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On multiple higher Mahler measures and Witten

zeta values associated with semisimple Lie algebras

Yoshitaka Sasaki

The Witten zeta-functions associated with semisimple Lie algebras
were defined by Zagier, and their special values at even positive
integers were first studied by Witten in connection with quan-
tum gauge theory. In this paper, relations between multiple higher
Mahler measures for some families of polynomials and special val-
ues of Witten zeta-functions at positive integers are showed. Conse-
quently, a geometrical interpretation of the multiple higher Mahler
measure as the volume of certain moduli space is given.

1. Introduction

The Mahler measure of a Laurent polynomial P ∈ C[X±1
1 , . . . , X±1

n ]\{0} is
defined by

m(P ) :=
∫ 1

0
· · ·
∫ 1

0
log |P (e2πit1 , . . . , e2πitn)| dt1 · · · dtn.

Various properties of the Mahler measure, for instance, relationships with
special values of L-functions, the volumes of certain manifolds and so on,
have been discovered.

Recently, the multiple higher Mahler measure was introduced by
Kurokawa et al. [6] as a generalization of the Mahler measure.

Definition 1.1 The multiple higher Mahler measure [6]. Let P :=
{Pj}l

j=1 be a family of Laurent polynomials Pj ∈ C[X±1
1 , . . . , X±1

n ]\{0}.
Then the multiple higher Mahler measure of P is defined by

m(P) = m(P1, . . . , Pl) :=
∫ 1

0
· · ·
∫ 1

0

l∏
j=1

log |Pj(e2πit1 , . . . , e2πitn)| dt1 · · · dtn.
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In [6], many examples of multiple higher Mahler measures for some
families of polynomials were calculated. For instance, they gave the following
formula:

m(1 − x, 1 − e2πiαx, 1 − e2πiβx) = −1
4

( ∞∑
k=1

∞∑
l=1

cos(2π((k + l)β − lα))
kl(k + l)

+
∞∑

k=1

∞∑
l=1

cos(2π((k + l)α − lβ))
kl(k + l)

+
∞∑

k=1

∞∑
l=1

cos(2π(lα + kβ))
kl(k + l)

)
.

The double series appearing in the right-hand side of the above formula are
a kind of Tornheim’s double series. Tornheim’s double series is also defined
as the special value of the multi-variable Witten zeta-function associated
with sl(3) (or A2, see (5.1) below).

In this paper, we first show relations between multiple higher Mahler
measures for some families of polynomials and special values of the multi-
variable Witten zeta-functions for semisimple Lie algebras at positive
integers. Consequently, a geometrical interpretation of the multiple higher
Mahler measure as the volume of certain moduli space is naturally derived
from the property of the Witten zeta-function.

The Witten zeta-function associated with a semisimple Lie algebra g is
defined by

(1.1) ζW (s; g) :=
∑
ϕ

(dimϕ)−s,

where ϕ runs over all finite dimension irreducible representations of g. The
above definition is due to Zagier [16], and the values ζW (2k; g) for positive
integers k were first studied by Witten [17] in order to express the volumes
of the moduli spaces of flat connections on G bundles over the compact
2-manifold, where G is the semisimple compact Lie group. Therefore, as
mentioned above, our main theorem indicates that multiple higher Mahler
measures for some families of polynomials can be interpreted as the volumes
of such moduli spaces. Zagier noted in [16] that

ζW (2k; g) ∈ Qπkl (k ∈ N),

where l is the number of positive roots of g, by using Witten’s result [17].
This formula is called “Witten’s volume formula”. Some explicit formulas
for ζW (2k, g) (k ∈ N) were given by Mordell [9], Zagier [16], Subbarao and
Sitaramachandrarao [12] and Gunnells and Sczech [1]. Further Matsumoto
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and Tsumura [8] and Komori et al. [3] introduced the multi-variable Witten
zeta-functions associated with semisimple Lie algebras, and evaluated special
values at positive integers of those functions, including ζW (2k; g), for some
g explicitly (see [2, 4, 5, 8]).

