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Feynman graph integrals and almost modular forms

Si Li

We introduce a type of graph integrals on elliptic curves from
the heat kernel. We show that such graph integrals have modular
properties under the modular group SL(2, Z), and prove the
polynomial nature of the anti-holomorphic dependence.

1. Introduction

Modular forms arise naturally in physics as correlation functions of quan-
tum system with modular groups as symmetries. One such example is the
topological string theory on Calabi–Yau manifolds. The topological string
produces geometric invariants Fg for each non-negative integer g, which can
be viewed as generalized modular forms on the Calabi–Yau moduli space.
However, Fg’s are in general not holomorphic objects. They satisfy the holo-
morphic anomaly equation as shown in the work of Bershadsky, Cecotti,
Ooguri and Vafa (BCOV) [2]. When the Calabi–Yau is an elliptic curve,
Dijkgraaf [5] anticipated the interpretation of Fg in the language of almost
modular forms. Later, Aganagic et al. [1] generalize almost modular forms
to describe local Calabi–Yau models in topological strings.

In this paper, we will focus on elliptic curves and their moduli. By
“almost modular form” of weight k, we mean in a weaker sense than [7]:
a function f(τ, τ̄) on the upper half-plane H, which is modular of weight k

f(γτ, γτ) = (Cτ + D)kf(τ, τ̄), ∀γ =
(

A B
C D

)
∈ SL(2, Z),

where γτ = Aτ+B
Cτ+D , and the anti-holomorphic dependence of f is of polyno-

mial in 1
Im τ , i.e.,

f(τ, τ̄) =
N∑

i=0

fi(τ)
1

(Im τ)i

for some non-negative integer N and holomorphic functions fi(τ). The
famous τ̄ → ∞ limit [2] picks up the leading holomorphic term f0(τ) in
this context, which is quasi-modular [7].

129



130 Si Li

The current paper is motivated from the recent establishment of higher
genus mirror symmetry on elliptic curves [3, 4, 8]. The corresponding topo-
logical string invariants have been constructed from the quantization of
Kodaira–Spencer theory. We are lead to consider the following integral WΓ

associated with any graph Γ: for each edge of Γ, we associate a kernel func-
tion constructed from the heat kernel; for each vertex, we associate a copy
of integration on the elliptic curve. See Section 3 for precise definitions. WΓ

depends on the complex structure of the elliptic curve, and can be viewed
as a function on the upper half-plane.

Theorem 1.1. WΓ is an almost modular form of weight 2|E(Γ)| in the
above sense. Here |E(Γ)| is the number of edges in Γ.

We can also put certain holomorphic derivatives on the propagator and
obtain the graph integral for a decorated graph. The resulting graph integral
is again almost modular form with specific weight. The precise statement
is given in Proposition 5.2, and Theorem 1.1 follows as a special case. As
shown in [4, 5, 3, 8], the topological string invariants on elliptic curves are
given by combinatorial sum of graph integrals of this type.

The paper is organized as follows. In Section 2, we describe the BCOV
propagator which is the building block of the graph integral. In Section 3, we
define the graph integral considered in this paper. In Section 4, we prove the
modular property of graph integrals. In Section 5, we prove that the graph
integral has polynomial dependence in 1

Im τ . In the appendix, we provide all
the technical details of the necessary estimates for the graph integrals.

2. BCOV propagator on the elliptic curve

Let H = {τ ∈ C| Im τ > 0} be the complex upper half-plane. Let Eτ = C/Λτ

be the elliptic curve associated with the lattice

Λτ = Z ⊕ τZ, τ ∈ H.

We will use z for the standard linear coordinate on C, such that Eτ is
obtained via the equivalence z ∼ z + 1 ∼ z + τ . The notation d2z will always
refer to the following measure on C or Eτ

d2z =
i
2
dz ∧ dz̄.
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Let

Δ = −4
∂

∂z

∂

∂z̄

be the standard flat Laplacian operator on Eτ . We consider the kernel func-
tion KEτ

t for the heat operator e−tΔ

KEτ

t (z1, z̄1; , z2, z̄2) =
1

4πt

∑
λ∈Λτ

e−|z1−z2+λ|2/4t, t > 0,(2.1)

which is the unique function solving the heat equation
(

∂

∂t
+ Δz1

)
KEτ

t (z1, z̄1; , z2, z̄2) = 0

and the initial condition

lim
t→0

∫
Eτ

d2z2K
Eτ

t (z1, z̄1; z2, z̄2)φ(z2, z̄2) = φ(z1, z̄1), ∀φ ∈ C∞(Eτ ).

Definition 2.1. The BCOV propagator PEτ

ε,L is defined to be the smooth
kernel function

PEτ

ε,L(z1, z̄1; z2, z̄2) =
∫ L

ε
dt

(
∂

∂z1

)2

KEτ

t (z1, z̄1; , z2, z̄2), ε, L > 0(2.2)

representing the operator
∫ L
ε dt

(
∂
∂z

)2
e−tΔz . We will also use PEτ

0,∞(z1, z2) to
represent the limit

PEτ

0,∞(z1, z2) ≡ lim
ε→0

L→∞
PEτ

ε,L(z1, z̄1; , z2, z̄2),(2.3)

which is singular at z1 = z2.

Note that we have dropped the anti-holomorphic dependence in PEτ

0,∞. It
is shown in the next lemma that it is holomorphic away from the diagonal
z1 = z2. The kernel PEτ

ε,L is motivated from string theory. It describes the
propagator of the Kodaira–Spencer gauge theory, which is originally intro-
duced in [2] on Calabi–Yau three-fold, and generalized in [3, 8] to Calabi–Yau
manifolds of arbitrary dimensions.

The following Lemmas 2.1 and 2.2 for Green functions on elliptic curves
are well known:
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Lemma 2.1.

(2.4) PEτ

0,∞(z1, z2) =
1
4π

℘ (z1 − z2; τ) +
π

12
E∗

2(τ, τ̄), ∀z1 
= z2.

Here ℘ is the Weierstrass’s elliptic function

℘(z; τ) =
1
z2

+
∑

λ∈Λτ−{0}

(
1

(z − λ)2
− 1

λ2

)

E∗
2(τ, τ̄) = E2(τ) − 3

π Im τ , and

E2(τ) = 1 − 24
∞∑

n=1

nqn

1 − qn
, q = e2πiτ

is the second Eisenstein series.

PEτ

0,∞(z1, z2) becomes singular as z1 approaches z2, due to the singularity
from the Green kernel. However, if we change the order of the limit, we have

Lemma 2.2.

lim
ε→0

L→∞
lim

z1→z2
∂n

z1
PEτ

ε,L(z1, z2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π

12
E∗

2 , if n = 0,

(n + 1)!ζ(n + 2)
2π

En+2, if n > 0 is even,

0, if n is odd,

(2.5)

where E2k is the Eisenstein series of weight 2k [9].

