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On Rademacher sums, the largest Mathieu group

and the holographic modularity of moonshine

Miranda C.N. Cheng and John F.R. Duncan

Recently a conjecture has proposed which attaches (mock) modular
forms to the largest Mathieu group. This may be compared to
monstrous moonshine, in which modular functions are attached
to elements of the Monster group. One of the most remarkable
aspects of monstrous moonshine is the following genus zero prop-
erty: the modular functions turn out to be the generators for the
function fields of their invariance groups. In particular, these invari-
ance groups define genus zero quotients of the upper half-plane. It
is therefore natural to ask if there is an analogue of this property
in the Mathieu case, and at first glance the answer appears to be
negative since not all the discrete groups arising there have genus
zero. On the other hand, in this paper we prove that each (mock)
modular form appearing in the Mathieu correspondence coincides
with the Rademacher sum constructed from its polar part. This
property, inspired by the AdS/CFT correspondence in physics, was
shown previously to be equivalent to the genus zero property of
monstrous moonshine. Hence, we conclude that this “Rademacher
summability” property serves as the natural analogue of the genus
zero property in the Mathieu case. Our result constitutes further
evidence that the Rademacher method provides a powerful frame-
work for understanding the modularity of moonshine, and leads to
interesting physical questions regarding the gravitational duals of
the relevant conformal field theories.
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1. Introduction

In 2010, an unexpected relation between the elliptic genus of a K3 surface
and the sporadic group M24 was observed by Eguchi et al. [1]. Subsequently,
the connection between the K3 elliptic genus twisted by a group element
of M24 and the characters of M24-representations was first explored in [2, 3]
and further studied in [4, 5]. From the point of view of the K3 supercon-
formal sigma model, these twisted (or twining) elliptic genera are believed
to specify the way in which the K3 elliptic cohomology furnishes an M24-
representation of infinite dimension. Note that such a twisted object only
depends on the conjugacy class [g] to which the element g belongs. From the
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N = 4 superconformal symmetry of the sigma model, it follows that they are
weak Jacobi forms, and moreover admit natural decompositions leading to
a set of (mock) modular forms Hg of weight 1/2. As a result of these studies
the existence of a natural relationship between representations of M24 and
the mock modular forms Hg has been conjectured. While such a relationship
is yet to be established, extensive evidence has been gathered in [2, 4, 5]. In
this context, the Hg are often referred to as the McKay–Thompson series
and a key prediction of the conjecture is that they exhibit particular mod-
ular behaviour under certain discrete subgroups Γg of SL2(R). This may be
compared to the moonshine conjecture of Conway and Norton [6], which
relates genus zero subgroups of SL2(R) to elements of the Monster group.
More precisely, to each conjugacy class [g] of the Monster is attached a func-
tion Tg (its McKay–Thompson series) whose Fourier coefficients are given by
characters of the Monster. The genus zero property of monstrous moonshine
then refers to the empirical fact (ultimately proven by Borcherds [7]) that Tg
defines a function on the upper half-plane that generates the function field
of its invariance group Γg. In particular, the (compactified) quotient of the
upper half-plane by Γg is a Riemann surface of genus zero. This property
is also expected to extend to the so-called generalized moonshine [8] which
attaches modular functions to commuting pairs of elements of the Monster.
Ogg’s observation [9] that the normalizer of Γ0(p) in SL2(R) for p a prime is
genus zero if and only if p divides the order of the Monster was arguably the
first hint of a relation between the Monster and genus zero groups. Assum-
ing the validity of the M24 conjecture, and in particular, the validity of the
descriptions of the Hg given in [2, 4, 5], a natural question to ask is whether
the groups Γg ⊂ SL2(R) attached to the McKay–Thompson series Hg for
M24 share this fundamental pattern present in monstrous moonshine: do
they have a similar genus zero property? At first glance the answer is nega-
tive since not all the groups Γg arising from M24 define genus zero quotients
of the upper half-plane. When a pattern breaks, we may seek to replace it
with a new pattern which encompasses both the old paradigm and the new
“exception”. Moreover, we also want to understand why a pattern exists at
all in the first place. These are exactly the goals of this paper, and these
considerations lead us to recast the question in a new form: a form suggested
by earlier work of I. Frenkel which reconsidered the origin, and interpreta-
tion, of the genus zero property of monstrous moonshine. The article [10]
makes an important step towards a physical explanation of the genus zero
property. There it is shown that a discrete group Γ has genus zero if and
only if a certain regularization procedure, inspired by Rademacher’s work on
the j-function [11] and summarized here as “Reg”, renders the Poincaré-like
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series

(1.1) TΓ(τ) = Reg

⎛
⎝ ∑
γ∈Γ∞\Γ

qε−1
∣∣
γ

⎞
⎠

convergent without spoiling invariance under the group Γ. (We say a group Γ
has genus zero if it defines a genus zero quotient of the upper half-plane.) In
the above formula, Γ∞ is the subgroup of Γ fixing the cusp (representative)
i∞, the sum is over a set of representatives γ for the cosets of Γ∞ in Γ,
and q = e2πiτ . As is turns out, the above expression, which we refer to as
a Rademacher sum, and which can be used to define a function for any
discrete subgroup Γ of SL2(R) commensurable with SL2(Z) (for example),
is anomaly free — that is, invariant under Γ even after the regularization —
if and only if the group Γ has genus zero. In the case that Γ does have
genus zero the Rademacher sum (1.1) defines a generator for the field of
Γ-invariant functions, and it defines precisely the generator Tg when Γ = Γg
for g in the Monster. So the genus zero property of monstrous moonshine
may be reformulated as follows:

The McKay–Thompson series Tg coincides with the Rademacher
sum TΓ attached to its invariance group Γ = Γg.

Significantly, Rademacher sums with a higher-order pole q−n, which are
relevant for conformal field theories (CFTs) with higher central charges,
also define modular functions as long as the group Γ has genus zero. A com-
pelling physical interpretation of the Rademacher sum is provided by the
so-called anti de Sitter (AdS)/CFT correspondence [12] (also referred to as
the gauge/gravity duality or the holographic duality in more general con-
texts), which asserts, among many other things, that the partition function
of a given two-dimensional (2D) CFT “with an AdS dual” equals the parti-
tion function of another physical theory in three Euclidean dimensions with
gravitational interaction and with asymptotically AdS boundary condition
and toroidal conformal boundary. There is not yet a systematic understand-
ing of the conditions a CFT has to satisfy in order for it to have an AdS dual.
Nevertheless, the correspondence, when applicable, provides both deep intu-
itive insights and powerful computational tools for the study of the theory.
From the fact that the only smooth three-manifold with asymptotically AdS
torus boundary condition is a solid torus, it follows that the saddle points
of such a partition function are labelled by the different possible ways to
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“fill in the torus”; that is, the different choices of primitive cycle on the
boundary torus which may become contractible in a solid torus that fills it
[13]. These different saddle points are therefore labelled by the coset space
Γ∞\Γ, where Γ = SL2(Z) [14]. From a bulk, gravitational point of view, the
group SL2(Z) has an interpretation as the group of large diffeomorphisms,
and Γ∞ is the subgroup that leaves the contractible cycle invariant and
therefore can be described by a mere change of coordinates. Such considera-
tions underlie the previous use of Rademacher sums in the physics literature
[14, 15, 16, 17, 18, 19, 20]. Apart from the partition function, which computes
the dimension of the Hilbert space graded by the basic quantum numbers
(the energy, for instance) of the theory, more interesting information can
be gained in the presence of a non-trivial symmetry group acting on the
Hilbert space by studying the twisted partition function (a trace over the
Hilbert space with a group element inserted) which computes the group
characters of the Hilbert space. In the Lagrangian formulation of quantum
field theories, this twisting corresponds to a modification of the boundary
condition. Now, in the study of moonshine the McKay–Thompson series
attached to the group element g has a physical interpretation as the twisted
partition function of a 2D CFT with a boundary condition twisted by g.
This twisting procedure has a clear geometrical meaning for a 2D CFT
with an AdS gravity dual: from the point of view of the gravity theory, the
change of boundary condition by insertion of a group element g also changes
the set of allowed saddle points, and relatedly, the allowed large diffeomor-
phisms is now given by a different discrete group Γg ⊂ SL2(R). From this
argument, assuming that the moonshine CFT (or its cousins with higher
central charges) have semi-classical-like AdS descriptions in which the path
integrals are controlled by their saddle points, the modular objects should
admit expressions as Rademacher sums over the coset spaces Γ∞\Γg. This
picture motivates the relevance of the Rademacher summability property:

We say a function f is Rademacher summable if it coincides with
the Rademacher sum attached to its polar part.

As we have observed above, Rademacher summability is equivalent to the
genus zero property in the monstrous case by the results of [10], where the
McKay–Thompson series are modular functions. Moreover, the Rademacher
summing procedure applied to Γ produces functions, which do not have sin-
gularities at cusps of Γ other than the infinite one. This is in accordance with
our expectation that our theory of gravity should admit a unique low-energy
description. The situation is arguably more subtle and also more interesting
for M24. As mentioned earlier, in this case the relevant modular objects
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are weight 1/2 (mock) modular forms, and one does not expect any clear
relation between the genus of Γg and the Rademacher summability of Hg—
indeed, not all the Γg attached to elements of M24 have genus zero—while
in this work, we verify explicitly that the functions Hg are all Rademacher
summable:

(1.2) Hg(τ) = −2 Reg

⎛
⎝ ∑
γ∈Γ∞\Γg

qε−1/8
∣∣
γ

⎞
⎠

for all g ∈M24. The precise meaning of the above equation will be elucidated
in Section 4, and is in particular the content of the main theorem (Theo-
rem 4.1) of the present paper. Closely related sums for two of the above
(mock) modular forms, corresponding to taking g to be the identity or in a
certain class of order 2, have been suggested previously in [21]. The function
Hg for g the identity is one of the mock modular forms constructed over
a decade ago by Pribitkin in [22]. Note the remarkable similarity between
(1.2) and (1.1), and recall that Rademacher summability is equivalent to the
genus zero property in the monstrous case. In view of this, the Rademacher
summability property clearly serves as a natural analogue of the genus zero
property, and as a new paradigm that applies to both the Monster and M24.
Moreover, Rademacher sums provide a new angle from which to view the
moonshine phenomenon: is it not miraculous that the Rademacher machin-
ery, applied with such simple inputs, uniformly produces infinite q-series that
contain so much information about sporadic simple groups? The rest of the
paper is organized as follows. In Section 2, we review the basic properties of
the sporadic group M24, focusing on its 24D permutation representation. In
Section 3, we review the properties of the (mock) modular forms that have
been conjectured to encode an infinite-dimensional, Z-graded M24 module.
In Section 4, we explain our construction of the Rademacher sums and state
the main theorem (Theorem 4.1) of the present paper. The rest of the paper
is devoted to the proof of Theorem 4.1. In Section 5, we discuss the con-
vergence of the Rademacher sums and establish that these sums are indeed
convergent given the convergence of certain Selberg–Kloosterman zeta func-
tions, which will be shown in Section 9. Having established the convergence
of the sums, in Section 6 we give explicit expressions for the Fourier coef-
ficients of our Rademacher sums, and discuss their asymptotic growth. In
Section 7, we study the transformation properties of the Rademacher sums
and establish their (mock) modularity. Given the modularity and informa-
tion about their behaviour at the cusps, in Section 8 we finally establish
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that the Rademacher sums constructed in Section 4 indeed coincide with
the (mock) modular forms which are the proposed McKay–Thompson series
for the group M24 described in Section 3.

2. The largest Mathieu group

We shall start by recalling some facts about the largest Mathieu group. The
group M24 may be characterized as the automorphism group of the unique
doubly even self-dual binary code of length 24 with no words of weight 4,
also known as the (extended) binary Golay code. In other words, there is
a unique (up to permutation) set, G say, of length 24 binary codewords
(sequences of 0’s and 1’s) such that any other length 24 codeword has even
overlap with all the codewords of G if and only if this word itself is in G,
and the number of 1’s in each codeword of G is divisible by and not equal
to 4. The group of permutations of the 24 coordinates that preserves the set
G is the sporadic group M24. See, for instance, [23]. As such, M24 naturally
admits a permutation representation of degree 24, and this allows us to
assign a cycle shape to each of its elements. For example, to the identity
element we associate the cycle shape 124; to an element of M24 that is
a product of 12 mutually commuting transpositions we associate the cycle
shape 212, and so on. More generally, any cycle shape arising from an element
of M24 (or S24, for that matter) is of the form

i1
�1i2

�2 · · · iir�r ,
r∑
s=1

�s is = 24,

for some �s ∈ Z
+ and 1 ≤ i1 < · · · < ir ≤ 23 with r ≥ 1. Clearly, the cycle

shape of an element of M24 depends only on its conjugacy class, denoted
by b, although different conjugacy classes can share the same cycle shape.
For future reference we denote the character underlying this defining 24D
representation of M24 by χ. The value of the character χ(g) equals the
number of fixed points of g in the action on the set of 24 points. In particular,
note that χ(g) = �1 in case i1 = 1 and χ(g) = 0 otherwise. It turns out that
the cycle shapes of M24 have many special properties that will be important
for the understanding of the modular properties of the associated McKay–
Thompson series which we will discuss shortly. First, the M24 cycle shapes
are privileged in that they are all of the so-called balanced type (cf. [6]),
meaning that for each g ∈M24 there exists a positive integer Ng such that
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if
∏
i�ss is the cycle shape associated to g then

∏
s

i�ss =
∏
s

(
Ng

is

)�s
.

We will refer to the number Ng as the level of the g. If g has cycle shape
i�11 · · · i�rr then the order of g is the least common multiple of the is’s. A
second special property of [g] ⊂M24 is that the order of g coincides with
the length ir of the longest cycle in the cycle shape. Henceforth we will
denote ng = ir. Finally, observe that for all g ∈M24 the level Ng defined
above equals the product of the shortest and the longest cycle. Hence, we
have hgng = Ng where hg denotes the length of the shortest cycle in the cycle
shape. Moreover, we also have the property hg|ng and hg|12. This is very
reminiscent of the monstrous moonshine [6]. We also set kg =

∑r
s=1 �s/2 to

be half of the total number of cycles and call it the weight of g. Of course,Ng,
ng, hg and kg only depend on the conjugacy class [g] containing g and can
be found in table 1. To each element g ∈M24 we can attach an eta-product,
to be denoted ηg, which is the function on the upper half-plane given by

(2.1) ηg(τ) =
∏
s

η(isτ)�s ,

where
∏
s i
�s
s is the cycle shape attached to g, and η(τ) is the Dedekind

eta function satisfying η(τ) = q1/24
∏
n∈Z+(1 − qn) for q = e(τ), where for

later convenience, here and everywhere else in this paper we will use the
shorthand notation

e(x) = e2πix.

As was observed in [25, 26], the eta-product ηg associated to an element
g ∈M24 (or rather, to its conjugacy class [g]) is a cusp form of weight kg for
the group Γ0(Ng), with a Dirichlet character ςg that is trivial if the weight
kg is even and is otherwise defined, in terms of the Jacobi symbol ( nm), by

ςg(γ) =

⎧⎪⎨
⎪⎩

(
Ng

d

)
(−1)

d−1
2 , d odd,

(
Ng

d

)
, d even,

in case d is the lower right entry of γ ∈ Γ0(Ng). Let us recall that

Γ0(N) =
{
γ
∣∣ γ =

(
a b
c d

)
∈ SL2(Z), c = 0 mod N

}
.
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Table 1: The cycle shapes, weights (kg), levels (Ng) and orders (ng) of the
26 conjugacy classes of the sporadic group M24. The length of the shortest
cycle is hg = Ng/ng. The naming of the conjugacy classes follows the ATLAS
convention (cf. [24]). We write 7AB, for example, to indicate that the entries
of the incident row are valid for both the conjugacy classes 7A and 7B.

