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Rigid local systems and a question of Wootters

Nicholas M. Katz

How it started

Recently, we learned from Ron Evans of some fascinating questions raised
by Wootters [1]. These questions, which concern exponential sums, arose
from his investigations of a particular quantum state with special properties,
where the underlying vector space is the space of functions on the finite
field Fp := Z/pZ, p a prime which is 3 mod 4. Due to our ignorance of the
underlying physics, we concentrate on the exponential sums themselves. In
our approach, it costs us nothing to work over an arbitrary finite field Fq of
odd characteristic. [Thus Fq is “the” finite field of q elements, q a power of
some odd prime p.] We also introduce a parameter a ∈ F

×
q . In the Wootters

setup, where q = p is 3 mod 4, the parameter a is simply a = −1. Ultimately,
we end up proving identities among exponential sums, but not at all in a
straightforward way; we need to invoke the theory of Kloosterman sheaves
and their rigidity properties, as well as the fundamental results of [6] and
[3]. It would be interesting to find direct proofs of these identities.

1. Statement of the problem

In what follows, we fix a finite field Fq of odd characteristic p, a nonzero
element a ∈ F

×
q , and a nontrivial additive character ψ of Fq:

ψ : (Fq,+) → μp(C) ⊂ C
×.

For example, when q is a power of p, we might begin with the additive
character ψFp

, x �→ exp(2πix/p), of the prime field Fp, and then take ψ(y) :=
ψFp

(TraceFq/Fp
(y)). Once we have one choice of nontrivial ψ, any other is of

the form

ψb(x) := ψ(bx)

for some unique b ∈ F
×
q . We denote by χ2 : F

×
q → ±1 the quadratic character,

which we extend to a function on all of Fq by decreeing that χ2(0) = 0. We
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denote by g(ψ, χ2) the Gauss sum

g(ψ, χ2) :=
∑

x∈Fq

ψ(x)χ2(x).

One knows that g(ψ, χ2)2 = χ2(−1)q. [Recall that χ2(−1) is 1 if q ≡ 1 mod
4, and χ2(−1) is −1 if q ≡ 3 mod 4. One knows that when q = p and ψ is
the ψFp

above, then g(ψFp
, χ2) =

√
p if p ≡ 1 mod 4, and g(ψFp

, χ2) = i
√
p

if p ≡ 3 mod 4.]
The basic sums which underlie the Wootters story are the following. For

j, k ∈ Fq, we define

S(j, k) :=
−

∑
x∈F

×
q
χ2(ax− x3)ψ((j + k)2x+ (j − k)2(a/x))

−g(ψ, χ2)

=
−

∑
x∈F

×
q
χ2(a/x− x)ψ((j + k)2x+ (j − k)2(a/x))

−g(ψ, χ2)

=
−

∑
uv=a;u,v∈F

×
q
χ2(u− v)ψ((j + k)2v + (j − k)2u)

−g(ψ, χ2)
.

The third expression makes most visible various symmetries. We have the
identities

S(j, k) = S(k, j), S(j,−k) = χ2(−1)S(j, k).

Because the complex conjugate of g(ψ, χ2) is χ2(−1)g(ψ, χ2), the sums
S(j, k) are all real. For j, k ∈ Fq, we then define

P (j, k) := δj,k + χ2(−1)δj,−k + S(j, k).

Thus

P (j, k) := S(j, k), if j2 �= k2,

P (0, 0) = 1 + χ2(−1) + S(0, 0),

and for j �= 0 we have
P (j, j) := 1 + S(j, j),

and
P (j,−j) := χ2(−1) + S(j,−j).

Thus the P (j, k) are real, and satisfy

P (j, k) = P (k, j), P (j,−k) = χ2(−1)P (j, k).
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[When q = p, p ≡ 3 mod 4, a = −1 and we take ψ(x) := ψFp
(x/4), these

P (j, k) are equal to p+ 1 times the Pj,k of Wootters.]
The key fact, that we learned from Wootters [1], and for which Ron

Evans supplied a direct, “exponential sum” proof that we reproduce later
on for the reader’s convenience, is that if we view the P (j, k) as forming a
q × q matrix P , then

Trace(P ) = q − χ2(a),

and (1/(q − χ2(a)))P is idempotent, i.e.,

P 2 = (q − χ2(a))P,

i.e.,
(q − χ2(a))P (j, k) =

∑

i∈Fq

P (j, i)P (i, k).

Thus (1/(q − χ2(a)))P is a real symmetric idempotent matrix of trace 1, so
it is the orthogonal projection (for the usual inner product

∑
i xiyi on R

q)
onto some one-dimensional subspace of R

q. Let us choose a unit vector

v := (vj)j∈Fq
∈ R

q

in the one-dimensional subspace Image(P ). The vector v is unique up to
sign. In terms of this vector v, the orthogonal projection onto its span is
given by the matrix vjvk. So we have the identity

(1/(q − χ2(a)))P (j, k) = vjvk.

Equivalently, if we introduce the q rescaled numbers

Vj := (q − χ2(a))1/2vj , j ∈ Fq,

we have the identities
P (j, k) = VjVk,

and these identities characterize1 the vector

V := (Vj)j∈Fq
∈ R

q

up to sign as the unique, up to sign, vector in Image(P ) of square norm
q − χ2(a).

1I am told by Wootters that this vector V is a “minimum-uncertainty state”
in the sense of [17], and that, at least when q is 3 mod 4, it may be the unique
eigenvector of the antiunitary operator of Section 9 of [2].
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Wootters found experimentally in the situation he was considering,
namely q = p and a = −1, that the Vj all lie in the closed interval [−2, 2],
and are approximately equidistributed (i.e., as p grows), for the semicir-
cle measure (1/2π)

√
4 − x2 dx on this interval [−2, 2]. Equivalently, if we

write Vj = 2 cos θj , with θj ∈ [0, π], Wootters found experimentally that the
p angles {θj}j∈Fp

are approximately equidistributed for the Sato–Tate mea-
sure (2/π) sin2 θ dθ on [0, π].

The problem posed by Wootters [1] was to prove this approximate equidis-
tribution. We will show that so long as the characteristic p satisfies p ≥ 5,
then whatever the finite extension Fq of Fp, and whatever the value of a ∈
F
×
q , the Vj all lie in the closed interval [−2, 2], and are approximately equidis-

tributed (i.e., as q grows), for the semicircle measure (1/2π)
√

4 − x2 dx on
this interval [−2, 2]. [The equidistribution statement is false in
characteristic 3.]

2. Statement of the results: first formulation

We will define sums V (j), for j ∈ Fq. These V (j) will also have the property
that

V (−j) = χ2(−1)V (j).

We will first show that
V (j)2 = P (j, j).

We will then show that

V (j)V (k) = P (j, k)

for all j, k ∈ Fq.
The sums V (j) will be real, and lie in the closed interval [−2, 2]. It will be

a (known) theorem that the q sums {V (j)}j∈Fq
, are approximately equidis-

tributed (i.e., as q grows), for the semicircle measure (1/2π)
√

4 − x2 dx on
this interval [−2, 2]. Equivalently, if we write V (j) = 2 cos θj , with θj ∈ [0, π],
then the q angles {θj}j∈Fq

are approximately equidistributed for the Sato–
Tate measure (2/π) sin2 θdθ on [0, π]. This known theorem then solves the
problem posed by Wootters.

3. Definition of the sums V (j), when q ≡ 1 mod 4

Recall that we have fixed both an element a ∈ F
×
q and a nontrivial additive

character of Fq. We now make two further auxiliary choices.
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We choose a character χ4 of F
×
q . Concretely, since q ≡ 1 mod 4 and F

×
q

is cyclic, the set μ4(Fq) of solutions in F
×
q of the equation X4 = 1 is a cyclic

group of order 4, and the map x �→ x(q−1)/4 is a surjective homomorphism of
F
×
q onto μ4(Fq). If we then pick one of the two possible group isomorphisms

between μ4(Fq) and μ4(C), call it ω, then we may take χ4(x) := ω(x(q−1)/4).
We next choose a square root ε of χ4(−a). These are our two auxiliary
choices. We define

A := ε
√
q.

We next define, for j ∈ Fq, sums W (j) by

W (j) :=
−

∑
x∈F

×
q
χ4(x)ψ(x+ aj4/x)

A
.

We then define

V (j) := W (j), for j �= 0.

For j = 0, W (0) is a rescaled quartic Gauss sum, so has absolute value 1,
and we define

V (0) := 2Re(W (0)) = W (0) +W (0) = W (0) + 1/W (0).

Lemma 3.1. When q ≡ 1 mod 4, the sums V (j) are real, and satisfy

V (−j) = χ2(−1)V (j)(= V (j)).

Proof. The second assertion is obvious from the definition.For j = 0, the
reality is obvious from the definition. For j �= 0, the complex conjugate of
of V (j) is

−
∑

x∈F
×
q
χ4(1/x)ψ(−x− aj4/x)

A
.

Under the involution x �→ at4/x, this sum becomes

−
∑

x∈F
×
q
χ4(x/aj4)ψ(−x− aj4/x)

A
,

and writing −x for x it becomes

−
∑

x∈F
×
q
χ4(x/(−aj4))ψ(x+ aj4/x)

A
,
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which is just

χ4(−aj4)(A/A)V (j) = χ4(−a)(A/A)V (j) = χ4(−a)ε2V (j) = V (j)

the last equality by the definition of ε as a square root of χ4(−a). �

4. Definition of the sums V (j), when q ≡ 3 mod 4

In this case, the definition of our sums involves the quadratic extension Fq2

of Fq, and the Trace and Norm maps from Fq2 down to Fq,

Trace := TraceFq2/Fq
and Norm := NormFq2/Fq

.

Again we make two auxiliary choices. Since q2 ≡ 1 mod 8, we may choose a
character χ8 of order 8 of F

×
q2 .

In what follows, we will have to consider the quantity χ8(−a), where we
now view a as lying in the larger field Fq2 . But this is simple to evaluate.
For if x ∈ F

×
q and q ≡ 3 mod 4, then we can write

x(q2−1)/8 = (x(q−1)/2)(q+1)/4.

So for χ2,Fq
the quadratic character of F

×
q , we have

χ8(x) = χ2,Fq
(x)(q+1)/4.

Thus χ8(x) = 1 for all x ∈ F
×
q if q ≡ 7 mod 8, and χ8(x) = χ2,Fq

(x) for x ∈
F
×
q if q ≡ 3 mod 8. Our second choice is of a square root δ of χ8(−a). We

then define
A := δ

√
q.

With these choices, we define V (j) by

V (j) :=
−χ2,Fq

(j)
∑

z∈Fq2 ,Norm(z)=aj4 χ8(z)ψ(Trace(z))

A
.

Note that in this q ≡ 3 mod 4 case, we have

V (0) = 0.

Lemma 4.1. When q ≡ 3 mod 4, the sums V (j) are real, and satisfy

V (−j) = χ2(−1)V (j)(= −V (j)).
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Proof. For j = 0 there is nothing to prove. For j �= 0, the complex conjugate
of V (j) is

−χ2,Fq
(j)

∑
z∈Fq2 ,Norm(z)=aj4 χ8(1/z)ψ(Trace(−z))

A
.

Denote by σ the nontrivial automorphism of Fq2/Fq. Then Norm(z) = zσ(z) =
aj4, so 1/z = σ(z)/aj4 in this sum, which is thus

−χ2,Fq
(j)

∑
z∈Fq2 ,Norm(z)=aj4 χ8(σ(z)/aj4)ψ(Trace(−z))

A
.

Writing −z for z, which does not change the norm of z, this sum is

−χ2,Fq
(j)

∑
z∈Fq2 ,Norm(z)=aj4 χ8(σ(z)/(−aj4))ψ(Trace(z))

A
.

Now replacing z by σ(z), and remembering that z and σ(z) have the same
Trace, this sum is

−χ2,Fq
(j)

∑
z∈Fq2 ,Norm(z)=aj4 χ8(z/(−aj4))ψ(Trace(z))

A
= χ8(−aj4)(A/A)V (j).

As already noted, χ8(j) = ±1 (because j ∈ Fq), and so the factor χ8(−aj4)
(A/A) is just χ8(−a)δ2 = 1, this last equality by the definition of δ as a
square root of χ8(−a). �

5. Definition of the sums S(j, k), P (j, k), V (j) over finite
extensions of Fq

Given a finite extension field E/Fq, we may view the element a ∈ Fq as
lying in E. We take for ψE the additive character of E given by x �→
ψ(TraceE/Fq

(x)), and for χ2,E the quadratic character of E×; thus χ2,E =
χ ◦ NormE/Fq

. We may then define, for j, k ∈ E, the sums S(j, k) and P (j, k)
over E, denoting them S(j, k, E) and P (j, k, E) to show that we are now
working over E.

In order to define the sums V (j) over E, which we will denote V (j, E),
we now specify how, given the choices we made in defining them over Fq, we
are to make the “correct” choices over E.

In the case when q ≡ 1 mod 4, then #E ≡ 1 mod 4. We take for χ4,E

the quartic character of E× given by x �→ χ4(NormE/Fq
(x)), and for εE
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the square root of χ4,E(−a) given by εdeg(E/Fq). With these choices, for an
element j ∈ E we apply the #E ≡ 1 mod 4 recipe, now over the ground field
E, to define the sum V (j, E).