In the next section, we describe the definition of the multi-variable
Witten zeta-function associated with g, which is due to Komori, Matsumoto
and Tsumura. In Section 3, we introduce some notation and state the main
theorem as Theorem 3.2. The proof of Theorem 3.2 is given in Section 4. In
the last section, some examples of Theorem 3.2 is presented.

2. The multi-variable Witten zeta-function

In this section, we describe the definition of the multi-variable Witten zeta-
functions associated with semisimple Lie algebras, which is mentioned in
terms of roots and weights for the corresponding root systems by using
Weyl’s dimension formula. As mentioned above, the following definition is
due to Matsumoto and Tsumura [8] and Komori et al. [3]. Matsumoto and
Tsumura [8] first introduced the sl(l) case. Afterwards, Komori et al. [3]
introduced the other cases (also see [2]).

Let g be a semisimple Lie algebra of rank r. We denote the set of all roots
of g by Δ, the set of all positive roots (resp. negative roots) by Δ+ (resp.
Δ−) and the fundamental system of Δ by Π. For any α ∈ Δ, we denote
the associated coroot by α∨. Let λα (α ∈ Π) be the fundamental weights
satisfying 〈β∨, λα〉 = δβ,α (Kronecker’s delta) for α, β ∈ Π. We put

P :=
⊕
α∈Π

Zλα and P++ :=
⊕
α∈Π

Z≥1λα.

Then we define the multi-variable Witten zeta-function associated with g by

ζr(s; g) :=
∑

λ∈P++

∏
α∈Δ+

〈α∨, λ〉−sα ,

where s = (sα)α∈Δ+ ∈ C
n (n = |Δ+|). The Witten zeta-function (1.1) can

be expressed as

ζW (s; g) = K(g)sζr(s, . . . , s︸ ︷︷ ︸
n

; g),

where K(g) :=
∏

β∈Δ+
〈β∨,

∑
α∈Π λα〉. If g is of type Xr (X = A, B, C, D, E,

F, G), then we also denote ζr(s; Xr) instead of ζr(s; g).
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3. The main theorem

Hereafter, we assume s = (sα)α∈Δ+ are positive integers. For α ∈ Δ+, we
put

X(l)
α := 1 − x(l)

α (l = 2, . . . , sα),

Zα := 1 −
∏

β∈Δ+\Π
z

Cβ,α

β

sα∏
l=2

x(l)
α ,

where x
(l)
α and zβ are indeterminate elements and

Cβ,α =

{
〈β∨, λα〉 when α ∈ Π,

δβ,α when α ∈ Δ+ \ Π.

Then we denote the family of those polynomials by

(3.1) P(s; g) = P(s; Xr) :=
{

X(l)
α , Zα

∣∣∣α ∈ Δ+, l = 2, . . . , sα

}
.

Remark 3.1. When sα = 1, we except the corresponding polynomials X
(l)
α

and understand that the corresponding products
∏1

l=2 x
(l)
α are equal to 1.

By using the above notation, we have

Theorem 3.2. For a semisimple Lie algebra g (type of Xr) such that Δ+ \
Π �= ∅ and positive integers s = (sα)α∈Δ+, we have

m(P(s; g)) = m(P(s; Xr)) =
(−1)Sn

2Sn

∑
w∈W

ζr(ws; g),(3.2)

where Sn :=
∑

α∈Π sα (n = |Δ+|), W is the Weyl group of Xr and ws implies
the action of Weyl group to the index defined by ws = (s|w−1(α)|)α∈Δ+.

Remark 3.3. For α ∈ Δ, we have set |α| = α if α ∈ Δ+ and |α| = −α if
α ∈ Δ− in Theorem 3.2.
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4. The proof of Theorem 3.2

We put e(θ) := e2πiθ and

(4.1) Lk(θ) :=
∞∑

n=1

cos(2πnθ)
nk

(0 < θ < 1, k ≥ 1).

