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BPS invariants of N = 4 gauge theory on

Hirzebruch surfaces

Jan Manschot

Generating functions of BPS invariants for N = 4 U(r) gauge the-
ory on a Hirzebruch surface with r ≤ 3 are computed. The BPS
invariants provide the Betti numbers of moduli spaces of semi-
stable sheaves. The generating functions for r = 2 are expressed
in terms of higher level Appell functions for a certain polarization
of the surface. The level corresponds to the self-intersection of the
base curve of the Hirzebruch surface. The non-holomorphic func-
tions are determined, which added to the holomorphic generating
functions provide functions, which transform as a modular form.

1. Introduction

The study of supersymmetric spectra of field theories and supergravities
is a major subject in theoretical physics and also mathematics. The BPS
invariant counts the number of BPS states weighted by a sign. From a more
mathematical perspective, the index corresponds to topological invariants
(e.g., the Euler number or the Betti numbers) of a moduli space of objects
(of an appropriate category) corresponding to the BPS states.

One of the seminal papers on BPS invariants of supersymmetric gauge
theory on a Kähler surface is [33] by Vafa and Witten. They show that the
topologically twisted path integral localizes on the instanton solutions, and
equals the generating function of the Euler numbers of instanton moduli
spaces, whose natural compactification is the moduli space of semi-stable
sheaves. One of their main motivations was to test the strong-weak cou-
pling duality [29] or S-duality, which acts by SL(2, Z) transformations on
the theory. The coupling constant g and the theta angle θ combine to the
modular parameter τ = θ

2π + 4πi
g2 . S-duality suggests that the generating

function of the BPS invariants (3.2) should exhibit modular properties if
the gauge group is SU(r) or U(r). They tested this in various cases, for
example for sheaves with rank r = 1 [11], and r = 2 on P

2 [18, 35, 36]. The
generating functions for rank 1 were found to be genuine (weakly) holomor-
phic modular forms. However, the generating functions for rank 2 transform
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only approximately as a modular form. These functions are (mixed) mock
modular forms, i.e., functions which do transform as a modular form only
after the addition of a non-holomorphic “completion” [39].

Vafa and Witten [33] has inspired many results in later years. In par-
ticular, for r = 2 the dependence of the BPS invariant on the polarization
J ∈ H2(S, Z) was included in the generating functions using indefinite theta
functions [13]. Moreover, the reduced modular properties for r ≥ 2 were
understood physically as a “holomorphic anomaly” [1, 28].

Although modularity has proven useful for various computations [13,28,
38], physical expectations for r > 2 could never be rigorously tested since
generating functions for r > 2 were not known. This was one of the moti-
vations for [26], which computed the generating functions of refined BPS
invariants for r = 3 on P

2 and its blow-up P̃
2, which is the Hirzebruch sur-

face Σ1. A convenient property of Σ1 is that the BPS invariants vanish
for certain choices of the first Chern class and choice of polarization. Wall-
crossing and the blow-up formula [37] provide then the invariants in the
other chambers and for P

2.1

This paper generalizes the computation of the generating function Zr(z,
ρ, τ ; Σ1, J) of BPS invariants for r ≤ 3 of [26] to more general Hirzebruch
surfaces Σ�, where −� is the self-intersection number of the base curve of
Σ�. The arguments z ∈ C, ρ ∈ H2(Σ�, C) and τ ∈ H in Zr(z, ρ, τ ; Σ�, J) are
generating variables for the Betti numbers of the moduli spaces, and first &
second Chern classes of the sheaves, respectively.

Section 3.1 derives expressions for the generating functions with r = 2 in
terms of indefinite theta functions [13] and Appell functions of level � [3,31].
The non-holomorphic but modular completed functions ̂Z2(z, ρ, τ ; Σ�, J) are
determined for z ∈ C (generating function of Betti numbers) as well as z = 1

2
(Euler numbers). Due to the presence of these terms the action of the heat
operator Dr on the generating function ̂Zr(ρ, τ ; Σ�, J) (3.1) of Euler numbers
does not vanish, which is known in the physics literature as a “holomorphic
anomaly”. A novel result of the paper is that D2

̂Z2(ρ, τ ; Σ�, J) in general
consists of two terms (3.11):

(1.1) D2
̂Z2(ρ, τ ; Σ�, J) = C2(Im τ, J)Z1(ρ, τ, Σ�)2 + R2(ρ, τ ; Σ�, J),

where C2(Im τ, J) is a simple function of Im τ and J . The appearance of
Z1(ρ, z, τ, Σ�)2 has been conjectured and discussed in the literature before [4,
28, 33], but the additional term R2(ρ, z, τ ; Σ�, J) is novel. Remarkably, the

1Kool and Weist [21, 34] computed earlier generating functions for the Euler
numbers for rank 3 using different techniques.
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additional term vanishes for special choices of J , in particular for J = −K�

where K� is the canonical class of Σ�.2

Another important property of the non-holomorphic completion is that it
renders Zr(ρ, z, τ ; Σ�, J) continuous as a function of the polarization J [24],
which is expected of a physical path integral. Although a more intrinsic
derivation of the anomaly in physics or algebraic geometry is desirable, this
gives already important insights.