In the case when q ≡ 3 mod 4, the situation is a bit more complicated. If
E/Fq has odd degree d, then #E ≡ 3 mod 4. The quadratic extension E2/E
of E is a degree d extension of Fq2 . We take for χ8,E2 the octic character of
E2 given by x �→ χ8(NormE2/Fq2 (x)), and we take for δE the square root of
χ8,E2(−a) given by δd. With these choices, for an element j ∈ E we apply
the #E ≡ 3 mod 4 recipe, now over the ground field E, to define the sum
V (j, E).

If, on the other hand, q ≡ 3 mod 4 and E/Fq has even degree d, then
#E ≡ 1 mod 4. We take for χ4,E either quartic character. [To fix one system
of choices, view E as an extension of Fq2 , take χ4,Fq2 := χ2

8, and then take
χ4,E to be the composition of χ4,Fq2 with the Norm from E down to Fq2 .]
Because −a ∈ Fq, we have χ4,E(−a) = 1; we take as its square root δE :=
(−1)(#E−1)/8 = χ8,E(−1) (this last equality valid for any octic character
χ8,E of E×) and thus our new A over E is

A := χ8,E(−1)qdeg(E/Fq2 ).

With these choices, for an element j ∈ E we apply the #E ≡ 1 mod 4 recipe,
now over the ground field E, to define the sum V (j, E). [The fact that this
sum does not depend on which choice of χ4,E we take results from the fact,
already noted, that as a ∈ Fq, we have χ8(a) = ±1, and hence χ4(a) = 1 for
either choice of χ4. Hence also χ4,E(at4) = 1 for every t ∈ E×. The involution
x �→ at4/x then turns the χ4,E sum for V (j, E), namely

−
∑

x∈E×

χ4,E(x)ψE(x+ at4/x)/A,

into the χ4,E sum.]

6. Sheaf-theoretic reformulation of the V (j), via
Kloosterman sheaves

We choose a prime number 
 �= p (e.g., 
 = 2 is always an allowed choice,
as p is odd), and an embedding of the cyclotomic field Q(ζp, ζ8) into Q�.
This allows us to view all of our sums as lying in Q�. In what follows, we
will make free use of the theory of Kloosterman sheaves, cf. [7, Section 2]
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for a quick review, or [10, 4.1.1, with all bi’s taken to be 1, and 4.1.2 (2)]
for the relevant existence and uniquenness theorems. We will also make
free use of Kummer sheaves Lχ, cf. [10, 4.3] for their definition and basic
properties.

When q ≡ 1 mod 4, we have the Kloosterman sheaf Kl(ψ;χ4,1) on
Gm/Fq and its constant field twist Kl(ψ;χ4,1) ⊗A−deg. This is a lisse sheaf
of rank two on Gm/Fq, which is pure of weight zero. We define the lisse sheaf
V0 on Gm/Fq as its pullback by t �→ at4:

V0 := [t �→ at4]�Kl(ψ;χ4,1) ⊗A−deg.

When q ≡ 3 mod 4, we have the additive character

ψFq2 := ψ ◦ TraceFq2/Fq

of the quadratic extension Fq2 , and the Kloosterman sheaf on Gm/Fq2 given
by Kl(ψFq2 ;χ8, χ

q
8). As explained in [10, 8.8, esp. 8.8.7], this sheaf has a

canonical descent to a lisse sheaf denoted Kl(Fq2 , ψFq2 , χ8) on Gm/Fq. We
first form its constant field twist Kl(Fq2 , ψFq2 , χ8) ⊗A−deg. This is a lisse
sheaf of rank two on Gm/Fq, which is pure of weight zero. We then form
its pullback by t �→ at4, and tensor this pullback with the Kummer sheaf
Lχ2(t) for the quadratic character χ2. The resulting sheaf we define to be
V0.

V0 := Lχ2(t) ⊗ [t �→ at4]�Kl(Fq2 , ψFq2 , χ8) ⊗A−deg.

[We remark in passing that with these definitions, the pullback of this V0 to
Gm/Fq2 is

Lχ2,F
q2 (t) ⊗ [t �→ at4]�Kl(ψFq2 ;χ8, χ

q
8) ⊗ (A2)−deg,

which is isomorphic to [t �→ at4]�Kl(ψFq2 ;χ4,1) ⊗ (χ8(−1)q)−deg. This last
isomorphism, on the level of character sums, is the identity that for t ∈ F

×
q2 ,

we have

−χ2,Fq2 (t)
∑

x∈F
×
q2

χ8(x)χ
q
8(at

4/x)ψFq2 (x+ at4/x)/(χ8(−a)q)

= −
∑

x∈F
×
q2

χ4(x)ψFq2 (x+ at4/x)/(χ8(−1)q)
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(and the analogous identity over all finite extensions E/Fq2).To see this,
write

χ2,Fq2 (t)/χ8(−a) = χ2,Fq2 (1/t)/χ8(−a) = χq8(1/at
4),

which then gives the first sum as being

−
∑

x∈F
×
q2

χ8(x)χ
q
8(1/x)ψFq2 (x+ at4/x)/(χ8(−1)q),

which, with the choice of χ4 := χ1−q
8 , is precisely the second sum.]

Given the definition of Kloosterman sheaves and their canonical descents,
the following theorem is a tautology.

Theorem 6.1. The trace function of the lisse sheaf V0 on Gm/Fq is given
as follows. For E/Fq a finite extension, and t ∈ Gm(E) = E×,

Trace(Frobt,E |V0) = V (t, E).

From the known [10, 7.4.1] local monodromy at 0 of Kloosterman sheaves,
we see that

Lemma 6.2. For j : Gm ⊂ A
1 the inclusion, the sheaf

V := j�V0

is lisse on A
1. It is the unique lisse sheaf on A

1 whose restriction to Gm

is V0.

Proof. That j�V0 is lisse at 0 is a geometric statement. Geometrically, i.e.
over Fq, V0 is [t �→ at4]�Kl(ψ;χ4,1). Geometrically, the local monodromy
of Kl(ψ;χ4,1) at 0 is the direct sum χ4 ⊕ 1, whose pullback by t �→ at4

is geometrically 1⊕ 1. If we interpret lisse sheaves as representations of
the fundamental group π1, uniqueness is simply the statement that π1(Gm)
maps onto π1(A1). �

We have the following fundamental result on the geometric and arith-
metic monodromy groups of V.

Theorem 6.3. The sheaf V on A
1 is lisse of rank two and pure of weight

zero. If p ≥ 5, its geometric and arithmetic monodromy groups on A
1 are

given by Ggeom = Garith = SL(2).
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Proof. We have proven that V is lisse of rank two on A
1. Its restriction to

Gm is pure of weight zero. Then V[1] on A
1 is a lisse perverse sheaf which is

the middle extension of its restriction V0[1] to Gm. As a perverse sheaf on
Gm, V0[1] is pure of weight one. One knows that middle extension preserves
purity [3, 5.3.2] of a given weight, hence V[1] as perverse sheaf is pure of
weight one, which in turn means precisely that V is pure of weight zero.

We now turn to showing that Ggeom = Garith = SL(2) when p ≥ 5. We
will first show that the identity component G0

geom is SL(2). By a general
result of Deligne [6, 3.4.1 (iii), 1.3.9 and the second sentence of its proof],
G0

geom is a connected semisimple subgroup of GL(2), so it must be either
SL(2) or the trivial group. Of the two choices, it is SL(2) precisely when
G0

geom acts irreducibly in the given two-dimensional representation, i.e., pre-
cisely when V is geometrically Lie-irreducible. Now V and V0 have the
same Ggeom (again because πgeom

1 (Gm) maps onto πgeom
1 (A1), and Ggeom

is the Zariski closure of the image of the corresponding πgeom
1 ). So it is

equivalent to show that V0 is geometrically Lie-irreducible. Geometrically,
V0 is the pullback by a finite morphism (here t �→ at4) of the Klooster-
man sheaf Kl(ψ;χ4,1), and under finite pullback the group G0

geom does
not change. So it is equivalent to show that Kl(ψ;χ4,1) is geometrically
Lie-irreducible.This sheaf is geometrically irreducible, because its I(∞)-
representation, having both slopes 1/2, is irreducible. Whatever the odd
characteristic p, Kl(ψ;χ4,1) is not Kummer induced. When p > 5, it then
results from [8, 7.2.6 (4)] that Kl(ψ;χ4,1) is Lie-irreducible.

We now treat the case p = 5 by a separate argument. The group Ggeom

does not change if we make a multiplicative translation of our sheaf, and in
particular is independent of the particular choice of ψ, which we may there-
fore take to be a character of the prime field F5. The arithmetic determinant
formula [8, 7.4.1.3]

det(Frobt,E |Kl(ψ;χ4,1)) = qχ4,E(−t)

shows that Kl(ψ;χ4,1) ⊗ (
√
p)−deg, which is pure of weight zero, has deter-

minant which is arithmetically of finite order (four). To show that G0
geom

is SL(2) (and not the trivial group), it is equivalent to show that Ggeom is
not a finite group. By [8, 8.14.4], Ggeom is finite for this sheaf Kl(ψ;χ4,1) ⊗
(
√
p)−deg if and only if all its traces are algebraic integers. This is not the

case for p = 5, already for Frob1,F5 . We see this by computing in the field
Q5(ζ5). If we take 2 as a multiplicative generator of F

×
5 , and denote by i ∈ Q5

the fourth root of unity which is its Teichmuller representative, then there
is a unique χ4 with χ4(2) = i. [The other choice of χ4 comes from using 3
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as a generator of F
×
5 .] We readily compute

Trace(Frob1,F5 |Kl(ψ;χ4,1))

= −
∑

x∈F
×
5

χ4(x)ψ(x+ 1/x) = −(1ψ(2) + iψ(0) + (−i)ψ(0) + (−1)ψ(3))

= −(ζ2
5 − ζ3

5 ) = −ζ5(1 − ζ5).

The quantity (1 − ζ5) has ord5(1 − ζ5) = 1/4, so the quantity

Trace(Frob1,F5 |Kl(ψ;χ4,1) ⊗ (
√

5)−deg) = −ζ5(1 − ζ5)/
√

5

has ord5 = −1/4, so is not an algebraic integer. This single calculation then
shows that in characteristic 5 as well, Kl(ψ;χ4,1) has G0

geom = SL(2).
We next show that Ggeom = SL(2) for V, or equivalently for V0. The

question is geometric, so we may extend scalars to reduce to the case when
q ≡ 1 mod 4. Then the arithmetic determinant formula [8, 7.4.1.3]

det(Frobat4,E |Kl(ψ;χ4,1)) = qχ4,E(−at4) = qχ4,E(−a)

shows that V0 := Kl(ψ;χ4,1) ⊗A−deg has arithmetically trivial determi-
nant. So after such an extension of scalars, we have Garith ⊂ SL(2). Since
in any case we have inclusions

SL(2) = G0
geom ⊂ Ggeom ⊂ Garith ⊂ SL(2),

it follows that Ggeom = SL(2).
It remains to show that Garith = SL(2). If we are over an Fq with q ≡

1 mod 4, the previous paragraph proves this. In the general case, we argue
as follows. Because V0 has real traces and is pure of weight zero, it is (iso-
morphic to) its own dual. Because it is arithmetically irreducible (because
already geometrically irreducible), its autoduality is unique up to a nonzero
scalar factor, and is either of sign −1 (:= symplectic) or of sign +1 (:=
orthogonal). This autoduality gives by restriction a geometric autodual-
ity, again unique up to a nonzero scalar factor, of the same sign. But
Ggeom = SL(2) = Sp(2), so the geometric autoduality has sign −1. There-
fore the arithmetic autoduality is of sign −1, i.e. symplectic, which is to say
that Garith ⊂ SL(2). So from the inclusions of the previous paragraph, we
get Ggeom = Garith = SL(2). �

In view of Theorem 6.1 and Lemma 6.2, it is natural to ask whether we
have the identity Trace(Frob0,Fq

|V) = V (0).This is indeed the case, as we
show in the next two lemmas.
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Lemma 6.4. If q ≡ 1 mod 4, then Trace(Frob0,Fq
|V) = V (0).

Proof. Suppose that q ≡ 1 mod 4. Then

V0 := [t �→ at4]�Kl(ψ;χ4,1) ⊗A−deg.

One knows [7, 2.6.1] that for the sheaf Kl(ψ;χ4,1) ⊗A−deg, its space of
I(0)-invariants is one-dimensional, with Frob0,Fq

acting as the scalar
−g(ψ, χ4)/A, the quantity called W (0) in Section 3. After we pull back by
t �→ at4, the space of inertial invariants can only grow. Since we know that
this pullback has trivial action of I(0), it follows that of the two eigenvalues of
Frob0,Fq

|V, one is W (0). But as Garith = SL(2), we have det(Frob0,Fq
|V) =

1. Hence the other eigenvalue is 1/W (0), so Trace(Frob0,Fq
|V) = W (0) +

1/W (0) := V (0). �

When q ≡ 3 mod 4, we have, by definition, V (0) = 0.

Lemma 6.5. If q ≡ 3 mod 4, then Trace(Frob0,Fq
|V) = V (0) = 0.

