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Some tt* structures and their integral Stokes data

Martin A. Guest and Chang-Shou Lin

In [16], a description was given of all smooth solutions of the two-
function tt*-Toda equations in terms of asymptotic data, holomor-
phic data and monodromy data. In this supplementary paper, we
focus on the holomorphic data and its interpretation in quantum
cohomology, and enumerate those solutions with integral Stokes
data. This leads to a characterization of quantum D-modules for
certain complete intersections of Fano type in weighted projective
spaces.

1. The tt*-Toda equations

The tt* (topological — anti-topological fusion) equations were introduced
by Cecotti and Vafa in their work on deformations of quantum field theo-
ries with N = 2 supersymmetry (Section 8 of [3], and also [4, 5]). This has
led to the development of an area known as tt* geometry ( [3, 11, 19]), a
generalization of special geometry.

Solutions of the tt* equations can be interpreted as pluriharmonic maps
with values in the non-compact real symmetric space GLnR/On, or as pluri-
harmonic maps with values in a certain classifying space of variations of
polarized (finite- or infinite-dimensional) Hodge structure. Frobenius mani-
folds with real structure, e.g., quantum cohomology algebras or unfoldings of
singularities, provide a very special class of solutions “of geometric origin”.
These special solutions lie at the intersection of p.d.e. theory, integrable sys-
tems, and (differential, algebraic and symplectic) geometry. However, very
few concrete examples have been worked out in detail, and their study is
just beginning. It is relatively straightforward to obtain local solutions of
the tt* equations, but the special solutions have (or are expected to have)
global properties, and these properties are hard to establish.

In [16,17] a family of global solutions was constructed by relatively ele-
mentary p.d.e. methods. In this article we shall describe the special solutions
in terms of their holomorphic data. This allows us to obtain — in a very
restricted situation — an a fortiori characterization of quantum D-modules
by purely algebraic/analytic means, which is one of the long-term goals of
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Table 1: The two-function tt∗-Toda equations.

Case l n + 1 − l u v a b

4a 4 0 2w0 2w1 2 2
4b 2 2 2w3 2w0 2 2
5a 5 0 2w0 2w1 2 1
5b 3 2 2w4 2w0 2 1
5c 4 1 2w0 2w1 1 2
5d 1 4 2w1 2w2 1 2
5e 2 3 2w4 2w0 1 2
6a 5 1 2w0 2w1 1 1
6b 1 5 2w1 2w2 1 1
6c 3 3 2w5 2w0 1 1

the subject (cf. [15] and the extensive literature on o.d.e. of Calabi–Yau
type).

In more detail, the equations studied in [16,17] are

(1.1) 2(wi)zz̄ = −e2(wi+1−wi) + e2(wi−wi−1)

where each wi is real-valued on (an open subset of) C = R
2, and wi = wi+n+1

for all i ∈ Z; this is the two-dimensional periodic Toda lattice “with opposite
sign”. In addition, it is essential to assume that

(1.2)

{
w0 + wl−1 = 0, w1 + wl−2 = 0, . . . ,

wl + wn = 0, wl+1 + wn−1 = 0, . . . ,

for some l ∈ {0, . . . , n + 1} (the cases l = 0 and l = n + 1 mean that wi +
wn−i = 0 for all i). System (1.1), (1.2) is then a special case of the tt*
equations, and we call it the tt*-Toda system. In the ten cases listed in
table 1, below, w0, . . . , wn reduce to two unknown functions and (1.1) reduces
to

(1.3)

{
uzz̄ = eau − ev−u

vzz̄ = ev−u − e−bv

with a, b ∈ {1, 2}, and it is this system that was solved in [17] for u, v :
C
∗ → R.
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Figure 1: The triangular region

The first main result of [16,17] is a characterization of solutions of (1.3)
in terms of asymptotic data. Namely (Theorem A of [16]), for any (γ, δ) in
the triangular region

γ ≥ −2/a, δ ≤ 2/b, γ − δ ≤ 2

(figure 1), system (1.3) has a unique solution (u, v) such that

u(z) ∼ γ log |z|,
v(z) ∼ δ log |z|,

as |z| → 0, and u(z) → 0, v(z) → 0 as |z| → ∞. The functions u, v depend
only on |z|.

On the other hand, from the integrable systems point of view, these
solutions correspond to two other kinds of data, which we shall describe
next.

First, from the zero curvature formulation of (our version of) the Toda
lattice, which may be written in the form

F−1Fz = α′,
F−1Fz̄ = α′′,
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we have holomorphic data η = L−1Lz, where F = LB−1 is a Birkhoff fac-
torization. System (1.1) is equivalent to dα + α ∧ α = 0, the condition that
the connection d + α is flat. Here, α = α′dz + α′′dz̄ is defined in terms of
w0, . . . , wn (see formulae (1.1), (1.2) of [16]). We shall review this briefly in
Section 2.

Next, for radial solutions, i.e., when the wi depend only on x = |z|, we
can write α = αrad dx, and the flat connection d + α extends to a flat con-
nection d + α + α̂, for some α̂ = αspdμ, where μ is a “spectral parameter”.
The radial version of system (1.1) is equivalent to the condition that the
connection d + α + α̂ is flat, and we obtain a rather different zero curvature
formulation

F−1Fx = αrad,

F−1Fμ = αsp.