[g] Cycle shape ηg(τ) kg ng Ng hg

1A 124 η24(τ) 12 1 1 1
2A 1828 η8(τ)η8(2τ) 8 2 2 1
2B 212 η12(2τ) 6 2 4 2
3A 1636 η6(τ)η6(3τ) 6 3 3 1
3B 38 η8(3τ) 4 3 9 3
4A 2444 η4(2τ)η4(4τ) 4 4 8 2
4B 142444 η4(τ)η2(2τ)η4(4τ) 5 4 4 1
4C 46 η6(4τ) 3 4 16 4
5A 1454 η4(τ)η4(5τ) 4 5 5 1
6A 12223262 η2(τ)η2(2τ)η2(3τ)η2(6τ) 4 6 6 1
6B 64 η4(6τ) 2 6 36 6
7AB 1373 η3(τ)η3(7τ) 3 7 7 1
8A 12214182 η2(τ)η(2τ)η(4τ)η2(8τ) 3 8 8 1
10A 22102 η2(2τ)η2(10τ) 2 10 20 2
11A 12112 η2(τ)η2(11τ) 2 11 11 1
12A 214161121 η(2τ)η(4τ)η(6τ)η(12τ) 2 12 24 2
12B 122 η2(12τ) 1 12 144 12
14AB 112171141 η(τ)η(2τ)η(7τ)η(14τ) 2 14 14 1
15AB 113151151 η(τ)η(3τ)η(5τ)η(15τ) 2 15 15 1
21AB 31211 η(3τ)η(21τ) 1 21 63 3
23AB 11231 η(τ)η(23τ) 1 23 23 1

The eta-product ηg also defines a cusp form of weight kg on the larger (or
equal) group Γ0(ng) ⊇ Γ0(Ng) if we allow for a slightly more sophisticated
multiplier system. We remark here that, according to our conventions, a
function ξ : Γ → C

∗ is called a multiplier system for Γ of weight w in case
the identity

(2.2) ξ(γσ) jac(γσ, τ)w/2 = ξ(γ) ξ(σ) jac(γ, στ)w/2 jac(σ, τ)w/2
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holds for all γ, σ ∈ Γ and τ ∈ H. Writing γ =
(
a b
c d

)
, we have in the above

formula γτ = aτ+b
cτ+d , and the Jacobian

jac(γ, τ) = (cτ + d)−2.

In detail, for γ ∈ Γ, we define the slash operator |ξ,w of weight w associated
with multiplier ξ as

(2.3) (f |ξ,wγ)(τ) = ξ(γ) f(γτ) jac(γ, τ)εw/2,

and in particular a holomorphic function f : H → C is a modular form of
weight w and multiplier ξ on Γ if and only if (f |ξ,wγ)(τ) = f(τ) for all γ ∈ Γ.
In the present case, we have

(2.4)
(

1
ηg

∣∣∣
ξg,kg

γ

)
(τ) =

1
ηg(τ)

, for all γ ∈ Γ0(ng),

where ξg(γ) = ρng|hg
(γ)ςg(γ) with

(2.5) ρn|h(γ) = e

(
− 1

(γ∞− γ0)nh

)
= e(−cd/nh).

Note that ρng|hg
is actually a character on Γ0(ng) since we have that xy ≡ 1

(mod hg) implies x ≡ y (mod hg) by virtue of the fact that hg = Ng/ng is
a divisor of 24 for every g ∈M24 (cf. [6, Section 3]). Evidently the kernel of
ρn|h is Γ0(nh), and in particular, ρn|h is trivial on Γ∞. These (meromorphic)
modular forms 1/ηg(τ) have also the interpretation as the partition function
of the CFT of 24 free chiral bosons, twisted by g ∈M24 that acts on the
24 bosons as an element of S24. As such, they are also McKay–Thompson
series whose Fourier coefficients are positive-integral linear combinations of
M24 characters. See table 4 for the first ten M24-representations appearing
in 1/ηg(τ). Following an earlier observation in [27], it was shown in [2] that
they are connected to the elliptic genera of K3 surfaces and the moonshine
for M24, which will be discussed in the next section, via a lifting to Siegel
modular forms and generalized Kac–Moody superalgebras. More details will
be given in [28]. Observe that the behaviour of the multipliers naturally
divides the conjugacy classes of M24 into two types: those for which the
phase is trivial on Γ0(ng) and those for which it is not. The former occurs just
when hg = 1, and the elements of g ∈M24 with hg > 1 are exactly the classes
which act fixed-point-freely in the defining permutation representation on
24 points. The elements with hg = 1 have at least one fixed point and thus
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can be located in a (maximal) subgroup of M24 isomorphic to the second
largest Mathieu group, M23.

3. Mock modular forms

In the recent article [1], a remarkable observation relating M24 and the
unique (up to scale) weak Jacobi form of weight zero and index one, here
denoted Z(τ, z), was made via a decomposition of the latter object into a
combination of mock theta series and mock modular forms. As is shown in
[29, 30, 21], the function Z(τ, z) = 8

∑
i=2,3,4

( θi(τ,z)
θi(τ,0)

)2 admits an expression

(3.1) Z(τ, z) =
θ1(τ, z)2

η(τ)3

(
aμ(τ, z) + q−1/8

(
b+

∞∑
k=1

tk q
k

))

with a, b, tk ∈ Z for all k ∈ Z
+ where μ(τ, z) denotes the Appell–Lerch sum,

satisfying

μ(τ, z) =
−iy1/2

θ1(τ, z)

∞∑
�=−∞

(−1)�ynq�(�+1)/2

1 − yq�

for q = e(τ) and y = e(z). The Jacobi theta functions are given by

θ1(τ, z) = −iq1/8y1/2
∞∏
n=1

(1 − qn)(1 − yqn)(1 − y−1qn−1),

θ2(τ, z) = q1/8y1/2
∞∏
n=1

(1 − qn)(1 + yqn)(1 + y−1qn−1),

θ3(τ, z) =
∞∏
n=1

(1 − qn)(1 + y qn−1/2)(1 + y−1qn−1/2),

θ4(τ, z) =
∞∏
n=1

(1 − qn)(1 − y qn−1/2)(1 − y−1qn−1/2).(3.2)

By inspection, a = 24 = χ(1A), b = −2 and the first few tk are

2 × 45, 2 × 231, 2 × 770, 2 × 2277, 2 × 5796, . . . .

These positive integers tk have the interpretation of enumerating the k-th
massive representations of the N = 4 superconformal algebra in the elliptic
genus of a K3 surface. The surprising connection to M24, beyond the fact
that a = 24 is the dimension of the defining permutation representation of
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M24, is the following: the integers 45, 231, 770, 2277 and 5796, which are the
tk/2 for k = 1, 2, 3, 4, 5, are the dimensions of irreducible representations of
M24. It was conjectured that the entire set of values tk for k ∈ Z

+ encode
the graded dimension of a naturally defined gradedM24 module K =

⊕
kKk

with dimKk = tk. If the conjecture holds then we can obtain new functions
by replacing tk with trKk

g for g ∈M24. This idea was first investigated in [2],
and independently in [3]; see also [4, 5]. It is an idea that we pursue further
in this paper. Define H(τ) so that Z(τ, z)η(τ)3 = θ1(τ, z)2(aμ(τ, z) +H(τ)).
Then

(3.3) H(τ) = q−
1
8

(
−2 +

∞∑
k=1

tkq
k

)
,

so that H(τ) is (essentially) a power series incorporating the tk, and hence
the graded dimension of the conjectural M24 module K. This function
H(τ) enjoys a special relationship with the group SL2(Z); namely, it is
a weakly holomorphic mock modular form of weight 1/2 on SL2(Z) with
shadow 24 η(τ)3 (cf. [31]), which means that H(τ) is a holomorphic function
on the upper half-plane H with at most exponential growth as τ → α for
any α ∈ Q, and if we define the completion of H(τ), to be denoted Ĥ(τ), by
setting

Ĥ(τ) = H(τ) + 24 (4i)−1/2

∫ ∞

−τ̄
(z + τ)−1/2η(−z̄)3dz,

then Ĥ(τ) transforms as a modular form of weight 1/2 on SL2(Z) with
multiplier system conjugate to that of η(τ)3. In other words, we have

(
Ĥ(τ)|ε−3,ε1/2γ

)
(τ) = ε(γ)ε−3Ĥ(γτ) jac(γ, τ)ε1/4 = Ĥ(τ)

for γ ∈ SL2(Z), where ε : SL2(Z) → C
∗ is the multiplier system for η(τ)

satisfying
(
η|ε,ε1/2γ

)
(τ) = η(τ).

(See Section Appendix A for an explicit description of ε.) More generally,
a holomorphic function h(τ) on H is called a (weakly holomorphic) mock
modular form of weight w for a discrete group Γ (e.g., a congruence subgroup
of SL2(R)) if it has at most exponential growth as τ → α for any α ∈ Q, and
if there exists a holomorphic modular form g(τ) of weight 2 − w on Γ such
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that ĥ(τ), given by

(3.4) ĥ(τ) = h(τ) + (4i)w−1
∫ ∞

−τ̄
(z + τ)−wg(−z̄)dz,

is a (non-holomorphic) modular form of weight w for Γ for some multiplier
system ψ say. In this case, the function g is called the shadow of the mock
modular form h and we call ψ the multiplier system of h. If the conjectural
M24-module K exists, apart from H(τ) there must be a family of functions
Hg(τ), for each conjugacy class [g] ⊂M24, obtainable by replacing each tk
with the trace of g on Kk. These are the McKay–Thompson series given by

(3.5) Hg(τ) = q−
1
8

(
−2 +

∞∑
k=1

trKk
(g)qk

)
.

Explicit expressions for these function Hg(τ) have been proposed in [2, 3],
mostly for conjugacy classes with hg = 1, and completed for all [g] ⊂M24

in [4, 5]. These proposals state that they are given by H(τ), the character
χ(g) of g in the 24D representation, and certain weight two modular forms
T̃g(τ) for the group Γ0(Ng), by

(3.6) Hg(τ) =
χ(g)
24

H(τ) − T̃g(τ)
η(τ)3

.

These data are collected in table 2. The expression (3.6) makes manifest
that the q-series Hg(τ) is a mock modular form with shadow χ(g)η3(τ),
and is in particular a usual modular form when hg > 1, or equivalently,
χ(g) = 0. Moreover, it is easy to check that Hg(τ) transforms nicely under
the group Γ0(ng), with the multiplier system ψ(γ) = ε(γ)ε−3ρng|hg

(γ). Note
that the extra multiplier ρ that appears when hg 
= 1 is the same as that
of the inverse eta-products 1/ηg(τ) which are also related to M24, a fact
that is in accordance with the 1/2- and 1/4-BPS spectrum of the N = 4,
d = 4 theory obtained by K3 × T 2 compactification of the type II string
theory. These mock modular forms Hg(τ) are the central objects of study in
this work. Although conjecture (3.5) stating that the Fourier coefficients of
Hg(τ) are all given by characters of M24-module still remains to be proven,
it has been checked up to the first 1000 terms. We list the first few in
table 5. Together with other pieces of evidence, this makes it an extremely
plausible conjecture. In this paper, we will hence assume the validity of this
conjecture as a part of our motivation, while our main result (Theorem 4.1)
holds independent of it.
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Table 2: In this table, we collect the data that via Equation (3.6) define
the weight 1/2 (mock) modular forms Hg(τ). For N ∈ Z+, we denote by
ΛN the weight 2 modular form on Γ0(N) given by ΛN = Nq ddq

(
log η(Nτ)

η(τ)

)

(cf. (8.13)). For N = 23, there are two new forms and we choose the basis
φ23,1 = η2

23AB and φ23,2 given in (8.14).

[g] χ(g) T̃g(τ)
1A 24 0
2A 8 16Λ2

2B 0 −24Λ2 + 8Λ4 = 2η(τ)8/η(2τ)4

3A 6 6Λ3

3B 0 2η(τ)6/η(3τ)2

4A 0 4Λ2 − 6Λ4 + 2Λ8 = 2η(2τ)8/η(4τ)4

4B 4 4(−Λ2 + Λ4)
4C 0 2η(τ)4η(2τ)2/η(4τ)2

5A 4 2Λ5

6A 2 2(−Λ2 − Λ3 + Λ6)
6B 0 2η(τ)2η(2τ)2η(3τ)2/η(6τ)2

7AB 3 Λ7

8A 2 −Λ4 + Λ8

10A 0 2η(τ)3η(2τ)η(5τ)/η(10τ)
11A 2 2(Λ11 − 11η(τ)2η(11τ)2)/5
12A 0 2η(τ)3η(4τ)2η(6τ)3/η(2τ)η(3τ)η(12τ)2

12B 0 2η(τ)4η(4τ)η(6τ)/η(2τ)η(12τ)
14AB 1 (−Λ2 − Λ7 + Λ14 − 14η(τ)η(2τ)η(7τ)η(14τ))/3
15AB 1 (−Λ3 − Λ5 + Λ15 − 15η(τ)η(3τ)η(5τ)η(15τ))/4
21AB 0 (7η(τ)3η(7τ)3/η(3τ)η(21τ) − η(τ)6/η(3τ)2)/3
23AB 1 (Λ23 − 23φ23,1 + 23φ23,2)/11

4. Rademacher sums

In this section, we will state and explain the main theorem (Theorem 4.1)
of the paper, while postponing the proof till the later sections. Recall that
H(τ) is a mock modular form of weight 1/2 on SL2(Z) with a multiplier
system given by ε(γ)ε−3 and with leading term −2qε−1/8 in its q-expansion.
We may consider the problem of attaching a function with these data via
Rademacher sums, and also analogous functions to discrete subgroups of
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SL2(R) other than the modular group1 Let Γ be a finite index subgroup of
SL2(Z) containing the group Γ∞ of upper triangular matrices in SL2(Z). In
particular, we assume that Γ contains −Id. Define RΓ(τ) by setting

(4.1) RΓ(τ) = lim
K→∞

∑
γ∈(Γ∞\Γ)<K

ε(γ)ε−3e
(
−γτ

8

)
reg(γ, τ) jac(γ, τ)ε1/4,

where reg(γ, τ) is the Rademacher regularization factor (of weight 1/2 and
index −1/8), defined by reg(γ, τ) = 1 in case γ is upper triangular (i.e., γ ·
∞ = ∞) and

(4.2) reg(γ, τ) = e

(
γτ − γ∞

8

)
e

(
γ∞− γτ

8
,
1
2

)
,

otherwise, where e(x, s) is the following generalization of the exponential
function:

(4.3) e(x, s) =
∑
m≥0

(2πix)m+s

Γ(m+ s+ 1)
.

Note that we recover e(x) = e2πix by taking s = 0 in e(x, s), and for n a
positive integer e(x, n) is the difference between e(x) and the order n− 1
Taylor approximation to e(x). It is also closely related to the incomplete
Gamma function Γ(s, x) =

∫∞
x ts−1etdt: applying integration by parts repeat-

edly, we obtain

(4.4) e(x, s) =
e(x)
Γ(s)

∫ 2πix

0
ts−1 etdt.

Let T be the element of Γ∞ such that tr(T ) = 2 and Tτ = τ + 1. Note that
two elements γ, σ of Γ are in the same right coset of Γ∞ if and only if there is
some n ∈ Z such that σ = Tnγ or −Tnγ. In particular, they have the same
lower rows up to multiplication by ±Id and we can therefore use the lower
rows to parametrize the cosets. This motivates the sum over the “rectangle”
in (4.1): For any given positive K, we consider a sum over a set {γ} of
representatives for the cosets of Γ∞ in Γ whose elements have lower rows

1For the purpose of establishing relations to M24, it suffices to look at subgroups
of SL2(Z), whereas it is possible to generalize the analysis to SL2(R) subgroups
commensurable to SL2(Z).
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(c, d) satisfying 0 ≤ c < K and −K2 < d < K2. Using a superscript × to
indicate a sum over coset representatives other than the trivial one, we have

(4.5) (Γ∞\Γ)×<K =
{
Γ∞γ | 0 < c < K, −K2 < d < K2

}
.