Proof. Suppose that q ≡ 3 mod 4. Let the two eigenvalues of Frob0,Fq
|V be

denoted ω and 1/ω. [The eigenvalues have this form because V has Garith ⊂
SL(2).] We will show that V (0)2 = 0. Now

V (0)2 = 2 + ω2 + 1/ω2,

so we must show that ω2 = −1. For this, we argue as follows. The quantities
ω2 and 1/ω2 are the eigenvalues of Frob0,Fq2 |V, so they are the quantities

W (0) := −
∑

x∈Fq2

χ4(x)ψF2
q
(x)/χ8(−1)q

and 1/W (0). Thus we must show that W (0) = −1, i.e., we must show that
when q ≡ 3 mod 4, then for any nontrivial additive character ψ of Fq, and for
any quartic character of F

×
q2 , the quartic gauss sum is given by the formula

−
∑

x∈Fq2

χ4(x)ψF2
q
(x) = −χ8(−1)q.

As already noted, for any a ∈ F
×
q , we have χ4(a) = 1. Therefore this sum is

independent of the particular choice of nontrivial additive character ψ of Fq.
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Because of this independence, we write simply

−g(Fq2 ;χ4) := −
∑

x∈Fq2

χ4(x)ψF2
q
(x)

for this quartic Gauss sum. It will be convenient to pick some nontrivial
additive character ψFp

of the prime field, and then take the particular
choice

ψ := ψFp
◦ TraceFq/Fp

.

There are unique quartic and octic characters χ4,Fp2 and χ8,Fp2 of F
×
p2 whose

compositions with the Norm NormFq2/Fp2 are our characters χ4 and χ8

of F
×
q2 .
Because q ≡ 3 mod 4, Fq is an odd degree, say degree d, extension of Fp,

and p ≡ 3 mod 4. By Hasse–Davenport, we have the relation

−g(Fq2 ;χ4) = (−g(Fp2 ;χ4,Fp2 ))
d.

Because d is odd and −1 ∈ Fp, NormFq2/Fp2 (−1) = (−1)d = −1, so we have

χ8(−1) := χ8,Fp2 ((−1)d) = (χ8,Fp2 (−1))d.

So it suffices to prove that

−g(Fp2 ;χ4,Fp2 ) = −χ8,Fp2 (−1)p,

i.e., to prove that (when p ≡ 3 mod 4) we have

g(Fp2 ;χ4,Fp2 ) = p, if p ≡ 7 mod 8,

g(Fp2 ;χ4,Fp2 ) = −p, if p ≡ 3 mod 8.

This was proven by Stickelberger in 1890, see [4, (10.3)], [5, Thm. 11.6.1]
and [16, 3.6 and 3.10]. �

We now elaborate and then exploit the I(∞)-structure of V. The ques-
tion is geometric, so we may assume that q ≡ 1 mod 8 and that the parameter
a ∈ F

×
q is a square, a = α2, for some α ∈ F

×
q .
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Lemma 6.6. The I(∞)-representation attached to [t �→ t2]�Kl(ψα;χ4,1)
is (the restriction to I(∞) of the sheaf on the x-line)

Lχ4(x) ⊗ Lψ(2αx)

⊕
Lχ4(x) ⊗ Lψ(−2αx).

The I(∞)-representation attached to V is (the restriction to I(∞) of the
sheaf on the x-line)

Lχ2(x) ⊗ Lψ(2αx2)

⊕
Lχ2(x) ⊗ Lψ(−2αx2).

Proof. In terms of the additive character ψα(x) := ψ(αx), we have [t �→
at]�Kl(ψ;χ4,1) = Kl(ψα;χ4,1). Hence, we have a geometric isomorphism

V0 = [t �→ t4]�Kl(ψα;χ4,1).

If we pick an octic character χ8 such that χ2
8 = χ4, then we have

Kl(ψα;χ4,1) ∼= Lχ8(x) ⊗Kl(ψα;χ8, χ8).

Pulling back by t �→ t2, we get

[t �→ t2]�Kl(ψα;χ4,1) ∼= Lχ4(x) ⊗ [t �→ t2]�Kl(ψα;χ8, χ8).

One knows [7, 2.5, the d=2 case] that the I(∞)-representation of [t �→
t2]�Kl(ψα;χ8, χ8) is given by

Lχ2(x) ⊗ Lψ(2αx)

⊕
Lχ2(x) ⊗ Lψ(−2αx).

Tensoring with Lχ4(x) gives the first assertion.
Geometrically, V0 is [t �→ t4]�Kl(ψα;χ4,1), so we get the second asser-

tion as the t �→ t2 pullback of the first. �
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Corollary 6.7. Let F be a lisse sheaf of rank two on A
1/Fq whose I(∞)-

representation is isomorphic to (the restriction to I(∞) of the sheaf on the
x-line)

Lχ2(x) ⊗ Lψ(2αx2)

⊕
Lχ2(x) ⊗ Lψ(−2αx2).

Then F is geometrically irreducible.

Proof. If F were geometrically reducible, its geometric semisimplication
would contain as direct summand a sheaf N which is lisse of rank one on
A

1/Fq and whose I(∞)-representation is Lχ2(x) ⊗ Lψ(2αx2). But no such N
can exist, for by tensoring it with Lψ(−2αx2) we would obtain a lisse rank
one sheaf on A

1/Fq whose local monodromy at ∞ is tame but nontrivial
(namely Lχ2(x)). �

Theorem 6.8. We have the following rigidity results concerning the geo-
metrically irreducible lisse sheaf V on A

1/Fq.

(1) The sheaf V is cohomologically rigid, i.e., for j : A
1 ⊂ P

1 the inclusion,

χ(P1 ⊗Fq
Fq, j�End(V)) = 2.

(2) If F is a lisse sheaf on A
1/Fq whose I(∞)-representation is isomorphic

to that of V, then F is geometrically isomorphic to V.

(3) If F is a lisse sheaf on A
1/Fq with Garith ⊂ SL(2), whose I(∞)-

representation is isomorphic to that of V, then F is arithmetically
isomorphic to either V or to its constant field twist V ⊗ (−1)deg.

Proof. To prove (1), we use the fact that V is geometrically self-dual to
write End(V) ∼= V ⊗ V. Thus End(V) is lisse of rank 4 on A

1, and its I(∞)-
representation is given by

(Lχ2(x) ⊗ Lψ(2αx2)

⊕
Lχ2(x) ⊗ Lψ(−2αx2))

⊗2

= Q� ⊕ Q� ⊕ Lψ(4αx2) ⊕ Lψ(−4αx2).

Thus j�End(V) has a two-dimensional stalk at ∞, and Swan∞(End(V)) =
4. The Euler–Poincaré formula then gives

χ(P1 ⊗Fq
Fq, j�End(V)) = 2 + χ(A1 ⊗Fq

Fq, End(V))
= 2 + 4 − Swan∞(End(V)) = 2.
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That (1) implies (2) is standard, cf. [12, 5.0.2]. To prove (3), we argue
as follows. By (2), F is geometrically isomorphic to V. As both are geometri-
cally irreducible, Homgeom(V,F) is a one-dimensional Gal(Fq/Fq)-
representation, i.e., it is Bdeg for some B ∈ Q�, so

F ∼= V ⊗ Homgeom(V,F) ∼= V ⊗Bdeg.

Both F and V are lisse of rank two with arithmetically trivial determinants,
hence B = ±1. �

What can we say about the situation in characteristic p = 3? It follows
from a result of Kubert [9, 13.2 and 13.3 (2)] that in characteristic 3, the
sheaf Kl(ψ;χ4,1) has finite Ggeom. [The Kubert result we are using is that
if q is a power of a prime p, and if we take all but two of the characters of
order dividing q + 1, then the Kloosterman sheaf of rank q − 1 formed with
those characters has finite Ggeom. We are applying it with q = 3.]

Theorem 6.9. In characteristic 3, the sheaf V is geometrically irreducible,
we have

Ggeom ⊂ Garith ⊂ SL(2),

and both Ggeom and Garith are finite primitive irreducible subgroups of SL(2).

Proof. The geometric irreducibility results from Lemma 6.6 and
Corollary 6.7. We know from Kubert that V has finite Ggeom (as geometri-
cally it is a pullback of Kl(ψ;χ4,1)). The arithmetic determinant formula
argument in the proof of Theorem 6.3 shows that Ggeom ⊂ SL(2). Thus
Ggeom is an irreducible subgroup of SL(2), and hence the larger group Garith

is also irreducible. The fact that V has real traces and is pure of weight zero
shows that V is arithmetically self-dual. the irreducibility ofGarith shows that
this autoduality has a well defined sign. The irreducibility of Ggeom shows
that this sign is the same as that of the induced geometric autoduality of
V. This last autoduality must have sign −1. If the sign were +1, we would
have Ggeom ⊂ O(2). But Ggeom ⊂ SL(2), so we would get Ggeom ⊂ SO(2).
But SO(2) is abelian, so Ggeom would be abelian, which it is not, since it
is an irreducible subgroup of SL(2). So V is symplectically self-dual, and
hence Garith ⊂ SL(2). That Garith is finite results from the fact that it lies
in SL(2) and normalizes a finite irreducible subgroup (namely Ggeom) of
SL(2). Indeed, for N the order of the automorphism group Aut(Ggeom),
every element γ ∈ Garith has γN acting trivially on Ggeom by conjugation,
i.e., commuting with the irreducible group Ggeom, so scalar, so ±1. Thus
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Garith, and hence Lie(Garith), is killed by 2N , so Lie(Garith) = 0, i.e., Garith

is finite.
It remains to explain why both Ggeom and Garith, finite irreducible sub-

groups of SL(2), are primitive. It suffices to show that Ggeom is primitive, for
then Garith is “even more” primitive. The group Ggeom,Kl for Kl(ψ;χ4,1) is
primitive, because Kl(ψ;χ4,1) is geometrically irreducible and not induced
(because not Kummer induced, cf. Pink’s lemma [11, Lemma 11]). Since
geometrically V0 is the pullback of Kl(ψ;χ4,1) by a finite etale galois cover
(namely [t �→ t4]), it follows that Ggeom is an irreducible normal subgroup
of the primitive irreducible group Ggeom,Kl. But if Ggeom were imprimitive,
there would be a unique pair of lines, say L1 and L2, in the two-dimensional
representation space, which are either stabilized or interchanged by each
element of Ggeom. By normality, for each g ∈ Ggeom,Kl, the two lines gL1

and gL2 would also be either stabilized or interchanged by each element of
Ggeom. By the unicity of such a pair of lines, we find that Ggeom,Kl itself is
imprimitive. �

To end this section, let us make explicit how Deligne’s general equidis-
tribution theorem applies to the sheaf V. Recall that for the group SU(2),
the trace map

Trace : SU(2) → [−2, 2]

is an isomorphism of the space SU(2)# of conjugacy classes in SU(2) with
[−2, 2], an element x ∈ [−2, 2] representing the conjugacy class of elements
A ∈ SU(2) whose characteristic polynomial is det(T −A) is T 2 − xT + 1.
In this picture, the Sato–Tate measure, i.e., the direct image of (total mass
one) Haar measure on SU(2) is the measure (1/2π)

√
4 − x2dx on [−2, 2]. If

we use the bijection

2 cos : [0, π] ∼= [−2, 2], θ ∈ [0, π] �→ 2 cos(θ) ∈ [−2, 2],

then we get [0, π] as the space of conjugacy classes, with an angle θ ∈ [0, π]
representing the conjugacy class whose eigenvalues are eiθ, e−iθ. In this pic-
ture, the Sato–Tate measure is the measure (2/π) sin2 θ dθ on [0, π].

Now let us turn to the lisse sheaf V on A
1/Fq. Recall that its definition

depends on the choice of an element a ∈ F
×
q . Given a finite extension E/Fq,

and a point t ∈ A
1(E) = E, we denote by

θa,t,E ∈ [0, π]

the unique angle for which Trace(Frobt,E |V) = 2 cos(θa,t,E).
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For each integer n ≥ 1, SU(2) has exactly one irreducible representation
of dimension n, namely Symn−1(std2), whose character is the function

sn(θ) := sin(nθ)/ sin(θ).

Here s1 is the constant function 1. By Peter–Weyl (or by trigonometry),
the functions sn, n ≥ 1 form an orthonormal basis of the space L2([0, π],
(2/π) sin2 θdθ).

Theorem 6.10. For Fq of characteristic p ≥ 5, and E/Fq a finite exten-
sion, with #E “large”, the angles {θa,t,E}t∈E are approximately equidis-
tributed in [0, π] for the Sato–Tate measure (2/π) sin2 θdθ on [0, π] in the
following sense. For each n ≥ 2, and each finite extension E/Fq, we have
the estimate

|(1/#E)
∑

t∈E
sn(θa,t,E)| ≤ 2n/(#E)1/2.

Proof. For each n ≥ 2, we form the lisse sheaf Symn−1(V), which is geomet-
rically irreducible nontrivial, lisse on A

1 of rank n, and pure of weight zero
on A

1/Fq. So the compact cohomology groups

H i
c(A

1/Fq,Symn−1(V))

vanish for i �= 1, the H1
c is mixed of weight ≤ 1, and of dimension

Swan∞(,Symn−1(V)). Because V has both its ∞-slopes 2, Symn−1(V) has
each of its n ∞-slopes ≤ 2, so we have

dimH1
c (A

1/Fq,Symn−1(V)) = Swan∞(Symn−1(V)) ≤ 2n.

By the Lefschetz trace formula, the sum we are estimating is given by

∑

t∈E
sn(θa,t,E) = −Trace(FrobE |H1

c (A
1/Fq,Symn−1(V))).

