
“CNTP-6-4-A4-BAKKER” — 2013/6/5 — 15:55 — page 805 — #1
�

�

�

�

�

�

�

�

communications in

number theory and physics

Volume 6, Number 4, 805–847, 2012

Higher rank stable pairs on K3 surfaces

Benjamin Bakker and Andrei Jorza

We define and compute higher rank analogs of Pandharipande–
Thomas stable pair invariants in primitive classes for K3 surfaces.
Higher rank stable pair invariants for Calabi–Yau threefolds have
been defined by Sheshmani [26, 27] using moduli of pairs of the
form On → F for F purely one-dimensional and computed via
wall-crossing techniques. These invariants may be thought of as
virtually counting embedded curves decorated with a (n− 1)-
dimensional linear system. We treat invariants counting pairs
On → E on a K3 surface for E an arbitrary stable sheaf of a fixed
numerical type (“coherent systems” in the language of [16]) whose
first Chern class is primitive, and fully compute them geometri-
cally. The ordinary stable pair theory of K3 surfaces is treated
by [22]; there they prove the KKV conjecture in primitive classes
by showing the resulting partition functions are governed by quasi-
modular forms. We prove a “higher” KKV conjecture by showing
that our higher rank partition functions are modular forms.

1. Introduction

1.1. Main results

Stable pair invariants were defined for threefolds X in [24] by integration
over a moduli space Pk(X,β) parametrizing non-zero maps OX → F with
zero-dimensional cokernel for F a purely one-dimensional sheaf (see Sec-
tion 1.2) with k = χ(F) and [SuppF ] = β. Recently these invariants have
been generalized to counts of maps On

X → F for n ≥ 1 and F higher rank
(see Section 1.3). The aim of this paper is to define and fully compute higher
stable pair invariants for X a K3 surface.

LetD be a divisor class on a K3 surfaceX such that any representative of
D is reduced and irreducible (a divisor of minimal degree will be sufficient, cf.
Definition 2.2), n, r non-negative integers, and k ∈ Z. The Kawai–Yoshioka
moduli space Systn

X(r,D, k) [16] of coherent systems parametrizes non-zero
maps On

X → E with E stable of Mukai vector v(E) = (r,D, k). It was orig-
inally noted by [25] that with the above restriction on D, Syst1(0, D, k) is
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isomorphic to Pk(X,D) (which still exists for X a surface, although the
invariants are only defined in the threefold case). Indeed, if P = |D| is the
complete linear system of D and X × P ⊃ CD → P is the universal divi-
sor, then Syst1(0, D, k) is simply the relative Hilbert scheme C[k+g−1]

D =
Hilbk+g−1(CD/P). We therefore view Systn

X(r,D, k) for n > 1 or r > 0 as
a moduli space of higher stable pairs. SystnX(r,D, k) is smooth [16, Lemma
5.117], so we define the signed Euler characteristic of SystnX(r,D, k) to be the
higher stable pair invariant, in analogy with the threefold case. The Euler
characteristic is deformation invariant for deformations of X for which D
remains algebraic and such that every representative is reduced and irre-
ducible, so for each genus g we once and for all fix a K3 surface Xg with
such a divisor Dg of genus g (see Section 3.1) and compute it’s higher stable
pair invariants.

Our main result is a computation of the Hodge polynomials e (·) =∑
hp,q(·)(−t)p(−t)q of the moduli spaces Systn

Xg
(r,Dg, k): defining gener-

ating functions

(1.1) F r
n(q, y) =

∑

g≥0

∑

k∈Z

e
(
Systn

Xg
(r,Dg, k + r)

)
(tt)−gykqg−1,

we prove in Theorem 3.3:

Theorem A. Let S(q) =
∑

n≥0 e(X [n])(tt)−nqn−1 be the generating func-
tion of the (symmetrized) Hodge polynomials of the Hilbert schemes X [n] of
n points on a K3 surface X. For Xg, Dg chosen as above,

F r
n(q, y)
S(q)

=
(tt)r(n−r)

[n]

∑

p≥n−r
�≥r

(tt)−n�−(p−�)r[p+ �]
[
n+ �− r − 1

n− 1

][
p+ r − 1
n− 1

]

yp−�qp�.

The square binomial coefficient
[
n
k

]
is a polynomial in u = tt (see

Section 4.1) which computes the Hodge polynomial of Gr(k, n) while [n]
is the Hodge polynomial of P

n−1. The technique involved in the proof is
a generalization of the calculation of [16], and we reproduce their result
for F 1

0 (q, y). We remark that this rank 1 generating function F 1
0 (q, y) is

related [22] to the reduced Gromov–Witten potentials of the K3 surface via
a change of variables (for details see Section 1.4); although there is cur-
rently no notion of “higher Gromov–Witten theory”, we expect there to
be wall-crossing relationships between our invariants and other higher rank
analogues of “sheaf-theoretic” curve-counting invariants on K3 surfaces.
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Using Theorem A, we further show that the higher partition functions
F r

n(q, y) are governed by modular forms (Theorem 3.12):

Theorem B. Substituting y = eiv, the coefficient of vs in the Taylor series
expansion of (F r

n(q, y)/S(q))|t=t=1 is an element of a Q(i)-algebra generated
by Eisenstein series of level Γ(4) (cf. Section 3.5).

The proof of Theorem B relies on Hickerson’s work on Ramanujan’s
mock theta conjectures (cf. Theorem 3.9); the mock theta conjectures state
that certain mock theta functions (which Ramanujan defined as certain gen-
erating functions, but can be thought of as the holomorphic parts of certain
Maass forms) can be written as linear combinations of infinite products.

Theorem B, generalizing the r = 0, n = 1 result of [22] (see Section 1.4
(c)), is surprising in that it is not predicted by physics. The modularity of
the ordinary stable pair and Gromov–Witten generating functions of a K3
surface are physically attributed by Katz et al. [11] to the duality between
M-theory compactified on a K3 surface and heterotic string theory com-
pactified on T 3 (here T = S1) [32]. We will hereafter refer to mathematical
statements of the modularity of such generating functions as the KKV con-
jecture; it has been proven in several cases. The relative Hilbert scheme C[d]

D

is interpreted by [16] as a space of D0-branes bound to a D2-brane wrap-
ping a K3 surface, and their calculation (1.2) proves the KKV conjecture for
such invariants, for D of minimal degree (cf. Definition 2.2). [22] proves the
KKV conjecture for Gromov–Witten potentials in primitive classes, which
by an MNOP-style duality (see (b) of Section 1.4 below) agrees with our
Theorem B for r = 0 and n = 1, and [31] conjecturally treats the KKV con-
jecture for ordinary stable pair invariants in all divisor classes. In its full
generality, Theorem B should be interpreted as a higher rank KKV con-
jecture in classes of minimal degree, though it is an interesting question
whether our generating functions have a physical interpretation.

To further motivate our results in the remainder of the introduction, we
review stable pair theories for threefolds and K3 surfaces.

1.2. Stable pair invariants on threefolds

Let X be a smooth threefold. A stable pair is a one-dimensional sheaf F
together with a non-zero section OX → F whose kernel is zero-dimensional.
The moduli space of stable pairs with [Supp(F)] = β and χ(F) = k is a
projective scheme Pk(X,β) (see [24] for details). Generically, the support
C = Supp(F) of F is a smoothly embedded curve, in which case F is a line
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bundle LC on C and the section OX → F is a composition OX → OC → LC ,
where the latter map is a section of LC , i.e., a divisor on C in the divisor class
given by LC . Thus, Pk(X,β) is a compactification of the space of smoothly
embedded, (k + g − 1)-pointed curves.

Recall that the Behrend function νM : M → Z of a scheme M is a canon-
ical constructible function associated to M , which measures the singularities
of M (see [1] for basic properties); for example, if M is smooth then νM is
constant, equal to (−1)dim M . By integrating νM with respect to the (topo-
logical) Euler characteristic measure dχ on M we obtain an invariant. For
M = Pk(X,β), Behrend has shown [1] that this yields the Pandharipande–
Thomas stable pair invariants of X

PTβ,k =
∫

Pk(X,β)
νPk(X,β)dχ :=

∑

s∈Z

sχ(ν−1
Pk(X,β)(s)),

which can be thought of as a virtual count of pointed curves. This num-
ber was originally defined by integrating the virtual class of a symmetric
obstruction theory on Pk(X,β) in [24], and using those techniques can be
shown to be deformation invariant of (X,β). Note that if Pk(X,β) is smooth,
then PTβ,n is the signed Euler characteristic of Pk(X,β).

The Donaldson–Thomas invariant DTβ,k of X (for X Calabi–Yau) is
defined similarly by integrating the virtual class of a symmetric obstruction
theory on Ik(β,X), the Hilbert scheme of subschemes Z ⊂ X such that
[Z] = β and χ(OZ) = k, and is once again a deformation invariant [28].
DTβ,k can likewise be shown to be equal to the integral of the Behrend
function of Ik(β,X). Both Ik(X,β) and Pk(X,β) can be thought of as
parametrizing pairs O s−→ F with F one-dimensional, though with respect
to different stability conditions: in Donaldson–Thomas theory, we require
s to be surjective; in Pandharipande–Thomas theory, F is required to be
pure and s has zero-dimensional kernel. It is therefore not surprising that
Donaldson–Thomas and Pandharipande–Thomas invariants are related to
each other via a wall-crossing formula (there is a great deal of literature on
this — see, e.g., [2, 10, 12,29]).

