l(7) l(8) l(9)

0 0 −1 0 0 −1 0 0 −1
−2 1 0 0 0 0 0 0 1

1 −2 1 0 0 0 0 0 0
0 1 −1 1 0 0 0 0 0
0 0 1 −2 1 0 0 0 0
0 0 0 1 −2 1 0 0 0
0 0 0 0 1 −1 1 0 0
0 0 0 0 0 1 −2 1 0
0 0 0 0 0 0 1 −2 1
1 0 0 0 0 0 0 1 −1

59
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Figure 4: Non-star triangulations of the basis of model 15 and 16, which
lead to simplicial Kähler cone for the Calabi–Yau space.

The simplicial Mori cone for the model 15 and 16 occur, e.g., for the
triangulation depicted in figure 4. For the model 15, the Mori cone reads

l(e) = (−6, 0, 0, 0, 0, 1,−1, 1, 0, 0, 2, 3), l(1) = (0,−2, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0)

l(2) = (0, 1,−1, 1, 0, 0, 0, 0, 0,−1, 0, 0), l(3) = (0, 0, 1,−2, 1, 0, 0, 0, 0, 0, 0, 0),

l(4) = (0, 0, 0, 1,−1, 1, 0, 0, 0,−1, 0, 0), l(5) = (0, 0, 0, 0, 0,−1, 0, 1,−1, 1, 0, 0),

l(6) = (0, 0, 0, 0, 0, 0, 1,−2, 1, 0, 0, 0).

(A.1)

This yields the intersection numbers

R = 4J3
e + 2J2

e J2 + 4J2
e J3 + JeJ2J3 + 2JeJ

2
3 + 3J2

e J4 + JeJ2J4

+ 2JeJ3J4 + JeJ
2
4 + 2J2

e J5 + JeJ2J5 + 2JeJ3J5 + JeJ4J5 + 6J2
e J6

+ 2JeJ2J6 + 4JeJ3J6 + J2J3J6 + 2J2
3J6 + 3JeJ4J6 + J2J4J6 + 2J3J4J6

+ J2
4J6 + 2JeJ5J6 + J2J5J6 + 2J3J5J6 + J4J5J6 + 6JeJ

2
6 + 2J2J

2
6

+ 4J3J
2
6 + 3J4J

2
6 + 2J5J

2
6 + 6J3

6 + 5J2
e J7 + 2JeJ2J7 + 4JeJ3J7

+ J2J3J7 + 2J2
3J7 + 3JeJ4J7 + J2J4J7 + 2J3J4J7 + J2

4J7 + 2JeJ5J7

+ J2J5J7 + 2J3J5J7 + J4J5J7 + 6JeJ6J7 + 2J2J6J7 + 4J3J6J7

+ 3J4J6J7 + 2J5J6J7 + 6J2
6J7 + 5JeJ

2
7 + 2J2J

2
7 + 4J3J

2
7 + 3J4J

2
7

+ 2J5J
2
7 + 6J6J

2
7 + 5J3

7

(A.2)

and the evaluation of c2 on the basis Ji

c2Je = 52, c2J1 = 24, c2J2 = 48, c2J3 = 36,
c2J4 = 24, c2J5 = 72, c2J6 = 62.

(A.3)
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The same data for the model 16

l(e) = (−6, 0, 0, 0, 0, 1,−1, 1, 0, 0, 0, 2, 3),

l(1) = (0,−2, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0),

l(2) = (0, 1,−2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0),

l(3) = (0, 0, 0,−1, 1, 0, 0,−1, 0, 0, 1, 0, 0),(A.4)

l(4) = (0, 0, 0, 1,−2, 1, 0, 0, 0, 0, 0, 0, 0),

l(5) = (0, 0, 0, 0, 1,−2, 1, 0, 0, 0, 0, 0, 0),

l(6) = (0, 0, 0, 0, 0, 0, 0, 1,−2, 1, 0, 0, 0),

l(7) = (0, 1, 0, 0, 0, 0, 0, 0, 1,−1,−1, 0, 0),

and the intersection is given by

R = 3J3
e + 4J2

e J2 + 2JeJ
2
2 + 2J2

e J3 + JeJ2J3 + 6J2
e J4(A.5)

+ 4JeJ2J4 + 2J2
2J4 + 2JeJ3J4 + J2J3J4 + 6JeJ

2
4 + 4J2J

2
4

+ 2J3J
2
4 + 6J3

4 + 5J2
e J5 + 4JeJ2J5 + 2J2

2J5 + 2JeJ3J5 + J2J3J5

+ 6JeJ4J5 + 4J2J4J5 + 2J3J4J5 + 6J2
4J5 + 5JeJ

2
5 + 4J2J

2
5

+ 2J3J
2
5 + 6J4J

2
5 + 5J3

5 + 4J2
e J6 + 4JeJ2J6 + 2J2

2J6 + 2JeJ3J6

+ J2J3J6 + 6JeJ4J6 + 4J2J4J6 + 2J3J4J6 + 6J2
4J6 + 5JeJ5J6

+ 4J2J5J6 + 2J3J5J6 + 6J4J5J6 + 5J2
5J6 + 4JeJ

2
6

+ 4J2J
2
6 + 2J3J

2
6+

6J4J
2
6 + 5J5J

2
6 + 4J3

6 + 3J2
e J7 + 2JeJ2J7 + JeJ3J7 + 3JeJ4J7(A.6)