The H1
c here is mixed of weight ≤ 1, and of dimension ≤ 2n, so the right

hand side is bounded in absolute value by 2n(#E)1/2. �

Corollary 6.11. In any sequence of pairs (ki, ai) with ki a finite field of
(possibly varying) characteristic ≥ 5 , ai ∈ k×i such that the sequence #ki
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tends archimedeanly to ∞, the measures

μi := (1/#ki)
∑

t∈ki

δθai,t,ki

on [0, π] tend weak � to the Sato–Tate measure: For any continuous function
f on [0, π],

(2/π)
∫ π

0
f(θ) sin(θ)2dθ = lim

i→∞
(1/#ki)

∑

t∈ki

f(θai,t,ki
).

We have the more precise estimate that for each n ≥ 2, we have

|(1/#ki)
∑

t∈ki

sn(θai,t,ki
)| ≤ 2n/(#ki)1/2.

7. Sheaf-theoretic reformulation of the S(j, j)

On the open set U of A
1 where ax− x3 is invertible, we have the lisse rank

one sheaf Lχ2(ax−x3), which we prefer to write as Lχ2(a/x−x). For j : U ⊂ A
1

the inclusion, we form the sheaf j�Lχ2(a/x−x). This sheaf has vanishing stalk
at 0 and at the two square roots ±α of a. Its shift j�Lχ2(a/x−x)[1] is a perverse
sheaf on A

1 which is geometrically irreducible. Denoting by ψ4 the additive
character x �→ ψ(4x), we form the Fourier transform

T0 := FTψ4(j�Lχ2(a/x−x) ⊗ (−g(ψ, χ2))−deg).

This is a single sheaf, indeed T0[1] is a perverse sheaf on A
1 which is geomet-

rically irreducible (being the Fourier Transform of such an input). The trace
function of T0 is given as follows: for E/Fq a finite extension, and t ∈ E,

Trace(Frobt,E |T0) =
−

∑
x∈E× χ2,E(a/x− x)ψE(4tx)

−g(ψE , χ2,E)
.

We then define
S0 := [t �→ t2]�T0.

The following lemma is then a tautology.

Lemma 7.1. For E/Fq a finite extension, and t ∈ E,

Trace(Frobt,E |S0) = S(t, t, E).
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The geometric structure of T0 is given as follows.

Theorem 7.2. We have the following results on the sheaf T0 on A
1.

(1) The I(∞)-representation of T0 is

Lχ2(t)

⊕
Lχ2(t) ⊗ Lψ(4αt)

⊕
Lχ2(t) ⊗ Lψ(−4αt).

(2) The sheaf T0 is lisse of rank three, pure of weight zero, and geometri-
cally irreducible on Gm.

(3) The I(0)-representation of T0|Gm is

Q� ⊕ Q� ⊕ Lχ2(t).

(4) For j0 : Gm ⊂ A
1 the inclusion, we have an isomorphism

T0
∼= j0� (T0|Gm).

(5) The sheaf T0|Gm is cohomologically rigid, i.e., for j : Gm ⊂ P
1 the

inclusion,

χ(P1 ⊗Fq
Fq, j�End(T0)) = 2.

(6) Any lisse rank 3 sheaf on Gm/Fq whose I(0) and I(∞)-representations
are isomorphic to those of T0 is geometrically isomorphic to T0|Gm.

Proof. Assertion (1) is an instance of Laumon’s stationary phase theorem
[8, 7.4.2 and 7.4.4 (2)], in which the input sheaf j�Lχ2(a/x−x) is tame at ∞
and has three finite singularities 0, α,−α. At these three points, the stalk
vanishes. The local monodromies are Lχ2(x), Lχ2(x− α), and Lχ2(x+ α),
respectively.

That T0 has generic rank three is visible from (1). That T0 is lisse on Gm

holds because the input sheaf j�Lχ2(a/x−x) is tame at ∞, so in particular has
all ∞-slopes < 1, cf. [8, 7.4.5 (1)]. The purity is equivalent to the statement
that as perverse sheaf, T0[1] is pure of weight one. This follows from the
fact that that the input j�Lχ2(a/x−x) ⊗ (−g(ψ, χ2))−deg[1] as perverse sheaf
is pure of weight zero, and the fact that Fourier Transform preserves purity,
but increases the weight by one.

Assertion (3) results from the fact that the I(∞)-representation of the
input sheaf (j�Lχ2(a/x−x) is Lχ2(x), Laumon’s results [8, 7.4.4 (2) and 7.4.3
(1)], and the fact that T0|Gm has rank three. That T0|Gm is geometrically
irreducible results from the geometric irreducibility of the (nonpunctual)
perverse sheaf T0[1] on A

1.
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Assertion (4) is simply the fact that the input sheaf, shifted by [1], is
geometrically perverse irreducible, so it Fourier Transform shifted by [1],
namely T0[1], is geometrically perverse irreducible; this implies in particular
that T0 is the extension by direct image from any open set on which is it
lisse.

The cohomological rigidity of T0|Gm results from T0’s being, geomet-
rically, the Fourier Transform of a middle extension sheaf of generic rank
one (namely (j�Lχ2(a/x−x))). Such an input is cohomologically rigid (indeed,
its j�End sheaf is just the constant sheaf Q� on P

1 ⊗Fq
Fq), and one knows

[12, 3.0.2] that Fourier Transform preserves cohomological rigidity. That (5)
implies (6) is again [12, 5.0.2]. �

Theorem 7.3. We have geometric isomorphisms on Gm

Sym2([t �→ t2]�Kl(ψα;χ4,1) ∼= T0|Gm

and
Sym2(V0) ∼= S0|Gm.

Proof. The I(0)-representation of [t �→ t2]�Kl(ψα;χ4,1) is visibly

Q� ⊕ Lχ2(x),

and its I(∞)-representation is, by Lemma 6.6,

Lχ4(x) ⊗ Lψ(2αx)

⊕
Lχ4(x) ⊗ Lψ(−2αx).

The I(0) and I(∞)-representations of Sym2([t �→ t2]�Kl(ψα;χ4,1) are thus
isomorphic to those of T0|Gm, thanks to Theorem 7.2, parts (1) and (3). The
first result now follows from part (6) of Theorem 7.2. The second result is
the t �→ t2 pullback of the first. �

We now define a sheaf S on A
1 which agrees with S0 on Gm, but which

has the “correct” stalk at 0. For j : Gm ⊂ A
1 the inclusion, we define

S := j�j
�S0 = j�(S0|Gm).

Lemma 7.4. The sheaf S on A
1 is lisse of rank 3, pure of weight zero and

we have a geometric isomorphism

Sym2(V) ∼= S.

The sheaf S on A
1 is geometrically irreducible. If the characteristic p ≥ 5,

its Ggeom is SO(3). [In characteristic p = 3, its Ggeom is one of the groups
A4, S4, A5.]
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Proof. By Theorem 7.2, part (3), the I(0)-representation of T0|Gm is

Q� ⊕ Q� ⊕ Lχ2(t),

which becomes trivial after pullback by t �→ t2. Hence S is lisse of rank 3
on A

1. It is pure of weight zero because it is lisse on A
1 and is the middle

extension of its (pure of weight zero) restriction to the dense open set Gm.
On the dense open set Gm we have an isomorphism of lisse sheaves

Sym2(V)|Gm
∼= S|Gm,

by Theorem 7.3. Applying j� to this isomorphism gives the asserted isomor-
phism.

To see the geometric irreducibility, we argue as follows. In character-
istic p ≥ 5, V has Ggeom = SL(2), so its Sym2(V) has Ggeom = SO(3). In
characteristic 3, Ggeom for V is, by Theorem 6.9 a primitive irreducible sub-
group of SL(2), so by classification its image under Sym2 is one of the three
subgroups A4, S4, A5 of SO(3), each of which is irreducible. �

Theorem 7.5. In characteristic p ≥ 5, S has Ggeom = Garith = SO(3). In
characteristic 3, we have Ggeom ⊂ Garith ⊂ SO(3), with Ggeom and Garith

finite irreducible subgroups of SO(3).

Proof. The lisse sheaf S on A
1 and its restriction to Gm have the same

Garith as each other. The sheaf S|Gm, is lisse of rank 3, pure of weight
zero, and has real traces, so is arithmetically isomorphic to its dual. As it
is also geometrically irreducible, its autoduality has a sign, which must be
+1 because we are in odd dimension 3 (we can only have sign −1 in even
dimension). Therefore we have an a priori inclusion

Garith ⊂ O(3).

So in any characteristic we have inclusions

Ggeom ⊂ Garith ⊂ O(3),

with Ggeom a normal subgroup of Garith.
It suffices to prove that Garith ⊂ SO(3). Indeed, once we have this inclu-

sion, then in characteristic p ≥ 5, we use the resulting inclusions

SO(3) = Ggeom ⊂ Garith ⊂ SO(3).
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In characteristic 3, we use the fact that Garith normalizes Ggeom, and the
fact that the normalizers of the groups A4, S4, A5 in SO(3) are respectively
S4, S4, A5.

We know thatGgeom ⊂ SO(3). Therefore det(S) is a ±1-valued character
which is geometrically constant. In other words, either det(S) is arithmeti-
cally trivial, or it is (−1)deg. So to prove that det(S) is arithmetically trivial,
it suffices to exhibit a single Fq-rational point t ∈ A

1(Fq) with

det(Frobt,Fq
|S) = 1.

We will show that this holds at the point t = 0. Denote by j : Gm ⊂ A
1

the inclusion. Denote

[2Gm
] := [t �→ t2 on Gm]

as endomorphism of Gm, and denote

[2A1 ] := [t �→ t2 on A
1]

as endomorphism of A
1. We must compute the action of Frob0,Fq

on the
stalk at 0 of

F := j�j
�S0 = j�[2Gm

]�j�T0.

Because [2A1 ] is totally ramified over 0, this stalk is the same as the stalk at
0 of

[2A1 ]�F .

From the commutative diagram

Gm
j

��

[2Gm ]

��

A
1

[2
A1 ]

��

Gm
j

��
A

1

we see that

[2A1 ]�F := [2A1 ]�j�[2Gm
]�j�T0 = j�[2Gm

]�[2Gm
]�j�T0.

By the projection formula,

[2Gm
]�[2Gm

]�j�T0 = j�T0 ⊗ [2Gm
]�Q�.
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But

[2Gm
]�Q� = Q� ⊕ Lχ2(x),

so

[2A1 ]�F = j�(j�T0 ⊕ j�(T0 ⊗ Lχ2(x))) = j�j
�T0 ⊕ j�j

�(T0 ⊗ Lχ2(x)).

We have already noted, in Theorem 7.2, (4), that j�j
�T0 = T0.

To compute j�j�(T0 ⊗ Lχ2(x)), we argue as follows. From the known I(0)-
representation of T0, we see that T0 ⊗ Lχ2(x) has a one-dimensional space of
I(0)-invariants at 0, i.e., j�j�(T0 ⊗ Lχ2(x)) has a one-dimensional stalk at 0.
So any sheaf G on A

1 which agrees with T0 ⊗ Lχ2(x) on Gm, geometrically
has no nonzero punctual sections, and has a nonzero stalk at 0 must be
j�j

�(T0 ⊗ Lχ2(x)).
Let us first explain the character sum calculation which motivates the

construction of such a sheaf G. For t �= 0 in Fq, we have

Trace(Frobt,Fq
|T0 ⊗ Lχ2(x)) =

−χ2(t)
∑

x∈F
×
q
χ2(a/x− x)ψ(4tx)

−g(ψ, χ2)
.

We rewrite this sum as

−
∑

x∈F
×
q
χ2(at/x− tx)ψ(4tx)

−g(ψ, χ2)
,

then sum over x/t to get

−
∑

x∈F
×
q
χ2(at2/x− x)ψ(4x)

−g(ψ, χ2)
,

To obtain these sums geometrically, we consider the second projection
pr2 : Gm × A

1 → A
1, and endow the source, with coordinates (x, t), with the

sheaf

H := Lχ2(at2/x−x) ⊗ Lψ(4x) ⊗ (−g(ψ, χ2))−deg.

Then H[2] on the source is perverse, and hence

G := R1pr2!H

is a “sheaf of perverse origin” on A
1, and hence has no nonzero punctual

sections, cf. [13, Cor. 5]. The Ripr2!H vanish for i �= 1, so the trace function
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of G on Gm is exactly that of T0 ⊗ Lχ2(x), and at t = 0 is given by the formula

Trace(Frob0,Fq
|G) =

−
∑

x∈F
×
q
χ2(−x)ψ(4x)

−g(ψ, χ2)
= χ2(−1).

This shows that on the one-dimensional stalk at 0 of j�j�(T0 ⊗ Lχ2(x)),
Frob0,Fq

acts as multiplication by χ2(−1).
Now let us consider in greater detail the action of Frob0,Fq

on the two-
dimensional stalk at 0 of T0. Here we have, for any finite extension E/Fq,

Trace(Frob0,E |T0) =
−

∑
x∈E× χ2,E(a/x− x)
−g(ψE , χ2,E)

.

The numerator is the trace of FrobE on the H1 of the elliptic curve E over
Fq of equation

y2 = ax− x3.

In other words, the two-dimensional stalk of T0 at 0, as Frob0,Fq
-module, is

H1(E ⊗Fq
Fq,Q�) ⊗ (−g(ψ, χ2))−deg

as FrobFq
-module.

Thus the stalk at 0 of S is the direct sum

(χ2(−1))deg ⊕H1(E ⊗Fq
Fq,Q�) ⊗ (−g(ψ, χ2))−deg.

