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The resurgence of instantons in string theory

Inês Aniceto, Ricardo Schiappa and Marcel Vonk

Nonperturbative effects in string theory are usually associated to
D-branes. In many cases it can be explicitly shown that D-brane
instantons control the large-order behavior of string perturbation
theory, leading to the well-known (2g)! growth of the genus
expansion. This paper presents a detailed treatment of nonpertur-
bative solutions in string theory, and their relation to the
large-order behavior of perturbation theory, making use of trans-
series and resurgent analysis. These are powerful techniques
addressing general nonperturbative contributions within non–linear
systems, which are developed at length herein as they apply to
string theory. The cases of topological strings, the Painlevé I equa-
tion describing 2d quantum gravity, and the quartic matrix model,
are explicitly addressed. These results generalize to minimal strings
and general matrix models. It is shown that, in order to completely
understand string theory at a fully nonperturbative level, new sec-
tors are required beyond the standard D-brane sector.
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1. Introduction and summary

String theory may be defined perturbatively, as a topological genus expan-
sion, in terms of two couplings, α′ and gs,

(1.1) F (gs; {ti}) �
+∞∑

g=0

g2g−2
s Fg(ti),

where F = logZ is the string free energy and Z the partition function.
At fixed genus g the free energies1 Fg(ti) are themselves perturbatively
expanded in α′. As it turns out this α′ expansion is the milder one, with
finite convergence radius. What we address in this paper concerns the topo-
logical genus expansion where one is faced with the familiar string theoretic
large-order behavior Fg ∼ (2g)! rendering the topological expansion as an
asymptotic expansion [1]. How can one go beyond perturbation theory in gs

and define nonperturbative string theory in general?
Stated in this form, this is a very broad and hard question. In order to

actually be able to make progress on this front we shall need to specialize
to a very concrete physical arena — large N duality for topological strings,
matrix models, and their double-scaling limits — where a set of mathemati-
cal tools, which go by the name of Borel and resurgent analysis, will allow for
the construction of solutions to this problem. Let us thus start by reviewing
the physical context.

1.0.1. Main motivations Perhaps the most popular approach to the
nonperturbative definition of string theory is within the context of large
N duality [2]. In this framework, the partition function of some gauge
theoretic system defines, nonperturbatively, a dual large-N closed-string
background. This background is, in turn, described by some geometrical
construction which is itself determined by the particular asymptotic (large

1In here the ti are geometric moduli: for instance, in topological string theory
the {ti} moduli are identified with Kähler parameters in the A-model and with
complex structure parameters in the B-model.
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N) limit under consideration. Let us focus, for example, on the rather com-
plete picture of [3]. Here, one starts off on the gauge theoretic side with a
matrix model with some potential, V (z), and, given a classical vacuum —
that is, a distribution of the matrix eigenvalues across the several distinct
critical points of the potential —, the ’t Hooft large N limit [4] yields a
(holographic) closed string background which is described by the topologi-
cal B-model on a specific noncompact Calabi–Yau geometry. It is important
to notice that different choices of classical vacua will yield different large N
geometries and the same gauge theoretic system will thus allow for different
large N asymptotic expansions, represented by these distinct semi-classical
geometrical backgrounds. Now, the construction of the large N dual in [3] is
essentially achieved by comparing free energies. On the matrix model side,
the 1/N ’t Hooft expansion of the free energy starts off by a choice of a
semi–classical saddle-point, described by a spectral curve (see, e.g., [5] for a
review2). Given this spectral geometry there then exists a well-defined pro-
cedure to compute the large N expansion of the free energy [8] which puts
the results in [3] on solid ground, with an explicit construction of the genus
expansion (1.1) of the dual closed string geometry3 [10] (which can of course
be checked by explicit calculations strictly within the topological B-model
closed string theory).

We may now address our main question above within this physical set-
up. In fact, it is also the case that the ’t Hooft expansion is of the form (1.1),
this time around in powers of N2−2g but still with Fg ∼ (2g)!, i.e., the 1/N
expansion is an asymptotic perturbative expansion with zero radius of con-
vergence. As we shall discuss at length in this work, this means that there
will be nonperturbative corrections of the form exp(−N) that still need to
be taken into consideration. These are associated to instantons and from a
dual closed string point of view, in the large N limit, these corrections typ-
ically enjoy a semi-classical description corresponding to D-brane instanton
effects. So we shall see that, given a gauge theoretic system and considering
one of its possible large N limits, one obtains a closed string dual from the
semi-classical data of the gauge theory ’t Hooft limit, both at perturbative
and nonperturbative levels. This set–up indeed allows us to move beyond

2Let us further point out that this matrix model problem of constructing the
1/N expansion, spelled out in [6] and which gained an appealing geometrical flavor
in [7], has recently been exactly solved purely in terms of spectral geometry in [8,9],
and that these results lie at the conceptual basis of our description above.

3This procedure later allowed for very interesting extensions of the proposal in [3]
to more general topological string backgrounds, including duals of closed strings on
mirrors of toric backgrounds [11,12].
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the perturbative ’t Hooft expansion. One question we address in this work
is to which point the nonperturbative description is complete, and whether
D-branes account for the full semi-classical nonperturbative data in such a
complete description. That is, if the finite N gauge theoretic partition func-
tion is the correct nonperturbative definition for closed strings in certain
backgrounds, one must also understand how this finite N system encodes,
from a dual spacetime point of view, all semi-classical nonperturbative con-
tributions.

In order to tackle the aforementioned problems, we shall need to resort to
an extensive use of resurgent analysis. This is a framework, which allows for
the construction of exact nonperturbative solutions to rather general non-
linear problems in terms of so-called transseries solutions (first introduced in
the string theoretic context in [13]), and we shall further fully develop this
framework as it applies to string theory. Transseries solutions account for all
possible saddle-points of a given problem, and denoting them as resurgent
essentially means that the asymptotic behavior of the perturbative expan-
sion around some chosen saddle is dictated by contributions from all other
saddles (we shall be precise about these ideas in the main body of the text).
There are two different but complementary aspects to these solutions: on
the one hand the specific construction of transseries solutions, and the check
of their resurgent properties, amounts to the mathematical study of either
differential or finite-difference equations (in the context of matrix models
and their double-scaling limits). On the other hand, we also have a physi-
cal interpretation of these solutions: in particular, we shall find that these
transseries solutions, encoding the complete nonperturbative content of the
large N description, have sectors which cannot be associated to D-branes,
at least not in a straightforward fashion (as first anticipated in [14,15]). Fur-
ther, the resurgent nonperturbative solutions have a holographic flavor, in
the sense that although one starts from the gauge theoretic (matrix model)
side, these solutions may be understood in terms of dual large N data. Set-
ting up a nonperturbative large N duality framework is of obvious relevance
to many diverse issues. For example, a particularly interesting question is
whether going beyond perturbation theory around some classical vacuum of
the matrix model will allow, in the holographic dual, to “see” other closed
string backgrounds (which are naturally included in the finite N gauge the-
oretic system).

1.0.2. Literature overview In order to place our results in perspective,
let us now present an overview of the literature that led up to this work. The
present research program started in [11, 16], which proposed to generalize
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many of the nonperturbative results previously obtained within minimal
strings to the realm of matrix models off-criticality and topological strings
(intimately related via [3], as mentioned before). Indeed, the double-scaled
instantons uncovered in [1], and studied from the matrix model point of
view in [17, 18], were instrumental for, e.g., the discovery of D-branes in
critical string theory4 sparked in [19]. The approach of [16] used saddle-point
techniques to extend results such as [17,18,22,23] away from criticality. This
is an approach that relies on the matrix model spectral curve, identifying
instantons with B-cycles in the spectral geometry, and which can also be
extended to the study of multi-instanton corrections — developed in [15,
24], albeit not very explicitly on what concerns general multi-cut saddle-
point configurations. These results were later extended in [25] to further
include instantons associated to A-cycles, which play a relevant role in many
topological string theories (in the so-called c = 1 class).

A complementary approach was introduced in [13], this time around
making use of orthogonal polynomial techniques [26], where transseries were
first introduced to deal with string theoretic problems. One of the results in
the present paper is to fully generalize these ideas to obtain complete non-
perturbative solutions to matrix models. In some sense, as we shall make
much more precise as we go along in this work, the transseries approach
amounts to summing over all possible backgrounds, i.e., all possible distri-
butions of matrix eigenvalues across the many cuts, which correspond to
all possible large N saddle geometries. In particular, multi-instanton correc-
tions within multi-cut geometries [15,24] amount to the exchange of matrix
eigenvalues along the different cuts, which is effectively interpreted as a
change of semi-classical background. This naturally led to the construction
of a grand-canonical, manifestly background independent, partition func-
tion in [27] (building upon results in [28,29]) which was further proved to be
both holomorphic and modular covariant. Summing over all possible back-
grounds or over all possible nonperturbative instanton corrections amounts
to the same effect. This grand-canonical partition function is built by mak-
ing use of theta-functions, implying, in particular, that there will be regions
in the gauge theory phase diagram where there are no large N expansions
(i.e., there is no 1/N expansion due to the oscillatory nature of the theta-
functions). This rather important idea was later explored, from a large N
duality point of view, in [30]. Finally, most of the transseries results extend

4Of course these instantons also played a decisive role in many nonperturbative
questions addressed within minimal string theory [5, 20] and were later precisely
identified as D-brane configurations in [21].
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beyond the context of matrix models. All they require is the existence of a
string equation [26], typically a finite-difference equation in the context of
off-critical matrix models, or a differential equation in the context of double-
scaled minimal strings, which is known to also exist in other examples of
topological strings without a very clean matrix model relation, e.g., [16,31].
There may well be larger classes of examples where this is the case.

A very important role in all this analysis was played by the relation
of instantons to the large-order behavior of the string perturbation the-
ory [11,16], i.e., to the fact that these instanton effects are testable via their
connection to the large-order behavior of the 1/N asymptotic expansion [32].
Rather impressive agreement was found for many of the calculations in the
previous references and this will also be a very important point in the present
paper: the resurgent framework we uncover, from an analytical approach,
is extensively — and extremely rigorously — tested by exploring the con-
nections between the asymptotics of multi–instanton sectors as dictated by
resurgence. As we shall explain, resurgence demands for a very tight web
of relations in between all these distinct nonperturbative sectors, which is
translated into their large-order behavior. These relations may be very thor-
oughly checked, and to very high precision, making use of numerical tests,
a fact which will clearly justify the construction we shall propose.

It might be fair to say that the first truly unexpected result along this
line of research appeared in [14], which addressed the large-order asymp-
totic behavior of multi -instanton sectors, rather than just focusing on the
usual large-order behavior of perturbation theory. In particular, that work
addressed the large-order behavior of the 2-instantons sector in the Painlevé
I system (the (2, 3) minimal string) and found that new nonperturbative sec-
tors, besides the usual multi-instanton contributions, were required in order
to properly describe the full asymptotic behavior of this sector. This was
done at leading order, in the resurgent framework, and was in fact the main
motivation behind the full construction we embrace in our present work: to
understand the complete set of nonperturbative contributions demanded by
resurgence, within the minimal string context, and further extend it to gen-
eral matrix models and topological strings. At this stage the reader might
complain that we have mentioned the word “resurgence” a lot but have been
a bit vague about the nature of this framework. This is due to the fact that
this formalism, a rather general framework introduced in [33] to address
general solutions of nonlinear systems in terms of multi-instanton data, is
a bit involved. In here, we wanted to motivate the need for more general
approaches to nonperturbative issues within large N duality from a purely
string theoretic point of view. In Section 2 we introduce this formalism
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(alongside with some new results concerning multi-instanton asymptotics)
and indicate how it may be used in string theory. In this way, we recom-
mend the reader to regard this section as an enlarged introduction to the
ideas that are then explored at length in the rest of the paper.

1.0.3. Outline of the paper This paper is organized as follows. As just
mentioned, we begin in Section 2 with an introduction to resurgence and
the development of asymptotic formulae. Asymptotic expansions, with zero
radius of convergence, need to be resummed if one is to extract any informa-
tion out of them. There are, of course, many different possible resumation
techniques (see, e.g., [34]) but since our models deal with asymptotic series
which diverge factorially, the natural procedure to use in this case turns out
to be the Borel resummation framework. This leads in turn to the resurgent
framework of Écalle, which we introduce in a physical context in this section.
We also discuss the relation to the Stokes phenomenon; previously discussed
in, e.g., [25,30]. Then, in Section 3, we apply some of the ideas of resurgence
to topological string theory in the Gopakumar–Vafa representation [35,36].
This is, essentially, an extension of the work developed in the context of
topological strings on the resolved conifold in [25]. Section 4 starts devel-
oping the resurgent framework to more general string theoretic systems, in
such a way that we can apply it to minimal strings and matrix models. This
is where we develop the main structure of our nonperturbative solutions,
which will later materialize with explicit results in the following sections. In
Section 5, we discuss one of our main examples, the (2, 3) minimal string
theory, which describes pure gravity in two dimensions. In this section, we
shall construct the full two-parameters transseries solution to the Painlevé
I equation, generalizing the work of [14]. Do notice that, for the Painlevé I
perturbative solution, leading asymptotic checks have been carried out in,
e.g., [16, 37–39]. A partial transseries analysis was done in [40]. As for its
multi-instantons solutions, as mentioned above, leading asymptotic checks
have been carried out in [14]. Our present analysis extends all these partial
results to a full general solution. Furthermore, by analysis of the resulting
resurgent structure we show that this solution has complete nonperturba-
tive information concerning the minimal model. More importantly, in this
complete set of nonperturbative data, and besides the standard instanton
or D-brane sector, we find new nonperturbative sectors with a “general-
ized” instanton structure. We perform high-precision numerical tests of all
nonperturbative sectors, including the new “generalized” instanton sectors,
which clearly show the need for all these contributions in the full exact solu-
tion. We also compute many, previously unknown, Stokes constants of the
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Painlevé I equation and of the (2, 3) minimal string theory. In Section 6, we
analyze the full fledged quartic matrix model, starting around the one-cut
saddle-point geometry. In a similar fashion to what we previously did for
the Painlevé I equation, we construct the transseries solution which yields
the complete nonperturbative solution to this matrix model. We further
show how this solution relates back to the Painlevé I transseries solution in
the double-scaling limit. This includes a discussion of the new nonperturba-
tive sectors of the quartic matrix model, alongside with extensive numerical
checks which use the resurgent relations to prove the validity of these sec-
tors. We also show that the transseries of the quartic model may be set up
in such a way that the Stokes constants of this problem are essentially given
by the Stokes constants of the (2, 3) model. We close in Section 7 with a
discussion and some ideas for future work. Do notice that our analysis gen-
erated a rather large amount of data which, for reasons of space, cannot be
all presented in the body of this paper. Mathematica files with the relevant
data are available from the authors upon request. We do however present
some partial data in a few appendices, to indicate how the full set-up was
constructed.

2. Borel analysis, resurgence and asymptotics

One framework to address nonperturbative completions of rather general
nonlinear systems is the resurgent formalism of Écalle [33], building upon
results of Borel analysis and Stokes phenomena, and we shall briefly review
it in this section5. In short, it amounts to a procedure which constructs solu-
tions to nonlinear problems by addressing all possible multi-instanton sec-
tors, i.e., all possible saddle-point configurations in the path integral. Notice
that this means that one constructs the full solution perturbatively as a
power series in the string coupling and also perturbatively in the instanton
number, i.e., as a power series in the (exponential) instanton contribution —
although each instanton contribution is itself nonperturbative. Besides allow-
ing for the construction of nonperturbative solutions, the multi-instanton
sectors also allow for a quantitative understanding of the large-order behav-
ior of the corresponding perturbative expansions around a given, fixed multi-
instanton sector (the large-order behavior of the zero–instanton sector being
the simplest case to analyze), a subject with a long tradition in quantum
mechanics and field theory, e.g., [32, 41, 42]. Some ideas of resurgence have

5The reason for the term “resurgent”— roughly meaning “reappearing”— will
also be explained in what follows.
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also been partially addressed recently within the matrix model context, see,
e.g., [11,13–16,24,25,27]. At least in principle, the multi-instanton informa-
tion could provide for a reconstruction of the exact free energy, or partition
function, in any region of the coupling-constant complex plane.

Let us begin with a rather general introduction to some of these ideas, by
considering the free energy in the zero-instanton sector of any given model
(stringy or not), F (z), given as an asymptotic perturbative expansion6 in
some coupling parameter z (we will soon take z ∈ C),

(2.1) F (z) �
+∞∑

g=0

Fg

zg+1
.

Let us assume that, at large g, the coefficients above behave as Fg ∼ g!,
rendering the series asymptotic with zero radius of convergence. In this case,
while we are assuming that F (z) exists as a function, one must still make
sense out of the formal power series on the right-hand side and we shall
use the notation � to signal this fact. There are many quantum mechanical
and quantum field theoretic examples where this is the typical behavior of
the perturbative series and this is essentially due to the growth of Feynman
diagrams in perturbation theory [32]. In the following, we shall explain how
resurgent analysis makes sense of asymptotic series. For the moment, let
us just mention that the factorial growth of the Fg is precisely controlled
by nonperturbative instantons corrections, which behave as e−nAz with A
denoting the instanton action and n the instanton number [32]. As we shall
see in great detail, although each perturbative/multi-instanton sector is very
different due to the nonanalytic contribution e−nAz (at z ∼ ∞), resurgence
will relate the asymptotic growth of each sector to the leading coefficients
of every other sector.

Let us now further perform a perturbative expansion around the (non-
perturbative) contribution at a given fixed instanton number. One finds that
the full n-instanton contribution is of the form (see, e.g., [13, 14, 16, 43] for
discussions in the context of matrix models, and topological and minimal
strings)

(2.2) F (n)(z) � z−nβ e−nAz
+∞∑

g=1

F
(n)
g

zg
.

6In the following, we shall do perturbation theory around z ∼ ∞, rather than
gs ∼ 0 as usual.
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Here β is an exponent which varies from example to example7, and F (n)
g is the

g-loop contribution around the n-instanton configuration. Let us now further
assume that, at large g, these coefficients also behave as F (n)

g ∼ g!, rendering
all multi-instanton contributions as (divergent) asymptotic series (just as
above, this is a typical behavior in many quantum mechanical or quantum
field theoretic examples [32]). As we shall see, it is possible to precisely
understand the asymptotics, in g, of the multi-instanton contributions F (n)

g ,
in terms of the coefficients F (n′)

g , with n′ close to n. This means that all
these asymptotic expansions are resurgent [43], and we shall delve into this
in the following.

As an approximation to the exact solution these asymptotic, divergent
formal power series must be truncated and one is consequently faced with
the problem that the perturbative expansion has zero convergence radius. In
particular, if we do not know the exact function, F (z), but only its asymp-
totic series expansion, how do we associate a value to the divergent sum?
One framework to address issues related to (factorially divergent) asymp-
totic series is Borel analysis. Introduce the Borel transform as the linear
map8 from (asymptotic) power series around z ∼ ∞ to (convergent) power
series around s ∼ 0, defined by

(2.3) B
[

1
zα+1

]
(s) =

sα

Γ(α+ 1)
,

so that the Borel transform of the asymptotic series (2.1) is the function

(2.4) B[F ](s) =
+∞∑

g=0

Fg

g!
sg,

which “removed” the divergent part of the coefficients Fg and renders B[F ](s)
with finite convergence radius around the origin in C. In general, however,
B[F ](s) will have singularities and it is crucial to locate them in the complex
plane. Indeed, if B[F ](s) has no singularities along a given direction in the
complex s-plane, say arg s = θ, one may analytically continue this function
on the ray eiθ

R
+ and thus define the inverse Borel transform — or Borel

7As such, we shall be more explicit on how to find it when we actually address
some examples.

8Notice that the Borel transform is not defined for α = −1, i.e., for a constant
term. Thus, in order to Borel transform an asymptotic power series with constant
term (denoted the residual coefficient), one first drops this constant term and then
performs the Borel transform by the rule presented above.
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resummation of F (z) along θ — by means of a Laplace transform with a
rotated contour as9

(2.5) SθF (z) =
∫ eiθ∞

0
dsB[F ](s) e−zs.

The function SθF (z) has, by construction, the same asymptotic expansion
as F (z) and may provide a solution to our original question; it associates a
value to the divergent sum (2.1). In the following we shall further define the
lateral Borel resummations along θ, Sθ±F (z), as the Borel resummations
Sθ±εF (z) for ε ∼ 0+.

Let us consider a simple example where we take as asymptotic series

(2.6) F (z) �
+∞∑

g=0

Γ(g + a)
Γ(a)

1
Ag

1
zg+1

.

In this case the Borel transform immediately follows as

(2.7) B[F ](s) =
1(

1 − s

A

)a ,

and it has a singularity (either a pole or a branch–cut, depending on the
value of a) at s = A.

Thus, if the function B[F ](s) has poles or branch cuts along its integra-
tion contour above, from 0 to eiθ∞, things get a bit more subtle: in order
to perform the integral (2.5) one needs to choose a contour which avoids
such singularities. This choice of contour naturally introduces an ambiguity
(a nonperturbative ambiguity) in the reconstruction of the original function,
which renders F (z) non-Borel summable. As it turns out, different inte-
gration paths produce functions with the same asymptotic behavior, but
differing by (non-analytical) exponentially suppressed terms. It is precisely
when there are such obstructions to Borel resummation along some direc-
tion θ that the lateral Borel resummations become relevant: for instance,
in the presence of a simple pole singularity at a distance A from the ori-
gin, along some direction θ in C, one may define the Borel resummation on
contours Cθ± , either avoiding the singularity via the left (as moving towards
infinity), and leading to Sθ+F (z), or from the right, and leading to Sθ−F (z)

9If the original asymptotic series one started off with had a constant term,
dropped in the Borel transform, one may now define the Borel resummation as
shown, plus the addition of this constant term.
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θ θ θ

Figure 1: The first image shows singularities along some direction θ in the
Borel complex plane, and the contours corresponding to the left and right lat-
eral Borel resummations along such direction. The second and third images
show how to cross this singular direction, or Stokes line, via the Stokes auto-
morphism: the left Borel resummation equals the right Borel resummation
plus the discontinuity of the singular direction (given by the sum over Hankel
contours around all singular points).

(see figure 1). One finds that these two functions differ by a nonperturbative
term [32]

(2.8) Sθ+F (z) − Sθ−F (z) ∝
∮

(A)
ds

e−zs

s−A
∝ e−Az.

Further nonperturbative ambiguities arise as one reconstructs the origi-
nal function along different directions (with singularities) in the complex
s-plane. As such, different integration paths produce functions with the same
asymptotic behavior, but differing by exponentially suppressed terms. To be
fully precise about these, we shall need to delve into resurgence [43–45].

2.1. Alien calculus and the Stokes automorphism

Let us return to our formal power series (2.1). This asymptotic expansion is
said to be a simple resurgent function if its Borel transform, B[F ](s), only
has simple poles or logarithmic branch cuts as singularities, i.e., near each
singular point ω

(2.9) B[F ](s) =
α

2πi(s− ω)
+ Ψ(s− ω)

log(s− ω)
2πi

+ Φ(s− ω),

where α ∈ C and Ψ, Φ are analytic around the origin. It can be shown
that simple resurgent functions allow for the resummation of formal power
series along any direction in the complex s-plane, thus leading to a family
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of sectorial analytic functions {SθF (z)}. For rigorous details and the proof
of this statement, we refer the reader to [43–45].

As should be clear — and up to nonperturbative ambiguities — in dif-
ferent sectors one obtains different resummations and one needs to fully
understand Borel singularities in order to “connect” these sectorial solu-
tions together. The next step in order to analyze these Borel singularities
in greater detail is to introduce Écalle’s alien calculus [33, 44]. At its basis
lies a differential operator acting on resurgent functions, the alien derivative
Δω. Let us define it within the context of simple resurgent functions10: Δω

is a linear differential operator from simple resurgent functions to simple
resurgent functions, satisfying the Leibniz rule and the following two basic
properties:

• If ω is not a singular point (a simple pole or a logarithmic cut), then
ΔωF (z) = 0.

• If ω is a singular point, let us first consider the Borel transform of our
resurgent function (2.9), which we now conveniently write as

(2.10) B[F ](ω + s) =
α

2πi s
+ B[G](s)

log s
2πi

+ holomorphic,

with G(z) the resurgent function whose Borel transform yields Ψ(s) in
(2.9) (of course in practice it might be hard to find G(z) explicitly).
In this case, the alien derivative at a singular point ω is given by

(2.11) SΔωF (z) = α+ Sarg ωG(z).

To have a better grasp on the calculation of alien derivatives let us
consider another example, slightly more involved than (2.6), where we now
take as asymptotic series

(2.12) F (z) �
+∞∑

g=0

Γ(g + 1)
Γ(1)

1
g + 1

1
Ag

1
zg+1

.

It is again very simple to evaluate the Borel transform as

(2.13) B[F ](s) = −A
s

log
(
1 − s

A

)
,

10The definition for general resurgent functions is more intricate; see, e.g., [43–45].
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with a branch cut in the complex s-plane running from A to infinity. It is
immediate to check that our asymptotic series (2.12) defines a simple resur-
gent function. Further noticing that A

s = B[G](s−A) with G(z) a resurgent
function closely related to our earlier example (2.6),

(2.14) G(z) �
+∞∑

g=0

Γ(g + 1)
Γ(1)

1
(−A)g

1
zg+1

,

it immediately follows by definition that

(2.15) ΔAF = −2πiG.

Alien derivatives thus encode the whole singular behavior of the Borel
transform (they encode how much B[F ](s) “jumps” at a singularity) and
allow for the aforementioned “connection” of sectorial solutions. Indeed, let
us consider a singular direction θ, i.e., a direction along which there are sin-
gularities in the Borel complex plane. In the original complex z-plane such a
direction is known as a Stokes line (more on this later). Understanding how
to connect the distinct sectorial solutions on both sides of such direction nec-
essarily entails understanding their “jump” across this direction, and this is
accomplished via the Stokes automorphism, Sθ, or its related discontinuity,
Disc θ, acting on resurgent functions and satisfying [44]

(2.16) Sθ+ = Sθ− ◦ Sθ ≡ Sθ− ◦ (1 − Disc θ−),

in such a way that the action of Sθ on resurgent functions immediately
translates into the required connection of distinct sectorial solutions, across
a singular direction θ. In particular,

(2.17) Sθ+ − Sθ− = −Sθ− ◦ Disc θ− ,

such that Disc θ precisely encodes the full discontinuity11 of the resurgent
function across θ. Geometrically, one may think of Disc θ− as the sum over
all Hankel contours which encircle each singular point in the θ-direction, on
the left, and part off to infinity, on the right (see figure 1). The main point

11A function φ satisfying Sθφ = φ, or, equivalently, Disc θφ = 0, has no Borel
singularities along the θ-direction and is known as a resurgence constant along this
direction. In particular, in this region its Borel transform is analytic and φ is thus
given by a convergent power series.
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now is that, as it turns out [44,45], one finds

(2.18) Sθ = exp

⎛

⎝
∑

{ωθ}
e−ωθzΔωθ

⎞

⎠ ,

where {ωθ} denote all singular points along the θ-direction. Explicitly, for
singularities along the θ-direction in an ordered sequence, one can write [45]

Sθ+F (z) = Sθ−F (z) +
∑

r≥1;{ni≥1}

1
r!

e−(ωn1+ωn2+···ωnr )z(2.19)

× Sθ−(Δωn1
Δωn2

· · ·Δωnr
F (z)).

One concludes that, given all possible alien derivatives, this result provides
the necessary connection, and thus allows for a full construction of the exact
nonperturbative solution alongside with its Riemann surface domain.

It is rather instructive to explicitly write the Stokes automorphism in
our multi-instanton setting. Consider the positive real axis, where θ = 0,
and where the Borel singularities are located at the multi-instanton points
nA with n ∈ N

∗. In this case:

(2.20)

S0 = exp

(
+∞∑

n=1

e−nAzΔnA

)
= 1 + e−Az ΔA + e−2Az

(
Δ2A +

1
2
Δ2

A

)
+ · · · .

This expression will be rather important in what follows. For the moment let
us just go back to our earlier example and compute the action of the Stokes
automorphism S0 on (2.12). Given the only non-vanishing alien derivative
of F (z), (2.15), and the fact that higher-order alien derivatives of F (z) at A
also vanish (as ΔAG = 0), it is immediate to check from (2.20) above that

(2.21) S0F (z) = F (z) − 2πi e−Az G(z).

Computing alien derivatives straight from their definition is a hard task.
Fortunately, as we shall see, there are much simpler ways to compute alien
derivatives. In fact, it turns out that things will greatly simplify by intro-
ducing the pointed alien derivative

(2.22) Δ̇ω ≡ e−ωzΔω,
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as this operator commutes with the usual derivative [45],

(2.23)
[
Δ̇ω,

d
dz

]
= 0.

We shall now turn to explicit computations of alien derivatives in different
settings.

2.2. Transseries and the bridge equations

Having understood the central role that alien derivatives play in the con-
struction of nonperturbative solutions, the question remains: how to com-
pute them in a — preferably simple — systematic fashion? The answer arises
in the construction of the bridge equations, constructing a “bridge” between
ordinary and alien calculus.

Focusing on our familiar multi-instanton setting, with instanton action
A (one may allow A to be complex, in which case we shall be addressing
the argA direction in the Borel complex plane), let us consider a transseries
ansatz for our resurgent function,

(2.24) F (z, σ) =
+∞∑

n=0

σnF (n)(z),

where F (0)(z) is the formal asymptotic power series (2.1), and where

(2.25) F (n)(z) = e−nAz Φn(z), n ≥ 1,

are the n-instanton contributions (2.2), as discussed before — the Φn(z)
being further formal asymptotic power series. In here, σ is the nonperturba-
tive ambiguity or transseries parameter, selecting, in specified wedges of the
complex z-plane, distinct nonperturbative completions to our problem. In
the resurgence framework, where transseries also go by the name of resur-
gent symbols along some wedge of the complex plane [44], this is the most
general solution to a given nonlinear system. In this work, we shall only
be concerned with so-called log-free height-one transseries: this means that
the ansatz above is a formal sum of trans-monomials zα eS(z), with α ∈ R

and, in our case, S(z) a particularly simple convergent series. More general
transseries may be constructed, with S(z) a transseries itself possibly further
involving compositions with exponentials or with logarithms, but we refer
to [46] for a complete discussion.
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It is also important to realize that the transseries formalism is a rather
powerful technology: when inserted in the nonlinear equation satisfied by
F (z) (e.g., a finite-difference equation in the case of matrix models, or an
ordinary differential equation in the case of minimal strings, as we shall see
later), it will yield back the nonlinear equation for F (0)(z) — which is now
to be solved perturbatively —; it will yield a linear and homogeneous equa-
tion for F (1)(z); and it will yield linear but inhomogeneous equations for
F (n)(z), n ≥ 2. It is thus feasible to solve for all members of this hierar-
chy of equations and fully compute the transseries solution. Indeed, in all
examples of interest to us, it will turn out that all perturbative coefficients
F

(n)
g appearing in the infinite hierarchy of formal asymptotic power series

Φn(z) can be computed by means of (nonlinear) recursions. It will be further
the case that the asymptotics of these transseries coefficients F (n)

g will be
exactly determined in terms of neighboring coefficients F (n′)

g , with n′ close
to n, and in terms of a finite number of Stokes constants (defined in the
following).

Finally, notice that we have assumed the transseries ansatz to depend
on a single parameter, σ, assuming that the resurgent function arises as a
solution to some problem depending on a single “boundary condition”. More
complicated problems could lead to more general transseries ansätze, and
we shall see some such examples further down the line, but for the moment
we just consider the simple case where we may power series expand the
transseries ansatz in a single parameter, i.e., the transseries is an expansion
in C[[z−1, σ e−Az]]. For simplicity, we shall further assume that the Φn(z)
asymptotic series are simple resurgent functions.

Given the pointed alien derivative Δ̇�A = e−�AzΔ�A, 
 ∈ N
∗, one may

now compute

(2.26) Δ̇�AF (z, σ) =
+∞∑

n=0

σn e−(�+n)Az Δ�AΦn(z).

The key point is the following: suppose the transseries F (z, σ) is an ansatz
for the solution to some differential equation, in the variable z. Because the
pointed alien derivative commutes with the usual derivative, it is straight-
forward to obtain the (linear) differential equation which Δ̇�AF (z, σ) sat-
isfies. But, clearly, this will be the exact same differential equation as the
one that

(2.27)
∂F

∂σ
(z, σ)
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satisfies — simply because also this derivative commutes with the usual
derivative12. Assuming for simplicity that the differential equation is of first
order, it must thus be the case that

(2.28) Δ̇�AF (z, σ) = S�(σ)
∂F

∂σ
(z, σ);

a relation known as Écalle’s bridge equation [45], relating alien derivatives to
familiar ones! In here S�(σ) is a proportionality factor which may, naturally,
depend on σ. Recalling that alien derivatives encode the singular behavior
of the Borel transform, the bridge equation tells us that, in some sense,
at these singularities we find back the original asymptotic power series we
started off with — hence its name as a “resurgent” function. Let us explore
the implications of (2.28). Spelling it out as formal power series, and given
that Φn 
= 0, ∀n, this immediately implies

(2.29) S�(σ) = 0, 
 > 1 ⇔ Δ�AF (z, σ) = 0, 
 > 1.

While one may generically expect that the proportionality factor S�(σ) has
a formal power series expansion as S�(σ) =

∑+∞
k=0 S

(k)
� σk, homogeneity in σ

of the bridge Equation (2.28) demands k = 1 − 
. One may quickly realize
this by introducing a notion of degree such that

(2.30) deg(σn emAz) = n+m.

In this case degF (z, σ) = 0 (which follows since F (z, σ) only depends on
σ e−Az) immediately yields degS�(σ) = 1 − 
, i.e.,

(2.31) S�(σ) = S� σ
1−�, 
 ≤ 1.

12In full generality this is slightly more subtle: indeed, it will be often the case
that the differential equation one is considering will depend on some other (“initial
data”) functions. In this case, for the above reasoning to hold, these functions must
either be entire functions, or their Borel transforms cannot have singularities at the
points 
A (of course these functions will also have no dependence on σ whatsoever;
the transseries expression (2.24) is simply an ansatz for the solution, introducing a
new parameter).
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Plugging this back into the power series expansion of the bridge equation one
finally obtains a clearer expression for the bridge, or resurgence equations13

(2.32) Δ�AΦn =

{
0, 
 > 1,
S�(n+ 
)Φn+�, 
 ≤ 1,

where we have used conventions in which Φn vanishes if n is less than zero.
This expression yields all alien derivatives, in terms of a (possibly) infi-
nite sequence of unknowns S� ∈ C, 
 ∈ {1,−1,−2, . . .}, the so-called ana-
lytic invariants of the differential equation we started off with. Knowledge
of these analytic invariants allows for a full nonperturbative reconstruction
of the original function F (z), the problem we first set out to solve. However,
generically, the analytic invariants are transcendental functions of the initial
data (say, the differential equation one started off with) and quite hard to
compute.

For completeness, it is interesting to notice that the above resurgence
Equations (2.32) may be translated back to the structure of the Borel trans-
form, at least near each singularity 
A, by making use of the definition of
alien derivative (2.11) for a simple resurgent function. Indeed, with

(2.33) Φn(z) �
+∞∑

g=1

F
(n)
g

zg+nβ
and B[Φn](s) =

+∞∑

g=1

F
(n)
g

Γ(g + nβ)
sg+nβ−1,

it simply follows via (2.10)

(2.34) B[Φn](s+ 
A) = S�(n+ 
)B[Φn+�](s)
log s
2πi

, 
 ≤ 1.

Going back to the connection formulae (2.19) or to Stokes’ automor-
phism (2.20) makes clear how important (2.32) is: it is telling us that the
somewhat initial multi-instanton data is enough for a full reconstruction
of the nonperturbative solution. Consider first the positive real axis, where

13One also obtains a clearer explanation for the name “resurgent”: via the bridge
equations the alien derivatives, encoding the singular behavior of the Borel trans-
form, are given in terms of the original asymptotic power series one started off with
(multiplied by suitable Stokes’ constants).
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θ = 0, and where the Stokes automorphism is

S0 = exp

(
+∞∑

�=1

e−�AzΔ�A

)
= 1 + e−Az ΔA + e−2Az

(
Δ2A +

1
2
Δ2

A

)
+ · · · .