+ 2J2J4J7 + J3J4J7 + 3J2
4J7 + 3JeJ5J7 + 2J2J5J7 + J3J5J7

+ 3J4J5J7 + 3J2
5J7 + 3JeJ6J7 + 2J2J6J7 + J3J6J7 + 3J4J6J7

+ 3J5J6J7 + 3J2
6J7 + JeJ

2
7 + J4J

2
7 + J5J

2
7 + J6J

2
7 + 6J2

e J8

+ 4JeJ2J8 + 2JeJ3J8 + 6JeJ4J8 + 4J2J4J8 + 2J3J4J8

+ 6J2
4J8 + 6JeJ5J8 + 4J2J5J8 + 2J3J5J8 + 6J4J5J8 + 6J2

5J8

+ 6JeJ6J8 + 4J2J6J8 + 2J3J6J8 + 6J4J6J8 + 6J5J6J8 + 6J2
6J8

+ 3JeJ7J8 + 3J4J7J8 + 3J5J7J8 + 3J6J7J8 + 6JeJ
2
8 + 6J4J

2
8

+ 6J5J
2
8 + 6J6J

2
8
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and the evaluation on c2 is

c2Je = 42, c2J1 = 48, c2J2 = 24, c2J3 = 72,
c2J4 = 62, c2J5 = 52, c2J6 = 36, c2J7 = 72.

(A.7)

Appendix B. Results for the other fibre types with F1 base

We give some results of the periods for the different fibre types with base
F1. The corresponding Picard–Fuchs operators read [45]

LE7 = θ2 − 4z(4θ + 3)(4θ + 1),

LE6 = θ2 − 3z(3θ + 2)(3θ + 1)

LD5 = θ2 − 4z(2θ + 1)2.

(B.1)

The solutions read as follows:

φE7 =
∞∑

n≥0

(4n)!
(n!)2(2n)!

zn = 2F1

(
3
4
,
1
4
, 1, 64z

)

,(B.2)

φE6 =
∞∑

n≥0

(3n)!
(n!)3

zn = 2F1

(
2
3
,
1
3
, 1, 27z

)

,

φD5 =
∞∑

n≥0

(2n)!2

(n!)4
zn = 2F1

(
1
2
,
1
2
, 1, 16z

)

,

with

(B.3) 2F1(a, b, c;x) =
∞∑

n=0

(a)n(b)n

(c)n

xn

n!
,

where (a)n = a(a+ 1) . . . (a+ n− 1) denotes the Pochhammer symbol.
The j-functions read for these read

1728jE7 =
(1 + 192z)3

z(1 − 64z)2
,

1728jE6 =
(1 + 216z)3

z(1 − 27z)3
,

1728jD5 =
(1 + 244z + 256z2)
z(−1 + 16z)4

.

(B.4)
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We collect the expressions for the solutions in terms of modular forms

φE7(z(q))2 = 1 + 24q + 24q2 + 96q3 + · · · = −E2(τ) + 2E2(2τ),

φE6(z(q)) = 1 + 6q + 6q3 + · · · =
∑

m,n∈Z

qm2+n2+mn

= θ2(τ)θ2(3τ) + θ3(τ)θ3(3τ),

φD5(z(q)) = 1 + 4q + 4q2 + · · · = θ3(2τ)2.

(B.5)

Following analogous steps presented in Section 3.2, one can again proof the
holomorphic anomaly equation for genus 0.

Appendix C. Modular functions

This appendix lists various modular functions, which appear in the generat-
ing functions in the main text. Define q := e2πiτ and w := e2πiz, with τ ∈ H

and z ∈ C. The Dedekind eta and Jacobi theta functions are defined by

η(τ) := q
1
24

∞∏

n=1

(1 − qn),

θ1(z, τ) := i
∑

r∈Z+ 1
2

(−1)r− 1
2 q

r2

2 wr,(C.1)

θ2(z, τ) :=
∑

r∈Z+ 1
2

qr2/2wr,

θ3(z, τ) :=
∑

n∈Z

qn2/2wn.

The Eisenstein series E2k(τ) of weight 2k are given by:

(C.2) E2k(τ) = 1 − 4k
B2k

∞∑

n=1

σ2k−1(n) qn,

with B2k the Bernoulli numbers and σk(n) =
∑

m|n,m>0m
k the divisor func-

tion.
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We define the indefinite theta function F (τ, u, v) for 0 < −Imu/Im τ < 1
and 0 < Im v/Im τ < 1 [26]

F (τ, u, v) =
∑

n≥0,m>0

qmn e2πiun+2πivm −
∑

n>0,m≥0

qmn e−2πiun−2πivm(C.3)

=
∑

n≥0,m>0

−
∑

n<0,m≤0

qnm e2πiun+2πivm.

Analytic extension of this function gives

(C.4) F (τ, u, v) = −iη(τ)
3 θ1(τ, u+ v)

θ1(τ, u) θ1(τ, v)
.
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