Section 3.3 presents the holomorphic generating function for r = 3 (3.12)
for r = 3 and presents tables 1–3 with the Betti numbers for � = 1. The
modular properties of Z3(ρ, z, τ ; Σ�, J) are much more intricate then for
r = 2, and will be discussed elsewhere [5].

The outline of the paper is as follows. Section 2 reviews the neces-
sary properties of sheaves and Hirzebruch surfaces, including BPS invariants
and their wall-crossing. Section 3 defines the generating functions and gives
explicit expressions for r = 1, 2 and 3. The non-holomorphic terms and the
holomorphic anomaly are determined for r = 2 in Section 3.2, and for r = 3
tables with Betti numbers are presented in Section 3.3.

2. Sheaves on Hirzebruch surfaces

The Gieseker–Maruyama moduli space of semi-stable sheaves with rank r
on S is the natural compactification of the moduli space of instantons with
gauge group U(r), i.e., anti-self-dual solutions for the field strength: ∗F =
−F . The Chern classes of the sheaf are determined by the topological classes
of the instanton:

c1 =
i

2π
Tr F, c2 − 1

2
c2
1 =

1
8π2

Tr F ∧ F.

Most of the following is phrased in the more algebraic language of sheaves,
since this setting is most suitable for explicit computations.

2.1. Sheaves and stability

The Chern character of a sheaf F on a surface S is given by ch(F ) = r(F ) +
c1(F ) + 1

2c1(F )2 − c2(F ) in terms of the rank r(F ) and its Chern classes
c1(F ) and c2(F ). The vector Γ(F ) := (r(F ), ch1(F ), ch2(F )) summarizes the
topological properties of F . Other frequently occurring quantities are the
determinant Δ(F ) = 1

r(F )(c2(F ) − r(F )−1
2r(F ) c1(F )2), and μ(F ) = c1(F )/r(F ).

2Note for � > 2, −K� does not lie in the ample cone of Σ� and is therefore not a
permissible choice for J .
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Let 0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fs = F be a filtration of the sheaf F . The quo-
tients are denoted by Ei = Fi/Fi−1 with Γi = Γ(Ei). With the above nota-
tion, the discriminant Δ(F ) is given in terms of the topological quantities
of Ei and Fi by

Δ(F ) =
s

∑

i=1

r(Ei)
r(F )

Δ(Ei) − 1
2r(F )

s
∑

i=2

r(Fi−1) r(Fi)
r(Ei)

(μ(Fi−1) − μ(Fi))
2 .

(2.1)

The notion of a moduli space for sheaves is only well defined after the intro-
duction of a stability condition. To this end let C(S) ∈ H2(S, Z) be the
ample cone of S. Given a choice J ∈ C(S), a sheaf F is called μ-stable if for
every subsheaf F ′ ⊂ F , μ(F ′) · J < μ(F ) · J , and μ-semi-stable if μ(F ′) · J ≤
μ(F ) · J . A wall of marginal stability W is a (codimension 1) subspace
of C(S), such that (μ(F ′) − μ(F )) · J = 0, but (μ(F ′) − μ(F )) · J �= 0 away
from W .

Let S be a Kähler surface, whose intersection pairing on H2(S, Z) has
signature (1, b2 − 1). Since at a wall, (μ2 − μ1) · J = 0 and J2 > 0, we have
(μ2 − μ1)2 < 0. Therefore, the set of semi-stable filtrations for F , with Δi ≥
0 is finite. The ample class J provides natural projections c± for an element
c ∈ H2(S, Z) to the positive and negative definite subspaces of H2(S, R):

(2.2) c+ =
c · J J

J2
, c− = c − c+.

2.2. Some properties of ruled surfaces

A ruled surface is a surface Σ together with a surjective morphism π : Σ → C
to a curve C, such that the fibre Σy is isomorphic to P

1 for every point
y ∈ C. Let f be the fibre of π, then H2(Σ, Z) = ZC ⊕ Zf , with intersection
numbers C2 = −� < 0, f2 = 0 and C · f = 1. The canonical class is KΣ =
−2C + (2g − 2 − �)f . The holomorphic Euler characteristic χ(OΣ) is for a
ruled surface 1 − g. An ample class is parametrized by Jm,n = m(C + �f) +
nf ∈ C(Σ) with m, n > 0. The following only considers surfaces with g = 0,
these are known as rationally ruled surfaces or Hirzebruch surfaces. They
are denoted by Σ� and furthermore K� denotes the canonical class.

