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Rademacher sums, moonshine and gravity

John F. R. Duncan and Igor B. Frenkel

In 1939 Rademacher derived a conditionally convergent series
expression for the elliptic modular invariant, and used this expres-
sion — the first Rademacher sum — to verify its modular invari-
ance. By generalizing Rademacher’s approach we construct bases
for the spaces of automorphic integrals of arbitrary even integer
weight, for groups commensurable with the modular group. Our
methods provide explicit expressions for the Fourier expansions of
the Rademacher sums we construct at arbitrary cusps, and illu-
minate various aspects of the structure of the spaces of automor-
phic integrals, including the actions of Hecke operators. We give
a moduli interpretation for a class of groups commensurable with
the modular group which includes all those that are associated to
the Monster via monstrous moonshine.

We show that within this class the monstrous groups can be
characterized just in terms of the behavior of their Rademacher
sums. In particular, the genus zero property of monstrous moon-
shine is encoded naturally in the properties of Rademacher sums.

Just as the elliptic modular invariant gives the graded dimension
of the moonshine module, the exponential generating function of
the Rademacher sums associated to the modular group furnishes
the bi-graded dimension of the Verma module for the Monster
Lie algebra. This result generalizes naturally to all the groups of
monstrous moonshine, and recovers a certain family of monstrous
Lie algebras recently introduced by Carnahan.

Our constructions suggest conjectures relating monstrous moon-
shine to a distinguished family of chiral three-dimensional (3D)
quantum gravities, and relating monstrous Lie algebras and their
Verma modules to the second quantization of this family of chiral
3D quantum gravities.
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1. Introduction

1.1. Monstrous moonshine

A remarkable coincidence between the coefficients of the elliptic modular
invariant

(1.1) J(z) = e(−z) +
∑

n>0

c(n)e(nz), e(nz) = exp(2πinz),

and the dimensions of the irreducible representations of the Monster group,
denoted M, led McKay and Thompson [58] to conjecture the existence of a
naturally defined infinite-dimensional representation

(1.2) V = V−1 ⊕ V1 ⊕ V2 ⊕ · · ·

for the Monster group, with the property that dimVn = c(n). Thompson [57]
also proposed to consider the modular properties of the series

(1.3) Tg(z) = e(−z) +
∑

n>0

(tr|Vn
g)e(nz),

for any g ∈ M, the function J(z) of (1.1) being recovered upon taking g = e
in (1.3). It is clear from the presentation (1.3) that Tg(z) is invariant under
the translation group, which we denote B(Z) and which is generated by
the translation z �→ z + 1. In the case (1.1) that g is the identity element,
the invariance extends to the full modular group PSL2(Z). This leads us
to the question: what is special about the invariance groups Γg of the
McKay–Thompson series (1.3)?

In their remarkable paper [8], Conway and Norton collected an over-
whelming number of coincidences and, in particular, formulated the
moonshine conjecture:

The series Tg(z) is the normalized hauptmodul of a genus zero
group Γg lying between Γ0(N) and its normalizer in PSL2(R),
for each g ∈ M.

The conjecture of McKay and Thompson was proven in [17] by the explicit
construction of a vertex operator algebra V � invariant under the Monster
group. It was also shown in [17] that the McKay–Thompson series Tg(z)
satisfy the moonshine conjecture of Conway and Norton for all elements g
in a subgroup of M arising as an involution centralizer. Finally, a complete
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proof of the moonshine conjecture was given by Borcherds in [3]. However,
in spite of all the subsequent spectacular developments related to the Mon-
ster, the consensus of the experts (cf. e.g., [7]), is that “the real nature of
moonshine is still remote”.

1.2. Rademacher sums

In this paper, we shed new light on the properties of the McKay–Thompson
series associated to the Monster, including the mysterious genus zero phe-
nomena. It turns out that the McKay–Thompson series admit presentations
as sums over the coset space B(Z)\Γg. The prototype for this is the follow-
ing expression for the modular invariant J(z) which was originally derived
by Rademacher in [54].

(1.4) J(z) + 12 = e(−z) + lim
K→∞

∑

0<c<K
−K2<d<K2

(c,d)=1

e

(
−az + b

cz + d

)
− e
(
−a
c

)
.

The integers a and b occurring in each summand of (1.4) are chosen so that
ad− bc = 1. This expression (1.4) is remarkably simple, but the convergence
is rather subtle. (See [36] for a nice exposition.) The subtraction of the con-
stant e(−a/c) in (1.4) ensures the existence of the limit in what is otherwise
a highly divergent series. The Rademacher sum (1.4) has been generalized
to various discrete subgroups of PSL2(R) in a series of papers by Knopp
(cf. [30–33]).