1.3. Higher rank stable pair theories

There are two means by which one can generalize either of the above invari-
ants on threefolds to higher rank: if Ik(X,β), Pk(X,β) parametrize pairs
OX → F , the higher moduli spaces Ir,n

k (X,β), P r,n
k (X,β) should parametrize
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pairs On
X → F with rkF = r. We refer to n as the section rank and r as the

sheaf rank.
Both generalizations have been partially treated in recent literature for

X a Calabi–Yau threefold:

Higher section rank. A clear candidate for I0,n
k (X,β) is the Quot scheme of

1-dimensional quotients Q of On
X with χ(Q) = k and [SuppQ] = β. These

invariants1 are computed for β = 0 and n = 2 by Toda in [30], and for more
general section rank n by [23] by relating the resulting moduli spaces to
quiver varieties. Both computations rely on Joyce’s wall-crossing formulae
[10,12].

Higher sheaf rank. The higher sheaf rank moduli spaces in our sense have
not been considered, though for Calabi–Yau threefolds X Sheshmani [26,
27] has defined and computed invariants counting stable pairs of the form
OX(−�)n → F for F pure and one-dimensional, but with arbitrary rank on
its support — that is, c2(F ) = r[Supp(F )]. Once again, his computations
rely on Joyce’s wall-crossing machinery and virtual localization.

We view the moduli space Systn(r,D, k) as simultaneously achieving the
two analogous generalizations to both higher section rank n and higher sheaf
rank r in the surface case.

1.4. Previous work on stable pairs on K3 surfaces

Let X be a K3 surface and D a divisor class such that every divisor in D is
reduced and irreducible of genus g (again, more generally for D of minimal
agree cf. Definition 2.2). Following [16], let P = |D| be the complete linear
system of D and X × P ⊃ CD → P the universal divisor. As noted by [25],
the relative Hilbert scheme C[d]

D = Hilbd(CD/P) parametrizing divisors C in
the class D and subschemes Z of C of length d is the moduli space Pk(X,D)
of stable pairs OX → F with c1(F) = D and χ(F) = d+ 1 − g = k, where
D2 = 2g − 2. C[d]

D is smooth, so a reasonable replacement for the
Pandharipande–Thomas invariant is the (signed) topological Euler charac-
teristic of C[d]

D [25]:

ND,d = (−1)d+gχ(C[d]
D ).

1The moduli space considered by Toda is not exactly the Quot scheme; there is
an additional stability condition.
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Indeed, [22, Section 3.7] show that this invariant can be directly com-
puted from the threefold theory; it is the same as the invariant associated
with the virtual class obtained by restricting the symmetric obstruction
theory on Pk(X × C, i∗D) to Pk(X,D) ↪ i−→ Pk(X × C, i∗D) after embedding
i : X → X × C as the fiber over 0 ∈ C.2 These invariants are typically orga-
nized into generating functions

ZD(y) =
∑

k≥1−g

(−1)k+2g−1χ(C[k+g−1]
D )yk.

The functions ZD(y) are studied in detail by [22] for primitive D. There
they show:

(a) ZD(y) = Zg(y) only depends on the genus g of D, and by [16, Theo-
rem 5.80]

F (q, y) : = −
∑

g≥0

qg−1Zg(−y)(1.2)

=
1

(√
y − 1√

y

)2

∏

n≥1

1
(1 − yqn)2(1 − qn)20(1 − y−1qn)2

=
s(q)

(√
y − 1√

y

)2

∏

n≥1

(1 − qn)4

(1 − yqn)2(1 − y−1qn)2
,

where s(q) = S(q)|t=t=1 =
∏

n≥1(1 − qn)−24 is the generating function
of the Euler characteristics of the Hilbert schemes of points on a K3.

(b) Zg(y) is related to the reduced Gromov–Witten potentials of a K3
surface via a change of variables −y = eiv analogous to the duality for
Calabi–Yau threefolds conjectured in [20,21].

2Starting from this construction, Kool and Thomas [14, 15] have more recently
defined stable pair invariants for a wider class of surfacesX as an equivariant residue
of the threefold invariants of X × C. The resulting obstruction theory on Pk(X,D)
is not of virtual dimension 0, and the invariants with insertions are therein related
to Göttsche invariants [6] (see also [13] where this is used to prove the Göttsche
conjecture). It would be interesting to see if higher rank analogs of these invariants
can be defined.
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(c) The coefficient of vi in the full partition function

F (q, y) =
∑

g≥0

Zg(y)qg−1

after the substitution y = eiv is the q-expansion of a quasi-modular
form [22, Theorem 4].

Outline. The outline of the paper is as follows. In Section 2, we recall the
moduli theory of stable pairs on a K3 surface X. The key relationship
between the relevant moduli spaces is developed in Section 2.3. In Section
3, we compute the generating functions (1.1) using the geometry from Sec-
tion 2. In Section 3.4, we express the general invariants in terms of the
r = 0, n = 1 theory; in Section 3.5, we compute the generating functions
of the Euler characteristics and prove that the v-coefficients, after setting
y = eiv, are modular forms. The less enlightening computations used in the
course of Section 3 are collected in Section 4.

2. The moduli theory of sheaves and stable pairs on
K3 surfaces

Throughout this section, let X be an algebraic K3 surface over C. The
Mukai lattice of X is the total cohomology ring H∗(X,Z) together with the
pairing

(v, w) = −
∫

X
v∨w =

∫

X
(v1w1 − v0w2 − v2w0),

where for v = v0 + v1 + v2 ∈ H∗(X,Z), vi ∈ H2i(X,Z) are the homogeneous
components, and similarly for w. We will denote by ω ∈ H4(X,Z) the
Poincaré dual to the point class. Using the canonical isomorphisms H0(X,Z)
∼= Z and H4(X,Z) ∼= Z, we will write v = (r,D, a) for integers r, a when
v0 = r, v1 = D, v2 = aω. Note that

Td(X) = 1 + 2ω.

Given a coherent sheaf E on X, the Mukai vector of E is

v(E) = ch E
√

Td(X)

= rk(E) + c1(E) +
(

rk(E)ω +
c1(E)2

2
− c2(E)

)

= (rk(E), c1(E), χ(E) − rk(E)),
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by Gronthendieck–Riemann–Roch. The Mukai pairing is defined so that, for
any coherent sheaves E ,F on X,

(v(E), v(F)) = −χ(RHom(E ,F)).

Most of the following sections are adapted from the treatment in [16].

2.1. Moduli of sheaves

Let H be an ample divisor on X, v = (r,D, a) ∈ H∗(X,Z) a Mukai vec-
tor, and assume v1 = D is primitive. Recall that a coherent sheaf E on X is
Gieseker stable (resp. semistable) if for any subsheaf F ⊂ E , the Hilbert poly-
nomials satisfy χ(F ⊗Hn) < χ(E ⊗Hn) (resp. χ(F ⊗Hn) ≤ χ(E ⊗Hn))
for n > 0. Throughout the following, by (semi)stability we will mean Gieseker
(semi)stability with respect toH. LetM(v) be the moduli space of semistable
sheaves E with v(E) = v. A well known theorem of Huybrechts [9] (for a nice
exposition see [8, 6.2.16]) states that

Theorem 2.1. For generic H, M(v) is a smooth projective irreducible sym-
plectic variety of dimension 2 + (v, v) = 2(g − ra) deformation equivalent to
the Hilbert scheme of g − ra points X [g−ra] on X.

We will be concerned with the case when D is of minimal degree:

Definition 2.2. A divisor class D ∈ Pic(X) has minimal degree if D.H > 0
and no positive line bundle has smaller intersection product with H, that is

D.H = min{L.H|L ∈ Pic(X), L.H > 0}.

Clearly every divisor of minimal degree is primitive. The main impor-
tance of this definition is that for any divisor class D of minimal degree,
every divisor in that class is integral, and therefore moduli spaces of sheaves
E with v1 = D will be well-behaved. For any genus g, there is a suitable K3
surface with a divisor class D of genus g and minimal degree:

Examples 2.3.

(1) If X is an elliptic K3 surface with section, Pic(X) = Zσ ⊕ Zf , where
f is the fiber class and σ the section class. Choosing H = σ + 3f to
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be the ample class, we have

(aσ + bf).H = a+ b,

σ and f are clearly of minimal degree, since both have intersection
product 1 with H.

(2) If X has Picard rank one and H is the ample generator, then D = H
has minimal degree.

Lemma 2.4. If v1 = D is of minimal degree with respect to H, then H is
generic in the sense of Theorem 2.1.