To learn about the set of semi-stable sheaves on Σ� for J ∈ C(S), it is
useful to first consider the restriction of the sheaves on Σ� to f . Namely the
restriction to E|f is stable if and only if E is μ-stable for J = J0,1 and in the
adjacent chamber [14]. However, since every bundle of rank ≥ 2 on P

1 is a
sum of line bundles, there are no stable bundles with r ≥ 2 on P

1. Therefore,
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the BPS invariant Ω(Γ, w; J) (defined in the next subsection) vanishes for
Γ = (r(F ),−C − αf, ch2) with r(F ) ≥ 2 and α = 0, 1.

2.3. Invariants and wall-crossing

The moduli space MJ(Γ) of semi-stable sheaves (with respect to the ample
class J) whose rank and Chern classes are determined by Γ has complex
dimension:

(2.3) dimC MJ(Γ) = 2r2Δ − r2χ(OS) + 1.

To define the refined BPS invariants Ω(Γ, w; J) in an informal way, let
p(X, s) =

∑2 dimC(X)
i=0 bis

i, with bi the Betti numbers bi = dim H2(X, Z), be
the Poincaré polynomial of a compact complex manifold X. Then:

(2.4) Ω(Γ, w; J) :=
w−dimC MJ(Γ)

w − w−1
p(MJ(Γ), w).

The rational refined invariants are defined by [26]:

Ω̄(Γ, w; J) =
∑

m|Γ

Ω(Γ/m,−(−w)m; J)
m

.

See [27] for a physical motivation of these rational invariants and [19, 30]
for mathematical motivations. The numerical BPS invariant Ω(Γ;J) follows
from the Ω(Γ, w; J) by:

(2.5) Ω(Γ;J) = lim
w→−1

(w − w−1) Ω(Γ, w; J),

and similarly for the rational invariants Ω̄(Γ; J).
A crucial tool for the computation of the generating functions in Section 3

is the wall-crossing formula, which provides the change ΔΩ(Γ;JC → JC′)
across walls of marginal stability. Yoshioka [36] gives as criterion for his
wall-crossing formula for r = 2 that K� · J < 0, which holds for any � and
J ∈ C(Σ�). For r = 3, more complicated wall-crossings appear, in particu-
lar walls where the slope of three rank 1 sheaves with different c1 become
equal. Physical arguments suggest that for these walls one could use the wall-
crossing formulas of Kontsevich–Soibelman [19, 20] or Joyce and Song [16]
since they are shown to hold in both supergravity and field theory [2, 6, 10].
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These wall-crossing formulas are derived for Donaldson–Thomas invariants,
which are defined for six-dimensional gauge theory on a Calabi–Yau
three-fold [8]. The mathematical justification for the use of these wall-
crossing formulas for sheaves on surfaces is therefore not well established.
Joyce [15] gives as criterion for the applicability that K−1

S must be numeri-
cally effective (i.e., −KS · D ≥ 0 for any curve in D ∈ H2(S, Z)). This would
exclude the Hirzebruch surfaces with � > 2. The generating function (3.12)
for r = 3 is consistent with the wall-crossing formulas for DT-invariants and
in agreement with previous results in the literature for � = 1, but in view of
the above requires at least for � > 2 further justification.

Keeping in mind these comments, I continue by giving the explicit change
of the invariants in case of primitive wall-crossing. To this end, define the
following quantities:

〈Γ1, Γ2〉 = r1r2(μ2 − μ1) · KS , I(Γ1, Γ2; J) = r1r2(μ2 − μ1) · J.

The change ΔΩ(Γ1 + Γ2, w; JC → JC′) for Γ1 and Γ2 primitive is [6, 19, 37]

ΔΩ(Γ, w; JC → JC′) = −1
2

(sgn(I(Γ1, Γ2; JC′)) − sgn(I(Γ1, Γ2; JC)))

(2.6)

×
(

w〈Γ1,Γ2〉 − w−〈Γ1,Γ2〉
)

Ω(Γ1, w; J) Ω(Γ2, w; J).

with

sgn(x) =

⎧

⎪

⎨

⎪

⎩

1, x > 0,

0, x = 0,

−1, x < 0.

The subscript WC in JWC refers to a point in C which is sufficiently close
to the wall W , such that no wall is crossed for the constituent between the
wall and JWC . Note that the wall is independent of c2.