Given Γ < PSL2(R) we write Γ∞ for the subgroup of Γ that fixes ∞. If
Γ is commensurable with the modular group PSL2(Z) and has the property
that Γ∞ = B(Z), then we may naturally associate a Rademacher sum to Γ
by setting

(1.5) R
(−1)
Γ (z) = e(−z) + lim

K→∞

∑

γ∈(B(Z)\Γ)×≤K

e(−γ · z) − e(−γ · ∞),

where the sum here is taken over the rectangle

(B(Z)\Γ)×≤K =
{
γ = B(Z)

[∗ ∗
c d

]
∈ B(Z)\Γ | 0 < c ≤ K, −K2 ≤ d ≤ K2

}(1.6)
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(cf. Section 3.1). In (1.6) we write
[
a b
c d

]
for the image in PSL2(R) of a matrix(

a b
c d

)
in SL2(R), and in (1.5) we write γ · z for (az + b)/(cz + d) and γ · ∞

for a/c when γ =
[
a b
c d

]
.

In general, the series R(−1)
Γ (z) defines an abelian integral for Γ, meaning

that we have

(1.7) R
(−1)
Γ (γ · z) = R

(−1)
Γ (z) + ω(γ)

for some function ω : Γ → C. We show in Section 6.1 that the Rademacher
sum R

(−1)
Γ (z) is Γ-invariant if and only if Γ has genus zero. Even more than

this, we show (also in Section 6.1) that when Γ has genus zero the function

(1.8) R
(−1)
Γ (z) − 1

2
cΓ(−1, 0)

is the normalized hauptmodul for Γ (cf. Section 2.5), for a certain constant
cΓ(−1, 0). This constant cΓ(−1, 0) turns out to be the Rademacher constant
associated to Γ as defined in [51] in the case that Γ has genus zero (cf.
Section 5.1).

Rademacher’s proof of the validity of the presentation (1.4) relies upon
explicit formulas for the Fourier coefficients of J(z). These formulas may be
given in terms of Kloosterman sums and Bessel functions, and are recovered
from the expression

(1.9) cΓ(m,n) =
∑

γ∈B(Z)\Γ/B(Z)

Klγ(m,n) Blγ(m,n)

upon taking Γ = PSL2(Z) and m = −1, and allowing n to range over Z.
Writing c(γ) for |c| when γ =

[
a b
c d

]
, the functions Klγ(m,n) and Blγ(m,n)

are defined as follows (cf. Section 3.2), for γ ∈ Γ.

Klγ(m,n) = e(mγ · ∞) e(−nγ−1 · ∞),(1.10)

Blγ(m,n) = 2πiResξ=0 e(mc(γ)−2ξ−1) e(nξ) dξ.(1.11)

Note that Klγ(m,n) and Blγ(m,n) are well-defined complex numbers only
when c(γ) 	= 0, and in this case

Klγ(m,n) = e

(
ma+ nd

c

)
, Blγ(m,n) =

∑

k≥0

(
2πi
c

)2k+2 mk+1

(k + 1)!
nk

k!
,

(1.12)
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for γ =
[
a b
c d

]
and c > 0. The expression (1.9) with Γ = PSL2(Z) and m = −1

is, up to elementary transformations, the formula for the nth coefficient of
the elliptic modular invariant given originally by Rademacher in [53]. More
generally, the formula (1.9) recovers the Fourier coefficients (other than the
constant term) of the Rademacher sum R

(−1)
Γ (z), for Γ an arbitrary group

commensurable with PSL2(Z) and satisfying Γ∞ = B(Z). The following for-
mula (cf. Theorem 3.1) encodes the relationship precisely.

(1.13) R
(−1)
Γ (z) = e(−z) +

1
2
cΓ(−1, 0) +

∑

n>0

cΓ(−1, n)e(nz).

1.3. Conjugate Rademacher sums

It is striking that the constant term in the Fourier expansion (1.13) of the
Rademacher sum R

(−1)
Γ (z) is cΓ(−1, 0)/2 and not cΓ(−1, 0), given that the

coefficient of e(nz) in (1.13) is exactly cΓ(−1, n) for n > 0. One may also
observe that the formula (1.9) defining the values cΓ(−1, n) makes sense for
arbitrary integers n ∈ Z, and so it is natural to ask what rôle is played by
the cΓ(−1, n) for n < 0? An answer to this question is obtained when we
consider the conjugate Rademacher sum associated to Γ, denoted R̄

(−1)
Γ (z),

and defined by setting

(1.14) R̄
(−1)
Γ (z) = e(−z̄) + lim

K→∞

∑

γ∈(B(Z)\Γ)×≤K

e(−γ · z̄) − e(−γ · ∞)

for z ∈ H. The conjugate Rademacher sum R̄
(−1)
Γ (z) defines an anti-

holomorphic function on H. At first glance it appears that we should recover
the classical Rademacher sum R

(−1)
Γ (z) after substituting z̄ for z into R̄(−1)

Γ

(z), since the expressions defining R
(−1)
Γ (z) and R̄

(−1)
Γ (z̄) would appear to

coincide, but in fact the delicate limit defining the Rademacher sums behaves
very differently depending on which half-plane the variable z lies in, and
the difference R(−1)