Here and everywhere else we use (c, d), a shorthand for (c(γ), d(γ)), to denote
the lower row entries when writing γ as a 2 × 2 matrix. Complimented with
a term given by the trivial coset (the one with a representative γ = Id), this
is the range of the sum, denoted by (Γ∞\Γ)<K , taken in (4.1). With a slight
abuse of notation, we use γ ∈ Γ∞\Γ to denote a sum over a representative
from each coset. To ensure that (4.1) is well defined, we require to check
that the summands are invariant under the replacement of γ with ±Tnγ for
n ∈ Z. Obviously reg(Tnγ, τ) = reg(γ, τ) for any n, and γ and −γ act in the
same way on H as well as on the cusp representatives so the Rademacher
regularization factor has the required invariance. Left multiplication by T
does not change the lower row of γ so the factor jac(γ, τ)ε1/4 is invariant
under the substitution of Tnγ for γ. Using the explicit description (A.1) for
ε we see that ε(Tnγ) = e

(− n
24

)
ε(γ), so that the product ε(γ)ε−3e

(−γτ
8

)
,

is also invariant under the substitution of Tnγ for γ, and then the iden-
tity ε(−γ)ε−3 jac(−γ, τ)ε1/4 = ε(γ)ε−3 jac(γ, τ)ε1/4 completes the verification
that every summand of (4.1) is invariant under the replacement of γ with
±Tnγ. While the regularization factor might seem ad hoc at the first sight,
here we would like to argue that it is in fact strictly necessary and very
natural. First, to motivate the appearance of a regularisation note that
a series

(4.6)
∑

γ∈Γ∞\Γ
ψ(γ)e(αγτ) jac(γ, τ)εw/2,

for α a real constant and ψ a (compatible) multiplier system of weight w
on Γ, will generally not converge (absolutely and uniformly on compacta)
unless w > 2. (In case it does converge it defines a modular form of weight w
on Γ.) In [11] Rademacher demonstrated a method to regularize this sum for
ψ ≡ 1, α = −1 and w = 0 in the case that Γ = SL2(Z). His prescription may
be described as follows: multiplying each summand by the regularization
factor r0(−1, γ, τ) which is 1 when γ is upper triangular and

e(εγτ − γ∞)e(γ∞− γτ, 1) = e(γτ − γ∞)(e(γ∞− γτ) − 1)
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otherwise, and replacing the sum over the coset space Γ∞\Γ with a limit of
sums over rectangles (Γ∞\Γ)<K , we obtain

e(−τ) + lim
K→∞

∑

γ∈(Γ∞\Γ)×<K

(
e(−γτ) − e(−γ∞)

)
.

He then went on to prove (cf. loc. cit.) that this expression converges and
defines an SL2(Z) invariant function on the upper half-plane, which is noth-
ing but the familiar j-function (up to an additive constant). More generally,
in [10], for example, it is shown that for ψ ≡ 1 and α,w/2 ∈ Z, inclusion of
the factor

rεw/2(α, γ, τ) = e(α(γ∞− γτ))e(α(γτ − γ∞), 1 − w)

for summands corresponding to cosets with upper triangular representatives,
together with a limit of sums over rectangles, regularizes the sum (4.6) for Γ a
subgroup of SL2(R) that is commensurable with the modular group. Putting
α = −1/8 and w = 1/2, we recover exactly our regularization factor (4.2). It
is rather surprising that this straightforward generalization of regularization
scheme does its job in regularizing the sum in (4.1). To understand the
modular properties of RΓ, it is useful to consider the companion function
SΓ defined by

(4.7) SΓ(τ) = lim
K→∞

∑
γ∈(Γ∞\Γ)<K

ε(γ)3e
(γτ

8

)
jac(γ, τ)3/4.

According to the philosophy of the previous paragraph SΓ, supposing it
converges, should have modular transformations of weight 3/2 for Γ with
multiplier system coinciding with that of η(τ)3. Also, we should have that
SΓ = O(q1/8) as τ → ∞. It will develop in Section 7 that RΓ is a mock mod-
ular form and that SΓ is its shadow. Apart from considering the Rademacher
with ψ(γ) = εε−3(γ), to construct the M24 McKay–Thompson series we also
need to extend the above construction to the cases with a more general mul-
tiplier system ψ. In particular, we would sometimes like to consider different
Rademacher sums with the same group Γ but different multipliers. Given
a group morphism ρ : Γ → C

∗ that is trivial on Γ∞ we may consider the
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following twists of RΓ and SΓ:

RΓ,ρ(τ) = lim
K→∞

∑
γ∈(Γ∞\Γ)<K

ψ(γ)e
(
−γτ

8

)
reg(γ, τ) jac(γ, τ)1/4

SΓ,ρ(τ) = lim
K→∞

∑
γ∈(Γ∞\Γ)<K

ψ̄(γ)e
(γτ

8

)
jac(γ, τ)3/4,(4.8)

where we have ψ(γ) = ρ(γ)ε(γ)ε−3. In this paper, we will take Γ = Γ0(n) for
some n ∈ Z

+ and ρ = ρn|h given in (2.5) for h simultaneously dividing n and
24. Not surprisingly, later on we are going to take (n, h) to be the (ng, hg)
coming from the cycle shapes ofM24 as given by table 1. To ease notation, we
write Rn|h for RΓ,ρ when Γ = Γ0(n) and ρ = ρn|h, and we apply the directly
analogous interpretation to the Sn|h. The main result in this paper is the
following.

Theorem 4.1. Let g ∈M24. Then Hg = −2Rn|h when n = ng and h = hg.

The rest of the paper is devoted to the proof of the above theorem.

Remark. There exists an alternative approach to the Rademacher sums
of (holomorphic) mock modular forms. Note that the completion ĥ(τ) (cf.
(3.4)) of the mock modular form h(τ) is necessarily annihilated by the dif-
ferential operator

∂

∂τ
(Imτ)w

∂

∂τ̄

and hence is a weak harmonic Maaß form of weight w. Using this relation to
weak harmonic Maaß forms, if one’s goal is to obtain an exact expression for
the coefficients of the mock modular form coinciding with our Rademacher
sum RΓ,ρ, an alternative way to achieve it is to first obtain a Poincaré
series expression for the corresponding harmonic Maaß forms and then take
its holomorphic part. Exactly such a route was first taken by Bringmann
and Ono for the cases of mock modular forms with non-negative weight
(and with conditional results for w = 1/2) in [?, ?]. Using their result, the
Poincaré series for the weak harmonic Maaß forms corresponding to RΓ for
Γ = SL2(Z) and Γ = Γ0(2) have been investigated by Eguchi and Hikami in
[21]. More precisely, one can show that the non-holomorphic completion of
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RΓ(τ) also has a Rademacher form given by

(4.9) R̂Γ(τ) = lim
K→∞

∑
γ∈(Γ∞\Γ)<K

ε(γ)ε−3e
(
−γτ

8

)
com(γτ) jac(γ, τ)1/4,

where com(τ) is the non-holomorphic completion factor given in terms of
the incomplete Gamma function, Γ(α, x) =

∫∞
x tα−1etdt, by

com(τ) = 1 − Γ(1/2, π�(τ)/2)/
√
π.

5. Convergence

After defining the Rademacher sums formally in the last section, in this
section we would like to discuss the convergence of the sums. A proof of
the convergence will constitute an integral step towards Theorem 4.1. It
is a rather subtle issue and in this section we will establish it conditional
upon a hypothesis whose validity will be established in Section 9. To be
more precise, in this section we assume that the Selberg–Kloosterman zeta
function Z0,k(s, ψ) (5.7) with k a positive integer attached to ψ = ρεε−3 and
Γ = Γ0(n) converges at s = 3/4 for some character ρ on Γ, an assumption
that will be proven in Theorem 9.1. The aim in this section is to demon-
strate that under this assumption, the limits (4.1) and (4.7) defining the
Rademacher sums RΓ,ρ and SΓ,ρ, respectively, define holomorphic functions
on the upper half-plane. Our arguments in this section owe a lot to the work
of Niebur in [32]. We cannot apply his results verbatim since he worked with
(mock) modular forms of negative weight and ours have positive weight,
but many of the procedures we employ have a counterpart in loc. cit. Let
Γ = Γ0(n) for some positive integer n and ψ(γ) = ρ(γ)ε(γ)ε−3 for some char-
acter ρ on Γ satisfying ρ(γ) = ρ(Tγ) = ρ(γT ). According to the definitions
of RΓ,ρ and SΓ,ρ, we can separate the contribution from the trivial coset and
the rest in the following way:

RΓ,ρ(τ) = q−1/8 + lim
K→∞

∑

γ∈(Γ∞\Γ)×<K

Rγ(τ),

SΓ,ρ(τ) = q1/8 + lim
K→∞

∑

γ∈(Γ∞\Γ)×<K

Sγ(τ).

Using the expression of the (generalized) exponentials as infinite sums and
isolating the first term in the sum, we obtain Rγ(τ) = R0

γ(τ) +R+
γ (τ) and
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Sγ(τ) = S0
γ(τ) + S+

γ (τ), where

R0
γ = e

(
1
8

)
ψ(γ)e

(
−γ∞

8

)
cε−3/2 (τ − γ−1∞)−1,(5.1)

S0
γ = ψ̄(γ)e

(γ∞
8

)
cε−3/2 (τ − γ−1∞)−3/2

and

R+
γ = ψ(γ)e

(
−γ∞

8

) ∞∑
m=1

c−2m−3/2(τ − γ−1∞)−m−1(2πi/8)m+1/2

Γ(m+ 3/2)
,(5.2)

S+
γ = ψ̄(γ)e

(γ∞
8

) ∞∑
m=1

c−2m−3/2(τ − γ−1∞)−m−3/2(−2πi/8)m

m!
.

We have also applied the identities

jac(γ, τ) = c−2(τ − γ−1∞)−2, γ∞− γτ = c−2(τ − γ−1∞)−1,

in rewriting the above expressions. With these definitions, we have the
following:

Lemma 5.1. The sums
∑

εγ∈(Γ∞\Γ)× R
+
γ (τ) and

∑
εγ∈(Γ∞\Γ)× S

+
γ (τ) are

absolutely convergent, locally uniformly for τ ∈ H.

Proof. We give details for the first sum. A very similar argument takes care
of the second one. By (5.2) we have that R+

γ (τ) = O(cε−7/2 |τ − γ−1∞|−2)
as c→ ∞. For Γ = Γ0(n), the representatives of the non-trivial cosets in
the coset space Γ∞\Γ are indexed by their lower rows which are tuples of
two integers (c, d) with c > 0 and n|c, gcd(c, d) = 1. A procedure we will
repeatedly use is to split the sum over d into the following double sum:

(5.3)
∑

γ∈(Γ∞\Γ)×

f(c, d) =
∑
0<c
n|c

∑
0≤d′<c
(c,d′)=1

∑
�∈Z

f(c, d′ + �c),

for an arbitrary function f(x, y). Note that the above sum over the tuple
(c, d′) can be viewed as the sum over a complete and irredundant set of repre-
sentatives of a double coset in Γ∞\Γ/Γ∞. Taking f(x, y) = x−7/2|τ + y/x|−2
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we find that
∑

γ∈(Γ∞\Γ)×

|R+
γ (τ)| 

∑
0<c
n|c

c−7/2
∑

0≤d′<c
(c,d′)=1

∑
�∈Z

|τ + d′/c+ �|−2.

Since there are not more than c invertible elements in the ring Z/c, we
conclude that the sum

∑
εγ∈(Γ∞\Γ)× R

+
γ (τ) is absolutely convergent, locally

uniformly for τ ∈ H, as required. �

Hence, in order to show the convergence of the sums defining RΓ,ρ(τ)
and SΓ,ρ(τ) it now suffices to establish the convergence of the limits

(5.4) lim
K→∞

∑

γ∈(Γ∞\Γ)×<K

R0
γ(τ), lim

K→∞

∑

γ∈(Γ∞\Γ)×<K

S0
γ(τ),

and apply Lemma 5.1. After carefully examining the limit and employing
the Lipschitz summation formula in the form of Lemma Appendix C.1, the
first of the above sums can be rewritten as

lim
K→∞

∑

εγ∈(Γ∞\Γ)×<K

R0
γ(τ)(5.5)

= 2πe
(
−1

8

) ∞∑
k=1

e

((
k − 1

8

)
τ

)
lim
K→∞

∑
0<c<K
n|c

c−3/2S(0, k, c, ψ),

where we have used the generalized Kloosterman sum (cf. [33]) for a given
group Γ:

(5.6) S(m, �, c, ξ) =
∑

γ∈Γ∞\Γ/Γ∞
c(γ)=c

ξ(γ)e((m− α)γ∞)e(−(�− α)γ−1∞),

for � ∈ Z, where for m, �, c ∈ Z with 0 < c and ξ a multiplier system on
Γ, the value 0 ≤ α < 1 is determined by ξ according to the requirement
that ξ(T ) = e(α). An important object closely related to the generalized
Kloosterman sum is the Selberg–Kloosterman zeta function of Γ (cf. loc.
cit.), defined as

(5.7) Zm,�(s, ψ) =
∑
c>0

S(m, �, c, ψ)
c2s

.
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The details of the manipulation leading to (5.5) are given in Appendix D.
Hence, as promised, if we assume the convergence of Z0,k(s, ρεε−3) at s = 3/4
and the estimate Z0,k(3/4, ρε−3) = O(k) we will have shown the convergence
of the first sum in (5.4), and hence RΓ,ρ upon using Lemma (5.1). The con-
vergence of the Selberg–Kloosterman zeta function and the aforementioned
growth estimate will be demonstrated in Section 9. Finally, a similar but less
subtle argument also establishes the convergence of the second sum in (5.4).
In particular, in the case of S0

γ the application of the Lipschitz summation
formula is less delicate: we can apply (C.1) with s = 3/2, α = 7/8 and the
error term EK is absent. Taken together we have the following:

Proposition 5.2. The expression (4.1) defining RΓ,ρ(τ) converges, locally
uniformly for τ ∈ H, thus defining a holomorphic function on H. Also, the
expression (4.7) defining SΓ,ρ(τ) converges, locally uniformly for τ ∈ H, thus
defining a holomorphic function on H.

In practice, it is useful to know that there is some flexibility in the sum
over “rectangles” in the definition of RΓ,ρ and SΓ,ρ (cf. (4.1) and (4.7)). For
example, given σ ∈ Γ we may consider the sums

(5.8) lim
K→∞

∑
γ∈(Γ∞\Γ)<Kσ

Rγ(τ), lim
K→∞

∑
γ∈(Γ∞\Γ)<Kσ

Sγ(τ),

where (Γ∞\Γ)<Kσ denotes the “parallelogram” that is the image of
(Γ∞\Γ)<K under right multiplication by σ. The following result can be
proved by using the technique employed in Lemma 4.3 of [32] to extend the
convergence arguments appearing already in this section. We suppress the
details.

Lemma 5.3. Let σ ∈ Γ, and let Rγ(τ) and Sγ(τ) be as in (5.1) and (5.2),
respectively. Then the expressions in (5.8) converge uniformly for τ ∈ H,
thus defining holomorphic functions on H. Moreover these functions coincide
with RΓ,ρ(τ) and SΓ,ρ(τ), respectively.