Note that L1(θ) = − log |1 − e(θ)|. From the definition of the multiple higher
Mahler measure and the above notation, we have

m(P(s; g)) = (−1)Sn

∫ 1

0
· · ·
∫ 1

0

∏
α∈Δ+

L1

( sα∑
l=2

t(l)α +
∑

β∈Δ+\Π
Cβ,αvβ

)
(4.2)

×
sα∏
l=2

L1(t(l)α ) dT dV ,

where

dT dV =
∏

α∈Δ+

sα∏
l=2

dt(l)α

∏
β∈Δ+

dvβ

and we have put x
(l)
α = e(t(l)α ) and zβ = e(vβ). The change of the order of

integration and summation can be justified by the following way: for a given
positive integer λ ≥ 2, there exists δ(= δ(λ)) such that

| log(2 − 2 cos(2πx))| < x−1/λ

for any x ∈ (0, δ). Therefore, for any x ∈ (0, δ) and sufficiently large R, we
see that

(4.3)
∣∣∣∣

R∑
l=1

cos(2πlx)
l

∣∣∣∣ < | log(2 − 2 cos(2πx))| + 1 < x−1/λ + 1.

From the symmetric property, the left-hand side of the above inequality is
estimated by (1 − x)−1/λ + 1 for any x ∈ (1 − δ, 1). Needless to say, the left-
hand side of the above inequality is bounded for any x ∈ [δ, 1 − δ]. Hence we
see that ∫ 1

0

∣∣∣∣
R∑

l=1

cos(2πl(x + θ))
l

R∑
m=1

cos(2πmx)
m

∣∣∣∣ dx < ∞,
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for any θ ∈ [0, 1]. Therefore, by Lebesgue’s convergence theorem, we may
integrate term-by-term and obtain

∫ 1

0

∞∑
l=1

cos(2πl(x + θ))
l

∞∑
m=1

cos(2πmx)
m

dx

=
∫ 1

0
lim

R→∞

R∑
l=1

cos(2πl(x + θ))
l

R∑
m=1

cos(2πmx)
m

dx

= lim
R→∞

R∑
l=1

R∑
m=1

1
lm

∫ 1

0
cos(2πl(x + θ)) cos(2πmx) dx =

1
2

∞∑
l=1

cos(2πlθ)
l2

.

Here, we have used

∫ 1

0
cos(2π((l − m)x + θ)) dx =

{
cos 2πθ if l = m,
0 otherwise.

Repeating this manner, we have

m(P(s; g)) =
(−1)Sn

2Sn−n

∫ 1

0
· · ·
∫ 1

0

∏
α∈Δ+

Lsα

( ∑
β∈Δ+\Π

Cβ,αvβ

)
dV .(4.4)

From the definition of Cβ,α, the integrand of the above formula can be
rewritten as

∏
α∈Π

Lsα

( ∑
β∈Δ+\Π

〈β∨, λα〉vβ

) ∏
β∈Δ+\Π

Lsα
(vβ).

Therefore, performing the integration in (4.4), we have

m(P(s; g)) =
(−1)Sn

2Sn

∑
σ∈S

∑
· · ·
∑

mα>0 (α∈Π)
σβ〈β∨,

∑
α∈Π σαmαλα〉>0

for ∀β ∈ Δ+ \ Π

∏
α∈Π

1
msα

α
(4.5)

×
∏

β∈Δ+\Π

1
(σβ〈β∨,

∑
α∈Π σαmαλα〉)sβ



“CNTP-6-4-A2-SASAKI” — 2013/6/3 — 12:58 — page 777 — #7
�

�

�

�

�

�

�

�

Mahler measures and Witten zeta values 777

=
(−1)Sn

2Sn

∑
σ∈S

∑
· · ·
∑

σαmα>0 (α∈Π)
σβ〈β∨,

∑
α∈Π mαλα〉>0

for ∀β ∈ Δ+ \ Π

∏
α∈Π

1
|mα|sα

×
∏

β∈Δ+\Π

1
|〈β∨,

∑
α∈Π mαλα〉|sβ

.

