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Moonshine for M24 and Donaldson

invariants of CP2

Andreas Malmendier and Ken Ono

Eguchi et al. [9] recently conjectured a new moonshine pheno-
menon. They conjecture that the coefficients of a certain mock
modular form H(τ), which arises from the K3 surface elliptic
genus, are sums of dimensions of irreducible representations of
the Mathieu group M24. We prove that H(τ) surprisingly also
plays a significant role in the theory of Donaldson invariants. We
prove that the Moore–Witten [15] u-plane integrals for H(τ) are
the SO(3)-Donaldson invariants of CP2. This result then implies
a moonshine phenomenon where these invariants conjecturally are
expressions in the dimensions of the irreducible representations of
M24. Indeed, we obtain an explicit expression for the Donaldson
invariant generating function Z(p, S) in terms of the derivatives
of H(τ).

1. Introduction and statement of results

This paper concerns the deep properties of the modular forms and mock
modular forms, which arise from a study of the K3 surface elliptic genus.
To define these objects, we require Dedekind’s eta-function η(τ) := q

1
24

∏∞
n=1

(1 − qn) (τ ∈ H throughout and q := e2πiτ ), and the classical Jacobi theta
function

ϑab(v|τ) :=
∑

n∈Z

q
(2n+a)2

8 eπi (2n+a)(v+ b

2
),

where a, b ∈ {0, 1} and v ∈ C. We recall some standard identities.

ϑ1(v|τ) = ϑ11(v|τ) ϑ1(0|τ) = 0 ϑ′
1(0|τ) = −2πη3(τ)

ϑ2(v|τ) = ϑ10(v|τ) ϑ2(0|τ) =
∑

n∈Z
q

(2n+1)2

8 ϑ′
2(0|τ) = 0

ϑ3(v|τ) = ϑ00(v|τ) ϑ3(0|τ) =
∑

n∈Z
q

n2

2 ϑ′
3(0|τ) = 0

ϑ4(v|τ) = ϑ01(v|τ) ϑ4(0|τ) =
∑

n∈Z
(−1)n q

n2

2 ϑ′
4(0|τ) = 0

Moreover, for convenience we let ϑj(τ) := ϑj(0|τ) for j = 2, 3, 4.
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The K3 surface elliptic genus [7] is given by

Z(z|τ) = 8

[(
ϑ2(z|τ)
ϑ2(τ)

)2

+
(

ϑ3(z|τ)
ϑ3(τ)

)2

+
(

ϑ4(z|τ)
ϑ4(τ)

)2
]

.

This expression is obtained by an orbifold calculation on T 4/Z2 in [6]. Its
specializations at z = 0, z = 1/2 and z = (τ + 1)/2 gives the classical topo-
logical invariants χ=24, σ=16 and Â = −2, respectively. Here, we consider
the following alternate representation obtained by Eguchi and Hikami [8]
motivated by superconformal field theory:

Z(z|τ) =
ϑ1(z|τ)2

η(τ)3
(
24 μ(z; τ) + H(τ)

)
.

Here H(τ) is defined by

(1.1) H(τ) := −8
∑

w∈{ 1
2
, 1+τ

2
, τ

2}
μ(w; τ) = 2q−

1
8

(

−1 +
∞∑

n=1

An qn

)

,

where μ(z; τ) is the famous function

μ(z; τ) =
i eπiz

ϑ1(z|τ)

∑

n∈Z

(−1)n q
1
2
n(n+1) e2πinz

1 − qn e2πiz

defined by Zwegers [18] in his thesis on Ramanujan’s mock theta functions.
As explained in [8], H(τ) is the holomorphic part of a weight 1/2 har-

monic Maass form, a so-called mock modular form. Its first few coefficients
An are:

n 1 2 3 4 5 6 7 8 · · ·
An 45 231 770 2277 5796 13915 30843 65550 · · ·

Amazingly, Eguchi et al. [9] recognized these numbers as sums of dimensions
of the irreducible representations of the Mathieu group M24. Indeed, the
dimensions of the irreducible representations are (in increasing order):

1, 23, 45, 45, 231, 231, 252, 253, 483, 770, 770, 990, 990, 1035, 1035, 1035,

1265, 1771, 2024, 2277, 3312, 3520, 5313, 5544, 5796, 10395.