6. Coefficients

A common motivation to study Rademacher sums is to obtain an exact
expression for the Fourier coefficients of a given infinite q-series. In this sec-
tion, we will give such expressions for the functions RΓ,ρ and SΓ,ρ. They are
useful, for instance, in the physical study of the growth (6.2) of the twisted
indices of supersymmetric states — the (twisted) entropy — as the energy of
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the states gets large. In the last section, we have seen that, by splitting the
sum over representatives of cosets Γ∞\Γ into a double sum over those of the
double cosets Γ∞\Γ/Γ∞ and over all integers � ∈ Z, and applying the Lips-
chitz summation formula (C.2), we obtain expressions (5.5) for the objects
(5.4) as an infinite q-series. In this section, we would like to show that the
same can be done for the full RΓ,ρ, SΓ,ρ, and write down explicit expressions
for the infinite q-series that the infinite sums (4.8) converge to. Following
similar steps as delineated in the last section, this time with the help of
Equation (C.1), it is not difficult to prove that the functions RΓ,ρ, SΓ,ρ can
be written as q-series with the following Fourier coefficients:

cΓ,ρ

(
k − 1

8

)
=

2π e
(−1

8

)

(8k − 1)1/4
∑
0<c
n|c

1
c
I1/2

( π
2c

(8k − 1)1/2
)
S(0, k, c, ψ),

c∗Γ,ρ

(
k +

1
8

)
= e

(
−3

8

)
2π(8k + 1)1/4

∑
0<c
n|c

1
c
J1/2

( π
2c

(8k + 1)1/2
)

× S(1, k + 1, c, ψ̄),(6.1)

where S(m, �, c, ψ) again denotes the generalized Kloosterman sum (5.6) and
ψ = ρεε−3. First note that the q-series with the above coefficients indeed
define holomorphic functions on H. To start with, again assuming the con-
vergence of the Selberg–Kloosterman zeta function Z0,k

(
3
4 , ψ
)
, we will show

that the sums (over c) in (6.1) converge: observe that since c−1I1/2(
π
2c

√
8k − 1

)
is bounded by a constant times cε−3/2 for c sufficiently large (cf.

(B.5)), the convergence of the right-hand side of (6.1) is guaranteed by the
convergence of Z0,k

(
3
4 , ψ
)
. We establish the convergence of Z0,k

(
3
4 , ψ
)

for
k ∈ Z in Section 9 for the case that Γ = Γ0(n) and ρ = ρn|h for some h divid-
ing both n and 24. From the above argument we see that this result implies
the convergence of both the cΓ,ρ

(
k − 1

8

)
for k > 0 and the c∗Γ,ρ

(
k + 1

8

)
for k ≥ 0. Once armed with the convergence of the terms cΓ,ρ

(
k − 1

8

)
and

c∗Γ,ρ
(
k + 1

8

)
we may consider the following series:

∑
k≥1

cΓ,ρ(k − 1
8
)qk−1/8,

∑
k≥0

c∗Γ,ρ(k +
1
8
)qk+1/8.

The Bessel function I1/2(x) is asymptotic to ex/
√

2πx for large x (cf. Sec-
tion Appendix B), so cΓ,ρ(k − 1

8) is dominated by the first term in the sum-
mation over c in (6.1) for n sufficiently large, and similarly for c∗Γ,ρ(k + 1

8);
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in the case that Γ = Γ0(n) this is the term with c = n. We then have

(6.2) cΓ,ρ(k − 1
8
) = O

(
eπ

√
8k−1/2n

√
8k − 1

)

as k → ∞ and a similar estimate holds for c∗Γ,ρ
(
k + 1

8

)
. In particular, we

may conclude that the series ΦΓ,ρ and Φ∗
Γ,ρ, defined by

ΦΓ,ρ(τ) = q−1/8 +
∑
k≥1

cΓ,ρ

(
k − 1

8

)
qk−1/8,(6.3)

Φ∗
Γ,ρ(τ) = q1/8 +

∑
k≥0

c∗Γ,ρ

(
k +

1
8

)
qk+1/8,(6.4)

converge absolutely and locally uniformly for τ ∈ H upon identifying q =
e(τ). We summarize the discussion of the previous two paragraphs in the
following lemma.

Lemma 6.1. The expressions (6.1) defining cΓ,ρ
(
k − 1

8

)
and c∗Γ,ρ

(
k + 1

8

)
converge. Further, the generating series (6.3) and (6.4) for the cΓ,ρ

(
k − 1

8

)
and c∗Γ,ρ

(
k + 1

8

)
converge absolutely and locally uniformly for τ ∈ H, thus

defining holomorphic functions ΦΓ,ρ(τ) and Φ∗
Γ,ρ(τ) on H. These functions

coincide with RΓ,ρ(τ) and SΓ,ρ(τ), respectively.

7. Variance

After establishing the convergence of the Rademachers sums RΓ,ρ and SΓ,ρ,
in this section, we wish to determine how they transform under the action of
Γ. In particular, we will show that SΓ,ρ is a weight 3/2 cusp form and RΓ,ρ

is a weight 1/2 mock modular form on Γ. Moreover, the shadow of RΓ,ρ is
given by SΓ,ρ. As before, we have Γ = Γ0(n) for some positive integer n, and
let ρ = ρn|h (cf. (2.5)) for some h dividing both n and 24 and set ψ = ρε−3.
The variance of the Rademacher sum SΓ,ρ can be easily established, and we
have

Proposition 7.1. The function SΓ,ρ(τ) is a cusp form of weight 3/2 for Γ
with multiplier system ψ.

Proof. Since ε3 is the multiplier of the cusp form η3(τ) and ρ is a group char-
acter satisfying ρ(γ)ρ(σ) = ρ(γσ) for all γ, σ ∈ Γ0(n), we see that ψ̄ = ρ−1ε3



On Rademacher Sums, the largest Mathieu group 721

is a weight 3/2 multiplier system, which leads immediately to

(7.1) Sγ |ψ,ε3/2σ = Sγσ,

for σ ∈ Γ, where Sγ is as defined in (5.1) and (5.2). Moreover, when h = 1
and hence ρ is trivial, this also holds more generally for σ ∈ SL2(Z). Apply-
ing Lemma 5.3 to SΓ,ρ = limεK→∞

∑
γ∈(Γ∞\Γ)ε<K

Sγ(τ) and using (7.1), we
immediately have SΓ,ρ|ψ,ε3/2σ = SΓ,ρ for σ ∈ Γ. This establishes that SΓ,ρ is
a modular form of weight 3/2 for Γ with multiplier system ψ. We also need
to show that SΓ,ρ vanishes at all cusps. For the cusp at ∞, this is clear from
Lemma 6.1. We will now show that it is also true for the other cusps of
Γ. An important property of a given cusp is its width. Suppose κ ∈ Q is a
representative of a cusp of Γ ⊂ SL2(Z) that is related to the infinite cusp by
σ∞ = κ, σ ∈ SL2(Z). We define the width u of the cusp κ to be the positive
integer such that the subgroup of Γ stabilizing κ is given by

(7.2) {γ ∈ Γ|γκ = κ} = σ〈±T u〉σ−1 = σΓu∞σ
−1.

Alternatively, we can rephrase the above definition using the concept of a
‘scaling element’ which will become important later. Consider an element
σ̃ ∈ SL2(R), to be called a scaling element of Γ at cusp κ, such that κ = σ̃∞
and the subgroup of Γ stabilizing κ is given by σ̃Γ∞σ̃−1 (Cf. [10, Section
2.6]). Such a scaling element necessarily has the form

(7.3) σ̃ = σUT β , with σ ∈ SL2(Z), β ∈ Q,

where U =
(√

u 0
0 1/

√
u

)
maps τ → uτ and T β =

(
1 β
0 1

)
. Given a cusp repre-

sentative κ = σ∞ of width v of Γ0(n), in order to study the behaviour of
Sn|h at κ, it is convenient to consider the function S

(κ)
n|h(τ), which we will

now define. For a given scaling element σ̃, for h = 1 we define

S
(κ)
n|1(τ) = Sn|1

∣∣
ε3,ε3/2

σ(v(τ + β)) = ε3(σ) jac(σ, v(τ + β))ε3/4Sn|h(σ̃τ).

From (7.1) we obtain

S
(κ)
n|1(τ) = lim

εK→∞

∑
γ∈(Γ∞\Γ)ε<Kσ

Sγ(v(τ + β)).

Splitting the above sum into a sum over the double coset (Γ∞\Γ)ε<Kσ/Γv∞
and applying the Lipschitz summation formula as before, we obtain that
S

(κ)
n|1(τ) takes the form of an infinite series

∑∞
k=0 c

∗(κ)
Γ,ρ (k + ν) e((k + ν)τ)
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where 0 < ν ≤ 1 differs from v
8 by an integer. This proves that Sn|1 van-

ishes at κ. More generally, for h 
= 1 we again consider

Sn|h
∣∣
ε3,ε3/2

σ(τ) = ε3(σ) jac(σ, τ)ε3/4Sn|h(στ)
(7.4)

= lim
εK→∞

∑
γ∈(Γ∞\Γ)ε<Kσ

ρε−1(γσ−1)ε3(γ) jac(γ, τ)ε3/4e(
γτ

8
).

If κ has width v in Γ0(n) and has width u in Γ0(nh), we can define for a
given scaling element σ̃

S
(κ)
n|h(τ) = Sn|h

∣∣
ε3,ε3/2

σ (u(τ + β)).

To obtain its expression as an infinite series, define 0 ≤ m < h such that
ρ(σT vσ−1) = e

(
m
h

)
and proceed as before, ultimately obtain in the general

expression:

(7.5) S
(κ)
n|h(τ) =

∞∑
k=0

c
∗(κ)
Γ,ρ (k + ν)e

(
(k + ν)

u

v
τ
)
, 0 < ν ≤ 1.

More precisely, ν = {{mh + v
8}} is given by the sawtooth function {{x}}

defined as the difference between a real number and the largest integer that
is smaller than it:

{{x}} =

{
x− �x� x ∈ R\Z,

1 x ∈ Z,

where the floor function �x� denotes the largest integer not exceeding x.
This shows that Sn|h(τ) vanishes at all cusps of Γ0(n) and thereby finishes
the proof. �

Our next task is to establish the variance of the Rademacher sum RΓ,ρ.

Proposition 7.2. The function RΓ,ρ is a mock modular form of weight 1/2
on Γ with multiplier system ψ and with shadow SΓ,ρ.

Proof. First observe that Rγ = ψ(γ)e
(−γτ

8

)
jac(γ, τ)1/4 reg(γ, τ) would

transform nicely if it were not for the regularization factor. Therefore, it
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would be useful to separate from Rγ the “unregularized” part

Pγ(τ) = ψ(γ)e(−γτ/8) jac(γ, τ)1/4,(7.6)

for γ ∈ Γ, and consider

Rγ(τ) − Pγ(τ) = ψ(γ)e
(
−γ∞

8

)
jac(γ, τ)1/4(e(X, 1/2) − e(X)),

with X = γ∞−γτ
8 . Using the definition (4.4), we have

e(X, s) − e(X) = −e(X)
Γ(s)

∫ ∞

2πiX
e−tts−1 dt.

Setting t = 2πi
8 (γz − γτ) in the integral and using the identity

(7.7) jac(γ, z) jac(γ, τ)(z − τ)2 = (γz − γτ)2

we get

e(X, 1/2) − e(X) =
1
2
e

(
1
8

)
e
(γ∞

8

)
jac(γ, τ)ε−1/4

×
∫ ∞

γ−1∞
e
(
−γz

8

)
jacε3/4(γ, z) (z − τ)ε−1/2 dz.

It will be convenient to introduce an integral operator Jx for x in the
extended upper half-plane (H ∪ Q ∪∞), which acts on a holomorphic func-
tion g on H (with sufficiently rapid decay as �(z) → ∞) as

(7.8) (Jxg)(τ) =
e
(

1
8

)
2

∫ ∞

x̄
ḡ(z)(z − τ)−1/2dz.

From definition (3.4), we see that we have a weight 1/2 mock modular form
with shadow g if ĥ = h+ Jτg transforms as a weight 1/2 modular form.
Comparing with the definition of the integral operator Jx, we have

Rγ(τ) − Pγ(τ) =
(
Jγ−1∞Sγ

)
(τ).

Note in particular that this is trivially true when γ is in the trivial coset
given by upper triangular matrices, since both sides of the equation vanish.
By the fact that ψ is a multiplier system for Γ of weight 1/2, we immediately
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have for an element σ of Γ

Pγ |ψ,ε1/2σ = Pγσ, and (Jγ−1∞Sγ)|ψ,ε1/2σ = (Jσ−1γ−1∞ − Jσ−1∞)Sγσ.

Upon summation over the representatives of the rectangle (Γ∞\Γ)<K ,K →
∞ and evoking Lemma 5.3, we obtain

(7.9) RΓ,ρ|ψ,ε1/2 σ = RΓ,ρ − Jσ−1∞SΓ,ρ.

Now it is an easy calculation to show that

(RΓ,r + JτSΓ,ρ)|ψ,ε1/2 σ = RΓ,r + JτSΓ,ρ,

which by definition (3.4) proves the claim. �

8. Coincidence

Recall from Section 4 that we write Rn|h for RΓ,ρ when Γ = Γ0(n) and
ρ = ρn|h, and similarly for Sn|h. In Section 7, we have established the trans-
formation property of Rn|h and Sn|h under the group Γ0(n). In this section,
we will explicitly identify them. More precisely, we will first prove in
Section 8.1 that

(8.1) Sn|h =

{
λnη

3, λn ∈ C h = 1,
0 h > 1,

for the (n, h) = (ng, hg) that appear in the cycle shapes of [g] ⊂M24, (cf.
table 1), and later in Section 8.2 complete the proof our main theorem 4.1
by showing Hg = −2Rn|h, assuming the result of Section 9.

8.1. Determining S

Let n and h be positive integers such that h divides both n and 24 and
consider the function

Fn|h(τ) =
Sn|h(τ)
η(τ)3

.

Since Sn|h has the same multiplier system as η3 on Γ0(nh) and η does not
vanish on the upper half-plane, Fn|h is a modular function for Γ0(nh) that
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satisfies the transformation rule

(8.2) Fn|h(γτ) = ρ(γ)Fn|h(τ),

for γ ∈ Γ0(n) where ρ = ρn|h is given explicitly by (2.5). In particular, Fn|h
induces a morphism, which we denote by fn|h, of Riemann surfaces
X0(nh) → P

1 where X0(N) denotes the modular curve of level N and is
formed by taking the quotient of the extended upper half-plane

H
∗ = H ∪ Q ∪ {∞}

by the action of the group Γ0(N). We will denote the corresponding canonical
map by

(8.3) ϕN : H
∗ → X0(N).

Note that there are no non-constant maps X0(nh) → C, so either Fn|h has a
pole at some cusp of Γ0(nh), or Sn|h = λn|hη3 for some λn|h ∈ C. Of course,
Sn|h and η3 have different automorphy for Γ0(n) when h > 1, and an identity
Sn|h = λn|hη3 implies that λn|h and hence Sn|h are identically zero. Our main
strategy to show (8.1) is to show that Fn|h is bounded at all cusps of Γ0(nh)
for all the pairs (n, h) under consideration. Since the Fourier expansion of
both Sn|h and η3 around the infinite cusp starts with a term q1/8 (cf. (6.1)),
we see that Fn|h(τ) is bounded as τ → i∞ and can only have poles at the
cusps of Γ0(nh) that are not represented by infinity. Furthermore, from the
transformation (8.2) of Fn|h under Γ0(n), we see that fn|h has a pole at
a given cusp of Γ0(nh) if and only if it has a pole of the same order at
every cusp that is an image of it under Γ0(n). Therefore, to prove (8.1)
it is sufficient to show that Fn|h are bounded at all cusps of Γ0(n) other
than the infinite cusp. In order to analyse the behaviour of Fn|h at the
cusp representative κ ∈ Q, as before we will now consider its transformation
under a given scaling element (cf. (7.3))

σ̃ = σ

(√
u 0

0 1/
√
u

)(
1 β
0 1

)
, σ ∈ SL2(Z), β ∈ R,

for Γ0(nh) at κ = σ̃∞:

(8.4) F
(κ)
n|h(τ) = Fn|h(σ̃τ) =

Sn|h(σ̃τ)
η3(σ̃τ)

=
S

(κ)
n|h(τ)

η3(u(τ + β))
.
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When σ̃ normalizes Γ0(nh), F
(κ)
n|h(τ) again defines a modular function for

Γ0(nh). The order of poles or zeros of the function F (κ)
n|h(τ) at τ → i∞ gives

the order of poles or zeros of the function fn|h : X0(nh) → P
1 at the point x

given by the image of the κ under the canonical map ϕnh. In the proofs, we
will be especially interested in the scaling elements that are elements of the
so-called Atkin–Lehner involutions Wu, which are defined for every exact
divisor u of n as the set of matrices of the form

1√
u

(
au b
cn du

)
, a, b, c, d ∈ Z

with determinant 1. We say u is an exact divisor of n if (n/u, u) = 1. An
important element of Wn is the Fricke involution, given by

(8.5) wn =
(

0 −1/
√
n√

n 0

)
.