Proof. This follows from the fact the semistability implies stability. When
r > 0, for sheaves E with v(E) = (r,D, a) of minimal degree, if F � E with
c1(F).H

rkF < c1(E).H
rk E then clearly χ(F ⊗Hn) < χ(E ⊗Hn) for n� 0 since the

equality either holds for the leading coefficient ( rkF
2 < rk E

2 ) or for the next
coefficient. If c1(F).H

rkF = c1(E).H
rk E , then rkF = rk E and c1(F).H = c1(E).H,

for otherwise detF would be a positive line bundle with smaller degree.
E/F then has dimension 0 and again χ(F ⊗Hn) < χ(E ⊗Hn) for n� 0.

When r = 0, semistability and stability are both equivalent to purity
even without the assumption of minimal degree. �

2.2. A stratification of the moduli spaces

In the setup of Section 2.1 suppose further that M(v) is a fine moduli
space, so there exists a universal sheaf F on X ×M(v), flat over M(v),
such that for every point p = [E ] ∈M(v), the restriction of F to X × p is E .
For our purposes we need only consider the case when the Euler character-
istic χ = −(v(O), v) ≥ 0 (cf., Remark 2.13). Let π : X ×M(v) →M(v) be
the projection, and consider the subsets,

(2.1) M(v)i = {[E ] ∈M(v)|dimH0(E) = i},

with the induced reduced subscheme structure. By the semicontinuity the-
orem, we have immediately

Lemma 2.5. If M(v) is a fine moduli space, then {M(v)i}i≥0 is a locally
closed stratification of M(v).



“CNTP-6-4-A4-BAKKER” — 2013/6/5 — 15:55 — page 814 — #10
�

�

�

�

�

�

�

�

814 Benjamin Bakker and Andrei Jorza

In general, M(v) need not have a universal family, but étale-locally it
does. The cohomology of coherent sheaves can be computed étale-locally,
and closed and open immersions are both étale local properties, so

Proposition 2.6. {M(v)i}i≥0 is a (finite) locally closed stratification of
M(v).

Remark 2.7. Since the second cohomology vanishes for any stable sheaf
E with Mukai vector v,

dimH0(E) ≥ χ(E) = χ = r + a.

From Brill–Noether theory, we know for D of minimal degree that: (i) the
generic stratum is in fact M(v)r+a; (ii) each M(v)i for 0 ≤ i < r + a is
empty; and (iii) each M(v)i for i ≥ r + a is of the expected dimension (when
the expected dimension is non-negative). See for example [17].

2.3. Properties of stable pairs on K3 surfaces

Throughout this section, (semi)stability will mean Gieseker (semi)stability.
We briefly recall Le Potier’s notion of a coherent system [18], henceforth

referred to as a stable pair3

Definition 2.8. A stable pair (U, E) onX is a stable sheaf E and a subspace
U ⊂ Hom(O, E). We will often denote a stable pair (U, E) by the correspond-
ing evaluation map U ⊗O → E . A morphism (U, E) → (U ′, E ′) consists of
morphisms U → U ′ and E → E ′ such that

U ⊗O ��

��

E

��
U ′ ⊗O �� E ′

3There are many overlapping notions of stability of maps of sheaves, and equally
many disparate terminologies (e.g., coherent systems, framed sheaves, stable pairs).
The objects we study are closest to coherent systems, but we refer to them through-
out as “stable pairs” for general ease of exposition and because we are ultimately
interested in interpreting coherent systems as higher rank stable pairs, in primitive
divisor classes. In this case, coherent systems of dimension 1 with dimU = 1 and
stable pairs in the sense of [24] in fact coincide; in non-primitive divisor classes they
do not. We thank the referee for bringing this to our attention.
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commutes. The Mukai vector of a stable pair (U, E) is the Mukai vector of
E , and the section rank of (U, E) is dimU .

There is an obvious relative notion of stable pair. For a scheme S, let
π : X × S → S be the projection. A family of stable pairs (U , E) on X × S/S
is a sheaf E on X × S flat over S, a locally free sheaf U on S, and a morphism
π∗U → E such that the restriction to each fiber of π is a stable pair in the
usual sense. A morphism of relative stable pairs (U , E) and (U ′, E ′) is again
given by morphisms U → U ′ and E → E ′ such that

f∗U ��

��

E

��
f∗U ′ �� E ′

commutes. By [18] the moduli functor of stable pairs with Mukai vector v and
section rank n is (coarsely) representable by a projective scheme Systn(v),
and the obvious forgetful morphism p : Systn(v) →M(v) is projective.

The following lemma of Yoshioka will control the geometry of Systn(v):

Lemma 2.9. Let X be a K3 surface, D a divisor on X of minimal degree,
and E a stable sheaf on X with c1(E) = D. Then

(1) Given a subspace U ⊂ Hom(O, E), let ϕ : U ⊗O → E be the evaluation
map. Either
(a) dimU < rk E, in which case ϕ is injective,

0 → U ⊗O → E → F → 0

and the quotient F is stable.
(b) dimU ≥ rk E, in which case ϕ is not injective,

0 → F → U ⊗O → E → Q→ 0,

and the kernel is stable and locally free, while the quotient Q is
dimension 0.

(2) Given V ⊂ Ext1(E ,O), then in the corresponding extension

0 → V ∗ ⊗O → F → E → 0

F is stable.
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Proof. See [33, Lemma 2.1]. �
This has a number of geometric consequences. For example, we have

Theorem 2.10 [16, Lemma 5.117]. Let X be a K3 surface, v ∈ H∗(X,Z)
a Mukai vector. For v1 = D of minimal degree, Systn(v) is smooth.

Whenever −(v(O), v) ≥ 0, denote by Systn(v)i the preimage of the stra-
tum M(v)i from Section 2.2 under the forgetful morphism p : Systn(v) →
M(v); clearly {Systn(v)}i≥0 is a locally closed stratification of Systn(v).

For v = (r,D, a), denote Systn(r,D, a) = Systn(v) and M(r,D, a) =
M(v). For r ≥ n there is a map (cf. [16])

q : Systn(r,D, a) →M(r − n,D, a− n),

mapping (E , U) to the cokernel F of the evaluation map U ⊗O → E , which
is injective by Lemma 2.9:

0 → U ⊗O → E → F → 0.

Again by Lemma 2.9 F is stable, and v(F) = v(E) − v(On) = (r − n,D,
a− n) since v(O) = (1, 0, 1). Further, since H1(U ⊗O) = 0, the stratum
Systn(r,D, a)i maps into M(r − n,D, a− n)i−n, assuming r + a− 2n ≥ 0.

Lemma 2.11 [16, Lemma 5.113]. For −(v(O), v) ≥ 0,

(1) The restriction Systn(v)i →M(v)i of the forgetful morphism p is an
étale-locally trivial fibration with fiber Gr(n, i).

(2) Furthermore, if r + a ≥ 2n, then the restriction Systn(r,D, a)i →
M(r − n,D, a− n)i−n of the quotient morphism q is an étale-locally
trivial fibration with fiber Gr(n, n+ i− r − a).

Proof. Both parts are obvious if M(v) has a universal sheaf F , in which
case Systn(v) is a relative Grassmannian of F . A universal sheaf exists étale
locally, and the result follows. See [16]. �

The main tool for the computation of the Hodge polynomials of Systn

(r,D, a) will be the existence of the resulting diagrams

Systn(r,D, a)i

q

�����������������
p

��������������

M(r,D, a)i M(r − n,D, a− n)i−n
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where p is an étale-local Gr(n, i)-fibration and q is an étale local Gr(n, n+
i− r − a)-fibration.

One final property of the stable pair moduli spaces that will be relevant
later is the duality, first proven by [19, Theorem 39]

Proposition 2.12 [16, Proposition 5.128]. In the setup of Theorem 2.10
there is an isomorphism

Systn(r,D, a) ∼= Systn(n− r,D, a− r)

for all r ≤ n.

Remark 2.13. By this duality, if we’re interested in Systn(r,D, k + r) for
r ≤ n, we may assume k ≥ 0; indeed, the duality is equivalent to
Systn(r,D, a) ∼= Systn(n− r,D, a+ (n− r)). Thus, we need only consider
moduli spaces involving sheaves of non-negative Euler characteristic.

Proof of Proposition 2.12. We will at the very least define the map; see [16]
for a proof of the theorem. Let U ⊗O → E be a stable pair, and consider
U ⊗O → E as a morphism of complexes supported in degree 0 in the derived
category Db(X); let x ∈ Db(X) be the cone. Thus, there is a triangle

(2.2) x→ U ⊗O → E → x[1].

Alternatively, we can think of x as the 2-term complex [U ⊗O → E ] with E
placed in degree 1. Applying RHom( · ,O) to the triangle (2.2), we have a
morphism

(2.3) U∗ ⊗O ∼= Hom(U ⊗O,O) → Hom(x,O).