Here αsp is meromorphic in μ with poles of order 2 at μ = 0 and μ = ∞
(see formula (1.7) of [16]). The first equation can be regarded as describ-
ing an isomonodromic family of x-deformations of the second equation.
This monodromy data, which is independent of x, consists of formal mon-
odromy matrices M (0), M (∞) at the poles, collections of Stokes matri-
ces S

(0)
i , S

(∞)
i at the poles (relating solutions on different Stokes sectors)

and a connection matrix C (which relates solutions near 0 with solutions
near ∞).

It turns out (see Section 4 of [16]) that the Stokes data alone parame-
terize the above solutions u, v and in fact these Stokes data reduce to two
real numbers sR

1 , sR

2 . The relation between the asymptotic data γ, δ and the
Stokes data sR

1 , sR

2 is as follows (Theorem B of [16]):

(i) Cases 4a, 4b:

±sR

1 = 2 cos π
4 (γ + 1) + 2 cos π

4 (δ + 3),

−sR

2 = 2 + 4 cos π
4 (γ + 1) cos π

4 (δ + 3).

(ii) Cases 5a, 5b:

sR

1 = 1 + 2 cos π
5 (γ + 6) + 2 cos π

5 (δ + 8),

−sR

2 = 2 + 2 cos π
5 (γ + 6) + 2 cos π

5 (δ + 8) + 4 cos π
5 (γ + 6) cos π

5 (δ + 8).

(iii) Cases 5c, 5d, 5e:

sR

1 = 1 + 2 cos π
5 (γ + 2) + 2 cos π

5 (δ + 4).

−sR

2 = 2 + 2 cos π
5 (γ + 2) + 2 cos π

5 (δ + 4) + 4 cos π
5 (γ + 2) cos π

5 (δ + 4).
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(iv) Cases 6a, 6b, 6c:

±sR

1 = 2 cos π
6 (γ + 2) + 2 cos π

6 (δ + 4),

−sR

2 = 1 + 4 cos π
6 (γ + 2) cos π

6 (δ + 4).

The purpose of this paper is to investigate the solutions for which sR

1 , sR

2

are integers. According to Cecotti and Vafa, the physical interpretation of
such a solution is a |z|-deformation of certain quantum field theories, between
z = 0 (the ultra-violet point) and z = ∞ (the infra-red point). At z = 0 one
has a conformal field theory whose chiral charges are encoded in the holo-
morphic data. At z = ∞, the Stokes data enumerate “solitons” and are
therefore integral. Both points are fixed points of the renormalization group
flow, and the solution itself is an orbit of this flow. This provides the moti-
vation to study solutions defined on (0,∞) whose Stokes data are integral.
While solutions with these properties seem very natural, it is hard to estab-
lish their existence rigorously, as local solutions of differential equations of
this (Painlevé) type tend to blow up rapidly. The integrality requirements
impose even stronger conditions.

Cecotti and Vafa (Section 6 of [5]) proposed a classification scheme for
such deformations, based on the arithmetic properties which these very spe-
cial solutions would have to possess. Even more optimistically they suggested
that this may reflect a classification of underlying geometric objects in cer-
tain situations, where the term “geometric object” includes at the very least
(Frobenius manifolds arising from) quantum cohomology and unfoldings of
singularities.

Our results (based on [16]) produce this classification in the first new
case beyond1 [5]. Furthermore, we can describe all these solutions in terms
of their holomorphic data, which gives the link with geometry. In certain
cases this holomorphic data can be interpreted in terms of quantum coho-
mology or unfoldings of singularities, but in other cases new interpretations
appear to be required. As an application to quantum cohomology, we give
a characterization of quantum D-modules for certain complete intersections
of Fano type in weighted projective spaces (Corollary 4.1).

In Section 2, we review the definition of holomorphic data and compute
it for the solutions of (1.3) described above. In Section 3, we identify those
solutions with sR

1 , sR

2 ∈ Z; tables of all three types of data for all ten cases

1Namely, beyond the case where w0, . . . , wn reduce to one unknown function; in
this case (1.1) reduces to the third Painlevé equation, where — very non-trivial —
existence results were already known.
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are presented in the appendix. Quantum cohomology (or rather quantum
D-module) interpretations of these solutions are given in Section 4. This
leads directly to the above characterization result.

2. Holomorphic data for solutions

The idea of holomorphic data for pluriharmonic maps has arisen indepen-
dently in several contexts: in [20] as a method of solving integrable equations,
in [21] as a loop group version of the same thing, in [22] as a correspondence
between harmonic bundles and holomorphic bundles, and in [9,10] as a sys-
tematic method for studying harmonic maps into symmetric spaces. And it
appeared already in [3] for the tt* equations themselves, although this was
perhaps not appreciated at the time by differential geometers.

As a way of specifying a pluriharmonic map into a symmetric space,
the holomorphic data generalize the classical Weierstrass representation of
a minimal surface. It has the same advantages and the same disadvantages,
and its usefulness depends on the circumstances. In the case of the tt*
equations, however, the holomorphic data play a crucial role, because of
its geometrical interpretation as a quantum cohomology ring of a manifold
or Milnor ring of a singularity.