Here we have put σ = ((σα)α∈Δ+) ∈ S := {±1}n. By performing the sum-
mation for σ ∈ S, the inner series in the above formula can be rewritten as
follows:

m(P(s; g)) =
(−1)Sn

2Sn

∑
· · ·
∑

mα 	=0 (α∈Π)
〈β∨,

∑
α∈Π mαλα〉	=0

for ∀β ∈ Δ+ \ Π

∏
α∈Π

1
|mα|sα

×
∏

β∈Δ+\Π

1
|〈β∨,

∑
α∈Π mαλα〉|sβ

=
(−1)Sn

2Sn

∑
λ∈P

〈α∨, λ〉 	= 0 for ∀α ∈ Δ+

∏
α∈Δ+

1
|〈α∨, λ〉|sα

.

The last formula implies that the sum of Witten zeta values for the action
of the corresponding Weyl group. Thus, we have Theorem 3.2. �

5. Examples

5.1. A2 case

The multi-variable Witten zeta-function associated with A2 (sl(3)) is

(5.1) ζ2(s1, s2, s3; A2) =
∞∑

m,n=1

1
ms1ns2(m + n)s3

.

The above series was already introduced by Tornheim [13] in 1950. Therefore,
(5.1) is so-called “Tornheim’s double series”. Further Mordell [9] treated the
special case such that s1 = s2 = s3 and evaluated special values at even
positive integers in 1958.
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For s = (s1, s2, s3) ∈ N
3, we put

X
(l)
j = 1 − x

(l)
j , for j = 1, 2, 3 and l = 2, . . . , sj ,

Zj = 1 − z

sj∏
l=2

x
(l)
j , for j = 1, 2, 3.

Then the family of polynomials (3.1) for A2 can be rewritten as

P(s; A2) = {X(l)
j , Zj | j = 1, 2, 3, l = 2, . . . , sj}

and Theorem 3.2 for A2 can be described as

Theorem 5.1. For any positive integers s = (s1, s2, s3), we have

m(P(s; A2)) =
(−1)S3

2S3−1

(
ζ2(s1, s2, s3; A2) + ζ2(s2, s3, s1; A2)(5.2)

+ ζ2(s3, s1, s2; A2)
)
,

where S3 =
∑3

j=1 sj.

In some case, we can evaluate the right-hand side of (5.2) in terms of
Riemann zeta values or multiple zeta values. For instance, Nakamura [10]
showed the following formula:

ζ2(a, b, s; A2) + (−1)bζ2(b, s, a; A2) + (−1)aζ2(s, a, b; A2)(5.3)

=
2

a!b!

max(a,b)/2∑
k=0

{
a

(
b

2k

)
+ b

(
a

2k

)}
(a + b − 2k − 1)!(2k)!ζ(2k)

× ζ(a + b + s − 2k),

which holds for all a, b ∈ N and s ∈ C except for the singular points of each
side of this formula.

Remark 5.2. The similar formula was proved by Tsumura [15] before
Nakamura showed the above formula. However that of Nakamura is sim-
pler than that of Tsumura.

By using the above formula, we have
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Corollary 5.3. For positive even integers s1 and s2, we have

m(P(s; A2)) =
(−1)S3

2S3−2s1!s2!

max(s1,s2)/2∑
k=0

{
s1

(
s2

2k

)
+ s2

(
s1

2k

)}

× (s1 + s2 − 2k − 1)!(2k)!ζ(2k)ζ(S3 − 2k).

Example 5.4. (1) (s1, s2, s3) = (2, 1, 1),

m(1 − xz, 1 − x, 1 − z, 1 − z) =
1
8

(
2ζ2(2, 1, 1; A2) + ζ2(1, 1, 2; A2)

)

=
3
8
ζ(4) =

π4

240
.