Γ (z) − R̄
(−1)
Γ (z̄) can be rather far from vanishing. As an

illustration of this, we show in Section 3.3 that the Fourier expansion of
the conjugate Rademacher sum R̄

(−1)
Γ (z) in terms of the anti-holomorphic

exponential e(z̄) recovers the values cΓ(−1, n) for n < 0 as Fourier coef-
ficients. More precisely, we establish the following counterpart to (1.13)
(cf. Theorem 3.2):

(1.15) R̄
(−1)
Γ (z) = e(−z̄) − 1

2
cΓ(−1, 0) −

∑

n<0

cΓ(−1, n)e(nz̄).
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We demonstrate in Section 3.4 that the holomorphic function R̄
(−1)
Γ (z̄) is

also an abelian integral (cf. Theorem 3.6). More than this, the difference

(1.16) R
(−1)
Γ (z) − R̄

(−1)
Γ (z)

is a Γ-invariant harmonic function on H (cf. Theorem 3.7).
The Γ-invariance of the function (1.16) entails a remarkable formula

for R̄(−1)
Γ (z) in the case that Γ has genus zero. For since the holomorphic

Rademacher sum R
(−1)
Γ (z) is Γ-invariant in the genus zero case, the anti-

holomorphic function R̄
(−1)
Γ (z) must also be Γ-invariant. Given our knowl-

edge (1.15) of the Fourier expansion of R̄(−1)
Γ (z) it follows that R̄(−1)

Γ (z) must
be identically constant, and furthermore, this constant must be −cΓ(−1, 0)/2.
In the case that Γ = PSL2(Z) we have cΓ(−1, 0) = 24, and we thus obtain
the remarkable identity

(1.17) e(−z̄) + lim
K→∞

∑

0<c<K
−K2<d<K2

(c,d)=1

e

(
−az̄ + b

cz̄ + d

)
− e
(
−a
c

)
= −12,

where in each summand a and b are integers chosen so that ad− bc = 1.
This implies that the function R

(−1)
Γ (z) − R̄

(−1)
Γ (z) is a (non-normalized)

hauptmodul for Γ when Γ has genus zero, and in particular,

(1.18) cΓ(−1, n) = δ−1,n

for n < 0. We recover the normalized hauptmodul for Γ (cf. Section 2.5) by
considering the sum R

(−1)
Γ (z) + R̄

(−1)
Γ (z).

1.4. Solid tori

It was observed in [8] that each group attached to the Monster via monstrous
moonshine may be described as a group of n‖h-type, meaning a discrete
group Γ < PSL2(R) of the form Γ = Γ0(n‖h) + S for some n, h ∈ Z

+ with
h|(n, 24), and S a subgroup of the group of exact divisors of n/h. For such n,
h, and S, the group Γ0(n‖h) + S contains and normalizes Γ0(nh), and has
the property that (Γ0(n‖h) + S)∞ = B(Z). (We recall the precise definition
of Γ0(n‖h) + S in Section 2.5.)

We shed new light on the groups of n‖h-type by demonstrating in Sec-
tion 6.2 that they solve a natural family of moduli problems for elliptic
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curves equipped with certain kinds of extra structure. As we will explain
presently, a common feature of all the members of this family is a choice of
filling of the elliptic curve in question; that is, a solid torus whose bound-
ary is the given elliptic curve. Hence, we interpret the n‖h-type groups as
defining moduli of (decorated) solid tori.

The fact that each group Γ of n‖h-type satisfies Γ∞ = B(Z) suggests
the importance of the quotient B(Z)\H. Regarding H as a moduli space for
triples (E, γ, γ′) where E is an elliptic curve and (γ, γ′) is an oriented basis
for the first homology group H1(E,Z) of E, we see that B(Z)\H parame-
terizes pairs (E, γ) where E is an elliptic curve and γ is a primitive element
of H1(E,Z). To each such pair (E, γ) is naturally associated an infinite vol-
ume hyperbolic 3-manifold with boundary an elliptic curve, for the cycle γ
specifies a way to fill in the surface defined by E, thus yielding a solid torus.
According to a theorem of Sullivan (cf. [45, 56]) every complete, smooth,
infinite volume hyperbolic 3-manifold with boundary an elliptic curve arises
in this fashion, so we consider pairs (E,C) where E is an elliptic curve over
C and C is an oriented subgroup of E isomorphic to S1. We call such a
pair a solid torus; according to our discussion the quotient space B(Z)\H