The holomorphic data in our situation is (see [17]) a matrix of the form

η =

⎛
⎜⎜⎜⎝

p0

p1

. . .
pn

⎞
⎟⎟⎟⎠

where each pi = pi(z) is a holomorphic function. From this holomorphic
data, we can construct local solutions of (1.1) as follows.

For some z0 ∈ U and some simply connected open neighbourhood U ′

of z0 in U , let L be the solution of the holomorphic o.d.e. system L−1dL =
1
λ η dz, with initial condition L(z0) = I. We regard L as a map U ′ →
ΛSLn+1C, where ΛSLn+1C is the free loop group of SLn+1C, λ being the
loop parameter. Let L = FB be the Iwasawa factorization of L (see chapter
12 of [14]) with F (z0) = I, B(z0) = I. This factorization is possible on some
neighbourhood U ′′ of z0. It follows that B is of the form B =

∑
i≥0 λiBi,

where B0 = diag(b0, . . . , bn). The factorization L = FB is unique if we insist
that bi > 0 for all i. We have b0 . . . bn = 1 and bi(z0) = 1 for all i.
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Let α = F−1dF = F−1Fzdz + F−1Fz̄dz̄. This must be of the form α′dz +
α′′dz̄ where

α′ =

⎛
⎜⎜⎜⎝

a0

a1

. . .
an

⎞
⎟⎟⎟⎠ +

1
λ

⎛
⎜⎜⎜⎝

A0

A1

. . .
An

⎞
⎟⎟⎟⎠

for some smooth functions ai, Aj : U ′′ → C. From the λ−1 terms of α′ =
F−1Fz = (LB−1)−1(LB−1)z = 1

λBηB−1 + B(B−1)z, we obtain Ai = pibi/
bi−1 and similarly from the diagonal terms of F−1Fz̄ we obtain ai = (log bi)z.
Since α = F−1dF , we have the zero curvature equation dα + α ∧ α = 0,
which gives an additional equation:

(ai)z̄ + (āi)z = −|Ai+1|2 + |Ai|2.

Let wi = log bi − log |hi| where h0, . . . , hn are any holomorphic functions.
We obtain

(2.1) 2(wi)zz̄ = −|νi+1|2 e2(wi+1−wi) + |νi|2 e2(wi−wi−1)

where νi = pihi/hi−1. Choosing h0, . . . , hn such that all νi are equal, say
νi = ν for all i, we have νn+1 = p0 . . . pn and ν = pihi/hi−1.

For consistency with (1.2) we impose the condition that hihj = 1 when-
ever wi + wj = 0 in (1.2). This determines h0, . . . , hn explicitly in terms of
p0, . . . , pn (cf. Section 4 of [17]).

Finally, the change of variable z 	→ ∫
ν dz then converts (2.1) into (1.1).

We obtain the required local solution of (1.1), (1.2).
Let us turn now to the holomorphic data for the solutions wi : C

∗ →
R parameterized by (γ, δ) in the triangular region of figure 1. The radial
property implies that the holomorphic data must be of the form pi(z) =
ciz

ki .
The relation between k0, . . . , kn and γ, δ is given in table 2. This was

obtained in Section 4 of [17], and it was explained there that one may
normalize so that c0 = · · · = cn = 1. We write N = n + 1 +

∑n
i=0 ki from

now on.
Using this and Theorem A of [16], we find the following expressions for

sR

1 , sR

2 in terms of k0, . . . , kn (Proposition 2.1).
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Table 2: The relation between k0, . . . , kn and γ, δ.

Case Nγ Nδ k0, . . . , kn

4a 3k0 − 2k1 − k2 k0 + 2k1 − 3k2 k1 = k3

4b −2k0 − k1 + 3k3 2k0 − 3k1 + k3 k0 = k2

5a 4k0 − 2k1 − 2k2 2k0 + 4k1 − 6k2 k1 = k4, k2 = k3

5b −2k0 − 2k1 + 4k4 4k0 − 6k1 + 2k4 k0 = k3, k1 = k2

5c 6k0 − 4k1 − 2k2 2k0 + 2k1 − 4k2 k1 = k3, k0 = k4

5d 6k0 − 4k2 − 2k3 2k0 + 2k2 − 4k3 k2 = k4, k0 = k1

5e −4k0 − 2k1 + 6k3 2k0 − 4k1 + 2k3 k0 = k2, k3 = k4

6a 8k0 − 4k1 − 4k2 4k0 + 4k1 − 8k2 k1 = k4, k0 = k5, k2 = k3

6b 8k0 − 4k2 − 4k3 4k0 + 4k2 − 8k3 k2 = k5, k0 = k1, k3 = k4

6c −4k0 − 4k1 + 8k4 4k0 − 8k1 + 4k4 k0 = k3, k4 = k5, k1 = k2

Proposition 2.1.

(i) Cases 4a (k = k0, l = k2), 4b (k = k3, l = k1):

±sR

1 = 2 cos π
N (k + 1) − 2 cos π

N (l + 1),

−sR

2 = 2 − 4 cos π
N (k + 1) cos π

N (l + 1).

(ii) Cases 5a (k = k0, l = k2), 5b (k = k4, l = k1):

sR

1 = 1 − 2 cos π
N (k + 1) + 2 cos 2π

N (l + 1),

−sR

2 = 2 − 2 cos π
N (k + 1) + 2 cos 2π

N (l + 1)
−4 cos π

N (k + 1) cos 2π
N (l + 1).