For the computation of the invariants of rank 3, one also needs to deter-
mine the wall-crossing formula across walls of marginal stability for non-
primitive charges 2Γ1 + Γ2 and walls where the slope of three non-parallel
charges becomes equal. These can be determined using the wall-crossing for-
mulas [6,16,19]. The result takes a simple form in terms of rational invariants
and (2.6) [25].
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3. Generating functions

This section computes the generating functions of the BPS invariants
Ω(Γ, w; J). We start by defining the generating functions and a brief dis-
cussion of their properties. The generating function Zr(ρ, z, τ ; S, J) for a
Kähler surface S is defined by:

Zr(ρ, z, τ ; S, J) =
∑

c1,c2

Ω̄(Γ, w; J) (−1)rc1·KS

× q̄rΔ(Γ)− rχ(S)
24

− 1
2r

(c1+rKS/2)2−q
1
2r

(c1+rKS/2)2+ e2πiρ·(c1+rKS/2),

with ρ ∈ H2(S, C), w = e2πiz and q = e2πiτ . Twisting by a line bundle leads
to an isomorphism of moduli spaces. It is therefore sufficient to determine
Ω(Γ, w; J) only for c1 mod r, and it moreover implies that Zr(ρ, z, τ ; S, J)
allows a theta function decomposition [6, 28]:

(3.1) Zr(ρ, z, τ ; S, J) =
∑

μ∈Λ∗/Λ

hr,μ(z, τ ; S, J)Θr,μ(ρ, τ ; S),

where the bar over hr,μ(z, τ ; S, J) denotes complex conjugation, and
hr,μ(z, τ ; S, J) and Θr,μ(ρ, τ ; S) are defined by:

hr,μ(z, τ ; S, J) =
∑

c2

Ω̄(Γ, w; J) qrΔ(Γ)− rχ(S)
24 ,(3.2)

Θr,μ(ρ, τ ; S) =
∑

k∈H2(S,rZ)+rKS/2+μ

(−1)rk·KSqk2
+/2r q̄−k2

−/2re2πiρ·k.

Note that Θr,μ(ρ, τ ; S) depends on J through k± and does not depend on z.
The generating function of the numerical invariants Ω(Γ;J) follows sim-

ply from Equation (2.5):

Zr(ρ, τ ; S, J) = lim
z→ 1

2

(w − w−1)Zr(z, ρ, τ ; S, J).

Physical arguments imply that this function transforms as a multivariable
Jacobi form of weight (1

2 ,−3
2) [6, 23, 28, 33] with a non-trivial multiplier

system. For rank > 1 this is only correct after the addition of a suitable
non-holomorphic term [28, 33]. This is explained for r = 2 in Sections 3.1
and 3.2.
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The functions hr,c1(z, τ) and hr,c1(τ) contain a factor which depends only
on the rank r and b2(S). It is therefore useful to define

fr,c1(z, τ) =
(

i
θ1(2z, τ)η(τ)b2(S)−1

)−r

hr,c1(z, τ),

fr,c1(τ) =
(

1
η(τ)χ(S)

)−r

hr,c1(τ),

with θ1(z, τ) and η(τ) defined by (A.1). The function fr,c1(τ) follows from
fr,c1(z, τ) by

(3.3) fr,c1(τ) =
(−1)r−1

2r−1(r − 1)!
1

(2πi)r−1
∂r−1

z fr,c1(z, τ)|z= 1
2
.

Note that the terms of degree < r − 1 in the Taylor expansion with respect
to z of fr,μ(z, τ) vanish.

A useful relation is the “blow-up formula” which relates the generating
function of a surface S with that of its blow-up φ : S̃ → S at a non-singular
point. Let C1 be the exceptional divisor of φ, and take J ∈ C(S), r, and
c1 such that gcd(r, c1 · J) = 1. The generating functions hr,c1(z, τ ; S, J) and
hr,c1(z, τ ; S̃, J) are then related by [13,22,33,35,37]:

(3.4) hr,φ∗c1−kC1(z, τ ; S̃, J) = Br,k(z, τ)hr,c1(z, τ ; S, J),

with

Br,k(z, τ) =
1

η(τ)r

∑

∑r
i=1 ai=0

ai∈Z+ k
r

q
1
2

∑ r
i=1 a2

i w
∑

i<j ai−aj .

3.1. Rank 1 and 2

This subsection presents explicit expressions for hr,c1(z, τ ; Σ�, Jm,n). The
result for r = 1 and S = Σ� is simply [11]:

f1,c1(z, τ ; Σ�) = 1.