naturally parameterizes solid tori.
For (E,C) a solid torus and n ∈ Z

+ we write C[n] for the group of
n-division points of C, and we define an n-compatible isogeny of solid tori
(E′, C ′) → (E,C) to be an isogeny E′ → E of elliptic curves that maps C ′[n]
to a subgroup of C[n], and we define a fully compatible isogeny of solid
tori to be an isogeny E′ → E of elliptic curves that restricts to an orien-
tation preserving map C ′ → C on the underlying primitive cycles. (Note
that the n in an n-compatible isogeny of solid tori does not restrict the
degree of the underlying isogeny of elliptic curves.) For (E,C) a solid torus,
the canonical map E → E/C[n] may be viewed as defining a fully com-
patible isogeny of solid tori (E,C) → (E,C)/C[n], where (E,C)/C[n] is a
shorthand for the solid torus whose underlying elliptic curve is E/C[n],
and whose primitive cycle is the image of C under the natural map E →
E/C[n]. It may happen that an n-compatible isogeny induces invertible n/e-
compatible isogenies (i.e., n/e-compatible isomorphisms) (E′, C ′)/C ′[e] →
(E,C) and (E′, C ′) → (E,C)/C[e] for some divisor e of n. In this case we
say that (E′, C ′) and (E,C) are n+ e-related. By considering the existence
or otherwise of such morphisms of solid tori we arrive at moduli inter-
pretations for all the n‖h-type groups. For example, given a subgroup S
of the group of exact divisors of n, say solid tori (E,C) and (E′, C ′) are
n+ S-related if (E,C) and (E′, C ′) are n+ e-related for some e ∈ S. Then
the n+ S-relation is an equivalence relation on solid tori, and the quotient
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(Γ0(n) + S)\H is in natural correspondence with n+ S-equivalence classes
of solid tori.

In this way, we demonstrate that the groups of n‖h-type may be
explained as being the groups that solve a natural family of moduli problems
for decorated solid tori with conformal structure on the boundary.

1.5. Moonshine via Rademacher sums

The fact that the function (1.8) recovers the normalized hauptmodul of the
group Γ when Γ has genus zero is a strong indication that the Rademacher
sum may be useful for the purpose of understanding the functions of mon-
strous moonshine. A group theoretic characterization of the functions arising
as McKay–Thompson series was given in [7]. There the authors showed that
a holomorphic function on H coincides with Tg(z) for some g ∈ M if and
only if it is the normalized hauptmodul for a group Γ satisfying each of the
following properties.

1. The Riemann surface Γ\H has genus zero.

2. The group Γ is of n‖h-type.

3. The group Γ is an extension of Γ0(nh) by a group of exponent 2.

4. Each cusp of Γ can be mapped to the infinite cusp by an element
σ ∈ PSL2(R) with the property that (σΓσ−1)∞ = B(Z) and the inter-
section Γ ∩ σΓσ−1 contains Γ0(nh).

As we saw in Section 1.2 the variance of the Rademacher sum R
(−1)
Γ (z) with

respect to the action of Γ detects whether or not Γ has genus zero, and
we have discussed in Section 1.4 the significance of the groups appearing in
condition 2. We show in Sections 6.3, 6.4 that the conditions 3 and 4 also
admit natural reformulations in terms of the Rademacher sums.

Our reformulations come into view when we generalize the construction
(1.5) so as to associate a Rademacher sum R

(−1)
Γ,p|q(z) to each triple (Γ, p, q)

where Γ is a group commensurable with PSL2(Z), and p and q are cusps
of Γ. (This construction is presented in Section 3.) We write R(−1)

Γ,p (z) as

a shorthand for R(−1)
Γ,p|q(z) when q is the infinite cusp Γ · ∞. It develops in

Section 3.4 that R(−1)
Γ,p (z) is an abelian integral for Γ with a simple pole at p,

and no other singularities, and the expansion of R(−1)
Γ,p|q(z) at the infinite cusp

coincides with that of R(−1)
Γ,p (z) at q, up to (addition by) a certain constant



Rademacher sums, moonshine and gravity 859

function (cf. Theorem 3.6). Considering all the functions R(−1)
Γ,p|q(z) for vary-

ing cusps p and q we are able to access more subtle properties of the curve
XΓ = Γ\H ∪ Γ\Q̂ (cf. Section 2.5) beyond its genus. We find in Section 6.3
that condition 3 translates into a certain condition of symmetry (cf. Proposi-
tion 6.1) in the Rademacher sums associated to the Hecke congruence group
Γ0(nh), where n and h are as in condition 2, and we find in Section 6.4
that condition 4 translates into the condition (cf. Proposition 6.2) that the
function R(−1)

Γ,p|q be invariant for this subgroup Γ0(nh).
Our moduli interpretation of the n‖h-type groups, together with the

invariance and symmetry conditions on Rademacher sums just described,
facilitate a reformulation of the conditions of [7]. We thus arrive at a new
characterization (cf. Theorem 6.6) of the functions of monstrous moonshine
in terms of Rademacher sums, and moduli of solid tori.

1.6. Modified Rademacher sums

In order to understand better the behavior of the Rademacher sumsR(−1)
Γ (z),

and, in particular, the subtraction of the constant e(−γ · ∞) in (1.5), we con-
sider (also in Section 3) a generalization of the Rademacher sum adapted to
the problem of constructing modular forms of arbitrary even integer weight.
Our approach to Rademacher sums of negative weight is inspired by the
work of Niebur in [50].