(iii) Cases 5c (k = k0, l = k2), 5d (k = k0, l = k3), 5e (k = k3, l = k1):

sR

1 = 1 + 2 cos 2π
N (k + 1) − 2 cos π

N (l + 1),

−sR

2 = 2 + 2 cos 2π
N (k + 1) − 2 cos π

N (l + 1)
−4 cos 2π

N (k + 1) cos π
N (l + 1).

(iv) Cases 6a (k = k0, l = k2), 6b (k = k0, l = k3), 6c (k = k4, l = k1):

±sR

1 = 2 cos 2π
N (k + 1) − 2 cos 2π

N (l + 1),

−sR

2 = 1 − 4 cos 2π
N (k + 1) cos 2π

N (l + 1).

These formulae make no reference to the “real structure”, and in fact
Proposition 2.1 could have been obtained directly from the flat holomor-
phic connection d + 1

ληdz. Namely, by homogeneity, d + 1
ληdz extends to a

flat connection d + 1
ληdz + η̂ dλ (just as d + α extends to d + α + α̂). The

meromorphic connection d + η̂ dλ has poles of order 2, 1 at λ = 0,∞. This is
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the connection usually considered in the theory of Frobenius manifolds. The
Stokes analysis of d + η̂ dλ at λ = 0 is the same as that of d + α̂ at λ = 0,
because

L = FB ∼ F as λ → 0.

This leads to a relation between the Stokes data sR

1 , sR

2 and the monodromy
at the regular singular point. The latter can be computed in terms of
k0, . . . , kn, and the formulae above follow from this. This principle was used
already in [2] in a similar situation for 2 × 2 matrices. It shows that the
Stokes matrices arising in the theory of Frobenius manifolds agree with
those of the tt* equations in the case where the Frobenius manifold admits
a real structure.

However, the existence of a real structure — equivalently, the existence
of the Iwasawa factorization L = FB — is a non-trivial property. It holds
in our situation if and only if k0 ≥ −1, . . . , kn ≥ −1. This is a consequence
of Theorem A of [16], as it may be deduced from table 2 that the conditions
γ ≥ −2/a, δ ≤ 2/b, γ − δ ≤ 2 are equivalent to the conditions k0 ≥ −1, . . . ,
kn ≥ −1.

3. Solutions with integral Stokes data

From the explicit formulae it is straightforward to identify those solutions
for which sR

1 , sR

2 are integers:

Proposition 3.1. For each case in table 1, there are 19 solutions (u, v) for
which the Stokes data sR

1 , sR

2 are integral. The corresponding values of the
asymptotic data (γ, δ) are listed in table 3, and are shown schematically in
figure 2. The Stokes data and holomorphic data for each of these solutions
are given in tables 5 to 7 of the appendix.

Proof. We use the formulae of Proposition 2.1. The region is given by ki +
1 ≥ 0 for all i (see the end of Section 2). In all ten cases, the solutions with
integral Stokes data are given by

2 cos a − 2 cos b ∈ Z, 4 cos a cos b ∈ Z,

where a = π
N (k + 1) or 2π

N (k + 1), b = π
N (l + 1) or 2π

N (l + 1), depending on
the case. An elementary calculation shows that the set

{(a, b) ∈ [0, π] | 2 cos a − 2 cos b ∈ Z, 4 cos a cos b ∈ Z}
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Table 3: (γ, δ) for the 19 solutions with integral Stokes data.

Cases 4a,4b Cases 5a,5b Cases 5c,5d,5e Cases 6a,6b,6c
(3, 1) (4, 2) (3, 1) (4, 2)
( 5
3 , 1) ( 7

3 , 2) ( 4
3 , 1) (2, 2)

(1, 1) ( 3
2 , 2) ( 1

2 , 1) (1, 2)

( 1
3 , 1) ( 2

3 , 2) (− 1
3 , 1) (0, 2)

(−1, 1) (−1, 2) (−2, 1) (−2, 2)

(−1,− 1
3 ) (−1, 1

3 ) (−2,− 2
3 ) (−2, 0)

(−1,−1) (−1,− 1
2 ) (−2,− 3

2 ) (−2,−1)

(−1,− 5
3 ) (−1,− 4

3 ) (−2,− 7
3 ) (−2,−2)

(−1,−3) (−1,−3) (−2,−4) (−2,−4)

( 1
3 ,− 5

3 ) ( 2
3 ,− 4

3 ) (− 1
3 ,− 7

3 ) (0,−2)

(1,−1) ( 3
2 ,− 1

2 ) ( 1
2 ,− 3

2 ) (1,−1)

( 5
3 ,− 1

3 ) ( 7
3 , 1

3 ) ( 4
3 ,− 2

3 ) (2, 0)

( 1
3 ,− 1

3 ) ( 2
3 , 1

3 ) (− 1
3 ,− 2

3 ) (0, 0)

(0, 0) ( 1
4 , 3

4 ) (− 3
4 ,− 1

4 ) (− 1
2 , 1

2 )

(− 1
3 , 1

3 ) (− 1
6 , 7

6 ) (− 7
6 , 1

6 ) (−1, 1)