An elementary proof of Lemmas 2.1 and 2.2 is given in Appendix A.
The objects lim ε→0

L→∞
limz1→z2 ∂n

z1
PEτ

ε,L(z1, z2) are special examples of the
Feynman graph integrals to be discussed in the next section. They cor-
respond to self-loops, and have nice modular properties. In fact, they are
examples of almost holomorphic modular forms [7]. E∗

2 plays a special role,
which is modular but not holomorphic in τ . However, its anti-holomorphic
dependence is very mild, i.e., polynomial in 1

Im τ . We will see that a large
class of graph integrals will also have this property.
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3. Feynman graph integral

We consider a directed graph Γ. Let V (Γ) be the set of vertices, E(Γ) be
the set of edges, and

t, h : E → V

be the assignments of tail and head to each directed edge. We will also
consider the decorated graph

(Γ, n) ≡ (Γ, {ne}e∈E),

where the decoration is given by

n : E(Γ) → Z
≥0, e → ne,

which associates each edge a non-negative integer. In the case that n is the
zero map, we will simply ignore n and write Γ for (Γ, n).

Given a decorated graph (Γ, n) and elliptic curve Eτ , we associate the
following graph integral:

(3.1) W(Γ,n)

(
PEτ

ε,L

)
=

∏
v∈V (Γ)

∫
Eτ

d2zv

Im τ

∏
e∈E(Γ)

(
∂

∂zh(e)

)ne

PEτ

ε,L;e,

where PEτ

ε,L;e = PEτ

ε,L(zh(e), z̄h(e); zt(e), z̄t(e)). The propagator PEτ

ε,L is smooth as
long as ε, L > 0, but exhibits singularity at the diagonal as ε → 0. However,
the graph integral W(Γ,n)

(
PEτ

ε,L

)
has better behavior.

Lemma 3.1. The following limit exists

lim
ε→0

L→∞
W(Γ,n)

(
PEτ

ε,L

)
.

Proof. By Lemma 2.2, we can assume that Γ is connected and has no self-
loops. The singularity of W(Γ,n)

(
PEτ

ε,L

)
comes from the diagonals of the

propagator as ε → 0. Let us fix L first and analyze the limit ε → 0.
Let us first fix some notations. In the graph integral, we have associated

a copy of Eτ for each v ∈ V (Γ), which we will distinguish by Ev. Let d be the
distance function on Eτ with respect to the flat metric. Let χ : [0,∞) → [0, 1]
be a smooth function with χ(x) = 1 if x < δ and χ(x) = 0 if x > 2δ, where
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δ � 0 is a sufficient small positive number. Define

Kδ
t (z1, z̄1; z2, z̄2) = χ(d(z1, z2)2)

1
4t

e−d(z1,z2)2/4t, ∀z1, z2 ∈ Eτ

and

K̂Eτ

t = KEτ

t − Kδ
t .

Then K̂Eτ

t is smooth as t → 0. Similarly, we define

P δ
ε,L(z1, z̄1; z2, z̄2) =

∫ L

ε
dt ∂2

z1
Kδ

t (z1, z̄1; z2, z̄2), P̂ δ
ε,L = PEτ

ε,L − P δ
ε,L.

P̂ δ
ε,L is smooth as ε → 0 and P δ

ε,L contains all the information about the
singularity.

The graph integral W(Γ,n)

(
PEτ

ε,L

)
= W(Γ,n)

(
P δ

ε,L + P̂ δ
ε,L

)
splits into a

sum of graph integrals where we associate P δ
ε,L or P̂ δ

ε,L on each edge. Let
us pick up a particular term, and let Γ′ be the corresponding subgraph of
Γ consisting of those edges assigned with the singular propagator P δ

ε,L. Let
Γ′ = Γ1 ∪ · · · ∪ Γk be the decomposition into connected components. It is
sufficient to show that each connected component Γi contributes a regular
integral as ε → 0.

Let us focus on one component Γ1. Let v• ∈ V (Γ1) be an arbitrary vertex.
The integral is supported near the diagonal of

∏
v∈V (Γ1)

Ev, which can be
identified with a small neighborhood of zero section of the vector bundle
T
⊕(|V (Γ1)|−1)
Ev•

∼= Ev• × C
⊕(|V (Γ1)|−1) on Ev• . Here TEv• is the tangent bundle

of Ev• . Therefore we can write the relevant graph integral on Γ1 into the form

∫
Ev•

d2zv•

∏
v∈V (Γ1)\{v•}

∫
C

d2yv

⎛
⎝ ∏

e∈E(Γ1)

∂me
ye

HL
ε (ye, ȳe)

⎞
⎠Φ,

where HL
ε (z, z̄) =

∫ L
ε

dt
4πte

−|z|2/4t, me some non-negative integers for each
edge e ∈ E(Γ1),

ye =

⎧⎪⎨
⎪⎩

yh(e), if t(e) = v•,
−yt(e), if h(e) = v•,
yh(e) − yt(e), otherwise
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and Φ is a smooth function on Ev• × C
⊕(|V (Γ1)|−1) ×∏v/∈V (Γ1)

Ev with com-
pact support. By Proposition B.1 and its proof, the above integral is regu-
lar and uniformly convergent as ε → 0. This proves that lim

ε→0
W(Γ,n)

(
PEτ

ε,L

)
exists.

Now we consider the limit L → ∞. Since PEτ
ε,∞ = PEτ

ε,L + PEτ

L,∞ and the
kernel function PEτ

L,∞ is smooth. It follows that

lim
ε→0

W(Γ,n)

(
PEτ

ε,∞
)

= lim
ε→0

W(Γ,n)

(
PEτ

ε,L + PEτ

L,∞
)

exits. This proves the lemma. �

Definition 3.1. Given a decorated graph (Γ, n), we define a smooth func-
tion W(Γ,n) on H by

W(Γ,n)(τ, τ̄) ≡ lim
ε→0

L→∞
W(Γ,n)

(
PEτ

ε,L

)
(3.2)

Example 3.1. Consider the self-loop graph with decoration n.

•
n

��

Lemma 2.2 implies that

W

•
n

��
=

⎧⎪⎪⎨
⎪⎪⎩

π
12E∗

2 , if n = 0,

(n+1)!ζ(n+2)
2π En+2, if n > 0 is even,

0, if n is odd.

4. Modularity

We consider the modular group SL(2.Z), which acts on H by

τ → γτ =
Aτ + B

Cτ + D
, for γ ∈

(
A B
C D

)
∈ SL(2, Z).

Recall that a function f : H → C is said to have weight k under the modular
group SL(2, Z) if

f(γτ) = (Cτ + D)kf(τ) for all γ ∈
(

A B
C D

)
∈ SL(2, Z).
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Proposition 4.1. The graph integral W(Γ,n)(τ, τ̄) has weight
∑

e∈E(Γ)(ne +
2) under SL(2, Z).