So the determinant of Frob0,Fq
on this stalk is the product its determinants

on each of the two summands. On the first summand, the determinant
is χ2(−1). On the second summand, the determinant is q/(−g(ψ, χ2))2 =
q/(χ2(−1)q) = χ2(−1). Thus we find det(Frob0,Fq

,S) = 1. �

Making use of the above calculation of the stalk at 0 of S, we get the
following variant of Lemma 7.1.

Lemma 7.6. For E/Fq a finite extension, and t ∈ E×,

Trace(Frobt,E |S) = S(t, t, E).

For t = 0, we have

Trace(Frob0,E |S) = χ2,E(−1) + S(0, 0, E).
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Theorem 7.7. We have an arithmetic isomorphism of lisse sheaves on A
1

Sym2V ∼= S.

Proof. We have already proven in Lemma 7.4 that Sym2V and S are geo-
metrically isomorphic and that S, and hence Sym2V as well, are geometri-
cally irreducible. Therefore arithmetically one is a constant field twist of the
other, so we have an arithmetic isomorphism Sym2V ∼= S ⊗ βdeg for some
β ∈ Q�

×. We have shown in Theorem 7.5 that S has its Garith,S ⊂ SO(3).
By Theorems 6.3 and 6.9, we know that V has its Garith,V ⊂ SL(2), and
hence Sym2V has its Garith,Sym2V ⊂ SO(3). Thus both Sym2V and S have
their groups Garith ⊂ SO(3). Therefore the scalar β lies in SO(3). But the
only scalar in SO(3) is 1, hence β = 1. �

We can now relate V to the sums P (t, t, E).

Corollary 7.8. For E/Fq a finite extension, and t ∈ E, we have the iden-
tities

(Trace(Frobt,E |V))2 = 1 + Trace(Frobt,E |S) = P (t, t, E).

Proof. We have the tautological identity

Trace(Frobt,E |V⊗2) = (Trace(Frobt,E |V))2.

Because V has its Garith,V ⊂ SL(2), we have the decomposition

V⊗2 = Sym2V ⊕ Λ2V ∼= Sym2V ⊕ Q�.

This proves the first identity. The second results from Lemma 7.6 and the
definition of the sums P (t, t, E). �

For the sums V (t, E), we have the following result.

Corollary 7.9. For E/Fq a finite extension, and t ∈ E, we have the iden-
tity

V (t, E)2 = P (t, t, E).

Proof. Immediate from the previous result, Theorem 6.1 and Lemmas 6.4
and 6.5. �

Here is a slight variant.
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Corollary 7.10. For E/Fq a finite extension, and t ∈ E, we have the iden-
tity

V (t, E)V (−t, E) = P (t,−t, E).

Proof. Immediate from the previous result, the fact that V (−t, E) =
χ2,E(−1)V (−t, E) (Lemmas 3.1 and 4.1), and the fact that P (t,−t, E) =
χ2,E(−1)P (t, t, E). �

8. The projection property of the P (j, k), following Evans

In this section, we give a proof, due to Evans, of a result we learned from
Wootters [1].

Theorem 8.1. The q × q matrix P := P (j, k)j,k∈Fq
satisfies the identities

Trace(P ) = q − χ2(a),

P 2 = (q − χ2(a))P.

Proof. We first prove the trace identity. By definition,

Trace(P ) = P (0, 0) +
∑

t∈F
×
q

(1 + S(t, t)) = 1 + χ2(−1) +
∑

t∈Fq

S(t, t) + q − 1

= q + χ2(−1) + (1/g(ψ, χ2))
∑

uv=a

χ2(u− v)
∑

t∈Fq

ψ(4t2v).

In the innermost sum, v is nonzero (since uv = a), so this innermost sum is
∑

t∈Fq

ψ(4t2v) = χ2(v)g(ψ, χ2),

hence

Trace(P ) = q + χ2(−1) +
∑

uv=a

χ2(u− v)χ2(v)

= q + χ2(−1) +
∑

v∈F
×
q

χ2(a− v2).

But we have the identity

χ2(a) + χ2(−1) +
∑

v∈F
×
q

χ2(a− v2) = 0,
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because this expression is minus the trace of FrobFq
on H1 of the complete

nonsingular model of the curve y2 = a− v2, and this H1 vanishes. This last
identity gives the asserted value for Trace(P ).

We now turn to the second identity. We must show that for every j, k ∈
Fq, we have ∑

t∈Fq

P (j, t)P (t, k) = (q − χ2(a))P (j, k).

For brevity, we will now write
∑

t for
∑

t∈Fq
, and we will abbreviate

g := g(ψ, χ2).

Writing each

P (j, k) := δj,k + χ2(−1)δj,−k + S(j, k)

and expanding, we get
∑

t

P (j, t)P (t, k) = sum1 + sum2 + sum3 + sum4,

with

sum1 =
∑

t

(δj,t + χ2(−1)δj,−t)(δt,k + χ2(−1)δt,−k),

sum2 =
∑

t

(δj,t + χ2(−1)δj,−t)S(t, k),

sum3 =
∑

t

(δt,k + χ2(−1)δt,−k)S(j, t),

sum4 =
∑

t

S(j, t)S(t, k).

We have

sum1 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if j2 �= k2,

(1 + χ2(−1))2 if j = k = 0,
2 if j = k �= 0,
2χ2(−1) if j = −k �= 0.

We have

sum2 + sum3

= S(j, k) + χ2(−1)S(−j, k) + S(j, k) + χ2(−1)S(j,−k) = 4S(j, k).
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So the real work comes in evaluating sum4 :=
∑

t S(j, t)S(t, k). We write

sum4 = (1/g2)
∑

uv=a,xy=a

χ2((u− v)(x− y))

×
∑

t

ψ((j + t)2v + (j − t)2u+ (k + t)2y + (k − t)2x)

= (1/g2)
∑

uv=a,xy=a

χ2((u− v)(x− y)ψ(j2(v + u) + k2(y + x))

×
∑

t

ψ(t2(u+ v + x+ y) + 2t(j(v − u) + k(y − x))).

If u+ v + x+ y = 0, the innermost sum is qδ0,j(v−u)+k(y−x). If u+ v +
x+ y �= 0, the innnermost sum is (complete the square)

χ2(u+ v + x+ y)gψ
(
−(j(v − u) + k(y − x))2

u+ v + x+ y

)
.

Following closely Evans, we denote by A the sum of those terms in the
entire sum with u+ v + x+ y = 0, and by B the sum of those terms in the
entire sum with u+ v + x+ y �= 0.

To analyze A, we argue as follows. Since uv = xy = (−x)(−y) (all are
a), and u+ v = (−x) + (−y), we conclude (symmetric functions) that the
unordered sets {u, v} and {−x,−y} coincide. If in addition u = v, the factor
u− v inside the χ2 kills this term. For each pair u, v with uv = a, u �= v,
there are two pairs, (x, y) = (−u,−v) and (x, y) = (−v,−u), with u+ v +
x+ y= 0.

Still with the A sum, suppose first j = k = 0. Then every innermost
sum is q, and for each pair u, v with uv = a, u �= v, the outer sum has a term
which χ2((u− v)2) (from taking (x, y) = (−v,−u)) and a term χ2(−(u−
v)2) (from taking (x, y) = (−u,−v)). The number of pairs uv = a, u �= v
is the number of u ∈ F

×
q with u2 �= a, so there are q − 1 − (1 + χ2(a)) =

q − 2 − χ2(a) terms. So we have

A = (1/g2)q(q − 2 − χ2(a))(1 + χ2(−1))
= χ2(−1)(q − 2 − χ2(a))(1 + χ2(−1))
= (q − 2 − χ2(a))(1 + χ2(−1)) if j = k = 0.

We now analyze the A term when j2 �= k2 (and hence at least one of j, k
is nonzero). In these cases, the innermost sum, qδ0,j(v−u)+k(y−x), vanishes
(because y − x = ±(v − u) in each A summand, and again only terms with
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u �= v contribute). Thus

A = 0 if j2 �= k2.

We now analyze the A term when j = k �= 0. Here for each pair u, v
with uv = a, u �= v, there is just one pair, (x, y) = (−u,−v) for which the
innermost sum, qδ0,j(v−u)+k(y−x), is nonzero. But for these terms, χ2((u−
v)(y − x)) = χ2(−(u− v)2) = χ2(−1), so we get

A = q − 2 − χ2(a) if j = k �= 0.

In a similar fashion, we find

A = χ2(−1)(q − 2 − χ2(a)) if j = −k �= 0.

We now turn to the analysis of the B sum. We will prove below that

B = (q − 4 − χ2(a))S(j, k).

If we admit this, then we get the required assertion. In all cases,

sum2 + sum3 + B = (q − χ2(a))S(j, k).

Suppose first j2 �= k2. Then sum1 = 0, A = 0, and P (j, k) := S(j, k), so we
are done.

If j = k = 0, then sum1 = (1 + χ2(−1))2 = 2((1 + χ2(−1)), and A =
(q − 2 − χ2(a))(1 + χ2(−1)). In this case P (0, 0) := 1|χ2(−1) + S(0, 0), so
again we are done.

If j = k �= 0, then sum1 = 2 and A = q − 2 − χ2(a). In this case
P (j, j) := 1 + S(j, j), so we are done.

If j = −k �= 0, then sum1 = 2χ2(−1) and A = χ2(−1)(q − 2 − χ2(a)). In
this case P (j, j) := χ2(−1) + S(j, j), so we are done. �

To finish the proof of Theorem 8.1, it remains to prove the following.

Lemma 8.2. We have

B = (q − 4 − χ2(a))S(j, k).



254 Nicholas M. Katz

Proof. Recall that B is given by

(1/g2)
∑

uv=a,xy=a,u �=v,x �=y,u+v+x+y �=0

χ2((u− v)(x− y)ψ(j2(v+u) + k2(y+x))

× χ2(u+ v + x+ y)gψ
(
−(j(v − u) + k(y − x))2

u+ v + x+ y

)

= (1/g)
∑

uv=a,xy=a,u �=v,x �=y,u+v+x+y �=0

χ2((u− v)(x− y)(u+ v + x+ y))

× ψ

(
j2(v + u) + k2(y + x) − (j(v − u) + k(y − x))2

u+ v + x+ y

)
.

To see some structure in the argument of χ2, we need two identities. The
first is

vy(u+ v + x+ y) = ay + v2y + av + y2v = a(y + v) + vy(y + v)
= (a+ vy)(y + v).

The second, using the first, is

(yv)2(u− v)(x− y)(u+ v + x+ y)

= (a− v2)(a− y2)(a+ vy)(y + v)

= (a2 − av2 − ay2 + y2v2)(a+ vy)(y + v)

= ((a+ vy)2 − a(y + v)2)(a+ vy)(y + v).

In the χ2 argument, we may multiply by the invertible square (vy)2 and
divide by the invertible square (a+ vy)2(y + v)2, so B is

(1/g)
∑

uv=a,xy=a,u �=v,x �=y,u+v+x+y �=0

χ2

(
a+ vy

v + y
− a(y + v)

a+ vy

)

× ψ

(
j2(v + u) + k2(y + x) − (j(v − u) + k(y − x))2

u+ v + x+ y

)
.

The argument of ψ is of the form

j2C + k2D − 2jkE,



Rigid local systems and a question of Wootters 255

with

C =
(v + u)(u+ v + x+ y) − (u− v)2

u+ v + x+ y
,

D =
(y + x)(u+ v + x+ y) − (y − x)2

u+ v + x+ y
,

E =
(v − u)(y − x)
u+ v + x+ y

.

We first observe that
C = D.

Indeed, the numerator of C is

(v + u)(u+ v + x+ y) − (u− v)2 = (u+ v)2 − (u− v)2 + (u+ v)(x+ y)
= 4a+ (u+ v)(x+ y),

which is also the numerator of D. Thus the argument of ψ is

j2C + k2C − 2jkE = (j + k)2((C − E)/2) + (j − k)2((C + E)/2).

We have

(C − E)/2 =
4a+ (u+ v)(x+ y) − (v − u)(y − x)

2(u+ v + x+ y)

=
(yv)(4a+ (u+ v)(x+ y) − (v − u)(y − x))

2(a+ vy)(y + v)

=
4ayv + (a+ v2)(a+ y2) − (v2 − a)(y2 − a)

2(a+ vy)(y + v)

=
4ayv + 2ay2 + 2av2

2(a+ vy)(y + v)
=

a(v + y)2

(a+ vy)(y + v)
=
a(v + y)
a+ vy

.

In a completely similar fashion, we get

(C + E)/2 =
a+ vy

v + y
.

Putting this all together, we find

B = (1/g)
∑

uv=a,xy=a,u �=v,x �=y,u+v+x+y �=0

χ2

((
a+ vy

v + y

)
−

(
a(y + v)
a+ vy

))

× ψ

(
(j + k)2

(
a(v + y)
a+ vy

)
+ (j − k)2

(
a+ vy

v + y

))
.
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So if we put

X :=
a(v + y)
a+ vy

,

then we have

B = (1/g)
∑

X∈F
×
q ,X �=a/X

χ2(a/X −X)ψ((j + k)2X + (j − k)2(a/X))Mult(X),

where Mult(X) is the number of inputs uv = a, xy = a, u �= v, x �= y, u+ v +
x+ y �= 0 for which

X =
a(v + y)
a+ vy

.