(2.35)

Given the transseries ansatz, the action of S0 on F (z, σ) is entirely encoded
by the action of S0 on the several Φn(z), and this can now be completely
determined by the use of the bridge Equations (2.32). However, because
these vanish whenever 
 > 1, the Stokes automorphism immediately
simplifies to

S0 = exp(e−AzΔA) = 1 + e−Az ΔA +
1
2
e−2Az Δ2

A +
1
3!

e−3Az Δ3
A + · · · ,

(2.36)

where (just iterate (2.32))

(2.37) ΔN
A Φn = (S1)N ·

N∏

i=1

(n+ i) · Φn+N .

One may now simply compute

(2.38) S0Φn =
+∞∑

�=0

(
n+ 


n

)
S�

1 e−�Az Φn+�.

The interesting fact about the bridge Equations (2.32) is that they contain
much more information than just that concerning the positive real axis.
Indeed, consider instead the negative real axis, where θ = π, and where the
Stokes automorphism becomes

Sπ = exp

(
+∞∑

�=1

e�AzΔ−�A

)
= 1 + eAz Δ−A + e2Az

(
Δ−2A +

1
2
Δ2

−A

)
+ · · · .

(2.39)

The action of Sπ on F (z, σ) is again entirely encoded by the action of Sπ

on the several Φn(z), and is determined by the use of the bridge equations
(2.32). All one needs are formulae for multiple alien derivatives, which follow
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straightforwardly as14

(2.40)
N∏

i=1

Δ−�(N+1−i)AΦn =
N∏

i=1

S−�i
·

N∏

i=1

⎛

⎝n−
i∑

j=1


j

⎞

⎠ · Φn−∑N
i=1 �i

.

Notice that the ordering of the alien derivatives in the left–hand side of the
expression above is rather fundamental, as alien derivatives computed at
different singular points do not commute. For example, it is simple to check
that [Δ−nA,Δ−mA] ∝ (n−m). Also, because the alien derivatives vanish as
soon as one considers Δ−nAΦn = 0, this apparent series actually truncates
to a finite sum, at each stage. One may simply compute

SπΦn = Φn +
n−1∑

�=1

e�Az
�∑

k=1

1
k!

∑

�1,...,�k≥1∑
i �i=�

⎧
⎨

⎩

k∏

j=1

S−�j
·

k∏

j=1

(
n−

j∑

m=1


m

)⎫⎬

⎭Φn−�

(2.41)

= Φn +
n−1∑

�=1

e�Az
�∑

k=1

1
k!

∑

0=γ0<γ1<···<γk=�

⎛

⎝
k∏

j=1

(n− γj)S−dγj

⎞

⎠Φn−�.

(2.42)

In the last line, the sum over all possible partitions 
i ≥ 1 was replaced
by a sum over their consecutive sums γs =

∑s
j=1 
j and we defined dγj ≡

γj − γj−1 (i.e., the partitions). A few examples of the Stokes automorphism
at θ = π are given below:

SπΦ0 = Φ0,(2.43)
SπΦ1 = Φ1,(2.44)

SπΦ2 = Φ2 + S−1 eAz Φ1,(2.45)

SπΦ3 = Φ3 + 2S−1 eAz Φ2 + (S−2 + S2
−1)e

2Az Φ1.(2.46)

Finally, making use of the Stokes automorphism (2.18), one may directly
apply the bridge Equation (2.28) in order to find, e.g.,

(2.47) Sθ+F (z, σ) = Sθ− exp(Δ̇ω)F (z, σ) = Sθ−F (z, σ(1 + ωSωσ
−ω)

1
ω ).

14Of course this expression holds as long as n−∑N
i=1 
i 
= 0. As soon as this

term vanishes, so does the multiple alien derivative, and consequently so will all
subsequent ones.
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In particular, when ω = 1, argω = 0, this is

(2.48) S+F (z, σ) = S−F (z, σ + S1),

in such a way that S1 acts as a Stokes constant for the transseries expres-
sion. For this reason, we shall generally refer to the analytic invariants S� as
“Stokes constants”. Of course this exact same expression could be obtained
by applying the Stokes automorphism at θ = 0, (2.38), to the transseries
(2.24) (trying the same at θ = π, via (2.41), would be much more compli-
cated). In the original complex z-plane this Borel-plane singular-direction
corresponds to a Stokes line and what the expression above describes is pre-
cisely the Stokes phenomena of classical asymptotics — here fully and nat-
urally incorporated in the resurgence analysis. At a Stokes line, subleading
exponentials start contributing to the asymptotics and this is accomplished
in here by the “jump” of σ, the coefficient associated to the transseries
formal sum over (multi-instanton) solutions. In other words, the “connec-
tion” expression (2.19) yields a relation between the coefficient(s) in the
transseries solution, in different parts of its domain, or, on different sides of
the Stokes line.

2.3. Stokes constants and asymptotics

One may wonder why the long detour into resurgence and alien calculus.
As it turns out, understanding the full asymptotic behavior of all multi-
instanton sectors — which is to say, fully understanding the nonperturbative
structure of the problem at hand — demands for this complete formalism.
Let us first recall the standard large-order dispersion relation that follows
from Cauchy’s theorem [32]: if a function F (z) has a branch-cut along some
direction, θ, in the complex plane, and is analytic elsewhere, it follows

(2.49) F (z) =
1

2πi

∫ eiθ·∞

0
dw

Disc θ F (w)
w − z

−
∮

(∞)

dw
2πi

F (w)
w − z

.

In certain situations [41, 42] it is possible to show by scaling arguments
that the integral around infinity does not contribute. In such cases Cauchy’s
theorem provides a remarkable connection between perturbative and nonper-
turbative expansions. Let us first consider our familiar perturbative expan-
sion (2.1), within the transseries set-up (2.24), where F (0)(z) = Φ0(z). In
this case, the bridge Equations (2.32) tell us, via the Stokes automorphisms
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(2.38) and (2.41), that F (0)(z) has the following discontinuities:

Disc 0 Φ0 = −
+∞∑

�=1

S�
1 e−�Az Φ�,(2.50)

Disc π Φ0 = 0,(2.51)

i.e., F (0)(z) has a single branch cut along the Stokes direction corresponding
to the positive real axis in the Borel complex plane. From the perturbative
expansion (2.1) and using (2.49) above, it immediately follows:

(2.52) F (0)
g �

+∞∑

k=1

Sk
1

2πi
Γ(g − kβ)
(kA)g−kβ

+∞∑

h=1

Γ(g − kβ − h+ 1)
Γ(g − kβ)

F
(k)
h (kA)h−1,

where we have used the asymptotic expansions for the multi-instanton con-
tributions (2.2). It is instructive to explicitly write down the first terms in
this double-series,

F (0)
g � S1

2πi
Γ(g − β)
Ag−β

(
F

(1)
1 +

A

g − β − 1
F

(1)
2 + · · ·

)
(2.53)

+
S2

1

2πi
Γ(g − 2β)
(2A)g−2β

(
F

(2)
1 +

2A
g − 2β − 1

F
(2)
2 + · · ·

)

+
S3

1

2πi
Γ(g − 3β)
(3A)g−3β

(
F

(3)
1 +

3A
g − 3β − 1

F
(3)
2 + · · ·

)
+ · · · .

This is the multi–instanton generalization of a well-known result, also from
previous work within the matrix model and topological string theory con-
texts, e.g., [13,16]. In particular, it relates the coefficients of the perturbative
expansion around the zero-instanton sector with a sum over the coefficients
of the perturbative expansions around all multi-instanton sectors, in an
asymptotic expansion which holds for large g (and positive real part of
the instanton action). In particular, the computation of the one-loop one-
instanton partition function determines the leading order of the asymptotic
expansion for the perturbative coefficients of the zero-instanton partition
function, up to the Stokes factor S1. Higher loop contributions then yield the
successive 1

g corrections. Furthermore, multi-instanton contributions with

action nA will yield corrections to the asymptotics of the F (0)
g coefficients

which are exponentially suppressed as n−g.
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The novelty here arises due to the use of alien calculus, which allows for
a straightforward incorporation of all multi-instanton sectors in the asymp-
totic formulae, as well as a generalization of this procedure to all multi–
instanton sectors! Indeed, in terms of asymptotics of instanton series, we
shall find that the bridge Equations (2.32) essentially tell us that, given a
fixed instanton sector, its leading asymptotics are determined by both the
next and the previous instanton contributions — at least in examples where
a transseries ansatz depending on a single parameter is enough (we shall
later see examples where things get more complicated). In particular, at the
level of Borel transforms, the singularities closest to the origin, of B[Φn](s),
are located at s = ±A (if n = 0, 1 there is a single closest-to-the-origin sin-
gularity located at s = A), and these singularities will necessarily control
the large-order behavior of the multi-instanton sectors.

Let us now address the full n-instanton sector. Consider our perturba-
tive expansion (2.2) within the transseries set-up (2.24), where F (n)(z) =
e−nAz Φn(z). In this case, the bridge Equations (2.32) tell us, via the Stokes
automorphisms (2.38) and (2.41), that F (n)(z) has the following
discontinuities:

Disc 0 Φn = −
+∞∑

�=1

(
n+ 


n

)
S�

1 e−�Az Φn+�,

(2.54)

Disc π Φn = −
n−1∑

�=1

e�Az
�∑

k=1

1
k!

∑

0=γ0<γ1<···<γk=�

⎛

⎝
k∏

j=1

(n− γj)S−dγj

⎞

⎠Φn−�,

(2.55)

i.e., F (n)(z) has branch cuts along the Stokes directions corresponding to
both positive and negative real axes in the Borel complex plane. The contri-
bution from the discontinuity at θ = π can also be rewritten as a sum over
Young diagrams γi ∈ Γ(k, 
) : 0 ≤ γ1 ≤ · · · ≤ γk = 
 of length 
(Γ) = k, and
with maximum number of boxes for each part γi (also called the length of the
transposed Young diagram) being 
(ΓT ) = 
. This sum is only completely
well–defined if we also set S0, γ0 ≡ 0, in which case one finally obtains

(2.56) Disc π Φn = −
n−1∑

�=1

e�Az
�∑

k=1

1
k!

∑

γi∈Γ(k,�)

⎛

⎝
k∏

j=1

(n− γj)S−dγj

⎞

⎠Φn−�.



The resurgence of instantons in string theory 365

For example, consider once again the case n = 3 in the notation above,

Disc π Φ3 = −eAz
∑

γi∈Γ(1,1)

((3 − γ1)S−dγ1) Φ2(2.57)

− e2Az
2∑

k=1

1
k!

∑

γi∈Γ(k,2)

⎛

⎝
k∏

j=1

(3 − γj)S−dγj

⎞

⎠Φ1.

Expanding the sums, there will be only one Young diagram corresponding to
Γ(1, 1), , for which γ1 = 1. For Γ(1, 2) one can only find (γ1 = 2), while
for Γ(2, 2) there are two possible Young diagrams: (γ1 = 1, γ2 = 2) and

(γ1 = γ2 = 2; but this will not contribute because S0 = 0). The expected
result arising from (2.46) then simply follows.

From the perturbative expansion (2.2) and the dispersion relation (2.49),
which now needs to account for both branch cuts, it finally follows:

F (n)
g �

+∞∑

k=1

(
n+ k

n

)
Sk

1

2πi
· Γ(g − kβ)

(kA)g−kβ

+∞∑

h=1

Γ(g − kβ − h)
Γ(g − kβ)

F
(n+k)
h (kA)h

(2.58)

+
n−1∑

k=1

⎧
⎨

⎩
1

2πi

k∑

m=1

1
m!

∑

γi∈Γ(m,k)

⎛

⎝
m∏

j=1

(n− γj)S−dγj

⎞

⎠

⎫
⎬

⎭

× Γ(g + kβ)
(−kA)g+kβ

+∞∑

h=1

Γ(g + kβ − h)
Γ(g + kβ)

F
(n−k)
h (−kA)h.

This expression relates the coefficients of the perturbative expansion around
the n-instanton sector with sums over the coefficients of the perturbative
expansions around all other multi-instanton sectors, in an asymptotic expan-
sion which holds for large g. All Stokes factors are now needed for the gen-
eral asymptotic problem, and this analysis has essentially boiled down the
asymptotic problem to a problem of precisely computing these Stokes fac-
tors. These numbers are transcendental invariants of the problem one is
addressing and generically hard to compute — although, as we shall see, a
matrix model computation partially solves this issue. Notice that for instan-
ton numbers n = 0, 1 the combinatorial factor associated to the Stokes fac-
tors S� at negative 
 vanishes. As such, the contributions arising from the
second and third lines in the expression above can only be seen at instanton
number n = 2 and above. Finally, let us note that the explicit treatment of
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the leading contribution to this type of asymptotics was first presented, to
the best of our knowledge, in [43].

3. Topological strings in the Gopakumar–Vafa (GV)
representation

The first concrete example we shall explore deals with topological string
theory, where the free energy admits an integral GV representation, see
[35, 36]. Consider the free energy of the A-model, on a Calabi–Yau (CY)
threefold X , with complexified Kähler parameters {ti}. As a string theory
it satisfies the standard topological genus expansion (1.1) where, at genus
g, for large values of the Kähler parameters (the large-radius phase), one
finds [47]

(3.1) Fg(ti) =
+∞∑

di=1

Ng,d(X )e−d·t,

where the sum is over Kähler classes15 and where the coefficients Ng,d(X ) are
the Gromov–Witten (GW) invariants of X , counting world-sheet instantons,
i.e., the number of curves of genus g and degree d in X . As we mentioned
before, this α′ expansion is the milder one with finite convergence radius tc,
where the conifold singularity is reached, which may be estimated from the
asymptotic behavior of GW invariants at large degree (here γ is a critical
exponent; see, e.g., [31]) [47]

(3.2) Ng,d ∼ d(γ−2)(1−g)−1 ed tc , d→ +∞.

What we shall be interested in next is instead the asymptotic genus
expansion. In this case, and as thoroughly investigated for the resolved coni-
fold in [25], the GV integral representation for the free energy may be inter-
preted as a Borel resummation formula, immediately yielding, as we will see
in the following, the “leading” part of the topological string resurgent data.

3.1. Topological string free energy and Borel resummation

Let us thus consider the GV integral representation for the all-genus topo-
logical string free energy on a CY threefold X , including nonperturbative
M-theory corrections via the type IIA ↔ M/S1 duality [36] (see also [35,49,

15d = (d1, . . . , db2(X )) denotes the expansion of the two-homology class d on a
basis of H2(X ,Z); see, e.g., [48].
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50] and [25] for a discussion in the present context which further highlights
the Schwinger-like nature of this result),

FX (gs) �
+∞∑

r=0

+∞∑

di=1

n(di)
r (X )

∑

m∈Z

∫ +∞

0

ds
s

(
2 sin

s

2

)2r−2
(3.3)

× exp
(
−2πs
gs

(d · t + im)
)
.

In here, the integers n(di)
r (X ) are the GV invariants of the threefold X ,

depending both on the Kähler class di and on a spin label r, and the combina-
tion Z = d · t + im represents the central charge of certain four–dimensional
BPS states [36]. To be completely precise, notice that in order to obtain the
full topological string free energy one still has to add to this expression the
(alternating) constant map contribution [51,52]

(3.4) Ng,0 =
(−1)g|B2gB2g−2|

4g(2g − 2)(2g − 2)!
χ(X ),

where χ(X ) = 2(h1,1 − h2,1) is the Euler characteristic of X . This term can
also be written as a Borel-like resummation, where the result is16 [25, 35]

Fd=0(gs) �
+∞∑

g=0

g2g−2
s Ng,0 =

1
2
χ(X )

∑

m∈Z

∫ +∞

0

ds
s

(
2 sin

s

2

)−2
(3.5)

× exp
(
−2πs
gs

im
)
.

Apart from the overall multiplicative factor of the Euler characteristic,
the universal constant map contribution has already been fully addressed
in [25] and we shall thus leave it aside for the moment. Let us focus on
the GV contribution (3.3) instead. By rewriting the sum in m ∈ Z as a sum
over delta-functions it is simple to obtain the GV formula for the topological
string free energy as [36]

(3.6) FX (gs) �
+∞∑

r=0

+∞∑

di=1

n(di)
r

+∞∑

n=1

1
n

(
2 sin

ngs

2

)2r−2
e−2πn d·t.

16This may also be obtained directly from the GV representation by simply
setting di = 0 and r = 0 in (3.3) and properly identifying the “degree zero” and
“spin zero” GV invariant with the Euler number of the CY threefold.
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This makes it quite clear how the input data for a given CY threefold is
simply its set of GV integer invariants (and its Euler number if one is also to
write down the constant map contribution). Expressed as a topological genus
expansion one finds, at genus g, (see, e.g., [48,51,53] for partial expressions)

Fg(ti) =
+∞∑

di=1

⎧
⎨

⎩
|B2g|

2g(2g − 2)!
n

(di)
0 +

g∑

h=1

(−1)g−h
α

(h−1)
g−h+1

(2g − 2)!
n

(di)
h

⎫
⎬

⎭(3.7)

× Li3−2g(e−2π d·t),

where the coefficients α(n)
m are obtained from the generating function

(3.8) An(x) =
(2n)!∏n

k=1(1 − k2x)
≡

+∞∑

m=0

α
(n)
m+1x

m

by power series expansion, and where Lip(x) is the polylogarithm of order
p, defined as

(3.9) Lip(x) =
+∞∑

n=1

xn

np
.

Two things to notice are the following: at fixed genus g, only GV invariants
n

(di)
h with h ≤ g contribute to the free energy [36]; in particular the “high-

est” GV invariant at genus g has h = g and appears with coefficient one in
(3.7) as α

(g−1)
1

(2g−2)! = 1, ∀g. Furthermore, α(0)
g is only non–vanishing when g = 1,

implying that n(di)
1 only contributes to the genus one free energy.

What we want to understand in here is how or when the GV repre-
sentation (3.3) may be understood as a nonperturbative completion of the
free energy genus expansion (3.7), in the sense of resurgent analysis. Fur-
thermore, one would like to understand how to relate this nonperturbative
completion to the large-order behavior of the genus expansion (3.7) via the
use of Stokes’ automorphism. Following the approach in [25], we shall inter-
pret the GV integral representation for the free energy (3.3) as a Borel
resummation formula (2.5), for SθFX (gs), in such a way that, after a simple
change of variables, one obtains

(3.10) B[FX ](s) =
+∞∑

r=0

+∞∑

di=1

n(di)
r

∑

m∈Z

1
s

(
2 sin

s

4π(d · t + im)

)2r−2

,
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with the GV representation (3.3) now amounting to the statement that

(3.11) SθFX (gs) =
∫ eiθ∞

0
dsB[FX ](s) e−

s

gs .

This rewriting, of course, required changing the integration with the (in
general) infinite sums over GV invariants, a procedure which is only valid if
there is uniform convergence of the partial sums in (3.10). As we have seen
before, the sum in m is the milder one. Furthermore, at fixed degree, the
sum in r will truncate, i.e., given a fixed two-homology class {di}, there is
r∗ such that n(di)

r = 0 for all r > r∗ [54]. The real issue concerning uniform
convergence of the GV Borel transform thus arises when we fix genus and
sum over degree. In this case, one finds that the asymptotic behavior of, for
example, the genus zero GV invariants at large degree is [55]

(3.12) n
(d)
0 ∼ exp(2πt2(1) · d)

d3(log d)2
, d→ +∞,

where 2πt2(1) is a critical exponent (for instance, in the example of local P
2

this would be 2πt2(1) � 2.90759 . . . [55]). This is an exponential growth and,
as such, in strict validity, the results that follow only hold for threefolds with
a finite number of GV invariants, i.e., without compact four-cycles. This is
also in line with the general expectations briefly discussed in [25].

In this context, the only singularities of the GV Borel transform (3.10),
with s 
= 0, appear when r = 0 as the zeroes of the sine (located at ωn =
(2π)2 n(d · t + im), n ∈ Z

∗). In this case one will only find pole singularities
and the Borel transform (3.10) may be written as

(3.13)

B[FX ](ωn + s) =
1
2π

n
(di)
0

(
2π(d · t + im)

n s2
− 1

2πn2 s

)
+ holomorphic,

near each singular point ωn. The (multiple) instanton action, ωn = nA, is
further obtained as

(3.14) Am(ti) = (2π)2(d · t + im).

In the following, we shall make use of this information in order to explore,
from a resurgent point of view, when does the Borel interpretation of the
GV integral representation (3.10) provide for a nonperturbative completion
of the topological string free energy.
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3.2. Simple resurgence in topological string theory

The first step in understanding the resurgence of topological strings is to
compute alien derivatives. At first, this could seem nontrivial as the GV
Borel transform (3.13) is not quite a simple resurgent function due to the
second order pole. However, explicitly evaluating the difference of lateral
Borel resummations as in (2.8), one notices that the contribution from this
second order pole is simple to include in the alien derivative, which now
becomes, for n ∈ Z

∗,

(3.15) ΔnAFX = − i
2πgs

n
(di)
0

(
(2π)2(d · t + im)

n
+
gs

n2

)
≡ Λn,

with an added unusual dependence on the coupling constant. In spite of this,
the right-hand side above is in fact a resurgent constant, in such a way that
all multiple alien derivatives vanish. In this case, it is trivial to compute
Stokes’ automorphism, (2.18). Denoting17 by θ = argA, this is

(3.16) SθFX = FX +
+∞∑

n=1

+∞∑

di=1

∑

m∈Z

Λn · exp
(
−(2π)2 n(d · t + im)

gs

)
,

leading to the discontinuity

Disc θ FX =
i

2πgs

+∞∑

n=1

+∞∑

di=1

n
(di)
0(3.17)

×
∑

m∈Z

(
(2π)2(d · t + im)

n
+
gs

n2

)
e−

(2π)2 n(d·t+i m)
gs .

Finally, making use of the dispersion relation (2.49), where one further
assumes that the contribution around infinity may be neglected, one may
now compute all coefficients in the perturbative asymptotic expansion of
FX , which has the usual genus expansion form (1.1). Focusing on the dis-
continuity naturally induced by the GV integral representation (3.3), namely
arg s = 0, and following a calculation very similar to the one in [25] for the

17Note that in the original integration variable of (3.3), therein denoted s, this
would correspond to θ = 0.
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case of the resolved conifold, it follows

(3.18) FX (gs) �
+∞∑

g=1

g2g−2
s

+∞∑

di=1

n
(di)
0

|B2g|
2g(2g − 2)!

Li3−2g(e−2π d·t).

Some comments are in order concerning this result. The first obvious
one is that this does not fully match against the GV result (3.7), as it
only captures the leading, dominant Bernoulli growth of the free energy.
While this is certainly the correct expectation for an asymptotic formula
in the case of a finite number of GV invariants, one may also ask if it is
possible to do any better. Of course, if one is to start with the GV Borel
transform (3.10), its singular part (3.13) will not include any GV invariant
n

(di)
r with r 
= 0 and, as such, will never be able to yield the subleading

contributions in (3.7) unless these should arise from the singularity at infinity
in the Cauchy dispersion relation (2.49). While this is a possibility, it is
also a notoriously difficult case to handle — the singularity at infinity is
an essential singularity, leading us far from the realm of simple resurgent
functions — further departing from the conventional set–up of resurgent
asymptotics. At the end of the day this “loss” of GV invariants n(di)

r with
r 
= 0 arises from the exchange of integration and infinite sums in (3.3) to
obtain (3.10) and all it says is that another procedure will be required in
order to look beyond the Bernoulli growth in (3.7), i.e., to study the full
nonperturbative information of topological string theory. In other words,
while the GV integral representation is extremely useful in order to solve
topological string theory at the perturbative level, (3.7), one needs extra
work if one wants, in general, to obtain a closed form expression for the
topological string Borel transform — possibly in terms of GV invariants.

At this point it might be useful to make a bridge to the case of matrix
models with polynomial potentials (a subject we shall study in detail later in
this paper). For these, the Gaussian component of the polynomial potential
will induce a contribution to the free energy, which also leads to Bernoulli
growth [25], rather similar to the one above arising from genus zero GV
invariants. From a spectral curve point of view, both these contributions are
associated to A-cycle18 instantons [25]. Instantons of this type are always
very simple to handle. As described above, the alien derivative is essen-
tially trivial (it equals a resurgent constant) and at the end of the day

18These are instantons whose action is given by the period of the spectral curve
one-form around one of its A-cycles [25]. They are simpler than B-cycle instantons
(almost “universal” as they directly relate to the ’t Hooft moduli), whose action is
given by the period of the spectral curve one-form around one of its B-cycles [16].
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the asymptotics is somewhat universal — and certainly much simpler than
the discussion in the previous section. All multi-instanton sectors have no
nontrivial large-order behavior (their alien derivatives vanish, their series
truncate and their structure is thus rather different from the one in (2.2))
and the perturbative sector is essentially dominated by Bernoulli growth.
For matrix models with polynomial potentials the truly nontrivial resurgent
structure will then be associated to higher monomials in the potential which
will induce different contributions to the free energy, this time around asso-
ciated to B-cycle instantons [16]. More realistic examples of this nontrivial
resurgent structure associated to B-cycle instantons will be discussed next,
as we move to the realm of minimal strings and matrix models in the fol-
lowing sections. For the moment, let us just notice that, in general, we still
expect topological strings to display full nontrivial resurgence: if one wants
to see beyond the Bernoulli growth in (3.7) one will certainly need to find a
proper Borel transform, leading to nontrivial alien derivatives and asymp-
totic growth of all multi-instanton sectors. Thus, in general, there will be
both A and B-cycle instantons in topological string models, both contribut-
ing to the full instanton action, and controlling (in turns, depending on the
absolute value of their corresponding actions) the large-order behavior of
perturbation theory at different values of the ’t Hooft moduli, as recently
discussed in [56].

4. The resurgence of two-parameters transseries

In order to address broader string theoretic contexts, in particular those
involving minimal string theory or matrix models, as we shall study later in
this work, we now need to generalize the formalism introduced in Section
2 in order to include transseries depending on multiple parameters. Let us
start off with some words on the general transseries set-up (see, e.g., [57] for
a recent review, or, e.g., [58, 59] for more technical accounts).

A rank-n system of nonlinear ordinary differential equations,

(4.1)
du

dz
(z) = F (z,u(z)),

may always be written, via a suitable change of variables, in the so-called
prepared form [57]:

(4.2)
du

dz
(z) = −A · u(z) − 1

z
B · u(z) + G(z,u(z)).
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Denoting by {αi}i=1···n the eigenvalues of the linearized system,

(4.3) A =
[
∂Fi

∂uj
(∞,0)

]

i,j=1···n
,

then, in the expression above, A = diag(α1, . . . , αn) and B = diag(β1, . . . ,
βn) are diagonal matrices and one further insures that G(z,u(z)) = O(‖u‖2,
z−2u). It is also convenient to choose variables such that α1 > 0. Most cases
addressed in the literature deal with the nonresonant case, where the eigen-
values {αi}i=1,...,n are Z-linearly independent, in many cases with argαi 
=
argαj . This will not be the case in the present work, as the string theo-
retic systems we address resonate. In the above set-up, a formal transseries
solution to our system of differential Equations (4.1) is given by [57]

(4.4) u(z,σ) = u(0)(z) +
∑

n∈Nn\{0}
σn z−n·β e−n·αz u(n)(z),

where σ = (σ1, . . . , σn) are the transseries parameters, and where both the
perturbative contribution, u(0)(z), as well as instanton and multi-instanton19

contributions, u(n)(z), are formal asymptotic power series of the form

(4.5) u(n)(z) �
+∞∑

g=0

u
(n)
g

zg
.

The fact that the systems we shall address in the following resonate now
translates to:

(4.6) ∃n�=n′ |n · α = n′ · α.

Furthermore, one often deals with proper transseries, where only exponen-
tially suppressed contributions appear: the eigenvalues α are such that, for
some chosen direction in the complex z-plane, all contributions along this
direction with σi 
= 0 are exponentially suppressed; Re(n · α z) > 0. Again,
as first pointed out in [14], if one wishes to fully address the instanton series
in a string theoretic context one will also have to allow for less studied
non–proper transseries. We thus see that resurgence in string theory is more
intricate than usual, with resonant nonproper transseries.

As we have reviewed in Section 2, asymptotic series need to be Borel
resummed in order to extract sensible information from them. Naturally,

19Linear systems have no multi-instanton sectors.
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this will also be a required step in the construction of a transseries solution
to the nonlinear differential Equation (4.1), and it follows that [58,59]

(4.7) Sθ±u(z,σ±) = Sθ±u(0)(z) +
∑

n∈Nn\{0}
σn
± z

−n·β e−n·αz Sθ±u(n)(z),

is a good solution to our problem along a proper direction (at least for
sufficiently large |z|). Many of the concepts introduced in Section 2 now
have a straightforward generalization, for instance a simple extension of
Stokes’ automorphism (2.19) where this time around one may write

(4.8) Sθ+u(z,σ) = Sθ−u(z,σ + S),

for the crossing of a Stokes line, with S the associated Stokes constants.
We shall now construct the resurgent formalism for the specific case of

two-parameters transseries, which will turn out to be the required framework
to address the instanton series in 2d quantum gravity (as first uncovered
in [14] for the case of the Painlevé I equation) as well as the instanton series
in the quartic matrix model, as we shall discuss in this work.

4.1. The bridge equations revisited

We have seen in Section 2 how the bridge equations allow for a simple evalu-
ation of alien derivatives (up to the determination of the Stokes invariants),
(2.32), and how this result then allows for an exact evaluation of the Stokes
automorphism along a singular direction in the Borel complex plane, (2.38)
and (2.41). We have further seen in Section 2 how the discontinuities associ-
ated to these singular directions end up determining the full multi-instanton
asymptotics (2.58) and, in essence, solve the nonperturbative problem via
the use of transseries solutions.

In general one requires multi-parameter transseries in order to set up
full nonperturbative solutions which completely encode the multi-instanton
asymptotics. For the main examples we shall study in this work, the quartic
matrix model and its double-scaling limit, the Painlevé I equation, it turns
out that a two-parameters transseries is required, as we shall see later and as
discussed in [14]. We shall now derive the bridge equations in this situation.

In particular, we consider the special case of two-parameters transseries
where the prepared form eigenvalues are {±A}, withA the instanton action20.

20This will be the relevant case for both the Painlevé I equation and the quartic
matrix model.
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The transseries ansatz is now simply

(4.9) F (z, σ1, σ2) =
+∞∑

n=0

+∞∑

m=0

σn
1σ

m
2 F

(n|m)(z),

where the perturbative asymptotic series is

(4.10) F (0|0)(z) �
+∞∑

g=0

F
(0|0)
g

zg+1
≡ Φ(0|0)(z)

and where the generalized multi-instanton contributions take the form21

F (n|m)(z) � z−βnm e−n(+A)z e−m(−A)z
+∞∑

g=1

F
(n|m)
g

zg
≡ e−(n−m)Az Φ(n|m)(z).

(4.11)

The characteristic exponent is often taken to be of the form βnm = nβ1 +
mβ2, but we shall also allow for more general combinations. Everything else
is a a straightforward generalization of the standard result (2.2) and a simple
application of our discussion at the beginning of this section.

Because ∃(n,m) �=(n′,m′) |n−m = n′ −m′ this transseries describes a res-
onant system and it is not too hard to see that one can make the “instanton
number” explicit by slightly reorganizing the previous transseries represen-
tation, obtaining

F (z, σ1, σ2) =
+∞∑

n=0

σn
1 e−nAz

+∞∑

m=0

(σ1σ2)mΦ(m+n|m)(z)(4.12)

+
+∞∑

n=1

σn
2 enAz

+∞∑

m=0

(σ1σ2)mΦ(m|m+n)(z).

This also introduces a natural notion of degree,

(4.13) deg(σn
1σ

m
2 ekAz) = n−m+ k,

such that the transseries F (z, σ1, σ2) has degree zero.

21In here we are simplifying things a bit: as we shall later discuss in the Painlevé
I framework, Φ(n|m)(z) is not always a plain formal power series in z but may
sometimes also include logarithmic powers, of the form logk z multiplied by formal
power series in z. For clarity of discussion, we shall proceed under this simpler
assumption.
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Let us now consider the pointed alien derivative Δ̇�A = e−�AzΔ�A, 
 ∈
Z
∗, which, as we discussed earlier, commutes with the usual derivative. The

reasoning of Section 2 used in deriving the bridge equation also holds now,
albeit in the two-parameters case the space of solutions to the differential,
or finite-difference, string equation becomes two-dimensional [14] (we shall
see this very explicitly in the examples that follow). It must then be the
case that

Δ̇�AF (z, σ1, σ2) = S�(σ1, σ2)
∂F

∂σ1
(z, σ1, σ2) + S̃�(σ1, σ2)

∂F

∂σ2
(z, σ1, σ2);

(4.14)

the bridge equation in the two-parameters setting. Let us explore its impli-
cations. First of all, it is quite simple to notice that this immediately deter-
mines the degrees of the proportionality factors as

(4.15) degS�(σ1, σ2) = 1 − 
 and deg S̃�(σ1, σ2) = −1 − 
.

Because these should be expressed as formal power series expansions, this
further implies

(4.16) S�(σ1, σ2) =
+∞∑

k=max(0,−1+�)

S
(k+1−�,k)
� σk+1−�

1 σk
2

and

(4.17) S̃�(σ1, σ2) =
+∞∑

k=max(0,−1−�)

S̃
(k,k+1+�)
� σk

1σ
k+1+�
2 .

Clearly, there are now a whole lot more Stokes constants than before. For
simplicity of notation, and noting that the Stokes constants depend only on
the two parameters k and 
, we redefine them as

(4.18) S
(k+1−�,k)
� ≡ S

(k+1−�)
� and S̃

(k,k+1+�)
� ≡ S̃

(k+1+�)
� .

Plugging these expressions back into the power series expansion of the
bridge Equation (4.14) one obtains, after a rather long but straightforward
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calculation,

Δ�AΦ(n|m) =
min(m,n+�−1)∑

k=max(0,�−1)

(n− k + 
)S(k−�+1)
� Φ(n−k+�|m−k)(4.19)

+
min(m−�,n)∑

k=max(−�−1,0)

(m− k − 
)S̃(k+�+1)
� Φ(n−k|m−k−�),

valid for all 
 
= 0. Looking at the 
 ≥ 1 case (
 ≤ −1 is completely analo-
gous), one finds

Δ�AΦ(n|m) =
min(m−�+1,n)∑

k=0

(n− k + 1)S(k)
� Φ(n−k+1|m−k−�+1)(4.20)

+
min(m−�,n)∑

k=0

(m− k − 
)S̃(k+�+1)
� Φ(n−k|m−k−�),

which can be directly compared with equivalent expressions from [14]. In
these expressions we have used conventions in which Φ(n|m) vanishes if either
n or m are less than zero. As compared to the one-parameter case, (2.32),
the increase in complexity is evident. Analyzing the bridge equations in
the form (4.20), it is not difficult to notice that the cases Δ�AΦ(n|m) and
Δ−�AΦ(m|n) with 
 > 0 are intimately related. In fact, one can go from one
to the other by performing the simple changes (Sa

� , S̃
b
� ) ↔ (S̃a

−�, S
b
−�) and

Φ(a|b) ↔ Φ(b|a), where a, b can be any combination of indices. The same
relation can be seen to extend to the full Stokes automorphisms — changing
between the S0Φ(n|m) and SπΦ(m|n) cases — which we shall further discuss
in the following. In any case, the main focus of our concern deals with the
instanton series, Φ(n|0), where these formulae become

(4.21) Δ�AΦ(n|0) =

⎧
⎪⎨

⎪⎩

0, 
 > 1,
S

(0)
1 (n+ 1)Φ(n+1|0), 
 = 1,
S

(1−�)
� (n+ 
)Φ(n+�|0) + S̃

(0)
� Φ(n+�+1|1), 
 ≤ −1.