One sees that A1, A2, A3, A4 and A5 are dimensions, while

A6 = 3520 + 10395 and A7 = 10395 + 5796 + 5544 + 5313 + 2024 + 1771.
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We have their “moonshine” conjecture1 — also referred to as “umbral
moonshine” [4]:

Conjecture Moonshine. The Fourier coefficients An of H(τ) are given
as special sums2 of dimensions of irreducible representations of the simple
sporadic group M24.

Here we prove that the coefficients of H(τ) encode further deep informa-
tion. We compute the numbers DDDm,2n[H(τ)], the Moore–Witten [15] u-plane
integrals for H(τ), and we prove that they are, up to a multiplicative fac-
tor of 12, the SO(3)-Donaldson invariants for CP2. These invariants are a
sequence of rational numbers which together form a diffeomorphism class
invariant for CP2 (for background see [5, 12–14]).

Theorem 1.1. For all m, n ∈ N0, the SO(3)-Donaldson invariants ΦΦΦm,2n

for CP2 satisfy
12ΦΦΦm,2n = DDDm,2n[H(τ)].

Remark. The u-plane integrals DDDm,2n[H(τ)] are given explicitly in terms of
the coefficients of H(τ) (see 3.1). Therefore, the Eguchi–Ooguri–Tachikawa
Moonshine Conjecture implies that these Donaldson invariants are given
explicitly in terms of the dimensions of the irreducible representations of
M24. We will discuss the numerical identities implied by Theorem 1.1 in
Section 3.2. We also describe the Donaldson invariant generating function
in terms of derivatives of H(τ).

This paper builds upon earlier work by the authors [14] on the Moore–
Witten Conjecture for CP2. We shall make substantial use of the results
in that paper, and we will recall the main facts that we need to prove
Theorem 1.1.

In Section 2 we recall basic facts about those weight 1/2 harmonic
Maass forms whose shadow is the cube of Dedekind’s eta-function. In Sec-
tion 3, we recall and apply the main results from [14]. In particular, we

1This is analogous to the “Monstrous Moonshine” conjecture by Conway and
Norton which related the coefficients of Klein’s j-function to the representations of
the Monster [1]. By work of Frenkel, Lepowsky and Meurman [10] and Borcherds [2]
(among others), moonshine for j(τ) is now understood.

2As in the case of the Montrous Moonshine Conjecture, there are many represen-
tations of the generic An, and so the proper formulation of this conjecture requires
a precise description of these sums [11].
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recall the relationship between the u-plane integrals for such forms and the
SO(3)-Donaldson invariants for CP2. We then conclude with the proof of
Theorem 1.1.

2. Certain harmonic Maass forms

We let M(τ) be a weight 1/2 harmonic Maass form3 (for definitions see
[3, 16,17]) for Γ(2) ∩ Γ0(4) whose shadow4 is η(τ)3. Namely, we have that

(2.1)
√

2i
d

dτ̄
M (τ) =

1√
Imτ

η3(τ) .

For such M(τ), we write M(τ) = M+(τ) + M−(τ), where the holomor-
phic part, a mock modular form, is M+(τ) = q−1/8

∑
n≥0 Hn qn/2. The non-

holomorphic part M−(τ) is

M−(τ) = − 2i√
π

∑

l≥0

(−1)l Γ
(

1
2
, π

(2l + 1)2

2
Imτ

)

q−
(2l+1)2

8 ,

where Γ(1/2, t) is the incomplete Gamma function. This follows from
Jacobi’s identity

η(τ)3 = q
1
8

∞∑

n=0

(−1)n(2n + 1)q
n2+n

2 .

Remark. Note that the non-holomorphic part M−(τ) is the same for
every weight 1/2 harmonic Maass form with shadow η3(τ) since this part is
obtained as the “Eichler–Zagier” integral of the shadow. However, the holo-
morphic part is not uniquely determined. It is unique up to the addition of a
weakly holomorphic modular form, a form whose poles (if any) are supported
at cusps.

The next result gives families of modular forms from such an M(τ) using
Cohen brackets. To make this precise, we recall the two Eisenstein series

E2(τ) := 1 − 24
∞∑

n=1

∑

d|n
dqn and Ê2(τ) := E2(τ) − 3

πImτ
.

The authors proved the following lemma in [14].

3These forms were first defined by Bruinier and Funke [3] in their work on geo-
metric theta lifts.