(2) (s1, s2, s3) = (2, 2, 2) (Witten’s volume formula)

m(1 − x1z, 1 − x1, 1 − x2z, 1 − x2, 1 − x3z, 1 − x3)

=
3
32

ζ2(2, 2, 2; A2) =
π6

30240
.

(3) (s1, s2, s3) = (2, 2, 3),

m(1 − x1z, 1 − x1, 1 − x2z, 1 − x2, 1 − x
(2)
3 x

(3)
3 z, 1 − x

(2)
3 , 1 − x

(3)
3 )

= − 1
64

(
2ζ2(3, 2, 2; A2) + ζ2(2, 2, 3; A2)

)
= − 1

32

(
−3ζ(7) + 2ζ(2)ζ(5)

)
.

5.2. B2 and C2 cases

The multi-variable Witten zeta-function associated with B2 and C2 is

ζ2(s1, s2, s3, s4; B2) =
∞∑

m,n=1

1
ms1ns2(m + n)s3(m + 2n)s4

.

Matsumoto [7] first introduced the above function as ζso(5)(s1, s2, s3, s4) and
showed the meromorphic continuation of it to the whole C

4 space.
For s = (s1, s2, s3, s4) ∈ N

4, we put

X
(l)
j = 1 − x

(l)
j , for j = 1, 2, 3, 4 and l = 2, . . . , sj ,

Zj = 1 −
2∏

i=1

z
Ci,j

i

sj∏
l=2

x
(l)
j , for j = 1, 2, 3, 4,
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where

Ci,j =

⎧⎪⎨
⎪⎩

2 if (i, j) = (2, 2),
0 if (i, j) = (2, 3), (1, 4),
1 otherwise.

Then the family of polynomials (3.1) for B2 (C2) can be rewritten as

P(s; B2) = {X(l)
j , Zj | j = 1, 2, 3, 4, l = 2, . . . , sj}

and Theorem 3.2 for B2 (C2) can be described as

Theorem 5.5. For any positive integers s = (s1, s2, s3, s4), we have

m(P(s; B2)) =
(−1)S4

2S4−1

(
ζ2(s1, s2, s3, s4; B2) + ζ2(s1, s3, s2, s4; B2)(5.4)

+ ζ2(s4, s3, s2, s1; B2) + ζ2(s4, s2, s3, s1; B2)
)
,

where S4 =
∑4

j=1 sj.

It is known that certain Witten zeta values associated with B2 (C2) can
be expressed by using Riemann zeta values. For instance,

Theorem 5.6 Theorem in [14], Proposition 5.2 in [11]. Suppose that
sj ∈ N ∪ {0} with s1 ≥ 1, s1 + s2 + s3 > 1, s1 + s2 + s4 > 1, s2 + s3 + s4 > 1,∑4

j=1 sj > 2, and that
∑4

j=1 sj is odd. Then ζ2(s1, s2, s3, s4; B2) can be
expressed as a rational linear combination of products of Riemann zeta val-
ues at positive integers.

Therefore m(P(s; B2)) with
∑4

j=1 sj ≡ 1 (mod 2) can be expressed in
terms of Riemann zeta values. Further Nakamura showed an explicit formula
which is similar to the right-hand side of (5.4).

Theorem 5.7 Theorem 5.5 in [11]. The following formula holds for
a, b, c ∈ N and s ∈ C except for singular points of each side of the formula:

ζ2(a, b, s, c; B2) + (−1)bζ2(c, b, s, a; B2) + (−1)aζ2(a, s, b, c; B2)

(5.5)

+ (−1)b+cζ2(c, s, b, a; B2) = 2
a∑

d=0

(
a + b − d − 1

a − d

)max(c,d)/2∑
j=0
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×
{(

c + d − 2j − 1
c − 2j

)
+
(

c + d − 2j − 1
d − 2j

)}
22j−c−dζ(2j)

× ζ(a + b + c + s − 2j) + 2
b∑

d=0

(−1)d

(
a + b − d − 1

b − d

)max(c,d)/2∑
j=0

×
{(

c + d − 2j − 1
c − 2j

)
+
(

c + d − 2j − 1
d − 2j

)}
ζ(2j)ζ(a + b + c + s − 2j).