Proof. Given γ ∈
(

A B
C D

)
∈ SL(2, Z), the lattice transforms as Λγτ =

1
(Cτ+D)Λτ . It follows that the propagator has the transformation property

∂m
z1

P
Eγτ

ε,L (z1, z̄1; , z2, z̄2)(4.1)

= (Cτ + D)m+2
(
∂m

z1
PEτ

|Cτ+D|2ε,|Cτ+D|2L
) (

z′1, z̄
′
1; z

′
2, z̄

′
2

)
,

where z′i = (Cτ + D)zi, i = 1, 2. Using the modular invariance of the measure
d2z
Im τ , we find

W(Γ,n)

(
P

Eγτ

ε,L

)
=

∏
v∈V (Γ)

∫
Eγτ

d2zv

Im(γτ)

×
∏

e∈E(Γ)

(
∂ne

zh(e)
P

Eγτ

ε,L

)
(zh(e), z̄h(e); zt(e), z̄t(e))

=
∏

v∈V (Γ)

∫
Eτ

d2zv

Im τ

∏
e∈E(Γ)

(Cτ + D)ne+2∂ne
zh(e)

× PEτ

|Cτ+D|2ε,|Cτ+D|2L(zh(e), z̄h(e); zt(e), z̄t(e))

= (Cτ + D)
∑

e∈E(Γ)
(ne+2)

W(Γ,n)

(
PEτ

|Cτ+D|2ε,|Cτ+D|2L
)

.

The proposition follows after taking the limit ε → 0, L → ∞. �

5. Anti-holomorphic dependence

The function W(Γ,n) has particular weight under modular transformation.
However, it’s not holomorphic in general. We have seen this when Γ is a
one-vertex graph with a self-loop. In this case WΓ = π

12E∗
2 , which exhibits

a polynomial dependence on 1
Im τ . In this section, we will show that the τ̄

dependence of any graph integral is polynomial in 1
Im τ .

Proposition 5.1. For any decorated graph (Γ, n), the graph integral can be
decomposed as

W(Γ,n)(τ, τ̄) =
N∑

i=0

fi(τ)
1

(Im τ)i
,
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where fi(τ)’s are holomorphic functions on H, and N is some non-negative
integer.

Proof. We will show that ∂τ̄W(Γ,n)(τ, τ̄) is also some graph integral with
fewer edges. The proposition will then follow by induction. Without loss of
generality, we can assume that Γ has no self-loops.

First of all, it’s easy to see that

∂

∂τ̄

∫
Eτ

d2zτ

Im τ
f(z, z̄; τ, τ̄) =

∫
Eτ

d2zτ

Im τ

(
Im z

Im τ

∂

∂z̄
+

∂

∂τ̄

)
f(z, z̄; τ, τ̄).

Here the integration on Eτ is performed in the region {a + bτ |0 ≤ a, b ≤ 1}.
Hence

∂τ̄W(Γ,n)

(
PEτ

ε,L

)
=

∏
v∈V (Γ)

∫
Eτ

d2zv

Im τ

×
∑

e∈E(Γ)

[(
Im
(
zh(e) − zt(e)

)
Im τ

∂

∂z̄h(e)
+

∂

∂τ̄

)
∂ne

zh(e)
PEτ

ε,L,e

]

×
⎛
⎝ ∏

e′∈E(Γ)\{e}
∂ne′

zh(e′)P
Eτ

ε,L,e′)

⎞
⎠ .

To simplify the notation, we will write

ze ≡ zh(e) − zt(e),

for any e ∈ E(Γ). Using the heat equation, we find

(
Im
(
zh(e) − zt(e)

)
Im τ

∂

∂z̄h(e)
+

∂

∂τ̄

)
∂ne

zh(e)
PEτ

ε,L,e

=
∑
λ∈Λτ

Im (ze − λ)
Im τ

1
16πt

∂ne+1
ze

e−|ze−λ|2/4t

∣∣∣∣∣∣
t=L

t=ε

.

∂τ̄W(Γ,n)

(
PEτ

ε,L

)
has two types of contributions corresponding to t = ε or

t = L in the above formula.
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The term with t = L Let us first consider the term with t = L. If ne > 0,
then the summation

∑
λ∈Λτ

Im(ze−λ)
Im τ

1
16πt∂

ne+1
ze

e−|ze−λ|2/4t is absolutely con-
vergent and uniform in t, so

lim
L→∞

∑
λ∈Λτ

Im (ze − λ)
Im τ

1
16πL

∂ne+1
ze

e−|ze−λ|2/4L = 0.

If ne = 0, then

∑
λ∈Λτ

Im (ze − λ)
Im τ

1
16πL

∂ze
e−|ze−λ|2/4L

=
∑
n∈Z

(
Im ze

Im τ
− n

)∑
m∈Z

(
z̄e − (m + nτ̄)

64πL2

)
e−|ze−(m+nτ)|2/4L

=
∑
n∈Z

(
Im ze

Im τ
− n

)∑
m∈Z

[(
z̄e − (m + nτ̄)

64πL2

)
e−|ze−(m+nτ)|2/4L

−
∫ m+1

m
dy

(
z̄e − (y + nτ̄)

64πL2

)
e−|ze−(y+nτ)|2/4L

]

+
∑
n∈Z

(
Im ze

Im τ
− n

)∫ ∞

−∞
dy

(
z̄e − (y + nτ̄)

64πL2

)
e−|ze−(y+nτ)|2/4L

= I1 + I2.

Similarly we have lim
L→∞

I1 = 0. I2 can be computed using Gaussian integral

I2 =
∑
n∈Z

(
Im ze

Im τ
− n

)(
Im ze − n Im τ

32i
√

πL3/2

)
e−(Im ze−n Im τ)2/4L

=
1

32i
√

π (Im τ)2
∑
n∈Z

(
Im ze

Im τ − n
)2

L̃3/2
e−( Im ze

Im τ
−n)2

/4L̃, where L̃ =
L

(Im τ)2

=
1

8i (Im τ)2
∑
m∈Z

(
1 − 8L̃π2m2

)
e−4m2π2L̃+2πim Im ze

Im τ ,

where in the last step we have used Fourier transformation. Therefore

lim
L→∞

I2 =
1

8i (Im τ)2
.
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To summarize, we find

lim
L→∞

∑
λ∈Λτ

Im (ze − λ)
Im τ

1
16πL

∂ne+1
ze

e−|ze−λ|2/4L =

⎧⎨
⎩

1
8i (Im τ)2

, if ne = 0,

0, if ne > 0.