From the expansion of S(κ)
n|h(τ) recorded in (7.5), we see that F (κ)

n|h(τ) has the
expansion:

(8.6) F
(κ)
n|h(τ) =

∞∑
k=0

Cn|h(k) q�+
u

v
k, � =

u

v
{{m
h

+
v

8
}} − u

8
.

As before, u denotes the width of the cusp in Γ0(nh), v denotes the width
of the cusp in Γ0(n), and e

(
m
h

)
= ρ(σT vσ−1) as defined in (7.2). Moreover,

since F (κ)
n|h(τ) is invariant under 〈±T 〉 ⊂ σ̃−1Γ0(nh)σ̃, its Fourier expansion

can only involve integral powers of q and it follows immediately that

(8.7) F
(κ)
n|h(τ) = O(q�), � ≥ 1 + �−u

8
� , � ∈ Z.

More generally, from the above formula it is also clear that, to prove that
fn|h is bounded at κ it is sufficient to prove that

(8.8) {{m
h

+
v

8
}} ≥ v

8
.

In the remainder of this section, we will assume knowledge of various facts
about Γ0(n), such as its genus, its cusps, and the widths of those cusps. For
any given value of n the required computations are standard, if not at times
laborious, and the reader may refer to e.g., [34] or [35] for the necessary
background. Let us consider the cases n ≤ 8 when there are no cusps of
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Γ0(n) with width greater than 8. For these cases, we have the following
Lemma:

Lemma 8.1. Consider the group Γ0(n) with 1 ≤ n ≤ 8 and multiplier ρn|h
defined in (2.5) with h dividing both n and 24. The pole-free condition (8.8)
is satisfied for all cusps of Γ0(n) if and only if (n, h) = (ng, hg) is one of the
13 pairs that correspond to the cycle shapes of M24, as collected in table 1.

Proof. First consider the case h = 1. In this case, since there are no cusps
with v > 8, we get from (8.7) that fn|h has no pole for all 1 ≤ n ≤ 8, h = 1.
For h > 1, we need more refined information about the order of zeros of S(κ)

n|h
to show that, for a given n < 9, among all the possible values of h that divide
both n and 24, the condition (8.8) is satisfied if and only if (n, h) = (ng, hg)
is one of the 13 pairs that correspond to the cycle shapes of M24. For the
cusp with a representative 1/q and width v, taking σ =

(
1 1
q q+1

)
we get

(8.9) m =
q2v

n
(1 + qv) mod h.

In particular, we have m = q and v = n/q if q is an exact divisor of n. For
the zero cusp (q = 1, note that 0 and 1 are related by T ∈ Γ0(n)), therefore,
we need h to satisfy {{ 1

h + n
8 }} ≥ n

8 . It is straightforward to check that this
condition is satisfied if and only if (n, h) = (ng, hg) is one of the 13 pairs
that show up in table 1. It remains to be shown that this condition is also
satisfied at cusps other than 0 or ∞. First, we check that {{ qh + n/q

8 }} ≥ n/q
8

is indeed satisfied for n = h = 6, q = 2 and q = 3. Finally, for n = 4, we have
q = 2, v = 1 and m = 3 and we need to check {{ 3

h + 1
8}} ≥ 1

8 , which is indeed
the case for h = 4. �

Corollary 8.2. For (n, h) = (ng, hg) being one of the 13 pairs with 1 ≤
n ≤ 8 that arise from in the cycle shapes of M24, (cf. table 1), we have
Sn|1 = λnη

3 and Sn|h = 0 for h > 1.

For n > 8, a direct proof via (8.8) is less straightforward and instead we
would like to use arguments involving the topology of X0(n). When X0(nh)
has genus one, we have the following two lemmas:

Lemma 8.3. If n ∈ {11, 14, 15} then Sn|1 = λnη
3 for some λn ∈ C.

Proof. For these values of n there is just one cusp of Γ0(n) represented
by 0 which has width v = n > 8. Hence, from (8.7) we see that the function
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F
(κ=0)
n|1 either has a simple pole at 0 or is a constant. Suppose the former were

true, then fn|1 defines a degree one function from X0(n) to P
1, implying that

X0(n) has genus zero as a Riemann surface. For n ∈ {11, 14, 15} however,
the genus of X0(n) is one, so we conclude that fn|1 is constant in these
cases. �

Lemma 8.4. Suppose that n ∈ {10, 12} and h = 2. Then Sn|h = 0.

Proof. The only cusp of Γ0(20) that has width greater than 8 is that rep-
resented by 0, and similarly for Γ0(24), so in either case the only possible
pole of fn|h is at the image under ϕnh : H

∗ → X0(nh) of the zero cusp. The
degree of the pole, if the pole exists, is given by (8.6) with 2v = u = 2n
and m = 1 equals 1, and so must be 1. In this case, fn|h : X0(nh) → P

1 is a
degree one map, implying that X0(nh) has genus zero. However, this is not
the case for nh = 20 or nh = 24. We conclude that fn|h has no poles and is
thus constant. The claim follows. �

For the remaining three classes with (n, h) = (23, 1), (21, 3), (12, 12), the
modular curves X = X0(nh) have higher genera and we will use the
Riemann–Roch theorem:

(8.10) dimKX(D) = dim ΩX(D) + deg(D) + 1 − genus(X)

to gain control over the allowed properties of the function fn|h. Here D
denotes a divisor on the Riemann surface X, KX(D) denotes the vector
space of meromorphic functions f with the divisor (f) given by its zeros and
poles satisfying (f) +D ≥ 0, and ΩX(D) denotes the space of holomorphic
differentials ω on X satisfying (ω) −D ≥ 0.

Lemma 8.5. If n = 23 then Sn|1 = λnη
3 for some λn ∈ C.

Proof. The only cusp of Γ0(23) with width greater than 8 is the one with
width 23 represented by 0, and hence the function f23|1 can possibly have a
pole only at x ∈ X for x the image of 0 under ϕ23 (cf. (8.3)). More specifi-
cally, from (8.7) we see that f23|1 is in the vector space KX(D) for D = 2x.
Since the genus of X0(23) is 2, according to the Riemann–Roch formula
(8.10) we have dimKX(D) = 1 + dim ΩX(D). We would like to prove the
claim by showing that dim ΩX(D) = 0 and hence dimKX(D) = 1, and there-
fore a function in X(D) must be a constant function. To show there is no
holomorphic differential with a double zero at x, let us consider first the
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divisor D′ = x. We know that KD′(X) ∼= C, or else there would be a mero-
morphic function on X with a simple pole at x and no other poles, hence an
isomorphism between X and P

1, which is impossible given that the genus
of X is 2. From this we conclude from the Riemann–Roch formula that
dim ΩX(D′) = dimKD′(X) = 1 and there is a 1D space of holomorphic dif-
ferentials ω with (ω) − x ≥ 0. Now such a holomorphic differential is given
by the weight 2 cusp form η2(τ)η2(23τ), which is a holomorphic differen-
tial with a simple zero at x and a simple zero at the image of the infinite
cusp under the canonical map H

∗ → X0(23) and no other zeros. From this
we conclude dim ΩX(D) = 0 and hence dimKX(D) = 1. This completes the
proof. �

Lemma 8.6. Suppose that n = 21 and h = 3. Then Sn|h = 0.

Proof. For n = 21, by direct calculation one can check that the only cusp
for which (8.8) does not hold is the cusp represented by 0. It corresponds
to a cusp with width 63 of Γ0(63) and there are no other cusps of Γ0(63) at
which f21|3 can have a pole. Moreover, from (8.6) for the zero cusp, with

63
21

{{
21
8

+
1
3

}}
− 63

8
= −5.

Equation (8.6) shows that fn|h is in KD(X = X0(63)) with D = 5x, x =
ϕ63(0). The genus of X0(63) is 5 so according to the Riemann–Roch theorem
(cf. (8.10)) we have dimKX(D) = dim ΩX(D) + 1, where ΩX(D) denotes
the space of holomorphic differentials on X vanishing to order at least 5
at x. We claim that dim ΩX(D) = 0. To show this, suppose g ∈ S2(Γ0(63))
corresponds to an element of ΩX with a zero of order 5 at x. Since the
Fricke involution w63 normalizes Γ0(63), it induces a linear automorphism of
S2(Γ0(63)). Then g|1,2σ is an element of S2(Γ0(63)) that is O(q6) as τ → i∞.
By inspection there is no such cusp form of weight 2 for Γ0(63). We conclude
that dimKX(D) = 1. Since KX(D) includes constant functions, our fn|h is
constant, and the desired result follows. �

Lemma 8.7. Suppose that n = h = 12. Then Sn|h = 0.

Proof. The group Γ0(nh) = Γ0(144) has nine cusps with widths exceeding
8: there are four with of width 9, having representatives 1/4, 3/4, 1/8 and
1/16, there are three of width 16, having representatives 1/3, 2/3 and 1/9,
and there is one of width 36, with representative 1/2, and one of width 144,
with representative 0. The four cusps of width 9 fuse under the action of
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Γ0(n) = Γ0(12), as do the three cusps of width 16. First, we would like to see
at which of these cusps of Γ0(144) the function fn|h could possibly have a
pole. From the above data, we only need to look at the cusps of Γ0(12). From
formula (8.9) we see that fn|h is either constant or has a pole at the image
of the zero cusp, as the pole-free condition (8.8) is satisfied at the all other
cusps of Γ0(12). Moreover, putting v = h = 12, m = 1, u = 144 in Equation
(8.6), we see that fn|h can only have a pole of order 11 if it is not a con-
stant. To show that a pole of order 11 cannot happen, first we will compute
dimKX(D) = 2 for X = X0(144) and D = 11x with x = ϕ144(0). The genus
of X0(144) is 13 so according to the Riemann–Roch theorem (cf. (8.10))
we have dimKX(D) = dim ΩX(D) − 1 where ΩX(D) denotes the space of
holomorphic differentials on X vanishing to order at least 11 at x. As in the
proof of Lemma 8.6 we observe that elements of ΩX(D) are in correspon-
dence with cusp forms of weight 2 on Γ0(144) that are O(q12) as τ → i∞. By
inspection there is a 3D space of such cusp forms so dimKX(D) = 2. Next
set D′ = 10x. We claim that then KX(D) = KX(D′). For certainly KX(D′)
is a subspace of KX(D) and their dimensions coincide since the Riemann–
Roch theorem implies dimKX(D′) = dim ΩX(D′) − 2 and dim ΩX(D′) = 4
by inspection of S2(Γ0(144)). We conclude that if fn|h is in KX(D) then it
is also in KX(D′) and then we must have Cn|h(k = 0) = 0 in (8.6), so that
fn|h has no poles at any cusp and is therefore constant. This completes the
proof. �

Remark. It is fascinating that the space S3/2,ε3(Γ0(n)) of cusp forms of
weight 3/2 on Γ0(n) with multiplier system coinciding with that of η3 is
1D and spanned by η3, whenever n is the order of an element of M23. This
is demonstrated by the above Lemmas taken together, whereas the same is
certainly not true for a generic positive integer n. For n = 9 and n = 10, for
instance, it is possible that Fn|1 = Sn|1/η3 could define a degree one map
X0(n) → P

1, but this is no contradiction since X0(n) has genus zero for
n = 9 and n = 10. Indeed, numerical approximations suggest that S9|1(τ) =
η(τ)3 + 3η(9τ)3 and

S10|1(τ) = C

(
2η(τ)3 + 7

η(2τ)η(10τ)3

η(5τ)

)

for some C ∈ C. Observe that the functions η(τ)3/η(9τ)3 and η(τ)3η(5τ)/
η(2τ)η(10τ)3 are hauptmoduln for Γ0(9) and Γ0(10), respectively, and so
S3/2,ε3(Γ0(n)) is not 1D for n = 9 or n = 10. Indeed, there are no M24 classes
corresponding to (n, h) = (9, 1) or (10, 1). Also in the case that h > 1, it is
extremely non-trivial that for all the pairs (n, h) arising from M24, just the
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correct combinations of genus, cusp widths and multipliers conspire to force
the vanishing of Sn|h.

8.2. Determining R

First, we will establish the identity Hg = −2Rn|1, for n = ng and for those g
with hg = 1. Recall from the discussion in Section 2 that these are the M24

classes whose action on the natural permutation representation has at least
one fixed point (the M23 classes). To do this, we consider the function

(8.11) Gn|1 = η3(χ(g)Rn|1 − λnHg)

with g being an M24 class with ng|hg = n|1. By construction, it has Gn|1 =
(χ(g) + 2λn) + O(q) near the infinite cusp. In Section 3, we saw that Hg

is a weight 1/2 mock modular form for Γ0(n) with shadow χ(g)η3 and the
same multiplier as η−3. On the other hand, in Section 7 we have proven
that the Rademacher sums Rn|1 are also weight 1/2 mock modular forms
for Γ0(n) with the same multiplier. Moreover, it has as its shadow Sn|1,
which was proven to be given by λnη

3 for some λn ∈ C in the previous
subsection. Taken together, we see that the function Gn|1 : H

∗ → P
1 is a

weight 2 modular form of Γ0(n) with trivial multiplier. Using the properties
of such weight 2 modular forms, we will be able to show that Gn|1 = 0 for
the values of n of interest to us. In particular, we have χ(g) + 2λn = 0 as
the constant term in the expansion near the infinite cusp. Since χ(g) 
= 0
when hg = 1, this implies Hg = −2Rn|1 for g ∈M24 with hg = 1.

Lemma 8.8. Let g be the identity element of M24 and set n = ng = 1 and
h = hg = 1. Then H = Hg = −2Rn|h.

Proof. From the above discussion we know the function

Gn|1 = η3 (24Rn|1 − λnHg)

is a modular form of weight 2 for SL2(Z) with trivial multiplier. There are no
non-zero modular forms of weight 2 for SL2(Z) so Gn|1 vanishes identically
and by the above argument this proves the lemma. �

To prove Gn|1 = 0 for n > 1 we need to study its behaviour near the
other cusp representatives of Γ0(n). For a cusp κ = σ∞, σ ∈ SL2(Z), with
width v in Γ0(n), we shall again consider its transformation under a scaling
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element σ̃ (cf. (7.3))

G
(κ)
n|1(τ) = Gn|1

∣∣
1,2
σ (v(τ + β)).

To be more precise, we would like to know the form of the Fourier expansion
of G(κ)

n|1(τ). As will be shown explicitly in Appendix E, we have

G
(κ)
n|1(τ) = O(qv/8+Δ)

as τ → i∞ with Δ ≥ 0, which corresponds to the fact that both Rn|1 and
Hg have no pole at any cusp other than the infinite cusp. By construction,
G

(κ)
n|1 is invariant under τ → τ + 1 and hence the above argument shows

(8.12) G
(κ)
n|1(τ) = O(q
v/8�),

where the ceiling function �x� gives the smallest integer not less than x ∈ R.

Lemma 8.9. Suppose that g ∈M24 has prime order n = ng and h = hg =
1. Then Hg = −2Rn|h.