By using Theorem 5.7, we can concretely evaluate the right-hand side
of (5.4) in some cases.

Example 5.8. (1) (s1, s2, s3, s4) = (1, 2, 1, 1)

m(1 − z1z2, 1 − x2z1z
2
2 , 1 − x2, 1 − z1, 1 − z2)

= − 1
24

{
2ζ2(1, 2, 1, 1; B2) + 2ζ2(1, 1, 2, 1; B2)

}

= − 1
24

{
−3ζ(5) +

π2

3
ζ(3)

}
,

since we see that

ζ2(1, 2, 1, 1; B2) = −13
8

ζ(5) +
π2

6
ζ(3), ζ2(1, 1, 2, 1; B2) =

1
8
ζ(5)

from the list in [14, p. 151].

(2) (s1, s2, s3, s4) = (2, 2, 2, 2) (Witten’s volume formula)

m(1 − x1z1z2, 1 − x2z1z
2
2 , 1 − x3z1, 1 − x4z2, 1 − x1, 1 − x2, 1 − x3, 1 − x4)

=
ζ2(2, 2, 2, 2; B2)

25
=

π8

9676800
,

since ζ2(2, 2, 2, 2; B2) = π8/302400 (see [4, (264)]).

5.3. G2 case

The multi-variable Witten zeta-function associated with G2 is

ζ2(s1, s2, s3, s4, s5, s6; G2)

=
∞∑

m,n=1

1
ms1ns2(m + n)s3(m + 2n)s4(m + 3n)s5(2m + 3n)s6

.
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For s = (s1, . . . , s6) ∈ N
6, we put

X
(l)
j = 1 − x

(l)
j , for j = 1, . . . , 6 and l = 2, . . . , sj ,

Zj = 1 −
4∏

i=1

z
Ci,j

i

sj∏
l=2

x
(l)
j , for j = 1, . . . , 6,

where

Ci,j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3 if (i, j) = (3, 2), (4, 2),
2 if (i, j) = (2, 2), (4, 1),
1 if (i, j) = (1, 1), (1, 2), (2, 1), (3, 1),
0 otherwise.

Then the family of polynomials (3.1) for G2 can be rewritten as

P(s; G2) = {X(l)
j , Zj | j = 1, . . . , 6, l = 2, . . . , sj}

and Theorem 3.2 for G2 can be described as

Theorem 5.9. For any positive integers s = (s1, . . . , s6), we have

m(P(s; G2)) =
(−1)S6

2S6−1

{
ζ2(s1, s2, s3, s4, s5, s6; G2)

(5.6)

+ ζ2(s6, s3, s4, s2, s1, s5; G2) + ζ2(s6, s4, s3, s2, s5, s1; G2)
+ ζ2(s5, s4, s2, s3, s6, s1; G2) + ζ2(s5, s2, s4, s3, s1, s6; G2)
+ ζ2(s1, s3, s2, s4, s6, s5; G2)

}
.

In [5], Komori et al. considered a “Weyl group symmetric” linear com-
bination of the Witten zeta-function associated with G2 which is similar to
the right-hand side of (5.6) and evaluated special values at positive integers
of such function (see Section 2 in [5]). From their theorem, we have

Corollary 5.10. For even positive integers (s1, . . . , s6), we have

m(P(s; G2)) =
(−1)S6

2S6−1

⎛
⎝ ∏

α∈Δ+(G2)

(2πi)sα

sα!

⎞
⎠P (s; 0; G2),

where P (s; 0; G2) are certain rational numbers depend on s and the root
system G2.
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Remark 5.11. Numbers P (s; 0; G2) can be calculated. Indeed, P (s; 0; G2)
are defined as coefficients of the Taylor expansion of a function F (t;y; G2)
introduced in [5].
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