(1,− 1
3 ) ( 3

2 , 1
3 ) ( 1

2 ,− 2
3 ) (1, 0)

( 3
5 , 1

5 ) (1, 1) (0, 0) ( 2
5 , 4

5 )

(− 1
5 ,− 3

5 ) (0, 0) (−1,−1) (− 4
5 ,− 2

5 )

(1
3 ,−1) ( 2

3 ,− 1
2 ) (− 1

3 ,− 3
2 ) (0,−1)

Figure 2: The 19 points.
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consists of the following 33 points: 25 points with cos a, cos b ∈ 1
2Z, i.e., a, b ∈

{0, π
3 , π

2 , 2π
3 , π}, and eight additional points (a, b) =

(
π
6 , π

6

)
,
(

π
4 , π

4

)
,
(

3π
4 , 3π

4

)
,(

5π
6 , 5π

6

)
,
(

π
5 , 2π

5

)
,
(

2π
5 , π

5

)
,
(

3π
5 , 4π

5

)
,
(

4π
5 , 3π

5

)
.

The correspondence between holomorphic data and points (γ, δ) is bijec-
tive if we fix N (> 0). For convenience we shall normalize by taking N = 1.
Thus, the holomorphic data consist of k0, . . . , kn with 0 ≤ ki + 1 ≤ 1 and∑n

i=0(ki + 1) = 1. The 33 points satisfy 0 ≤ k + 1, l + 1 ≤ 1, but only the
19 points with a + b ≤ π satisfy 0 ≤ ki + 1 ≤ 1 for all i, namely

(a) 15 points with a, b ∈ {0, π
3 , π

2 , 2π
3 , π} and a + b ≤ π;

(b) Four additional points (a, b) = (π
6 , π

6 ), (π
4 , π

4 ), (π
5 , 2π

5 ), (2π
5 , π

5 ).

These are the required 19 points. �

The five blocks in table 3 divide the points into the following types (with
reference to figures 1, 2): top edge, left-hand edge, diagonal edge, interior
points on the central line of symmetry, then the remaining four interior
points.

4. Holomorphic data and quantum cohomology

The genus zero three-point Gromov–Witten invariants of a manifold M lead
to the quantum cohomology algebra QH∗M , and also to the quantum D-
module M. The latter is isomorphic to a D-module of the form Dλ/I, where
Dλ is a certain ring of differential operators and I is a left ideal that depends
on M . It is equivalent to the Dubrovin/Givental connection. We refer to [8]
or [15] for a detailed explanation of these concepts.

In many examples, there is a natural presentation for the ideal I. This
is the case for the “small” (orbifold) quantum cohomology of the variety
M = X

v0,...,vp

d1,...,dm
which is the intersection of hypersurfaces of degrees d1, . . . , dm

in weighted projective space P
v0,...,vp . It is known2 that I is generated by a

single differential operator. This operator is obtained by left-dividing the

2Some assumptions on the hypersurfaces are necessary here. We refer to [1, 6, 7,
12,13] for details. See also [18].
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operator

λ
∑ p

0 vi

p∏
i=0

vvi

i ∂
(
∂ − 1

vi

)
· · ·

(
∂ − vi−1

vi

)

− λ
∑ m

1 dj

m∏
j=1

d
dj

j ∂
(
∂ − 1

dj

)
· · ·

(
∂ − dj−1

dj

)
z

by the highest common factor of the two summands. Here, ∂ = z d
dz . In the

quantum cohomology literature it is usual to write z = q, λ = �, but we shall
use z, λ for consistency with earlier notation.

For example (Example 4.4 of [18]), in the case of the weighted projective
space P

1,2,3 itself, the three-point Gromov–Witten invariants determine and
are determined by the Dubrovin/Givental connection

∇ = d +
1
λ

η dz = d +
1
λ

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
3z

1
3

1
1

1
6z

1
3

1
3z

1
6

1
2z

1
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

dz

z
.

The corresponding quantum D-module is defined by declaring that ∂ acts
on cohomology-valued functions as ∂ + 1

λ zη. This D-module is naturally
isomorphic to

Dλ/
(
2233λ6∂3

(
∂ − 1

3

) (
∂ − 1

2

) (
∂ − 2

3

) − z
)

because the identity element of the cohomology ring is a cyclic element of
the D-module and it is annihilated by the (action of the) operator 2233λ6∂3(
∂ − 1

3

) (
∂ − 1

2

) (
∂ − 2

3

) − z. Similarly, for a degree 2 hypersurface X
1,2,3
2

in P
1,2,3, the quantum differential operator is the result of left-dividing

2233λ6∂3
(
∂ − 1

3

) (
∂ − 1

2

) (
∂ − 2

3

) − 22λ2∂
(
∂ − 1

2

)
z by the common factor

22λ2∂
(
∂ − 1

2

)
. This gives 33λ4∂2

(
∂ − 1

3

) (
∂ − 2

3

) − z, which is in fact the
quantum differential operator of P

1,3 = X
1,2,3
2 .