This result clearly illustrates that in the present situation, unlike the one-
parameter case, understanding the asymptotics of the physical instanton
series necessarily requires the use of the generalized multi-instanton contri-
butions, due to the appearance of the term in Φ(•|1) which, upon multiple
alien derivation, will make materialize the full generalized instanton sector.
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As we have further seen in Section 2, the bridge equations may also
be translated back to the structure of the Borel transform, at least near
each singularity in the Borel complex plane. In the present case we have to
consider, for βnm = nβ1 +mβ2,

Φ(n|0)(z) �
+∞∑

g=1

F
(n|0)
g

zg+nβ1
and B[Φ(n|0)](s) =

+∞∑

g=1

F
(n|0)
g

Γ(g + nβ1)
sg+nβ1−1,

(4.22)

as well as22

Φ(n|1)(z) �
+∞∑

g=1

F
(n|1)
g

zg+nβ1+β2
and(4.23)

B[Φ(n|1)](s) =
+∞∑

g=1

F
(n|1)
g

Γ(g + nβ1 + β2)
sg+nβ1+β2−1.

Then, from (4.21) above and the definition of alien derivative, it simply
follows, e.g.,

B[Φ(n|0)](s+ 
A) = (S(1−�)
� (n+ 
)B[Φ(n+�|0)](s)(4.24)

+ S̃
(0)
� B[Φ(n+�+1|1)](s))

log s
2πi

, 
 ≤ −1.

The next step is to use the alien derivatives in order to fully construct
Stokes’ automorphism, allowing for a full reconstruction of the nonpertur-
bative solution. Consider first the positive real axis, where θ = 0, and where
the Stokes automorphism is

S0 = exp

(
+∞∑

�=1

e−�AzΔ�A

)
= 1 + e−Az ΔA + e−2Az

(
Δ2A +

1
2
Δ2

A

)
+ · · · .

(4.25)

Just like in the one-parameter case of Section 2, given the transseries ansatz,
the action of S0 on F (z, σ1, σ2) is entirely encoded by the action of S0 on
the several Φ(n|m)(z), and this can now be completely determined by the
use of the bridge equations. When focusing on the physical instanton series,
and again akin to the one-parameter case of Section 2, the bridge equations

22In the Painlevé I case, there will also be logarithmic contributions to Φ(n|1)(z),
which we ignore for the moment.
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(4.21) vanish whenever 
 > 1, and when 
 = 1 both one-parameter (2.32)
and two-parameters (4.21) cases are entirely analogous. Thus, the Stokes
automorphism immediately simplifies to

S0 = exp(e−AzΔA) = 1 + e−Az ΔA +
1
2
e−2Az Δ2

A +
1
3!

e−3Az Δ3
A + · · · ,

(4.26)

where

(4.27) ΔN
A Φ(n|0) = (S(0)

1 )N ·
N∏

i=1

(n+ i) · Φ(n+N |0).

One may now simply compute

(4.28) S0Φ(n|0) =
+∞∑

k=0

(
n+ k

n

)
(S(0)

1 )k e−kAz Φ(n+k|0),

a completely straightforward generalization of the one-parameter case (2.38).
The novelties arise as we turn to the Borel negative real axis, where

θ = π, and where the Stokes automorphism becomes

Sπ = exp

(
+∞∑

�=1

e�AzΔ−�A

)
= 1 +

+∞∑

�=1

e�Az
�∑

k=1

1
k!

∑

�1,...,�k≥1∑
�i=�

Δ−�kA · · ·Δ−�1A

(4.29)

= 1 + eAz Δ−A + e2Az

(
Δ−2A +

1
2
Δ2

−A

)
+ · · · .(4.30)

Things are now much more complicated than in the simple one–parameter
transseries case, as the different terms in Sπ will mix contributions arising
from all Φ(n|m). From the expression above for the Stokes automorphism it
becomes obvious that, in order to find the final expression for SπΦ(n|m),
one first needs to focus on determining Δ−�kA · · ·Δ−�1AΦ(n|0), with 
j ≥ 1.
For k = 1, 2, this calculation is pretty straightforward. Using (4.21) one can
write

Δ−�1AΦ(n|0) = (n− 
1)S
(1+�1)
−�1

Φ(n−�1|0) + S̃
(0)
−�1

Φ(n−�1+1|1),(4.31)

Δ−�2AΔ−�1AΦ(n|0) =

(
n−

2∑

i=1


i

)
((n− 
1)S

(1+�1)
−�1

S
(1+�2)
−�2

+ S̃
(0)
−�1

S
(2+�2)
−�2

)

(4.32)
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× Φ(n−∑ 2
i=1 �i|0) +

(
(n− 
1)S

(1+�1)
−�1

S̃
(0)
−�2

+

(
n+ 1 −

2∑

i=1


i

)
S̃

(0)
−�1

S
(1+�2)
−�2

+ S̃
(0)
−�1

S̃
(1)
−�2

)

× Φ(n+1−∑ 2
i=1 �i|1) + 2 S̃(0)

−�1
S̃

(0)
−�2

Φ(n+2−∑ 2
i=1 �i|2).

In order to go further and generalize these cases to an arbitrary product
of alien derivatives, one first needs to determine Δ−�k+1AΦ(n+m−∑k

i=1 �i|m).
After some effort one can find that

Δ−�k+1AΦ(n+m−∑k
i=1 �i|m)

(4.33)

=
m+1∑

q=0

((
n+m+ 1 − q −

k+1∑

i=0


i

)
S

(q+�k+1)
−�k+1

+ (m+ 1 − q) S̃(q)
−�k+1

)

× Φ(n+m+1−q−∑k+1
i=0 �i|m+1−q),

where we have set S(�i)
−�i

≡ 0, for any 
i ≥ 1, in order to simplify the final
result. The general case for the ordered product of k alien derivatives of the
form

∏k
i=1 Δ−�k+1−iA = Δ−�kA · · ·Δ−�1A, acting on Φ(n|0), is then given by

k∏

i=1

Δ−�k+1−iAΦ(n|0)

(4.34)

=
k∑

m=0

k∏

s=1

⎧
⎨

⎩

s∑

qs=0

[(
s−

s∑

i=1

qi

)
S̃

(qs)
−�s

+

(
n−

s∑

i=1


i + s−
s∑

i=1

qi

)
S

(�s+qs)
−�s

]

× Θ

(
s−

s∑

i=1

qs

)}
δ

(
k∑

i=1

qi, k −m

)
Φ(n+m−∑k

i=1 �i|m).

In this expression, δ(n,m) ≡ δnm is the usual Kronecker-delta, the function
Θ(x) is the usual Heaviside step-function

(4.35) Θ(x) =

{
1, x ≥ 0,
0, x < 0,
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and once again we set S(�i)
−�i

≡ 0. A proof of this result can be found in Appen-
dix D. In the same manner as we have done earlier in the one-parameter case
for the discontinuity at θ = π (2.56), this result can also be rewritten using a
sum over Young diagrams. To do so, let us first define δs =

∑s
i=1 qs + 1, such

that 0 < δ1 ≤ δ2 ≤ · · · ≤ δk = k −m+ 1 and 0 < δs ≤ s+ 123. As explained
in Section 2, the set of δs, with s = 1, . . . , k, form a Young diagram Γ(k, k −
m+ 1) of lengths 
(Γ) = k and 
(ΓT ) = k −m+ 1, with the extra constraint
that each component δs ∈ Γ(k, k −m+ 1) has a maximum number of s+ 1
boxes. As such, one may finally rewrite the above result as

k∏

i=1

Δ−�k+1−iAΦ(n|0) =
k∑

m=0

∑

δs∈Γ(k,k−m+1)

k∏

s=1

{[
(s+ 1 − δs) S̃

(dδs)
−�s

(4.36)

+

(
n−

s∑

i=1


i + s+ 1 − δs

)
S

(�s+dδs)
−�s

]
Θ (s+ 1 − δs)

}

× Φ(n+m−∑k
i=1 �i|m).

For this expression to hold, one still needs to set δ0 ≡ 1 and S̃
(s)
0 = S

(s)
0 =

S
(�s)
−�s

= 0 (note that some of these conditions will only be needed in the
following).

Due to the complexity of this expression, let us pause for an example. Let
us choose the case of k = 2, which we have also described in (4.32) above,
and see what the sum over Young diagrams (4.36) above yields. One finds:

Δ−�2AΔ−�1AΦ(n|0) =
2∑

m=0

∑

δs∈Γ(2,3−m)

Θ(2 − δ1)((2 − δ1)S̃
(dδ1)
−�1

(4.37)

+ (n− 
1 + 2 − δ1)S
(�1+dδ1)
−�1

)Θ(3 − δ2)((3 − δ2)S̃
(dδ2)
−�2

+ (n− 
1 − 
2 + 3 − δ2)S
(�2+dδ2)
−�2

)Φ(n+m−∑ 2
i=1 �i|m).

The sum over Young diagrams in this expression is over δs ∈ Γ(2, 3 −m),
with m = 0, 1, 2. For m = 0, one sums over all diagrams δs ∈ Γ(2, 3) and
there are three possible diagrams: , and . But because δ1 ≤ 2 and
δ2 = 3, only two will remain: (where δ1 = 1) and (δ1 = 2). For m = 1,

23The reason for adding the one in the present definition of δs is to make all δs
strictly positive, and thus naturally labeled by some Young diagrams.
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one sums over diagrams δs ∈ Γ(2, 2) and there are now two possible diagrams
with δ2 = 2: (δ1 = 1) and (δ1 = 2). Finally, for m = 2, one sums over
diagrams δs ∈ Γ(2, 1), which corresponds to the single diagram: (δ1 = δ2 =
1). Plugging these results back into the expression above, one easily finds
(4.32) as expected.

There is now enough information in order to completely determine the
Stokes automorphism, at θ = π, of the instanton series Φ(n|0). Going back
to its definition (4.29) and making use of our formulae for multiple alien
derivatives (4.36) it follows

SπΦ(n|0) = Φ(n|0) +
+∞∑

�=1

e�Az
�∑

k=1

1
k!

∑

�1,...,�k≥1∑
�i=�

Δ−�kA · · ·Δ−�1AΦ(n|0)(4.38)

= Φ(n|0) +
+∞∑

�=1

e�Az
�∑

k=1

1
k!

∑

�1,...,�k≥1∑
�i=�

k∑

m=0

∑

δs∈Γ(k,k−m+1)

(4.39)

×
k∏

s=1

{[
(s+ 1 − δs)S̃

(dδs)
−�s

+

(
n−

s∑

i=1


i + s+ 1 − δs

)

× S
(�s+dδs)
−�s

]
Θ (s+ 1 − δs)

}
· Φ(n−�+m|m).

Interestingly enough, if we further define γs =
∑s

i=1 
i, then the sum over
the 
i can also be rewritten as a sum of Young diagrams γi ∈ Γ(k, 
) : 0 <
γ1 ≤ · · · ≤ γk = 
; as long as we set S̃(s)

0 = S
(s)
0 = 0. In this case, one finally

obtains the simpler expression:

SπΦ(n|0) = Φ(n|0) +
+∞∑

�=1

�∑

k=1

e�Az

k!

∑

γi∈Γ(k,�)

k∑

m=0

∑

δs∈Γ(k,k−m+1)

(4.40)

×
k∏

s=1

{[
(s+ 1 − δs)S̃

(dδs)
−dγs

+ (n− γs + s+ 1 − δs)S
(dγs+dδs)
−dγs

]

× Θ(s+ 1 − δs)
}
· Φ(n−�+m|m).

Some comments are now in order. Comparing the Stokes automorphism of
the instanton series at the θ = π discontinuity, for both the one-parameter
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(2.56)24 and the two-parameter cases (above), one can see the that the
increased degree of complexity of the latter is translated in the fact that there
is now a sum over two independent sets of Young diagrams (instead of sum-
ming over just one set of diagrams as in the one-parameter case). It is thus
natural to infer that for a general 
-parameter transseries ansatz such sums
would be substituted by sums over 
 independent sets of Young diagrams.
It is also not too difficult to see that one can recover the one-parameter
result (2.56) starting from (4.40) above, by simply setting δs = s+ 1 for all
δs. This corresponds to choosing the Young diagrams δs ∈ Γ(k, k + 1) (with
m = 0 and consequently 
 ≤ n) where each row has one more box than the
previous one, e.g., for k = 4.

4.2. Stokes constants and asymptotics revisited

The main outcome of the above calculations are expressions for the discon-
tinuities of the full, physical, multi-instanton series, encoded in the Stokes
automorphism of Φ(n|0), in both θ = 0, π, directions. As we have seen earlier,
in Section 2, these discontinuities lie at the basis of understanding the full
asymptotic behavior of all multi-instanton sectors and we shall next use these
new Stokes’ discontinuities in order to generalize our results on asymptotics,
from the one-parameter to the two-parameters case. Recall that by making
use of Cauchy’s theorem a given function F (z) with a branch-cut along some
direction θ in the complex plane (and analytic elsewhere) can actually be
fully described precisely by its discontinuity along that direction (2.49), at
least as long as its behavior at infinity does not contribute. In the present
case of interest, the multi-instanton free energies F (n|0)(z), which are the
coefficients of the two-parameters transseries ansatz (4.9), have asymptotic
expansions given by (4.10) for the perturbative series and by (4.11) for the
generalized multi-instanton contributions. Their discontinuities are essen-
tially given by the Stokes automorphisms of Φ(n|0)(z) previously calculated.

Let us first look at the perturbative expansion (4.10). The discontinuities
of F (0|0)(z) arise directly from the bridge Equations (4.21), via the Stokes
automorphisms (4.28) and (4.40),

Disc 0 Φ(0|0) = −
+∞∑

k=1

(S(0)
1 )ke−kAz Φ(k|0),(4.41)

24Recall that Sθ = 1 − Disc θ.
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Disc π Φ(0|0) = −
+∞∑

k=1

(S̃(0)
−1)kekAz Φ(0|k).(4.42)

Note that F (0|0)(z) will now have two branch cuts in the Borel complex plane
(instead of only one as in the one-parameter transseries case), along both
positive and negative real axes. By using (4.10), (4.11) and (2.49) it is not
difficult to find the asymptotic coefficients of the perturbative expansion to
be given by

F (0|0)
g �

+∞∑

k=1

(
S

(0)
1

)k

2πi
Γ (g − βk,0)

(kA)g−βk,0

+∞∑

h=1

Γ (g − βk,0 − h+ 1)
Γ (g − βk,0)

F
(k|0)
h (kA)h−1

(4.43)

+
+∞∑

k=1

(S̃(0)
−1)k

2πi
Γ (g − β0,k)

(−kA)g−β0,k

+∞∑

h=1

Γ (g − β0,k − h+ 1)
Γ (g − β0,k)

× F
(0|k)
h (−kA)h−1 .

As should be by now expected, we find that the coefficients of the pertuba-
tive expansion around the zero-instanton sector are given by an asymptotic
double-sum expansion, valid for large values of g, over the coefficients of the
perturbative expansions around (some of) the generalized multi-instanton
sectors. The novelty in here, as compared to the one-parameter case of Sec-
tion 2, is that this expansion includes not only the coefficients of the physical
instanton series F (n|0)

g , associated with positive real part of the instanton
action, but also the generalized coefficients F (0|n)

g , associated with nega-
tive real part of the instanton action. In particular, the leading order of
this zero-instanton asymptotic expansion is determined by the coefficients
of the one-loop (generalized) one-instanton partition functions, but now up
to two Stokes constants, namely S

(0)
1 and S̃

(0)
−1 . Higher loop contributions

will arise as 1
g corrections, while other multi-instanton contributions, with

action ±nA, will yield corrections suppressed as n−g.
Thus, what we have found in the present two-parameters transseries set-

ting is that, such as in the one-parameter case, through the use of alien cal-
culus and the bridge equations it is possible to include all multi-instanton
sectors in the asymptotics of the perturbative zero-instanton sector. Fur-
thermore, through essentially the same methods it is also straightforward to
generalize this asymptotic result to all multi-instanton sectors. This is what
we shall do next for the n-instanton sector, F (n|0)(z). Using the formulae
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for the Stokes automorphism in the directions θ = 0, π, of Φ(n|0), given in
(4.28) and (4.40), we can easily find the related discontinuities in the said
directions. As usual, F (n|0)(z) has branch cuts in the Stokes directions cor-
responding to both positive and negative real axes in the Borel complex
plane. Then, by means of (2.49) and (4.11), in particular the identification
F (n|m)(z) = e−(n−m)Az Φ(n|m)(z), a lengthy but straightforward calculation
leads to (it might be interesting for the reader to compare this expression
against its one-parameter counterpart, (2.58))

F (n|0)
g �

+∞∑

k=1

(
n+ k

n

)
(S(0)

1 )k

2πi
· Γ (g + βn,0 − βn+k,0)

(kA)g+βn,0−βn+k,0

(4.44)

×
+∞∑

h=1

Γ (g + βn,0 − βn+k,0 − h)
Γ (g + βn,0 − βn+k,0)

F
(n+k|0)
h (kA)h

+
+∞∑

k=1

⎧
⎨

⎩
1

2πi

k∑

m=1

1
m!

m∑

�=0

∑

γi∈Γ(m,k)

∑

δj∈Γ(m,m−�+1)

⎛

⎝
m∏

j=1

Σ(n, j)

⎞

⎠

⎫
⎬

⎭

× Γ (g + βn,0 − βn+�−k,�)

(−kA)g+βn,0−βn+�−k,�

+∞∑

h=1

Γ (g + βn,0 − βn+�−k,� − h)
Γ (g + βn,0 − βn+�−k,�)

× F
(n+�−k|�)
h (−kA)h ,

where we have introduced

Σ(n, j) =
(
(j + 1 − δj) S̃

(dδj)
−dγj

+ (n− γj + j + 1 − δj)S
(dγj+dδj)
−dγj

)
(4.45)

× Θ (j + 1 − δj) .

Recall that we have previously defined S
(�)
−� = S

(�)
0 = S̃

(�)
0 = 0, with 
 > 0,

and γ0 = 0, δ0 = 1, which are required to fully understand the formulae
above. This result relates the coefficients of the perturbative expansion
around the n-instanton sector with sums over the coefficients of the pertur-
bative expansions around all other generalized multi-instanton sectors, in
asymptotic expansions which hold for large g. All Stokes factors are needed
to compute the general asymptotics of F (n|0)

g , whose computation is, in gen-
eral, quite hard to do from first principles, but which may, nonetheless, be
explored numerically in specific examples as shall be seen in great detail in
the following sections.
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4.3. Resurgence of the string genus expansion

The results we obtained in the previous subsections are rather general and
do not take into account any symmetries or properties of the physical system
that one might have started from. If we now specialize to the cases of interest
in this work, models with a topological genus expansion such as topological
strings, minimal strings or matrix models, then it is well known that the
corresponding free energy in the zero-instanton sector will have a genus
expansion as (1.1), i.e., an expansion in the closed string coupling g2

s ,

(4.46) g2
sF

(0|0)(gs; {ti}) �
+∞∑

g=0

g2g
s F̂ (0|0)

g (ti) ≡ Φ(0|0)(gs; {ti}).

This expansion resembles (4.10) if one sets z = 1/gs and assumes a ti depen-
dence for the coefficients F̂ (0|0)

g (ti) in the asymptotic expansion (and simi-
larly for the instanton action, A(ti)). These parameters, ti, encode a possible
dependence of the result on the ’t Hooft moduli, as will be the case of matrix
models. We also need to consider a string theoretic version of the ansatz
(4.11) for the generalized multi-instanton free energies, this time around as
an expansion in the open string coupling gs,

F (n|m)(gs; ti) � e−(n−m)
A(ti)

gs

knm∑

k=0

logk gs

+∞∑

g=0

gg+β
[k]
nm

s F (n|m)[k]
g (ti)(4.47)

≡ e−(n−m)
A(ti)

gs Φ(n|m)(gs; ti).

Notice that in this expression we have further included an expansion in
logarithmic powers of the open string coupling (up to some finite logarithmic
power, knm) in order to account for resonant effects which will appear later
in the Painlevé I case and in the quartic matrix model, and which we have
already mentioned at the beginning of this section25 (see [14] as well, for
the logarithmic terms). The integer β[k]

nm will also be necessary in order
to take into account possible different starting powers of our asymptotic
expansions. For instance, in the case of the Painlevé I equation we shall
later find knm = min(n,m) −mδnm and β

[k]
nm = β(m+ n) − [(knm + k)/2]I,

where [•]I denotes the integer part of the argument, and where β = 1/2.
We shall also make the assumption that the resonant effects do not appear

25Our discussion up to now solely focused on the “k = 0 sector” of the logarithmic
expansion.
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in the n-instanton sector, that is kn,0 = 0 = k0,m. Finally, we will focus on
the cases where both β

[k]
nm and knm are symmetrical in n, m. As we shall

see later, all these assumptions turn out to be properties of string theoretic
systems.

Starting off with the zero-instanton sector, we have

(4.48) F (0|0)(gs; {ti}) �
∑

�≥0

g
�+β

[0]
0,0

s F
(0|0)[0]
� (ti).

If we compare this expansion with (4.46) above, one easily concludes that,
in order to find a topological genus expansion, it must be the case that
F

(0|0)[0]
2�+1 (ti) ≡ 0 with β

[0]
0,0 = 0. Do notice that the free energy coefficients in

the genus expansion (4.46) are given by F̂
(0|0)
g ≡ F

(0|0)[0]
2g , which will natu-

rally include both even and odd powers of the genus, g, as expected. Via
Cauchy’s theorem (2.49), now applied in the complex gs-plane26, one essen-
tially recovers the result of the previous section for the F

(0|0)[0]
� and, in

particular, one finds for the asymptotics of F (0|0)[0]
2�+1

F
(0|0)[0]
2�+1 �

+∞∑

k=1

(S(0)
1 )k

2πi

Γ(2
+ 1 − β
[0]
k,0)

(kA)2�+1−β
[0]
k,0

+∞∑

h=0

Γ(2
+ 1 − h− β
[0]
k,0)

Γ(2
+ 1 − β
[0]
k,0)

(4.49)

× F
(k|0)[0]
h (kA)h +

+∞∑

k=1

(
S̃

(0)
−1

)k

2πi

Γ(2
+ 1 − β
[0]
0,k)

(−kA)2�+1−β
[0]
0,k

×
+∞∑

h=0

Γ(2
+ 1 − h− β
[0]
0,k)

Γ(2
+ 1 − β
[0]
0,k)

F
(0|k)[0]
h (−kA)h .

The “genus expansion condition”, that F (0|0)[0]
2�+1 = 0, now becomes equivalent

to a set of relations between F
(k|0)[0]
g , F (0|k)[0]

g , S(0)
1 and S̃

(0)
−1 . We find, for

26Notice that a blind application of Cauchy’s theorem (2.49) in the gs-variable
leads to a large-order relation with an (incorrect) overall minus sign as compared to,
e.g., (2.52). Instead, one should recall that the definition of the Stokes discontinuities
in terms of the Stokes automorphism, (2.17), depends on what one means by left
and right Borel resummations. Under a change of variables of the type x→ 1/x
these orientations change and so does the sign of the discontinuity — thus leading
to the correct result.
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each k and g,

(4.50) (S(0)
1 )kF (k|0)[0]

g = (−1)g+β
[0]
0,k(S̃(0)

−1)kF (0|k)[0]
g .

In the following sections, we shall see in detail that by considering special
properties of the systems we will address, such as 2d quantum gravity or the
quartic matrix model, there are in fact more general relations between the
F

(n|m)[k]
g , under exchange of n and m. Furthermore this will also allow us to

find relations between S
(0)
1 and S̃

(0)
−1 (and, in fact, relations between other

Stokes constants) effectively reducing the number of independent Stokes con-
stants needed to account for the large-order behavior of all multi-instanton
sectors.

The relation determined above can now be used to simplify the large-
order behavior of the coefficients in the topological genus expansion (4.46), as

F̂ (0|0)
g �

+∞∑

k=1

(S(0)
1 )k

iπ

Γ(2g − β
[0]
k,0)

(kA)2g−β
[0]
k,0

+∞∑

h=0

Γ(2g − h− β
[0]
k,0)

Γ(2g − β
[0]
k,0)

F
(k|0)[0]
h (kA)h ,

(4.51)

which in fact, as just mentioned, reduced the number of Stokes constants
one effectively needs to completely understand the asymptotics of the per-
turbative sector (comparing with the corresponding result in the previous
subsection, (4.43), we see that this final expression is much closer to its one-
parameter counterpart, (2.52)). Further notice that this expression coincides
with the result in [14], at leading order in k, if one takes into account that
in our case we are considering a genus expansion in the variable gs, instead
of an expansion in z = 1/gs as used in that paper.

One can also use the string theoretic generalized multi-instanton expan-
sion (4.47) to determine the large-order behavior of the physical n-instanton
series F (n|0)(z). This follows by applying Cauchy’s theorem to the string
coupling, gs, and using the discontinuities for Φ(n|0)(z) determined in Sec-
tion 4.1. The novelty now is that we are further considering logarithmic
power contributions to the asymptotic series of Φ(n|m)(z). Thus, in order to
obtain the large-order coefficients F (n|0)[0]

g we shall apply Cauchy’s theorem
as before, but when making use of the expansion (4.47) new integrals will
have to be addressed:

Discontinuity at θ = 0 :(4.52)
∫ +∞

0
dxx−g−1 e−

kA

x logr x →
z= 1

x

(−1)r

∫ +∞

0
dz zg−1 e−kAz logr z,
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Discontinuity at θ = π :(4.53)
∫ −∞

0
dxx−g−1 e

kA

x logr x →
z= 1

x

(−1)r

∫ −∞

0
dz zg−1 ekAz logr z.

The relevant quantity needed to perform these integral is the following
Laplace transform

L[zg logr(z)](s) ≡
∫ +∞

0
dz zg e−sz logr z(4.54)

=
(
∂

∂g

)r ∫ +∞

0
dz zg e−sz =

(
∂

∂g

)r [Γ(g + 1)
sg+1

]

=
Γ(g + 1)
sg+1

(δr0 + Θ(r − 1)(B̃s(g) + ∂g)r−1B̃s(g)),

and its analogous θ = π version

(4.55) L[zg logr(−z)](s) =
Γ(g + 1)
sg+1

(δr0 + Θ(r − 1) (Bs(g) + ∂g)r−1Bs(g)),

where27

B̃s(a) = ψ(a+ 1) − log(s),(4.56)

Bs(a) = ψ(a+ 1) − log(−s) = B̃s(a) − iπ.(4.57)

Collecting all these results, one can now easily find the large-order behavior
of F (n|0)[0]

g (again, it might be interesting for the reader to compare this
expression against the two-parameters case without logarithms, (4.44), or
the one-parameter counterpart, (2.58)),

F (n|0)[0]
g �

+∞∑

k=1

(
n+ k

n

)
(S(0)

1 )k

2πi

Γ(g + β
[0]
n,0 − β

[0]
n+k,0)

(kA)g+β
[0]
n,0−β

[0]
n+k,0

(4.58)

×
+∞∑

h=1

Γ(g + β
[0]
n,0 − β

[0]
n+k,0 − h)

Γ(g + β
[0]
n,0 − β

[0]
n+k,0)

F
(n+k|0)
h (kA)h

27In here ψ(z) = Γ′(z)
Γ(z) is the digamma function; the logarithmic derivative of the

gamma function.
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+
+∞∑

k=1

⎧
⎨

⎩
1

2πi

k∑

m=1

1
m!

m∑

�=0

∑

γi∈Γ(m,k)

∑

δj∈Γ(m,m−�+1)

⎛

⎝
m∏

j=1

Σ(n, j)

⎞

⎠

⎫
⎬

⎭

×
kn+�−k,�∑

r=0

Γ(g + β
[0]
n,0 − β

[r]
n+�−k,�)

(−kA)g+β
[0]
n,0−β

[r]
n+�−k,�

×
+∞∑

h=0

Γ(g + β
[0]
n,0 − β

[r]
n+�−k,� − h)

Γ(g + β
[0]
n,0 − β

[r]
n+�−k,�)

F
(n+�−k|�)[r]
h (−kA)h

× {δr0 + Θ(r− 1) (BkA(a) + ∂a)r−1BkA(a)}|a=g+β
[0]
n,0−β

[r]
n+�−k,�−h−1.

The quantity Σ(n, j) was previously defined in (4.45) as

Σ(n, j) =
(
(j + 1 − δj) S̃

(dδj)
−dγj

+ (n− γj + j + 1 − δj)S
(dγj+dδj)
−dγj

)
(4.59)

× Θ (j + 1 − δj) .

One thing to notice is that, due to the logarithmic contributions appear-
ing in the generalized multi-instanton expansion of Φ(n|m)(z), the large-order
behavior now includes contributions depending on the function Bs(a). The
simplest possible contribution of this type in (4.58) is

BkA

(
g + β

[0]
n,0 − β

[r]
n+�−k,� − h− 1

)
(4.60)

= ψ
(
g + β

[0]
n,0 − β

[r]
n+�−k,� − h

)
− log(kA) − iπ.

When g is very large (i.e., considering the large-order behavior) this expres-
sion may be expanded as

(4.61) BkA (g) � ψ (g) � log g −O (1/g) ,

where we made use of the asymptotic expansion of the digamma function
around infinity. This shows that, in addition to the familiar g! growth of the
large-order coefficients, we now further find a large-order growth of the type
g! log g in the instanton sectors (which was also noticed in [14] for Painlevé I)
and generalizations thereof — as explicitly contained in (4.58). In particular,
this is a leading growth when compared with g! and will be clearly visible
at large order.

As an application of the expression (4.58) above let us look at the case
n = 1 and k = 2, that is, the 2-instantons contributions to F

(1|0)[0]
g , with

particular focus on the ones which display a logarithmic behavior. The con-
tribution from the discontinuity at θ = 0 is straightforward so we shall focus
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instead on the contributions arising from θ = π. The sums in m and 
 have
to be such that n+ 
− k ≥ 0, which implies 2 ≥ m ≥ 
 ≥ 1. The cases with

 = 1 will not have any logarithmic contributions as kn+�−k,� ≡ k0,1 = 0.
Thus, the only case of interest is m = 
 = 2, which can have logarithmic
contributions as long as kn+�−k,� ≡ k1,2 
= 0. In this case γi ∈ Γ(2, 2) will
have contributions from the Young diagrams and , and δj ∈ Γ(2, 1) will
have only one contributing diagram, . Assuming that k1,2 = 1 (as will be
the case of Painlevé I) the 2-instantons contribution to F (1|0)[0]

g becomes

F (1|0)[0]
g

∣∣∣
2−inst

m=�=2
(4.62)

≈ (S̃(0)
−1)2

2πi
Γ(g + β

[0]
1,0 − β

[0]
1,2)

(−2A)g+β
[0]
1,0−β

[0]
1,2

∑

h≥0

F
(1|2)[0]
h (−2A)h

∏h
m=1(g + β

[0]
1,0 − β

[0]
1,2 −m)

+
(S̃(0)

−1)2

2πi
Γ(g + β

[0]
1,0 − β

[1]
1,2)

(−2A)g+β
[0]
1,0−β

[1]
1,2

∑

h≥0

F
(1|2)[1]
h (−2A)h

∏h
m=1(g + β

[0]
1,0 − β

[1]
1,2 −m)

×B2A(g + β
[0]
1,0 − β

[1]
1,2 − h− 1).

The results obtained in this section can be extended to the generalized
instanton series, such as, for example, the (n, 1)-series. However, those gener-
alizations yield extremely lengthy formulae. Consequently, we shall present
those results only as they become needed in the following sections, and
always in the specific form applicable to either of the particular cases of
interest: the Painlevé I equation and the quartic matrix model.

5. Minimal models and the Painlevé I equation

We now want to apply the general theory of two-parameters resurgence
developed in the previous section to some concrete examples appearing in
string theory. The specific examples we have in mind are matrix models and
minimal string theories, which, as is well known, are closely related: all min-
imal models can be obtained as double-scaling limits of matrix models [5].

In this section, we shall be mainly interested in the (2, 3) minimal string
theory, which describes pure gravity in two dimensions, and whose free
energy may be obtained from a solution of the Painlevé I differential equa-
tion. Later, in Section 6, we will turn to a similar resurgent treatment of
the one-matrix model, where we shall see that, in the double-scaling limit,
it exactly reproduces the minimal model results of this section.
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5.1. Minimal string theory and the double-scaling limit

Minimal models, labeled by two relatively prime integers, p and q, are among
the simplest two-dimensional conformal field theories (CFT) and, starting
with the seminal work of [60], they have been studied in great detail in the
past (see, e.g., the excellent review [5]).

Strictly speaking, the models we are interested in are not the minimal
CFTs per se, but the string theories that they lead to. That is, we consider
these models coupled to Liouville theory and ghosts and sum over all world-
sheet topologies that the CFT can live on. The resulting genus expansion for
the free energy is an asymptotic series, with the familiar large-order behav-
ior ∼ (2g)! [1], and it is the nonperturbative completion of this asymptotic
series that we shall study. In particular, the simplest non-topological mini-
mal string is the model with (p, q) = (2, 3). It has a single primary operator,
which after coupling to Liouville theory can be thought of as the worldsheet
cosmological constant, and the central charge of the CFT is c = 0, meaning
that the “target space” is a point: this minimal string theory describes pure
gravity on the worldsheet.

We shall discuss one-matrix models and their double-scaling limits in
some detail later in Section 6. For the moment, we only need one important
result from the double-scaling analysis. The free energy F (z) of the minimal
string theory depends on a single parameter, z, which is essentially the string
coupling constant28. It is also convenient to define the function

(5.1) u(z) = −F ′′(z).

Then, from the double-scaling limit of the string equations of the matrix
model one can show that the function u(z) satisfies a relatively simple ordi-
nary differential equation which, for the (2, 3) minimal string describing
two-dimensional pure gravity, is the famous Painlevé I equation,

(5.2) u2(z) − 1
6
u′′(z) = z.

One can solve this equation perturbatively in the string coupling constant,
and the resulting asymptotic series gives the genus expansion of the (2, 3)
minimal string free energy. What we are interested in here is to describe
the full nonperturbative solution to this equation, in terms of a transseries.
Since the differential equation is of second order, we expect such a solution to

28More precisely, as we shall see in what follows, the c = 0 closed string coupling
constant equals z−5/2.
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have two integration constants, and hence we should find a two-parameters
transseries solution — exactly the type of transseries that we have discussed
in the previous section.

The construction of the two-parameters transseries solution to the
Painlevé I equation was started in [14], where the structure of the full instan-
ton series and of the contribution with a single “generalized instanton” were
found. Here, we complete this analysis by describing the structure of the
full, general nonperturbative contributions to the solution.

5.2. The transseries structure of Painlevé I solutions

Let us now develop the transseries framework as applied to the Painlevé I
equation.

5.2.1. Review of the one-parameter transseries solution. As
explained above, our aim is to solve the Painlevé I equation,

(5.3) u2(z) − 1
6
u′′(z) = z,

in terms of a two-parameters transseries, where the perturbative parame-
ter of the solution is the string coupling constant. As it turns out, in the
minimal string, small string coupling corresponds to large z and hence the
perturbative series in our solutions should be expansions around z = ∞. It
is well known, and one can easily check, that there is indeed an asymptotic
series solution around z = ∞ in terms of the parameter z. It is given by

(5.4) upert(z) �
√
z

(
1 − 1

48
z−5/2 − 49

4608
z−5 − 1225

55296
z−15/2 − · · ·

)
.

Note that, apart from the leading factor of z1/2, this solution is a power
series in z−5/2. This parameter is indeed known to be the coupling constant
of the minimal string theory. However, z−5/2 is not quite the perturbative
parameter that we should choose for our transseries solution. The minimal
string theory is a closed string theory, so indeed we expect its perturbative
free energy to be a function of the closed string coupling constant. But
nonperturbative effects in string theory, on the other hand, are associated
to D-branes, and hence to open strings. As usual in string theory, the closed
string coupling constant is the square of the open string coupling constant
and, therefore, we may expect the nonperturbative contributions to the free
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energy to be expansions in

(5.5) x = z−5/4.

We shall later see that this is indeed the case.
As a first step in finding a transseries solution to the Painlevé I equation,

one may now try to find a one-parameter transseries solution of the form

(5.6) u(x) � x−2/5
+∞∑

n=0

σn
1 e−nA/x xnβ

+∞∑

g=0

u(n)
g xg,

where x is expressed in terms of z by the relation above, and A and β are
coefficients that still need to be determined. Plugging this ansatz back into
the Painlevé I equation (see, e.g., [14,16,61]), one finds that a solution exists
if one chooses

(5.7) A = ±8
√

3
5
, β =

1
2
.