4The term shadow was coined by Zagier in [17].
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Lemma 2.1. [Lemma 4.10 of [14]] Assuming the hypotheses above, we have
that

Ek
1
2
[M(τ)] :=

k∑

j=0

(−1)j

(
k

j

)
Γ

(
1
2

)

Γ
(

1
2 + j

) 22j 3j Ek−j
2 (τ)

(

q
d

dq

)j

M (τ)

is modular of weight 2k + 1/2 for Γ(2) ∩ Γ0(4), and it satisfies

√
2i

d

dτ̄
Ek

1
2
[M(τ)] =

1√
Imτ

Êk
2 (τ) η3(τ).

This lemma implies the following corollary:

Corollary 2.2. If M(τ) and M̃(τ) are weight 1
2 harmonic Maass forms on

Γ(2) ∩ Γ0(4) whose shadow is η(τ)3, then

Ek
1
2
[M(τ)] − Ek

1
2

[
M̃(τ)

]
= Ek

1
2

[
M(τ) − M̃(τ)

]
= Ek

1
2

[
M+(τ) − M̃+(τ)

]

is a weakly holomorphic modular form of weight 2k + 1/2.

2.1. The Q(q) series

Here, we recall one explicit example of a harmonic Maass form which plays
the role of M(τ) in the previous subsection. To this end, we define modular
forms A(τ) and B(τ) by

A(τ) := A(8τ) =
∞∑

n=−1

a(n)qn :=
η(4τ)8

η(8τ)7
= q−1 − 8q3 + 27q7 − · · · ,

B(τ) := B(8τ) =
∞∑

n=−1

b(n)qn :=
η(8τ)5

η(16τ)4
= q−1 − 5q7 + 9q15 − · · · .

We sieve on the Fourier expansion of A(τ) to define the modular forms

A3,8(τ) := A3,8(8τ) =
∑

n≡3 (mod 8)

a(n)qn = −8q3 − 56q11 + · · · ,

A7,8(τ) := A7,8(8τ) =
∑

n≡7 (mod 8)

a(n)qn = q−1 + 27q7 + 105q15 + · · · .
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We also recall the definition of the following mock theta function

M(q) := q−1
∞∑

n=0

(−1)n+1q8(n+1)2
∏n

k=1(1 − q16k−8)
∏n+1

k=1(1 + q16k−8)2

= −q7 + 2q15 − 3q23 + · · · .

We define

Q+(q) = Q+(τ) := −7
2
A3,8(τ) +

3
2
A7,8(τ) − 1

2
B(τ) + 4M(q),

and so we have that

(2.2) Q+ (τ/8) =
1

q
1
8

(
1 + 28 q

1
2 + 39 q + 196 q

3
2 + 161 q2 + · · ·

)
.

In terms of this q-series, the authors proved the following theorem in [14].

Theorem 2.3. [Theorem 7.2 of [14]] The function Q+(τ/8) is the holo-
morphic part of a weight 1/2 harmonic Maass form on Γ(2) ∩ Γ0(4) whose
shadow is η(τ)3.

3. u-plane integrals, Donaldson invariants and the proof of
Theorem 1.1

Suppose again that M(τ) is a weight 1/2 harmonic Maass form on Γ(2) ∩
Γ0(4) whose shadow is η(τ)3. For m, n ∈ N0, the authors proved that the
quantities

DDDm,2n[M+(τ)] :=
n∑

k=0

(−1)k+1

2n−1 3n

(2n)!
(n − k)! k!

(3.1)

×
[

ϑ9
4(τ)

[
ϑ4

2(τ) + ϑ4
3(τ)

]m+n−k

[ϑ2(τ)ϑ3(τ)]2m+2n+3 Ek
1
2

[
M+(τ)

]
]

q0

,

where [.]q0 denotes the constant coefficient term, are the Moore–Witten
u-plane integrals for M(τ) (cf. [14]). Note that if M̃(τ) is another such
form, then

(3.2) DDDm,2n[M+(τ)] −DDDm,2n[M̃+(τ)] = DDDm,2n[M+(τ) − M̃+(τ)] .

In their seminal paper [15], Moore and Witten essentially conjectured
that the u-plane integrals in (3.1) for a suitable M+(τ) should give the
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SO(3)-Donaldson invariants of CP2. These invariants are an infinite sequence
of rational numbers ΦΦΦm,2n labeled by integers m, n ∈ N that can be assem-
bled in a generating function in the two formal variables p, S:

ZZZ(p, S) =
∑

m,n≥0

ΦΦΦm,2n
pm

m!
S2n

(2n)!
.