So our remaining task is to show that for any X ∈ F
×
q with X �= a/X,

we have

Mult(X) = q − 4 − χ2(a).

In view of the identity

vy(u+ v + x+ y) = (a+ vy)(y + v),

Mult(X) is the number of pairs (v, y) in Fq
2 with vy(v + y)(a+ vy)(a−

v2)(a− y2) invertible and

X =
a(v + y)
a+ vy

.

If we fix a choice of y with a− y2 invertible, then

v �→ a(v + y)
a+ vy

is a fractional linear transformation, say Ly, given by the 2 by 2 matrix
((a, ay), (y, a)). This matrix is invertible, because a− y2 is invertible. Then
there is a unique v ∈ P

1(Fq) with Ly(v) = X, given by

v =
a(X − y)
a−Xy

.

Thus v lies in F
×
q provided that y �= X and y �= a/X. So for each y with

y(a− y2)(y −X)(y − a/X) invertible, v = a(X−y)
a−Xy is invertible and
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X = a(v+y)
a+vy . We claim that this v is such that vy(v + y)(a+ vy)(a− v2)(a−

y2) is invertible. Indeed, we have

v + y =
a(X − y)
a−Xy

+ y =
a(X − y) + y(a−Xy)

a−Xy
=
X(a− y2)
a−Xy

,

so v + y is invertible. Once v + y is invertible, the fact that X = a(v+y)
a+vy is

invertible shows that a+ vy is invertible. That v2 �= a, or equivalently that
v �= a/v, or equivalently that

a(X − y)
a−Xy

�= a−Xy

X − y
,

amounts to

a(X − y)2 �= (a−Xy)2,

i.e.,

(a− y2)(X2 − a) �= 0,

which is indeed the case.
On the other hand, if y2 = a, then

X =
a(v + y)
a+ vy

=
y2(v + y)
y2 + vy

= y.

But X2 �= a, so no such y contributes to Mult(X).
So for each invertible X with X �= a/X, we may take y ∈ Fq other than

0, X, a/X or any root of y2 = a. If there are roots of y2 = a in Fq, none
of them is X or a/X, exactly because X2 �= a. So the number of y which
contribute to Mult(X), each exactly once, is

q − 3 − (1 + χ(2)(a)) = q − 4 − χ2(a),

as required. �

As explained in the first section, Theorem 8.1, together with the fact
that the matrix P is real and symmetric, shows that there is a (unique up
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to a ±1 factor) vector
V := (Vj)j∈Fq

∈ R
q

such that we have the identities

P (j, k) = VjVk.

In particular, we have the identities

P (j, k)2 = P (j, j)P (k, k).

In view of Corollary 7.9, it follows that

P (j, k)2 = V (j)2V (k)2,

and hence we have
P (j, k) = ±V (j)V (k).

Repeating these considerations over a finite extension E/Fq, we find

Corollary 8.3. For E/Fq a finite extension, and s, t ∈ E, we have

P (s, t, E) = ±V (s, E)V (t, E).

9. Interlude: The ± Trace problem

In this section, we work over C. We are given a group Γ, a finite dimensional
C-vector space V with dim(V ) ≥ 2, and two irreducible C-representations
of Γ,

ρ1, ρ2 : Γ → GL(V ).

We are told that for every γ ∈ Γ, we have

Trace(ρ1(γ))2 = Trace(ρ2(γ))2.

When is it then true that there exists a character χ ∈ Hom(Γ,±1) such that
ρ2 = χ⊗ ρ1?

Let us consider the following slightly more general problem. Suppose we
are given a nonzero polynomial F (X,Y ) ∈ C[X,Y ] and we are told that for
every γ ∈ Γ,

F (Trace(ρ1(γ)),Trace(ρ2(γ))) = 0.
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How can this happen, and will it have a representation-theoretic explana-
tion? Here is an answer, in a special case.

Theorem 9.1. In the above situation, define, for i = 1, 2,

Gi := the Zariski closure of ρi(Γ) in GL(V ).

Suppose that G1 and G2 are conjugate in GL(V ), i.e., for some A ∈ GL(V )
we have G2 = AG1A

−1. Suppose further G1 is a connected semisimple group,
and that

Lie(ρ1) : Lie(G1) → End(V )

is the unique irreducible representation of Lie(G1) of dimension dim(V ).
Then there is a divisor d ≥ 1 of the order f of the center Z(G1) such that

(1) There is a unique character χ ∈ Hom(Γ, μd) such that ρ2 = χ⊗ ρ1.

(2) The polynomial F (X,Y ) is divisible by the polynomial Xd − Y d.

Proof. View each ρi as a homomorphism from Γ to Gi, and define

H := the Zariski closure of (ρ1 × ρ2)(Γ) in G1 ×G2.

ThenH is a closed subgroup of G1 ×G2 which projects onto both factors (by
the Zariski density of Γ in all three of H,G1, G2). By (the algebraic group
version of) Goursat’s lemma, there exist closed normal subgroups N1 ⊂ G1

and N2 ⊂ G2 and an isomorphism

φ : G1/N1
∼= G2/N2

such that

H = {(g1, g2) ∈ G1 ×G2 | φ(g1 mod N1) = g2 mod N2}.

By the Zariski density of Γ in H, we have

F (Trace(g1|V ),Trace(g2|V )) = 0, for all (g1, g2) ∈ H.

The key observation at this point is that we have an inclusion

N1 ×N2 ⊂ H.

Using this, we first show that N1 and N2 are both finite. Indeed, the exis-
tence of the isomorphism φ : G1/N1

∼= G2/N2, together with the fact that



260 Nicholas M. Katz

G1 and G2 are themselves isomorphic, shows that N1 and N2 have the same
dimension as each other. Each Gi is reductive (because it has a faithful
completely reducible representation), hence its normal subgroup Ni is also
reductive. So if theNi have strictly positive dimension, each of them contains
a one-dimensional torus, say Ti ⊂ Ni. Then we have

T1 × T2 ⊂ H.

Now V is a faithful representation of both the Ti, so if we view each Ti as Gm,
say T1 = Spec(C[X, 1/X]), T2 = Spec(C[Y, 1/Y ]), then Trace(t1(X)|V ) is a
nonconstant Laurent polynomial f(X) ∈ C[X, 1/X]), and Trace(t1(Y )|V ) is
a nonconstant Laurent polynomial g(Y ) ∈ C[Y, 1/Y ]). But T1 × T2 ⊂ H, so
we find that F (f(X), g(Y )) = 0. As f(X), g(Y ) are nonconstant polynomials
in X and Y , respectively, they are algebraically independent over C, hence
F is the zero polynomial, contradiction.

So now we know that N1 and N2 are finite normal subgroups of G1

and G2, respectively. But the only finite normal subgroups of a connected
semisimple group are the subgroups of its center. Moreover, since each Gi
is an irreducible subgroup of GL(V ), its center is a (finite, because Gi is
semisimple) group of scalars, so the group μfi

of fi’th roots of unity for
some fi ≥ 1. But G1 and G2 are isomorphic, so f1 = f2, let us call it f . So
N1 = μd1 for some divisor d1 of f , and N2 = μd2 for some divisor d2 of f . We
next claim that d1 = d2. One way to see this is to pass from the isomorphism

φ : G1/N1
∼= G2/N2

to the induced isomorphism of the universal covering groups

φ̃ : G̃1
∼= G̃2.

Now we make use of our assumption that

Lie(ρ1) : Lie(G1) → End(V )

is the unique irreducible representation of Lie(G1) of dimension dim(V ), in
the equivalent form that the composite homomorphism G̃1 → G1 ⊂ GL(V )
is the unique irreducible representation of G̃1 of dimension dim(V ). In par-
ticular, this representation is equivalent to the composition

G̃1
φ̃→ G̃2 → G2 ⊂ GL(V ).
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Then φ̃ must map the kernel of this representation to itself, i.e., it must
map the fundamental group of G1 to the fundamental group of G2. Thus φ̃
induces an isomorphism φG of G1 to G2, which maps N1 isomorphically to
N2. Now we use the uniqueness to say that our isomorphism of G1 to G2

must be conjugation by some element B of the ambient GL(V ). Thus

H = {(g1, g2) ∈ G1 ×G2 | ∃ζ ∈ μd with g2 = Bg1B
−1ζ}.

As Trace(Bg1B−1ζ|V ) = ζTrace(g1|V ), we find that

F (Trace(g1|V ), ζTrace(g1|V )) = 0 ∀g1 ⊂ G1, ∀ζ ∈ μd.

Restricting to g1 running over some one-dimensional torus T1 of G1, with
character f(X) a nonconstant Laurent polynomial, we get the polynomial
relation

F (f(X), ζf(X)) = 0 ∀ζ ∈ μd,

hence the polynomial relation F (X, ζX) = 0 ∀ζ ∈ μd. So F (X, ζY ) vanishes
on the diagonal, so is divisible by X − Y . Hence F (X,Y ) is divisible by X −
ζ−1Y . As the various factors X − ζ−1Y for the various ζ ∈ μd are relatively
prime, F (X,Y ) is divisible by their product Xd − Y d.

Returning to H, we observe that the assignment which attaches to
(g1, g2) ∈ H the unique element ζ ∈ μd for which g2 = Bg1B

−1ζ is indeed a
character χ : H → μd. Restricting this χ to Γ, we have

Trace(ρ2(γ)) = χ(γ)Trace(ρ1(γ)),

hence we have an equality ρ2 = χ⊗ ρ1 of (irreducible) representations of Γ.
To show the uniqueness of χ, we argue as follows. The ratio of two

such is a character Λ for which we have an isomorphism of nonzero (in fact
irreducible) representations

ρ1
∼= Λ ⊗ ρ1.

Because the Zariski closure of ρ1(Γ) is connected (being G1), the last line of
the proof of [12, 2.18.2bis] shows that any such Λ is trivial. �

Corollary 9.2. Let X/Fq be smooth and geometrically irreducible, 
 �= p :=
char(Fq), F and G lisse Q�-sheaves on X, both of the same rank n ≥ 2.
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Suppose that for all finite extensions E/Fq, and all points x ∈ X(E), we have

Trace(Frobx,E |F)2 = Trace(Frobx,E |G)2.

Suppose further that one of the following three hypotheses holds.

(1) The common rank n is even, F and G are symplectically self dual, and
Ggeom,F = Garith,G = Sp(n).

(2) The common rank n is even, n ≥ 4, F and G are orthogonally self
dual, and Ggeom,F = Garith,G = SO(n).

(3) The common rank n is odd, n ≥ 3, F and G are orthogonally self dual,
and Ggeom,F = Garith,G = SO(n).

Then there exists a lisse rank one Q� sheaf L on X with L⊗2 arithmetically
trivial, and an arithmetic isomorphism G ∼= L ⊗ F . In case (3), L is trivial,
and G ∼= F . The sheaf L is unique.

Proof. We pick (!) an isomorphism of fields Q�
∼= C, and apply Theorem 9.1,

with Γ taken to be πarith
1 (X) and with ρ1 and ρ2 the representations cor-

responding to F and G, respectively. [The theorem applies because the
groups in question, Sp(n) for n even, n ≥ 2 and SO(n), n ≥ 3 are con-
nected semisimple groups with a unique representation of dimension n. By
Chebotarev, for every γ ∈ Γ = πarith

1 (X), we have

Trace(γ|F)2 = Trace(γ|G)2.]

The map from πarith
1 (X) toH(Q�) is continuous, so the character χ produced

in the Theorem gives by composition a continuous character of πarith
1 (X),

which is our L. In cases (1) and (2), the center has order f = 2. In case (3),
the center is trivial, f = 1, so L is trivial. �

Corollary 9.3. In the situation of Corollary 9.2, suppose in addition that
X/Fq is A

1/Fq and that p is odd. Then in cases (1) and (2), either G ∼= F
or G ∼= (−1)deg ⊗F .

Proof. Because p is odd, πgeom
1 (A1) has no nontrivial homomorphism to any

finite group of order prime to p. So L is geometrically constant, of order
dividing two, so is either trivial or is (−1)deg. �
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10. The identity P (j, k) = V (j)V (k); preparations

We restate Corollary 8.3 here, as the following (key) lemma.

Lemma 10.1. For E/Fq a finite extension, and s, t ∈ E, we have

P (s, t, E) = ±V (s, E)V (t, E).

We now turn to proving the following theorem.

Theorem 10.2. Suppose p ≥ 5. For any s, t ∈ Fq, we have

P (s, t) = V (s)V (t).

Corollary 10.3. Suppose p ≥ 5. For any finite extension E/Fq, and any
s, t ∈ E, we have

P (s, t, E) = V (s, E)V (t, E).

Proof. This is just Theorem 10.2, applied after extension of scalars. �

We will prove Theorem 10.2 by focusing on the difference s− t. Thanks
to Corollary 7.9, Theorem 10.2 is equivalent to the following Theorem.

Theorem 10.4. Suppose p ≥ 5. Fix λ ∈ F
×
q . For each t ∈ Fq, we have

P (t+ λ, t− λ) = V (t+ λ)V (t− λ).

We now fix λ ∈ F
×
q . Our first task will be to exhibit sheaf-theoretic incar-

nations of the products V (t+ λ)V (t− λ) and the sums P (t+ λ, t− λ).
To incarnate the products V (t+ λ)V (t− λ), we define two lisse sheaves

on A
1, both additive translates of V, namely

Vλ+ := [t �→ t+ λ]�V, ,Vλ− := [t �→ t− λ]�V.