With this in mind, we shall express the holomorphic data corresponding
to (γ, δ) as a differential operator of the form λn+1T − z, then consider
whether this is a quantum differential operator of the above type.
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The operator T is defined as follows for cases 4a, 4b (and the other cases
are analogous). First, let us write the holomorphic data as

1
λ

η dz =
1
λ

⎛
⎜⎜⎝

zk0+1

zk1+1

zk2+1

zk3+1

⎞
⎟⎟⎠ dz

z
.

To calculate a corresponding scalar operator we must choose a cyclic element
of the D-module. For our purposes, it will suffice to do this in following way
(see sections 4.2 and 6.3 of [15] for the general principles). Let us write the
equations for parallel sections of the (dual) flat connection d − 1

λ ηt dz as
λ∂Y t = zηtY t, where Y = (y0, y1, y2, y3). We obtain four scalar equations

z−(ki+1)λ∂ z−(ki−1+1)λ∂ z−(ki−2+1)λ∂ z−(ki−3+1)λ∂ yi = yi

for yi, i ∈ Z mod 4, and any of these four scalar operators would be suitable
as T . As a definite choice, we shall use

T = ∂(∂ − (kj + 1))(∂ − (kj + kj+1 + 2))(∂ − (kj + kj+1 + kj+2 + 3)),

where kj , kj+1, kj+2, kj+3 is (lexicographically) the lowest of the four possi-
bilities. Thus, we represent the D-module corresponding to the holomorphic
data (k0, k1, k2, k3) as Dλ/

(
λn+1T − z

)
for this specific T .

The operators T are listed in tables 5 to 7 of the appendix. For example,
the solution labelled (a, b) =

(
π
2 , π

3

)
in case 4a has k + 1 = k0 + 1 = 1

2 , l +
1 = k2 + 1 = 1

3 . Since k1 = k3 here and
∑3

i=0(ki + 1) = 1, we have k1 + 1 =
k3 + 1 = 1

12 . Hence

(k0 + 1, k1 + 1, k2 + 1, k3 + 1) =
(

1
2 , 1

12 , 1
3 , 1

12

)
.

We choose 1
12 , 1

3 , 1
12 , 1

2 as the lowest representative. This gives T = ∂
(
∂ − 1

12

)(
∂ − 5

12

) (
∂ − 6

12

)
, as indicated in table 5.

We now observe that the holomorphic data of each solution on the top
edge or left hand edge of the region of figure 2 can be interpreted as a quantum
D-module M of the above type. The spaces M are shown in table 4.

For example, the quantum differential operator of X
1,1,1,6
2,3 is obtained by

left-dividing

λ966∂4
(
∂ − 1

6

) · · · (∂ − 5
6

) − λ52233∂
(
∂ − 1

2

)
∂

(
∂ − 1

3

) (
∂ − 2

3

)
z.
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Table 4: Quantum cohomology interpretation for solutions with integral
Stokes data.

Cases 4a,4b Cases 5a,5b Cases 5c,5d,5e Cases 6a,6b,6c

P
3 = P

1,1,1,1
P

4 = P
1,1,1,1,1

P
1,1,1,2

P
1,1,1,1,2

X
1,1,1,6
2,3 X

1,1,1,1,6
2,3 X

1,1,6
3 X

1,1,1,6
3

X
1,1,4
2 X

1,1,1,4
2 P

1,4
P

1,1,4

P
1,3

P
1,1,3

P
2,3

P
1,2,3

P
2,2

P
1,2,2

P
1,2,2

P
2,2,2

P
1,3

P
2,3

P
1,1,3

P
1,2,3

X
1,1,4
2 P

1,4
X

1,1,1,4
2 P

1,1,4

X
1,1,1,6
2,3 X

1,1,6
3 X

1,1,1,1,6
2,3 X

1,1,1,6
3

P
3 = P

1,1,1,1
P

1,1,1,2
P

4 = P
1,1,1,1,1

P
1,1,1,1,2

by λ5∂3
(
∂ − 1

3

) (
∂ − 1

2

) (
∂ − 2

3

)
. This gives the holomorphic data T = ∂2(

∂ − 1
6

) (
∂ − 5

6

)
for the second solution in table 5. (We are ignoring the

coefficients 66, 2233; this corresponds to the normalization c0 = · · · = cn = 1
of the holomorphic data.)

Conversely, it can be verified that every quantum differential opera-
tor for P

v0,...,vp or X
v0,...,vp

d1,...,dm
of the form λn+1T − z with order 4, 5 or 6

appears in our tables. Let us state this more formally, as it gives a purely
analytic characterization of certain quantum D-modules. First, we remark
that Dλ/

(
λn+1T − z

)
has the properties of an “abstract (orbifold) quantum

D-module” when k satisfies the conditions
(Q) ki + 1 = 0 for at least one i,
(G) if x belongs to {kj + 1, kj + kj+1 + 2, . . . , kj + · · · + kj+n−1 + n} then
so does 1 − x.
Property (Q) is motivated by H2M �= 0 and property (G) by the grad-
ing of the orbifold quantum cohomology. This generalizes the concept of
abstract quantum D-module (as in Chapter 6 of [15]) to the orbifold case.
It represents the “expected” local properties of a quantum D-module near
z = 0. The quantum D-modules of the spaces P

v0,...,vp , X
v0,...,vp

d1,...,dm
certainly

satisfy these conditions, but the converse is false, e.g., it is easy to see that
the abstract quantum D-module Dλ/

(
λ4∂2

(
∂ − 1

10

) (
∂ − 9

10

) − z
)

does not
arise from any P

v0,...,vp or X
v0,...,vp

d1,...,dm
.