This power series is a diffeomorphism invariant for CP2. The main theorem
in [14] proved this conjecture for Q+(τ/8).

Theorem 3.1. [Theorem 1.1 of [14]] For m, n ∈ N0 we have that

ΦΦΦm,2n = DDDm,2n[Q+(τ/8)].

Using the work in [14], we prove the following important theorem.

Theorem 3.2. Let M(τ) be as above, then for all m, n ∈ N0 we have:

DDDm,2n[Q+(τ/8)] −DDDm,2n[M+(τ)] = DDDm,2n[Q+(τ/8) − M+(τ)] = 0.

Proof. We prove that the constant terms vanish in expressions of the form

n∑

k=0

(−1)k+1

2n−1 3n

(2n)!
(n − k)! k!

ϑ9
4(τ)

[
ϑ4

2(τ) + ϑ4
3(τ)

]m+n−k

[ϑ2(τ)ϑ3(τ)]2m+2n+3

× Ek
1
2

[Q+(τ/8) − M(τ)
]
.

It is sufficient to show that this is the case for each summand. Therefore,
after rescaling τ → 8τ and q → q8 it is enough to show that the constant
vanishes in

Θ9
4(τ)

[
16 Θ4

2(τ) + Θ4
3(τ)

]m+n−k

[Θ2(τ) Θ3(τ)]2m+2n+3 Ek
1
2

[Q+(τ) − M(8τ)
]

(3.3)

=
Θ9

4(τ)
Θ2(τ)Θ3(τ)η(8τ)3

[
16 Θ4

2(τ) + Θ4
3(τ)

]m+n−k

[Θ2(τ) Θ3(τ)]2m+2n−2k

× η(8τ)3

(Θ2(τ)Θ3(τ))2k+2
Ek

1
2

[Q+(τ) − M(8τ)
]
.
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Here, the classical theta functions are defined by

Θ2(τ) :=
η(16τ)2

η(8τ)
=

∞∑

n=0

q(2n+1)2 = q + q9 + q25 + · · · ,

Θ3(τ) :=
η(8τ)5

η(4τ)2η(16τ)2
= 1 + 2

∞∑

n=1

q4n2
= 1 + 2q4 + 2q16 + 2q36 + · · · ,

Θ4(τ) :=
η(4τ)2

η(8τ)
= 1 + 2

∞∑

n=1

(−1)nq4n2
= 1 − 2q4 + 2q16 − 2q36 + · · · .

These are related to the theta functions ϑ2(τ), ϑ3(τ) and ϑ4(τ) by

ϑ2(τ) = 2Θ2

(τ

8

)
, ϑ3(τ) = Θ3

(τ

8

)
, ϑ4(τ) = Θ4

(τ

8

)
.

We define a weakly holomorphic modular function by

(3.4) Ẑ0(q) = Ẑ0(τ) :=
E∗(4τ)

Θ2(τ)2Θ3(τ)2
,

where E∗(4τ) is the weight 2 Eisenstein series with

E∗(4τ) = 16Θ2(τ)4 + Θ3(τ)4 = 1 + 24q4 + 24q2 + · · · ,

and Ẑ0(τ/8) is a Hauptmodul for Γ0(4). A calculation shows that

q
d

dq
Ẑ0(q) =

Θ4(τ)9

Θ2(τ)Θ3(τ)η(8τ)3
.

Equation (3.3) becomes

(3.5) q
d

dq
Ẑ0(q) · Ẑ0(q)m+n−k · Hk(q) ,

where

(3.6) Hk(q) :=
η(8τ)3

(Θ2(τ)Θ3(τ))2k+2
Ek

1
2

[Q+(τ) − M(8τ)
]
.