One can show that U∗ ⊗O → Hom(x,O) is a stable pair and that this
defines the isomorphism. For example, (2.3) is injective on global sections
because, applying RHom( · ,O) to (2.2), there is an exact sequence

(2.4) 0 ∼= Hom(E ,O) → U∗ → Hom(x,O) → Ext1(E ,O) → 0,

where the triviality of Hom(E ,O) follows from the stability of E . �

Remark 2.14. In fact, by (2.4), we obtain an isomorphism

Systn(r,D, a)i
∼= Systn(n− r,D, a− r)i+n−χ,

where χ = −(v(O), v), v = (r,D, a).



“CNTP-6-4-A4-BAKKER” — 2013/6/5 — 15:55 — page 818 — #14
�

�

�

�

�

�

�

�

818 Benjamin Bakker and Andrei Jorza

3. Computation of Hodge polynomials

This section will be devoted to computing the generating functions of the
moduli spaces of stable pairs on K3 surfaces. The geometric arguments are
given here; some useful computations are collected in the subsequent section.

3.1. Preparations

For X a scheme over C, let

e (X) =
∑

p,q≥0

hp,q(X)(−t)p(−t)q

denote the virtual Hodge polynomial (Hodge–Deligne polynomial) of X [3].
Throughout the following, we will set u = tt; the Hodge polynomial of the
Grassmannian Gr(k, n) of k planes in n-space is easily expressed in terms of
u-integers (see Section 4.1):

e (Gr(k, n)) =
[
n

k

]

.

In particular,

e (Pn) = [n+ 1].

Let X now be a K3 surface. Recall that for a divisor class D ∈ H2(X,Z),
D2 = 2g − 2 by the adjunction formula, where g is the arithmetic genus of a
divisor in the class D; g will be called the genus of D. For each genus g ≥ 0
fix a polarized K3 surface Xg with polarization Hg and a divisor class Dg of
minimal degree and genus g, cf. Examples 2.3:

• g = 0, 1: Xg → P
1 is an elliptic K3 with a section. Pic(Xg) = Zσ ⊕ Zf ,

where f is the fiber class and σ the section class. For g = 0 take H0 =
σ + 3f and D0 = σ; for g = 1 take H1 = σ + 3f and D1 = f .

• g ≥ 2: Xg has Picard rank 1 with ample generator Hg of genus g; take
Dg = Hg.

Denote by M(r,Dg, k) the moduli space of Hg-stable rank r sheaves
E on Xg with c1(E) = Dg and ch2(E).[Xg] = k — in the notation of Sec-
tion 2.1, this is M(v) for v(E) = (r,Dg, k). Define infinite matrices M(g) =
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(M(g)ij)i,j≥0 and Systn(g) = (Systn(g)ij)i,j≥0 of Hodge polynomials by

M(g)ij =

⎧
⎨

⎩

e
(

M

(
i− j

2
, Dg,

i+ j

2

))

, i− j ≡ 0 mod 2,

0, i− j ≡ 1 mod 2,

Systn(g)ij =

⎧
⎨

⎩

e
(

Systn

(
i− j

2
, Dg,

i+ j

2

))

, i− j ≡ 0 mod 2,

0, i− j ≡ 1 mod 2.

Thus, M(g)ij records the Hodge polynomial of the moduli space of sheaves
E with i = χ(E) and j = ch2(E). In the computations below, it is enough to
consider i, j non-negative.

Recall from Section 2.2 that in this case M(r,D, a)i is the stratum of
M(r,D, a) of sheaves E with h0(E) = i. By Remark 2.7 the highest dimen-
sional stratum is i = r + a = χ(E); define a matrix M0(g) = (M0(g)ij)i,j≥0

of the virtual Hodge polynomials of these generic strata:

M0(g)ij =

⎧
⎨

⎩

e
(

M

(
i− j

2
, Dg,

i+ j

2

)

i

)

, i− j ≡ 0 mod 2,

0, i− j ≡ 1 mod 2.

3.2. Encoding the geometry

In the following arguments, we will at any one time be considering X = Xg

for a fixed g, so we drop the g subscripts from the notation.
For any locally closed stratification of a scheme Y , the virtual Hodge

polynomial of Y is the sum of the virtual Hodge polynomials of the strata.
In particular,

(3.1) e (M(r,D, a)) =
∞∑

i=0

e (M(r,D, a)i) .

Of course, the terms are zero for i < min(0, r + a) and also for i� 0.
Similarly

e (Systn(r,D, a)) =
∞∑

i=0

e (Systn(r,D, a)i) .
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Recall from Section 4.5 that there is a diagram for r ≥ n, r + a ≥ 2n,

Systn(r,D, a)i

q

�����������������
p

��������������

M(r,D, a)i M(r − n,D, a− n)i−n

which can be rewritten as

Systn(r + n,D, a+ n)i+n

q

�����������������
p

��������������������

M(r + n,D, a+ n)i+n M(r,D, a)i

for any i, r, n ≥ 0 and any a. Recall that the fiber of p above M(r + n,D, a+
n)i+n is Gr(n, i+ n) and the fiber of q over M(r,D, a)i is Gr(n, i− r − a)
(or empty unless n ≤ i− r − a). When M(r,D, a)i is non-empty, we have
i ≥ r + a by Remark 2.7. Taking n = i− r − a,

Systi−r−a(i − a, D, i − r)2i−r−a

∼=
q

�����������������
p

��������������������

M(i − a, D, i − r)2i−r−a M(r, D, a)i

where q is an isomorphism and p is an étale-locally trivial fibration with
fiber Gr(i− r − a, 2i− r − a). This diagram is valid for any r ≥ 0, any a,
and i ≥ a+ r.

For any Zariski-locally trivial fibration Y → S with fiber F — i.e.,
Zariski-locally trivially on S, Y → S is isomorphic to the projection F ×
S → S — the Hodge polynomials simply multiply

e (Y ) = e (F ) e (S) .

The same is not in general true for étale-locally trivial fibrations, but it is
in this case:

Lemma 3.1. Let Y, S be quasiprojective varieties over C, and π : Y → S
a projective étale-locally trivial fibration with fiber Gr(k, n). Then

e (Y ) = e (Gr(k, n)) e (S) .

Proof. Let Ω = ΩY/S be the relative cotangent bundle, and let A ⊂ H∗
c (Y,Q)

be the sub-Hodge structure generated by the Chern classes ci(ΩY/S) and
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their products. For each fiber i : Gr(k, n) → Y , i∗ clearly restricts to an
isomorphism A

∼=−→ H∗(Gr(k, n),Q) of Hodge structures. Let ϕ : H∗

(Gr(k, n),Q) → A be the inverse, and define a morphism of Hodge structures

ψ = ϕ � π∗ : H∗(Gr(k, n),Q) ⊗H∗
c (S,Q) → H∗

c (Y,Q).

By the Leray–Hirsch theorem, this is an isomorphism of vector spaces, and
therefore of Hodge structures. �
Thus,

e (M(r,D, a)i) = e (Gr(i− r − a, 2i− r − a)) e (M(i− a,D, i− r)2i−r−a)

=
[
2i− r − a

i− r − a

]

e (M(i− a,D, i− r)2i−r−a) .

After replacing � = r, a = k + �, and i = k + 2�+ s, this becomes

e (M(�,D, k + �)k+2�+s) =
[
k + 2�+ 2s

s

]

e (M(�+ s,D, k + �+ s)k+2�+2s) .

(3.2)

This equation is valid in particular for any k, �, s ≥ 0. The Hodge polynomial
on the right is M0(g)k+2�+2s,k. The strata M(�,D, k + �)k+2�+s are null for
s < 0, so

M(g)k+2�,k = e (M(�,D, k + �))

=
∞∑

s=0

[
k + 2�+ 2s

s

]

M0(g)k+2�+2s,k

=
∞∑

s=0

A0
k+2�,k+2�+2sM

0(g)k+2�+2s,k,

where A(0) = (A0
ij)i,j≥0 is the matrix from Section 4.4. Thus,

(3.3) M(g) = A(0)M0(g).

Moreover, since

e (Systn(r,D, a)i) = e (Gr(n, i)) e (M(r,D, a)i) .

We have

e (Systn(�,D, k + �)k+2�+s) =
[
k + 2�+ s

n

]

e (M(�,D, k + �)k+2�+s) ,
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so that

Systn(g)k+2�,k = e (Systn(�,D, k + �))

=
∞∑

s=0

[
k + 2�+ s

n

][
k + 2�+ 2s

s

]

M0(g)k+2�+2s,k

=
∞∑

s=0

An
k+2�,k+2�+2sM

0(g)k+2�+2s,k,

where A(n) = (An
ij)i,j≥0 is the more general A-matrix from Section 4.4.

Thus,

Systn(g) = A(n)M0(g)

and setting P(n) = A(n)A(0)−1.

Proposition 3.2.

Systn(g) = P(n)M(g).

The entries of P(n) are computed in Section 4.5.

3.3. Explicit computations

By Theorem 2.1, M(r,D, a) is deformation equivalent to the Hilbert scheme
of points X [g−ra], so

e (M(r,D, a)) = e
(
X [g−ra]

)
.