The same result could be obtained by writing the Painlevé I equation in
prepared form, (4.2), where one would find

(5.8)
du

dz
(z) = −

⎡

⎢⎣
+

8
√

3
5

0

0 −8
√

3
5

⎤

⎥⎦ · u(z) + · · · .

For the “instanton action”, A, there is a choice of sign. In the one-parameter
transseries one usually chooses the positive sign, since with that choice the
instanton factor exp(−A/x) is exponentially suppressed as expected. Doing
this one finds, for example, the one-instanton correction

(5.9) u1-inst(x) � σ1 x
1/10 e−A/x

(
1 − 5

64
√

3
x+

75
8192

x2 − · · ·
)
.

Note that indeed we now find a series in the open string coupling x = z−5/4,
whereas the purely perturbative part (5.4) of u(z) is a series in the closed
string coupling x2 = z−5/2. The coefficients in this expression can be deter-
mined recursively by plugging the ansatz (5.6) into the Painlevé I equation.
One finds that this determines all coefficients except the leading one, u(1)

0 . Its
(non–zero) value can in fact be chosen arbitrarily without loss of generality,
since we can rescale it by choosing the nonperturbative ambiguity σ1. For
now, we adopt a normalization where u(1)

0 = 1.
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5.2.2. The two-parameters transseries solution. So far, we have only
considered the positive sign choice for the instanton action A in (5.7). How-
ever, at the level of formal solutions, the negative sign choice is also required
in order to obtain the most general solutions of the Painlevé I equation, i.e.,
we should really apply the machinery developed in Section 4 and solve the
Painlevé I equation using a two-parameters transseries. To do this, it is very
convenient to change variables once again. Recall that the β-parameter we
found for the ansatz (5.6) equals β = 1/2. As we will see, the x-dependent
prefactor in the two-parameters transseries will no longer be of the simple
form xnβ. It is therefore no longer convenient to take it outside the pertur-
bative sum over g, as we did in (5.6). The analogue of xnβ, on the other
hand, will still be a half-integer power of x, so if we want to consider it as
part of the perturbative series, it is more convenient to use the variable

(5.10) w = x1/2 = z−5/8.

Of course, up to a possible odd overall power in w, we still expect all per-
turbative series to be expansions in the open string coupling constant, w2,
and we will find that this is indeed the case. Let us be a bit pedantic and
stress this point once again, in order not to raise any confusions later on:
the open string coupling constant is x = w2 and we shall mostly work in the
w variable.

It is also useful for calculational purposes to scale away the overall power
of z1/2 in u(z), and set

(5.11) u(w) ≡ u(z)√
z

∣∣∣∣
z=w−8/5

.

Here, we slightly abuse notation; it would have been more precise to call the
function on the left-hand side û(w), but to avoid writing too many hats we
will stick to the above notation and simply remember whether we use the
rescaled u or not by looking at the variable that we use.

It is now a simple exercise to rewrite the Painlevé I equation in terms of
the function u(w); one finds

(5.12) u2(w) +
1
24
w4 u(w) − 25

384
w5 u′(w) − 25

384
w6 u′′(w) = 1,

where we want to solve this equation using a two–parameters transseries
ansatz,

(5.13) u(w, σ1, σ2) =
+∞∑

n=0

+∞∑

m=0

σn
1σ

m
2 e−(n−m)A/w2

Φ(n|m)(w).
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Note that, as we have mentioned, we have not included a factor of wβnm in
the transseries expansion, but absorbed it in Φ(n|m)(w). This means that the
leading coefficients in Φ(n|m) will in general not multiply the constant term.
Conversely, we can find back the analogue of the prefactor wβnm (as we will
do below) by finding the first nonzero coefficient in Φ(n|m)(w).

One may now be tempted to complete the ansatz above by assuming that
Φ(n|m)(w) is a power series in w. However, an ansatz of this form turns out
not to work, essentially since the Painlevé I equation is a resonant equation
(a property we have previously discussed in Section 4 and to which we shall
come back in a moment). It turns out that, for a correct ansatz, one needs
terms multiplying powers of log(w), a phenomenon first observed in [14].
In that paper, the authors calculated Φ(n|1)(w), and found that it had the
general form

(5.14) Φ(n|1)(w) =
+∞∑

g=0

u(n|1)[0]
g wg + log(w) ·

+∞∑

g=0

u(n|1)[1]
g wg.

In fact, for n = 0, 1, the logarithmic terms are absent, but they are always
present whenever n > 1. One may now wonder what the general form of
Φ(n|m) is. From the u2-term in the Painlevé I equation, one sees that Φ(n|m)

is determined recursively in terms of products Φ(n−p|m−q)Φ(p|q). This means
that, starting29 at Φ(4|2), we can expect to encounter log2w terms coming
from terms such as Φ(2|1)Φ(2|1). Extending this reasoning, we see that a
natural ansatz for the general Φ(n|m) is

(5.15) Φ(n|m)(w) =
min(n,m)∑

k=0

logk w ·
+∞∑

g=0

u(n|m)[k]
g wg.

Our job now is to determine if a solution for all coefficients u(n|m)[k]
g can be

found. It is a tedious but straightforward exercise to plug the ansätze (5.13)
and (5.15) into the Painlevé I Equation (5.12) and, in this process, to find
that the coefficients u(n|m)[k]

g must satisfy the relation

δn
0 δ

m
0 δk

0 δ
g
0 =

n∑

n̂=0

m∑

m̂=0

g∑

ĝ=0

k∑

k̂=0

u
(n̂|m̂)[k̂]
ĝ u

(n−n̂|m−m̂)[k−k̂]
g−ĝ(5.16)

29We shall actually see below that, due to resonance, the log2 w behavior already
sets in at Φ(3|2).
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− 25
96

(n−m)2A2 u(n|m)[k]
g

+
25
96

(m− n) (k + 1)Au(n|m)[k+1]
g−2

+
25
96

(m− n) (g − 3)Au(n|m)[k]
g−2

− 25
384

(k + 2) (k + 1)u(n|m)[k+2]
g−4

− 25
192

(k + 1) (g − 4)u(n|m)[k+1]
g−4

− 1
384

(5g − 16) (5g − 24)u(n|m)[k]
g−4 .

This relation is valid for any 4-tuple (n,m, k, g) if we assume that all nonex-
istent coefficients — that is, the ones with k larger than min(n,m) and the
ones with g < 0 — are vanishing. The relation can be used to recursively
determine u(n|m)[k]

g in terms of coefficients which have smaller n,m, k or g. A
Mathematica notebook with the results is available from the authors upon
request.

5.2.3. The consequences of resonance. In using the relation (5.16),
one finds that something special happens whenever |n−m| = 1. In this case,
the first term on the second line of the relation equals

(5.17) −25A2

96
u(n|m)[k]

g = −2u(n|m)[k]
g ,

where we inserted the explicit value (5.7) for A. However, this is not the only
term multiplying u

(n|m)[k]
g : the sum in the first line of (5.16) also contains

two terms with this factor, which add up to

(5.18) 2u(0|0)[0]
0 u(n|m)[k]

g = 2u(n|m)[k]
g ,

where we read off the leading coefficient u(0|0)[0]
0 = 1 from (5.4). Thus, we

see that, whenever |n−m| = 1, the leading terms in the recursion formula
cancel. This is precisely the phenomenon of resonance! The cancellation of
the leading terms in itself is not a problem — it simply means that one
should use our formula to determine u

(n|m)[k]
g−2 instead. However, it could

potentially be a problem whenever u(n|m)[k]
g−2 does not exist — that is, when

we try to determine the leading term in w for each perturbative series, given
n,m, k. Here, two things can happen:
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1. The recursion relation may reduce to const = 0, in which case it cannot
be satisfied. This is what happens if one does not include the correct
logw terms. For example, if we would include no logarithmic terms at
all, the recursion for n = 2, m = 1 would lead to such an inconsistency.
Thus, resonance forces us to include the logarithmic terms. In a similar
way, we will need log2w terms starting at n = 3, m = 2. Note that
above we have already argued that such terms must appear for n = 4,
m = 2; now we find that we also need to include them in Φ(3|2), as
we did in our ansatz. Only at n = m = 2 are the log2w terms absent.
This pattern actually continues to higher m: Φ(m|m) will never contain
any logarithmic terms; but the logmw terms set in immediately at
n = m+ 1 due to resonance.

2. The recursion relation may reduce to 0 = 0. This is of course con-
sistent, but it means that we have a leading coefficient, which can be
chosen arbitrarily. We already saw an example of this: u(1)

0 , the leading
coefficient of the one-instanton series, can have an arbitrary value due
to the choice in the normalization of the nonperturbative ambiguity
σ1. In our two-parameters transseries terminology, this coefficient is
now denoted u

(1|0)[0]
1 . The same thing now holds for u(0|1)[0]

1 , its value
can be absorbed into σ2. However, it turns out that the recursion rela-
tion allows for a whole lot more free parameters: for any m ≥ 0, the
coefficients u(m+1|m)[0]

1 and u
(m|m+1)[0]
1 are not fixed by our recursion

relation.

The second property above seems confusing at first sight. How can a two-
parameters transseries, solving a second order differential equation, have
infinitely many free parameters? The answer turns out to be that our ansatz
still has a large degree of reparametrization symmetry.

5.2.4. Reparametrization invariance. Recall that our general
transseries ansatz for the solution to the Painlevé I equation has the form

(5.19) u(w) =
+∞∑

n=0

+∞∑

m=0

σn
1σ

m
2 e−(n−m)A/w2

Φ(n|m)(w).

It is important to note that the nonperturbative factor in each term only
depends on the difference n–m. This means that when we make a (degree
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preserving) change of variables,

(5.20) σ1 = σ̂1

+∞∑

p=0

αp (σ̂1σ̂2)
p , σ2 = σ̂2

+∞∑

q=0

βq (σ̂1σ̂2)
q ,

with arbitrary coefficients αp, βq, we will find a new expression with exactly
the same nonperturbative structure. Let us work this out in some detail.
From the above change of variables, we get expansions of the form

(5.21) σn
1 = σ̂n

1

+∞∑

r=0

γn
r (σ̂1σ̂2)

r , σm
2 = σ̂m

2

+∞∑

s=0

δm
s (σ̂1σ̂2)

s ,

where it is not too hard to find explicit formulae for the coefficients γn
r , δm

s ,
given by

(5.22) γn
r =

∑

{λ}

n∏

i=1

αλi
and δm

s =
∑

{μ}

m∏

i=1

βμi
.

In here, {λ} and {μ} are ordered partitions, where “ordered” means that,
for example, we consider {0, 1, 4} and {4, 1, 0} as different partitions of the
integer 5. In the first sum, {λ} runs over all ordered partitions of r with
length n, and the analogous statement holds for the second sum. These
formulae only hold for n,m ≥ 0; for n = 0 we have that γ0

0 = 1 and all other
γ0

r = 0. The same thing of course holds for δ0s .
Inserting these results in (5.19), it follows:

u(w) =
+∞∑

n=0

+∞∑

m=0

+∞∑

r=0

+∞∑

s=0

σ̂n+r+s
1 σ̂m+r+s

2 γn
r δ

m
s e−(n−m)A/w2

Φ(n|m)(w).

(5.23)

Changing the summation variables (n,m) to (n̂, m̂) = (n+ r + s,m+ r +
s), one obtains

u(w) =
+∞∑

n̂=0

+∞∑

m̂=0

σ̂n̂
1 σ̂

m̂
2 e−(n̂−m̂)A/w2

(5.24)

×
r0∑

r=0

s0∑

s=0

γn̂−r−s
r δm̂−r−s

s Φ(n̂−r−s|m̂−r−s)(w).
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In this expression, r0 = min(n̂, m̂) and s0 = min(n̂, m̂) − r. In other words,
r and s run over the triangle given by

(5.25) r ≥ 0, s ≥ 0, r + s ≤ min(n̂, m̂).

Thus, we have found that, after reparametrization, u(w) can be written in
exactly the same form albeit in terms of new functions,

(5.26) Φ̂(n|m)(w) =
∑

r,s

γn−r−s
r δm−r−s

s Φ(n−r−s|m−r−s)(w).

Let us write out the first few of those:

(5.27) Φ̂(n|0) = αn
0 Φ(n|0), Φ̂(0|m) = βm

0 Φ(0|m).

Since we have already fixed the leading coefficients of Φ(1|0) and Φ(0|1) to
equal one, this means that we cannot freely choose α0 and β0: we have to
set them equal to one as well. Using this, one finds for the next few Φ̂,

Φ̂(n|1) = Φ(n|1) + α1(n− 1)Φ(n−1|0),(5.28)

Φ̂(1|m) = Φ(1|m) + β1(m− 1)Φ(0|m−1),(5.29)

where n̂, m̂ > 1. Thus, the Φ(n|1) are only defined up to additions of Φ(n−1|0).
One can continue like this: after fixing α1 and β1 it turns out that the free
parameters α2 and β2 show up for the first time in Φ(n|2) and Φ(2|m), and
multiply possible additions of Φ(n−2|0) and Φ(0|m−2).

This explains the fact that, in the previous subsection, we found that
our recursive transseries solution had an infinite number of undetermined
parameters. They are simply the parameters αp and βq that determine the
freedom in the parametrization of the coefficients σ1 and σ2. One will find a
unique two-parameters transseries solution to the Painlevé I equation only
after fixing these parameters by some sort of “gauge condition”.

5.2.5. Two-parameters transseries: results. There is a rather natural
condition30 to fix the free parameters in our transseries ansatz. Calculating

30This condition is applied implicitly in the function Φ(2|1) reported in [14].



The resurgence of instantons in string theory 401

Φ(m+1|m) up to m = 10 for arbitrary values of the free parameters, we find
that these transseries components do not have a constant term. We have
also seen that Φ(1|0) starts at order w1, and we now know that we can
use reparametrization invariance to add an arbitrary multiple of Φ(1|0) to
Φ(m+1|m). Thus, one can tune the free parameter αm in such a way that the
w1-term in Φ(m+1|m) vanishes. That is, one can fix half of the reparametriza-
tion invariance by simply setting

(5.30) u
(m+1|m)[0]
1 = 0, ∀m ≥ 1.

In the exact same way, one can use the βn-parameters to set

(5.31) u
(n|n+1)[0]
1 = 0, ∀n ≥ 1,

by adding the appropriate multiples of Φ(0|1).
This fixing of the undetermined parameters is the last ingredient one

needs in order to use the recursive formula (5.16) and solve for the entire
transseries. Using a computer, this can be efficiently done up to n = m = 10
and g = 50 in a matter of minutes, and we have tabulated some of the
Φ(n|m)(w) in appendix Appendix A. One thing the reader should note from
those expressions is that the resulting functions are always, up to an overall
factor, indeed expansions in the open string coupling constant x = w2.

The choices (5.30) and (5.31) simplify our results a lot, and sets many
more of the leading coefficients to zero. Let us fix n, m and k, and ask
ourselves what the lowest index g is for which u

(n|m)[k]
g is nonzero. We will

call this index 2β[k]
nm (the factor of 2 is essentially due to the fact that we are

now working with the w variable rather than x); it is the analogue of the βnm

in the general logarithm-free two-parameters transseries (4.11). Whereas in
that case βnm is usually of the form (n+m)β for a fixed β, in the Painlevé
I case we find a more complicated structure. We tabulate 2β[0]

nm and 2β[1]
nm in

table 1. This table clearly has some structure and, in fact, it is not too hard
to find a general formula for 2β[k]

nm. When n = m, none of the contributions
have logarithms, and we have that

(5.32) 2β[0]
nn = 2n.

For n 
= m, it is easiest to write separate formulae for the cases n > m and
m > n. When either n or m is smaller than k, we have no logk corrections.
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Table 1: Values for 2β[0]
nm (left) and 2β[1]

nm (right). An asterisk in the second
table means that there are no logarithmic terms in Φ(n|m).

n�
��m 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 7
2 2 3 4 3 4 5 6
3 3 4 3 6 5 6 7
4 4 5 4 5 8 5 6
5 5 6 5 6 5 10 7
6 6 7 6 7 6 7 12

n�
��m 0 1 2 3 4 5 6

0 ∗ ∗ ∗ ∗ ∗ ∗ ∗
1 ∗ ∗ 1 2 3 4 5
2 ∗ 1 ∗ 3 4 5 6
3 ∗ 2 3 ∗ 3 4 5
4 ∗ 3 4 3 ∗ 5 6
5 ∗ 4 5 4 5 ∗ 5
6 ∗ 5 6 5 6 5 ∗

When n > m ≥ k, one finds

(5.33) 2β[k]
nm = n− k + (m+ kmod 2).

For m > n ≥ k, the formula is the same, but with n and m interchanged.
This can be summarized by defining, for all n and m,

(5.34) 2β[k]
nm ≡ n+m− 2

[
knm + k

2

]

I

,

where [•]I represents the integer part, and

(5.35) knm = min(n,m) −mδnm

is just the maximum power of the logarithm appearing in the expansion of
Φ(n|m)(w).

5.3. The string genus expansion revisited

We now have enough information to address the string genus expansion of
the Painlevé I solution, applying the general formulae previously obtained
in Section 4.3. Let us start by re-writing the asymptotic expansion for the
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Φ(n|m), given in (4.47), as31

Φ(n|m)(x) �
knm∑

k=0

logk x

+∞∑

g=0

F (n|m)[k]
g xg+β

[k]
nm(5.36)

=
knm∑

k=0

logk w
+∞∑

g′=0

2k F
(n|m)[k]
g′
2

wg′+2β
[k]
nm ,

i.e., as an expansion in w rather than as an expansion in x. Recall that our
formulae in Section 4.3 were written in terms of the open string coupling
gs = x = w2, while in here we find it more convenient to work directly in
the w-variable. Furthermore, in this expression it is understood that all
the F (n|m)[k]

g

2
with g odd vanish (in order to have an expansion in integer

powers of x). We can now directly compare with the expansion (5.15) for
the Painlevé I solution, and easily find that knm is given by (5.35) above,
and32

(5.37) u(n|m)[k]
g = 2k F

(n|m)[k]
g

2
⇔ u

(n|m)[k]
2g = 2k F (n|m)[k]

g .

In particular, this implies that the u(n|m)[k]
g vanish for odd g. Moreover, the

lowest index in g for which u
(n|m)[k]
g is nonzero, β[k]

nm, can also be obtained
via a comparison with the results of the previous section, being given by
(5.34) above.

In this way, we can rewrite the expansion of Φ(n|m)(x) for the Painlevé
I solution as

(5.38) Φ(n|m)(x) �
knm∑

k=0

logk x

2k

+∞∑

g=0

u
(n|m)[k]
2g xg+β

[k]
nm ≡

knm∑

k=0

logk x

2k
Φ[k]

(n|m)(x),

31Note that the F (n|m)[k]
g coefficients in the following just denote coefficients of

a general transseries solution, in the abstract setting of Section 4, and not the free
energy of the (2, 3) model. We shall discuss the relation between the Painlevé I
solution and the (2, 3) free energy at the end of this section.

32More precisely, the relation between F (n|m)[k]
g and u(n|m)[k]

g is given by

2k F (n|m)[k]
g = u

(n|m)[k]
g′ ,

where g′ = 2
(
g + β

[k]
nm

)
and g starts at 0. To write the expansion of Φ(n|m)(x) we

performed a shift on the variable g such that u(n|m)[k]
g′ → u

(n|m)[k]
2g where now the

expansion starts at u(n|m)[k]
0 xβ[k]

nm .



404 Inês Aniceto, Ricardo Schiappa and Marcel Vonk

with the knm and β
[k]
nm given earlier. It is now straightforward to apply the

results of Section 4.3 to the current case. But, before that, let us address two
important properties arising from the Painlevé I recursion relations (5.16),
i.e., from the physics of the (2, 3) model, which will refine our results even
further (also see Appendix A). The first of these properties relates the coef-
ficients Φ[k]

(n|m), at the kth logarithmic power, with Φ[0]
(n|m), the contribution

without logarithms, as

(5.39) Φ[k]
(n|m) =

1
k!

(
4 (m− n)√

3

)k

Φ[0]
(n−k|m−k).

This is a rather important relation; it amounts to saying that the logarithmic
terms in (5.38) are actually not independent of each other, as their coeffi-
cients are all related to the coefficients of the logarithm-free term. In other
words, these logarithmic contributions simply amount to a useful arrange-
ment of the resonant transseries solution. The previous relation can be writ-
ten in terms of the u(n|m)[k]

g by noting that β[k]
nm = β

[0]
n−k,m−k and thus

(5.40) u(n|m)[k]
g =

1
k!

(
4 (m− n)√

3

)k

u(n−k|m−k)[0]
g .

The second property we shall be using relates the different u(n|m)[k]
2g under

interchange of n↔ m. This relation can be found in appendix Appendix A
and is given by33

u
(n|m)[k]
2g = (−1)g+β

[k]
nm−(n+m)/2 u

(m|n)[k]
2g = (−1)g−[(knm+k)/2]I u

(m|n)[k]
2g .

(5.41)

Note that the exponent of (−1) in the above expression is always an integer.
In the case where n = m (and consequently k = 0) we find that this relation
returns

(5.42) u
(n|n)[0]
2g = (−1)g u

(n|n)[0]
2g ⇒ u

(n|n)[0]
2(2g+1) = 0.

33Recall that we previously performed the change u(n|m)[k]
g′ → u

(n|m)[k]
2g , with g′ =

2
(
g + β

[k]
nm

)
.
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Consequentially, the (n|n)-instanton series will always have a topological
genus expansion

(5.43) Φ(n|n)(x) � xn
+∞∑

g=0

û(n|n)
g x2g ≡ xn

+∞∑

g=0

u
(n|n)[0]
4g x2g.

Looking back at the zero-instanton series from Section 4.3, we have the
genus expansion

(5.44) Φ(0|0)(x) �
+∞∑

g=0

û(0|0)[0]
g x2g,

where x ≡ gs and where the large-order behavior follows from

û(0|0)
g = u

(0|0)[0]
4g �

+∞∑

k=1

(S(0)
1 )k

iπ

Γ(2g − β
[0]
k,0)

(kA)2g−β
[0]
k,0

(5.45)

×
+∞∑

h=0

Γ(2g − h− β
[0]
k,0)

Γ(2g − β
[0]
k,0)

u
(k|0)[0]
2h (kA)h .

One can also write large–order formulae for the asymptotics of the Painlevé
I multi-instanton coefficients in the current language. This amounts to insert-
ing these coefficients, written as (5.37), back in (4.58). The condition
u

(0|0)[0]
2(2m+1) = 0 was studied in Equation (4.50), which, when applied to the

present case and by further using (5.41), yields

(5.46) (S(0)
1 )ku

(k|0)[0]
2h = (−1)h+β

[0]
0,k(S̃(0)

−1)ku
(0|k)[0]
2h = (−1)β

[0]
0,k(S̃(0)

−1)ku
(k|0)[0]
2h .

This immediately implies the following relation between S(0)
1 and S̃(0)

−1

(5.47) S
(0)
1 = (−1)

1
2 S̃

(0)
−1 ,

which coincides with a result found in [14].
The aforementioned properties (5.41) and (5.42) for the Painlevé I coeffi-

cients can, in principle, allow us to find many possible relations between the
Stokes coefficients S(n)

k and S̃(m)
� . We will present one more such example in

the following, with the study of the (n, 1)-instanton series. First, using the
same tools as in Section 4.1, we can find the Stokes automorphism for the
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series Φ(n|1)(z), both at θ = 0,

S0Φ(n|1)(z) = Φ(n|1)(z) +
+∞∑

k=1

(
n+ k

n

)
(S(0)

1 )k−2 e−kAz

(5.48)

×
{

(S(0)
1 )2Φ(n+k|1)(z)

+
(
k(k − 1)
k + n

S
(0)
2 +

k(2n+ k − 1)
2(n+ k)

S
(1)
1 S

(0)
1

)
Φ(n+k−1|0)(z)

}
,

and at θ = π,

SπΦ(n|1)(z) = Φ(n|1)(z) +
+∞∑

k=1

k∑

m=1

ekAz

m!

m+1∑

�=0

∑

γi∈Γ(m,k)

∑

δj∈Γ(m,m−�+2)

(5.49)

×
m∏

j=1

Σ(1)(n, j) · Φ(n−1−k+�|�),

where this time around we find34

Σ(1)(n, j) = ((j + 2 − δj)S̃
(dδj)
−dγj

+ (n− 1 − γj + j + 2 − δj)S
(dγj+dδj)
−dγj

)
(5.50)

× Θ(j + 2 − δj).

With these results in hand, one can use the asymptotic expansion (5.38)
and Cauchy’s theorem to obtain the large-order behavior of the coefficients
u

(n|1)[r]
2g , with n ≥ 1 and r = 0, 1. In order to simplify this calculation, we

shall now make use of the property (5.40), relating the logarithmic sectors,
and thus write the expansion of Φ(n|1)(x) as

Φ(n|1)(x) �
+∞∑

g=0

u
(n|1)[0]
2g xg+β

[0]
n,1 +

1
2

log x
+∞∑

g=0

u
(n|1)[1]
2g xg+β

[1]
n,1(5.51)

= Φ[0]
(n|1)(x) +

2(1 − n)√
3

log x · Φ[0]
(n−1|0)(x).(5.52)

At this stage, we already know the asymptotic behavior of u(n−1|0)[0]
2g and

now want to determine the asymptotics of u(n|1)[0]
2g . Furthermore, we know

34Comparing against the (n, 0) case, (4.45), the reader may want to guess a
solution for the arbitrary (n,m)-instanton series.
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the discontinuities of Φ(n|1)(x) given the Stokes automorphisms above. Thus,
applying the Cauchy formula to the function Φ[0]

(n|1)(x), and making use of
the relation (5.52), one obtains

Φ[0]
(n|1)(x) =

∑

θ=0,π

⎧
⎨

⎩

∫ eiθ∞

0

dw
2πi

Disc θΦ(n|1)(w)
w − x

+
2(n− 1)√

3
(5.53)

×
∫ eiθ∞

0

dw
2πi

logw
Disc θΦ

[0]
(n−1|0)(w)

w − x

⎫
⎬

⎭ .

The asymptotics of u(n|1)[0]
2g will have a contribution from each of these inte-

grals, except in the case when n = 1, where only the first integral is present.
In this case we have already seen that Φ(1|1)(x) will have a genus expansion,
as a consequence of the condition that u(1|1)[0]

2(2m+1) = 0. Solving this condition,
using (5.41), we find more relations between the Stokes coefficients. Sum-
marizing, these relations are

S
(0)
1 = (−1)

1
2 S̃

(0)
−1 ,(5.54)

S
(0)
2 = S̃

(0)
−2 ,(5.55)

S
(1)
1 = −(−1)

1
2 S̃

(1)
−1 − 4πi√

3
S

(0)
1 .(5.56)

As discussed before, requiring a genus expansion of Φ(n|n)(x) for n > 1,
which is equivalent to setting u(n|n)[0]

2(2m+1) = 0, will then yield a tower of rela-
tions between different Stokes coefficients, effectively reducing the number of
independent coefficients needed to account for both the full multi-instanton
asymptotics as well as any possible Stokes transition one might wish to
consider.

5.4. Resurgence of instantons in minimal strings

The recursion formula (5.16) provides us with a tool to calculate the two-
parameters transseries solution of the Painlevé I equation, to arbitrary pre-
cision. In particular, this allows us to do high-precision tests of the resurgent
properties that were discussed in general terms in Section 4 and that were
discussed in the specific Painlevé I case in the preceding paragraphs.
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5.4.1. Resurgence of the perturbative series. One of the main new
phenomena that our resurgence analysis uncovers is the fact that the large-
order behavior of transseries coefficients is itself subject to nonperturbative
corrections. This phenomenon is already present in the simplest case: the
large-order behavior of u(0|0)[0]

g , the zero-instanton, perturbative expansion
coefficients of the Painlevé I transseries solution.

Recall that, in our normalizations, these coefficients are only nonzero
when g is a multiple of four. To avoid writing unnecessary factors, let us
rescale

(5.57) ũ4g =
iπA2g− 1

2

S
(0)
1 Γ

(
2g − 1

2

) u(0|0)[0]
4g .

We can then write the large-order formula (4.51) as

ũ4g �
+∞∑

h=0

u
(1|0)[0]
2h+1 ·Ah Γ

(
2g − h− 1

2

)

Γ
(
2g − 1

2

) +
+∞∑

h=0

S
(0)
1 u

(2|0)[0]
2h+2 · 2h−2g+1(5.58)

·Ah+ 1
2

Γ(2g − h− 1)
Γ
(
2g − 1

2

) +
+∞∑

h=0

(
S

(0)
1

)2
u

(3|0)[0]
2h+3 · 3h−2g+ 3

2

·Ah+1 Γ
(
2g − h− 3

2

)

Γ
(
2g − 1

2

) + · · · .

The ratios of gamma functions in this expression should be thought of as
perturbative 1/g expansions. For example, we can rewrite the ratio of gamma
functions in the first sum of the first line above as

(5.59)
Γ
(
2g − h− 1

2

)

Γ
(
2g − 1

2

) =
h∏

k=1

1
2g − k − 1

2

=
1
2h
g−h +

h2 + 2h
2h+2

g−h−1 + · · · .

In this way, we can define these ratios as (possibly asymptotic) series for any
values of g and h. In particular, this allows us to work with expressions such
as, for instance, the factor of Γ(2g − h− 1) in the second sum in (5.58), even
when 2g − h− 1 is a negative integer for which the actual gamma function
would have had a pole.

Thus, the first sum in (5.58) gives a purely perturbative description of the
large g behavior of the ũ4g coefficients, as a series in 1/g. This perturbative
large-order series has been studied in detail in [14,16] and was found to give
correct results up to high precision. What we see now is that, nevertheless,
the perturbative large-order behavior is not the full story. For example, the
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Figure 2: The log10 of the absolute value of the first 200 coefficients in the
1/g-expansion associated to the first sum appearing in (5.58), for the case
where g = 30.

second sum in (5.58) contains further corrections that come with a factor
2−2g, and therefore are invisible in a perturbative study. The sum in the
second line of (5.58) gives 3−2g corrections, and so on; one keeps finding
subleading multi-instanton corrections in this way.

The question is: can we actually see those nonperturbative corrections
to the large-order behavior? It should be intuitively clear that in order to
see an effect as small as 2−2g at large g, we first need to subtract the leading
perturbative series to very high order. Here one actually runs into a problem
since the perturbative series in 1/g, the first sum appearing in (5.58), is
not convergent — it is an asymptotic series. This should not come as a
great surprise: we know that the presence of nonperturbative effects in a
quantity is closely related to the nonconvergence of its perturbation series.
This phenomenon pops up again in the large-order formula.

5.4.2. Optimal truncation. The simplest way to deal with asymptotic
series is to do a so-called optimal truncation: one simply sums the terms in
the series for as long as their absolute value decreases, and cuts off the sum
at this point. As an example, let us look at the case where g = 30. In figure 2,
we have plotted the log10 of the absolute value of the first 200 terms in the
1/g-expansion associated to the first sum in (5.58). The smallest term in the
series occurs at order g−43 and equals, approximately, −2.8 × 10−21. We see
from the figure that, after this term, the terms in the asymptotic expansion
start growing again. Thus, optimal truncation instructs us to cut off the sum
after the order g−43 term. We expect that the size of the final term gives a
good indication of the precision of the calculation. This is indeed true: one
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finds that

ũ4·30 = 0.9978832395689425456292 . . . ,(5.60)
ũot

4·30 = 0.9978832395689425456257 . . . ,(5.61)

where “ot” stands for “optimal truncation”, and, in the first line, we have
calculated the exact value using (5.57). Thus, we get the correct result within
an error of 3.5 × 10−21 — indeed of the order of magnitude of the last term
in the optimally truncated sum.

The problem with this method is that it is only barely sufficient to
distinguish the 2−2g effects associated to the second sum appearing in (5.58).
For our example value of g = 30, the leading term in this sum is

(5.62)
S

(0)
1 u

(2|0)[0]
2 A

1
2 Γ(59)

259 Γ
(

119
2

) = 2.33 . . .× 10−20 i.

We see that this leading term in the 2−2g corrections is roughly of the same
order of magnitude as the error in the optimal truncation35. In other words,
this term is only just within the “resolution” that optimal truncation allows
us, and any 1/g corrections to it (let alone the 3−2g corrections) will be
completely washed out by the error due to optimal truncation. This is not
just an unlucky coincidence: one can show using general arguments (see,
e.g., [57]) that optimal truncation always leads to an error which is of the
same order of magnitude as the first nonperturbative contribution.

5.4.3. Borel–Padé approximation. Since optimal truncation is not
powerful enough, we need a better method to approximate the asymptotic
series associated to the first sum appearing in (5.58). That is, we actually
need to resum this series. Of course we already know of a very powerful
method to resum asymptotic series: the method of Borel resummation, dis-
cussed at length in Section 2. To employ this method, we would in principle
need to find the Borel transform (2.4) of the first sum in (5.58), and then do
the Laplace transform (2.5) that inverts the Borel transform. The problem
with this procedure is that we only have a recursive definition of the coeffi-
cients in the asymptotic series and, as a result, it seems impossible to find
an exact expression for the Borel transform. Note that approximating the
Borel transform by a Taylor series will not do: the inverse Borel transform
will then simply give back our original divergent series.

35We will soon also explain the perhaps surprising fact that this term is imaginary.



The resurgence of instantons in string theory 411

The solution to this problem lies in the method of Borel–Padé approx-
imations. Let us write the 1/g expansion associated to the first sum of
(5.58) as

(5.63) P (g) �
+∞∑

n=0

an g
−n.

The Borel transform (2.4) of this asymptotic series is

(5.64) B[P ](s) =
+∞∑

n=0

an

n!
s−n.

One can check that the an grow factorially with n, so that this new series
has a finite radius of convergence. However, we can only calculate the an

recursively, so in numerical calculations we will actually have to cut off the
above sum at some large order. For convenience, we choose this order to be
an even number, 2N ,

(5.65) B[P ](s) ≈
2N∑

n=0

an

n!
s−n.

Instead of directly performing the inverse Borel transform (which, as we
mentioned, would give back the original asymptotic series), we now further
approximate this function by an order N Padé approximant36

(5.66) B[N ][P ](s) =
∑N

n=0 bn s
−n

∑N
n=0 cn s

−n
.

That is, the degree 2N polynomial in 1/g is replaced by a rational function
which is the ratio of two degree N polynomials in 1/g. The coefficients in
this approximation are chosen in such a way that the first 2N + 1 terms
in a 1/g-expansion of B[N ][P ](s) reproduce B[P ](s). When one furthermore
chooses c0 = 1, to remove the invariance under homogeneous rescalings of
all coefficients, this requirement can be shown to lead to a unique set of
(bn, cn). There exist fast algorithms to determine Padé approximants; for

36More precisely, this is the order (N,N) Padé approximant. One could, in prin-
ciple, choose different orders of g−1 for the numerator and the denominator, but
in numerical approximations this so-called diagonal choice often leads to the best
results. As we shall see, in our case it indeed leads to very precise numerics.
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instance in Mathematica such an algorithm is implemented under the name
PadeApproximant.

The virtue of replacing the polyomial by this rational function is that,
for small 1/g, both functions look very similar, but for large 1/g, the ratio-
nal function approaches a constant and is therefore much better behaved.
As a result, one can now calculate the inverse Borel transform, or Borel
resummation,

(5.67) S [N ]
0 P (g) =

∫ +∞

0
dsB[N ][P ](s/g) e−s.

Contrary to our original asymptotic series, this result will indeed converge
in the limit where N → ∞. Note that the subject of Borel–Padé approxima-
tions has been studied intensively from a mathematical point of view, and
has been applied to several physical problems in the past — the reader can
find further details, for example, in [13,62].