To prove the theorem, it suffices to show that the constant term in (3.5) van-
ishes. Hence, it is enough to show that Hk(q) is a polynomial in Ẑ0(q). To
this end, we define M∗

0 (Γ0(8)) to be the space of modular function on Γ0(8)
which are holomorphic away from infinity, and is a subspace of C((q2)).
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One can easily verify that M∗
0 (Γ0(8)) is precisely the set of polynomials

in Ẑ0(q). From Corollary 2.2, we can observe that Hk(q) is modular with
weight 0. A calculation shows that (Θ2(τ)Θ3(τ))−2 = q−2 f(q4) is holomor-
phic away from infinity, and f(q) ∈ Z[[q]]. We also have η(8τ)3 = q g(q8) and
Ek

1
2
[Q+(τ) − M(8τ)] = q−1 h(q4), where g(q), h(q) ∈ Z[[q]]. Hence, Hk(q) ∈

C((q2)) is modular of weight 0 on M∗
0 (Γ0(8)), and so is a polynomial in

Ẑ0(τ). �

3.1. Proof of Theorem 1.1

Since H(τ) is the mock modular part of a weight 1/2 harmonic Maass form
on Γ(2) ∩ Γ0(4) whose shadow is the 8 × 3 · η(τ)3/2 = 12 η(τ)3, it follows
from Theorems 3.1 and 3.2 that for m, n ∈ N0 we have:

ΦΦΦm,2n = DDDm,2n[Q+(τ/8)] = DDDm,2n[H(τ)/12] + DDDm,2n

[
Q+(τ/8) − H(τ)/12

]

= DDDm,2n[H(τ)/12] =
1
12

DDDm,2n[H(τ)].

3.2. Discussion of the identities implied by Theorem 1.1

In the table, below we list the first non-vanishing SO(3)-Donaldson
invariants ΦΦΦm,2n of CP2 as well as the coefficients DDDm,2n[M+(τ)] when the
mock modular form is given as M+(τ) = q−1/8

∑
k≥0 Hk qk/2. In general,

DDDm,2n[M+(τ)] is non-vanishing for m + n ≡ 0 (mod 2) and a rational linear
combination of the first (m + n)/2 + 1 coefficients of M+(τ).

(m, n) ΦΦΦm,2n DDDm,2n[M+(τ)]

(0, 0) −1 −1
4H1 + 6H0

(0, 2) − 3
16 −49

64H2 + 9
4H1 − 2133

64 H0

(1, 1) − 5
16 − 7

64H2 + 1
4H1 − 195

64 H0

(2, 0) −19
16 − 1

64H2 − 1
4H1 + 411

64 H0

(0, 4) −232
256 −14641

1024 H3 + 2401
128 H2 + 44631

1024 H1 + 108741
128 H0

(1, 3) −152
256 −1331

1024H3 − 49
128H2 + 10341

1024 H1 − 1749
128 H0

(2, 2) −136
256 − 121

1024H3 − 91
128H2 + 2895

1024H1 − 3687
128 H0

(3, 1) −184
256 − 11

1024H3 − 29
128H2 + 589

1024H1 − 753
128H0

(4, 0) −680
256 − 1

1024H3 − 7
128H2 − 505

1024H1 + 1725
128 H0
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Theorem 3.1 states that choosing M+(τ) = Q+(τ/8) from (2.2), we
find equality of the Donaldson invariants ΦΦΦm,2n and the u-plane integral
DDDm,2n[M+(τ)]. In fact, setting H0 = 1, H1 = 28, H2 = 39, H3 = 196 in the
third column of the table above gives the Donaldson invariants of the sec-
ond column.

On the other hand, the choice M+(τ) = H(τ)/12 from (1.1) implies
that H0 = −1/6, H2k = Ak/6, H2k+1 = 0 for k ∈ N. Theorem 1.1 states
that choosing M+(τ) = H(τ)/12 we still find equality of the Donaldson
invariants ΦΦΦm,2n and the u-plane integral DDDm,2n[M+(τ)]. In fact, setting
H0 = −1/6, H1 = 0, H2 = 45/6, H3 = 0 in the third column of the table gives
the Donaldson invariants of the second column as well.

The proof of Theorem 1.1 implies the following form for the generating
function ZZZ(p, S) of the SO(3)-Donaldson invariants of CP2 in terms of the
mock modular form H(τ):

ZZZ(p, s) = −
∑

m,n≥0

pm S2n

22m+3n+4 · 3n+1 · m! · n!
(3.7)

×
[

q
d

dq
Ẑ0(q)

n∑

k=0

(−1)k

(
n

k

)

Ẑ0(q)m+n−k Êk[H(8τ)]

]

q0

,

where Ẑ0(q) was defined in (3.4) and we have set

Êk[H(8τ)] =
η(8τ)3

(Θ2(τ)Θ3(τ))2k+2
Ek

1
2
[H(8τ)] .
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