The generating function for the Hodge polynomials of the X [n] is, by
Göttsche’s formula [5],

∑

n≥0

e
(
X [n]

)
qn =

∏

n≥1

2∏

i,j=0

(1 − (−1)i+jti−1t
j−1(uq)n)−(−1)i+jhi,j(X)

=
∏

n≥1

1

(1 − u−1(uq)n)(1 − tt
−1(uq)n)(1 − (uq)n)20(1 − tt−1(uq)n)(1 − u(uq)n)

.
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More concisely,

∑

n≥0

e
(
X [n]

)
u−nqn(3.4)

=
∏

n≥1

1
(1 − u−1qn)(1 − t2u−1qn)(1 − qn)20(1 − t−2uqn)(1 − uqn)

.

Denote by c(n) = e
(
X [n]

)
. We are interested in the generating function

(we suppress the u-dependence from the notation)

F r
n(q, y) :=

∑

g≥0

∑

k∈Z

e (Systn(r,Dg, k + r))u−gykqg−1(3.5)

=
∑

g≥0

∑

k≥0

e (Systn(r,Dg, k + r))u−gykqg−1

+
∑

g≥0

∑

k<0

e (Systn(r,Dg, k + r))u−gykqg−1.

The exponent g − 1 of q (instead of simply g) is customary. For r ≤ n, we
know by Proposition 2.12 that

Systn(r,D, r − k) ∼= Systn(n− r,D, n− r + k)

and therefore we can write (3.5) as

F r
n(q, y) =

∑

g≥0

∑

k≥0

Systn(g)k+2r,ku
−gykqg−1

+
∑

g≥0

∑

k>0

Systn(g)k+2(n−r),ku
−gy−kqg−1.

We have

Systn(g)k+2r,k =
∑

�≥r

Pn
k+2r,k+2�M(g)k+2�,k

=
∑

�≥r

Pn
k+2r,k+2�c

(
g − �2 − �k

)
,
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Systn(g)k+2(n−r),k =
∑

�≥r+n

Pn
k−2r+2n,k+2�M(g)k+2�,k

=
∑

�≥r+n

Pn
k−2r+2n,k+2�c

(
g − �2 − �k

)
.

Therefore,

F r
n(q, y) =

∑

g≥0

∑

k∈Z

u−gqg−1yk Systn(g)k+2r,k

=
∑

g≥0

∑

k≥0

u−gqg−1yk
∑

�≥r

Pn
k+2r,k+2�c(g − �2 − �k)

+
∑

g≥0

∑

k≥1

u−gqg−1y−k
∑

�≥n−r

Pn
k−2r+2n,k+2�c(g − �2 − �k),

and thus

F r
n(q, y) = S(q)

∑

k≥0

∑

�≥r

yku−�2−�kq�k+�2Pn
k+2r,k+2�(3.6)

+ S(q)
∑

k≥1

∑

�≥n−r

y−ku−�2−�kq�k+�2Pn
k−2r+2n,k+2�,(3.7)

where

S(q) =
∑

g≥0

c(g)u−gqg−1

is the generating function of the Hodge polynomials of the Hilbert schemes
of points on a K3 surface (again with the customary shift in the q power).
We also know by Lemma 4.7 that

Pn
k+2r,k+2� = ur(n−r)u�2+�k−n�−kr [k + 2�]

[n]

[
n+ �− r − 1

n− 1

][
k + �+ r − 1

n− 1

]

,

Pn
k−2r+2n,k+2� = ur(n−r)u�2+�k−n�−k(n−r) [k + 2�]

[n]

×
[
�+ r − 1
n− 1

][
k + �− r + n− 1

n− 1

]

.

Note that the sums in (3.6), (3.7) make sense for all � ≥ 0 since the terms
are zero whenever � < r in the first and � < n− r in the second sum.
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Write p = �+ k to get

∑

k≥0

∑

�≥0

yku−�2−�kq�k+�2Pn
k+2r,k+2�

=
ur(n−r)

[n]

∑

�≥0

∑

p≥�

u−n�−(p−�)r[p+ �]
[
n+ �− r − 1

n− 1

][
p+ r − 1
n− 1

]

yp−�qp�

and

∑

k>0

∑

�≥0

y−ku−�2−�kq�k+�2Pn
k−2r+2n,k+2�

=
ur(n−r)

[n]

∑

p>�

∑

�≥0

u−np+(p−�)r[p+ �]
[
�+ r − 1
n− 1

][
n− r + p− 1

n− 1

]

y�−pqp�

�↔p
=

ur(n−r)

[n]

∑

p≥0

∑

�>p

u−n�−(p−�)r[p+ �]
[
n+ �− r − 1

n− 1

][
p+ r − 1
n− 1

]

yp−�qp�,

where the second line is obtained by setting k = p− �, and the third by
switching p and �. Noting that

[
n+�−r−1

n−1

]
and

[
p+r−1
n−1

]
vanish for � < r and

p < n− r, respectively, the result is

Theorem 3.3. For r ≤ n,

F r
n(q, y)
S(q)

=
ur(n−r)

[n]

∑

p≥n−r
�≥r

u−n�−(p−�)r[p+ �]
[
n+ �− r − 1

n− 1

][
p+ r − 1
n− 1

]

yp−�qp�.

Remark 3.4. One is able to produce a similar formula for r > n by
once again using the duality in Proposition 2.12, but it requires defining
M(r,D, a) for negative r. Such moduli spaces naturally parametrize objects
in the derived category Db(X) Verdier dual to stable sheaves.
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Note that the only dependence on t, t that does not factor through u = tt
is from the term S(q). In particular for r = 0, n = 1

F 0
1 (q, y)
S(q)

=
∑

�≥0

∑

p≥1

u−�[p+ �]yp−�qp�

=
1

u− 1

∑

�≥0

∑

p≥1

(up − u−�)yp−�qp�

=
1

u− 1
Ψ(u, y; q),

where Ψ(u, y; q) is the function from Section 4.3. By the computations in
Section 4.3, we recover

Corollary 3.5 [16, Theorem 5.158].

F 0
1 (q, y)
S(q)

=
−1

(1 − y)(1 − u−1y−1)

×
∏

n≥1

(1 − qn)2(1 − uqn)(1 − u−1qn)
(1 − yqn)(1 − y−1qn)(1 − uyqn)(1 − u−1y−1qn)

.

For future reference, set

Φ(u, y; q) =
∏

n≥1

(1 − qn)2(1 − uqn)(1 − u−1qn)
(1 − yqn)(1 − y−1qn)(1 − uyqn)(1 − u−1y−1qn)

.(3.8)

Note directly from the formula in Theorem 3.3 that the duality in Proposi-
tion 2.12 manifests itself in the following duality of the generating function
F r

n(q, y):

Corollary 3.6.
F r

n(q, y) = Fn−r
n (q, y−1).

Remark 3.7. The same method may be employed to compute the Hodge
polynomials of the Brill–Noether strata M(r,Dg, r + k)i of each moduli
space.

3.4. Relation to r = 0, n = 1

The form of the higher generating functions is strongly determined by the
Kawai–Yoshioka (r = 0, n = 1) function. Define Laurent polynomials Cr

n(i, j)
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in u for r ≥ 0, n ≥ 1, 1 ≤ i ≤ n and 0 ≤ j ≤ n− i by Cr
n(n, 0) = 1 and

Cr
n+1(i, j) = Cr

n(i− 1, j) + Cr
n(i+ 1, j − 1)

− ur−nCr
n(i, j − 1) − un−rCr

n(i, j).

Lemma 3.8. The term u−n�−(p−�)r[p+ �]
[
n+�−r−1

n−1

][
p+r−1
n−1

]
is equal to

(u− 1)1−2n

[n− 1]!2

n∑

i=1

n−i∑

j=0

Cr
n(i, j)(uip − u−i�)uj(p−�).

Proof. Clearly the claim is true for n = 1. Note that

u−�[n+ �− r][p+ r − n]
[n]2

=
(u− 1)2

[n]2
(un−r − u−�)(up+r−n−� − u�)

=
(u− 1)2

[n]2
(up − up+r−n−� − un−r + u−�).

Thus, by induction

u−(n+1)�−(p−�)r[p+ �]
[
n+ �− r − 1

n

][
p+ r − 1

n

]
(3.9)

=
u−�[n+ �− r][p+ r − n]

[n]2

(

u−n�−(p−�)r[p+ �]
[
n+ �− r − 1

n− 1

][
p+ r − 1
n− 1

])

=
(u− 1)2

[n]2
(up − up+r−n−� − un−r + u−�)

×
⎛

⎝(u− 1)2−2n

[n− 1]!2
∑

i,j

Cr
n(i, j)(uip − u−i�)uj(p−�)

⎞

⎠ .

The two fractions match up to give the coefficient we want in front of the
sum. Note that

(up + u−�)(uip − u−i�)uj(p−�)

= (u(i+1)p − up−i�)uj(p−�) + (uip−� − u−(i+1)�)uj(p−�)

= (u(i+1)p − u−(i+1)�)uj(p−�) + (u(i−1)p − u−(i−1)�)u(j+1)(p−�)
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and

−(up+r−n−� + un−r)(uip − u−i�)uj(p−�)

= −ur−n(uip − u−i�)u(j+1)(p−�) − un−r(uip − u−i�)uj(p−�).