Note that the dependence on J could be omitted here since all rank 1 sheaves
are stable. Moreover, there is also no dependence on �.

To compute the generating functions for r ≥ 2, we use wall-crossing
together with the fact that Ω(Γ, w; J0,1) = 0 for c1 = −C + αf and r ≥ 2.
In the following, c1(E2) is parametrized by bC − af . The walls are then at
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Figure 1: The ample cone of Σ1, together with the three walls for
Γ = (2,−C − f, 2), namely for (a, b) = (1, 0), (2, 0), (3, 0).

m
n = 2b−β

2a−α for r = 2, with m, n ≥ 0. See figure 1 for the walls for Δ(F ) = 9
4 ,

r(F ) = 2. One finds [13,26] using Equation (2.1):

f2,C−αf (z, τ ; Σ�, Jm,n)(3.5)

= −1
2

∑

a,b∈Z

1
2
( sgn((2b + 1)n − (2a − α)m) − sgn(2b + 1) )

×
(

w(�−2)(2b+1)+2(2a−α) − w−(�−2)(2b+1)−2(2a−α)
)

× q
�

4
2b+1)2+ 1

2
(2b+1)(2a−α).

These functions are indefinite theta functions [12], which are sums over a
subset of the positive definite sublattice of an indefinite lattice. Since the
sum is only over a subset of the lattice, they transform as a modular form
only after addition of a suitable non-holomorphic term (depending on τ̄ and
z̄) [39].

The computation of the invariants for c1 = −αf is much more involved
since strictly semi-stable sheaves do exist for J0,1 or if α = 0 for every J ∈
C(P̃2). We will circumvent this computation by determining the functions
f2,−αf (z, τ ; Σ�, J1,0) from modular transformations of f2,C−αf (z, τ ; Σ�, J1,0).
One can consequently determine the invariants for arbitrary Jm,n by appli-
cation of the wall-crossing formula.

We continue by writing f2,C−αf (z, τ ; Σ�, Jm,n) in terms of two new func-
tions A�,(α,β)(z, τ) and ϑm,n

α,β (z, τ):

f2,βC−αf (z, τ ; Σ�, Jm,n) = A�,(α,β)(z, τ) + ϑm,n
α,β (z, τ), α, β ∈ {0, 1}.
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with

ϑm,n
α,β (z, τ) =

∑

a,b∈Z

1
2

(sgn(−(2a − α)) − sgn((2b − β)n − (2a − α)m))

× w(�−2)(2b−β)+2(2a−α) q
�

4
(2b−β)2+ 1

2
(2b−β)(2a−α).

Then Equation (3.5) gives for A�,C−αf (z, τ) for � ≥ 1 after performing a
geometric sum:3

A�,(1,1)(z, τ) = q
�+2
4 w�

∑

n∈Z

q�n(n+1)+nw2(�−2)n

1 − q2n+1w4
,

(3.6)

A�,(0,1)(z, τ) = −1
2

∑

n∈Z

q
�

4
(2n+1)2w(�−2)(2n+1) + q

�

4 w�−2
∑

n∈Z

q�n(n+1)w2(�−2)n

1 − q2n+1w4
.

The functions in Equation (3.6) are specializations of higher level Appell
functions [3,40], whose definition is recalled in Appendix A. These functions
appeared earlier in mathematical physics in the theory of characters of super-
conformal algebras [9,17,31]. See [32] for a recent discussion. This might not
be accidental since N = 4 Yang–Mills is well known to be related related to
2D conformal field theory by M-theory [28]. Deriving these functions explic-
itly from a two-dimensional perspective is an interesting direction for future
research.

Analogously to the indefinite theta functions, the Appell functions only
transform as a modular (or Jacobi) form after addition of a non-holomorphic
term. Equation (A.3) gives the exact expression obtained Zwegers [40].
Application of this to our case of interest gives for the completion
̂A�,(α,β=1)(z, τ):

̂A�,(α,β)(z, τ) = A�,(α,β)(z, τ) +
1
2

�−1
∑

k=0

⎛

⎜

⎝

∑

n1=2k+β�+α

mod 2�

w
�−2

�
n1q

n2
1

4�

⎞

⎟

⎠

(3.7)

×
∑

n2=−2k−α

mod 2�

(

sgn(n2) − E
(

(n2 + 2(� + 2) Im z/y)
√

y/�
))

× w− �+2
�

n2q−
n2
2

4� ,

3Note that for Σ�=0 = P
1 ⊗ P

1, the function A0,(0,1)(z, τ) is undefined while
A0,(1,1)(z, τ) = 0.
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with y = Im τ and E(x) = 2
∫ x
0 e−πu2

du. The four functions ̂A�,(α,β) trans-
form as a vector-valued Jacobi form of weight 1 and index −8 of SL(2, Z) [31,
40]. One finds for the action of the generators S and T :

S : ̂A�,(α,β)

(

z

τ
,
−1
τ

)

=
τ

2
e2πi(− 8 z2

τ
)

∑

α̃,β̃∈{0,1}
(−1)�ββ̃+αβ̃+βα̃

̂A�,(α̃,β̃)(z, τ),

(3.8)

T : ̂A�,(α,β) (z, τ + 1) = e2πi β2+2αβ

4 ̂A�,(α,β) (z, τ) .