Proof. The primes dividing the order of M24 are exactly those primes p for
which (p+ 1)|24 so n ∈ {2, 3, 5, 7, 11, 23}. For these n, the only non-infinite
cusp of Γ0(n) is the one represented by 0, with width n. Take the Fricke
involution wn to be the scaling element. From (8.12) we conclude that G(κ=0)

n|1
is O(q) for n ∈ {2, 3, 5, 7} and O(q2) for n = 11 and O(q3) for n = 23. Since
the Fricke involution wn for Γ0(n) normalizes Γ0(n), G(κ=0)

n|1 also belongs to
M2(Γ0(n)). The space M2(Γ0(n)) of such weight 2 modular forms contains
the space S2(Γ0(n)) of weight 2 cusp forms. The dimension of the latter is
given by the genus of the modular curve X0(n) and the dimension of the
former is the genus of X0(n) plus m− 1, where m is the number of cusps of
Γ0(n) (cf. [34, Section 2.6]). It can be checked then (cf. e.g., [36, Section 7]
or [35, Section 5]) that a complement to S2(Γ0(n)) in M2(Γ0(n)) is spanned
by {Λm | m > 1, m|n} where

Λm(τ) = mq
d

dq
log(η(nτ)/η(τ)) =

m

24
(mE2(mτ) − E2(τ))

=
m(m− 1)

24
+

∞∑
k=1

mσ(k)(mqmk − qk),
(8.13)

σ(k) is the sum of the divisors of k, and E2 is the holomorphic quasi-modular
Eisenstein series of weight 2. When n is prime Γ0(n) has two cusps and a
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complement in M2(Γ0(n)) to S2(Γ0(n)) is 1D and spanned by Λn. Since the
genus of X0(n) is zero for n ∈ {2, 3, 5, 7}, the space M2(Γ0(n)) is thus 1D,
and spanned by Λn. Now, with Λn having non-vanishing constant term, the
statement G(κ=0)

n|1 (τ) = O(q) implies that G(κ=0)
n|1 (τ) vanishes identically. If

n = 11 then M2(Γ0(n)) is 2D, spanned by Λn and the cusp form ηg(τ) =
η(τ)2η(11τ)2, and since Λn and ηg have non-vanishing coefficients of q0 and
q1, respectively, we conclude that G(κ=0)

n|1 (τ) = O(q2) implies the vanishing

of G(κ=0)
n|1 in this case also. When n = 23, the space M2(Γ0(n)) is spanned

by Λn, a cusp form φ23,1 = ηg(τ)2 = η(τ)2η(23τ)2 and a further cusp form

φ23,2(τ) =
η(τ)3η(23τ)3

η(2τ)η(46τ)
+ 4η(τ)η(2τ)η(23τ)η(46τ) + 4η(2τ)2η(46τ)2.

(8.14)

Inspecting the Fourier expansions of Λn, φ23,1 and φ23,2 we see that there is
no non-zero linear combination that is O(q3). We conclude that G(κ=0)

n|1 (τ)
vanishes identically for all the values of n in question. So Gn|1 also vanishes
and the desired result follows. �

Lemma 8.10. Suppose that g ∈M24 has order n = ng a product of two
distinct primes and h = hg = 1. Then Hg = −2Rn|h.

Proof. According to Table 1 the values of n in question are 6, 14 and 15.
From the discussion before (8.13) we see that the complement to S2(Γ0(n))
in M2(Γ0(n)) is 3D and spanned by the weight two modular forms Λe1 ,Λe2
and Λe3 , where e1 < e2 < e3 = n are the three (exact) divisors of n that are
greater than 1. Therefore, we have

Gn|1 = α1Λe1 + α2Λe2 + α3Λe3 + φ

with φ ∈ S2(Γ0(n)). In other words, φ vanishes when n = 6 and is a multiple
of ηg when n = 14, 15, in accordance with the fact that the genera of X0(6),
X0(14), X0(15) are 0, 1, 1, respectively. For each ei there is a corresponding
cusp of Γ0(n) with width ei, which is represented by κi = ei

n . These are the
only cusps of Γ0(n) apart from the infinite cusp, as listed in table 3. As
discussed before (cf. (8.12)), the corresponding function G

(κi)
n|1 (τ) has the

asymptotic behaviour

G
(κi)
n|1 (τ) = O

(
qΔ+

ei
8

)
.
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Table 3: In this table, we list the cusps other than the one at i∞, which has
width 1, of the groups Γ0(n) for n = ng in table 1. Note that, in these cases
we have an extra (non-infinite) cusp, represented by 1

q , for every divisor q
of n, and its width is given by the smallest positive integer v such that
n|qv2. Moreover, the corresponding multiplier ρ(σT vσ−1) = e(mh ) is given
by m = q2v

n (1 + qv) mod h.

n 1 2 3 4 5 6 7 8 10 11 12 14 15 21 23

Cusps / 0 0 0, 1
2 0 0, 1

2 , 1
3 0 0, 1

2 , 1
4 0, 1

2 , 1
5 0 0, 1

2 , 1
3 , 1

4 , 1
6 0, 1

2 , 1
7 0, 1

3 , 1
5 0, 1

3 , 1
7 0

Widths / 2 3 4,1 5 6,3,2 7 8,2,1 10,5,2 11 12,3,4,3,1 14,7,2 15,5,3 21,7,3 23

Consider a scaling element which is an Atkin–Lehner involution wei
with

κi = wei
∞ (note that it is different from the Fricke involution when ei 
= n).

With help from the identity

(8.15)
1
e
Λe|1,2wf =

1
e ∗ f Λe∗f − 1

f
Λf

where e ∗ f = ef/(e, f)2, we obtain three equations on αi from the vanishing
of the constant terms in G

(κi)
n|1 (τ). Solving the resulting linear system we

quickly deduce that α1 = α2 = α3 = 0 and henceGn|1(τ) is given by the cusp
form φ of Γ0(n). Since X0(6) has genus zero we conclude that Gn|1(τ) = 0
for n = 6. For n = 14, 15, to prove that Gn|1(τ) = φ = 0 let us focus on the
0 cusp with width n. Take the scaling element to be the Fricke involution
wn. From the fact that the cusp form ηg is an eigenfunction (with eigenvalue
−1) of wn we get G(κ)

n|1(τ) = Cηg = −Cq + O(q2) for some C ∈ C. But from

(8.12) we see that G(κ)
n|1(τ) = O(q2) for v = n = 14, 15. Hence, we conclude

Gn|1 = C = 0. �

Lemma 8.11. Suppose that g ∈M24 is such that h = hg = 1 and n = ng
is 4 or 8. Then Hg = −2Rn|h.

Proof. If n = 4 then dimM2(Γ0(n)) = 2 and M2(Γ0(n)) is spanned by the
modular forms Λ2 and Λ4 (cf. (8.13)). If n = 8 then dimM2(Γ0(n)) = 3 and
M2(Γ0(n)) is spanned by Λ2, Λ4 and Λ8. In both cases dimS2(Γ0(n)) = 0.
Consider the case that n = 4, where we have Gn|1 = αΛ2 + βΛ4. There are
two non-infinite cusps: one represented by 0 with width 4 and the other
represented by 1/2 with width 1. Taking as their scaling elements w4 and
T 1/2w4 respectively, we get two equations on the coefficients α, β from the
requirement that both G

(κ=0)
n|1 and G

(κ=1/2)
n|1 are O(q), which force both α
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and β and hence Gn|1 to vanish. In arriving at these equations, we have
used the identity (8.15) and

E2(τ + 1/2) = −E2(τ) + 6E2(2τ) − 4E2(4τ).

The argument for n = 8 is very similar. We have F = αΛ2 + βΛ4 + γΛ8 for
some α, β, γ ∈ C. We may take 0, 1/2 and 1/4 as representatives for the
three non-infinite cusps of Γ0(8). We may take w8, T 1/2w8 and w8T

1/2w8,
respectively, as scaling elements for these cusp representatives. Using the
identities given above we compute expressions for the constant term at each
non-infinite cusp as linear equations in α, β and γ. From the vanishing of
each constant term we deduce that α = β = γ = 0 and hence Gn|1 = 0 also.
Then the required identity Hg = −2Rn|h follows as before. �

The above Lemmas 8.8 to 8.11, when taken together, show that Hg =
−2Rng|1 for g ∈M24 with hg = 1 Now we will continue to show the identity
for the remaining M24 classes with ng = n, hg = h > 1.

Lemma 8.12. Let g be an element of M24 that has hg > 1 and ng 
= 21.
Then Hg = −2Rn|h.

Proof. To prove the identity −2Rn|h = Hg for the remaining classes [g] with
hg > 1, we consider the following function:

Kn|h =
Rn|h
Hg

.

Since both Rn|h and Hg = −T̃g/η3 are known to be weight 1/2 modular
forms which transform with a multiplier ρn|h on Γ0(n), we conclude that
Kn|h is a modular function on Γ0(n). As in the previous subsection, such a
modular function has to be either constant or have a pole. For g ∈M24 with
hg > 1 and ng 
= 21, the McKay–Thompson series Hg are all given by certain
η-quotients (cf. table 2). Since η does not have a zero in H, we only have to
check thatKn|h has no pole at any cusp of Γ0(n). At the infinite cusp we have
Rn|h = q−1/8 + O(q7/8) and Hg = −2q−1/8 + O(q7/8) and hence Kn|h has no
pole at the infinite cusp. To see that it is also bounded near a non-infinite
cusp κ = σ∞ = σ̃∞, σ ∈ SL2(Z), with a scaling element σ̃, we consider the
function

G
(κ)
n|h = G

(κ)
n|h(σ (v(τ + β))) =

R
(κ)
n|h(τ)

T̃g/η3|ε−3,1/2 σ(v(τ + β))
,
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where R(κ)
n|h(τ) has been shown in Appendix E to have an expansion

(8.16) R
(κ)
n|h(τ) = R

(κ)
n|h
∣∣
ε3,1/2

σ (v(τ + β)) =
∞∑
k=1

c
(κ)
Γ,ρ(k − ν)e(τ(k − ν)),

where ν = {{mh + v
8}} as explained in (7.5). With direct calculation, one can

check that also

T̃g
η3

∣∣
ε−3,1/2

σ(v(τ + β)) = ag q
1−ν + O(q2−ν)

at every non-infinite cusp κ of Γ0(n) with some ag ∈ C, ag 
= 0. This shows
that Kn|h is a modular function with no pole and hence constant, which is
−1/2 from its value at the infinite cusp. �

Lemma 8.13. Suppose that g ∈M24 is such that n = ng = 21 and h =
hg = 3. Then Hg = −2Rn|h.

Proof. Set φ21,1(τ) = η(7τ)3/η(3τ)η(21τ) and φ21,2(τ) = η(τ)3/η(3τ)2.
Then both φ21,1 and φ21,2 are (meromorphic) modular forms of weight 1/2
for Γ0(21) with multiplier system ρε−3 where ρ = ρ21|3, so that

G =
ARn|h +Bφ21,1

φ21,2
, A,B ∈ C

is a modular function for Γ0(21) whose only poles are at the non-infinite
cusps of Γ0(21). SinceRn|h, φ21,2, φ21,2 all have the expansion q−1/8 + O(q7/8)
near the infinite cusp, we see that G has no pole at the infinite cusp. For
e1,2,3 with e1 < e2 < e3 = 21 the exact divisors of 21 that are greater than 1
let wei

be an element of the Atkin–Lehner involution of Γ0(21) associated to
ei. Then the elements wei

furnish scaling elements at the respective repre-
sentatives κi = wei

∞ for the three non-infinite cusps of Γ0(21), represented
by ei

n having width ei. Using the fact that the slash operator |1/2,εwei
maps

η(ejτ) to η(ei ∗ ejτ) (up to a non-vanishing scale factor), we see that the
function G(κi) = G(wei

τ) remains bounded as τ → i∞ except possibly in the
case that e3 = 21, in which case we have

G(κ=0)(τ) = G(w21τ) =
(
A′R(κ=0)

n|h (τ) +B′ η(3τ)3

η(7τ)η(τ)

)
η(7τ)2

η(21τ)3
, A′, B′ ∈ C.

From (8.16), we see that G(κ=0)(τ) has a Fourier expansion of the form
Cq−2 + O(q−1). Setting D = 2x where x is the image of w21∞ = 0 under the
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natural map ϕ21 : H
∗ → X = X0(21) we see that f must belong to the space

KX(D) of meromorphic functions on X = X0(21) having a pole of order at
most 2 at x and no other poles. The genus of X0(21) is 1 so according to the
Riemann–Roch theorem (cf. (8.10)) we have dimKX(D) = dim ΩX(D) + 2
where ΩX(D) denotes the space of holomorphic differentials on X van-
ishing to order at least 2 at x. The full space ΩX of holomorphic differ-
entials on X is in correspondence with S2(Γ0(21)), and this 1D space is
in turn spanned by the L-series for the elliptic curve y2 + xy = x3 + x.
This cusp form has a Fourier expansion of the form q + O(q2) and is an
eigenform for w21 so we conclude that it does not belong to ΩX(D), and
thus dim ΩX(D) = 0 and dimKX(D) = 2. Now KX(D) includes constant
functions on X and it also includes the non-constant function φ21,1/φ21,2,
so it is spanned by these functions, and we may conclude that Rn|h =
C1φ21,1 + C2φ21,2 for some C1, C2 ∈ C. By comparison of polar terms in
the Fourier expansions of Rn|h, φ21,1 and φ21,2 we have C1 + C2 = 1. Now
consider the expansion of Rn|h at the cusp represented by w7∞ (which
is also represented by 1/3). We have (φ21,1|w7)(τ) = D1q

−21/24 + O(q3/24)
and (φ21,2|w7)(τ) = D2q

−21/24 + O(q3/24) and the fact that Rn|h has no
poles away from the infinite cusp implies that C1 + 7C2 = 0. We conclude
that 6Rn|h = 7φ21,1 − φ21,2. From table 2, we have the explicit expression
3Hg = φ21,2 − 7φ21,1. This proves the lemma. �

9. Spectral theory

In this section, we would like to demonstrate the convergence of the Selberg–
Kloosterman zeta function Z0,k(s, ρεε−3), defined in (5.6) and (5.7), of Γ =
Γ0(n) for n a positive integer. As before, we take ψ = εε−3ρn|h for some h
dividing both 24 and n (cf. (2.5)). Combined with the discussions in Sec-
tions 5 and 6, Theorem 9.1 completes the proof of the convergence of the
Rademacher sum (4.8). Let w be a positive real number and let ψ be a mul-
tiplier system of weight w for Γ. We say a function g(z) on H is automorphic
for Γ of weight w with respect to ψ if

ψ(γ)g(γz) exp(iw arg(jac(γ, z))/2) = g(z)

for all γ ∈ Γ, where arg(·) is defined so that −π < arg(z) ≤ π for z 
= 0, and
write Hψ,w for the Hilbert space consisting of those automorphic functions
which also satisfy the growth condition

∫∫

Γ\H

|g(τ)|2 dxdy
y2

<∞,
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where x = �(τ) and y = �(τ) for z ∈ H. We consider the operator Δw on
Hψ,w given by

Δw = y2

(
∂2

∂x2
+

∂2

∂y2

)
− iwy

∂

∂x
.