One thing one needs to be careful about when doing a Borel–Padé
approximation is that the rational function B[N ][P ](s) will, in general, have
poles on the positive s-axis, making the integral (5.67) ill-defined. This prob-
lem is precisely the same as the one we encountered earlier for the ordinary
Borel resummation in Section 2, and we now know how to solve it: instead
of integrating (5.67) along the real s-axis, we need to integrate around the
poles using a +iε prescription37. As a result, the resummed approximation
S [N ]

+ P (g) will no longer be purely real, but will have a small imaginary part.
For example, using a Borel–Padé approximation for the first sum appearing
in (5.58), in our example case of g = 30, we find the value

(5.68) ũ
BP〈1〉
4·30 = 0.9978832395689425456292 . . .− 2.26 . . .× 10−20 i,

where the 〈1〉 indicates that we only resummed the first sum in (5.58).
Comparing this to (5.60) and (5.62), we notice two very important facts.
First of all, the Borel–Padé approximation indeed gives better results than
optimal truncation: at the precision to which we are presently calculating,
the real part of the above expression exactly reproduces (5.60). Moreover,
shedding light on our previous evaluation, the imaginary part of the above
result is of the same order of magnitude as (5.62), albeit of opposite sign.
That is, it is largely canceled by the leading 2−2g term in (5.58) which, as we

37This sign is a matter of convention; integrating using a −iε prescription will
lead to the same large-order formulae, but with the imaginary Stokes constant S(0)

1

replaced by −S(0)
1 .
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now understand, indeed needs to be imaginary. The fact that the cancellation
is not precise is because in (5.62) we only calculated the leading term in the
2−2g corrections; adding further terms will give more precise results.

5.4.4. Testing the 2−2g corrections using Richardson transforms.
We shall see in a moment how incredibly precise these results can be made,
but first we want to perform an additional test on the validity of our large-
order formula (5.58). Traditionally (see [13,14,16] for many examples), large-
order formulae are tested as follows. One finds a g-dependent quantity, Xg,
such that the ratio

(5.69) Rg =
Xg

Xg+1

approaches a certain coefficient, R∞, at large g, and such that the corrections
to this large-order value take, at least to a good approximation, the form
of a 1/g expansion. One then calculates Rg for a sequence of low values of
g, and finds R∞ using the numerical method of Richardson transforms (see,
e.g., [16, 62]).

Let us work this out for a particular example. Since the perturbative
large-order behavior associated to the first sum in (5.58) has already been
tested extensively in [14,16], the first interesting thing we can test is whether
the corrections to this term scale as 2−2g as g → ∞. To this end, let us define

(5.70) Xg ≡ ũ4g − ũot
4g =

S
(0)
1 A

1
2 Γ(2g − 1)

3 × 2g Γ
(
2g − 1

2

) + O(1/g),

where the right-hand side is the result we expect if our formula (5.58) is
correct. From this, we find the expectation that the ratio Rg should go like

(5.71) Rg = 4 + O(1/g),

as g → ∞. To check this expectation, we have plotted the values of Rg for the
first 100 values of g in figure 3 (top blue line). We see that the sequence Rg

indeed approaches the numerical value 4, albeit slowly. To increase conver-
gence, we can remove 1/g effects by calculating the Richardson transforms of
this sequence. This method is explained in some detail in [62], for example.
The figure shows, from top to bottom, the first three Richardson transforms
of the sequence Rg. We see that the sequences accurately approach the value
R∞ = 4. The best convergence happens after seven Richardson transforms,
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Figure 3: The first 100 values of the sequenceRg, and the first three Richard-
son transforms of this sequence. The sequences accurately approach the
numerical value 4, as expected.

and in this way we find a limiting value of

(5.72) R∞ ≈ 4.000000000038.

The fact that we numerically find the expected answer up to one part in
1011 gives us a lot of confidence that the 2−2g behavior in our large-order
formula (5.58) is correct.

We could continue and define a new Xg which tests the prefactor of the
2−2g corrections, and then the subleading terms in 1/g, and so on. We will
not do this here, since we shall now see that there are other tests that check
the coefficients in our formula to even higher precision.

5.4.5. Direct numerical evaluation. One may jump ahead and wonder:
can we also see the 3−2g corrections in our large-order formulae numerically,
and perhaps even go beyond those? It is clear what needs to be done for this:
to see 3−2g effects, we not only need to resum the perturbative asymptotic
series, but also the asymptotic series multiplying the factor 2−2g in the first
line of (5.58). As we shall now see, the method of Borel–Padé approximations
is powerful enough for this to be done.

Let us begin by again focusing on an example. To make sure the numbers
that follow fit on a single line, let us now look at the case g = 10. We will
denote the Borel–Padé resummation of the first n distinct sums in (5.58) by
ũ
〈n〉
4·10. A numerical evaluation of the Padé approximant and the consecutive

Laplace transform gives the following results:

ũ4·10 ≈ 0.995695607481681532429,(5.73)
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ũ4·10 − ũ
〈1〉
4·10 ≈ 0.000000000000249496840 + 0.000000041490689176523 i,

(5.74)

ũ4·10 − ũ
〈2〉
4·10 ≈ −0.000000000000498993666 + 0.000000000000000063033 i,

(5.75)

ũ4·10 − ũ
〈3〉
4·10 ≈ −0.000000000000000000043 − 0.000000000000000063033 i.

(5.76)

From these numbers, we learn the following. First of all, we see again that
already the leading Borel–Padé approximant ũ〈1〉4·10 gives a very good approx-
imation to the actual value ũ4·10. It is off by a term of order 10−8 in the
imaginary direction, and only by a term of order 10−13 in the real direction.
This imaginary error is then canceled to very high precision by the order
2−2g terms, leaving an imaginary error of order 10−17. Meanwhile, the real
error is not further corrected at this level. The reason for this last fact is that
the real error in both the perturbative terms and in the order 2−2g terms
come from 3−2g effects, and are therefore of the same order of magnitude.
We see even more: they are not only of the same order of magnitude, but
actually related by a simple rational factor: the real error in the 2−2g terms
is −3 times the real error in the perturbative terms, thus giving the overall
real error a factor of −2, as seen above. That these errors are so simply
related could have been anticipated: both come from the 3-instantons series
in the transseries solution to the Painlevé I equation.

The remaining real error is then canceled to order 10−20 by the
3-instantons effects and, at this order, the imaginary error stays of the same
magnitude, again being related by a simple rational factor to the imaginary
error at the previous level. One can continue like this: the remaining imag-
inary error will now be canceled by 4−2g effects, the next improvement in
the real error will occur at order 5−2g, and so on38.

To see how well this method works, we show in figure 4 the preci-
sion of ũ〈n〉4g for g ranging from 2 to 30 and n ranging from 1 to 6 (i.e.,
we have tested our results up to six instantons). To obtain these num-
bers, we have done the appropriate Borel–Padé resummations up to orders

38Since we know that the precise value of ũ4g is real, we could actually have
ignored all imaginary errors. This reduces the number of Borel–Padé approxima-
tions that one needs to make by a factor of two. As the simplest example, we could
take the real part of ũ4g − ũ

〈1〉
4g , and find a result which is correct up to 3−2g correc-

tions instead of the expected 2−2g corrections. In the explicit calculations, however,
to make sure that our methods are correct in more general cases, we have not used
this simplification.
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Figure 4: The precision of ũ〈n〉4g for g ranging from 2 to 30 and n ranging
from 1 to 6.

(200, 180, 160, 120, 80, 80) for the (1, 2−2g, 3−2g, 4−2g, 5−2g, 6−2g) corrections,
respectively. Along the vertical axis, we have plotted the precision, which is
defined as

(5.77) log10

∣∣∣∣∣
ũ4g

ũ4g − ũ
〈n〉
4g

∣∣∣∣∣ ,

that is, the number of decimal places to which ũ〈n〉4g gives the correct result.
Thus, we see that our large–order formulae lead to extremely accurate

results. We saw before that, for g = 30, optimal truncation of the pertur-
bative 1/g large-order series gave the correct result up to approximately 20
decimal places. Now we see that using Borel–Padé approximants the non-
perturbative n−2g effects play a crucial role in getting higher precision, and
that by including up to 6−2g corrections we can get results that are correct
up to 60 decimal places.

Two final remarks about these results are in order. First of all, even
though we are speaking of “large-order behavior”, we see from figure 4 that
already at g = 2 we get results which are accurate up to 10 decimal places.
There is still, however, a limit to this procedure. The reason for this is that,
in our normalization, the n-instanton series at genus g comes with a factor of

(5.78)
Γ
(
2g − h− n

2

)

Γ
(
2g − 1

2

) .

The leading (h = 0) terms for n = 8 will therefore blow up when g = 2. This
is also the reason why we have not included g = 1 in our graph: there, already
the n = 4 and n = 6 contributions blow up. It would be interesting to know
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if this is indeed a fundamental problem or whether it is simply a matter of
normalizations, and can be solved in a similar way to how we circumvented
the analogous gamma function singularities for nonleading values of h.

A second remark is that this test can be viewed as a much more accu-
rate test of certain coefficients than the traditional tests using Richardson
transforms. For example, at g = 30 we have seen that the 2−2g effects set
in at order 10−20. However, we have now checked formulae for g = 30 up to
order 10−60. If the base 2 in 2−2g would have had an error, δ, this would
have shifted the 2−2g effects to effects of order

(5.79) (2 + δ)−2g = 2−2g

(
1 − δ

2g
+ O(δ2)

)
,

so from the fact that we get correct results up to order 10−60, we see that δ
can be no larger than of order 10−40. This is a huge improvement compared
to the accuracy of order 10−11 that we found using Richardson transforms.

This does not mean that the method of Richardson transforms has
become useless. Note that, in the above tests, we have essentially “reversed
the burden of proof”: we have assumed that the n−2g corrections (com-
ing from higher instanton coefficients in the transseries) were correct, and
checked these against the known perturbative coefficients. In the method of
Richardson transforms, one starts from the known perturbative coefficients,
and reproduces the expected coefficients in the n−2g corrections. Whereas
the first method is more powerful as a test, in practical cases one is more
likely to know the perturbative coefficients in a transseries than to know all
nonperturbative coefficients, as we do in this example. Thus, in those cases,
Richardson transforms can be used to learn something about the nonpertur-
bative data, starting from perturbative data. This approach can be useful
for example when studying topological string theories, where detailed non-
perturbative information is often unknown.

5.4.6. Resurgence of the (n|m) instanton series. Now that we have
gained some confidence in our resurgent techniques from studying the per-
turbative series Φ[0]

(0|0), we can apply these techniques to the n-instanton

perturbative series Φ[0]
(n|0) and, more generally, to the generalized instanton

series Φ[k]
(n|m).

A new phenomenon occurs here: the large-order behavior of the series
coefficients, u(n|m)[k]

g , no longer depends only on the single Stokes constant
S

(0)
1 , and further Stokes constants will appear. For example, applying (4.58)

to the one-instanton series one finds that, up to order 2−g, its large-order
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behavior has the following six contributions

u
(1|0)[0]
2g+1 � 2S(0)

1

2πi

+∞∑

h=0

u
(2|0)[0]
2h+2 · Γ

(
g − h− 1

2

)

Ag−h− 1
2

+
(−1)g S

(0)
1

2πi

+∞∑

h=0

u
(1|1)[0]
4h+2

(5.80)

· Γ
(
g − 2h− 1

2

)

Ag−2h− 1
2

+
3(S(0)

1 )2

2πi

+∞∑

h=0

u
(3|0)[0]
2h+3 · Γ(g − h− 1)

(2A)g−h−1

+
(−1)g(S(0)

1 )2

2πi

+∞∑

h=0

u
(2|1)[0]
2h+3 · Γ(g − h− 1)

(2A)g−h−1
− (−1)g(S(0)

1 )2

4πi

×
+∞∑

h=0

u
(2|1)[1]
2h+1 · Γ(g − h) ·B2A(g − h)

(2A)g−h

+
(−1)g(S̃(0)

−2 + 1
2 S̃

(0)
−1 S̃

(1)
−1)

2πi

+∞∑

h=0

u
(1|0)[0]
2h+1 · Γ(g − h)

(2A)g−h
.

Several facts should be noted about this expansion:

• The first two sums determine the perturbative large-order behavior of
the one-instanton coefficients, as a series in 1/g. In the zero-instanton
case, (5.58), we saw that this behavior was determined by the next
instanton series — in that case, the one-instanton series. In the first
sum above, we see this “forward resurgence” again: the large-order
behavior of the one-instanton series is partly determined by the two-
instantons series. However, we see from the second sum that there
is also “sideways resurgence”: the large-order behavior of the one-
instanton series also depends on the (1|1) generalized instanton
coefficients. Thus, even though the physical interpretation of these gen-
eralized sectors is somewhat mysterious, they do influence the physical
instanton sectors in a very important way.

• Even though it does not happen in the above example, from the struc-
ture (4.20) of alien derivatives, one can easily see that, in general, also
“backward resurgence” will occur. For example, the large-order for-
mulae for the two-instantons series will contain contributions coming
from the previous, one-instanton series. Thus, already at the perturba-
tive level in 1/g, we find a very intricate pattern of relations between
the different generalized instanton series. This pattern gets even more
intricate at higher nonperturbative orders. For example, in the last four
sums of the above formula, we see that, at order 2−g, the large-order
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behavior of the one-instanton series is determined by the 3-instanton
series, by the generalized (2|1)-instanton series (including its logarith-
mic contributions u(2|1)[1]

2h+1 ), and even recursively by the 1-instanton
series itself39.

• In the last sum above, two new Stokes constants appear: S̃(0)
−2 and

S̃
(1)
−1 (recall that S̃(0)

−1 = iS(0)
1 , so it is not a new constant). The new

constants appear in the combination

(5.81) T = S̃
(0)
−2 +

1
2
S̃

(0)
−1 S̃

(1)
−1 ,

so that by matching the right–hand side of (5.80) to the left-hand side
for large values of g, we can determine T up to corrections coming
from 3−g terms. Note that to do this, we need to calculate Borel–
Padé approximations to the infinite sums in (5.80). This is a procedure
which takes some (computer) time, but other than that is relatively
straightforward.

• Finally, recall that B2A(g − h) = ψ(g − h+ 1) − log(2A) − iπ, where
ψ(z) is the digamma function. At large g the digamma function has
the asymptotic expansion

(5.82) ψ(z) = log(z) − 1
2z

−
+∞∑

n=1

B2n

2n z2n
,

where in here B2n stands for the Bernoulli numbers. The leading term
in this expansion implies that, at large order, B2A(g − h) ∼ log g, i.e.,
we find at the 2-instantons level a growth of type g! log g, leading as
compared to g!. In calculating T , the easiest way to deal with this
behavior is to gather all terms multiplying log g, divide out the log g,
do a Borel–Padé approximation and then multiply with log g again.
The further terms coming from the above asymptotic expansion can
then be treated as before, using Borel–Padé approximation to resum
all of them directly.

39This behavior is a consequence of the symmetries of the problem: it is really
u

(0|1)[0]
2h+1 that appears in the last sum of the large-order formula, but we have used

Equation (A.21) to rewrite these coefficients in terms of u(1|0)[0]
2h+1 .
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Figure 5: The precision of Tg with respect to T151, and the resulting linear
extrapolation to g = 151.

Carrying out the Borel–Padé approximations, we have found that

(5.83) T = −0.90573009110532780736 . . . .

The precision of this number can be determined as follows. Note that, for
any g, we can determine Tg from (5.80), and we expect the result to become
better as g becomes larger. In fact, the true value of T should be T∞. We
have calculated Tg for values of g up to 151. In figure 5, we plot the num-
ber of decimal places to which Tg agrees with T151. When g � 151, this is
essentially the number of decimal places to which Tg agrees with T∞. At
g ∼ 151, this is no longer true, since we are not really comparing with T∞,
but with T151. One finds that for g � 151, the precision increases linearly,
so by extrapolating this linear behavior, we find the expected precision of
T151, which in this case is a bit more than 20 decimal places.

Of course, it is really the separate values of S̃(0)
−2 and S̃(1)

−1 that we want to
calculate, and not the value of the particular linear combination T . This can
be achieved, for instance, by looking at the large-order behavior of the series
u

(1|1)[0]
g which, at the perturbative level, only depends on S̃

(1)
−1 and on the

known constant S(0)
1 . In exactly the same way, we can then calculate S̃(1)

−1 and
from that constant and T determine S̃(0)

−2 . Applying this procedure to several
generalized instanton series, we have calculated a series of Stokes coefficients
that are tabulated in table 2. Note that, to calculate these numbers, we
have tested the resurgence of several of the generalized instanton series up
to three instantons. In this table, we have also indicated the number of
decimal places to which we have calculated the answer. In the case of S(0)

1 ,
an analytic answer is known — see for example [16,18,22,37] for derivations.
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Table 2: The Stokes constants that we have calculated. The third column
gives the number of decimal places to which the answer is explicitly calcu-
lated. The fourth column lists the generalized instanton series for which the
Stokes constant appears for the first time, and the fifth column lists what
type of large-order behavior this constant determines.

Precision From Order

S
(0)
1 −0.371257624642845568 . . . i ∞ Φ[0]

(0|0) 1−g

S
(0)
2 0.500000000000000000 . . . i 20 Φ[0]

(1|0) 2−g

S
(0)
3 −0.897849124725732240 . . . i 13 Φ[0]

(2|0) 3−g

S
(1)
1 −4.879253817220057751 . . . i 81 Φ[0]

(1|1) 1−g

S
(1)
2 9.856875980487862735 . . . i 19 Φ[0]

(2|1) 2−g

S
(2)
1 −22.825711248125715287 . . . i 36 Φ[0]

(2|2) 1−g

S̃
(2)
1 2.439626908610028875 . . . i 112 Φ[0]

(2|0) 1−g

S̃
(3)
1 15.217140832083810191 . . . i 108 Φ[0]

(3|1) 1−g

S̃
(4)
1 45.334204678679729580 . . . i 108 Φ[0]

(4|2) 1−g

One has

(5.84) S
(0)
1 = −i

31/4

2
√
π
.

For S(0)
3 , we have actually listed more decimal places than we have calcu-

lated; we will see in a moment why we are able to conjecture some further
digits. For readability, we have only listed about 20 decimal places for each
Stokes constant; the authors will of course provide further data to the inter-
ested reader, upon request. In the table, we also list which type of large-
order behavior the Stokes constants determine. For example, the constant
S

(0)
3 appears for the first time in the large–order expansion of Φ[0]

(2|0), where

it multiplies the terms of order 3−g. Apart from S
(0)
1 , and to the best of our

knowledge, the only other number in this table which has been calculated
before is S̃(2)

1 [14]. This number, called S−1 in Equation (5.38) of that paper,
was calculated numerically in there up to 19 decimal places, and our result
agrees with this up to 17 decimal places (i.e., the final 2 decimal places that
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are reported in [14] are incorrect — this is possibly a result of the onset of
2−g effects that were not taken into account in that paper).

Note that we have only listed Stokes constants S(n)
� and S̃(n)

� with 
 > 0.
The reason is that all of these are purely imaginary, but, from them, one can
then easily calculate the corresponding set of Stokes constants with 
 < 0
using relations such as (5.54) and the ones that follow it.

More interestingly, we find that the Stokes constants with 
 > 0 also
satisfy several (at this stage, unexpected) relations amongst themselves. The
first thing one notices is that it seems extremely likely that

(5.85) S
(0)
2 =

i
2
.

Studying table 2 some more, one also finds that

S̃
(2)
1 = −1

2
S

(1)
1 ,(5.86)

S̃
(3)
1 = −2

3
S

(2)
1 ,(5.87)

S
(0)
3 = − 1

3S(0)
1

,(5.88)

S
(0)
1 S

(1)
2 =

3i
4
S

(1)
1 ,(5.89)

are satisfied, at least up to the order to which we have calculated the relevant
constants. Of course, we conjecture these results to be exact, even though we
have no clear idea on how to prove these relations. Proving these relations
and generalizing them to arbitrary Stokes constants40 is a very interesting
problem whose solution will very likely give us a much deeper understanding
of Stokes phenomena and resurgence in the Painlevé I framework.

5.5. The nonperturbative free energy of the (2, 3) model

As discussed at the beginning of this section, we know that the free energy,
F (z), of the (2, 3) minimal string theory is related to the solution, u(z), of

40Using the limited amount of available data, one may make further bold guesses
such as n S̃(n)

1 = −(n− 1)S(n−1)
1 and nS(0)

n = in−1 (S(0)
1 )2−n. Also, it seems natural

to write (5.89) as 2S(0)
1 S

(1)
2 = 3S(1)

1 S
(0)
2 , since these two products often occur in

the same alien derivatives. It is further tempting to guess that, in general, every
Stokes constant can be expressed as a rational function of the S(n)

1 alone.
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the Painlevé I equation by

(5.90) u(z) = −F ′′(z).

We now want to investigate how our results for the Painlevé I solution
translate into results for this free energy. Let us begin by studying the per-
turbative contribution to u(z),

(5.91) Φ(0|0)(z) �
+∞∑

g=0

u
(0|0)[0]
4g z−(5g−1)/2.

Here, the reader should note that we have re-inserted the factor of
√
z that

we had removed earlier in (5.11). Two integrations then lead to

(5.92) F (0|0)(z) ≡ −
+∞∑

g=0

u
(0|0)[0]
4g

∫∫
dz z−(5g−1)/2 �

+∞∑

g=0

F (0|0)
g x2g−2,

where x = z−5/4 is the string coupling constant, and where we defined the
perturbative expansion coefficients for F (0|0)(z) as

(5.93) F (0|0)
g = − 4

(5g − 3)(5g − 5)
u

(0|0)[0]
4g .

Our reason for not including a “log index” [0] in the free energy coefficients
F

(0|0)
g will become clear in a moment. This asymptotic series is, once again,

the perturbative part41 of a transseries expansion for the free energy F (z).
To see what form the one-instanton contribution takes, let us integrate the
leading one-instanton term in the u(z) transseries,

(5.94) −σ1 u
(1|0)[0]
1

∫∫
dz z−1/8e−Az5/4

= −σ1
u

(1|0)[0]
1

12
z−5/8e−Az5/4

+ · · · .

In this expression we have explicitly written the leading coefficient u(1|0)[0]
1 .

Recall from our discussion in Section 5.2 that the value of this constant can
be absorbed by a rescaling of σ1 and, for this reason, we have so far worked

41Here and in what follows, we will not explicitly include any integration con-
stants. In principle, these lead to undetermined terms in F (z) which are constant
and linear in z, and which cannot be fixed by using the Painlevé I analysis alone;
they must be derived from the minimal string theory directly. It turns out that
naively setting these terms to zero actually leads to the correct string theory result.
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in a convention where u
(1|0)[0]
1 = 1. This was a very useful normalization

for constructing the two-parameters transseries solution for u(z) but, to
discuss the free energy F (z), we now actually want to change to a different
convention.

The reason for this new choice of normalization is that we would like
our one-instanton contribution to the free energy to agree with the equiv-
alent result that was computed in [16, 18], for the free energy around the
one-instanton configuration, straight out of a matrix model calculation asso-
ciated to eigenvalue tunneling. That is, we want our one-instanton contribu-
tion to have the normalization (compare with, e.g., formula (4.35) in [16])

(5.95) σF
1

i
8 · 33/4

√
π
z−5/8e−Az5/4

+ · · · .

Note that this coefficient is computed directly from the (2, 3) minimal model
spectral curve [16]. To find this answer, one simply has to rescale

(5.96) σ1 = −i
31/4

2
√
π
σF

1 .

In order to keep the symmetry between instantons and generalized instan-
tons, which we discussed before, we shall also choose to rescale σ2 with this
exact same factor.

The reader may have noticed that the above result may be equivalently
written as

(5.97) σ1 = S
(0)
1 σF

1 .

The appearance of the Stokes constant S(0)
1 in this formula turns out to

be quite natural. A rescaling of the variables σi does not only rescale the
transseries components, but also the Stokes constants. A quick calculation
shows that, under a general rescaling of the σi, these quantities scale as
follows (recall (4.14) for example)

σ1 = c1 σ̂1,(5.98)
σ2 = c2 σ̂2,(5.99)

Φ(n|m) = c−n
1 c−m

2 Φ̂(n|m),(5.100)

S
(k)
� = c1−k

1 c1−k−�
2 Ŝ

(k)
� ,(5.101)

S̃
(k)
� = c1+�−k

1 c1−k
2

̂̃
S

(k)

� .(5.102)
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In particular, our rescaling sets Ŝ(0)
1 = 1. Of course, physical quantities can-

not depend on arbitrary normalization choices, so any physical quantity
must be a scale invariant combination of the above quantities. As we shall
see in the following, we will be particularly interested in quantities which
can be made scale invariant by multiplying with powers of the first Stokes
constant. When this Stokes constant equals 1, this means that the scale
invariant quantity is numerically equal to the “bare” quantity.

5.5.1. Stokes constants for the free energy. Recall from (5.58) that
the large-order behavior of u(0|0)[0]

4g has a leading term

(5.103) u
(0|0)[0]
4g ∼ 2S(0)

1

2πi
Γ
(
2g − 1

2

)

A2g− 1
2

u
(1|0)[0]
1 .

For F (0|0)
g we can do the exact same large-order calculation and the result

is very similar

(5.104) F (0|0)
g ∼ 2S(0)F

1

2πi
Γ
(
2g − 5

2

)

A2g− 5
2

F
(1|0)
0 ,

where we denoted the leading one-instanton coefficient42 in the free energy
transseries by F (1|0)

0 . We see that the only difference between the above two
equations is in the argument of the gamma function and the power of the
instanton action, A. Both of these are shifted by −2, as a result of the double
integration involved in going from u(z) to F (z). One can see quite easily that
this is a general property: all large-order formulae for u(z) and F (z) are the
same up to these shifts.

Notice that in (5.104) we have denoted the Stokes constant as S(0)F
1 .

Indeed, nothing guarantees that the Stokes constants for the transseries
F (z) equal those for the transseries u(z) — and in fact we shall see that,
in general, they are different. However, the Stokes constants for F (z) can
easily be obtained from those for u(z). For example, comparing (5.103) and
(5.104), we can calculate the Stokes constant S(0)F

1 for the free energy. First

42For the free energy, and in order to avoid fractional indices, we will use a
convention where all perturbative series start with a coefficient F (n|m)

0 , with lower
index 0.
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of all, note that we can rewrite (5.93) as

(5.105) F (0|0)
g = −16

25
u

(0|0)[0]
4g(

2g − 5
2

) (
2g − 3

2

)
(

1 + O
(

1
g

))
.

Moreover, we know from (5.94) and (5.97) that

(5.106) F
(1|0)
0 = −S

(0)
1

12
u

(1|0)[0]
1 .

Inserting both of these in (5.104) gives

(5.107) u
(0|0)[0]
4g ∼ 2S(0)F

1 S
(0)
1

2πi
Γ
(
2g − 1

2

)

A2g− 1
2

u
(1|0)[0]
1 .

Comparing this to (5.103), we find that

(5.108) S
(0)F
1 = 1.

This once again indicates why the rescaling (5.97) was a useful choice. In
general, quantities such as F (1|0)

0 or S(0)F
1 cannot be physically meaningful

quantities: only “scale invariant” quantities such as

(5.109) S
(0)F
1 · F (1|0)

0

can carry physical information. Having chosen our present normalization in
such a way that S(0)F

1 = 1, we have shifted the full physical information
into F

(1|0)
0 . We could of course just as well have done the opposite thing,

i.e., choosing a normalization where F (1|0)
0 = 1 and absorbing all physical

information into S(0)F
1 . The reason we have chosen the present normalization

is that it agrees with the one usually chosen in the literature. For example,
in [16] the above normalization is chosen and the resulting physical quantity
F

(1|0)
0 (called μ1 in that paper) is calculated directly from the spectral curve

of a matrix model.
The above calculation, relating S

(0)F
1 to S

(0)
1 , can be repeated for any

Stokes constant. One simply finds a term in a large–order formula in which
the Stokes constant appears, calculates the normalization of this term for
both u(z) and F (z), and then compares the two formulae. Doing this care-
fully one finds the following relations between the Stokes constants for F (z)
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Table 3: Stokes constants for the (2, 3) minimal string free energy. The third
column gives the number of decimal places to which the answer was com-
puted. See table 2 for the corresponding quantities for the Painlevé I solution
u(z), from which the above numbers are derived using (5.111).

S
(0)F
1 1.000000000000000000... ∞
S

(0)F
2 2.000000000000000000... i 20

S
(0)F
3 −3.000000000000000000... 13

S
(1)F
1 −1.811460182210655615... 81

S
(1)F
2 −5.434380546631966844... i 19

S
(2)F
1 1.168020496900498115... 36

S̃
(2)F
1 0.905730091105327807... 112

S̃
(3)F
1 −0.778680331266998743... 108

S̃
(4)F
1 0.319744372344502079... 108

and for u(z)

S
(k)F
� = 
2 S

(k)
� (S(0)

1 )2k+�−2,(5.110)

S̃
(k)F
� = 
2 S̃

(k)
� (S(0)

1 )2k−�−2.(5.111)

Note that the right-hand side in these equations consists of scale invariant
quantities; the left-hand side consists of quantities, which are implicitly scale
invariant as well, due to the analogous powers of S(0)F

1 = 1. The factor of 
2

comes from taking a second derivative of the instanton factor exp(±
Az5/4)
in the free energy transseries.

We have listed the numerical values for the free energy Stokes constants
in table 3. Our main reason for listing the free energy Stokes constants
separately is that we expect those numbers to be the ones that can eventually
be calculated from minimal string theory or spectral curve considerations,
similar to the way in which one can calculate S(0)

1 . Of course, to actually
carry out such calculations, one needs a physical understanding of what the
generalized instantons are.

As was the case for u(z), not all of the free energy Stokes constants
are independent: using Equation (5.111), the relations (5.86–5.89) directly
translate into relations between these numbers

S̃
(2)F
1 = −1

2
S

(1)F
1 ,(5.112)
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S̃
(3)F
1 = −2

3
S

(2)F
1 ,(5.113)

S
(1)F
2 = 3iS(1)F

1 .(5.114)

As in footnote 40, one can then conjecture analogous further relations for
the free energy Stokes constants that have not been calculated yet, such as,
e.g., S(0)F

n = in−1n.

5.5.2. The free energy transseries coefficients. We now want to cal-
culate the explicit form of some of the (n|m)-instantons contributions to
the free energy transseries. In the case where n = m, there are no logarith-
mic contributions to the u-transseries, and the double integration is easily
carried out as we did for n = m = 0 in (5.93).

Let us therefore study the “off-diagonal” (n|m)-instantons contribution
to u(z)

σn
1σ

m
2 e−(n−m)A/w2

Φ[0]
(n|m)(w) = σn

1σ
m
2 e−(n−m)A/w2

+∞∑

g=0

u
(n|m)[0]

2g+2β
[0]
nm

w2g+2β
[0]
nm ,

(5.115)

where n 
= m. It is convenient to add to this term all the logarithmic terms
that are proportional to it by (5.40), i.e., all terms of the form

(5.116) σn+k
1 σm+k

2 e−(n−m)A/w2
logk(w) · Φ[k]

(n+k|m+k)(w),

with k ≥ 0. Using (5.40), we can rewrite these terms as

(5.117)
1
k!

(
4√
3
(m− n)σ1σ2 logw

)k

σn
1σ

m
2 e−(n−m)A/w2

Φ[0]
(n|m)(w),

and summing all of them over k we find that we can incorporate all of those
terms by simply replacing Φ[0]

(n|m) by

(5.118) Φ[sum]
(n|m)(w) = exp

(
4√
3
(m− n)σ1σ2 logw

)
Φ[0]

(n|m)(w).

Formally, we can write this as43

(5.119) Φ[sum]
(n|m)(w) = w

4√
3
(m−n)σ1σ2 Φ[0]

(n|m)(w).

43This also illustrates in a rather clear way, and as explained before, that the log-
arithmic sectors do not seem to represent any new nonperturbative sectors. Herein,
they simply encode an irrational power function.
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Rewriting the result in terms of z = w−8/5 and reintroducing the scale factor
z1/2, we get the following (n|m)-contribution to the free energy transseries

(5.120) σn
1σ

m
2 e−(n−m)Az5/4

+∞∑

g=0

u
(n|m)[0]

2g+β
[0]
nm

z−
10g+5β

[0]
nm−4

8
+

4(n−m)σ1σ2
A .

To integrate this part of the transseries, we use the fact that

(5.121) −
∫∫

dz zγe−�Az5/4
=

4
5
A

zγ+3/4 e−�Az5/4
+∞∑

k=1

ak(γ) · (−
Az5/4)k,

where

(5.122) ak(γ) =
Γ
(
k − 4γ−1

5

)

Γ
(
−4γ−1

5

) −
Γ
(
k − 4γ+3

5

)

Γ
(
−4γ+3

5

)

is a polynomial of degree k − 1 in γ. It is important to notice that, in the
components of our logarithmically summed transseries (5.120), the coeffi-
cient γ is linear in σ1σ2 and thus ak(γ) in (5.121) above will be a polynomial
of degree k − 1 in σ1σ2. This means that integrating the (n|m) transseries
component in u(z) will not only contribute to the (n|m) transseries compo-
nent in F (z), but also to all (n+ α|m+ α) components with α > 0.

Using (5.121), the double integration of the u-transseries is now easily
carried out in a computer. We find the result that the free energy has the
following transseries structure:

F (z, σF
1 , σ

F
2 ) =

+∞∑

n=0

+∞∑

m=0

(S(0)
1 )n+m(σF

1 )n(σF
2 )me−(n−m)Az5/4

(5.123)

× z
1
π
(n−m)σF

1 σF
2 F (n|m)(z),

where the F (n|m)(z) are perturbative expansions44 in the string coupling
z−5/4. The formal power of z should once again be interpreted as

(5.124) z
1
π
(n−m)σF

1 σF
2 = exp

(
1
π

(n−m)σF
1 σ

F
2 log z

)
,

44We use this term with a bit of hand-waving since these expansions contain half-
integral overall powers of the string coupling constant and two logarithmic terms
actually appear in the lowest F (n|m)(z).
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which can be expanded to give log z-dependent contributions exactly analo-
gous to the ones we found for the u-transseries. That is, we could leave out
this factor in (5.123) and instead replace

(5.125)
+∞∑

n=0

+∞∑

m=0

F (n|m)(z) −→
+∞∑

n=0

+∞∑

m=0

+∞∑

k=0

logk(z) · F [k]
(n|m)(z),

with

F
[0]
(n|m)(z) = F (n|m)(z),(5.126)

F
[k]
(n|m)(z) =

1
k!

(
1
π

(n−m) log z
)k

F
[0]
(n|m)(z).(5.127)

Keeping the (5.123) transseries structure for the free energy, the first few of
the F (n|m)(z) are

F (0|0)(z) = − 4
15
z

5
2 − 1

48
log z +

7
5760

z−
5
2 +

245
331776

z−5 + · · · ,
(5.128)

F (1|0)(z) = − 1
12
z−

5
8 +

37
768

√
3
z−

15
8 − 6433

294912
z−

25
8

(5.129)

+
12741169

283115520
√

3
z−

35
8 − · · · ,

F (2|0)(z) = − 1
288

z−
5
4 +

109
27648

√
3
z−

5
2 − 11179

5308416
z−

15
4

(5.130)

+
11258183

2548039680
√

3
z−

10
2 − · · · ,

F (1|1)(z) = +
16
5
z

5
4 +

5
96
z−

5
4 +

15827
1474560

z−
15
4 +

6630865
452984832

z−
25
4 + · · · ,

(5.131)

F (2|1)(z) = − 71
864

z−
15
8 +

2999
18432

√
3
z−

25
8 − 25073507

191102976
z−

35
8 + · · · ,

(5.132)

F (3|1)(z) = − 47
6912

z−
5
2 +

16957
995328

√
3
z−

15
4 − 1843303

127401984
z−

10
2 + · · · ,

(5.133)
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F (2|2)(z) = −5
6

log z +
1555
20736

z−
5
2 +

5288521
95551488

z−5

(5.134)

− 1886134925
13759414272

z−
15
2 + · · · ,

F (3|2)(z) = +
47

288
√

3
z−

15
8 − 41341

248832
z−

25
8 +

11044831
21233664

√
3
z−

35
8 − · · · ,

(5.135)

F (4|2)(z) = +
47

3456
√

3
z−

5
2 − 116803

5971968
z−

15
4 +

4714205
71663616

√
3
z−5 − · · · .

(5.136)

One easily checks that inserting these expansions in (5.123), and taking
minus its second derivative, reproduces the results for the u(z) transseries
that we listed in Appendix A. We only listed the F (n|m)(z) with n ≥ m here;
the ones with n < m can be obtained by the rule

(5.137) F (m|n)
g = (−1)g+[n/2]IF (n|m)

g , n > m.