The modular transformations (3.8) together with the single pole in z of
the refined invariants (2.4) do fix the functions A�,(α,0)(z, τ) to be:

A�,(1,0)(z, τ) = w2
∑

n∈Z

q�n2+nw2(�−2)n

1 − q2nw4
+

i η(τ)3

θ1(4z, τ)
,

A�,(0,0)(z, τ) = −1
2

∑

n∈Z

q�n2
w2(�−2)n +

∑

n∈Z

q�n2
w2(�−2)n

1 − q2nw4
+

i η(τ)3

θ1(4z, τ)
.

This agrees for c1 = f with the generating function in [36] (Corollary 3.4).
The completion of these functions is given by Equation (3.7).

One can show the following relation between A1,(α,0)(z, τ) and A1,(α,1)

(z, τ) using the quasi-periodicity formula (A.4):

A1,(1,0)(z, τ) =
θ2(2z, 2τ)
θ3(2z, 2τ)

A1,(1,1)(z, τ),(3.9)

A1,(0,0)(z, τ) =
θ3(2z, 2τ)
θ2(2z, 2τ)

A1,(0,1)(z, τ).

This relation is understood in algebraic geometry by the blow-up
formula (3.4), which relates the functions h2,c1(z, τ ; Σ1, J1,0) with c1 = C −
αf to those with c1 = −αf . For h2,c1(z, τ ; P2) one recovers the result of [4].
The multiplicative relation (3.9) does not hold for � > 1, since Σ�>1 is the
blow-up of the weighted projective plane (1, 1, �) at its singular point [7],
and the blow-up formula is thus not applicable.
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What remains is to complete the indefinite theta functions ϑm,n
α,β (z, τ).

One finds using [39]:

̂ϑm,n
α,β (z, τ) =

∑

a,b∈Z

1
2

[

E
(

(−2a + α + 2(� + 2)Imz/y)
√

y/�
)

(3.10)

− E
(

((2b − β)n − (2a − α)m

+ 2(2n + (� + 2)m)Im z/y)
√

y/J2
m,n

)]

× w(�−2)(2b−β)+2(2a−α) q
�

4
(2b−β)2+ 1

2
(2b−β)(2a−α)

with J2
m,n = m(�m + 2n). The completion for f2,βC−αf follows directly from

̂f2,βC−αf = ̂A�,(α,β) + ̂ϑm,n
α,β . The non-holomorphic term of the first line in

Equation (3.10) is cancelled by the non-holomorphic term of ̂A�,(α,β)(z, τ).
Thus for the completion of f2,βC−αf (and therefore also of h2,βC−αf ) the non-
holomorphic part of the second line in Equation (3.10) suffices. We define
̂Zr(ρ, z, τ ; S, J) :=

∑

μ∈H2(Σ�,Z/rZ)
̂hr,μ(z, τ ; S, J) Θr,μ(ρ, τ ; S).

3.2. Holomorphic anomaly for rank 2

This subsection derives Dr
̂Zr(ρ, τ ; Σ�, J) for Dr = ∂τ + i

4πr∂2
ρ+

and r = 2.
Since DrΘr,μ(ρ, τ ; Σ�) = 0 for any r, it suffices to determine ∂τ̄

̂fr,c1(τ ; Σ�, J).
For a clear exposition, the generating functions are given in this subsection
in terms of K�, J etc. instead of the explicit integers �, m and n, etc.