So that in (3.9) the coefficient of (uip − u−i�)up−� is

Cr
n(i− 1, j) + Cr

n(i+ 1, j − 1) − ur−nCr
n(i, j − 1) − un−rCr

n(i, j),

which by definition is Cr
n+1(i, j).

�

By Theorem 3.3,

[n]ur(r−n)S(q)−1F r
n(q, y)

=
∑

�≥0

∑

p≥0

u−n�−(p−�)r[p+ �]
[
n+ �− r − 1

n− 1

][
p+ r − 1
n− 1

]

yp−�qp�

=
(u− 1)1−2n

[n− 1]!2

n∑

i=1

n−i∑

j=0

Cr
n(i, j)

∑

p,�≥0

(uip − u−i�)uj(p−�)yp−�qp�

=
(u− 1)1−2n

[n− 1]!2

n∑

i=1

n−i∑

j=0

Cr
n(i, j)Ψ(ui, ujy; q).

So, finally

Theorem 3.9.

F r
n(q, y)
S(q)

=
ur(n−r)(u− 1)1−2n

[n][n− 1]!2

n∑

i=1

n−i∑

j=0

Cr
n(i, j)Ψ(ui, ujy; q).

For example, for n = 2 the only non-zero Cr
2(i, j) are

Cr
2(2, 0) = 1 Cr

2(1, 0) = −u1−r Cr
2(1, 1) = −ur−1

and therefore

ur(r−2)(u− 1)3[2]S(q)−1F r
2 (q, y) = Ψ(u2, y) − u1−rΨ(u, y) − ur−1Ψ(u, uy).

(3.10)
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3.5. Euler characteristics and modularity

Of particular interest is the generating function f r
n(q, y) := F r

n(q, y)|t=t=1 of
the Euler characteristics χ (Systn(r,D, a)) of the stable pair moduli spaces.
By definition,

f r
n(q, y) =

∑

g≥0

∑

k∈Z

χ (Systn(r,Dg, k + r)) ykqg−1.

The generating function s(q) of the Euler characteristics of the Hilbert
scheme of points is well known. From (3.4),

s(q) = S(q)|t=t=1 =
∑

g≥0

χ(X [g])qg−1 = q−1
∏

g≥1

1
(1 − qg)24

=
1

η(q)24
,

where η(q) is the q-expansion of the Dedekind η function. Define

Gr
n(q, y) =

F r
n(q, y)
S(q)

and

gr
n(q, y) =

f r
n(q, y)
s(q)

.

From Theorem 3.3,

Theorem 3.10.

gr
n(q, y) =

1
n

∑

p≥n−r
�≥r

(p+ �)
(
n+ �− r − 1

n− 1

)(
p+ r − 1
n− 1

)

yp−�qp�.

Note that the coefficient in (3.5) can be rewritten at u = 1 as

−1
(1 − y)(1 − y−1)

=
(√

y − 1√
y

)−2

.

Thus, for r = 0, n = 1 we recover the Kawai–Yoshioka formula [16]

Corollary 3.11.

g0
1(q, y) =

(√
y − 1√

y

)−2 ∏

n≥1

(1 − qn)4

(1 − yqn)2(1 − y−1qn)2
.
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From [22] we know the v coefficients of g0
1(q, y) after the change of vari-

able y = −eiv are (the q-expansions of) classical modular forms,

−g0
1(q,−y) y=−eiv

=
1
v2

· exp

⎛

⎝
∑

g≥1

v2g |B2g|
g · (2g)!E2g(q)

⎞

⎠ ,

where E2g(q) is the q-expansion of the 2gth Eisenstein series and B2g is the
2gth Bernoulli number, defined by t

et−1 =
∑∞

n=0Bn
tn

n! . See [4], for example,
for an elementary treatment of modular forms. Note that

iv

eiv − 1
=
∑

m≥0

Bm(iv)m

m!
,

−iv
e−iv − 1

=
∑

m≥0

Bm(−iv)m

m!
,

thus

lim
u→1

v2

(1 − uk+l eiv)(1 − u−l e−iv)
=

∑

m,n≥0

Bm
(iv)m

m!
Bn

(−iv)n

n!

=
∑

n≥0

invn

n!

n∑

k=0

(−1)kBkBn−k

(
n

k

)

is a power series in Q[[v]], which we denote by B.
The divisor functions

σg(n) =
∑

d|n
dg

are related to the Eisenstein series by

E2g(q) = 1 − 4g
B2g

∑

n≥1

σ2g−1q
n.

E2g(q) is a modular form of weight 2g and level Γ(1). The Eisenstein series
E2g+1(q) of odd weight 2g + 1 and level Γ(2) are defined by

E2g+1(q) = 1 +
4(−1)g

e2g

∑

n≥1

σ2g−1q
n/2,
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where the numbers en are defined by 1
cos t =

∑
n≥0 en

tn

n! Let

R = Q(i)[E2g(q), E2g+1(q2)|g ≥ 1]

be an algebra generated by modular forms on Γ(4). Clearly the generat-
ing functions Σg =

∑
n≥1 σg(n)qn ∈ R for g ≥ 1. The modularity result for

gr
n(q, y) is:

Theorem 3.12. The coefficient of vs in the power series expansion of
v2gr

n(q, eiv) is itself a power series in q, and this coefficient is in fact in
the algebra R.

First we have

Lemma 3.13. Let log Φ(uk, u�eiv; q) =
∑

s≥0 ψk,�,sv
s where ψk,�,s is a func-

tion of u and q (recall Φ was defined in (3.8)). Then for all t ≥ 0, the t-th
derivatives dt

dutψk,�,s|u=1 ∈ R.

Proof. By definition

Φ(uk, u� eiv, q)

=
∏

n≥1

(1 − qn)2(1 − ukqn)(1 − u−kqn)
(1 − uk+� eivqn)(1 − u−k−� e−ivqn)(1 − u� eivqn)(1 − u−� e−ivqn)

and so

log Φ(uk, u�eiv; q)

=
∑

n≥1

(
2 log(1− qn) + log(1−ukqn) + log(1−u−kqn)− log(1−uk+�eivqn)

+ log(1 − u−k−�e−ivqn) + log(1 − u�eivqn) + log(1 − u−�e−ivqn)
)

=
∑

n≥1

∑

r≥1

qnr

r

(
2 + ukr + u−kr

)

−
∑

n≥1

∑

r≥1

∑

s≥0

qnr(ivr)s

rs!
(
u(k+�)r + (−1)su−(k+�)r + u�r + (−1)su−�r

)
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=
∑

n≥1

qn
∑

r|n

(
2 + ukr + u−kr

)

r

−
∑

s≥0

isvs

s!

∑

n≥1

qn
∑

r|n
rs−1

(
u(k+�)r + (−1)su−(k+�)r + u�r + (−1)su−�r

)
.

This implies that

ψk,�,0 =
∑

n≥1

qn
∑

r|n

(
2 + ukr + u−kr − u(k+�)r − u−(k+�)r − u�r − u−�r

)

r

and for s ≥ 1

ψk,�,s = − i
s

s!

∑

n≥1

qn
∑

r|n
rs−1

(
u(k+�)r + (−1)su−(k+�)r + u�r + (−1)su−�r

)
.

Evaluating at u = 1, we get ψk,�,0|u=1 = 0 and ψk,�,s|u=1 = −2(1+(−1)2)is

s!
Σs−1. Differentiating, we get that for t ≥ 1 and s ≥ 1, we have

(
dt

dut
ψk,�,0

)∣
∣
∣
∣
u=1

= t!
∑

n≥1

qn
∑

r|n
rs−1

((
kr

t

)

+
(−kr

t

)

−
(

(k + �)r
t

)

−
(−(k + �)r

t

)

−
(
�r

t

)

−
(−�r

t

))

and

(
dt

dut
ψk,�,s

)∣
∣
∣
∣
u=1

= − i
st!
s!

∑

n≥1

qn
∑

r|n
rs−1

((
(k + �)r

t

)

+ (−1)s

(−(k + �)r
t

)

= +
(
�r

t

)

+ (−1)s

(−�r
t

))

.

The conclusion then follows as each coefficient of qn in the above expansions
is either 0 or a Q-linear combination of powers of r which implies that the
derivative evaluated at u = 1 is a linear combination of terms of the form
Σw for w ≥ 1. �
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Proof of Theorem 3.12. Note that

v2gr
n(q, eiv) = lim

u→1
v2Gr

n(q, eiv)

= lim
u→1

ur(n−r)(u− 1)1−2n

[n][n− 1]!2

n∑

k=1

n−k∑

�=0

Cr
n(i, j)Ψ(uk, u�y; q)

= B lim
u→1

ur(n−r)(u− 1)1−2n

[n][n− 1]!2

n∑

k=1

n−k∑

�=0

Cr
n(i, j)Φ(uk, u�y; q).