The starting exponent of F (n|m) follows straightforwardly from that of u(n|m).
One has

F (n|n) ∼ z−
5
4
β

[0]
nn+ 5

2 ,(5.138)

F (n|m) ∼ z−
5
4
β

[0]
nm ,(5.139)

where β[0]
nm is defined in (5.34) and the second line above is valid for n 
= m.

This concludes the nonperturbative solution to the (2, 3) minimal string.

6. Matrix models with polynomial potentials

While there are many examples of exactly solvable matrix models (see,
e.g., a few such examples within the context of nonperturbative comple-
tions in [25]), it is certainly the case that in most situations one does not
have access to anything more than perturbative techniques, most notoriously
those introduced a long time ago [6, 7, 26]. Enlarging these old techniques
by the use of resurgent analysis naturally becomes of critical importance
for the extraction of nonperturbative information out of a rather large class
of string theoretic examples [13]. In here, we shall focus upon matrix mod-
els with polynomial potentials, mostly on the quartic one-matrix model,
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developing the two-parameters resurgent framework as it applies to this
example. Notice that in the large N limit all matrix model quantities will
now depend upon ’t Hooft moduli, an additional complication as compared
to the case of minimal strings. However, we shall further see how to make
the bridge back to Painlevé I via a natural double-scaling limit of the quartic
model.

The resurgent analysis of matrix models has another added feature,
as compared to minimal string models. Within this context, perturbative
techniques construct asymptotic expansions which are formal power series
around a given saddle-point of the partition function of the theory. In other
words, one performs perturbation theory around a chosen background —
where one expects that a full nonperturbative solution should be back-
ground independent, i.e., it should include all possible backgrounds [27]. This
is where the full transseries framework comes into play: only by properly
considering the correct multiple-parameters transseries (a two-parameters
transseries in the quartic example) can we expect to construct fully non-
perturbative, background independent solutions. In fact, while it is possi-
ble to consider a one-parameter transseries ansatz for the quartic matrix
model, still yielding a rather interesting amount of nonperturbative infor-
mation, this is not the most general multi-instanton expansion required and,
as such, cannot possibly see all other backgrounds [13]. In the following, we
shall construct the full two-parameters transseries solution to the quartic
matrix model around the so-called one-cut large N saddle-point. Because
this is the most general solution to this problem, it is naturally applicable to
the problem of changing of background: one can envisage starting off in the
one-cut phase and, via Stokes transitions, reach other stable saddle-points
of the quartic matrix models such as, e.g., its well-known two-cut phase. We
hope to report on these issues in upcoming work.

6.1. Matrix models: spectral geometry and orthogonal
polynomials

For the purpose of completeness on what follows, let us begin with a lighten-
ing review of matrix models, both in the spectral geometry and orthogonal
polynomial frameworks (for more complete accounts we refer the reader to,
e.g., the excellent reviews [5, 63]).

The one-matrix model partition function for the Hermitian ensemble is

(6.1) Z(N, gs) =
1

vol(U(N))

∫
dM exp

(
− 1
gs

TrV (M)
)
,
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with ’t Hooft coupling t = Ngs (fixed in the ’t Hooft limit). In standard
diagonal gauge one has

(6.2) Z(N, gs) =
1
N !

∫ N∏

i=1

(
dλi

2π

)
Δ2(λi) exp

(
− 1
gs

N∑

i=1

V (λi)

)
,

where Δ(λi) is the Vandermonde determinant. The simplest possible saddle
point for this integral is the one-cut solution, characterized by an eigenvalue
density normalized to one, and where the cut is simply C = [a, b]. A rather
convenient description of this saddle point is given by the Riemann surface
which corresponds to a double-sheet covering of the complex plane with
precisely the above cut. This geometry is described by the corresponding
spectral curve45

(6.3) y(z) = M(z)
√

(z − a)(z − b),

where46

(6.4) M(z) =
∮

(0)

dw
2πi

V ′(1/w)
1 − wz

1√
(1 − aw)(1 − bw)

.

For future reference, it is also useful to define the holomorphic effective
potential V ′

h;eff(z) = y(z), which appears at leading order in the large N
expansion of the matrix integral as

(6.5) Z ∼
∫ N∏

i=1

dλi exp

(
− 1
gs

N∑

i=1

Vh;eff(λi) + · · ·
)
.

There are many ways to solve matrix models. A recursive method, some-
times denoted by the topological recursion, was recently introduced for com-
puting connected correlation functions and genus g free energies, entirely
in terms of the spectral curve [8, 9]. However, for our purposes of comput-
ing the genus expansion of the free energy, one of the most efficient and
simple methods is still that of orthogonal polynomials [26], which we now
briefly introduce. Considering again the one-matrix model partition function

45Where the imaginary part of the spectral curve simply relates to the eigenvalue
density.

46This particular expression only holds for polynomial potentials.
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in diagonal gauge (6.2) it is natural to regard

(6.6) dμ(z) = e−
1

gs
V (z) dz

2π

as a positive-definite measure on R, and it is immediate to introduce orthog-
onal polynomials, {pn(z)}, with respect to this measure as

(6.7)
∫

R

dμ(z) pn(z)pm(z) = hnδnm, n ≥ 0,

where one further normalizes pn(z) such that pn(z) = zn + · · · . Further
noticing that the Vandermonde determinant is Δ(λi) = det pj−1(λi), the
one-matrix model partition function above may be computed as

(6.8) Z =
N−1∏

n=0

hn = hN
0

N∏

n=1

rN−n
n ,

where we have defined rn = hn

hn−1
for n ≥ 1, and where one may explicitly

write

(6.9) h0 =
∫

R

dμ(z) =
1
2π

∫ +∞

−∞
dz e−

1
gs

V (z).

The rn coefficients also appear in the recursion relations of the orthogonal
polynomials,

(6.10) pn+1(z) = (z + sn)pn(z) − rn pn−1(z),

together with the new coefficients {sn}, which actually vanish for an even
potential.

The key point that follows is that once one has a precise form of the
coefficients in the recursion (6.10), one may then simply compute the par-
tition function of the matrix model (and, in fact, all quantities in a large
N topological expansion). In the example of main interest to us in the fol-
lowing, that of the quartic potential V (z) = 1

2z
2 − λ

24 z
4, it is simple to find

that sn = 0 and [26]

(6.11) rn

(
1 − λ

6
(
rn−1 + rn + rn+1

))
= ngs.

This recursion sets up a perturbative expansion around the one-cut solution
of the quartic matrix model which, as briefly outlined above, is described by
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a single cut C = [−2α, 2α] where

(6.12) α2 =
1
λ

(
1 −√

1 − 2λt
)

and the spectral curve is

(6.13) y(z) =
(

1 − λ

6
(
z2 + 2α2

))√
z2 − 4α2.

Before attempting a nonperturbative transseries solution to the quartic
matrix model, let us briefly consider its perturbative solution [26] and what
it implies towards resurgence.

6.2. Resurgence of the Euler–MacLaurin formula

In the ’t Hooft limit, where N → +∞ with t = gsN held fixed, the pertur-
bative, large N , topological expansion of the free energy F = logZ of the
matrix model (6.1) is precisely given by a standard string theoretic genus
expansion (1.1). This is usually normalized against the Gaussian weight,
where VG(z) = 1

2z
2, thus following from (6.8)

F ≡ F − FG =
+∞∑

g=0

g2g−2
s Fg(t) =

t

gs
log

h0

hG
0

+
t2

g2
s

1
N

N∑

n=1

(
1 − n

N

)
log

rn
rGn
.

(6.14)

In this expression one first needs to understand the large N expansion of
the recursion coefficients, {rn}. Given the Gaussian solution rGn = ngs it is
natural to change variables47 as x ≡ ngs, where x ∈ [0, t] in the ’t Hooft
limit, and define the function

(6.15) R(x) = rn, with RG(x) = x.

In the example of the quartic potential, (6.11) is then rewritten as

(6.16) R(x)
{

1 − λ

6
(R(x− gs) + R(x) + R(x+ gs))

}
= x.

Noticing that this equation is invariant under gs ↔ −gs it follows that R(x)
is an even function of the string coupling and thus admits an asymptotic

47The x-variable in this section should not be confused with the x-variable of
Section 5.
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large N expansion of the form

(6.17) R(x) �
+∞∑

g=0

g2g
s R2g(x),

which allows one to solve for the R2g(x) in a recursive fashion, given R0(0) =
0. Further noticing that in the ’t Hooft limit, where x becomes a continuous
variable, the sum in (6.14) may be computed by making use of the Euler–
MacLaurin formula48

lim
N→+∞

1
N

N∑

n=1

Φ
( n
N

)
=
∫ 1

0
dξΦ(ξ) +

1
2N

Φ(ξ)
∣∣∣∣
ξ=1

ξ=0

(6.18)

+
+∞∑

k=1

1
N2k

B2k

(2k)!
Φ(2k−1)(ξ)

∣∣∣∣
ξ=1

ξ=0

,

we finally obtain

F(t, gs) =
t

2gs

(
2 log

h0

hG
0

− log
R(x)
x

∣∣∣∣
x=0

)
+

1
g2
s

∫ t

0
dx(t− x) log

R(x)
x

(6.19)

+
+∞∑

g=1

g2g−2
s

B2g

(2g)!
d2g−1

dx2g−1

[
(t− x) log

R(x)
x

]∣∣∣∣
x=t

x=0

,

or, explicitly, using the expansion of R(x) in powers of the string coupling
[26], e.g.,

F0(t) =
∫ t

0
dx (t− x) log

R0(x)
x

,

(6.20)

F1(t) =
∫ t

0
dx (t− x)

R2(x)
R0(x)

+
1
12

d
dx

[
(t− x) log

R0(x)
x

]∣∣∣∣
x=t

x=0

+
1
8
t λ.

(6.21)

It is worth making some comments concerning these expressions. First notice
that the Euler–MacLaurin formula is an asymptotic expansion, thus only
capturing perturbative contributions to the matrix model free energy. These
perturbative contributions to the free energy at genus g then arise from a

48In here the B2k are the Bernoulli numbers and x = t ξ.
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recursive solution to the string equation, i.e., out of the coefficients R2g(x),
computed recursively in the quartic potential example out of the large N
string Equation (6.16), and similarly for different potentials. For instance,
in our main example, it is simple to obtain out of (6.16) that

(6.22) R0(x) =
1
λ

(
1 −√

1 − 2λx
)
,

which is the one solution satisfying the initial condition R0(0) = 0. Finally,
when computing Fg(t) above, we have partially restricted our result to the
quartic potential, as we have made use of the fact that in this case one
has [26]

(6.23) 2 log
h0

hG
0

− log
R(x)
x

∣∣∣∣
x=0

≡ log
h0 (+|λ|)
h0(−|λ|) =

1
4
λgs +

11
48
λ3g3

s − · · · .

We now arrive at the main point concerning the construction of pertur-
bative solutions to matrix models, in the orthogonal polynomial framework,
and its relation to resurgence. It can be shown that the asymptotic expan-
sion (6.18), defining the Euler–MacLaurin formula, may also be written as
a finite-difference operator of Toda type [13],

(6.24) F(t+ gs) − 2F(t) + F(t− gs) = log
R(t)
t
.

This expression encodes the relation between R(t, gs) and F(t, gs), expressed
by the Euler–MacLaurin asymptotic formula, and it is essentially the large
N version of the identity

(6.25)
ZN+1ZN−1

Z2
N

= rN ;

which is in itself an immediate consequence of (6.8). The above finite–
difference equation makes it clear that if the recursion function R(t, gs)
has a nontrivial resurgent structure, arising via a transseries solution to the
string Equation (6.16), then, (6.24) will immediately induce a nontrivial
resurgent structure to the matrix model free energy F(t, gs), of the exact
same form [13]. This is essentially a statement concerning the particular
solution to the non-homogeneous Toda-type relation above. One has, how-
ever, to check the general solution to the homogeneous version of (6.24), i.e.,
check whether the Euler–MacLaurin formula induces any other new resur-
gent effects before further ado! But all such homogeneous “Toda” resurgent
effects have already been studied in [25]. Furthermore, it was shown in [64]
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that, essentially because the homogeneous Euler–MacLaurin relation (6.24)
is linear with constant coefficients, it only has Borel singularities associated
to A-cycle instantons, of the type discussed in [25]. In this scenario, B-cycle
instantons, displaying fully nontrivial resurgence, originate in transseries
solutions to the string Equation (6.16). These translate to the free energy
as the nonhomogeneous contribution to the solution of (6.24) (relating back
to our discussion on A- and B-cycle instantons in Section 3).

The bottom line is thus that the nonperturbative resurgent analysis can
be all done at the level of the nonlinear recursion, or string Equation (6.16),
alone. This will capture the full nontrivial resurgent structure of the matrix
model free energy; the addition of “Toda” or A-cycle instantons then being
completely straightforward to implement, following the results in [25].

6.3. The transseries structure of the quartic matrix model

As just discussed, the solution R(x) to the string Equation (6.16) completely
determines the free energy of the one-cut solution to the quartic matrix
model. In order to nonperturbatively solve this model, our aim is now to
construct R(x) as a transseries solution.

The string equation is, in this case, the finite-difference analog of a
second-order differential equation. For this reason, one expects the full
transseries solution to contain two free parameters, which is further consis-
tent with the fact that the double-scaling limit of the quartic matrix model
reproduces the (2, 3) minimal string theory. As we have seen, the free energy
of that theory is described by the Painlevé I equation, which is also solved by
a transseries with two free parameters. The one-parameter transseries solu-
tion to the string Equation (6.16) was first discussed in [13], building upon
the perturbative results obtained in [26]. Below, we review those results, and
then continue to describe the full two-parameters transseries solution.

6.3.1. Review of the one-parameter transseries solution. In [13]
the one-parameter transseries solution to the string equation

(6.26) R(x)
{

1 − λ

6
(R(x− gs) + R(x) + R(x+ gs)

)}
= x

was investigated. It was found that such a solution can indeed be con-
structed, having the form

R(x) =
+∞∑

n=0

σnR(n)(x),(6.27)
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R(n)(x) � e−nA(x)/gs

+∞∑

g=0

gg
s R

(n)
g (x),(6.28)

where we used a notation which slightly differs from that in [13] but which
is more convenient for our purposes. Note that, as in the Painlevé I case,
the nonperturbative answer is an expansion in the “open string coupling
constant”, gs, and not in the “closed string coupling constant”, g2

s .
To find expressions for the R(n)

g (x), one simply plugs (6.28) into (6.26),
and solves the resulting equation order by order in σ and gs. For example,
at order σ0g0

s , one finds the equation

(6.29) r

(
1 − λr

2

)
= x,

where we have introduced the shorthand

(6.30) r ≡ R
(0)
0 (x).

Solving this quadratic equation leads to the answer we have already men-
tioned,

(6.31) r =
1
λ

(
1 −√

1 − 2λx
)
.

Here the square root is defined to be positive on real and positive arguments
and we chose the sign in front of it in such a way that r has a finite λ→ 0
limit.

At order σ0g2
s , (6.26) gives the equation

(6.32) R
(0)
2 (x) (1 − λr) − λrr′′

6
= 0.

Using (6.31), one can now solve for R(0)
2 (x) in terms of x. In fact, it will turn

out to be useful to write this answer, as well as all other answers that will
follow, in terms of r. Doing this, one obtains

(6.33) R
(0)
2 (x) =

1
6

λ2r

(1 − λr)4
.

This procedure is easily continued to order σ0g2g
s , which then determines

all coefficients R(0)
2g (x). In this way, one reproduces the perturbative results

that were first obtained in [26]. Note that, at order σ0, we are skipping all
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odd orders in gs since our answer should be an expansion in the closed string
coupling constant g2

s . As aforementioned, since equation (6.26) is itself even
in gs, it is indeed possible to find a perturbative solution Rpert(x) which is
also even in gs.

The next step is to calculate the one-instanton contributions, which
appear at order σ1. Expanding (6.26) at order σ1g0

s , one finds

(6.34) R
(1)
0 (x)

(
e+A′(x) + e−A′(x) + 4 − 6

λr

)
= 0.

One sees that the overall factor R
(1)
0 (x), which we will soon find to be

nonzero, drops out. Hence, this equation determines the possible values for
the instanton action A(x). Expressed in terms of the variable r, these values
are

A(x) = ±r
2

(2 − λr) arccosh
(

3
λr

− 2
)
∓ 1

2λ

√
3 (1 − λr) (3 − λr)(6.35)

+ πi pr(2 − λr) + cint,

where the branch cuts are chosen such that both the arccosh and the square
root are positive when λr → 1−, and p ∈ Z. Furthermore, notice that in the
first line there is only one single sign ambiguity: one can either choose both
upper signs or both lower ones. The integration constant cint and the integer
ambiguity p were fixed in [13] by requiring that this expression reproduces
the Painlevé I instanton action in the corresponding double-scaling limit. It
turns out that, for this, both constants need to vanish. The sign in the first
line was also fixed in [13]; to obtain the positive Painlevé I instanton action,
one needs to choose

(6.36) A(x) = −r
2

(2 − λr) arccosh
(

3 − 2λr
λr

)
+

1
2λ

√
(3 − 3λr) (3 − λr).

In our two-parameters case, we shall eventually be interested in both choices
of sign. We simply take the above expression as the definition of A(x) and,
once we move on to the two-parameters transseries, one will see that both
A(x) and −A(x) appear symmetrically.

Akin to the Painlevé I case, essentially the same results may be obtained
by writing the string Equation (6.26) in prepared form. Indeed, also for finite-
difference equations there is a very similar story to the one we described in
Section 4 for ordinary differential equations, and which we shall now mention
very briefly [65]. This time around one can show that, via a suitable change
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of variables, a rank–n system of nonlinear finite-difference equations

(6.37) R(x+ 1) = F
(
x,R(x)

)
,

may always be written in prepared form as [65]

(6.38) R(x+ 1) = Λ(x)R(x) + G
(
x,R(x)

)
,

with G
(
x,R(x)

)
= O

(
‖R‖2 , x−2 R

)
and where

(6.39) Λ(x) = diag
(
e−α1

(
1 + x−1

)β1
, . . . , e−αn

(
1 + x−1

)βn

)
.

Within this setting formal transseries solutions to our system of nonlinear
finite-difference equations essentially have the same form and properties as
those discussed in Section 4.

Once we have fixed the instanton actionA (to keep the notation readable,
we shall many times suppress the x-dependence of all our functions), one can
continue to higher orders in gs. At order σ1g1

s (6.26) gives terms involving
two unknown functions, R(1)

0 and R(1)
1 . However, it turns out that the terms

proportional to R(1)
1 actually are

(6.40) R
(1)
1

(
e+A′

+ e−A′
+ 4 − 6

λr

)
,

and hence vanish by (6.34). One is left with the equation

(6.41)
dR(1)

0

dx

(
e−A′ − e+A′

)
−R

(1)
0

A′′

2

(
e−A′

+ e+A′
)

= 0.

This differential equation is not too hard to solve; where the multiplicative
integration constant is once again fixed by requiring that the double–scaling
limit yields the Painlevé I solution [13]. Its solution is thus

(6.42) R
(1)
0 =

√
λr

(3 − λr)1/4 (3 − 3λr)1/4
,

where the quartic roots are defined to be positive as λr → 1−. In fact, we
shall use this convention for any of the fractional powers that will appear in
what follows.

Proceeding in this way, one finds a similar pattern: at order σ1gg
s both

R
(1)
g−1 and R

(1)
g appear as unknown functions, but R(1)

g multiplies the same
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terms as R(1)
0 in (6.34) and hence drops out. This is nothing but the phe-

nomenon of resonance that we have also encountered in the Painlevé I case.
What is left is a linear first-order differential equation for R(1)

g−1, which can
then be easily solved. The integration constant in this solution can be fixed
by the requirement of a good double-scaling limit. In [13], the answers for
R

(1)
1 and R

(1)
2 were calculated in this way. Using a Mathematica script, we

have calculated the one-instanton contributions up to R
(1)
30 . The general

structure of these solutions will be described below.
In principle, one could now go on in the same way and calculate the

higher instanton contributions R(n)
g , for n > 1. Instead of doing this in the

one-parameter formalism, we shall now move on to the two-parameters case,
and calculate the higher instanton contributions as part of this more general
setting.

6.3.2. The two-parameters transseries solution. In the framework
of the present paper, one should not restrict to a single sign choice for the
instanton action. Rather, we would like to find the general two-parameters
transseries solution

R(x) =
+∞∑

n=0

+∞∑

m=0

σn
1σ

m
2 R(n|m)(x),(6.43)

R(n|m)(x) � e−(n−m)A(x)/gs

+∞∑

g=βnm

gg
s R

(n|m)
g (x),(6.44)

to the quartic model string equation. Note that, apart from the obvious
changes in this ansatz, as going from one parameter σ to two parameters
σ1, σ2, we have also included a “starting genus” βnm, which plays the same
role as the βnm in our previous examples. The reader may also wonder if it
is not necessary, as in the Painlevé I case, to introduce log gs terms in our
ansatz. As we shall see below, there is in fact no need for such terms in the
present context49.

Once we have made this ansatz, solving the string Equation (6.26) order
by order in n, m and g is a tedious but relatively straightforward exercise. As
in the one-parameter case, one simply inserts (6.44) into the string equation,
isolates the terms multiplying a certain power of σ1, σ2 and gs, and solves
the resulting equations inductively for R(n|m)

g (x).

49As we will see in Section 6.4, however, it may be useful to change variables in
such a way that log gs terms do appear. This will turn out to be especially useful
when we want to study the double-scaling limit.
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In the case of the ordinary instanton series, one finds algebraic equa-
tions for R(n|0)

g (x), with n > 1. For example, at order σ2
1σ

0
2g

0
s , one finds the

equation

R
(2|0)
0

(
e+2A′

+ e−2A′
+ 4 − 6

λr

)
+
R

(1|0)
0 R

(1|0)
0

r

(
1 + e+A′

+ e−A′
)

= 0,

(6.45)

which, after inserting (6.42) and (6.36), is solved by

(6.46) R
(2|0)
0 = − λ2r

2 (3 − λr)1/2 (3 − 3λr)3/2
.

Going beyond the instanton series, we can now also calculate the “general-
ized instanton contributions” R(n|m)

g (x), with nonzero m. At order σ1
1σ

1
2g

0
s ,

for example, one finds an algebraic equation that is solved by

(6.47) R
(1|1)
0 =

3λ (2 − λr)

(3 − λr)1/2 (3 − 3λr)3/2
.

Continuing to higher genus, one finds that all R(1|1)
g with odd g vanish, so

that the resulting perturbative series is a series in the closed string coupling
constant g2

s . The same holds for all other functions R(n|n)
g , with as many

instantons as “generalized anti-instantons”.
At generic order σn

1σ
m
2 g

g
s one has to solve an algebraic equation to

find R
(n|m)
g . Generically, i.e., when n 
= m, the answers also contain “open

string” contributions with g odd. When n = m± 1, we again encounter the
phenomenon of resonance: the terms multiplying R(n|m)

g drop out, and we
actually need to solve a differential equation to obtain R

(n|m)
g−1 . Some of the

integration constants that appear in the solutions to these differential equa-
tions are equivalent to the ambiguities we found in the Painlevé I case: they
parameterize the choices we have in rearranging σ1 and σ2 into new nonper-
turbative parameters. We fix those integration constants as for Painlevé I,
by requiring that βnm is as large as possible. Other integration constants do
not have this interpretation, and need to be fixed by requiring the correct
double–scaling limit.

The solutions to the differential equations for n = m± 1 are not all of
the form that we have encountered so far. Starting at n = 2, m = 1, we also
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have logarithms entering the game. For example, for R(2|1)
0 , we find that

R
(2|1)
0 =

λ
√
λr
(
54 − 45λr − 6λ2r2 + 8λ3r3

)

4r (3 − 3λr)11/4 (3 − λr)7/4
(6.48)

− 3λ
√
λr
(
6 + 3λr − 6λ2r2 + 2λ3r3

)

32r (3 − 3λr)11/4 (3 − λr)7/4
log f(x),

with

(6.49) f(x) =
(3 − λr)3 (3 − 3λr)5

3λ4r4
.

Note that, once again, we see logarithms appearing as was previously the
case for the Painlevé I equation. The big difference as compared to the
aforementioned situation is that now the logarithmic factors are functions
of x, and not of the perturbative parameter gs. As it turns out, all instanton
corrections still take the form of open string theory perturbation series.
Only in the double-scaling limit (where, as we shall see shortly, x becomes a
function of gs) do we find back the logarithmic coupling constant dependence
of the Painlevé I solution.

Another interesting result is that, generically, the “starting genus” βnm

in (6.44) is nonzero. In fact, it is usually negative: for example, one finds
that the series for n = 2, m = 1, does not start with the above function but
with

(6.50) R
(2|1)
−1 =

λ
√
λr

12 (3 − λr)1/4 (3 − 3λr)1/4
log f(x),

so that β2,1 = −1. We find that the non-logarithmic terms have a true genus
expansion in gs, but that the expansion for the logarithmic terms actually
starts at “genus −1/2”. At higher generalized instanton numbers, the non–
logarithmic terms will in general also appear with negative powers of gs.
While this may seem surprising, it is not a big problem: as we shall see in
Section 6.5 the transseries solution for the free energy of the quartic matrix
model still only has nonnegative genus contributions.

6.3.3. Two-parameters transseries: results. We have written a Math-
ematica script to solve the equations for R(n|m)

g (x) to high orders in n, m
and g. In Appendix B, we present some further explicit results. Here, let us
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write down a formula for the generic structure of the answer:

(6.51) R(n|m)
g (x) =

(λr)p1

rp2 (3 − 3λr)p3 (3 − λr)p4
P (n|m)

g (x),

where the powers in the prefactor are the following functions of n, m and g,

p1 =
1
2

(3n−m− 2) ,(6.52)

p2 = n+m+ g − 1,(6.53)

p3 =
1
4

(5n+ 5m+ 10g − 4) ,(6.54)

p4 =
1
4

(3n+ 3m+ 6g + 2δ − 4) ,(6.55)

with δ = (n+m) mod 2. In general, the gs expansion starts at g = βnm =
−min(n,m), whereas n and m only take on nonnegative values. Finally, at
each order (n,m, g) we find a finite expansion in logarithms,

(6.56) P (n|m)
g (x) =

min(n,m)∑

k=0

P (n|m)[k]
g (x) · logk f(x),

with f(x) the function defined in (6.49). The resulting components P (n|m)[k]
g

are now polynomials in λr, of degree (6g + n+ 5m+ δ − 2)/2.
These formulae look somewhat complicated, but the crucial point is

that all the information about the two-parameters transseries is now con-
tained in a set of simple polynomials. Moreover, up to an overall rational
factor consisting of powers of some small prime factors, the coefficients of
these polynomials are integers. Thus, we have reduced the full nonpertur-
bative solution of the quartic matrix model to the determination of a list of
(n+m+ 6g − δ + 2)/2 integers for every n, m, k and g. This result makes
one wonder if these integers have any further relations between them, and
whether they contain any geometrical information, as for example in the
case for GV invariants we have discussed in Section 3. We have no concrete
suggestions in this direction, but it would be very interesting if such an
interpretation could be found.

The reader may have observed that both the power p1 and the degree
of the polynomials are not symmetric under the exchange of n and m. The
reason for this is that we wrote (6.51) in such a way that, in general, when



446 Inês Aniceto, Ricardo Schiappa and Marcel Vonk

n > m, the P (n|m)[k]
g are irreducible polynomials50. When n < m the struc-

ture formula is still valid but the polynomials are no longer irreducible. In
fact, the symmetry of the string equation dictates that

(6.57) R(n|m)
g = (−1)gR(m|n)

g ,

and as a result there is a relation

(6.58) P (n|m)[k]
g = (−1)g(λr)2m−2nP (m|n)[k]

g ,

when n < m. After inserting this back in (6.51), the symmetry in n and m
is indeed restored.

When n = m, the polynomials P (n|m)[0]
g are highly reducible. It turns out

that in this case these polynomials factorize as

(6.59) P (n|n)[0]
g = (λr)p2−p1Q(n)

g ,

with Q
(n)
g a polynomial of degree 2g + 2n− 1 in λr. Thus, in these cases,

one can rewrite (6.51) as follows

(6.60) R(n|n)
g (x) =

λp2

(3 − 3λr)p3(3 − λr)p4
Q(n)

g (x).

When n = 0, Q(n)
g factorizes even further, and can be written as

(6.61) Q(0)
g = λr(3 − λr)p4Sg,

with Sg a polynomial of degree (g − 2)/2 in λr (recall that Sg is only nonzero
for g even, so that this degree is always an integer). Thus, we now have

(6.62) R(0|0)
g =

λgr

(3 − 3λr)p3
Sg.

This expression is only truly valid for g > 0, although formally we can use
it for g = 0 as well if we choose

(6.63) S0 =
1

3 − 3λr

as the “degree −1 polynomial”.

50There are a few low-index exceptions to this rule, for example, P (3|1)[0]
1 has an

overall factor λr and P (4|1)[0]
0 and all P (5|2)[k]

−1 contain a factor of (2 − λr).
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6.4. Resurgence of instantons in matrix models and string theory

Now that we know the full structure of the one-cut two-parameters trans-
series solution to the quartic matrix model, we can test the theory of
resurgence as described earlier in this paper. Before we do this for the full
solution, let us discuss the double-scaling limit, in which the string equation
reduces to the Painlevé I equation that we studied in Section 5.

6.4.1. Double-scaling limit. It is well-known that there is a double-
scaling limit in which the double-line Feynman diagrams of the quartic
matrix model reproduce the worldsheets of the (2, 3) minimal string the-
ory (for details on the physical aspects of this relation, we refer the reader
to the review [5]). At the level of equations, it is not too hard to see directly
that this limit exists. To this end, we first change variables from (x, gs) to

(6.64) (z, gs) =

(
1 − 2λx

(8λ2g2
s)

2
5

, gs

)
,

and replace R(x, gs) by a function u(z, gs) using the substitution

(6.65) R(x, gs) =
1
λ

(
1 − (8λ2g2

s)
1
5u(z, gs)

)
.

A little algebra then shows that, in the limit where gs → 0 and z is held
fixed, the string Equation (6.26) indeed reduces to the Painlevé I equation

(6.66) u2(z) − 1
6
u′′(z) = z.

Note that this result is true for any value of λ. This is a consequence of
the fact that we have a redundancy of variables: the coupling constant λ
in the quartic matrix model potential V (M) = 1

2M
2 − λ

24M
4 can essentially

be absorbed into gs (or the ’t Hooft coupling t = gsN) by a rescaling of M .
We will encounter this redundancy of variables a few times in what follows.

Of course, the fact that the string equation reduces to the Painlevé I
equation does not automatically imply that the same is true for the partic-
ular solutions R(x, gs) and u(z) that we have constructed. It is well known
(see, e.g., [5]) that this is nevertheless the case at the perturbative level;

(6.67) Rpert(x, gs) → upert(z)

in the double-scaling limit. One might therefore hope that the same holds
true for the full two-parameters transseries solutions. It turns out that this
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is indeed the case, but not in a completely straightforward way. As we shall
see, the correct double-scaling limit also requires a subtle transformation
between the nonperturbative ambiguities (σ1, σ2) for the two solutions.

To further understand this limit, let us look at the full two-parameters
transseries solution R(x). It turns out to be useful to make some shifts in
the summation indices, and write the transseries in the form51

R(x) =
+∞∑

n=0

+∞∑

m=0

+∞∑

g=βnm

+∞∑

k=0

σn+k
1 σm+k

2 e−(n−m)A(x)/gs gg−k
s(6.68)

× logk(f(x))R(n+k|m+k)[k]
g−k (x).

Here, we have used the shorthand (6.49)

(6.69) f(x) =
(3 − λr)3(3 − 3λr)5

3λ4r4
,

and split the R(n|m)
g components into logarithmic contributions in the obvi-

ous way

(6.70) R(n|m)
g (x) =

min(n,m)∑

k=0

logk(f(x)) ·R(n|m)[k]
g (x).

The reason for writing R(x) in the above form is that we may now apply
the same trick as we did for the Painlevé I solution: from (B.26) and (6.51)
one easily deduces that

(6.71) R
(n+k|m+k)[k]
g−k =

1
k!

(
λ(n−m)

12

)k

R(n|m)[0]
g ,

so that we can sum the full logarithmic sector in order to find

R(x) =
+∞∑

n=0

+∞∑

m=0

+∞∑

g=βnm

σn
1σ

m
2 e−(n−m)A(x)/gs gg

s R
(n|m)[0]
g (x)(6.72)

· (f(x))
λ

12gs
(n−m)σ1σ2 .

Next, we want to manipulate this expression in such a way that it gives
the correct double-scaling limit, u(z). To this end, we note that, in this

51Recall our convention that R(n|m)
g ≡ 0, if g < βnm.
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double-scaling limit52, one finds

(C
√
gs)n+mgg

s R
(n|m)[0]
g −→ z−

10g+5(n+m)−4
8 u

(n|m)[0]
2g+n+m,(6.73)

f −→ 5184λ2g2
s z

5/2,(6.74)
1
gs
AQMM −→ API z

5/4,(6.75)

where we denoted the quartic matrix model instanton action by AQMM and
the Painlevé I instanton action by API. In what follows, whenever there is
danger of confusion, we will label Painlevé I quantities with a subscript PI
and the analogous quartic matrix model quantities with a subscript QMM.
When no subscript is present, we always refer to the quartic matrix model
quantity. In the above formulae, we have also introduced the constant

(6.76) C ≡ −2 · 31/4

√
λ

.

Of these three double-scaling formulae, the last two can be simply derived
from their definitions. However, since we have no closed form expression for
R

(n|m)[0]
g , we cannot derive the first — we shall see nonetheless that it is

necessary for the double-scaling limit to work. Moreover, we have explicitly
checked its validity on all of the (more than 100) R(n|m)[0]

g that we have
calculated.

As an example, consider the expressions for P (2|0)
g (the polynomial com-

ponents of R(2|0)[0]
g ) in (B.12–B.15). In the double–scaling limit we find that

they yield the following terms:

(6.77)
1
6
z−3/4 − 55

576
√

3
z−2 +

1325
36864

z−13/4 − 3363653
53084160

√
3
z−9/2 + · · · .

After removing the overall normalization of
√
z and substituting z = w−8/5,

this reproduces the u(z)-component Φ[0]
(2|0) in (A.5), as should be expected.

More generally, for the polynomial components P (n|m)
g of the R(n|m)

g coeffi-
cients that we present in Appendix B, one easily derives from (6.73) that

52Here we have scaled R
(n|m)[0]
g with the same overall factor of −λ−1(8λ2g2

s)
1
5

that was present for R(0|0)[0]
g .
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the double-scaling limit gives53

(6.78) Φ(n|m)(z) = −
+∞∑

g=βnm

(
− 1

3
√

2

)n+m 6 z−
10g+5(n+m)

8

23g 2δ/2 35g/2
P (n|m)

g (1).

We thus conclude that the double-scaling limit works nicely at the compo-
nent level. However, when inserting (6.73–6.75) into (6.72), we see that for
the full R(x) the naive double-scaling limit has two problems:

1. The factors of C and
√
gs in (6.73) are not present in (6.72). The

factors of C can be absorbed into a redefinition of the σi, but the
absence of the factors of

√
gs will make the (n|m) 
= (0|0) terms blow

up in the double-scaling limit.

2. The power of f in (6.72) should reproduce the power of z in (5.120)
in the double-scaling limit. We see from (6.74) that this is essentially
what happens but that, in the present form, the double-scaling limit
of f also has an unwanted gs-dependence.

Both of these problems can be solved by the following somewhat unconven-
tional change of variables:

σ1 =
√
gs σ̂1 · (72λgs)−

λ

6
σ̂1σ̂2 ,(6.79)

σ2 =
√
gs σ̂2 · (72λgs)+

λ

6
σ̂1σ̂2 .(6.80)

We have discussed in Section 5.2 that one is allowed to make σ1σ2-dependent
changes of variables in a two-parameters transseries. The somewhat sur-
prising fact in here is that we now find a transformation which is also gs-
dependent. In the Painlevé I case, the expansion parameter in the transseries
was z. Thus, in that case, one was not allowed to make z-dependent changes
of σi for the simple reason that this would spoil the Painlevé I equation,
itself a differential equation in z. However, in the present quartic matrix
model case, although the expansion parameter in the transseries is gs, the
string equation is not an equation in gs — it is an equation in x, for which gs

is a parameter. For this reason, a gs-dependent change in σi does not spoil
the string equation, and we are in fact allowed to make the above change of
variables.