We then form their tensor product on A
1

Aλ := Vλ+ ⊗ Vλ−.

The sheaf Aλ is lisse of rank four and pure of weight zero. In view of Theo-
rem 6.1 and Lemmas 6.4 and 6.5, we have
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Lemma 10.5. The trace function of the lisse sheaf Aλ on A
1 is given as

follows. For E/Fq a finite extension, and t ∈ E,

Trace(Frobt,E |Aλ) = V (t+ λ,E)V (t− λ,E).

Theorem 10.6. If the characteristic p ≥ 5, the sheaf Aλ has Ggeom =
Garith = SO(4).

Proof. Because p ≥ 5, V has Ggeom = Garith = SL(2), cf. Theorem 6.3. One
knows that the image of SL(2) × SL(2) in the tensor product std2 ⊗ std2 of
their standard representations is SO(4). So we have a priori inclusions

Ggeom,Aλ ⊂ Garith,Aλ ⊂ SO(4).

So it suffices to show that Ggeom,Aλ = SO(4). For this, we argue as follows.
By the Goursat–Kolchin–Ribet criterion [8, 1.8.2], it suffices to show that
the two lisse sheaves Vλ+ and Vλ− on A

1 are not geometrically isomorphic,
or equivalently that V is not geometrically isomorphic to [t �→ t+ 2λ]�V.
[In the SL(2) case, we also have to show that neither is obtained from the
other by tensoring with a character of πgeom

1 (A1) with values in ±1, but as
we are in odd characteristic, there are no such nontrivial characters.] This
nonisomorphy is obvious already from looking at the I(∞)-representations.
By Lemma 6.6, the I(∞)-representation of V is

Lχ2(x) ⊗ Lψ(2αx2)

⊕
Lχ2(x) ⊗ Lψ(−2αx2),

which, as we are in odd characteristic, is visibly nonisomorphic to any non-
trivial additive translate of itself. �

To incarnate the sums P (t+ λ, t− λ), we must proceed in two steps.
For t �= 0, we have (t+ λ)2 �= (t− λ)2, hence

P (t+ λ, t− λ) :=
−

∑
uv=a χ2(u− v)ψ(4t2v + 4λ2u)

−g

=
−

∑
x∈F

×
q
χ2(a/x− x)ψ(4t2x+ 4λ2a/x)

−g ,

where we have written
g := g(ψ, χ2).

We now imitate the construction of the sheaf T0 in Section 7. On the
open set U of A

1 where ax− x3 is invertible, we have the lisse rank one
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sheaf Lχ2(a/x−x) ⊗ Lψ(4λ2a/x). For j : U ⊂ A
1 the inclusion, we form the sheaf

j�(Lχ2(a/x−x) ⊗ Lψ(4λ2a/x)). This sheaf has vanishing stalk at 0 and the two
square roots ±α of a. Its shift j�Lχ2(a/x−x)[1] is a perverse sheaf on A

1

which is geometrically irreducible. Denoting by ψ4 the additive character
x �→ ψ(4x), we form the Fourier Transform

Rλ
0 := FTψ4(j�(Lχ2(a/x−x) ⊗ Lψ(4λ2a/x)) ⊗ (−g)−deg).

This is a single sheaf, indeed Rλ
0 [1] is a perverse sheaf on A

1 which is geo-
metrically irreducible (being the Fourier t ransform of such an input). The
trace function of Rλ

0 is given as follows: for E/Fq a finite extension, and
t ∈ E,

Trace(Frobt,E |Rλ
0) =

−
∑

x∈E× χ2,E(a/x− x)ψE(4tx+ 4λ2a/x)
−g(ψE , χ2,E)

.

We then define

Pλ
0 := [t �→ t2]�R0.

The following lemma is a tautology.

Lemma 10.7. For E/Fq a finite extension, and t ∈ E,

Trace(Frobt,E |Pλ
0 ) = S(t+ λ, t− λ,E).

For t �= 0, we have

Trace(Frobt,E |Pλ
0 ) = P (t+ λ, t− λ,E).

We thus have the following relation between Pλ
0 and Aλ.

Lemma 10.8. For E/Fq a finite extension, and t ∈ E×,

Trace(Frobt,E |Pλ
0 ) = ±Trace(Frobt,E |Aλ).

Proof. Simply combine Lemmas 10.7 and 10.5 with the fact that

P (j, k, E) = ±V (j, E)V (k,E).

�

The geometric structure of Rλ
0 is given as follows.
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Theorem 10.9. We have the following results on the sheaf Rλ
0 on A

1.

(1) The I(∞)-representation of Rλ
0 is

Wild2

⊕
Lχ2(t) ⊗ Lψ(4αt)

⊕
Lχ2(t) ⊗ Lψ(−4αt),

with Wild2 a two dimensional representation of I(∞) with both slopes
1/2.

(2) The sheaf Rλ
0 is lisse of rank four, pure of weight zero, and geometri-

cally irreducible on Gm.

(3) The I(0)-representation of Rλ
0 |Gm is

Q� ⊕ Q� ⊕ Q� ⊕ Lχ2(t).

(4) For j0 : Gm ⊂ A
1 the inclusion, we have an isomorphism

Rλ
0
∼= j0�(Rλ

0 |Gm).

(5) The sheaf Rλ
0 |Gm is cohomologically rigid, i.e., for j : Gm ⊂ P

1 the
inclusion,

χ(P1 ⊗Fq
Fq, j�End(Rλ

0)) = 2.

(6) Any lisse rank 4 sheaf on Gm/Fq whose I(0) and I(∞)-representations
are isomorphic to those of Rλ

0 is geometrically isomorphic to Rλ
0 |Gm.

Proof. Assertion (1) results from Laumon’s stationary phase. Here the input
is tame at ∞, tame at the finite singularities at the two square roots of a, but
at 0 has an I(∞)-representation of dimension one and Swan conductor one
(which contributes the Wild2 piece). The proofs of assertions (2) through
(5) are entirely analogous to the proofs of their analogues for T0 given in
Theorem 7.2. �

Theorem 10.10. The sheaf Rλ
0 |Gm has Ggeom ⊂ Garith ⊂ O(4). If the

characteristic p ≥ 5, then Ggeom = Garith = O(4).

Proof. The sheaf Rλ
0 has real traces. Hence Rλ

0 |Gm, being lisse and pure of
weight zero, is isomorphic to its dual. As Rλ

0 |Gm is geometrically irreducible,
its autoduality has a sign. But its local monodromy at 0 is a reflection, which
does not lie in Sp(4) (because it has determinant −1). So the autoduality is
orthogonal, i.e., we have inclusions Ggeom ⊂ Garith ⊂ O(4).
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Suppose now that p ≥ 5. In view of the a priori inclusions, it suffices to
prove that Ggeom = O(4). For this, it suffices to show that Rλ

0 |Gm is Lie-
irreducible. For if we know this, then the fact that Lie(Ggeom) is normalized
by a reflection allows us to apply [8, 1.5] to conclude that Lie(Ggeom) =
Lie(SO(4)). Hence Ggeom contains SO(4), and as it contains a reflection, it
must be the entire group O(4).

To show that R0|Gm is Lie-irreducible, we apply the trichotomy of [11,
Prop. 1], according to which either Rλ

0 |Gm is Lie-irreducible, or it is induced
from a finite etale covering of Gm/Fq of degree 2 or 4, or it is the tensor
product of something Lie-irreducible of rank d = 1 or d = 2 with something
or rank 4/d having finite Ggeom. Because p ≥ 5, the only finite etale cov-
erings we need to consider are the Kummer coverings of degrees 2 and 4,
and it is obvious from the I(0) representation that Rλ

0 |Gm is not Kummer-
induced. The fact that the I(0)-representation is through a reflection shows
that already this I(0)-representation is not the tensor product of two I(0)-
representations each of rank 2 (a reflection is never a tensor product in a
nontrivial way).

It remains to show that Ggeom is not a finite primitive subgroup of O(4).
If it were, then Garith would be finite (lying inside the normalizer in O(4)
of a finite irreducible subgroup). Then the Garith for the pullback P0|Gm =
[2]�R0|Gm would be (even more) finite. In that case, the traces

Trace(Frobt,E |Pλ
0 ),

as E/Fq runs over all finite extensions, and t runs over E×, would all lie in
a finite set. By Lemma 10.9, this would imply that the traces

Trace(Frobt,E |Aλ),

as E/Fq runs over all finite extensions, and t runs over E×, would all lie in
a finite set. This is nonsense, because Aλ|Gm is lisse, pure of weight zero,
and has Ggeom = Garith = SO(4), so by Deligne’s equidistribution theorem
[10, 3.6] the traces

{Trace(Frobt,E |Aλ)}t∈E×

becomes equidistributed (as #E grows) in [−4, 4] for the direct image by
the trace map

Trace : SO(4,R) → [−4, 4]

of (total mass one) Haar measure on SO(4,R). This measure (concretely,
the additive convolution of semicircle measure (1/(2π))

√
4 − x2dx on [−2, 2]
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with itself) is absolutely continuous with respect to Lebesgue measure on
[−4, 4] and gives every nonvoid open set in [−4, 4] strictly positive measure,
and in particular it is not a finite sum of point masses. �

We now define a sheaf Pλ on A
1 which agrees with P0 on Gm, but which

has the “correct” stalk at 0. For j : Gm ⊂ A
1 the inclusion, we define

Pλ := j�j
�Pλ

0 = j�(Pλ
0 |Gm).

Lemma 10.11. The sheaf Pλ on A
1 is lisse of rank four and pure of weight

zero, with Ggeom ⊂ SO(4). In characteristic p ≥ 5, Ggeom = SO(4).

Proof. Local monodromy at 0 for Rλ
0 |Gm is a reflection, so the local mon-

odromy at 0 of Pλ|Gm is trivial, hence P is lisse at 0. That it has rank four
and is pure of weight zero results from its being both lisse and the direct
image from Gm of a lisse sheaf with these properties. The group Ggeom for
Pλ on A

1 is the same as for Pλ|Gm = [2]�Rλ
0 |Gm. So we again have an

inclusion Ggeom,Pλ ⊂ O(4). But det(Pλ) is geometrically trivial, since it is
a character of πgeom

1 (A1), and there are no such nontrivial characters. Thus
we have Ggeom ⊂ SO(4).

Suppose now p ≥ 5. In general, the identity component of Ggeom does
not change under finite pullback, so by Theorem 10.10 we have inclusions

SO(4) = G0
geom,Pλ ⊂ Ggeom,Pλ ⊂ SO(4).

�

Theorem 10.12. In characteristic p ≥ 5, Pλ has Ggeom = Garith = SO(4).

Proof. Given the inclusions

SO(4) = Ggeom ⊂ Garith ⊂ O(4),

the only other possibility is that Ggeom = SO(4) and Garith = O(4). In that
case, det(Pλ) is geometrically trivial but not arithmetically trivial, so we
would have det(Pλ) = (−1)deg. In view of Deligne’s equidistribution theorem
when Ggeom is of finite index in Garith, cf. [14, 9.7.10], as E/Fq grows over
larger and larger extensions of odd degree, the traces

{Trace(Frobt,E |Pλ)}t∈E×
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would become equidistributed for the direct image by the trace map

Trace : O−(4,R) → [−4, 4]

of the restriction of (total mass 2) Haar measure to the coset O−(4,R) ⊂
O(4) of elements with determinant −1. On this coset, all traces lie in the
interval [−2, 2]. [Indeed every element in this coset has eigenvalues of the
form eiθ, e−iθ, 1,−1.]

We arrive at a contradiction as follows. By Lemma 10.9, the traces of
Pλ at points of Gm are, up to sign, those of Aλ. By Theorem 10.6 Aλ has
Ggeom = Garith = SO(4). By equidistribution the traces of Aλ, over larger
and larger extensions, in particular over larger and larger extensions of odd
degree, become equidistributed in [−4, 4] for a measure which gives every
open set of [−4, 4] strictly positive measure. So over a large extension of odd
degree, a positive proportion of the traces of Aλ have absolute value > 2.
But Aλ and Pλ have the same |Trace| at all points of Gm. �

We must now compute the action of Frob0,E on the stalk at 0 of Pλ.

Theorem 10.13. For E/Fq a finite extension, we have the identity

Trace(Frob0,E |Pλ) = P (λ,−λ,E),

and hence (by Lemma 10.7) for any t ∈ E, we have

Trace(Frobt,E |Pλ) = P (t+ λ, t− λ,E),

Proof. The calculation is very similar to that for S occurring in the proof of
Theorem 7.5. Lemma 10.7 gives, at t = 0 the identity

Trace(Frob0,E |Pλ
0 ) = S(λ,−λ,E).

By definition, we have

P (λ,−λ,E) = χ2,E(−1) + S(λ,−λ,E).

What must be shown is that the “new” eigenvalue of Frob0,E is χ2,E(−1).
Just as in the proof of Theorem 7.5, this eigenvalue is the action of Frob0,E
on the one-dimensional stalk at 0 of j�j�(Rλ

0 ⊗ Lχ2(x)). Any sheaf G on
A

1 which agrees with Rλ
0 ⊗ Lχ2(x) on Gm, geometrically has no nonzero

punctual sections, and has a nonzero stalk at 0 must be j�j�(Rλ
0 ⊗ Lχ2(x)).