We determine first the completion ̂f2,c1(τ ; Σ�, J) from the generating
functions in the previous subsection. The result follows from the following
three steps:

• use Equation (3.3) after replacing the functions with their completions;

• use that E(z) = 2
∫ z
0 e−πu2

du = sgn(z)(1 − β 1
2
(z2)) with z ∈ R and

βν(x) =
∫ ∞

x
u−ν e−πu du;

• and finally use

β 3
2
(x) = 2x− 1

2 e−πx − 2πβ 1
2
(x).
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One obtains:

̂f2,c1(τ ; Σ�, J) = f2,c1(τ ; Σ�, J)

+
∑

c∈−c1
+H2(Σ�,2Z)

(

K� · J |c · J |
8πJ2

β 3
2
(c2

+ y)

−1
4
K� · c− sgn(c · J)β 1

2
(c2

+ y)
)

× (−1)K�·cq−c2
,

where c± are given by Equation (2.2). It is now straightforward to compute
∂τ̄

̂fr,c1(τ ; Σ�, J):

∂τ̄
̂fr,c1(τ ; Σ�, J) =

i K� · J
16π

√
J2 y

3
2

(−1)K�·c1 Θ2,−c1−K�
(0, τ ; Σ�)

− i
8
√

y

∑

c∈−c1
+H2(Σ�,2Z)

K� · c− c · J√
J2

(−1)K�·c q−c2
−/4q̄c2

+/4.

After combining this result with Θ2,c1(ρ, τ ; Σ�) as in (3.1) and manipulation
of the lattice sums, one obtains for D2

̂Z2(ρ, τ ; Σ�, J):

D2
̂Z2(ρ, τ ; Σ�, J) =

−i K� · J
16π

√
J2 y

3
2

Z1(ρ, τ ; Σ�, J)2(3.11)

+
i

8
√

y
h1,0(τ ; Σ�)

2

×
∑

c1∈H2(Σ�,Z/2Z)

Υc1(τ, Σ�) Θ2,c1(ρ, τ ; Σ�),

where4

Υc1(τ, Σ�) =
∑

c∈−c1
+H2(Σ�,2Z)

K� · c− c · J√
J2

(−1)K�·c qc2
+/4q̄−c2

−/4.

Interestingly, Equation (3.11) differs from the conjectured form of the
anomaly [1, 28, 33]. The first line has the expected factorized form, which
is attributed to reducible connections or polystable sheaves [33] or multiple
M5-branes [28]. However, the novel second line does not factorize and is
less easily interpreted. It does vanish for special values of J , in particular

4A similar function appeared in [24].
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for J = −K� since then K� · c− = 0. But for � ≥ 2, K� lies outside C(S)
and is thus not a permissible choice for J . Viewing the surface as part of a
local Calabi–Yau three-fold geometry, J = −KS corresponds to the attrac-
tor point from the point of view of supergravity [24]. It is therefore rather
interesting that ̂Z(ρ, τ ; Σ�, J) simplifies at this point.

The function Υc1(τ, Σ�) vanishes also for � = 1 and J = C + f [4], which
is not equal to −K1. For this choice, the blow-up formula gives the gen-
erating function for P

2, where J = −KP2 is satisfied automatically. It is
thus in agreement with these examples to conjecture that generically for a

Kähler surface S, D2
̂Z2(ρ, τ ; S, J) = −i

√
K2

S

16π y
3
2

Z1(ρ, τ ; S,−Ks)2 if KS ∈ C(S).
Of course, a more intrinsic explanation based on gauge theory or algebraic
geometry is desirable.

3.3. Rank 3

This subsection presents the generating functions h3,βC−αf (z, τ ; Σ�, J) with
β �= 0 mod 3. This condition on β ensures that h3,βC−αf (z, τ ; Σ�, J) = 0
for J = J0,1 analogously to r = 2. The computation of h3,βC−αf (z, τ ; Σ�, J)
therefore reduces again to application of the wall-crossing formula. This is
for r = 3 more complicated than for r = 2 since:

• The functions h2,c1(z, τ ; Σ�, J) do themselves depend on J , and need
to be determined sufficiently close to the appropriate wall.

• The total charge Γ can be of a sum of three charges
∑3

i=1 Γi such
that at a wall W the slopes of these three constituents might be equal.
This in particular happens for “semi-primitive wall-crossing” where
Γ(F ) = 2Γ1 + Γ2.

Nevertheless, the wall-crossing formulas [16, 19] imply a relatively simple
form for the generating functions [25,26]. One obtains for � ≥ 1:

f3,βC−αf (z, τ ; Σ�, Jm,n) = −
∑

a,b∈Z

1
2
( sgn((3b − 2β)n − (3a − 2α)m)

− sgn(3b − 2β) )
(

w(�−2)(3b−2β)+2(3a−2α)

− w−(�−2)(3b−2β)−2(3a−2α)
)

(3.12)

× q
�

12
(3b−2β)2+ 1

6
(3b−2β)(3a−2α)

× f2,bC−af (z, τ ; Σ�, J|3b−2β|,|3a−2α|),
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Table 1: The Betti numbers bn (with n ≤ dimC M) and the Euler numbers
χ of the moduli spaces of stable sheaves on Σ1 with r = 3, c1 = −C, and
2 ≤ c2 ≤ 6 for J = (1, ε).