53Recall that δ = (n+m)mod 2.
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Inserting the new variables into (6.72), we find that

R(x) =
+∞∑

n=0

+∞∑

m=0

+∞∑

g=βnm

σ̂n
1 σ̂

m
2 e−(n−m)A(x)/gs(

√
gs)n+mgg

s R
(n|m)[0]
g (x)(6.81)

·
(

f(x)
5184λ2g2

s

) λ

12
(n−m)σ̂1σ̂2

,

and we see from (6.73) to (6.75) that if we define the transseries parameters
for the Painlevé I equation as

(6.82) σi,PI =
σ̂i

C
,

we indeed get the correct double-scaling limit, u(z),

R(x) →
+∞∑

n=0

+∞∑

m=0

+∞∑

g=βnm

σn
1,PIσ

m
1,PI e−(n−m)APIz5/4

u
(n|m)[0]
2g+n+m(6.83)

· z− 10g+5(n+m)−4
8

+
4(n−m)σ1,PIσ2,PI

A .

Notice that the only difference between this expression and (5.120) is that
the present formula has a lower starting genus: the first term in the g-sum
is the one with u(n|m)[0]

2βnm+n+m. However, as we have defined all coefficients with
genus smaller than the starting genus to be identically zero, this is not a
problem (in principle, we could have started all g-sums at −∞).

6.4.2. Choice of resurgent variables. Having indentified the correct
double-scaling limit of the transseries R(x), we can now test its resurgent
properties. Recall that also for non-linear difference equations there exists a
suitable transseries framework [65] for which one may develop resurgent
analysis in a fashion similar to what we have worked out in Section 4
(although the literature on this class of equations is considerably smaller
than the one on nonlinear differential equations). However, the difference
equation we address in this problem, the string equation, arises from a
matrix model set-up and, in particular, has very sharp physical require-
ments on what concerns double-scaling limits. In other words, our difference
equation must relate to a differential equation, in a prescribed way, also at
the level of resurgence. This will introduce some new features as we shall
now see.

Indeed, and as discussed previously, the transseries resurgent structure of
the string equation is highly dependent upon a judicious choice of variables
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(the ones which properly implement the Painlevé I double-scaling limit). As
we discussed above, the naive choice of variables for R(x), i.e., the choice
of variables that one would consider natural from a purely finite-difference
string equation point of view, is not the one that leads to the correct double-
scaling limit — for this, one further needs to make the gs-dependent change
of variables, from (σ1, σ2) to (σ̂1, σ̂2), defined in (6.79–6.80). As a result, we
get a new transseries representation for R(x); schematically

(6.84)
∑

n,m,g

σn
1σ

m
2 gg

s R
(n|m)
g =

∑

n,m,g,k

σ̂n
1 σ̂

m
2 g

g−k+ n+m

2
s logk(72λgs)R̂(n|m)〈k〉

g .

In this new representation, different powers of gs and entirely new pow-
ers of log gs appear54. Applying the resurgent formalism using the standard
expressions for the alien derivatives can only give correct large-order formu-
lae in one of these cases. We shall thus make the obvious assumption: we
will assume that the correct representation is the one on the right-hand side
above, which is the one leading directly to u(z) in the double-scaling limit.
In the following, we shall find ample evidence supporting this assumption.

6.4.3. Tests of resurgence: perturbative sector. As a first test of
resurgence, let us study the large-order behavior of R(0|0)

g . Since

(6.85) R̂(n|0)〈0〉
g = R(n|0)

g , R̂(0|m)〈0〉
g = R(0|m)

g ,

the result takes essentially the same form for either hatted or unhatted
components. Applying our resurgent formalism to the R̂-transseries, and
making the above substitution, one finds the large-order prediction

R(0|0)
g (x) �

+∞∑

k=1

(S(0)
1 )k

iπ
Γ(g − k/2)

(kA(x))g−k/2

+∞∑

h=0

Γ(g − h− k/2)
Γ(g − k/2)

R
(k|0)
h (x)(kA(x))h.

(6.86)

This result is valid for even values of g, so that R(0|0)
g is defined. In here, our

change to the hatted components has still played a role: if we had applied
the resurgent formalism directly to the R–transseries, we would not have
found the terms of k/2 in the gamma function and in the power of A. Notice
that this issue was already present in [13], albeit implicitly: in there, this

54We have now labeled the coefficients of the log gs terms with 〈k〉 to avoid
confusion with the (still present) coefficients of the log z terms, which we are labeling
with a [k] index.
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was solved by leaving a gs-dependent factor in the R(k|0)
g , leading to the

somewhat counterintuitive result (Equation (3.50) in that paper) of a gs-
dependent S(0)

1 Stokes factor. On the contrary, our present formalism leads
to large-order formulae which are gs-independent — a more natural form
for a quantity describing the coefficients in a gs-expansion. Moreover, as we
shall see, this procedure can be straightforwardly applied to all generalized
instanton sectors, including the ones where the relation between the R and
R̂-coefficients is more complicated.

We now wish to test the large-order formula (6.86). The first prediction
we get from it is that the leading large-order behavior of R(0|0)

g is

(6.87) R(0|0)
g (x) ∼ S

(0)
1

iπ
Γ
(
g − 1

2

)

(A(x))g− 1
2

R
(1|0)
0 (x).

We have tested this behavior in a computer for a large range of x (or,
equivalently, r) and λ, and found that it was completely consistent (up to
at least 10 decimal places in all cases) with a value of S(0)

1 equal to

(6.88) S
(0)
1 = i

√
3
πλ
.

This formula equals (3.50) in [13] if we take into account the removal of
√
gs

that was discussed above, as well as the definition of λ in that paper which
differs from ours by a factor of 2.

To illustrate these tests, let us set λ = 1/2 and plot the large-g values of

(6.89)
(A(x))g− 1

2

Γ
(
g − 1

2

) R(0|0)
g (x)

for a sequence of equally spaced values of r, defined as a function of x
in (6.31), between 0 and its double-scaling value rds = 1/λ = 2. As before,
we obtain very precise large-g values by calculating the above expression
for values up to g = 50, and then applying a large number of Richardson
transforms (10 in this case) to remove g−n-effects. The result is given by
the blue dots in figure 6; the red line in that graph represents the expected
result of

(6.90)
S

(0)
1

iπ
R

(1|0)
0 (x) =

√
3r

π3/2(3 − λr)1/4(3 − 3λr)1/4
,
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Figure 6: The large-g behavior of the R(0|0)
g (blue dots) compared to the

predicted behavior arising from R
(1|0)
0 (red line). In this plot, we have set

λ = 1/2. The variable along the horizontal axis is r; along the vertical axis
we plot the large g value of the quantity in (6.89).

where we have inserted the explicit expression for R(1|0)
0 given in (6.42).

We see that the large-order results perfectly match the predicted values.
At the smallest value of r, the error is 0.002%. This error is mainly due to
the fact that, for small r, a very large amount of R(0|0)

g data is required to
get good Richardson transforms. The error quickly decreases as r increases;
from r = 0.18 onward, it becomes stable at around 10−12%.

As a further test of the large-order formula (6.86), we could now study
the next-to-leading order behavior in g−1, arising from R

(1|0)
1 , and so on.

However, as discussed earlier in Section 5.4, for the Painlevé I case, we can
actually test all perturbative corrections at once by Borel–Padé resumming
them and going straight to the 2−g corrections. That is, we calculate the
quantity

(6.91) Xg(x) = R(0|0)
g (x) − S

(0)
1

iπ

+∞∑

h=0

Γ
(
g − h− 1

2

)

(A(x))g−h− 1
2

R
(1|0)
h (x),

by Borel–Padé resumming the second term as an expansion in g−1, and then
test the prediction that we get from (6.86): that the large-order behavior of
this quantity is

−i
(2A(x))g−1

Γ(g − 1)
Xg(x) ∼ − 1

π
(S(0)

1 )2R(2|0)
0 (x) = − 3λr

2π2(3 − λr)1/2(3 − 3λr)3/2
,

(6.92)
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Figure 7: The 2−g corrections to the large-g behavior of the R(0|0)
g , expressed

in terms of the quantity Xg on the left-hand side of (6.92) (blue dots).
The red line indicates the predicted value from the right-hand side of that
equation. We have set λ = 1/2; the variable along the horizontal axis is r.

with R(2|0)
0 given in (6.46). Note that here we have also included a factor of

−i to pick out the imaginary part of Xg: as in the Painlevé I case, the 2−g

correction in the large-order formula is purely imaginary, due to the fact
that it comes from integrating around poles in the Borel plane with a given
choice of ±iε-prescription.

In figure 7, we plot the large-order quantity on the left-hand side of
(6.92), calculated using the usual Richardson transform method, as well as
the expected result on the right-hand side of that equation (the red line in
the plot). We have once again set λ = 1/2 and varied r. The large-order data
starts at a value of r = 0.22; for smaller values, the amount of data required
to get a good large-order approximation is too large to be calculated in a
reasonable amount of time. The upper bound on r is again its double-scaling
value rds = 1/λ = 2. Akin to before, we find a very good match between the
data and the prediction. For the smallest value of r, where the amount of
data is barely sufficient, we find an error of 20%. The error reduces quickly
as the value of Xg becomes larger: when r = 0.34 the error is already less
than 1%, and it becomes as small as 0.007% near the double-scaling limit.

As a final remark on the validity of the large-order formula (6.86),
let us take its double-scaling limit using (6.73) and (6.75). After some
straightforward algebra, one finds

u
(0|0)
2g � 1

iπ

+∞∑

k=1

(S(0)
1 C−1)k Γ(g − k/2)

(kAPI)g−k/2

+∞∑

h=0

Γ(g − h− k/2)
Γ(g − k/2)

u
(k|0)
2h+k(kAPI)h.

(6.93)
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This formula agrees with the Painlevé I large-order formula (5.58), provided
that the Stokes constants for the quartic matrix model and for Painlevé I
are related by

(6.94) S
(0)
1,QMM = C S

(0)
1,PI.

Inserting the values (6.88), (6.76), (5.84) for these constants, we see that
this is indeed the case.

6.4.4. Tests of resurgence: instanton sectors. Having tested the
large-order behavior of the perturbative part of R(x), we now want to switch
to its (generalized) instanton components, as this is where new Stokes con-
stants and “backwards/sideways resurgence” appear. The large-order behav-
ior of the one-instanton coefficients R(1|0)

g still only depends on S(0)
1 (at least

perturbatively in g−1), so the simplest coefficients to study for our purposes
are the two-instantons coefficients, R(2|0)

g .
Thus, our first task is to derive a large-order formula for these coeffi-

cients. For this, it turns out to be essential to use the hatted representation
of the transseries given in (6.84). The reason is that the large-order behav-
ior of the (2|0)-component of any transseries depends, through “sideways
resurgence”, on its (2|1)-components. The latter components contain loga-
rithms, and so it is essential that we correctly include the log gs terms to get
the correct large-order formula. After calculating the resulting large-order
expression for the R̂-transseries, we can then translate the result back to the
R-components using the relation (6.85), as well as the relation

(6.95) R̂(2|1)〈1〉
g = −λ

6
R(1|0)

g ,

that can be read off after expanding both sides of (6.84). Doing all of this
carefully, one finds the following large-order expression

R(2|0)
g (x) � 3S(0)

1

2πi

+∞∑

h=0

R
(3|0)
h (x) · Γ

(
g − h− 1

2

)

(A(x))g−h− 1
2

+
(−1)gS

(0)
1

2πi

(6.96)

×
+∞∑

h=−1

(−1)hR
(2|1)
h (x) · Γ

(
g − h− 1

2

)

(A(x))g−h− 1
2

− (−1)gλS
(0)
1

12πi
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×
+∞∑

h=0

(−1)hR
(1|0)
h (x) · Γ

(
g − h+ 1

2

) · B̃72λ A(x)

(
g − h+ 1

2

)

(A(x))g−h+ 1
2

+
(−1)gS̃

(2)
1

2πi

+∞∑

h=0

(−1)hR
(1|0)
h (x) · Γ

(
g − h+ 1

2

)

(A(x))g−h+ 1
2

,

where B̃s(a) is the shifted digamma function defined in (4.56), and we wrote
the answer in terms of the purely imaginary combination

(6.97) S̃
(2)
1 = iS(2)

−1 +
iπλ
6
S

(0)
1 ,

which is also (compare against expressions such as (5.56)) the coefficient
determining the large-order behavior of the “conjugate” coefficients R(0|2)

g .
As we did several times before, (6.96) can now be tested on a computer.

Doing this, we found that the above large-order formula holds and that, for
a wide range of λ and r, up to 8 decimal places it is the case that

(6.98) S̃
(2)
1,QMM =

S̃
(2)
1,PI

C
,

with the numerical value of S̃(2)
1,PI given in table 2. As an illustrative example,

we once again set λ = 1/2 and evaluate the quantity

(6.99) Xg(x) = R(2|0)
g (x) −R(2|0){T1-T3}

g (x),

where R(2|0){T1-T3}
g (x) is the optimal truncation of the first three terms on

the right-hand side of (6.96). To leading order, we expect this quantity to
grow as

(6.100) (−1)g (A(x))g− 1
2

Γ
(
g − 1

2

) Xg(x) ∼ S̃
(2)
1

2πi
R

(1|0)
0 (x).

In figure 8, we plot the large-order quantity on the left-hand side of this
equation as blue dots and the prediction on the right-hand side as a red
line, for values of r between r = 0.22 (where we can generate just enough
data) and the double-scaling value rds = 1/λ = 2. We see that the results
once again match the prediction very nicely. We have included explicit error
bars (estimated by comparing the results for two consecutive values of g)
to indicate that the results for the lowest values of r are still within the
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Figure 8: The large-g behavior of the R(2|0)
g , expressed in terms of the quan-

tity Xg on the left-hand side of (6.100) (blue dots). The red line indicates
the predicted value from the right-hand side of that equation. We have set
λ = 1/2; the variable along the horizontal axis is r.

expectation. From r = 0.5 onwards, the error due to lack of data is negligible,
and we get results which are correct up to 8 decimal places.

As an extra check on the validity of the large-order formula (6.96), we
can calculate its double-scaling limit using (6.73) to (6.75). It turns out that
most of the logarithmic terms coming from R

(2|1)
h and B̃72λA cancel, leaving a

single term proportional to logAPI. All other terms reduce straightforwardly
to terms involving the Painlevé I coefficients, and in the end one finds

u
(2|0)[0]
2g+2 � 3S(0)

1,PI

2πi

+∞∑

h=0

u
(3|0)[0]
2h+3 · Γ

(
g − h− 1

2

)

A
g−h− 1

2
PI

+
(−1)gS

(0)
1,PI

2πi
(6.101)

×
+∞∑

h=0

(−1)h u
(2|1)[0]
2h+3 · Γ

(
g − h− 1

2

)

A
g−h− 1

2
PI

− (−1)gS
(0)
1,PI√

3πi

×
+∞∑

h=0

(−1)h u
(1|0)[0]
2h+1 · Γ

(
g − h+ 1

2

) · B̃API

(
g − h+ 1

2

)

A
g−h+ 1

2
PI

+
(−1)g C S̃

(2)
1,QMM

2πi

+∞∑

h=0

(−1)h u
(1|0)[0]
2h+1 · Γ

(
g − h+ 1

2

)

A
g−h+ 1

2
PI

.

In this expression, everything is written in terms of Painlevé I quantities,
except for the combination CS̃

(2)
1,QMM in the last term. If we now directly

apply the resurgence formalism to the 2-instantons component of the
Painlevé I transseries, we find precisely the same large-order formula, but
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with CS̃(2)
1,QMM replaced by S̃(2)

1,PI. The two large-order formulae thus exactly
coincide when (6.98) is valid, providing a good extra check on the validity
of that equation.

As a final test, we study the large-order behavior of the generalized
(1|1)-instanton coefficients, R(1|1)

g . Applying the same techniques as above,
we find the large-order formula

R(1|1)
g (x) � 2S(0)

1

iπ

∞∑

h=−1

R
(2|1)
h (x) · Γ

(
g − h− 1

2

)

(A(x))g−h− 1
2

(6.102)

+
λS

(0)
1

3πi

∞∑

h=0

R
(1|0)
h (x) · Γ

(
g − h+ 1

2

) · B̃72λ A(x)

(
g − h+ 1

2

)

(A(x))g−h+ 1
2

+
S

(1)
1

iπ

∞∑

h=0

R
(1|0)
h (x) · Γ

(
g − h+ 1

2

)

(A(x))g−h+ 1
2

.

In this formula, a new Stokes constant appears, S(1)
1 . We have checked by

computer that, up to 4 decimal places, it equals

(6.103) S
(1)
1,QMM =

S
(1)
1,PI

C
.

Furthermore, as we did before, one can also check that this result precisely
leads to the correct Painlevé I large-order formula in the double-scaling limit.

For a graphical illustration of the S(1)
1 tests, let us choose λ = 1/2 as

usual and calculate the quantity

(6.104) Xg(x) = R(1|1)
g (x) −R(1|1){T1-T2}

g (x),

where R(1|1){T1-T2}
g (x) is the optimal truncation of the first two terms on

the right-hand side of (6.102). To leading order, we expect this quantity to
grow as

(6.105) (−1)g (A(x))g+ 1
2

Γ
(
g + 1

2

) Xg(x) ∼ S
(1)
1

iπ
R

(1|0)
0 (x).

Figure 9 shows the large-order quantity on the left-hand side of the above
equation as blue dots, and the prediction on the right-hand side as a red
line. The variable r ranges between r = 0.10 and the double-scaling value
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Figure 9: The large-g behavior of the R(1|1)
g , expressed in terms of the quan-

tity Xg on the left-hand side of (6.105) (blue dots). The red line indicates
the predicted value from the right-hand side of that equation. We have set
λ = 1/2; the variable along the horizontal axis is r.

r = 1/λ = 2. In spite of the fact that the coincidence is not perfect (due to
a lack of R(1|1)

g data, the production of which consumes large amounts of
computer time), the results still match the prediction within a few percent55.

6.4.5. Moduli independence of Stokes factors. We have now explic-
itly calculated three Stokes factors for the quartic matrix model and we have
seen that, up to high accuracy, they satisfy

S
(0)
1,QMM = C S

(0)
1,PI, S

(1)
1,QMM = C−1 S

(1)
1,PI, S̃

(2)
1,QMM = C−1 S̃

(2)
1,PI.

(6.106)

In particular, since C ∼ λ−1/2, the above quartic matrix model Stokes factors
depend on the parameter λ. But this C-dependence is somewhat artificial: as
we saw in (5.101–5.102), one can rescale Stokes factors by simply rescaling
the parameters σi with some factor, c, resulting in

(6.107) S
(k)
� → c2−2k−� S

(k)
� , S̃

(k)
� → c2−2k+� S̃

(k)
� .

Thus, by choosing c = C−1, we can actually make all three Stokes factors
λ-independent, and exactly equal to their Painlevé I counterparts. Note that
this is nothing but the scaling (6.82) that produces the Painlevé I transseries

55The reason that we can actually calculate S(1)
1 itself to higher precision is that,

for that calculation, we can also take the optimal truncation of the third term in
(6.102).
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solution u(z) out of the quartic matrix model transseries solution R(x), in
the double-scaling limit56.

The statement (6.106) is much stronger than a statement just about the
double-scaling limit: it says that, up to a trivial C-dependent rescaling, the
quartic matrix model Stokes constants we have calculated are independent of
the parameters of the model. That is, their value at any point in parameter
space equals their value in the double-scaling limit — and hence the value
of the Painlevé I Stokes constants. That this is the case for S(0)

1 alone is not
too surprising: one can always choose a c in (6.107) in such a way that S(0)

1

becomes independent of the parameters. But that this is also the case for the
other Stokes constants is indeed quite interesting. Nothing in the resurgence
formalism seems to prevent these Stokes constants from depending on λ,
or — as we shall see in more detail in the next section — on some combina-
tion of λ and the ’t Hooft coupling t. The only consistency requirement is
that the Painlevé I Stokes constants are reproduced when taking the double-
scaling limit, which is expressed in here by choosing appropriate resurgent
variables that allow for the matching of transseries solutions off–criticality
and at criticality, as in (6.84). Here, we find that this requirement is fulfilled
in the simplest possible way: by having off-critical Stokes constants which
are fully independent of the parameters.

It would be very interesting to understand why the quartic matrix model
Stokes constants that we have found are parameter-independent in the above
sense. We have not been able to find a compelling argument for this, but of
course it is very natural to conjecture that the above is not a coincidence,
but that it is actually true for all Stokes constants. That is, we conjecture

(6.108) S
(k)
�,QMM = C2−2k−� S

(k)
�,PI, S̃

(k)
�,QMM = C2−2k+� S̃

(k)
�,PI.

This gives us conjectured values for many new quartic matrix model con-
stants: up to the above λ-dependent rescalings, they should be equal to the
Painlevé I values that we reported in table 2. Combined with the further
conjectures in footnote 40, this gives us for example the conjecture that the
exact value of the index (0) Stokes constants is

(6.109) S
(0)
n,QMM =

i
n

(
3
πλ

) 2−n

2

.

56We could of course have chosen to absorb this scaling already in (6.79–6.80).
The reason for not doing this was that it would have spoiled the simple relation
(6.85) between the hatted and unhatted representation of our transseries.
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It would be very interesting to further test these conjectures, fully under-
stand them from a physical point of view, and put them on a firm resurgent
analysis mathematical footing.

6.5. The nonperturbative free energy of the quartic model

Having fully constructed the two-parameters transseries solution for R(x),
our final task is to translate this solution into an expression for the free
energy F(t, gs). In Section 6.2, we already briefly discussed how to do this.
We saw that the Euler–MacLaurin formula leads to the expression (6.19),
which we repeat in here for convenience:

F(t, gs) =
t

2gs

(
2 log

h0

hG
0

− log
R(x)
x

∣∣∣∣
x=0

)
+

1
g2
s

∫ t

0
dx(t− x) log

R(x)
x

(6.110)

+
+∞∑

g=1

g2g−2
s

B2g

(2g)!
d2g−1

dx2g−1

[
(t− x) log

R(x)
x

]∣∣∣∣
x=t

x=0

.

In applying this formula, we can of course choose any parametrization of
R(x) we wish, and one will thus end up with the corresponding parametriza-
tion of the free energy F(t, gs). To get a good double-scaling limit, in this
section we shall once again work with the “hatted representation” that was
introduced in (6.84). But do notice that, in order to avoid cluttering the
notation too much, we will not put any hats on the corresponding coeffi-
cients of F(t, gs).

As we saw in Section 6.2, the above expression is valid for the full two-
parameters transseries, meaning that we can apply it both in the perturba-
tive sector and in the (generalized) instanton sectors. We shall next discuss
its application in these different sectors.

6.5.1. The perturbative sector. In the zero-instanton sector, the above
formula was already used in [16, 26] to compute the first few genus-g free
energies. There, it was found that the result takes its nicest form when
expressed in terms of the ’t Hooft coupling constant t = gsN and a variable
denoted by α2. This variable was also introduced in (6.12); it determines the
end–points of the eigenvalue cut and is defined as

(6.111) α2 =
1
λ

(1 −√
1 − 2λt).
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Note that α2 is also essentially equal (up to an exchange t↔ x) to the
variable r introduced in (6.31). In terms of t and α2, it was conjectured
in [26] and confirmed up to genus 10 in [16] that the perturbative expansion
coefficients of the free energy are of the form

(6.112) F (0|0)
g (t) =

(t− α2)g+1

tg(2t− α2)5g/2
Sg(t),

where Sg(t) is a homogeneous polynomial57 of degree 3g−2
2 in α2 and t.

In the above expression, the factor of t−g can be combined with the
prefator gg

s to recover the original factor of N−g appearing in the large N
expansion of the matrix model free energy. Apart from this factor, we see
that F (0|0)

g (t) in (6.112) above, which could apparently be thought of as a
natural function of t and α2, is actually just a function of t/α2. In other
words, the perturbative free energy components do not depend on the two
separate parameters α2 and t (or, equivalently, λ and t), but only on a sin-
gle combination of the two. As we mentioned in the previous subsection,
this result could have been anticipated: the coupling constant λ in the quar-
tic matrix model potential V (M) can be absorbed into t by rescaling the
variable M . We shall see that this pattern naturally extends to the full
transseries solution.

Specifically, the first few F (0|0)
g (t) are58

F (0|0)
−2 (t) =

1
24

(
9t2 − 10tα2 + α4 + 12t2 log

(
α2

t

))
,(6.113)

F (0|0)
0 (t) = − 1

12
log

(
α2 − 2t

t

)
,(6.114)

F (0|0)
2 (t) = −(t− α2)3(82t2 + 21tα2 − 3α4)

720t2(2t− α2)5
,(6.115)

F (0|0)
4 (t) =

(t− α2)5(17260t5 − 32704t4α2 − 2925t3α4

+ 855t2α6 − 135tα8 + 9α10)
9072t4(2t− α2)10

.(6.116)

We next want to investigate how these results extend to the (generalized)
instanton sectors.

57As usual, there are exceptions at low genus, g = −2, 0 in this case, where log-
arithmic contributions appear.

58In our present conventions, these results differ by an overall minus sign from
those in [16].
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6.5.2. The nonperturbative (n|n)-sector. To calculate the higher (gen-
eralized) instanton contributions to F(t, gs), it is more convenient to use the
result of the Euler–MacLaurin formula in the form (6.24),

(6.117) F(t+ gs) − 2F(t) + F(t− gs) = log
R(t)
t
.

A first consequence of this equation is that the instanton action A(t) of the
free energy equals the instanton action for R(t) [13]. We constructed this
action as a function of r and λ in (6.36); expressed in terms of α2 and t it
takes the form

(6.118) A(t) = −t arccosh
(

4t− α2

2α2 − 2t

)
+

α2

4α2 − 4t

√
12t2 − 3α4.

Note that, once again, A(t)/gs is a function of the single combination of
variables α2/t.

For the free energy, we therefore make the following two–parameters
transseries ansatz 59

(6.119) F(t, gs) =
+∞∑

n=0

+∞∑

m=0

σn
1σ

m
2 e−(n−m)A(t)/gs

+∞∑

g=βF
nm

gg
s F (n|m)

g (t),

where, as usual, βFnm is the lowest g for which a nonvanishing term is present.
From the calculations we shall present below, it is a straightforward exercise
to calculate that

n = m :βFnm =
n+m− 4

2
,(6.120)

m = 0, n > 0 :βFnm =
n+m

2
,(6.121)

m > 0, n > m :βFnm =
n−m+ 2

2
,(6.122)

and by symmetry βFnm = βFmn. Now, it is a matter of plugging (6.119) into
(6.117) and expanding in (gs, σ1, σ2) to obtain equations for the F (n|m)

g (t).

59Our conventions differ from the usual “perturbative” ones, where Fg(t) denotes
the function multiplying g2g−2

s . When including instanton sectors, it becomes more
convenient when the subscript of F (n|m)

g (t) simply indicates the power of gs that it
multiplies. Thus, our g should be thought of as an Euler number, not a genus.
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When n = m, these are differential equations: one obtains

d2

dt2
F (n|n)

g (t) = L(n|n)
g+2 (t) − 1

12
d2

dt2
L(n|n)

g (t) +
1

240
d4

dt4
L(n|n)

g−2 (t) + · · · .
(6.123)

Here, we have denoted the two–parameters transseries representation of the
right-hand side of (6.117) by

(6.124) log
R(t)
t

≡ L(t),

and L(t) has a transseries expansion completely analogous to (6.119).
Expressing the L(n|m)

g (t) in terms of the R̂(n|m)
g (t) is once again a straight-

forward exercise in Taylor expanding functions of transseries. The sum on
the right-hand side of (6.123) is infinite, but only a finite number of terms
contribute for any given choice of n, as g in L(n|n)

g (t) is bounded from below.
Solving the above equations for n = 1, one obtains for the lowest two

genera,

F (1|1)
−1 (t) =

√
2t− α2

√
2t+ α2

2
√

3α2
+
t(t− α2)

6α4
(6.125)

× log

(
2
√

3
(
4t− α2

)
+ 6

√
2t− α2

√
2t+ α2

α2

)
,

F (1|1)
1 (t) = − (t− α2)(8t3 − 3tα4 − 2α6)

6
√

3α4 (2t− α2)5/2 (2t+ α2)3/2
.(6.126)

Similarly, for n = 2 one finds

F (2|2)
0 (t) =

(t− α2)2

18α8
log

(
α8(t− α2)4

(2t− α2)5 (2t+ α2)3

)
,(6.127)

F (2|2)
2 (t) =

(t− α2)2
(
1696t6 − 816t5α2 + 1896t4α4 − 5408t3α6

+ 2229t2α8 + 516tα10 + 130α12
)

486α8 (2t− α2)5 (2t+ α2)3
.(6.128)

In both cases, the g ≤ 0 results are exceptional, with logarithmic contribu-
tions. For all strictly positive g, one finds the following general structure of
the solution:

(6.129) F (n|n)
g (t) =

(t− α2)n

α4n (2t− α2)5g/2 (2t+ α2)3g/2
P(n|n)

g (t),
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where P(n|n)
g (t) is a homogeneous polynomial of degree 3g. Note that, for-

mally, F (0|0)
g (t) in (6.112) is also of this form if we take the corresponding

function P(0|0)
g (t) (which is now no longer a polynomial) to be

(6.130) P(0|0)
g (t) =

(t− α2)g+1
(
2t+ α2

)3g/2

tg
Sg(t).

In appendix Appendix C, we present some higher-genus examples of P(n|n)
g (t)

for n = 1, 2.

6.5.3. The nonperturbative (n|m)-sector. When n 
= m, the Euler–
MacLaurin formula in the form (6.117),

(6.131) F(t+ gs) − 2F(t) + F(t− gs) = log
R(t)
t
,

gives, upon expansion in (gs, σ1, σ2), a set of algebraic equations60 for
F (n|m)

g (t). For example, for the lowest two orders, one finds

F (n|m)
βF

nm
=

1
4

sinh−2

(

A′

2

)
L(n|m)

βF
nm

,(6.132)

F (n|m)
βF

nm+1 =
1
4

sinh−2

(

A′

2

)(
L(n|m)

βF
nm+1 +

1
4

A′′ cosh

(

A′

2

)
F (n|m)

βF
nm

(6.133)

+
1
2

sinh
(

A′) d

dt
F (n|m)

βF
nm

)
,

where 
 = n−m. Solving these equations is now straightforward (see also
[13] where this was already done for the (1|0)-sector), and we find for example
the one-instanton results

F (1|0)
1/2 (t) =

√
2(t− α2)3/2

35/4α2 (2t− α2)5/4 (2t+ α2)1/4
,(6.134)

F (1|0)
3/2 (t) =

(t− α2)3/2
(
40t3 − 12t2α2 − 21tα4 − 10α6

)

6
√

2 33/4 α2 (2t− α2)15/4 (2t+ α2)7/4
,(6.135)

60By “algebraic”, we mean that F (n|m)
g (t) itself occurs algebraically (and even

linearly), so that no integrations are needed to solve the equation. Derivatives of
lower F (n′|m′)

g′ (t) still appear.
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which agree with the results in [13], and the two-instantons results

F (2|0)
1 (t) = − 4(t− α2)3

(
4t− α2

)

9
√

3α4 (2t− α2)5/2 (2t+ α2)3/2
,

(6.136)

F (2|0)
2 (t) = −(t− α2)3

(
736t4 − 1096t3α2 + 564t2α4 − 253tα6 + 22α8

)

162α4 (2t− α2)5 (2t+ α2)3
.

(6.137)

In Appendix C, we present some higher-genus results, as well as some results
for the generalized instanton sectors (2|1), (3|1), (3|2) and (4|2). Their
logarithm-free part (we will discuss the logarithmic terms in a moment)
satisfies the general structure formula

(6.138) F (n|m)[0]
g (t) =

(t− α2)(3n−m)/2

(α2)n+m (2t− α2)5g/2 (2t+ α2)(3g−δ)/2
P(n|m)

g (t),

where P(n|m)
g (t) is a homogeneous polynomial of degree (6g + δ − 4)/2 (recall

that here, as usual, δ = (n+m) mod 2). This expression should be compared
to the very similar result (6.51) for R(n|m)

g (x). Also note that, apart from the
different degree of the polynomial, the result (6.129) for n = m is nothing
but a specific case of the above equation.

6.5.4. The logarithmic sectors. As is familiar by now, whenever n >
0 and m > 0, the F (n|m)

g (t) contain logarithmic terms. Once again, these
logarithmic sectors do not contain any new information: one finds that when
n 
= m, F (n|m)

g (t) is of the form

(6.139) F (n|m)
g (t) =

min(n,m)∑

k=0

F (n|m)[k]
g (t) · logk

(
f(t)

5184λ2g2
s

)
,

with

(6.140) F (n|m)[k]
g (t) =

1
k!

(
λ(n−m)

12

)k

F (n−k|m−k)[0]
g (t).

The function f(t) is essentially the same function as before (see (6.49)), but
now conveniently written in the variables α2 and t,

(6.141) f(t) =
81
(
α2 − 2t

)5 (
α2 + 2t

)3

16α8 (α2 − t)4
.
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For readability reasons, we have left some factors of λ explicit in the above
expressions, but in principle, they should also be rewritten in terms of these
variables, that is

(6.142) λ =
2
(
α2 − t

)

α4
,

which is the inverse of (6.111). As before, one can also choose to sum all the
logarithmic sectors resulting in the closed form

F(t) =
+∞∑

n=0

+∞∑

m=0

σn
1σ

m
2 e−(n−m)A(t)/gs

+∞∑

g=β′F
nm

gg
s F (n|m)[0]

g (t)(6.143)

·
(

f(t)
5184λ2g2

s

) λ

12
(n−m)σ1σ2

,

for the two-parameters transseries. In here, we have introduced the shifted
starting exponent

(6.144) β′Fnm = βFnm (n ≥ m = 0), β′Fnm = βFnm + 1 (n ≥ m > 0),

extended by symmetry to the cases where n < m. The reason for the shifted
exponent in the cases where m > 0 is that in these cases, F (n|m)

g (t) starts
off with a purely logarithmic term.

6.5.5. Double-scaling limit. Because we started with the “hatted rep-
resentation” for R(x), which gives the Painlevé I solution u(z) in the double-
scaling limit, it is very natural to expect that the corresponding free energy
F(t, gs) also gives the (2, 3) minimal model free energy F (z) in the double-
scaling limit. Indeed, as we discussed in detail for R(x), the factor

(6.145)
(

f(t)
5184λ2g2

s

) λ

12
(n−m)σ1σ2

nicely reproduces the structure of the log z terms in the Painlevé I solution.
Thus, all we need to check is that the coefficients F (n|m)[0]

g (t) have the correct
double-scaling limit. Indeed, we have checked that in this limit, and for all
of the examples presented in Appendix C,

(6.146)
∞∑

g=βF
nm

gg
s F (n|m)[0]

g (t) → F (n|m)(z),
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with F (n|m)(z) given in (5.128) to (5.136). This once again underlines the
fact that the hatted transseries representation is the correct representation
to study when one is interested in the double-scaling limit.

6.5.6. Stokes constants for the free energy. In the case of the (2, 3)
minimal string, we found simple proportionality relations (5.110) to (5.111)
between the Stokes constants for the free energy F (z) and those for the solu-
tion, u(z), of the Painlevé I equation. We were further able to derive these
relations analytically, because the map between u(z) and F (z) (a double
integration) is a very simple and linear map.

Unfortunately, for the quartic matrix model, the situation is a whole lot
more complicated. The Euler–MacLaurin formula (6.110) is very involved
and it is difficult to deduce from it a direct relation between the large-
order behavior of the R̂(n|m)[k]

g (x) and that of the F (n|m)[k]
g (t). Moreover, the

computer generated data we have in this situation is insufficient to check or
derive such a relation numerically, beyond the first Stokes constant.

Nevertheless, one can still make an educated guess as to what the result
could be. It was found in [16] (see Equation (4.15) of that paper), both from
a spectral curve analysis and using numerical results, that the large-order
behavior of the perturbative series F (0|0)

g (t) is determined by the function

(6.147) μ1(t) = − (t− α2)

33/4
√
π (2t− α2)5/4 (2t+ α2)1/4

.