Exactly as there, we show that the eigenvalue is χ2,E(−1) by giving the
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analogous “sheaf of perverse origin” construction of the needed G, whose
sole purpose is to provide a geometric justification of the following character
sum calculation (and its E-version). For t �= 0 in Fq, we have

Trace(Frobt,Fq
|Rλ

0 ⊗ Lχ2(x)) =
−χ2(t)

∑
x∈F

×
q
χ2(a/x− x)ψ(4tx+ 4λ2a/x)

−g(ψ, χ2)
.

We rewrite this sum as

−
∑

x∈F
×
q
χ2(at/x− tx)ψ(4tx+ 4λ2a/x)

−g(ψ, χ2)
,

then sum over x/t to get

−
∑

x∈F
×
q
χ2(at2/x− x)ψ(4x+ 4λ2at/x)

−g(ψ, χ2)
.

Its value at t = 0 is indeed

−
∑

x∈F
×
q
χ2(−x)ψ(4x)

−g(ψ, χ2)
= χ2(−1).

�

Corollary 10.14. For E/Fq a finite extension, and any t ∈ E, we have

Trace(Frobt,E |Pλ) = ±Trace(Frobt,E |Aλ).

Proof. By Lemmas 10.1 and 10.5, and the above theorem, both sides are
±P (t+ λ, t− λ,E). �

Theorem 10.15. Suppose p ≥ 5. If P (λ,−λ) �= 0, then we have an arith-
metic isomorphism Pλ ∼= Aλ. For E/Fq a finite extension, and any t ∈ E,
we have

P (t+ λ, t− λ,E) = V (t+ λ,E)V (t− λ,E).

Proof. By Corollary 9.3, either Pλ ∼= Aλ or Pλ ∼= (−1)deg ⊗Aλ. By Corol-
lary 7.10, Lemma 10.5 and Theorem 10.13, we have

P (λ,−λ) = Trace(Frob0,Fq
|Pλ) = Trace(Frob0,Fq

|Aλ) = V (λ)V (−λ).

If P (λ,−λ) �= 0, this rules out the (−1)deg possibility. So we have an arith-
metic isomorphism Pλ ∼= Aλ. Equating their traces gives the second asser-
tion. �
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11. The end of the proof when p ≡ 1 mod 4

Lemma 11.1. If p ≡ 1 mod 4, then for every λ ∈ F
×
q , we have

P (λ,−λ) �= 0.

Proof. Because P (λ,−λ) = χ2(−1)P (λ, λ), it is equivalent to prove that
P (λ, λ) �= 0. The quantity P (λ, λ) lies in Q(ζp), which has one place, πp,
lying over p. For this place, 1 − ζp is a uniformizing parameter. We denote
by ordq this valuation, normalized so that ordq(q) = 1. We will show that,
if p ≡ 1 mod 4, we have ordq(P (λ, λ)) = −1/2, which forces P (λ, λ) �= 0. By
definition,

P (λ, λ) = 1 + S(λ, λ) = 1 +
−

∑
x∈F

×
q
χ2(ax− x3)ψ(4λ2x)

−g(ψ, χ2)
.

So it is equivalent to show that ordq(S(λ, λ)) = −1/2. The denominator
−g(ψ, χ2) has ordq = 1/2, so it suffices to show that the numerator,

−
∑

x∈F
×
q

χ2(ax− x3)ψ(4λ2x),

which lies in Z[ζp], is a p-adic unit. For this, it suffices to show that it is
congruent modulo the uniformizing parameter 1 − ζp to a p-adic unit in Z.
Modulo the uniformizing parameter 1 − ζp, the numerator is the integer

−
∑

x∈F
×
q

χ2(ax− x3),

which is the trace of FrobFq
on H1 of the elliptic curve y2 = ax− x3, which

has complex multiplication by Z[i]. Because p ≡ 1 mod 4, this curve is ordi-
nary at p, so this trace is a p-adic unit. �

Combining Lemma 11.1 with Theorem 10.15 (and Corollary 7.9), we get

Theorem 11.2. If p ≡ 1 mod 4, Theorem 10.2 holds.

12. The end of the proof in the general case

When p ≡ 3 mod 4, we do not know whether every λ ∈ F
×
q has P (λ,−λ) �= 0.

However, we do have the following:
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Lemma 12.1. Suppose p ≥ 5. There exists λ ∈ F
×
q with P (λ,−λ) �= 0.

Proof. As P (λ,−λ) = χ2(−1)P (λ, λ), it is equivalent to show that there
exists λ ∈ F

×
q with P (λ, λ) �= 0.

The case p = 5 is covered by Lemma 11.1. For p ≥ 7, we have q ≥ 7. By
Theorem 8.1, we have

∑

t∈Fq

P (t, t) = q − χ2(a).

We have the bound

|P (0, 0)| ≤ 4,

because |S(0, 0)| ≤ 2 (the Riemann Hypothesis for the elliptic curve y2 =
ax− x3 over Fq). So some other term in the sum

∑
t∈Fq

P (t, t) must be
nonzero. �

For the rest of this section, we fix a choice of λ ∈ F
×
q with P (λ,−λ) �= 0.

By Theorem 10.15, we have an arithmetic isomorphism of lisse sheaves on
A

1/Fq,

Pλ ∼= Aλ.

We will make use of the restriction of this isomorphism to Gm,

Pλ|Gm
∼= Aλ|Gm.

We first explain the strategy. We begin with A
2/Fq, coordinates (s, t).

We work on the open set

U := A
2[1/(s2 − t2)]

of A
2/Fq where s2 − t2 is invertible. We will construct a lisse, rank four sheaf

Ptotal on U whose trace function is given by

Trace(Frob(s,t),E |Ptotal) = P (s, t, E),

for any finite extension E/Fq and any point (s, t) ∈ U(E). On this same
open set U , we have the restriction to U of the lisse, rank four sheaf V � V
on A

2/Fq, the external tensor product of V with itself. Let us call this
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restriction Atotal:

Atotal := V � V|U.

Its trace function is given by

Trace(Frob(s,t),E |Atotal) = V (s, E), V (t, E).

We will prove that we have an arithmetic isomorphism of lisse sheaves
on U ,

Ptotal ∼= Atotal.

Once we have this isomorphism, then comparing their trace functions gives
the truth of Theorem 10.2 at points where s �= ±t; the cases s = ±t are
handled by Corollaries 7.9 and 7.10.

The sheaf V on A
1 has Ggeom = Garith = SL(2), so its external exter-

nal tensor product with itself, V � V, has Ggeom = Garith = SO(4). Both
Ggeom, Garith are birational invariants, so the lisse sheaf Atotal on U also has
Ggeom = Garith = SO(4).

We now explain the construction of the sheaf Ptotal. We begin by defining
a lisse sheaf H on Gm × Gm, with coordinates (A,B), as follows. We begin
with the curve uv = a, and pass to the open set W where v2 − a is invertible.
On this open set W , we have the lisse sheaf Lχ2(u−v) ⊗ (−g(ψ, χ2))−deg. On
the product W × Gm × Gm, we have the lisse sheaf

F := Lχ2(u−v) ⊗ Lψ(Av+Bu) ⊗ (−g(ψ, χ2))−deg.

We consider the projection pr : W × Gm × Gm → Gm × Gm, and form

H := R1pr!(F).

Each fiber is a P
1, coordinate v, with the four points 0,∞,±√

a removed. Our
sheaf is tame along the two missing points ±√

a, and has Swan conductor 1
at both 0,∞ (because A,B are both invertible). By Deligne’s semicontinuity
theorem [15, 2.1.2], H is lisse. Looking fiber by fiber, we see that Ripr!(F)
vanishes for i �= 1, and that H is punctually pure of weight zero. The Euler–
Poincaré formula shows that H has rank four. The trace function of H is
real, given by

Trace(Frob(A,B),E |H) =
−

∑
uv=a∈E× χ2,E(u− v)ψE(Av +Bu)

−g(ψE , χ2,E)
.
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We now define the sheaf Ptotal. We have a morphism

f : U → Gm × Gm, (s, t) �→ ((s+ t)2, (s− t)2).

We define
Ptotal := f�H.

Thus Ptotal is lisse of rank four, pure of weight zero, with a real trace function
given by

Trace(Frob(s,t),E |Ptotal) = P (s, t, E),

for any finite extension E/Fq and any point (s, t) ∈ U(E).
Although we fixed a choice of λ ∈ F

×
q with P (λ,−λ) �= 0, we are not

quite ready to use it. For any μ ∈ F×
q , we have in U an embedded Gm with

coordinate t, given by

iμ : Gm ⊂ U, t ∈ Gm �→ (t+ μ, t− μ) ∈ U.

Lemma 12.2. We have arithmetic isomorphisms of lisse sheaves on Gm/Fq

Pμ ∼= i�μPtotal, Aμ ∼= i�μAtotal.

Proof. The trace function of i�μPtotal (resp. of i�μAtotal) is equal to that of
Pμ (resp. of Aμ). So by Chebotarev their arithmetic semisimplifications are
isomorphic. But both Pμ and Aμ are arithmetically irreducible, so the two
pullbacks are arithmetically irreducible as well. �

Lemma 12.3. The sheaf Ptotal on U has Ggeom = Garith = SO(4).

Proof. We know this sheaf is lisse of rank four, pure of weight zero, and has
a real trace, so it is arithmetically isomorphic to its dual. By the previous
lemma, it has a geometrically irreducible pullback, for example any Pμ, so it
is geometrically (and arithmetically) irreducible. Thus its autoduality has a
well defined sign. But we can read this sign from its pullback, and conclude
that the autoduality is orthogonal. So we have a priori inclusions

Ggeom,Ptotal ⊂ Garith,Ptotal ⊂ O(4).

We also know that each Pμ has Ggeom,Pμ = Garith,Pμ = SO(4). Since Ggeom

can only decrease under a pullback, we have inclusions

SO(4) = Ggeom,Pμ ⊂ Ggeom,Ptotal ⊂ Garith,Ptotal ⊂ O(4).



Rigid local systems and a question of Wootters 275

It remains only to show that Garith,Ptotal ⊂ SO(4), i.e., to show that
det(Ptotal) is arithmetically trivial. But every point of U(Fq) lies in one of
the embedded Gm’s (i.e., the point (s, t) lies in iμ(Gm) for μ = (s− t)/2).
But each Pμ has Garith = SO(4). So for every rational point (s, t) ∈ U(Fq),
we have det((Frob(s,t),Fq

|Ptotal) = 1. Repeating this argument over finite
extensions E/Fq, we get that det(Ptotal) is arithmetically trivial. �

We complete the proof of Theorem 10.2 with the following theorem.

Theorem 12.4. In any characteristic p ≥ 5, we have an arithmetic iso-
morphism

Ptotal ∼= Atotal

of lisse sheaves on A
2[1/(s2 − t2)].

Proof. The trace functions of the lisse sheave Ptotal and Atotal have the same
square, and each has Ggeom = Garith = SO(4). By Corollary 9.3, there is a
lisse, rank one sheaf L on U with L⊗2 arithmetically trivial, for which we
have an arithmetic isomorphism

Ptotal ∼= L ⊗Atotal

of lisse sheaves on A
2[1/(s2 − t2)].

We will first show that this L is geometrically trivial.
To analyze the possible geometric L, we use the Kummer sequence

0 → μ2 → Gm
x �→x2

→ Gm → 0

on U
Fq

= A
2[1/(s2 − t2)]

Fq
= Spec (R), R = Fq[s, t][1/(s2 − t2)]. Since R is a

UFD, it has trivial Picard group: H1(U
Fq
,Gm) = 0. So the long exact étale

cohomology sequence gives a coboundary isomorphism

R×/(R×)2 ∼= H1(U
Fq
, μ2) := Hom(πgeom

1 (U), μ2).

In this isomorphism, an element of R×/(R×)2 represented by a function
g ∈ R× corresponds to Lχ2(g). For this R, the cokernel R×/(R×)2 is the two-
dimensional F2-vector space with basis s− t, s+ t. So Ptotal is geometrically
isomorphic to exactly one of following four sheaves:

Atotal, Lχ2(s−t) ⊗Atotal, Lχ2(s+t) ⊗Atotal, Lχ2(s2−t2) ⊗Atotal.
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Under the involution (s, t) �→ (s,−t), the trace functions of both Ptotal

and Atotal on E-valued points multiply by the same constant field twist
factor, χ2,E(−1). So our L must, by uniqueness, be isomorphic to its pullback
by this involution. So our L cannot be either Lχ2(s−t) or Lχ2(s+t). We next
rule out the Lχ2(s2−t2) possibility. If we had a geometric isomorphism

Ptotal ∼= Lχ2(s2−t2) ⊗Atotal,

then after pullback by iλ, we would get a geometric isomorphism

Pλ ∼= Lχ2(4λt) ⊗Aλ.

This contradicts (the restriction to Gm of) Theorem 10.15.
So we have a geometric isomorphism

Ptotal ∼= Atotal.

So the L is a geometrically constant character of order dividing two, so it
is either arithmetically trivial or it is (−1)deg. So either we have an arith-
metic isomorphism Ptotal ∼= Atotal, in which case we are done, or we have an
arithmetic isomorphism

Ptotal ∼= (−1)deg ⊗Atotal.

This cannot happen, because its pullback by iλ would give an arithmetic
isomorphism

Pλ ∼= (−1)deg ⊗Aλ

on Gm, and then on A
1 as well (simply because πarith

1 (Gm) maps onto
πarith

1 (A1)). This contradicts Theorem 10.15. �
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