To compute the limit we apply L’Hôpital observing that

d2n−1

du2n−1

[n][n− 1]!2

(u− 1)2n−1

∣
∣
∣
∣
u=1

= n2.

We get

v2gr
n(q, eiv) =

B
n2

dn2

dun2

(
n∑

k=1

n−k∑

�=0

Cr
n(k, �)Φ(uk, u�eiv; q)

)∣
∣
∣
∣
∣
u=1

so it is enough to check that for all t ≥ 0, dt

dut Φ(uk, u�eiv; q)|u=1 ∈ R[[v]].
But dt

dut Φ(uk, u�eiv; q) = dt

dut exp
(∑

s≥0 ψk,�,sv
s
)

is of the form

exp

⎛

⎝
∑

s≥0

ψk,�,sv
s

⎞

⎠Fk,�,t = Φ(uk, u�eiv; q)Fk,�,t,

where Fk,�,t is an expression involving only the ψk,�,s and their derivatives.
Evaluating at u = 1, the previous lemma shows that all coefficients of powers
of v in Fk,�,t are in R. Finally, note that

Φ(1, eiv; q) =
∏

n≥1

(1 − qn)4

(1 − eivqn)2(1 − e−ivqn)2

and this was computed in [22, p. 53] to be 4
∑

k≥1
(−1)kv2k

(2k)! Σ2k−1. Multiplying
everything together, we get the required conclusion. �
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4. Computations

4.1. u-Binomial coefficients

The u-integer [n] is the polynomial in u given by

[n] =
un − 1
u− 1

.

The u-factorial and u-binomial coefficients are defined similarly:

[n]! =
n∏

s=1

[s]
[
n

k

]

=

{
[n]!

[k]![n−k]! k ≤ n,

0 k > n.

By fiat [0]! = 1.

4.2. Properties of u-binomial coefficients

Most binomial identities have u-analogs, many of which recover the classical
identities in the u→ 1 limit. We collect here the properties we will need
with proofs.

Lemma 4.1. For any k ≤ n

(1)

[n] = [n− k] + un−k[k].

(2)

(4.1)
[
n+ 1
k

]

=
[
n

k

]

+ un+1−k

[
n

k − 1

]

.

Proof. (1) Follows immediately from [n+ 1] =
∑n

s=0 u
s.

(2)
[
n+ 1
k

]

=
[n+ 1]!

[k]![n+ 1 − k]!

=
[n]!

[k]![n− k]!

(
[n+ 1]

[n+ 1 − k]

)



“CNTP-6-4-A4-BAKKER” — 2013/6/5 — 15:55 — page 835 — #31
�

�

�

�

�

�

�

�

Higher rank stable pairs on K3 surfaces 835

=
[n]!

[k]![n− k]!

(

1 + un+1−k [k]
[n+ 1 − k]

)

=
[
n

k

]

+ un+1−k

[
n

k − 1

]

. �

Note that
[
n
k

]
has degree k(n− k). The symmetric u-binomial coefficient

is defined for 0 ≤ k ≤ n by
{
n

k

}

= u−
k(n−k)

2

[
n

k

]

.

Also, under the same conditions let
{−n
k

}

= (−1)k

{
n+ k − 1

k

}

.

Let

Kn(t, u) =
n−1∏

s=0

(1 + tus−n−1
2 )

for n ≥ 0.

Lemma 4.2.

Kn(t−1, u) = t−nKn(t, u).

Proof.

Kn(t−1, u) = t−n
n−1∏

s=0

(t+ us−n−1
2 )

but terms in the product come in pairs (t+ us)(t+ u−s) = (1 + tus)(1 +
tu−s). �

Kn is invertible as a Laurent series in t, u
1
2 ; let

K−n(t, u) = Kn(t, u)−1

There is an analog of Lemma 4.1 for symmetric u-binomial coefficients:

Lemma 4.3. For any 0 ≤ k ≤ n
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(1)

(4.2)
{
n+ 1
k

}

= u−
k

2

{
n

k

}

+ u
n+1−k

2

{
n

k − 1

}

.

(2) Kn(t, u) is the generating function for the
{
n

k

}

, that is

Kn(t, u) =
∞∑

k=0

tk
{
n

k

}

.

(3)

{
n+ k

k

}

=
k∑

s=0

u
sn+s−k

2

{
n+ k − s− 1

k − s

}

.

(4) K−n(t, u) is the generating function for the
{−n
k

}

, that is

K−n(t, u) =
∞∑

k=0

tk
{−n
k

}

.

Proof. (1) Multiplying (4.1) by u
k(n+1−k)

2 gives (4.2).

(2) Note that

(4.3) Kn+1(t, u) =
(
1 + tu

n

2
)
Kn(tu−

1
2 , u).

Assuming by induction that the coefficient of ts in Kn(tu−
1
2 , u) is

u−
s

2

{
n

s

}

, the coefficient of tk in Kn+1(t, u) is

u−
k

2

{
n

k

}

+ u
n−k+1

2

{
n

k − 1

}

,

which yields the result given part (1).
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(3) Replacing n in (4.2) with n+ k − 1, we have

(4.4)
{
n+ k

k

}

= u−
k

2

{
n+ k − 1

k

}

+ u
n

2

{
n+ k − 1
k − 1

}

Note that

k∑

s=0

u
sn+s−k

2

{
n+ k − s− 1

k − s

}

= u−
k

2

{
n+ k − 1

k

}

+
k∑

s=1

u
sn+s−k

2

{
n+ k − s− 1

k − s

}

= u−
k

2

{
n+ k − 1

k

}

+ u
n

2

(
k−1∑

s=0

u
sn+s−k+1

2

{
n+ k − s− 2
k − s− 1

})

.

By induction the term in parentheses is
{
n+ k − 1
k − 1

}

, and by (4.4) the

result follows.

(4) Inverting (4.3), we have

K−n−1(t, u) =
1

1 + tu
n

2
K−n(tu−

1
2 , u) = K−n(tu−

1
2 , u)

∞∑

s=0

(−1)stsu
ns

2 .

Inductively assuming the coefficient of tk−s in K−n(tu−
1
2 , u) is

u−
k−s

2

{−n
s

}

= (−1)k−su−
k−s

2

{
n+ k − s− 1

k − s

}

the coefficient of tk in K−n−1(t, u) is

(−1)k
k∑

s=0

u
ns+s−k

2

{
n+ k − s− 1

k − s

}

= (−1)k

{
n+ k

k

}

=
{−n− 1

k

}

by part (3).
�
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4.3. q-theta functions

Given expressions a, b polynomial in q (we will be more precise below), the
Pochhammer symbol (a, b)∞ is a formal power series in q defined by

(a, b)∞ =
∞∏

n=0

(1 − abn).

For example, (q, q)∞ =
∏

n≥1(1 − qn). The q-theta function Θ(x; q) ∈
Q[x, x−1][[q]] is a formal power series in q whose coefficients are Laurent
polynomials in x. It is defined by

Θ(x; q) = (q, q)∞(x, q)∞(x−1q, q)∞

= (1 − x)
∞∏

n=1

(1 − qn)(1 − xqn)(1 − x−1qn).

In particular, Θ(x; q) has a simple root at x = 1. Our main use for Θ(x; q)
is derived from an identity involving

Φ(a, b; q) :=
(q, q)3∞Θ(ab; q)
Θ(a; q)Θ(b; q)

.

Note Φ(a, b; q) is not an element of Q[a, b][[q]], but it converges for |q| <
|a|, |b| < 1. We have

Lemma 4.4. For n ∈ Z, define

sign(n) =

{
+1 n ≥ 0,
−1 n < 0.

Then
Φ(a, b; q) =

∑

sign(i)=sign(j)

sign(i)aibjqij

for |q| < |a|, |b| < 1.

Proof. See [7, Theorem 1.5]. �
Define

Ψ(x, y; q) =
∑

�≥0

∑

p≥1

(xp − x−�)yp−�qp�.