Thus the difficult question of characterizing the genuine quantum D-
modules arises. In our — admittedly very restricted — situation, there is a
simple answer. It follows from our calculations (tables 5 to 7) that they are
characterized by the property of having integral Stokes data:
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Table 5: Asymptotic, monodromy and holomorphic data for cases 4a, 4b
(γ + δ ≥ 0).

(a, b) = π(k + 1, l + 1) (γ, δ) (sR

1 , sR

2 ) T

(π, 0) (3, 1) (±4,−6) ∂4(
2π
3 , 0

) (
5
3 , 1

)
(±3,−4) ∂2

(
∂ − 1

6

)(
∂ − 5

6

)
(

π
2 , 0

)
(1, 1) (±2,−2) ∂2

(
∂ − 1

4

)(
∂ − 3

4

)
(

π
3 , 0

) (
1
3 , 1

)
(±1, 0) ∂2

(
∂ − 1

3

)(
∂ − 2

3

)
(0, 0) (−1, 1) (0, 2) ∂2

(
∂ − 1

2

)2

(
π
2 , π

2

)
(1,−1) (0,−2) ∂2

(
∂ − 1

2

)2(
2π
3 , π

3

) (
5
3 ,− 1

3

)
(±2,−3) ∂2

(
∂ − 1

3

)2

(
π
3 , π

3

) (
1
3 ,− 1

3

)
(0,−1) ∂

(
∂ − 1

6

)(
∂ − 3

6

)(
∂ − 4

6

)
(

π
4 , π

4

)
(0, 0) (0, 0) ∂

(
∂ − 1

4

)(
∂ − 2

4

)(
∂ − 3

4

)
(

π
6 , π

6

) ( − 1
3 , 1

3

)
(0, 1) ∂

(
∂ − 1

6

)(
∂ − 3

6

)(
∂ − 4

6

)
(

π
2 , π

3

) (
1,− 1

3

)
(±1,−2) ∂

(
∂ − 1

12

)(
∂ − 5

12

)(
∂ − 6

12

)
(

2π
5 , π

5

) (
3
5 , 1

5

)
(±1,−1) ∂

(
∂ − 1

5

)(
∂ − 2

5

)(
∂ − 3

5

)

Corollary 4.1. For n ∈ {3, 4, 5}, assume that k = (k0, . . . , kn) satisfies
conditions (Q) and (G). Then: Dλ/

(
λn+1T − z

)
is isomorphic to the quan-

tum D-module of a space of the form P
v0,...,vp or X

v0,...,vp

d1,...,dm
if and only if sR

1 , sR

2

are integers.

Regarding other solutions (i.e., not on the top edge or left hand edge of
figure 2), we note that the case T = ∂

(
∂ − 1

n+2

) (
∂ − 2

n+2

)
· · ·

(
∂ − n

n+2

)
is associated to an unfolding of a singularity of type An+1. This case was
considered in detail by Cecotti and Vafa. For n = 3 and n = 4 these appear in
tables 5 and 6 respectively; the solutions are interior points of
figure 2.

The trivial solution u = v = 0 occurs in all cases, and corresponds to
(γ, δ) = (0, 0), (sR

1 , sR

2 ) = (0, 0). It is always an interior point of the region
(but not always on the central line of symmetry). After a change of variable
of the form z 	→ zp, the holomorphic data for the trivial solution can be
written in the form ⎛

⎜⎜⎜⎝
1

1
. . .

1

⎞
⎟⎟⎟⎠ dz.
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Other solutions appear to be of mixed type (non-linear sigma model/
Landau–Ginzburg model). It would be interesting to interpret these
geometrically.

Appendix: tables of asymptotic, Stokes and holomorphic
data

In tables 5 to 7, we list 19 solutions of Section 3, indexed by (a, b), together
with the asymptotic data (γ, δ), the integral Stokes data (sR

1 , sR

2 ) and the
holomorphic data T .

Table 6: Asymptotic, monodromy and holomorphic data for cases 5a, 5b.
The data corresponding to (a, b), (γ, δ) for cases 5c, 5d, 5e are the same as
the data corresponding to (b, a), (−δ,−γ) for cases 5a, 5b.