According to [37] if ψ is non-trivial on every parabolic subgroup of Γ then
Δw has a discrete spectrum of eigenfunctions in Hψ,w and there exists a
complete orthonormal system {uj(z)} of eigenfunctions satisfying

Δwuj(z) + λjuj(z) = 0,

for a set {λj} of eigenvalues which are all real. (Roelcke proves in [38] that
Δw has a unique self-adjoint extension to Hψ,w.) Further, the λj are all
positive except possibly for a finite number which are of the form

(9.1) (w/2 − l)(1 + l − w/2),

where l is a non-negative integer less than w/2. If there is an eigenvalue of
the form (9.1) then, negative or otherwise, it’s multiplicity is equal to the
dimension of the space Sw−2l(Γ, ψ) of (holomorphic) cusp forms for Γ of
weight w − 2l with respect to ψ. By the trivial estimate |S(m, k, c, ψ)| < c
the series (5.7) defining the Selberg–Kloosterman zeta function Zm,k(s, ψ)
converges absolutely and locally uniformly for �(s) > 1 and thus defines
a holomorphic function in this domain. Selberg demonstrates in [37] that
this function admits an analytic continuation to a function meromorphic
in the entire s-plane that is holomorphic for �(s) > 1/2 except possibly
for a finite number of simple poles lying on the real segment 1/2 < s < 1.
Poles on this segment can only occur at points of the form 1/2 +

√
1/4 − λj

where 0 < λj < 1/4 and λj is an eigenvalue of Δw, and such a pole does
occur if λj is not of the form (9.1) and the coefficients of e((m− α)x) and
e((n− α)x) in the Fourier expansion (with respect to x) of the corresponding
eigenfunction uj(z) are both non-zero. If λj is of the form (9.1) with l =
�w/2� then there is a pole at s = 1 + �w/2� − k/2 just in the case that there
is a cusp form f(τ) ∈ Sw−2�w/2(Γ, ψ) for which the coefficients of qm−α and
qn−α (in its Fourier expansion with respect to τ) are both non-zero. For the
case of relevance for us we have w = 1/2 and so all the λj will be positive.
Roelcke proves in [38] that the minimal value of a λj is 3/16 in case w = 1/2
(see [39] for a nice exposition) so we conclude that there are no poles for
Z0,k(s, ρεε−3) in �(s) > 3/4. The only possible value for l in (9.1) is l =
0, so that the occurrence of a pole at s = 1 + �w/2� − w/2 = 3/4 depends
upon the existence of a cusp form f ∈ Sw(Γ, ψ) for which the coefficients
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of q0−α and qk−α are both non-zero. We have −α = −1/8 so there is no
such cusp form and we conclude that Z0,k(s, ρεε−3) is in fact analytic in
�(s) > 3/4 − δ for some δ > 0 and has finitely many simple poles lying on
the line segment 1/2 < s < 3/4. It remains to show that the value of the
analytically continued function Z0,k(s, ρεε−3) at s = 3/4 is indeed the sum

∑
c>0

S(0, k, c, ρεε−3)
c3/2

that we expect it is. To establish this we adopt the approach presented in
Section 2 of [40]2 which is an adaptation of a technique commonly used in
proving the prime number theorem (cf. [42]). (For a very crisp application
of what is essentially the same argument, see the proof of Theorem 2 in
[33].) Fix a group Γ, a multiplier ψ = ρεε−3, and an integer k. We will write
Z(s) = Z0,k(s, ρεε−3) to ease notation. Define

Σ(x) =
∑

0<c<x

S(0, k, c, ρεε−3)
c3/2

for x > 0. We require to show that limx→∞ Σ(x) = Z(3/4). Observe that for
a > 0 and x 
= c the integral

1
2πi

∫ a+i∞

a−i∞

(x
c

)t dt
t

is 1 or 0 according as x > c or x < c. Consequently, we may rewrite Σ(x) as

Σ(x) =
∑
c>0

S(0, k, c, ρεε−3)
c3/2

1
2πi

∫ a+i∞

a−i∞

(x
c

)t dt
t
,

for non-integral values of x. Choose ε > 0 and set a = 1/2 + ε so that
Z(t/2 + 3/4) converges absolutely for �(t) = a. For T > 0 define ΣT (x) by
setting

ΣT (x) =
1

2πi

∫ a+iT

a−iT
Z(t/2 + 3/4)xt

dt
t
.

Then for the difference Σ(x) − ΣT (x) we have the upper bound

(9.2) |Σ(x) − ΣT (x)| < xa
∑
c>0

c−1−ε min
(

1,
1

T | log(x/c)|
)

2If you consult this reference please see also Section II of [41] for some important
corrections.
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thanks to the following estimate, which may be found in Section 17 of [42].

1
2π

∣∣∣∣
∫ a+i∞

a−i∞

(x
c

)t dt
t
−
∫ a+iT

a−iT

(x
c

)t dt
t

∣∣∣∣ <
(x
c

)a
min
(

1,
1

T | log(x/c)|
)

Following exactly the argument of the last paragraph of p. 171 of [40] we
can replace the summation in (9.2) with the more explicit bound

(9.3) |Σ(x) − ΣT (x)| < K
x1/2

T
(xε + log x),

whereK is some constant (that does not depend on our choice of k). Consider
now the integral

1
2πi

∫

C
Z(t/2 + 3/4)xt

dt
t
,

where C = C0 + C1 + C2 + C3 is the positively oriented rectangle with cor-
ners (±1/2) + ε± iT . For concreteness let us say that C0 is the right most
vertical component and C1 is the upper most horizontal component. Then
the contribution of C0 is exactly ΣT (x). We denote the contribution of Ci
by Ii for i 
= 0. By the residue theorem we have

(9.4) ΣT (x) + I1 + I2 + I3 = Z(3/4) +
∑
j∈J

�jx
2sj−3/2,

where {sj}j∈J is an enumeration of the (finite) set of poles of Z(s) in the
interval 1/2 + ε/2 < s < 3/4 (we may choose ε > 0 so that s = 1/2 + ε/2 is
not a pole) and �j is the residue of Z(s) at s = sj divided by 2sj − 3/2. We
wish to determine what happens when x→ ∞ in (9.4). Observe, for a start,
that the sum over j vanishes in this limit since 2sj < 3/2 for all j ∈ J . We
claim that the integrals Ii also vanish in this limit. To estimate the Ii we
utilize the growth condition

|Z(s)| = O
(

k|s|1/2
�(s) − 1/2

)

as |�(s)| → ∞, valid for �(s) > 1/2. Such a result was first established by
Goldfeld–Sarnak in [33]. We have applied the generalization found in [43]
due to Pribitkin. Since Z(s) converges absolutely for �(s) > 1 we have that
|Z(t/2 + 3/4)| = O(1), for a constant independent of k, as |�(t)| → ∞ when
�(t) = 1/2 + ε, and thus an application of the Phragmén–Lindelöf theorem
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(cf. [44], Thm. 14) yields

(9.5) |Z(t/2 + 3/4)| < kKε |�(t)|1/4−�(t)/2+ε/2,

for all t such that −1/2 + ε ≤ �(t) ≤ 1/2 + ε and |�(t)| is sufficiently large,
for some constant Kε depending only on Γ, ψ = ρεε−3 and ε. Applying (9.5)
to the integrals Ii we obtain that I2 = O(kT 1/2x−1/2+ε), and both I1 and
I3 are O(kT−1x1/2+ε) so long as T < x2. Setting T = x2/3, letting x→ ∞
in (9.4) and applying (9.3) gives us the desired convergence: limx→∞ Σ(x) =
Z(3/4), and also the estimate Z(3/4) = O(k) as k → ∞. In particular, we
have the following theorem:

Theorem 9.1. Let Γ = Γ0(n) for some positive integer n, let h be a divisor
of gcd(n, 24) and set ρ = ρn|h. Then for any positive integer k the Selberg–
Kloosterman zeta function Z0,k(s, ρεε−3) converges at s = 3/4 and we have
Z0,k(3/4, ρε−3) = O(k) where the implied constant depends only on n and h.

10. Conclusion and discussion

To summarize, motivated by the AdS/CFT correspondence in physics, we
propose to replace the genus zero property by the more general property of
Rademacher summability as the organizing principle of the modular proper-
ties of moonshine phenomena. In monstrous moonshine, where the McKay–
Thompson series are modular functions, the latter coincides with the former
and is hence automatically satisfied, as shown in [10]. The two conditions
decouple in the case of the recently conjectured relation between mock mod-
ular forms and M24: on the one hand, it is neither necessary nor sufficient
that a group Γ have genus zero for it to arise as Γg for some g in M24,
and on the other hand, we verify the Rademacher summability property
in Theorem 4.1. In view of the above, the Rademacher summability prop-
erty may replace the genus zero property, and applies to both monstrous
moonshine and M24. This also suggests that AdS/CFT considerations will
lead to further elucidation of the moonshine phenomena, and we expect the
powerful Rademacher machinery to prove useful in further study of the con-
nection between modular objects and finite groups in general. This result
raises many interesting physical questions. In particular, what do we know
about the gravity duals, if they exist, of 2D CFTs with sporadic symmetries?
Let us first concentrate on the sigma models with target spaces involving
K3 surfaces, as they are relevant for the structures studied in the present
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paper. Recall that one of the best known examples of the AdS/CFT corre-
spondence conjectures that the 2D CFT describing the Higgs branch of the
system of Q1 D1-branes bound to Q5 D5-branes wrapping a K3 surface is
dual to the type IIB string theory in the background AdS3 × S3 ×K3(Q)
[12]. Here the radius of curvature of AdS3 and S3 is given by (Q1Q5)1/4 in
the 6D unit, and K3(Q) is the “attractor K3” whose moduli are partially
fixed by the requirement of minimizing the BPS mass of the given charges,
or equivalently, by the so-called attractor mechanism of supergravity. Note
that not all K3 surfaces can be such an attractor K3 for a given set of
charges. On the CFT side, the Higgs branch is described by a 2d N = (4, 4)
SCFT with central charge c = 6k, k = Q1Q5 + 1, which is a deformation
of the sigma model on the symmetric product SkK3, as can be most eas-
ily understood by going to the D0–D4 duality frame [45]. This AdS/CFT
dictionary makes it clear that a “semi-classical-like” AdS gravity descrip-
tion is only guaranteed to exist when we take the central charge c = 6k,
or equivalently the AdS radius, to be very large. For this reason, it is in
fact surprising that the Rademacher machinery works so well when applied
to the partition functions for the K3 sigma model with k = 1, as demon-
strated in the present paper. Two comments on this issue are in order here.
First, analogous Rademacher formulas also exist for the symmetric product
sigma model with higher k and we plan to report on this in more detail
in the future [28]. In other words, the Rademacher machinery also works
when we have very strong reasons to expect them to work. Second, recently
there has been important progress in developing the localization techniques
for computing gravity path integrals (see, for example, [46]), and we have
seen that in some cases the highly quantum path integral actually local-
izes into the same form as if coming from a weakly coupled, semi-classical
gravitational theory. For instance, very recently the Rademacher sum for
the modular form 1/η(τ)24, which is the partition function of a CFT with
central charge as small as c = 24, has been reproduced from a localized
gravity path integral [47]. This is very surprising since the corresponding
black holes have zero macroscopic entropy (i.e., the Bekenstein–Hawking
entropy grows only linearly with the charges) and hence a priori we have
no reason to expect the gravity path integral to take this “semi-classical”
form. These results show that the Rademacher formulas are not really the
monopoly of a large radius, semi-classical gravity description, although the
former is most easily motivated in the semi-classical limit as we reviewed
in Section 1, and suggests that it is not unlikely that a localization cal-
culation could similarly explain the Rademacher sum formulas derived in
the present paper from a gravity point of view. In the case of monstrous
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moonshine, on the other hand, the question of whether a semi-classical
theory of gravity dual to the moonshine module CFTs, or possibly their
higher central charge cousins, is an interesting open puzzle [48]. We end
with a few more comments concerning the Rademacher formulas studied in
this paper. First, it is remarkable that the Rademacher sums with such a
simple polar term −2q−1/8 compute not only the M24-modules underlying
the massive states in the K3 CFT but also the twisted Euler character-
istics of K3 surfaces. The latter statement comes from the fact that the
Rademacher machinery automatically computes the shadows of the result-
ing mock modular forms, which are in this case given by the twisted K3
Euler characteristics multiplied by the modular form η(τ)3. Finally, we would
like to mention that none of the twisted elliptic genera which arise from
the extra, non-M24 symmetries discussed in [49] lead to (mock) modular
forms admitting analogous Rademacher sum expressions. Another related
but logically independent observation is the following. If we were to twist
the partition function counting the 1/4-BPS index of type II theory com-
pactified on K3 × T 2 with one of these non-M24 symmetries, the result-
ing candidate 4d twisted partition function would have a system of poles
and zeros that is more intricate and complicated than the ones coming
from twisting with M24 symmetries. This adds to the distinction between
the M24 symmetries and the extra non-M24 discrete symmetries, which are
present in, for instance, the Gepner models, whose role in moonshine is still
obscure.
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Appendix A. Dedekind Eta function

The Dedekind eta function, denoted η(τ), is a holomorphic function on the
upper half-plane defined by the infinite product

η(τ) = q1/24
∏
n≥1

(1 − qn),

where q = e(τ) = e2πiτ . It is a modular form of weight 1/2 for the modular
group SL2(Z) with multiplier ε : SL2(Z) → C

∗, which means that

ε(γ)η(γτ) jac(γ, τ)1/4 = η(τ)

for all γ =
(
a b
c d

) ∈ SL2(Z), where jac(γ, τ) = (cτ + d)−2. The multiplier sys-
tem ε may be described explicitly as

(A.1) ε

(
a b
c d

)
=

{
e(−b/24), c = 0, d = 1,
e(−(a+ d)/24c+ s(d, c)/2 + 1/8), c > 0,

where s(d, c) =
∑c−1

m=1(d/c)((md/c)) and ((x)) is 0 for x ∈ Z and x− �x� −
1/2 otherwise. We can deduce the values ε(a, b, c, d) for c < 0, or for c = 0
and d = −1, by observing that ε(−γ) = ε(γ)e(1/4) for γ ∈ SL2(Z). Let T
denote the element of SL2(Z) such that tr(T ) = 2 and Tτ = τ + 1 for τ ∈ H.
Observe that

ε(Tmγ) = ε(γTm) = e(−m/24)ε(γ)

for m ∈ Z.

Appendix B. Bessel function

The Bessel function of the first kind, denoted Jα(x), may be defined by the
series expression

(B.1) Jα(x) =
∑
m≥0

(−1)m
(x/2)2m+α

Γ(m+ 1 + α)m!
.

The function Jα(x) is asymptotic to ex cos(x− απ/4 − π/4)/
√

2πx for x
large, and in the special case that α = 1/2 this fact is borne out by the
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identity

(B.2) J1/2(x) =

√
2
πx

sin(x).

The modified Bessel function of the first kind, denoted Iα(x), may be defined
by the series expression

(B.3) Iα(x) =
∑
m≥0

(x/2)2m+α

Γ(m+ 1 + α)m!
.

The function Iα(x) is asymptotic to ex/
√

2πx for x large, for any α. In the
special case that α = 1/2 this fact is borne out by the identity

(B.4) I1/2(x) =

√
2
πx

sinh(x).

As x approaches 0 the functions J1/2(x) and I1/2(x) both tend towards
(x/2)α/Γ(1 + α). Since Γ(3/2) =

√
π/2, we have

(B.5) J1/2(x) ≈
√

2x
π
, I1/2(x) ≈

√
2x
π

as x→ 0 in the special case that α = 1/2.

Appendix C. Lipschitz summation

The Lipschitz summation formula is the identity

(C.1)
(−2πi)s

Γ(s)

∞∑
k=1

(k − α)s−1e((k − α)τ) =
∑
�∈Z

e(α�)(τ + �)−s,

valid for �(s) > 1 and 0 ≤ α < 1, where e(x) = e2πix. A nice proof of this
using Poisson summation appears in [50]. Observe that both sides of (C.1)
converge absolutely and uniformly in τ on compact subsets of H. For appli-
cations to Rademacher sums of weight less than 1 we require an extension
of (C.1) to s = 1. Absolute convergence on the right-hand side breaks down
at this point but we can get by with the following useful analogue.
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Lemma Appendix C.1. For 0 < α < 1, we have

(C.2)
∞∑
k=1

e((k − α)τ) =
∑

−K<�<K
e(α�)(−2πi)−1(τ + �)−1 + EK(τ),

where EK(τ) = O(1/K2), locally uniformly for τ ∈ H.

Proof. Our proof follows that of Lemma 4.1 in [32]. For τ ∈ H define a
function f(z) by setting

(C.3) f(z) =
1

2πiz
e(α(z − τ))

(e(z − τ) − 1)
.

Then f has poles at τ + n for each n ∈ Z and also has a pole at z = 0. The
residue at z = 0 is

1
2πi

e(−ατ)
e(−τ) − 1

=
1

2πi

∞∑
k=1

e((k − α)τ),

which is (2πi)−1 times the left-hand side of (C.2), and the residue at z =
τ + n is e(αn)(2πi)−2(τ + n)−1. Suppose τ = σ + it. Let K be a positive
integer and let C be the positively oriented boundary of a rectangle with
corners σ ± (K + 1/2) ± iL where L > �(τ) = t and K + 1/2 > �(τ) = σ.
Then by the residue theorem

∫

C
f(z)dz =

∞∑
k=1

e((k − α)τ) −
∑

−K<�<K
e(α�)(−2πi)−1(τ + �)−1.

On the other hand, the integrals over the horizontal portions of C tend to 0
as L→ ∞ since |f(z)| decays exponentially as �(z) → ∞. The residues are
independent of L for L sufficiently large so taking the limit as L→ ∞ we
obtain

∞∑
k=1

e((k − α)τ) −
∑

−K<�<K
e(α�)(−2πi)−1(τ + �)−1 = EK(τ),

where EK(τ) is the limit as L→ ∞ of the contributions to
∫
C f(z)dz coming

from the vertical portions of C.