The term with t = ε Now we consider the term with t = ε. Its contri-
bution to ∂τ̄W(Γ,n) is

∏
v∈V (Γ)

∫
Eτ

d2zv

Im τ

∑
e∈E(Γ)

⎛
⎝∑

λ∈Λτ

Im (ze − λ)
Im τ

1
16πε

∂ne+1
ze

e−|ze−λ|2/4ε

⎞
⎠

×
⎛
⎝ ∏

e′∈E(Γ)\{e}
∂ne′

zh(e′)P
Eτ

ε,L;e′

⎞
⎠

=
∑

e∈E(Γ)

⎛
⎝ ∏

v∈V (Γ)\{h(e)}

∫
Eτ

d2zv

Im τ

⎞
⎠∫

C

d2zh(e)

(Im τ)2

×
(

Im ze

16πε
∂ne+1

ze
e−|ze|2/4ε

)⎛
⎝ ∏

e′∈E(Γ)\{e}
∂ne′

zh(e′)P
Eτ

ε,L;e′

⎞
⎠ .

By Proposition B.2, it reduces to certain graph integral on Γ′ under the
limit ε → 0, L → ∞, with an extra factor proportional to 1

(Im τ)2
. Here Γ′ is

obtained from Γ by collapsing one edge.
Combining the terms for t = L and terms for t = ε, it follows by induc-

tion that

∂τ̄W(Γ,n) = lim
ε→0

L→∞
∂τ̄W(Γ,n)

(
PEτ

ε,L

)
=

1
(Im τ)2

K∑
i=0

fi(τ)
1

(Im τ)i

for some holomorphic function fi(τ) and non-negative integer K. Therefore
W(Γ,n) has polynomial dependence on 1

Im τ as well. �

Corollary 5.1. Let Γ be a graph such that every two vertices are connected
by at most one edge, then

∂τ̄WΓ =
i

8 (Im τ)2
∑

e∈E(Γ)

(
WΓ/e − WΓ\e

)
,(5.1)

where Γ/e is the graph by collapsing the edge e in Γ, and Γ\e is the graph
by deleting the edge e in Γ.
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Proof. In the proof of Proposition 5.1, there are two contributions. The term
with L → ∞ contributes 1

8i(Im τ)2 WΓ\e. The term with ε → 0 comes from the
integration

∫
C

d2zh(e)

(Im τ)2

(
Im ze

16πε
∂ze

e−|ze|2/4ε

)
=

i
8(Im τ)2

∫
C

d2zh(e)
1

4πε
e−|ze|2/4ε,

which becomes δ-distribution i
8(Im τ)2 δze,0 as ε → 0. �

Proposition 5.2. For any decorated graph (Γ, n), the graph integral
W(Γ,n)(τ, τ̄) is an almost modular form of weight

∑
e∈E(Γ)(ne + 2).

Proof. This follows from Propositions 4.1 and 5.1. �

Theorem 1.1 from the introduction follows as a special case for undeco-
rated graphs (i.e., ne = 0 for all edges).

Acknowledgment

The author thanks K. Costello for many stimulating discussions on two
dimensional quantum field theory, and thanks S.T. Yau for useful conversa-
tions on quasi-modular forms.

Appendix A. The BCOV propagator

In this section, we give an elementary proof of Lemmas 2.1 and 2.2.

Proof of Lemma 2.1. Let z12 = z1 − z2.

PEτ

ε,L(z1, z̄1; z2, z̄2) =
∫ L

ε

dt

4πt

∑
m,n∈Z

(
z̄12 − (m + nτ̄)

4t

)2

× exp
(
− |z12 − (m + nτ)|2 /4t

)

=
∫ L

ε

dt

4πt

∑
m∈Z

(
z̄12 − m

4t

)2

exp
(
− |z12 − m|2 /4t

)

+
∫ L

ε

dt

4πt

∑
n	=0

∑
m∈Z

[(
z̄12 − (m + nτ̄)

4t

)2
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× exp(−|z12 − (m + nτ)|2/4t)

−
∫ m+1

m
dy

(
z̄12 − (y + nτ̄)

4t

)2

× exp(−|z12 − (y + nτ)|2/4t)
]

+
∫ L

ε

dt

4πt

∑
n	=0

∫ ∞

−∞
dy

(
z̄12 − (y + nτ̄)

4t

)2

× exp(−|z12 − (y + nτ)|2/4t)
= I1 + I2 + I3.

I1 is absolutely convergent and

lim
ε→0

L→∞
I1 =

∫ ∞

0

dt

4πt

∑
m∈Z

(
z̄12 − m

4t

)2

exp(−|z12 − m|2/4t)

=
∑
m∈Z

1
(z12 − m)2

∫ ∞

0

dt

4πt

1
(4t)2

exp(−1/4t)

=
1
4π

∑
m∈Z

1
(z12 − m)2

.

I2 is also absolutely convergent. To see this, let

F (y) =
(

z̄12 − (y + nτ̄)
4t

)2

exp(−|z12 − (y + nτ)|2/4t)

=
1

(z12 − y − nτ)2
G(u), u = t/|z12 − (y + nτ)|2,

where G(u) = 1
(4u)2 exp(−1/4u) which is a smooth and bounded function on

[0,∞). Since

dF (y)
dy

=
2

(z12 − y − nτ)3
G(u)

+
(

1
(z12 − y − nτ)3

+
1

(z12 − y − nτ)2(z̄12 − y − nτ̄)

)
uG′(u).

We can write I2 as

I2 =
∫ L

ε

dt

4πt

∑
n	=0

∑
m∈Z

∫ m+1

m
dy (F (m) − F (y)) ,
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which is of the order 1
|m+nτ |3 as m, n → ∞. Therefore similar to the calcu-

lation for I1, we find

lim
ε→0

L→∞
I2 =

1
4π

∑
n	=0

∑
m∈Z

(
1

(z12 − m − nτ)2
−
∫ m+1

m
dy

1
(z12 − y − nτ)2

)

=
1
4π

∑
n	=0

∑
m∈Z

1
(z12 − m − nτ)2

.

To evaluate I3, notice that

∫ ∞

−∞
dy

(
z̄12 − (y + nτ̄)

4t

)2

exp(−|z12 − (y + nτ)|2/4t)

=
∫ ∞

−∞
dy

y2 − (Im z12 − n Im τ)2

(4t)2
exp(−y2/4t − (Im z12 − n Im τ)2/4t)

= −
√

π((Im z12 − n Im τ)2/t − 2)
8t1/2

exp(−(Im z12 − n Im τ)2/4t)

= t
d

dt

(
− π

(4πt)1/2
exp(−(Im z12 − n Im τ)2/4t)

)
.

Therefore,

lim
ε→0

L→∞
I3 = − lim

ε→0
L→∞

1
4

∑
n	=0

(
1

(4πt)1/2
exp(−(Im z12 − n Im τ)2/4t)

)∣∣∣∣∣∣
L

ε

= − lim
ε→0

L→∞

1
4 Im τ

∑
n	=0

(
1

(4πt)1/2
exp(−(a − n)2/4t)

)∣∣∣∣∣∣
L

ε

,

a = Im z12/ Im τ, 0 ≤ a < 1.

Obviously,

lim
ε→0

∑
n	=0

(
1

(4πε)1/2
exp(−(a − n)2/4ε)

)
= 0.