(a, b) = π×
(k + 1, 2l + 2) (γ, δ) (sR

1 , sR

2 ) T

(π, 0) (4, 2) (5,−10) ∂5(
2π
3 , 0

) (
7
3 , 2

)
(4,−7) ∂3

(
∂ − 1

6

)(
∂ − 5

6

)(
π
2 , 0

) (
3
2 , 2

)
(3,−4) ∂3

(
∂ − 1

4

)(
∂ − 3

4

)(
π
3 , 0

) (
2
3 , 2

)
(2,−1) ∂3

(
∂ − 1

3

)(
∂ − 2

3

)
(0, 0) (−1, 2) (1, 2) ∂3

(
∂ − 1

2

)2(
0, π

3

) ( − 1, 1
3

)
(0, 1) ∂2

(
∂ − 2

6

)(
∂ − 3

6

)(
∂ − 4

6

)(
0, π

2

) ( − 1,−1
2

)
(−1, 0) ∂2

(
∂ − 1

4

)(
∂ − 2

4

)(
∂ − 3

4

)(
0, 2π

3

) ( − 1,−4
3

)
(−2,−1) ∂2

(
∂ − 1

6

)(
∂ − 3

6

)(
∂ − 5

6

)
(0, π) (−1,−3) (−3,−2) ∂4

(
∂ − 1

2

)
(

π
3 , 2π

3

) (
2
3 ,−4

3

)
(−1,−1) ∂2

(
∂ − 1

3

)(
∂ − 2

3

)2(
π
2 , π

2

) (
3
2 ,−1

2

)
(1,−2) ∂2

(
∂ − 1

4

)(
∂ − 2

4

)2(
2π
3 , π

3

) (
7
3 , 1

3

)
(3,−5) ∂2

(
∂ − 1

6

)(
∂ − 2

6

)2(
π
3 , π

3

) (
2
3 , 1

3

)
(1,−1) ∂

(
∂ − 1

6

)(
∂ − 2

6

)(
∂ − 3

6

)(
∂ − 4

6

)(
π
4 , π

4

) (
1
4 , 3

4

)
(1, 0) ∂

(
∂ − 1

8

)(
∂ − 2

8

)(
∂ − 4

8

)(
∂ − 6

8

)(
π
6 , π

6

) ( − 1
6 , 7

6

)
(1, 1) ∂

(
∂ − 1

12

)(
∂ − 2

12

)(
∂ − 6

12

)(
∂ − 8

12

)
(

π
2 , π

3

) (
3
2 , 1

3

)
(2,−3) ∂

(
∂ − 1

12

)(
∂ − 2

12

)(
∂ − 3

12

)(
∂ − 5

12

)(
2π
5 , π

5

)
(1, 1) (2,−2) ∂

(
∂ − 1

10

)(
∂ − 2

10

)(
∂ − 4

10

)(
∂ − 8

10

)(
π
5 , 2π

5

)
(0, 0) (0, 0) ∂

(
∂ − 1

5

)(
∂ − 2

5

)(
∂ − 3

5

)(
∂ − 4

5

)(
π
3 , π

2

) (
2
3 ,−1

2

)
(0,−1) ∂

(
∂ − 1

12

)(
∂ − 4

12

)(
∂ − 7

12

)(
∂ − 8

12

)
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Table 7: Asymptotic, monodromy and holomorphic data for cases 6a, 6b,
6c (γ + δ ≥ 0).

(a, b) = π×
(2k + 2, 2l + 2) (γ, δ) (sR

1 , sR

2 ) T

(π, 0) (4, 2) (±4,−5) ∂5
(
∂ − 1

2

)
(

2π
3 , 0

)
(2, 2) (±3,−3) ∂3

(
∂ − 1

6

) (
∂ − 3

6

) (
∂ − 5

6

)
(

π
2 , 0

)
(1, 2) (±2,−1) ∂3

(
∂ − 1

4

) (
∂ − 2

4

) (
∂ − 3

4

)
(

π
3 , 0

)
(0, 2) (±1, 1) ∂3

(
∂ − 2

6

) (
∂ − 3

6

) (
∂ − 4

6

)
(0, 0) (−2, 2) (0, 3) ∂3

(
∂ − 1

2

)3

(
π
2 , π

2

)
(1,−1) (0,−1) ∂2

(
∂ − 1

4

) (
∂ − 2

4

)2 (
∂ − 3

4

)
(

2π
3 , π

3

)
(2, 0) (±2,−2) ∂2

(
∂ − 1

6

) (
∂ − 2

6

)2 (
∂ − 4

6

)
(

π
3 , π

3

)
(0, 0) (0, 0) ∂

(
∂ − 1

6

) (
∂ − 2

6

) (
∂ − 3

6

) (
∂ − 4

6

) (
∂ − 5

6

)
(

π
4 , π

4

) (− 1
2 , 1

2

)
(0, 1) ∂

(
∂ − 1

8

) (
∂ − 2

8

) (
∂ − 4

8

) (
∂ − 5

8

) (
∂ − 6

8

)
(

π
6 , π

6

)
(−1, 1) (0, 2) ∂

(
∂ − 1

12

) (
∂ − 2

12

) (
∂ − 6

12

) (
∂ − 7

12

) (
∂ − 8

12

)
(

π
2 , π

3

)
(1, 0) (±1,−1) ∂

(
∂ − 1

12

) (
∂ − 3

12

) (
∂ − 5

12

) (
∂ − 6

12

) (
∂ − 9

12

)
(

2π
5 , π

5

) (
2
5 , 4

5

)
(±1, 0) ∂

(
∂ − 1

10

) (
∂ − 2

10

) (
∂ − 4

10

) (
∂ − 6

10

) (
∂ − 8

10

)

For even dimensional matrices, the symmetry (a, b) 	→ (b, a) transforms
(γ, δ) to (−δ,−γ) and preserves T , so in tables 5, 7 we just list the 12
solutions with a ≥ b, i.e., γ + δ ≥ 0.

As in table 3, the five blocks in the tables group the points in this order:
top edge, left-hand edge (omitted for even-dimensional matrices), diagonal
edge, interior points on the central line of symmetry, other interior points.
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