EK(τ) = i
∫ ∞

−∞
(f(σ +K + 1/2 + iy) − f(σ −K − 1/2 + iy))dy.
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For convenience set Q = K + 1/2. After replacing y with y + t we obtain

(C.4) EK(τ) = − 1
2π

∫ ∞

−∞

(
e(αQ)

Q+ iy + τ
− e(−αQ)

−Q+ iy + τ

)
e(αiy)

1 + e(iy)
dy,

since e(Q) = e(−Q) = −1 for K an integer. Observe that the integrand in
(C.4) is bounded by C/Q2, for some constant C, and decays exponentially
as y → ±∞ for 0 < α < 1. Also, the constant C holds locally uniformly in τ .
We conclude that EK(τ) = O(1/K2) locally uniformly in τ , as required. �

For α = 0 we have the identity

lim
K→∞

K∑
�=−K

1
τ + �

= π cotπτ = −iπ

(
1 + 2

∞∑
m=1

qm

)
.

Appendix D. Some details on convergence

In this appendix, we will give the steps leading to expression (5.5), whose
convergence we demonstrated in the main text. Using the explicit definition
(4.5), (5.1) and again split the sum over d into a double sum, we obtain

lim
K→∞

∑

γ∈(Γ∞\Γ)×<K

R0
γ(τ)

(D.1)

= e

(
1
8

) ∑
0<c<K
n|c

c−3/2
∑

−K2<d<K2

(c,d)=1

e
(
−γ∞

8

)
ψ(γ)(τ + d/c)−1,

= e

(
1
8

) ∑
0<c<K
n|c

c−3/2
∑

0≤d<c
(c,d)=1

e
(
−γ∞

8

)
ψ(γ)

∑
�∈Z

|d+�c|<K2

e( �8)
(τ + d/c+ �)

,

where we have used ψ(γT ) = e(1
8)ψ(γ) (see Appendix A) in deriving the last

line. Consider the following two expressions:

(D.2)
∑
�∈Z

|d+�c|<K2

e

(
�

8

)
(τ + d/c+ �)−1,

∑
�∈Z

|�|<K2/c

e

(
�

8

)
(τ + d/c+ �)−1,

we will now argue that we can use either of the two in the limit K → ∞.
The left most of (D.2) may include a term where d+ �c = x−K2 for at most
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one 0 ≤ x < d and this will not appear in the right-hand expression, and the
right most of (D.2) may include a term where d+ �c = x+K2 for at most
one 0 < x ≤ d and these will not appear in the left-hand expression. We
conclude that the difference is O(c/K2) for sufficiently large K, uniformly
in τ , and since

∑
0<c<K c

1/2 is O(K3/2), we have

∑
0<c<K
n|c

c1/2
∑

0≤d<c
(c,d)=1

O(c/K2) = O(1/K1/2),

which vanishes as K → ∞. Therefore, we have

lim
K→∞

∑

εγ∈(Γ∞\Γ)×<K

R0
γ(τ) = e

(
1
8

)
lim
K→∞

∑
0<c<K
n|c

c−3/2
∑

0≤d<c
(c,d)=1

e
(
−γ∞

8

)
ψ(γ)

(D.3)

×
∑
�∈Z

|d|<K2/c

e( �8)
(τ + d/c+ �)

.

Upon applying the Lipschitz summation formula in the form of Lemma
Appendix C.1 we obtain

lim
K→∞

∑

εγ∈(Γ∞\Γ)×<K

R0
γ(τ) = 2πe

(
−1

8

)
lim
K→∞

∑
0<c<K
n|c

c−3/2
∑

0≤d<c
(c,d)=1

e
(
−γ∞

8

)
ψ(γ)

×
(
−E�K2/c(τ) +

∞∑
k=1

e

((
k − 1

8

)(
τ +

d

c

)))
.

For K large the error terms E�K2/c(τ) are bounded by EK(τ) and according
to Lemma Appendix C.1 we have EK = O(1/K2). It follows that the term
involving −E�K2/c(τ) is O(1/K3/2) and thus tends to 0 as K → ∞. Observe
that the sum over k in the above formula is absolutely convergent, uniformly
in τ on compact subsets of H. Moving the summation over k past the others
and using the explicit expressions for ψ(γ), we readily obtain (5.5).

Appendix E. Rademacher sums at other cusps

To identify RΓ,ρ, we need to study its behaviour at the other cusps of Γ =
Γ0(n). Focusing on a given cusp representative κ = σ∞, σ ∈ SL2(Z), with
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width v in Γ0(n), we need to study RΓ,ρ

∣∣
ε−3,1/2

σ. For this purpose, let us
introduce

R′
γ = εε−3(γ) e

(
−γτ

8

)
reg(γ, τ) jacε1/4(γ, τ),(E.1)

S′
γ = εε3(γ) e

(γτ
8

)
jacε3/4(γ, τ),(E.2)

analogous to the definitions in Section 5, so that

RΓ,ρ = lim
K→∞

∑
γ∈(Γ∞\Γ)<K

ρ(γ)R′
γ , SΓ,ρ = lim

K→∞

∑
γ∈(Γ∞\Γ)<K

ρε−1(γ)S′
γ .

A straightforward calculation similar to the one in Section 7 shows

R′
γ

∣∣
ε−3,1/2

σ = R′
γσ + cJσ−1∞S′

γσ, c = −e(
1
4)√
8
,(E.3)

S′
γ

∣∣
ε3,3/2

σ = S′
γσ.

Using Sn|1 = λnη
3 and Sn|h = 0 for h > 1 as shown in Section 8.1, we get

Rn|1|ε−3,1/2σ = lim
K→∞

∑
γ∈(Γ∞\Γ)<Kσ

R′
γ + cλnJσ−1∞η3,(E.4)

Rn|h|ε−3,1/2σ = lim
K→∞

∑
γ∈(Γ∞\Γ)<Kσ

ρ(γσε−1)R′
γ for h > 1.(E.5)

Splitting the sum into a sum over the double coset space (Γ∞\Γ)ε<Kσ/Γv∞
and applying the Lipschitz summation formula as before, we obtain that the
Fourier expansion of the above sum is

(E.6) lim
K→∞

∑
γ∈(Γ∞\Γ)<Kσ

ρ(γσε−1)R′
γ =

∞∑
k=1

ck e
(
(k − ν)

τ

v

)
.

As before we have 0 < ν ≤ 1 given by ν = {{mh + v
8}}, where ρ(σT vσ−1) =

e(mh ) (cf. (7.5)). In particular, for h = 1 we have

(E.7) lim
K→∞

∑
γ∈(Γ∞\Γ)<Kσ

R′
γ =

∞∑
k=1

ck e
((
k −
{{v

8

}}) τ
v

)
.

Using Lemma 8.8 and Equation (3.6), we can rewrite the function Gn|1 as

Gn|1 = λnT̃g + χ(g)η3

(
Rn|1 +

λn
12
R1|1

)
.



750 Miranda C.N. Cheng and John F.R. Duncan

From (E.4) we deduce that
(
Rn|1 +

λn
12
R1|1

) ∣∣
ε−3,1/2

σ = lim
K→∞

∑
γ∈(Γ∞\Γ)<Kσ

R′
γ +

λn
12
R1|1

and hence

Gn|1
∣∣
1,2
σ = η3

⎛
⎝−λn

(
χ(g)
24

H − T̃g|1,2 σ
η3

)
+ χ(g) lim

K→∞

∑
γ∈(Γ∞\Γ)<Kσ

R′
γ

⎞
⎠ .

One can check from the explicit expressions for T̃g that χ(g)
24 H − T̃g|1,2 σ

η3 =
O(1), so that the only pole of Hg is at the infinite cusp. Together with the
(E.7) we obtain expansion (8.12).
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-ē

7
-e

7
0

0
χ

1
7

1
2
6
5

4
9

−1
5

5
8

−7
1

−3
0

1
0

−2
−2

1
0

0
−1

0
0

0
0

0
1

1
0

0
χ

1
8

1
7
7
1

−2
1

1
1

1
6

7
3

−5
−1

1
0

−1
0

0
−1

1
0

0
−1

0
0

1
1

0
0

0
0

χ
1
9

2
0
2
4

8
2
4

−1
8

8
0

0
−1

−1
0

1
1

0
−1

0
−1

0
1

1
−1

−1
1

1
0

0
χ

2
0

2
2
7
7

2
1

−1
9

0
6

−3
1

−3
−3

0
2

2
2

−1
1

0
0

0
0

0
0

0
−1

−1
0

0
χ

2
1

3
3
1
2

4
8

1
6

0
-6

0
0

0
−3

0
−2

1
1

0
1

1
0

0
−1

−1
0

0
1

1
0

0
χ

2
2

3
5
2
0

6
4

0
1
0

−8
0

0
0

0
−2

0
−1

−1
0

0
0

0
0

1
1

0
0

−1
−1

1
1

χ
2
3

5
3
1
3

4
9

9
−1

5
0

1
−3

−3
3

1
0

0
0

−1
−1

0
1

0
0

0
0

0
0

0
0

0
χ

2
4

5
5
4
4

−5
6

2
4

9
0

−8
0

0
−1

1
0

0
0

0
−1

0
1

0
0

0
−1

−1
0

0
1

1
χ

2
5

5
7
9
6

−2
8

3
6

−9
0

−4
4

0
1

−1
0

0
0

0
1

−1
−1

0
0

0
1

1
0

0
0

0
χ

2
6

1
0
3
9
5

−2
1

−4
5

0
0

3
−1

3
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
−1

−1



754 Miranda C.N. Cheng and John F.R. Duncan

References

[1] T. Eguchi, H. Ooguri and Y. Tachikawa, Notes on the K3 sur-
face and the Mathieu group M24, http://arxiv.org/abs/1004.
09561004.0956.

[2] M. C. N. Cheng, K3 Surfaces, N = 4 Dyons, and the Mathieu Group
M24, http://arxiv.org/abs/1005.54151005.5415.

[3] M. R. Gaberdiel, S. Hohenegger and R. Volpato, Mathieu twining char-
acters for K3, http://arxiv.org/abs/1006.02211006.0221.

[4] M. R. Gaberdiel, S. Hohenegger and R. Volpato, Mathieu moon-
shine in the elliptic genus of K3, http://arxiv.org/abs/1008.
37781008.3778.

[5] T. Eguchi and K. Hikami, Note on twisted elliptic genus of K3 surface,
http://arxiv.org/abs/1008.49241008.4924.

[6] J. H. Conway and S. P. Norton, Monstrous moonshine, Bull. Lond.
Math. Soc. 11 (1979), 308–339.

[7] R. E. Borcherds, Monstrous moonshine and monstrous Lie superalge-
bras, Invent. Math. 109(2) (1992), 405–444.

[8] S. Norton, Generalized Moonshine, Proc. Symp. Pure Math 47 (1987),
208–209.

[9] A. P. Ogg, Automorphismes des Courbes Modulaires, Seminaire
Delange-Pisot (1974).

[10] J. F. R. Duncan and I. B. Frenkel, Rademacher sums, moonshine and
gravity, http://arxiv.org/abs/0907.45290907.4529.

[11] H. Rademacher, The Fourier series and the functional equation of
the absolute modular invariant J(τ), Amer. J. Math. 61(1) (1939),
237–248.

[12] J. M. Maldacena, The large N limit of superconformal field theo-
ries and supergravity, Adv. Theor. Math. Phys. 2 (1998), 231–252,
http://arxiv.org/abs/hep-th/9711200hep-th/9711200.

[13] J. Maldacena and A. Strominger, AdS3 Black Holes and a
stringy exclusion principle, J. High Energy Phys. 12 (1998), 005,
http://arxiv.org/abs/hep-th/9804085hep-th/9804085.



On Rademacher Sums, the largest Mathieu group 755

[14] R. Dijkgraaf, J. Maldacena, G. Moore and E. Verlinde, A
Black Hole Farey Tail, http://arxiv.org/abs/hep-th/0005003
hep-th/0005003.

[15] G. W. Moore, Les Houches Lectures on Strings and Arithmetic,
http://arxiv.org/abs/hep-th/0401049hep-th/0401049.

[16] J. de Boer, M. C. N. Cheng, R. Dijkgraaf, J. Manschot and E. Verlinde,
A Farey Tail for attractor Black Holes, J. High Energy Phys. 11 (2006),
024, http://arxiv.org/abs/hep-th/0608059hep-th/0608059.

[17] P. Kraus and F. Larsen, Partition functions and elliptic gen-
era from supergravity, J. High Energy Phys. 01 (2007), 002,
http://arxiv.org/abs/hep-th/0607138hep-th/0607138.

[18] F. Denef and G. W. Moore, Split states, entropy enigmas, Holes and
Halos, http://arxiv.org/abs/hep-th/0702146hep-th/0702146.

[19] J. Manschot and G. W. Moore, A modern Fareytail, Commun.
Num. Theor. Phys. 4 (2010), 103–159 http://arxiv.org/abs/0712.
05730712.0573.

[20] S. Murthy and B. Pioline, A Farey tale for N = 4 dyons, JHEP 0909
(2009), 022 [arXiv:0904.4253 [hep-th]].

[21] T. Eguchi and K. Hikami, Superconformal Algebras and Mock
Theta Functions 2. Rademacher Expansion for K3 Surface, Com-
mun. Num. Theor. Phys. 3 (2009), 531–554 http://arxiv.org/
abs/0904.09110904.0911.

[22] W. d. A. Pribitkin, The Fourier coefficients of modular forms and
Niebur modular integrals having small positive weight. II, Acta Arith.
93(4) (2000), 343–358.

[23] J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups.
Springer-Verlag, 1999.

[24] J. Conway, R. Curtis, S. Norton, R. Parker and R. Wilson, Atlas of
finite groups. Maximal subgroups and ordinary characters for simple
groups. With comput. assist. from J. G. Thackray. Oxford, Clarendon
Press, 1985.

[25] G. Mason, M24 and Certain Automorphic Forms, Contemporary Math-
ematics 45 (1985), 223–244.



756 Miranda C.N. Cheng and John F.R. Duncan

[26] D. Dummit, H. Kisilevsky and J. McKay, Multiplicative products of eta-
functions., Contemp. Math. (Finite groups—coming of age, Proc. CMS
Conf., Montreal/Que. ) 45 (1982), (1985).

[27] S. Govindarajan and K. G. Krishna, BKM Lie superalge-
bras from dyon spectra in ZN -CHL orbifolds for composite N,
http://arxiv.org/abs/0907.14100907.1410.

[28] M. C. N. Cheng and J. F. R. Duncan, The largest Mathieu group and
(Mock) automorphic forms, arXiv:1201.4140 [math.RT].

[29] T. Eguchi, H. Ooguri, A. Taormina, and S.-K. Yang, Superconfor-
mal algebras and string compactification on manifolds with SU(N)
holonomy, Nucl. Phys. B 315 (1989), 193, http://dx.doi.org/
10.1016/0550-3213(89)90454-9.

[30] T. Eguchi and K. Hikami, Superconformal algebras and mock theta
functions, J. Phys. A 42 (2009), 304010, http://arxiv.org/abs/
0812.11510812.1151.

[31] A. Dabholkar, S. Murthy and D. Zagier, Quantum Black Holes, wall
crossing, and Mock modular forms, arXiv:1208.4074 [hep-th].

[32] D. Niebur, Construction of automorphic forms and integrals, Trans.
Amer. Math. Soc. 191 (1974), 373–385.

[33] D. Goldfeld and P. Sarnak, Sums of Kloosterman sums, Invent. Math.
71(2) (1983), 243–250, http://dx.doi.org/10.1007/BF01389098.

[34] G. Shimura, Introduction to the arithmetic theory of automorphic func-
tions. Publications of the Mathematical Society of Japan, No. 11.
Iwanami Shoten, Publishers, Tokyo, (1971). Kanô Memorial Lectures,
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