In our notation, this function corresponds to the combination

(6.148) μ1(t) = S
(0)F
1,QMM · F (1|0)

1/2 (t).

Thus, comparing (6.147) to (6.134), we find that

(6.149) S
(0)F
1,QMM =

√
6α4

π(t− α2)
= i

√
3
πλ
.

We see from this that S(0)F
1,QMM is exactly equal to the Stokes constant S(0)R

1,QMM

for the R–transseries, presented in (6.88). This is very similar to what we
found in the Painlevé I case: in the correct parametrization, the Stokes
constants for the free energy F (z) are equal, up to a factor of 
2, to the
Stokes constants for the corresponding solution u(z). Thus, we may make
the natural guess that the same pattern holds for all Stokes constants of the
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quartic matrix model free energy,

(6.150) S
(0)F
�,QMM = 
2S

(0)R
�,QMM, S̃

(0)F
�,QMM = 
2S̃

(0)R
�,QMM.

Note that this guess can also be viewed as extending the parameter-
independence of the quartic matrix model Stokes constants for R, to the
corresponding Stokes constants for F : it essentially states that, up to a
trivial reparametrization, the quartic matrix model Stokes constants equal
the Painlevé I Stokes constants. It would be quite interesting to prove (or
disprove) this statement.

7. Conclusions and outlook

In this paper we have hopefully made a strong case for the existence of
new, previously unnoticed, nonperturbative sectors in string theory. The
full structure we have uncovered was first anticipated in [14], by studying
the asymptotics of instantons of the Painlevé I equation, and first discussed,
from a physical point of view, in [15]. But what exactly are these sectors?
We hope to report on this question in upcoming work, but let us also make
a few remarks herein.

The physical instanton series is simple to understand: it corresponds to
standard matrix model instantons [16–18, 24] which, in the double-scaling
limit, become ZZ-brane amplitudes in Liouville gravity [21]. As we shift
our attention to the remaining sectors the first thing one notices is that
the structure of the transseries solutions we have addressed, where purely
“generalized” instantons have an overall minus sign in front of the instanton
action as compared to standard instantons61, could seem to point towards
understanding these new sectors as ghost D-branes [66] (or, in the matrix
model context, their counterpart of topological anti-D-branes [67] as dictated
by the correspondence in [3]). Indeed, these ghost D-brane sectors display
this exact same feature as they have an overall minus sign in front of the
Born–Infeld action [66] (also see the discussion in [15]). This is an appealing
picture: for instance, in the examples we have studied the free energies F (n|n),
with as many instantons as purely “generalized” instantons, were found to
have a resulting perturbative series which is a series in the closed string

61Of course this is only the case in our present setting of a resonant two-
parameters transseries. When dealing with general multi-parameter transseries,
required in the solution of matrix models with more complicated potentials, or
in the solutions of the minimal series coupled to gravity, this simple scenario will
no longer be true.
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coupling constant g2
s . However, both ghost D-branes or topological anti-D-

branes have one further property [66, 67], which is that their free energies
must satisfy

(7.1) F (n|m) = F (n−m|0), n > m.

But this is a property we may explicitly check within our examples, and it
is a property, which is certainly not satisfied. To illustrate, let us recall in
here the case of the Painlevé I equation where we found

F (2|1)(z) = − 71
864

z−
15
8 +

2999
18432

√
3
z−

25
8 − 25073507

191102976
z−

35
8(7.2)

+
2705576503

6794772480
√

3
z−

45
8 − · · · ,

F (1|0)(z) = − 1
12
z−

5
8 +

37
768

√
3
z−

15
8 − 6433

294912
z−

25
8(7.3)

+
12741169

283115520
√

3
z−

35
8 − · · · .

It is simple to see that these two sectors are not proportional to each other.
Furthermore, one can also show that there is no reparametrization trans-
formation that can achieve such proportionality. This is a straightforward
consequence of (5.28) which states that, upon reparametrization, the only
possible change of F (2|1)(z) is by a multiple of F (1|0)(z). Thus, if F (2|1)(z) is
not a multiple of F (1|0)(z) in one representation, that statement is automat-
ically true for any other reparametrization. Further notice that using the
transseries structure of the free energy as in (5.123), where the transseries
parameters also appear exponentiated, does not change this conclusion.
Indeed, the exponentiation (5.124) is just a convenient way to rearrange
the logarithmic sectors, which can always be reversed (by expanding the
exponential). In this case, one would then apply the aforementioned argu-
ment to each separate logarithmic sector with the exact same conclusion. As
such, although we cannot at this stage state what the new nonperturbative
sectors are, it seems we can state what they are not.

Another pertinent question is: why have we never seen these sectors
before? The short answer is, of course, that two-parameters transseries were
never addressed in a string theoretic context prior to [14]. Only by addressing
the question of what controls the asymptotic behavior of multi -instanton
sectors can one realize that indeed the familiar physical instanton series
cannot be the full story. In fact, most large-order analyses have always been
concentrated upon the leading asymptotics of the perturbative sector [32].
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But, as we have shown at length in this paper, if we want to address harder
questions than that, in the string theoretic nonperturbative realm, then the
full multi-parameter transseries framework is indeed required.

On the other hand there are examples of exactly solvable models, where
full nonperturbative answers have been computed. Should any of these
expressions have shown these new sectors? Of course in order to see them
one would have to know what to look for. But when one rewrites one of
these exact nonperturbative solutions in terms of semi-classical data, one
usually does so only for real solutions around positive, real coupling, and
in the one-parameter transseries framework! Let us briefly discuss the con-
struction of real solutions, trivially generalizing a discussion in [13] to an
arbitrary one-parameter transseries of the type (2.24),

(7.4) F (z, σ) =
+∞∑

n=0

σn e−nAz Φn(z).

A real solution starts around positive real coupling z ∈ R
+. But this is

a Stokes line and we need to be careful in constructing such real solu-
tion. For instance, upon Borel resummation, either S+F or S−F , will dis-
play an ambiguous imaginary contribution to the solution which needs to
be canceled, i.e., one needs to set62 ImF (z, σ) = 0. As it turns out [13],
ImF (z, σ) = 0 if and only if Imσ = i

2S1. As such, and as long as the instan-
ton action is real, a real solution can be constructed by considering [13]

(7.5) FR(z, σ) = S+F

(
z, σ − 1

2
S1

)
= S−F

(
z, σ +

1
2
S1

)
,

where the transseries parameter in the expression above is now σ ∈ R, and
where the second equality follows trivially from the Stokes transition (2.48)

(7.6) S+F (z, σ) = S−F (z, σ + S1) .

Expanding, it immediately follows:

FR(z, σ) = ReF (0)(z) + σReF (1)(z) +
(
σ2 − 1

4
S2

1

)
ReF (2)(z) + · · · .

(7.7)

Two things are to be noticed. The first is that indeed real solutions dis-
play instanton corrections (even if σ = 0). This is simply because the string

62Notice that around the θ = 0 Stokes line one has Im0 = 1
2i (S+ − S−) and Re0 =

1
2 (S+ + S−).
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equation (be it the Painlevé I equation or the quartic string equation or
any other) is non–linear and, although S+F or S−F may be solutions, their
sum is, consequentially, not a solution. Indeed, their sum can only become a
solution once we correct it appropriately by accounting for higher instanton
corrections. The second point, however, is that this instanton expansion only
includes information concerning S1, not about any of the other Stokes con-
stants. This is to say, as long as we consider the expansion in semi–classical
data around the (natural) θ = 0 Stokes lines, we shall find no indication of
the multi-parameter transseries sectors. Searching for signs of these new gen-
eralized instanton sectors within nonperturbative answers must thus start
by properly addressing what type of expansion one wants to do — as shown,
the standard one will not do.

In summary, we believe the most pressing question begging to be
addressed is to fully understand, from a physical string theoretic point of
view, the generalized instanton series. As discussed, D-branes only yield
information on a limited set of Stokes constants and, if one is to address
nonperturbative questions where all Stokes constants play a role, some infor-
mation is missing. Examples where all Stokes constants would be required
involve general Stokes transitions — even if we are just addressing the per-
turbative series, Stokes transitions along θ = π will require Stokes constants
which, at this stage, have no first principles derivation. For instance, within
the setting of the quartic model, one could imagine rotating the string cou-
pling in the complex plane from the positive to the negative real axis. The
saddle configuration would then change, from the one-cut spectral geometry
we addressed in this paper to a two-cuts spectral curve. This change of back-
ground may be implemented within our framework — the transseries does
provide the complete nonperturbative answer — via a Stokes transition, but
in order to explicitly construct the perturbative free energy around the new
background, given the original one, we are still missing analytic expressions
for the Stokes constants. This is a problem we hope to report upon soon.
Furthermore, as one considers the two-cuts solution to the quartic matrix
model, another double-scaling limit naturally appears: that of the Painlevé
II equation describing 2d supergravity. Given that our off-critical transseries
construction was very much attached to implementing correct double-scaling
limits, this is certainly an interesting problem to address. Finally, we have
just started uncovering what we believe is a very general method towards
the construction of explicit nonperturbative solutions in string theory. Still
within the matrix model realm, addressing two-matrix models and their
associated minimal series seems to be a direction of great interest. We hope
to return to many of these ideas in the near future.
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Appendix A. The Painlevé I equation: structural data

The general two-parameters transseries solution of the Painlevé I equation
has the form

(A.1) u(w, σ1, σ2) =
+∞∑

n=0

+∞∑

m=0

σn
1σ

m
2 e−(n−m)A/w2

Φ(n|m)(w),

with

(A.2) Φ(n|m)(w) =
min(n,m)∑

k=0

logk(w) · Φ[k]
(n|m)(w).

Table 4 shows up to which order in w we have calculated Φ[k]
(n|m). The table

is for k = 0; as we will see, the results for nonzero k are directly propor-
tional to those. Moreover, we only list the entries for n ≥ m; as we shall see
in a moment, the coefficients for n < m can be easily obtained from those
with n > m. It would go too far to reproduce all the data in this appendix —
the interested reader may request a Mathematica notebook from the authors
containing all calculated coefficients. Below, we reproduce part of the expan-
sions for some small values of n and m.

The first few Φ[0]
(n|0) are:

Φ[0]
(0|0) = 1 − 1

48
w4 − 49

4608
w8 − 1225

55296
w12 − · · · ,(A.3)

Φ[0]
(1|0) = w − 5

64
√

3
w3 +

75
8192

w5 − 341329
23592960

√
3
w7 + · · · ,(A.4)

Φ[0]
(2|0) =

1
6
w2 − 55

576
√

3
w4 +

1325
36864

w6 − 3363653
53084160

√
3
w8 + · · · .(A.5)
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Table 4: Order in w up to which we have calculated the Φ[k]
(n|m).

n�
��m 0 1 2 3 4 5 6 7 8 9 10

0 1000 300 300 300 300 300 300 25 10 10 10
1 300 300 300 300 300 23 24
2 300 300 300 300 22 23
3 300 300 20 21 22
4 20 19 20 21
5 20 19 20
6 20 19
7 20

The first few Φ[0]
(n|1) are:

Φ[0]
(1|1) = −w2 − 75

512
w6 − 300713

1572864
w10 − · · · ,(A.6)

Φ[0]
(2|1) =

11
72
w3 − 985

4608
√

3
w5 +

597575
15925248

w7 − · · · ,(A.7)

Φ[0]
(3|1) =

3
16
w4 − 3455

10368
√

3
w6 +

1712825
7962624

w8 − · · · .(A.8)

In Φ(n|1), one sees the first logarithms appearing. One finds that Φ(1|1) has
no logarithmic terms, and that

Φ[1]
(2|1) = − 4√

3
w +

5
48
w3 − 75

2048
√

3
w5 + · · · ,(A.9)

Φ[1]
(3|1) = − 4

3
√

3
w2 +

55
216

w4 − 1325
4608

√
3
w6 + · · · .(A.10)

The reader may notice that these functions are very similar to the Φ[0]
(n|0)

listed above: in fact, using (5.16), one can easily show that the recursion
relations for the coefficients of the two power series are the same, and so
they are equal up to an overall multiplicative constant. To be precise, one
finds that

(A.11) Φ[1]
(n|1) = −4(n− 1)√

3
Φ[0]

(n−1|0).

This relation was first noted in [14], and all the formulae we have tabulated
so far can in fact be derived from the formulae in that paper. However, with
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our methods one can easily go beyond the results of [14]. At the next level,
Φ(n|2), we find for example that

Φ[0]
(2|2) = −5

6
w4 +

54425
82944

w8 − 26442605
15925248

w12 + · · · ,(A.12)

Φ[0]
(3|2) = − 47

24
√

3
w3 +

4213
20736

w5 − 1043455
1769472

√
3
w7 + · · · ,(A.13)

Φ[0]
(4|2) = − 47

72
√

3
w4 +

54415
124416

w6 − 6750359
5971968

√
3
w8 + · · · .(A.14)

These functions, except for the diagonal one Φ(2|2), also have parts propor-
tional to logw. They are

Φ[1]
(3|2) = − 11

18
√

3
w3 +

985
3456

w5 − 597575
3981312

√
3
w7 + · · · ,(A.15)

Φ[1]
(4|2) = − 3

2
√

3
w4 +

3455
3888

w6 − 1712825
995328

√
3
w8 + · · · .(A.16)

The new phenomenon at this level is that we now also have log2w contri-
butions. These are found to be

Φ[2]
(3|2) =

8
3
w − 5

24
√

3
w3 +

25
1024

w5 − · · · ,(A.17)

Φ[2]
(4|2) =

16
9
w2 − 55

54
√

3
w4 +

1325
3456

w6 − · · · .(A.18)

Again, these functions have a close relation to the functions Φ[1]
(n|1). In fact,

with a bit of work, one can show from the recursion relation (5.16) that
terms with a given power of logw are always proportional to similar terms
with lower n and m, as well as lower logarithmic power,

(A.19) Φ[k]
(n|m) =

4(m− n)
k
√

3
Φ[k−1]

(n−1|m−1),

where in this expression we have assumed that n > m. Applying this for-
mula k times, one can further express these coefficients in terms of log-free
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coefficients as

(A.20) Φ[k]
(n|m) =

1
k!

(
4 (m− n)√

3

)k

Φ[0]
(n−k|m−k).

This immediately implies that the logarithmic sectors are, from a certain
point of view, artifacts of the resonant transseries solution — they do not
contain any new physical content. Finally, we remark that we have only listed
Φ[k]

(n|m) above with n ≥ m. The expansions for n < m are very similar63. In
fact, one finds that

(A.21) u(n|m)[k]
g = (−1)(g−n−m)/2u(m|n)[k]

g

for n 
= m. This again generalizes a similar relation found in [14].

Appendix B. The quartic matrix model: structural data

In this appendix, we present some of the explicit polynomials that determine
the full nonperturbative solution (6.51) to the one-cut quartic matrix model.
Recall from Section 6.3 that this solution has the form

(B.1) R(x) =
+∞∑

n=0

+∞∑

m=0

σn
1σ

m
2 R(n|m)(x)

with

(B.2) R(n|m)(x) � e−(n−m)A(x)/gs

+∞∑

g=βnm

gg
s R

(n|m)
g (x),

and that the expansion coefficients R(n|m)
g (x) can be expressed in terms of

polynomials P (n|m)[k]
g (x) as

(B.3)

R(n|m)
g (x) =

(λr)p1

rp2(3 − 3λr)p3(3 − λr)p4

min(n,m)∑

k=0

logk(f(x)) · P (n|m)[k]
g (x).

63Notice that the naive observation that all Painlevé I coefficients with n < m are
positive is, in fact, not true (even though the examples we have shown could seem
to point in that way). This is only noticed for the first time when n = 3, m = 4 and
at genus 11, so it is indeed an assumption which is hard to falsify!
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Table 5: Values for the highest g for which we have calculated P (n|m)
g .

n�
��m 0 1 2 3 4 5 6 7 8 9 10

0 100 30 30 30 10 10 10 10 10 10 10
1 12 4 4 4 3
2 4 2 2 2

The following table 5 shows to which order in gs we have calculated the
P

(n|m)
g (x) polynomials:

Note that the numbers in this table are actually smaller than the actual
number of calculated polynomials. For example, at n = 5 andm = 2, g starts
at βnm = −2. Therefore, the entry of 2 means that we have calculated the
five leading orders. At each of these orders (except for the leading one),
the expression contains three polynomials multiplying different powers of the
logarithm. Therefore, this entry of 2 corresponds to a total of 13 polynomials.

In the table, we have only mentioned the calculated polynomials for
n ≥ m. The ones with n < m differ from those only by a sign,

(B.4) P (n|m)[k]
g = (−1)gP (m|n)[k]

g .

For reasons of space, in this appendix we only reproduce a very small sample
of the calculated polynomials. A Mathematica file containing all the calcu-
lated data is available from the authors.

Let us begin with the perturbative results — that is, n = m = 0. At this
order, the data is most easily reproduced in terms of the polynomials Sg

introduced in (6.61). For the first three of those, we have

S2 =
27
2
,(B.5)

S4 =
15309

8
(5 + 2X) ,(B.6)

S6 =
177147

16
(
1925 + 2864X + 111X2

)
,(B.7)

where we substituted X = λr. These results exactly match the results that
were found in [16,26].
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For the one-instanton contributions, appearing at n = 1 and m = 0, we
list the first four of the polynomials P (1|0)

g ,

P
(1|0)
0 = 1,(B.8)

P
(1|0)
1 = −9

8
(
6 + 3X − 6X2 + 2X3

)
,(B.9)

P
(1|0)
2 =

81
128

(
36 + 36X + 1665X2 − 2844X3 + 1800X4 − 536X5 + 68X6

)
,

(B.10)

P
(1|0)
3 =

243
5120

(
30024 − 234900X + 608958X2 − 3803895X3 + 6142554X4

(B.11)

− 4634370X5 + 2034360X6 − 588060X7 + 116520X8 − 12520X9
)
.

These expressions agree with the one-instanton results presented in [13].
We now turn to some of the new results. For the two-instanton case,

n = 2 and m = 0,

P
(2|0)
0 = −1

2
,(B.12)

P
(2|0)
1 =

3
8
(
18 + 117X − 102X2 + 22X3

)
,(B.13)

P
(2|0)
2 = −81

64
(
36 + 468X + 5577X2 − 8204X3 + 4460X4

(B.14)

− 1128X5 + 116X6
)
,

P
(2|0)
3 =

81
1280

(−20088 + 238140X + 989334X2 + 23247945X3

(B.15)

− 41702958X4 + 29306340X5 − 10628280X6 + 2188980X7

− 276120X8 + 20360X9
)
.

The main novelty of our method is that we can also calculate contribu-
tions with generalized instantons, having the “wrong sign” of the instanton
action. For example, for n = m = 1, we have, using the notation introduced
in (6.59),

Q
(1)
0 = 3 (2 −X) ,(B.16)

Q
(1)
2 =

729
8
(
72 + 220X − 380X2 + 207X3 − 48X4 + 4X5

)
,(B.17)



480 Inês Aniceto, Ricardo Schiappa and Marcel Vonk

Q
(1)
4 =

59049
128

(
272160 + 2748816X − 5760432X2 + 4023324X3 − 724722X4

(B.18)

−548049X5 + 380368X6 − 104016X7 + 14048X8 − 784X9
)
.

These results for n = m = 1 do not yet show all the features of the “general-
ized instanton” expansions. As in the Painlevé I case, we find that whenever
n = m, there are no “open string” odd g contributions. Also, in these cases,
there are no logarithmic contributions yet. Finally, the perturbative series
start at g = 0. All three of these properties disappear when we go to cases
where n 
= m. For example, when n = 2 and m = 1, we find

P
(2|1)[0]
0 =

1
4
(
54 − 45X − 6X2 + 8X3

)
,(B.19)

P
(2|1)[0]
1 =

9
32
(
324 − 3132X + 1197X2 + 2052X3 − 2202X4(B.20)

+ 940X5 − 164X6
)
,

P
(2|1)[0]
2 =

9
512

(−52488 + 317844X + 961794X2 + 7811559X3

(B.21)

− 22378842X4 + 23547888X5 − 13285728X6 + 4500468X7

− 914760X8 + 89840X9
)
,

for the logarithm–free contributions, and

P
(2|1)[1]
−1 =

1
12
,(B.22)

P
(2|1)[1]
0 = − 3

32
(
6 + 3X − 6X2 + 2X3

)
,(B.23)

P
(2|1)[1]
1 = − 27

512
(
36 + 36X + 1665X2 − 2844X3 + 1800X4(B.24)

− 536X5 + 68X6
)
,

for the one-logarithm contributions. Notice that the latter polynomials are
essentially the same as the P (1|0)

g reported starting in (B.8). In fact, we find
in general that

(B.25) P (2|1)[1]
g =

1
12
P

(1|0)[0]
g+1 .
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Table 6: Prefactor c and coefficients of the polynomials P (3|1)[0]
g (left) and

P
(3|1)[1]
g (right).

g 0 1 2

c −3
8

3
32

− 27
256

X0 36 0 −11664
X1 18 23328 122472
X2 −38 27432 3170988
X3 11 −73476 9125514
X4 49311 25985394
X5 −14442 24283071
X6 1667 −11842992
X7 3354462
X8 −544628
X9 40996

g −1 0 1

c − 1
12

1
16

− 27
128

X0 1 18 36
X1 117 468
X2 −102 5577
X3 22 −8204
X4 4460
X5 −1128
X6 116

This relation can be easily derived from the recursion relations that follow
from the string equation. In fact, our expression above is simply the analogue
of (A.11), and it is the first in a sequence of equations that are analogous
to the relations (A.20) that we have found for the Painlevé I transseries
coefficients. For the general case, one obtains

(B.26) P (n|m)[k]
g =

1
k!

(
(n−m)

12

)k

P
(n−k|m−k)[0]
g+k .

Thus, once again, the logarithmic contributions are simply related to the
logarithm-free contributions, and do not seem to constitute new physical
sectors.

Using the formula (6.78), the reader can check that, in the double-scaling
limit, the data we have presented so far exactly reproduce the expansions
for

(B.27) Φ[0]
(0|0), Φ[0]

(1|0), Φ[0]
(2|0), Φ[0]

(1|1), Φ[0]
(2|1) and Φ[1]

(2|1),

that were listed in Appendix A. For completeness, we also tabulate the coef-
ficients of all other polynomials that are needed to reproduce the expansion
coefficients we gave in that appendix.
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Table 7: Prefactor c and coefficients of the polynomials Q(2)
g .

g 0 2 4

c −9
4

81
16

−6561
64

X0 −72 326592 −687802752
X1 78 255636 −2925199980
X2 −31 −1268946 9776740014
X3 5 1263654 −10514590074
X4 603801 4732494984
X5 154827 148363974
X6 −20062 −1271607633
X7 950 701712243
X8 −203346798
X9 34993318
X10 −3454976
X11 156840

Table 8: Prefactor c and coefficients of the polynomials P (3|2)[0]
g (left) and

P
(4|2)[0]
g (right).

g −1 0 1

c − 1
16

1
128

− 9
2048

X0 72 −7776 443232
X1 36 101088 −4000752
X2 −90 −137700 24782112
X3 29 44280 −22509576
X4 24687 −5930982
X5 −20094 21534309
X6 3941 −17087760
X7 7682442
X8 −2022868
X9 240208

g −1 0 1

c
1
16

− 1
128

3
512

X0 72 7776 69984
X1 36 194400 944784
X2 −90 −106272 64513584
X3 29 −175392 −20419776
X4 197802 −135263034
X5 −73836 182249163
X6 9937 −108164682
X7 35518077
X8 −6475770
X9 528388

Appendix C. The double-scaling limit: structural data

In this appendix, and analogously to the previous one, we present some of the
polynomials P(n|m)

g (t) that determine the free energy (6.138) of the quartic
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Table 9: Prefactor c and coefficients of the polynomials P (3|2)[1]
g (left) and

P
(4|2)[1]
g (right).

g −1 0 1

c
1
48

− 3
128

− 3
2048

X0 54 −324 −52488
X1 −45 3132 317844
X2 −6 −1197 961794
X3 8 −2052 7811559
X4 2202 −22378842
X5 −940 23547888
X6 164 −13285728
X7 4500468
X8 −914760
X9 89840

g −1 0 1

c − 1
16

1
64

− 9
512

X0 36 0 −11664
X1 18 23328 122472
X2 −38 27432 3170988
X3 11 −73476 9125514
X4 49311 −25985394
X5 −14442 24283071
X6 1667 −11842992
X7 3354462
X8 −544628
X9 40996

Table 10: Prefactor c and coefficients of the polynomials P (3|2)[2]
g (left) and

P
(4|2)[2]
g (right).

g −2 −1 0

c
1

288
− 1

256
9

4096
X0 1 6 36
X1 3 36
X2 −6 1665
X3 2 −2844
X4 1800
X5 −536
X6 68

g −2 −1 0

c − 1
144

1
192

− 9
512

X0 1 18 36
X1 117 468
X2 −102 5577
X3 22 −8204
X4 4460
X5 −1128
X6 116

matrix model. Table 11 shows to which index g we have calculated these
polynomials. As will be clear when comparing this table to the analogous
table in the previous appendix, the amount of available F (n|m)

g (t) data is
much smaller than the amount of R(n|m)

g (x) data. The reason for this is that
the procedure used to calculate F (n|m)

g (t) from R
(n|m)
g (x), using the Euler–

MacLaurin formula, is rather time consuming. We have therefore chosen
to do the tests of resurgence for the quartic matrix model directly at the
level of R(n|m)

g (x), where one can construct a sufficient amount of data much
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Table 11: Values of the highest g for which we have calculated P(n|m)
g (t).

n�
��m 0 1 2 3 4

0 25 7/2 4
1 5 7/2 4
2 4 7/2 4

more easily. The F (n|m)
g (t) for which the data are presented in this appendix

mainly serve the purpose of checking that the quartic matrix model free
energy gives the (2, 3) minimal model free energy in the double-scaling limit.

As usual, we only present results with n ≥ m. The results for n < m are
related to those by

(C.1) F (n|m)
g (t) = (−1)

2g−n−m

2 F (m|n)
g (t).

Results for n = m = 0 were already listed in (6.113) to (6.116) in the main
text. We have also listed two exceptional results in there, (6.125) for n =
m = 1 and (6.127) for n = m = 2. For all other (regular) results, we give
the noninteger prefactors c alongside with the integer coefficients of the
polynomials P(n|m)

g (t), defined in (6.138), in tables 12–15.
In the first column of each table, we list the monomial tn that the coef-

ficients in that row multiply. The corresponding power of α is easily derived
from the fact that the whole polynomial is homogeneous in t and α2, with
the highest power a pure power of t. Thus, if nmax is the index of the highest
coefficient in a certain column, the coefficient in the row labeled tn of that
column actually multiplies tnα2(nmax−n).

Appendix D. Stokes automorphism of two-parameters
instanton series

An expression for the general ordered product of k alien derivatives, of the
form

∏k
i=1 Δ−�k+1−iA = Δ−�kA · · ·Δ�1A, acting on Φ(n|0), was presented in

Section 4.1, namely expression (4.36). In this appendix we shall outline an
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Table 12: Prefactor c and coefficients of the polynomials P(1|1)
g (t) (left) and

P(2|2)
g (t) (right).

g 1 3 5

c − 1
6
√

3
1

180
√

3
− 1

378
√

3
t0 −2 520 −61908
t1 −3 2835 −574056
t2 8 3642 −1614616
t3 −16512 1807479
t4 −5472 8602998
t5 1950 17467588
t6 51840 −66986172
t7 −36000 39683718
t8 −19200 −60738324
t9 16640 220690302
t10 −232460928
t11 52828048
t12 14853888
t13 35051520
t14 −38348800
t15 9805824

g 2 4

c
1

486
1

43740
t0 130 396710
t1 516 3402120
t2 2229 12327720
t3 −5408 −20516720
t4 1896 12385215
t5 −816 −230785920
t6 1696 536735424
t7 −513929952
t8 490487040
t9 −569834240
t10 320398080
t11 −6978048
t12 −34264576

inductive proof of this result. First, recall what this expression was,

k∏

i=1

Δ−�k+1−iAΦ(n|0) =
k∑

m=0

∑

δs∈Γ(k,k−m+1)

k∏

s=1

{[
(s+ 1 − δs) S̃

(dδs)
−�s

(D.1)

+

(
n−

s∑

i=1


i + s+ 1 − δs

)
S

(�s+dδs)
−�s

]

× Θ (s+ 1 − δs)

}
Φ(n+m−∑k

i=1 �i|m).

Further recall that in Section 4.1 we have explicitly shown that for the case
of k = 2 (and analogously for the case of k = 1) this closed form expression
correctly reproduced the result we had earlier computed in (4.32).

Assuming that the above result (D.1) holds true for a particular value
of k > 2, let us apply one more alien derivative Δ−�k+1A, with 
k+1 > 0, to
this expression. Note that this alien derivative, Δ−�k+1A, will only act on
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Table 13: Prefactor c and coefficients of the polynomials P(1|0)
g (t) (top) and

P(2|0)
g (t) (bottom).

g 1/2 3/2 5/2 7/2

c −
√

2
35/4

1
6 · 33/4

√
2

− 1
144 · 31/4

√
2

− 1
8640 · 33/4

√
2

t0 1 −10 676 517000
t1 −21 2820 3246300
t2 −12 2697 5408118
t3 40 −9224 −10506063
t4 −2208 −15792588
t5 3648 −4743720
t6 1600 44745600
t7 −12288960
t8 −17130240
t9 6540800
g 1 2 3 4

c − 1
9
√

3
1

162
− 1

648
√

3
1

58320
t0 −1 −22 −316 −22520
t1 4 253 10564 3903200
t2 −564 −41715 −18769266
t3 1096 168044 125672865
t4 −736 −341936 −421619748
t5 393408 941275296
t6 −281920 −1561721280
t7 93952 1764081600
t8 −1258640640
t9 530946560
t10 −105113600
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Table 14: Prefactor c and coefficients of the polynomials P(2|1)
g (t) (top) and

P(3|1)
g (t) (bottom). The case P(3|1)

3 (t) is exceptional, in the sense that it
factorizes: the polynomial displayed here should be multiplied by (t− α2)
to obtain P(3|1)

3 (t).

g 3/2 5/2 7/2

c −
√

2
27 · 33/4

1
54 · 31/4

√
2

− 1
11664 · 33/4

√
2

t0 −14 184 −638120
t1 −21 888 −4532580
t2 −96 2665 −12820266
t3 104 −3972 13158375
t4 −144 10689480
t5 −2848 70972776
t6 3200 −114864000
t7 24333120
t8 11455488
t9 2252288
g 2 3 4

c
2
81

2
729

√
3

1
2916

t0 4 341 5032
t1 −49 −6408 −271696
t2 144 25197 1575868
t3 −310 −113287 −10610537
t4 184 173664 36078160
t5 −187692 −86311034
t6 95792 150067240
t7 −173970320
t8 130130752
t9 −59481984
t10 12789248
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Table 15: Prefactor c and coefficients of the polynomials P(3|2)
g (t) (top) and

P(4|2)
g (t) (bottom). The case P(4|2)

2 (t) is exceptional, in the sense that it
factorizes: the polynomial displayed here should be multiplied by (4t− α2) to
obtain P(4|2)

2 (t). It is curious to see that the remaining factor is proportional
to P(3|2)

3/2 (t).

g 3/2 5/2 7/2

c
2
√

2
27 · 33/4

1
729 · 31/4

√
2

1
1944 · 33/4

√
2

t0 −2 896 −39752
t1 6 2706 −292168
t2 −42 24537 −1595714
t3 29 −30592 1325412
t4 38919 −3580714
t5 −79788 17588671
t6 42836 −19468680
t7 8762744
t8 −5577248
t9 2872832
g 2 3 4

c − 4
243

− 2
2187

√
3

1
39366

t0 −2 −488 −75448
t1 6 9686 2192188
t2 −42 −54240 −15529806
t3 29 242728 105787830
t4 −526987 −368392458
t5 765960 949167207
t6 −650210 −1732001196
t7 214280 2088163092
t8 −1656852624
t9 806826880
t10 −179279104
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Φ(n+m−∑k
i=1 �i|m), and this action was already computed in (4.33). We thus

find

Δ−�k+1A

k∏

i=1

Δ−�k+1−iAΦ(n|0)(D.2)

=
k+1∑

m=0

Θ

(
n+m−

k∑

i=1


i

)
m∑

q=0

((
n+m−

k+1∑

i=1


i − q

)
S

(�k+1+q)
−�k+1

+ (m− q) S̃(q)
−�k+1

) ∑

δs∈Γ(k,k−m+2)

k∏

s=1

{[
(s+ 1 − δs) S̃

(dδs)
−�s

+

(
n−

s∑

i=1


i + s+ 1 − δs

)
S

(�s+dδs)
−�s

]
Θ (s+ 1 − δs)

}

× Φ(n+m−∑k+1
i=1 �i−q|m−q).

In order to obtain the expression above, we have changed the variable in the
first sum of (D.1) from

∑k
m=0 →∑k+1

m′=1, after which one realizes that one
may always add the term m′ = 0 as it is zero. The next steps include the
change of variables

∑m
q=0 =

∑m
q′≡m−q=0 and noticing that one can further

change the order of the sums as

(D.3)
k+1∑

m=0

m∑

q′=0

=
k+1∑

q′=0

k+1∑

m=q′
.

In this process we thus obtain

Δ−�k+1A

k∏

i=1

Δ−�k+1−iAΦ(n|0)(D.4)

=
k+1∑

q′=0

k+1∑

m=q′

((
n+ q′ −

k+1∑

i=1


i

)
S

(�k+1+m−q′)
−�k+1

+ q′ · S̃(m−q′)
−�k+1

)

×
∑

δs∈Γ(k,k−m+2)

k∏

s=1

{[
(s+ 1 − δs) S̃

(dδs)
−�s

+

(
n−

s∑

i=1


i + s+ 1 − δs

)
S

(�s+dδs)
−�s

]

× Θ (s+ 1 − δs)

}
Φ(n−∑k+1

i=1 �i+q′|q′).
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The final step is to change variables yet one more time, as
∑k+1

m=q′ =∑k+2−q′

m′=k+2−m=1, and introduce a new variable, γk+1 = k + 2 − q′. Then

Δ−�k+1A

k∏

i=1

Δ−�k+1−iAΦ(n|0)

(D.5)

=
k+1∑

q′=0

δγk+1,k+2−q′

γk+1∑

m′=1

((
n+ k + 2 − γk+1 −

k+1∑

i=1


i

)

× S
(�k+1+γk+1−m′)
−�k+1

+ (k + 2 − γk+1) S̃
(γk+1−m′)
−�k+1

)

×
∑

δs∈Γ(k,m′)

k∏

s=1

{[
S̃

(dδs)
−�s

(s+ 1 − δs) + S
(�s+dδs)
−�s

×
(
n−

s∑

i=1


i + s+ 1 − δs

)]
Θ (s+ 1 − δs)

}
Φ(n−∑k+1

i=1 �i+q′|m−q′).

Finally recalling that δs ∈ Γ(k,m′) means that we are summing over all
δs : 0 < δ1 ≤ · · · ≤ δn = m′, and that now m′ = 1, · · · , γk+1 = k + 2 − q′ ≤
k + 2, one can naturally rewrite the above expression as a sum over Young
diagrams, of length k + 1, obtaining

Δ−�k+1A

k∏

i=1

Δ−�k+1−iAΦ(n|0)(D.6)

=
k+1∑

q′=0

∑

δs∈Γ(k+1,k+2−q′)

k+1∏

s=1

{[
(s+ 1 − δs) S̃

(dδs)
−�s

+

(
n−

s∑

i=1


i + s+ 1 − δs

)
S

(�s+dδs)
−�s

]
Θ (s+ 1 − δs)

}

× Φ(n−∑k+1
i=1 �i+q′|m−q′).

This is the expected result for the ordered product of k + 1 alien derivatives,
acting on the instanton series Φ(n|0), as shown in (D.1). It thereby concludes
our proof.
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Étranger, Ann. Inst. Fourier 43 (1993), 201.

[45] T. M. Seara and D. Sauzin, Resumació de Borel i Teoria de la
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