For κ,m ∈ Z we define the Rademacher sum of weight 2κ and order m
associated to Γ by setting

R
κ(m)
Γ (z) = e(mz) + lim

K→∞

∑

γ∈(B(Z)\Γ)×≤K

e(mγ · z) rκ(m, γ, z)(cz + d)−2κ,

(1.19)

where c, d ∈ R are chosen (for each summand) so that γ is the image of a
matrix

(
a b
c d

) ∈ SL2(R) in PSL2(R), and rκ(m, γ, z) is the Rademacher regu-
larization factor of weight 2κ, satisfying

(1.20) rκ(m, γ, z) = 1 − e(mγ · ∞ −mγ · z)e(mγ · z −mγ · ∞)<1−2κ,

where e(z)<K denotes the partial exponential function e(z)<K =
∑

0≤k<K

(2πiz)k/k! (cf. Section 3.1). Observe that we recover the Rademacher sum
R

(−1)
Γ (z) of (1.5) when κ = 0. Also, we have rκ(m, γ, z) = 1 when κ is positive,

so that the Rademacher sum R
κ(m)
Γ (z) is a holomorphic Poincaré series (cf.
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Section 3.1) when κ > 0 (which is absolutely and locally uniformly conver-
gent for κ > 1).

In Section 3.1 we furnish generalizations of the functions Klγ(m,n) and
Blγ(m,n) for arbitrary κ ∈ Z, obtaining a generalization of the formula (1.9),
and leading to the following analog (cf. Theorem 3.1) of (1.13).

(1.21) R
κ(m)
Γ (z) = e(mz) +

1
2
cκΓ(m, 0) +

∑

n>0

cκΓ(m,n)e(nz).

The conjugate Rademacher sum of weight 2κ and order m associated to
Γ is defined in direct analogy with the definition (1.14) of the conjugate
Rademacher sum R̄

(−1)
Γ (z), which we presently recognize as the conjugate

Rademacher sum of weight 0 and order 1 associated to Γ.

R̄
κ(m)
Γ (z) = e(mz̄) + lim

K→∞

∑

γ∈(B(Z)\Γ)×≤K

e(mγ · z̄) rκ(m, γ, z̄)(cz̄ + d)−2κ.

(1.22)

We have the following analog of (1.15), and counterpart to (1.21), which
leads naturally to analogs of (1.16) for arbitrary κ ∈ Z (cf. Theorem 3.2).

(1.23) R̄
κ(m)
Γ (z) = e(mz̄) − 1

2
cκΓ(m, 0) −

∑

n<0

cκΓ(m,n)e(nz̄).

The variance of the functions R
κ(m)
Γ (z) with respect to the natural

(weight 2κ) action of the group Γ was described by Niebur in [50] for the
case that Γ has a single cusp. We verify in Section 4.5 that for Γ an arbi-
trary group commensurable with the modular group PSL2(Z), the function
R

κ(m)
Γ (z) + cκΓ(m, 0)/2 defines an automorphic integral of weight 2κ for Γ

(cf. Section 2.7) when m < 0, meaning that Rκ(m)
Γ (z) is holomorphic on H,

possibly having poles at cusps of Γ, and we have

(Rκ(m)
Γ (γ · z) + 1

2c
κ
Γ(m, 0))(cz + d)−2κ = R

κ(m)
Γ (z) + 1

2c
κ
Γ(m, 0) + ω(γ)(z)

(1.24)

for some function ω : Γ → C[z], where the polynomial ω(γ)(z) has degree
at most −2κ in z (cf. Theorem 4.3, Proposition 4.9). An identification of
the function ω may be given in terms of a certain canonically defined map
Iκ(Γ) → S1−κ(Γ), where Iκ(Γ) denotes the space of automorphic integrals of
weight 2κ for Γ (cf. Section 2.7), and Sκ(Γ) denotes the space of cusp forms
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of weight 2κ for Γ. We show (cf. Theorem 4.5) that the sequence

(1.25) 0 →Mκ(Γ) → Iκ(Γ) → S1−κ(Γ) → 0

is exact, where Mκ(Γ) denotes the space of modular forms of weight 2κ for Γ
possibly having poles at cusps (cf. Section 2.7), and the map Mκ(Γ) → Iκ(Γ)
is the natural inclusion.

Apart from the delicate convergence of the limit defining the Rademacher
sum R

κ(m)
Γ (z), the most curious feature of the functions Rκ(m)

Γ (z) is that they
transform naturally with respect to the group Γ only after the addition of the
constant cκΓ(m, 0)/2, which is typically non-zero. We overcome this feature
of the classical Rademacher sum by introducing in Section 4 the continued
Rademacher sum of weight 2κ and order m associated to Γ, defined for κ ≤ 0
and m < 0 by setting

T
κ(m)
Γ (z, s) = e(mz) +

∑

γ∈(B(Z)\Γ)×

e(mγ · z) tκ(m, γ, z, s)(cz + d)−2κ,

(1.26)

where tκ(m, γ, z, s) is a generalization of the Rademacher regularization fac-
tor rκ(m, γ, z) of (1.20) satisfying tκ(m, γ, z, 1) = rκ(m, γ, z).