The Poisson summation formula gives

∑
n∈Z

(
1

(4πL)1/2
exp(−(a − n)2/4L)

)
=
∑
m∈Z

exp(−4π2m2L + 2πima),
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hence

lim
L→∞

∑
n∈Z

(
1

(4πL)1/2
exp(−(a − n)2/4L)

)

= lim
L→∞

∑
m∈Z

exp(−4π2m2L + 2πima) = 1.

Adding the three terms together, we find

lim
ε→0

L→∞

(
PEτ

ε,L(z1, z̄1; z2, z̄2)
)

=
1
4π

∑
n∈Z

∑
m∈Z

1
(z12 − m − nτ)2

− 1
4 Im τ

=
1
4π

℘(z12; τ) +
π

12
E2(τ) − 1

4 Im τ

=
1
4π

℘(z12; τ) +
π

12
E∗

2(τ ; τ̄).

�
Proof of Lemma 2.2. From the proof of Lemma 2.1, it’s easy to see that

lim
ε→0

L→∞
lim

z1→z2
I1(z1, z2) =

1
4π

∑
m	=0

1
m2

,

lim
ε→0

L→∞
lim

z1→z2
I2(z1, z2) =

1
4π

∑
n	=0

∑
m∈Z

1
(m + nτ)2

,

lim
ε→0

L→∞
lim

z1→z2
I3(z1, z2) = − 1

4 Im τ
.

It follows that
lim
ε→0

L→∞
lim

z1→z2
PEτ

ε,L(z1, z2) =
π

12
E∗

2(τ, τ̄).

This proves the case for n = 0. For n > 0,

∂n
z1

PEτ

ε,L(z1, z2)

=
∫ L

ε

dt

4πt

∑
m,n∈Z

(
z̄12 − (m + nτ̄)

4t

)n+2

exp
(
− |z12 − (m + nτ)|2 /4t

)

=
∫ L

ε

dt

4πt

∑
m,n∈Z

1
(z12 − (m + nτ))n+2

|z̄12 − (m + nτ̄)|2
4t

n+2

× exp
(
− |z12 − (m + nτ)|2 /4t

)
,
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which is in fact absolutely convergent. Therefore in this case

lim
ε→0

L→∞
lim

z1→z2
∂n

z1
PEτ

ε,L(z1, z2) =
∑

m,n∈Z

(m,n) 	=(0,0)

1
(m + nτ)n+2

∫ ∞

0

dt

4πt

1
tn+2

e−1/t

=
(n + 1)!

4π

∑
m,n∈Z

(m,n) 	=(0,0)

1
(m + nτ)n+2

=

{
(n+1)!ζ(n+2)

2π En+2, if n is even,
0, if n is odd.

�

Appendix B. Graph integrals on C

In this appendix, we will prove some results for graph integrals on C.
Let z be the linear holomorphic coordinate on C, � = −4 ∂

∂z
∂
∂z̄ be the

standard Laplacian operator. The following notations will be used through-
out this section

HL
ε (z, z̄) =

∫ L

ε

dt

4πt
e−|z|2/4t.

Let (Γ, n) be a decorated graph as in Section 3. We will assume that Γ is
connected without self-loops. We consider the following graph integral on C

W(Γ,n)(H
L
ε , Φ) ≡

∏
v∈V (Γ)

∫
C

d2zv

⎛
⎝ ∏

e∈E(Γ)

∂ne
ze

HL
ε (ze, z̄e)

⎞
⎠Φ,

where ze = zh(e) − zt(e),

here Φ is a smooth function on C
|V (Γ)| with compact support. In the above

integral, we view HL
ε (ze, z̄e) as propagators associated to the edge e ∈ E,

and we have only holomorphic derivatives on the propagators.

Proposition B.1. The following limit exists for the above graph integral

lim
ε→0

W(Γ,n)(H
L
ε , Φ).
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Proof. Let V = |V (Γ)| be the number of vertices and E = |E(Γ)| be the
number of edges. We index the vertices by

v : {1, 2, . . . , V } → V (Γ), V = |V (Γ)|,

and write zi for zv(i) if there is no confusion. We specify the last vertex
by v•

v(V ) = v•.

Define the incidence matrix {ρv,e}v∈V (Γ),e∈E(Γ) by

ρv,e =

⎧⎪⎨
⎪⎩

1, h(e) = v,

−1, t(e) = v,

0, otherwise

and define the (V − 1) × (V − 1) matrix MΓ(t) as in [6, Section 6-2-3] by

(B.1) MΓ(t)i,j =
∑

e∈E(G)

ρv(i),e
1
te

ρv(j),e, 1 ≤ i, j ≤ V − 1,

where te is a variable introduced for each edge coming from the propagator.
Consider the following linear change of variables

{
zi = yi + yV , 1 ≤ i ≤ V − 1
zV = yV .

The graph integral can be written as

W(Γ,n)(H
L
ε , Φ)

=
∫

C

d2yV

∫
CV −1

V −1∏
i=1

d2yi

∫
[ε,L]E

∏
e∈E(Γ)

dte
4πte

∏
e∈E(Γ)

(∑V −1
i=1 ρv(i),eȳi

4te

)ne

× exp

⎛
⎝−1

4

V −1∑
i,j=1

MΓ(t)i,jyiȳj

⎞
⎠Φ.
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Using integration by parts, we get

W(Γ,n)(H
L
ε , Φ) =

∫
C

d2yV

∫
CV −1

V −1∏
i=1

d2yi

∫
[ε,L]E

∏
e∈E(Γ)

dte
4πte

× exp

⎛
⎝−1

4

V −1∑
i,j=1

MΓ(t)i,jyiȳj

⎞
⎠

×
∏

e∈E(Γ)

⎛
⎝V −1∑

j=1

∑V −1
i=1 ρv(i),eM

−1
Γ (t)i,j

te

∂

∂yj

⎞
⎠

ne

Φ.