c2 b0 b2 b4 b6 b8 b10 b12 b14 b16 b18 b20 b22 b24 χ

2 1 2 4 4 18
3 1 3 9 20 37 53 59 305
4 1 3 10 25 59 119 218 338 450 490 2936
5 1 3 10 26 64 141 294 562 997 1602 2301 2886 3117 20891

Table 2: The Betti numbers bn (with n ≤ dimC M) and the Euler numbers
χ of the moduli spaces of stable sheaves on Σ1 with r = 3, c1 = −C − f ,
and 2 ≤ c2 ≤ 6.

c2 b0 b2 b4 b6 b8 b10 b12 b14 b16 b18 b20 b22 b24 b26 χ

2 1 1 3
3 1 3 8 14 17 69
4 1 3 10 24 53 93 136 152 792
5 1 3 10 26 63 135 268 470 725 950 1043 6345
6 1 3 10 26 65 145 310 612 1144 1970 3113 4391 5462 5873 40377

Table 3: The Betti numbers bn (with n ≤ dimC M) and the Euler numbers
χ of the moduli spaces of stable sheaves on Σ1 with r = 3, c1 = −C − 2f ,
and 3 ≤ c2 ≤ 6.

c2 b0 b2 b4 b6 b8 b10 b12 b14 b16 b18 b20 b22 χ

3 1 2 3 9
4 1 3 9 19 31 36 162
5 1 3 10 25 58 113 192 264 297 1629
6 1 3 10 26 64 140 288 536 907 1348 1733 1885 11997

for β = 1, 2 mod 3 and α ∈ Z. Writing out the lattice sums in
Equation (3.12), one finds a novel indefinite theta function. It has signature
(2, 2) and the condition which determines whether or not a lattice point
contributes depends quadratically on the lattice vector, whereas previously
described indefinite theta functions have signature (n, 1) and the condi-
tion depends linearly on the lattice vector [12, 39]. A detailed discussion
of the (mock) modular properties of h3,c1(z, τ ; Σ�, J) will appear in a future
article [5].

Tables 1–3 list Betti numbers for c1 = −C − αf with α = 1, 2, 3 and
� = 1, which are in agreement with the expected dimension (2.3). One can
relate the Betti numbers for c1 = −2C − αf to these by using hr,c1 = hr,−c1 ,
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and hr,c1+k = hr,c1 for k ∈ H2(S, rZ). With a little more work, one can verify
that h3,c1(z, τ ; Σ1, J1,0) satisfies the relations implied by the blow-up for-
mula (3.4).
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Appendix A. Modular functions

Define q := e2πiτ , w := e2πiz, with τ ∈ H and z ∈ C. The Dedekind eta and
Jacobi theta functions are defined by:

η(τ) := q
1
24

∞
∏

n=1

(1 − qn),

θ1(z, τ) := i
∑

r∈Z+ 1
2

(−1)r− 1
2 q

r2

2 wr,(A.1)

θ2(z, τ) :=
∑

r∈Z+ 1
2

qr2/2wr,

θ3(z, τ) :=
∑

n∈Z

qn2/2wn.

The Appell function at level � is defined by:

(A.2) A�(u, v, τ) = a�/2
∑

n∈Z

(−1)�nq�n(n+1)/2bn

1 − aqn
,

with a = e2πiu and b = e2πiv. In order to give the completion ̂A�(u, v, τ),
define

R(u, τ) =
∑

r∈Z+ 1
2

(

sgn(r) − E
(

(r + Imu/y)
√

2y
))

× (−1)r− 1
2 a−rq−r2/2,
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with E(x) = 2
∫ x
0 e−πu2

du. The completion ̂A�(u, v, τ) is then given by [40]

̂A�(u, v, τ) = A�(u, v, τ) +
i
2

�−1
∑

k=0

ak θ1(v + kτ + (� − 1)/2, �τ)(A.3)

× R(�u − v − kτ − (� − 1)/2, �τ),

and transforms as a multivariable Jacobi form of weight 1 and index 1
2

(−� 1
1 0

)

.
The Appell function for � = 1 is related to the Lerch–Appell function: μ(u, v,
τ) = A1(u, v, τ)/θ1(v), which satisfies the quasi-periodicity property [39]:

(A.4) μ(u + z, v + z, τ) − μ(u, v, τ) =
η(τ)3 θ1(u + v + z, τ) θ1(z, τ)

θ(u, τ) θ(v, τ) θ(u + z, τ) θ(v + z, τ)
,

for u, v, u + z, v + z /∈ Zτ + Z.
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