The right-hand side of (1.26) converges absolutely and locally uniformly
in z and s for z ∈ H and 
(s) > 1. We define T κ(m)

Γ (z) by taking the limit
as s tends to 1 in T κ(m)

Γ (z, s). We find that

(1.27) T
κ(m)
Γ (z) = lim

s→1+
T

κ(m)
Γ (z, s) = R

κ(m)
Γ (z) − 1

2
cκΓ(m, 0)

(cf. Proposition 4.8), so that the Fourier expansion of T κ(m)
Γ (z) has van-

ishing constant term. Then, in the case that Γ has genus zero, the func-
tion T

(−1)
Γ (z) = T

0(1)
Γ (z) is precisely the normalized hauptmodul of Γ. We

call T κ(m)
Γ (z) the normalized Rademacher sum of weight 2κ and order m

associated to Γ. We may regard the disappearance of the constant term in
(1.27) as a consequence of the non-commutativity of the limits s→ 1 and
K → ∞ when applied to (the expression obtained by replacing (B(Z)\Γ)×

with (B(Z)\Γ)×≤K in) the right-hand side of (1.26).
To recover functions with natural modular properties at non-positive

weights we modify the continued Rademacher sum by subtracting a renor-
malized value at z = 0.

(1.28) Q
κ(m)
Γ (z, s) = T

κ(m)
Γ (z, s) − T

κ(m)
0,Γ (s).
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The function T κ(m)
0,Γ (s) is defined by an expression analogous to (1.26) which

also converges absolutely and locally uniformly in s for 
(s) > 1, and would
vanish at s = 1 if it were not for the noncommutativity of limits as s→ 1 and
K → ∞. We define the modified Rademacher sum of weight 2κ and order
m associated to Γ, denoted Qκ(m)

Γ (z), by taking the limit as s tends to 1 in
Q

κ(m)
Γ (z, s), and as a counterpart to (1.27) we have

(1.29) Q
κ(m)
Γ (z) = lim

s→1+
Q

κ(m)
Γ (z, s) = R

κ(m)
Γ (z) +

1
2
cκΓ(m, 0)

(cf. Proposition 4.9), so that, in light of (1.24), the modified Rademacher
sum Q

κ(m)
Γ (z) is an automorphic integral of weight 2κ for Γ.

The definition of the modified Rademacher sum Q
κ(m)
Γ (z) is inspired

by Hurwitz’s relation for the Hurwitz zeta function, and our continuation
procedure may be regarded as identifying the factor 1/2, appearing in the
constant term of the Fourier expansion (1.21) of the classical Rademacher
sum of non-positive weight, with −1 times the value of the Riemann zeta
function ζ(s) at s = 0 (cf. Section 4.3).

In order to obtain and analyze spanning sets for spaces of automor-
phic integrals we attach modified Rademacher sums Qκ(m)

Γ,p|q(z) to each triple
(Γ, p, q) where Γ is a group commensurable with the modular group PSL2(Z)
and p and q are cusps of Γ (cf. Section 4.1). The function Q

κ(m)
Γ (z) is then

recovered upon taking both p and q to be the infinite cusp Γ · ∞. If we
write Q

κ(m)
Γ,p (z) as a shorthand for Qκ(m)

Γ,p|q(z) when q = Γ · ∞, then, as is

shown in Section 4.5, the modified Rademacher sums Qκ(m)
Γ,p (z), for vary-

ing cusps p ∈ Γ\Q̂ and positive integers m ∈ Z
+, constitute a basis for the

space Iκ(Γ) when κ < 0 (cf. Theorem 4.4). In the case that κ = 0 the modi-
fied Rademacher sums Qκ(m)

Γ,p (z) span a subspace of I0(Γ) of codimension 1,
and a full basis is obtained by including a constant function. The function
Q

κ(m)
Γ,p (z) defines an automorphic integral with a single pole at the cusp p,

and the function Qκ(m)
Γ,p|q(z) encodes the Fourier expansion of Qκ(m)

Γ,p (z) at the
cusp q, and no correction of constant terms is necessary for the validity of
these statements.

1.7. Hecke operators

The original result of Rademacher [54] identifies the first Rademacher sum
R

(−1)
Γ (z), for Γ = PSL2(Z), with the function J(z) + 12, where J(z) is the

normalized hauptmodul for the modular group. In light of this it is natural
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to try to identify more general Rademacher sums in a similar fashion. In this
section we will take κ = 0, but we will allow m to be an arbitrary non-zero
integer. The identity

(1.30) R
(m)
Γ (z) = R̄

(−m)
Γ (z)

follows immediately from the definitions of the classical and conjugate
Rademacher sums, demonstrating that the conjugate Rademacher sums of
negative order may be recovered from the classical Rademacher sums with
positive order. On the other hand, one can show, as we did for the spe-
cial case that m = −1, that R̄(m)

Γ (z) is the constant function with constant
value −cΓ(m, 0)/2 in case m < 0 and Γ has genus zero. When Γ = PSL2(Z)
we have cΓ(m, 0) = 24σ(−m, 1) for m < 0, where σ(n, 1) is the sum of the
divisors of n, so we have the following generalization of (1.17) for m < 0.