By Lemma B.3 below, we see that∣∣∣∣∣∣
∏

e∈E(Γ)

⎛
⎝V −1∑

j=1

∑V −1
i=1 ρv(i),eM

−1
Γ (t)i,j

te

∂

∂yj

⎞
⎠

ne

Φ

∣∣∣∣∣∣ ≤ C
∣∣∣Φ̃
∣∣∣ ,

where C is a constant which doesn’t depend on {te} and {yi}, and Φ̃ is some
smooth function with compact support. To prove that lim

ε→0
WΓ,{ne}(H

L
ε , Φ)

exists, we only need to show that

lim
ε→0

∫
CV −1

V −1∏
i=1

d2yi

∫
[ε,L]E

∏
e∈E(Γ)

dte
4πte

exp

⎛
⎝−1

4

V −1∑
i,j=1

MΓ(t)i,jyiȳj

⎞
⎠

= lim
ε→0

∫
[ε,L]E

∏
e∈E(Γ)

dte
4πte

1
det MΓ(t)

exists. By Lemma B.1 below, we have

lim
ε→0

∫
[ε,L]E

∏
e∈E(Γ)

dte
4πte

1
det MΓ(t)

= lim
ε→0

∫
[ε,L]E

∏
e∈E(Γ)

dte
4π

1∑
T∈Tree(Γ)

∏
e/∈T te

,

where Tree(Γ) is the set of spanning trees of Γ. Let v(1), v(2) be two vertices
of Γ, {e1, . . . , ek} be the set of edges that connects v(1), v(2). Let Γ̄ be the
graph obtained from Γ by collapsing v(1) and v(2) and all the edges e1, . . . , ek

into one single vertex. Then Γ̄ is also a connected graph without self-loops,
with E(Γ̄) = E(Γ)\{e1, . . . , ek}. Obviously, for non-negative te’s,

∑
T∈Tree(Γ)

∏
e/∈T

te ≥
(

k∑
i=1

te1 · · · t̂ei
· · · tek

) ∑
T∈Tree(Γ̄)

∏
e/∈T

te.
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Therefore

∏
e∈E(Γ)

∫ L

ε

dte
4π

1∑
T∈Tree(Γ)

∏
e/∈T te

≤
k∏

i=1

∫ L

ε

dti
4π

1∑k
i=1 t1 · · · t̂i · · · tk

×
∏

e∈E(Γ̄)

∫ L

ε

dte
4π

1∑
T∈Tree(Γ̄)

∏
e/∈T te

≤
k∏

i=1

∫ L

ε

dti
4π

k∏k
i=1 t

k−1
k

i

×
∏

e∈E(Γ̄)

∫ L

ε

dte
4π

1∑
T∈Tree(Γ̄)

∏
e/∈T te

≤ C(L)
∏

e∈E(Γ̄)

∫ L

ε

dte
4π

1∑
T∈Tree(Γ̄)

∏
e/∈T te

,

where C(L) is a constant that depends only on L. By successive collapsing
of vertices, we see that limε→0

∫
[ε,L]E

∏
e∈E(Γ)

dte

4πte

1
det MΓ(t) exists. This proves

the lemma. �

Definition B.1. A tree T ⊂ Γ is said to be a spanning tree for the con-
nected graph Γ if every vertex of Γ lies in T .

Lemma B.1. The determinant of the (V − 1) × (V − 1) matrix
{MΓ(t)i,j}1≤i,j≤V −1 defined by equation (B.1) is given by

(B.2) det MΓ(t) =
∑

T∈Tree(Γ)

∏
e∈T

1
te

,

where Tree(Γ) is the set of spanning trees of the graph Γ.

Proof. See, for example [6, Section 6-2-3]. �

Definition B.2. Given a connected graph Γ and two disjoint subsets of
vertices V1, V2 ⊂ V (Γ), V1 ∩ V2 = ∅, we define Cut(Γ; V1, V2) to be the set of
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subsets C ⊂ E(Γ) satisfying the following property

(1) The removing of the edges in C from Γ divides Γ into exactly two
connected trees, which we denoted by Γ1(C), Γ2(C), such that V1 ⊂
V (Γ1(C)), V2 ⊂ V (Γ2(C)).

(2) C does not contain any proper subset satisfying property 1.

It is easy to see that each cut C ∈ Cut(Γ;V1, V2) is obtained by adding
one more edge to some {e ∈ E(Γ)|e /∈ T} where T is some spanning tree of
Γ. Then we have the following result; see [6, Section 6-2-3],.

Lemma B.2. The inverse of the matrix MΓ(t) is given by

M−1
Γ (t)i,j =

1
PΓ(t)

∑
C∈Cut(Γ;{v(i),v(j)},{v•})

∏
e∈C

te,

where

PΓ(t) =
∑

T∈Tree(Γ)

∏
e	∈T

te = det MΓ(t)
∏

e∈E(Γ)

te.

Proof. Let

Ai,j =
1

PΓ(t)

∑
C∈Cut(Γ;{v(i),v(j)},{v•})

∏
e∈C

te.

For 1 ≤ i ≤ V − 1, consider the summation

PΓ(t)
V −1∑
j=1

Ai,jMΓ(t)j,i =
V −1∑
j=1

MΓ(t)j,i

∑
C∈Cut(Γ;{v(i),v(j)},{v•})

∏
e∈C

te

=
∑

C∈Cut(Γ;{v(i)},{v•})
v(i)∈V (Γ1(C)),v•∈V (Γ2(C))

∏
e∈C

te

×
∑

e′∈E(G)

∑
1≤j≤V −1
v(j)∈Γ1(C)

ρv(i),e′
1
te′

ρv(j),e′

=
∑

C∈Cut(Γ;{v(i)},{v•})
v(i)∈V (Γ1(C)),v•∈V (Γ2(C))

∏
e∈C

te
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×
∑

e′∈E(G)
l(e)=v(i),r(e)∈V (Γ2)

or r(e)=v(i),l(e)∈V (Γ2)

1
te′

=
∑

T∈Tree(Γ)

∏
e	∈T

te,

where in the last step, we use the fact that given v 
= v• and a spanning tree
T of Γ, there is a unique way to remove one edge in T , which is attached to
v, to make a cut that separates v and v•. Therefore

V −1∑
j=1

Ai,jMΓ(t)j,i = 1, 1 ≤ i ≤ V − 1.

Similar combinatorial interpretation leads to

V −1∑
k=1

Ai,kMΓ(t)k,j = 0, 1 ≤ i, j ≤ V1, i 
= j.

We leave the details to the reader. It follows that Ai,j is the inverse matrix
of MΓ(t)i,j . �

Lemma B.3. The following sum is bounded
∣∣∣∣∣
∑V −1

i=1 ρv(i),eM
−1
Γ (t)i,j

te

∣∣∣∣∣ ≤ 2, ∀e ∈ E(G), 1 ≤ j ≤ V − 1.

Proof.

V −1∑
i=1

ρv(i),e

te
M−1

Γ (t)i,j

=
1

PΓ(t)

∑
C∈Cut(Γ;{v(j)},{v•})

v(j)∈V (Γ1(C)),v•∈V (Γ2(C))

∏
e′∈C

te′
∑

1≤i≤V −1
v(i)∈Γ1(C)

ρv(i),e

te

=
1

PΓ(t)

∑
C∈Cut(Γ;{v(j),l(e)},{v•,r(e)})

∏
e′∈C te′

te
− 1

PΓ(t)

×
∑

C∈Cut(Γ;{v(j),r(e)},{v•,l(e)})

∏
e′∈C te′

te
.
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Since each cut in the above summation is obtained from removing the
edge e from a spanning tree containing e, the lemma follows from fact that
PΓ(t) =

∑
T∈Tree(Γ)

∏
e	∈T te represents the sum of the contributions from all

such spanning trees. �

Next, we consider another type of graph integral which appears in the
proof of Proposition 5.1. Let

PL
ε (z, z̄) =

∫ L

ε

dt

4πt

( z̄

4t

)2

e−|z|2/4t,

and

Uε(z, z̄) =
1

4πε

( z̄

4ε

)
e−|z|2/4ε.