The actual statement we needed in Section 3.3 is
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Lemma 4.5. As formal power series

Ψ(x, y; q) = Φ(xy, y−1; q)

Proof. By [7, Theorem 1.4],

∑

p∈Z

ap

1 − qpb
= Φ(a, b; q)

for 0 < |q| < |a| < 1 and b �= qp for any p ∈ Z. On the region

R = {(q, x, y) ∈ C
3|0 < |q| < |x| < |y−1| < 1}

we have, for p > 0, |qpy| < 1, and for p ≥ 0, |qpy−1| < 1. Thus, each line in
the following converges in R:

Φ(xy, y−1; q) =
∑

p>0

(xy)p

1 − qpy−1
+

1
1 − y−1

+
∑

p<0

(xy)p

1 − qpy−1

=
∑

p>0

(xy)p

1 − qpy−1
+

1
1 − y−1

+
∑

p>0

(xy)−p

1 − q−py−1

=
∑

p>0

(xy)p

1 − qpy−1
− y

1 − y
−
∑

p>0

(qpy)(xy)−p

1 − qpy

=
∑

p>0

∑

�≥0

(xy)pqp�y−� −
∑

p>0

∑

�≥0

(qpy)(xy)−pqp�y� − y

1 − y

(∗)
=
∑

p>0

∑

�≥0

(xy)pqp�y−� −
∑

�>0

∑

p>0

(xy)−�qp�yp − y

1 − y

=
∑

p>0

∑

�>0

(xy)pqp�y−� −
∑

�>0

∑

p>0

(xy)−�qp�yp +
xy

1 − xy
− y

1 − y

=
∑

p,�>0

(xp − x−�)yp−�qp� +
xy

1 − xy
− y

1 − y
.
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In the equality labeled (*), we replaced �+ 1 �→ p and p �→ �. Thus, on R
we have

∑

p,�>0

(xp − x−�)yp−�qp� +
xy

1 − xy
− y

1 − y

=
(q, q)∞Θ(x; q)

Θ(xy; q)Θ(y−1; q)

=
(1 − x)

(1 − xy)(1 − y−1)

∏

n≥1

(1 − qn)2(1 − xqn)(1 − x−1qn)
(1 − xyqn)(1 − x−1y−1qn)(1 − yqn)(1 − y−1qn)

,

which can be rewritten as

(1 − xy)(1 − y−1)

⎛

⎝
∑

p,�>0

(xp − x−�)yp−�qp� +
xy

1 − xy
− y

1 − y

⎞

⎠(4.5)

= (1 − x)
∏

n≥1

(1 − qn)2(1 − xqn)(1 − x−1qn)
(1 − xyqn)(1 − x−1y−1qn)(1 − yqn)(1 − y−1qn)

.

For any x, y with |x| < |y−1|, (4.5) is an equality of series in C[[q]] converging
for |q| < |x|. Therefore, it must be an equality of formal power series in
C[x, y, x−1, y−1][[q]]. Since both sides converge for |q|, |xy|, |y| < 1 it follows
it must be an equality of series in C[[q]] for any such x, y; therefore, in that
case, it must be that (1 − xy)(1 − y−1)

∑
p>0,�≥0(x

p − x−�)yp−�qp� is equal
to

(1 − x)
∏

n≥1

(1 − qn)2(1 − xqn)(1 − x−1qn)
(1 − xyqn)(1 − x−1y−1qn)(1 − yqn)(1 − y−1qn)

and the conclusion follows. �

4.4. A useful matrix

In Section 3.2, we used the matrix A(n) = (An
ij)i,j≥0 defined by

An
ij =

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎣
i+ j

2
n

⎤

⎦

⎡

⎣
j

j − i

2

⎤

⎦ i− j ≡ 0 mod 2,

0 i− j ≡ 1 mod 2,
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i.e., the only non-zero entries are An
k,k+2� =

[
k+�
n

][
k+2�

�

]
, k, � ≥ 0. In particu-

lar, A0
k,k+2� =

[
k+2�

�

]
. A(0) is upper triangular with ones along the diagonal,

and is therefore invertible:

Proposition 4.6. The inverse of A(0) is the matrix B = (Bij)i,j≥0 given
by

Bk,k+2� = (−1)�u(
�

2) [k + 2�]
[k + �]

[
k + �

�

]

and Bk,k+2�+1 = 0, for k, � ≥ 0

Proof. We need only check that the (k, k + 2�) entry of A(0)B for � > 0
is 0, since the diagonal terms are clearly 1 and both matrices are upper
triangular. The relevant entries of B are

Bk+2s,k+2� = (−1)�−su(
�−s

2 )
[
k + �+ s

�− s

]
[k + 2�]

[k + �+ s]
.

Also note that

[
k + 2s
s

][
k + �+ s

�− s

]
[k + 2�]

[k + �+ s]

=
(

[k + 2s]!
[s]![k + s]!

)(
[k + s+ �]!

[�− s]![k + 2s]!

)
[k + 2�]

[k + �+ s]

=
(

[�]!
[s]![�− s]!

)(
[k + s+ �− 1]!
[k + s]![�− 1]!

)
[k + 2�]

[�]

=
[
�

s

][
k + �− 1
�− 1

]
[k + 2�]

[�]
.

Thus,

∞∑

s=0

A0
k,k+2sBk+2s,k+2� =

�∑

s=0

(−1)�−su(
�−s

2 )
[
k + 2s
s

][
k + �+ s

�− s

]
[k + 2�]

[k + �+ s]

=
(

[k + 2�]
[�]

) �∑

s=0

(−1)�−su(
�−s

2 )
[
k + s+ �− 1

�− 1

][
�

s

]
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=
(

[k + 2�]
[�]

) �∑

s=0

(−1)�−su(
�−s

2 )+ (�−1)(k+s)
2

+ s(�−s)
2

{
k + s+ �− 1

�− 1

}{
�

s

}

= u
�2−�+(�−1)k

2

(
[k + 2�]

[�]

) �∑

s=0

(−1)�−s

{
k + s+ �− 1

�− 1

}{
�

s

}

= (−1)k+�u
�2−�+(�−1)k

2

(
[k + 2�]

[�]

) �∑

s=0

{ −�
k + s

}{
�

s

}

.

By (4) of Section 4.3,
{ −�
k + s

}

is the coefficient of tk+s in K−�(t, q) and
{
�

s

}

is the coefficient of t−s in K�(t−1, q). Therefore, the sum is the coefficient of
tk in K−�(t, q)K�(t−1, q) = t−�K−�(t, q)K�(t, q) = t−� so it must be 0, unless
� = k = 0, but we assumed � > 0. �

4.5. A useful product

In Section 3.3, an explicit computation of the product P(n) := A(n)A(0)−1

enabled us to perform the calculation. The product matrix P(n) = (Pn
ij)i,j≥0

is given by

Lemma 4.7. For k, � ≥ 0, n > 0,

Pn
k,k+2� = u�2+�(k−n) [k + 2�]

[n+ �]

[
n+ �

n

][
k + �− 1
n− 1

]

and Pn
k,k+2�+1 = 0.

Proof. The proof is a calculation very similar to the proof of Lemma 4.3.
Note that for � ≥ s

[
k + s

n

][
k + 2s
s

][
k + s+ �

�− s

]

=
[k + s] · · · [k + s− n+ 1]

[n]!
[k + 2s] · · · [k + s+ 1]

[s]!

× [k + s+ �] · · · [k + 2s+ 1]
[�− s]!
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=
[k + s+ �]!

[n]![s]![�− s]![k + s− n]!

=
(

[n+ �]!
[n]![�]!

)(
[�]!

[s]![�− s]!

)(
[k + s+ �− 1]!

[k + s− n]![n+ �− 1]!

)
[k + s+ �]

[n+ �]
,

so

Pn
k,k+2�

(4.6)

=
�∑

s=0

An
k,k+2sBk+2s,k+2�

=
�∑

s=0

(−1)�−su(
�−s
2 )
[
k + s

n

][
k + 2s
s

][
k + s+ �

�− s

]
[k + 2�]

[k + s+ �]

=
[k + 2�]
[n+ �]

[
n+ �

n

] �∑

s=0

(−1)�−su(
�−s
2 )
[
k + s+ �− 1
n+ �− 1

][
�

s

]

=
[k + 2�]
[n+ �]

[
n+ �

n

] �∑

s=0

(−1)�−su(
�−s
2 )+ (n+�−1)(k−n+s)

2 +
s(�−s)

2

{
k + s+ �− 1
n+ �− 1

}{
�

s

}

=
[k + 2�]
[n+ �]

[
n+ �

n

]

u
�2−�+(n+�−1)(k−n)

2

�∑

s=0

(−1)�−susn/2

{
k + s+ �− 1
n+ �− 1

}{
�

s

}

= (−1)k−n+� [k + 2�]
[n+ �]

[
n+ �

n

]

u
�2−�+(n+�−1)(k−n)

2

�∑

s=0

usn/2

{−(n+ �)
k − n+ s

}{
�

s

}

.

usn/2

{−(n+ �)
k − n+ s

}

is the coefficient of tk−n+s in u(n2−kn)/2K−(n+�)(tun/2, u)

and
{
�

s

}

is the coefficient of t−s in K�(t−1, u). Therefore, the sum in (4.6)

is the coefficient of tk−n in

u(n2−kn)/2K−(n+�)(tu
n/2, u)K�(t−1, u)

= u(n2−kn)/2t−�K−(n+�)(tu
n/2, u)K�(t, u)

= u(n2−kn)/2t−�K−n(tu(n+�)/2, u)
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which is

u
�2+�k

2

{ −n
k − n+ �

}

= (−1)k−n+�u
�2+�k

2

{
k + �− 1
n− 1

}

= (−1)k−n+�u
�2+�k−(n−1)(k+�−n)

2

[
k + �− 1
n− 1

]

and we get

Pn
k,k+2� = u�2+�k−n� [k + 2�]

[n+ �]

[
n+ �

n

][
k + �− 1
n− 1

]

�
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