(1.31) e(mz̄) + lim
K→∞

∑

0<c<K
−K2<d<K2

(c,d)=1

e

(
m
az̄ + b

cz̄ + d

)
− e
(
m
a

c

)
= −12σ(−m, 1).

To obtain an expression for the classical Rademacher sums R(m)
Γ (z) with

negative m we can analyze again its Fourier coefficients cΓ(m,n). It follows
from our results in Section 6.1 that

(1.32) cΓ(m,n) = δm,n

for m,n < 0 in case Γ has genus zero. The resulting function T
(m)
Γ (z) =

R
(m)
Γ (z) − cΓ(m, 0)/2, satisfying the identity

T
(m)
Γ (z) +

1
2
cΓ(m, 0) = e(mz) + lim

K→∞

∑

γ∈(B(Z)\Γ)×≤K

e(mγ · z) − e(mγ · ∞),

(1.33)

is therefore holomorphic on the upper half-plane, invariant for the action of
Γ, and of the form q−|m| + o(1) for q = e(z). Consequently each normalized
Rademacher sum T

(−m)
Γ (z), for m > 0, is expressible as a degree m polyno-

mial in T
(−1)
Γ (z) = TΓ(z). This polynomial is none other than the so-called

mth Faber polynomial for TΓ(z).
Proceeding from another direction, we can obtain the functions T (−m)

Γ (z)
from the normalized hauptmodul TΓ(z) by applying Hecke operators. In
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Section 5.5 we study, in particular, the case that Γ is the modular group
PSL2(Z). Recall that for n ∈ Z

+ the action of the Hecke operator T̂ (n) on
a modular function f(z) may be given by setting

(1.34) (T̂ (n)f)(z) =
1
n

∑

ad=n
0≤b<d

f

(
az + b

d

)
.

From this description one may deduce that the difference T
(−m)
Γ (z)

−m(T̂ (m)TΓ)(z) is holomorphic in H and vanishes as z → i∞. We thus
obtain the remarkable expression

(1.35) T
(−m)
Γ (z) = m(T̂ (m)TΓ)(z)

for the higher order Rademacher sums which generalizes the original result
of Rademacher. Combining the presentation (1.4) of TΓ(z) as a Rademacher
sum with the definition (1.34) of the Hecke operator T̂ (m) we obtain the
expression

m(T̂ (m)TΓ)(z) +
1
2
cΓ(−m, 0)(1.36)

= e(−mz) + lim
K→∞

∑

γ∈(B(Z)\M(m))×≤K

e(−γ · z) − e(−γ · ∞),

where M(m) denotes the (image in PGL+
2 (Q) of the) set of 2 × 2 matrices

with integral entries and determinant m. Comparison of (1.33) with (1.36),
in view of the identity (1.35), suggests an equality of some, if not all, expo-
nential terms in both sums, and in fact there is an injective map

B(Z)\M(1) ↪→ B(Z)\M(m),
γ �→ γ̃,

(1.37)

since M(1) = Γ when Γ = PSL2(Z), with the property that e(−mγ · z) =
e(−γ̃ · z). In the case that m is prime, the remaining terms assemble into a
fractional power Rademacher sum

(1.38) e

(
− 1
m
z

)
+ lim

K→∞

∑

γ∈(B(mZ)\Γ)×≤K

e

(
− 1
m
γ · z
)
− e

(
− 1
m
γ · ∞
)
,
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where B(mZ) is the m-fold translation group, generated by z �→ z +m. Thus
we obtain another injective correspondence

B(mZ)\M(1) ↪→ B(Z)\M(m),
γ �→ γ̃

(1.39)

with the property that e(−γ · z/m) = e(−γ̃ · z). The identity (1.36) implies
the vanishing of the fractional power Rademacher sum (1.38). This can also
be proven directly, and we give a general vanishing result for fractional
Rademacher sums in Section 5.4. More generally we obtain fractional power
sums of the form

(1.40) e
(
−m
l2
z
)

+ lim
K→∞

∑

γ∈(B(lZ)\Γ)×≤K

e
(
−m
l2
γ · z
)
− e
(
−m
l2
γ · ∞
)
,

for each exact divisor l of m, and each of these fractional power sums van-
ishes except for the sum corresponding to l = 1. Thus our analysis covers
generalizations of the Rademacher sums to fractional orders in addition to
the higher integral orders. All the results discussed in this section admit
generalizations to arbitrary groups commensurable with the modular group
but we restrict ourselves to the modular group in this paper.