Let (Γ, n) be a connected decorated graph without self-loops, V (Γ) be
the set of vertices, E(Γ) be the set of edges, V = |V (Γ)|, E = |E(Γ)|. We
index the set of vertices as in Proposition B.1 by

v : {1, 2, . . . , V } → V (Γ),

and index the set of edges by

e : {0, 1, 2, . . . , E − 1} → E(Γ),

such that e(0), e(1), . . . , e(k) ∈ E(Γ) are all the edges connecting v(1), v(V ).
We consider the following Feynman graph integral by putting Uε on e(0),
putting PL

ε to all other edges, and putting a smooth function Φ on C
|V (Γ)|

with compact support for the vertices. We would like to compute the fol-
lowing limit of the graph integral

lim
ε→0

V∏
i=1

∫
d2zi∂

n0
ze(0)

Uε(ze(0), z̄e(0))

(
E−1∏
i=1

∂ni
ze(i)

PL
ε (ze(i), z̄e(i))

)
Φ,

where we use the notation that

ze ≡ zi − zj , if h(e) = v(i), t(e) = v(j).
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Proposition B.2. The above limit exists and we have the identity

lim
ε→0

V∏
i=1

∫
d2zi∂

n0
ze(0)

Uε(ze(0), z̄e(0))

(
E−1∏
i=1

∂ni
ze(i)

PL
ε (ze(i), z̄e(i))

)
Φ

= lim
ε→0

A(n0; n1, . . . , nk)
(4π)k

V∏
i=2

∫
d2zi∂

n0+1+
k∑

i=1
(ni+2)

z1

×
((

E−1∏
i=k+1

∂niPL
ε (ze(i), z̄e(i))

)
Φ

)∣∣∣∣∣
z1=zV

,

where the constant A(n0, n1, . . . , nk) is a rational number given by

A(n0; n1, . . . , nk) =
∫ 1

0
· · ·
∫ 1

0

k∏
i=1

dui

∏k
i=1 uni+1

i(
1 +

∑k
i=1 ui

)∑k
j=0(nj+2)

.

Proof.

V∏
i=1

∫
d2zi∂

n0Uε(ze(0))

(
E−1∏
i=1

∂niHL
ε (ze(i))

)
Φ

=
V∏

i=1

∫
d2zi

E−1∏
i=1

∫ L

ε
dte(i)

(
1

4πε

(
z̄e(0)

4ε

)n0+1
)

×
(

E−1∏
i=1

1
4πte(i)

(
z̄e(i)

4te(i)

)ni+2
)

e
−
(

|ze(0)|2

4ε
+
∑E−1

j=1

|ze(j)|2

4te(i)

)
Φ.

We will use the same notations as in the proof of Proposition B.1.
The incidence matrix {ρv,e}v∈V (G),e∈E(G) is defined by

ρv,e =

⎧⎪⎨
⎪⎩

1, h(e) = v,

−1, t(e) = v,

0, otherwise.

Without loss of generality, we assume that the orientation of e(0) is such that

ρv(1),e(0) = 1, ρv(V ),e(0) = −1.
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The (V − 1) × (V − 1) matrix MΓ(t) is defined by

MΓ(t)i,j =
E−1∑
l=0

ρv(i),e(l)
1

te(l)
ρv(j),e(l), 1 ≤ i, j ≤ V − 1,

where we use the convention that te(0) = ε. Under the following linear change
of variables {

zi = yi + yV , 1 ≤ i ≤ V − 1
zV = yV ,

and use integration by parts

V∏
i=1

∫
d2zi

E−1∏
i=1

∫ L

ε
dte(i)

(
1

4πε

(
z̄e(0)

4ε

)n0+1
)(

E−1∏
i=1

1
4πte(i)

(
z̄e(i)

4te(i)

)ni+2
)

× e
−
(

|ze(0)|2

4ε
+
∑E−1

j=1

|ze(j)|2

4te(i)

)
Φ

=
∫

d2yV

V −1∏
i=1

∫
d2yi

E−1∏
i=1

∫ L

ε

dte(i)

4πte(i)
exp

⎛
⎝−1

4

V −1∑
i,j=1

yiMΓ(t)i,j ȳj

⎞
⎠

× 1
4πε

⎛
⎝V −1∑

j=1

∑V −1
i=1 ρv(i),e(0)M

−1
Γ (t)i,j

ε

∂

∂yj

⎞
⎠

n0+1

×
E−1∏
α=1

⎛
⎝V −1∑

j=1

∑V −1
i=1 ρv(i),e(α)M

−1
Γ (t)i,j

te(α)

∂

∂yj

⎞
⎠

nα+2

Φ.

Note that for 0 ≤ α ≤ k and 1 ≤ i ≤ V − 1, ρv(i),e(α) is nonzero only for
ρv(1),e(α) = 1. Consider the change of variables

te(i) → εte(i), 1 ≤ i ≤ k,
te(i) → te(i), k + 1 ≤ i ≤ E − 1,

we get

∫
d2yV

V −1∏
i=1

∫
d2yi

k∏
i=1

∫ L/ε

1

dte(i)

4πte(i)

E−1∏
i=k+1

∫ L

ε

dte(i)

4πte(i)

× exp

⎛
⎝−1

4

V −1∑
i,j=1

yiȳjMΓ(t̃)i,j

⎞
⎠
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× 1
4πε

⎛
⎝V −1∑

j=1

∑V −1
i=1 ρv(i),e(0)M

−1
Γ (t̃)i,j

ε

∂

∂yj

⎞
⎠

n0+1
E−1∏
α=1

×
⎛
⎝V −1∑

j=1

∑V −1
i=1 ρv(i),e(α)M

−1
Γ (t̃)i,j

t̃e(α)

∂

∂yj

⎞
⎠

nα+2

Φ

=
k∏

i=1

∫ L/ε

1

dte(i)

4π

E−1∏
i=k+1

∫ L

ε

dte(i)

4π
F (t; ε),

where t̃’s are define by

t̃e(0) = ε,

t̃e(i) = εte(i), if 1 ≤ i ≤ k,

t̃e(i) = te(i), if k + 1 ≤ i ≤ E − 1,

and

F (t; ε) =
V∏

i=1

∫
d2yi

1
E−1∏
i=1

te(i)

exp

⎛
⎝−1

4

V −1∑
i,j=1

yiȳjMΓ(t̃)i,j

⎞
⎠

× 1
4πε

⎛
⎝V −1∑

j=1

∑V −1
i=1 ρv(i),e(0)M

−1
Γ (t̃)i,j

ε

∂

∂yj

⎞
⎠

n0+1

×
E−1∏
α=1

⎛
⎝V −1∑

j=1

∑V −1
i=1 ρv(i),e(α)M

−1
Γ (t̃)i,j

t̃e(α)

∂

∂yj

⎞
⎠

nα+2

Φ.

We first show that lim
ε→0

F (t; ε) exists. Using integration by parts,

F (t; ε) =
V∏

i=1

∫
d2yi

1∏E−1
i=1 te(i)

exp

(
−|y1|2

4ε

(
1 +

k∑
α=1

1
te(α)

))
1

4πε

×
( ȳ1

4ε

)n0+1 k∏
α=1

(
ȳ1

4εte(α)

)nα+2
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× exp

⎛
⎝−1

4

V −1∑
i,j=1

yiȳj

E−1∑
β=k+1

ρv(i),e(β)ρv(j),e(β)

te(β)

⎞
⎠

×
E−1∏

β=k+1

(∑V −1
i=1 ρv(i),e(β)ȳi

4te(β)

)nα+2

Φ

=
V∏

i=1

∫
d2yi

1∏E−1
i=1 te(i)

× exp

(
−|y1|2

4ε

(
1 +

k∑
α=1

1
te(α)

))
1

4πε

(
k∏

α=1

1
te(α)

)nα+2

× 1(
1 +

∑k
α=1

1
te(α)

)n0+1+
∑k

α=1(nα+2)

×
(

∂

∂y1

)n0+1+
∑k

α=1(nα+2)
⎛
⎝e

− 1
4

∑V −1
i,j=1 yiȳj

∑E−1
β=k+1

ρv(i),e(β)ρv(j),e(β)
te(β)

×
E−1∏

β=k+1

(∑V −1
i=1 ρv(i),e(β)ȳi

4te(β)

)nα+2

Φ

⎞
⎠ .

Using the property of the heat kernel under the limit ε → 0, we get

lim
ε→0

F (t; ε) =
V∏

i=2

∫
d2yi

1∏E−1
i=1 te(i)

(
k∏

α=1

1
te(α)

)nα+2

× 1(
1 +

∑k
α=1

1
te(α)

)∑k
α=0(nα+2)

×
(

∂

∂y1

)n0+1+
∑k

α=1(nα+2)

×
⎛
⎝e

− 1
4

∑V −1
i,j=1 yiȳj

∑E−1
β=k+1

ρv(i),e(β)ρv(j),e(β)
te(β)

×
E−1∏

β=k+1

(∑V −1
i=1 ρv(i),e(β)ȳi

4te(β)

)nα+2

Φ

⎞
⎠
∣∣∣∣∣∣
y1=0

.
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Claim.

lim
ε→0

k∏
i=1

∫ L/ε

1

dte(i)

4π

E−1∏
i=k+1

∫ L

ε

dte(i)

4π
F (t; ε)

=
k∏

i=1

∫ ∞

1

dte(i)

4π

E−1∏
i=k+1

∫ L

0

dte(i)

4π
lim
ε→0

F (t; ε).

Clearly Proposition B.2 follows from the claim.
To prove the claim, first notice that we have the estimate

0 ≤ M−1
Γ (t)1,j

te(α)
≤ 1

te(α)

(
1
ε +

∑k
i=1

1
te(i)

) ,

for 1 ≤ α ≤ k, 1 ≤ j ≤ V − 1. In fact, by Lemma B.2,

M−1
Γ (t)1,j =

∑
C∈Cut(Γ;{v(1),v(j)},{vV })

∏
e∈C te∑

T∈Tree(Γ)

∏
e	∈T

te

≤
∑

C∈Cut(Γ;{v(1),v(j)},{vV })
∏

e∈C te∑
T∈Tree(Γ)

ei∈E(T ) for some 0≤i≤k

∏
e	∈T te

≤ 1(
1
ε +

∑k
i=1

1
te(i)

)

For 0 ≤ α ≤ E − 1, 1 ≤ j ≤ V − 1,
∑V −1

i=1 ρv(i),e(α)M
−1
Γ (t)i,j

te(α)
is bounded by a con-

stant by Lemma B.3. It follows that

|F (t; ε)| ≤
V∏

i=1

∫
d2yi

1
E−1∏
i=1

te(i)

exp

⎛
⎝−1

4

V −1∑
i,j=1

yiȳjMΓ(t̃)i,j

⎞
⎠

×
∣∣∣∣∣∣

1
4πε

⎛
⎝V −1∑

j=1

∑V −1
i=1 ρv(i),e(0)M

−1
Γ (t̃)i,j

ε

∂

∂yj

⎞
⎠

n0+1

×
E−1∏
α=1

⎛
⎝V −1∑

j=1

∑V −1
i=1 ρv(i),e(α)M

−1
Γ (t̃)i,j

t̃e(α)

∂

∂yj

⎞
⎠

nα+2

Φ

∣∣∣∣∣∣
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≤
V∏

i=1

∫
d2yi

1∏E−1
i=1 te(i)

exp

⎛
⎝−1

4

V −1∑
i,j=1

yiȳjMΓ(t̃)i,j

⎞
⎠ 1

4πε

×
∏

1≤α≤k

⎛
⎝ 1

te(α)

(
1 +

∑k
i=1

1
te(i)

)
⎞
⎠

nα+2

Φ̃,

where Φ̃ is some non-negative smooth function on C
V with compact support.

Integrating over yi’s we get

|F (t; ε)| ≤ C
1∏E−1

i=1 te(i)

1
ε det MΓ(t̃)

∏
1≤α≤k

⎛
⎝ 1

te(α)

(
1 +

∑k
i=1

1
te(i)

)
⎞
⎠

nα+2

= C
εk

PΓ(ε, εte(1), . . . , εte(k), tek+1 , . . . , te(E−1))

×
∏

1≤α≤k

⎛
⎝ 1

te(α)

(
1 +

∑k
i=1

1
te(i)

)
⎞
⎠

nα+2

≤ C
1

PΓ̄(tek+1 , . . . , te(E−1))
∏k

α=1 te(α)

k∏
α=1

1
tnα+2
e(α)

,

where C is a constant that only depends on Φ̃, Γ̄ is the graph obtained
by collapsing the vertices v(1), v(V ) and all e(0), e(1), . . . , e(k), and PΓ is
defined in Lemma B.2. Here we have used the simple combinatorial fact that

PΓ(ε, εte(1), . . . , εte(k), tek+1 , . . . , te(E−1))

≥ εk

(
k∏

α=1

te(α)

)(
1 +

k∑
α=1

1
te(α)

)
PΓ̄(tek+1 , . . . , te(E−1)).

Since Γ̄ has no self-loops,

k∏
i=1

∫ ∞

1

dte(i)

4π

k∏
α=1

1
tnα+3
e(α)

E−1∏
i=k+1

∫ L

0

dte(i)

4π

1
PΓ̄(tek+1 , . . . , te(E−1))

< ∞.

Now the claim follows from dominated convergence theorem. �
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