1.8. Monstrous Lie algebras

The presentation (1.35) of the functions T (−m)
Γ (z) by means of Hecke oper-

ators (we restrict to the case Γ = PSL2(Z) in Section 1.7) immediately
implies that their Fourier coefficients are positive integers. This fact points
to the existence of further algebraic structures beyond the moonshine mod-
ule vertex operator algebra V �. In his proof of the moonshine conjectures [3]
Borcherds introduced the Monster Lie algebra m, which admits a presenta-
tion as a bi-graded generalized Kac–Moody algebra. The key to Borcherds’
method is the denominator identity for m. This in turn can be interpreted
as a BGG-type resolution of the trivial m-module. Let V denote the Verma
module with highest weight 0 for m. Then V is the first term in this BGG-
type resolution of the trivial module, and the bi-graded dimension gdimV
of V is obtained by computing the coefficients of p and q in the expression

(1.41) gdimV = exp

(
∑

m>0

(T̂ (m)TΓ)(z)pm

)
,
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where q = e(z). Applying the operator F �→ p∂p logF to (1.41) we obtain a
generating function for the higher (absolute) order normalized Rademacher
sums T (−m)

Γ (z), by (1.35). It is well-known (cf. [42]) that this operator relates
the complete homogeneous symmetric functions to the power-sum symmet-
ric functions. Thus the bi-graded dimension of the Verma module for the
Monster Lie algebra may be viewed as the complete Rademacher sum (of
weight 0) associated to Γ.

In Section 7.2 we consider a family of generalized Kac–Moody algebras
{mg}, indexed by elements g in the Monster group M. Just as the Mon-
ster Lie algebra may be constructed from the moonshine module V �, the
monstrous Lie algebras mg, studied by Carnahan in [5], may be constructed
from the g-twisted V �-modules V �

g , for g ∈ M. The graded dimensions of
the spaces V �

g are given by functions Jg(z) = JΓg
(z), related to the McKay–

Thompson series Tg(z) via the involution z �→ −1/z.

(1.42) Jg(z) = Tg(−1/z)

One should note that Borcherds set the precedent here, introducing a family
{m′

g} of monstrous Lie superalgebras in [3]. These algebras m′
g are more

directly related to the functions Tg(z), rather than the Jg(z), and for our
purposes the algebras mg appear to be more convenient.

The monstrous Lie algebras mg are constructed in [5] using the semi-
infinite cohomology version of the no-ghost theorem. We identify the bi-
graded subspaces of the algebra mg in terms of the twisted modules V �

h , with
h ∈ 〈g〉. One can show that the mg are generalized Kac–Moody algebras, and
one can also deduce formulas for the bi-graded dimensions of their Verma
modules Vg, generalizing (1.41).

(1.43) gdimVg = exp

(
∑

m>0

(T̂ (m)Tg)(z)pm

)
.

Carnahan [5] also found a remarkable denominator identity which yields an
alternative expression for the graded dimension of Vg; namely,

(1.44) gdimVg =
1

p(Tg(w) − Jg(z))
,

where p = e(w). This identity (1.44) demonstrates that the bi-graded dimen-
sion can be viewed as a meromorphic function on H × H with poles at
w ∈ Γg · (−1/z).
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We also show in Section 7.2 that the bi-graded dimension of Vg is
bounded below, coefficient-wise, by the generating function

(1.45)
∑

m>0

J (−m)
g (z)pm,

where J (−m)
g (z) = T

(−m)
g (−1/z) when g is of Fricke type (cf. Proposition 7.1).

This suggests that the Verma modules Vg may contain naturally defined sub-
spaces whose bi-graded dimensions coincide with the expressions (1.45).

1.9. Chiral gravity

Our results on Rademacher sums, at first glance, add as much to the mystery
of monstrous moonshine as they reveal. We have formulated a characteriza-
tion of the groups of monstrous moonshine in terms of Rademacher sums and
solid tori. Having done so we face the new question of where the Rademacher
sums themselves appear in relation to the moonshine module vertex operator
algebra V �? It appears now that the relation to physics should again be use-
ful, as it was in the construction of V � [17], and the proof of the moonshine
conjecture [3].

In Section 7.1, we explain how the Rademacher sums associated to
elements of the Monster might be regarded as giving strong evidence for
the existence of another construction of the moonshine module V �, and
its twisted sectors V �

g , in which all the features of monstrous moonshine,
including the genus zero property, become transparent. In fact the original
Rademacher sum (1.4) does appear as a saddle point approximation to the
partition function of the simplest chiral 2D quantum gravity. (See [40,43,46–
48, 62] for the development of this idea in the physics literature.) Our new
identity (1.17) for the conjugate Rademacher sum must reflect the chiral
nature of this 3D quantum gravity.

We expect that our analytic continuation of the Rademacher sums, and
the explanation of the appearance of the constant term, will also develop
from a rigorous analysis of the saddle point approximation using a zeta func-
tion regularization of the chiral gravity partition function, as was done for
various models of two-dimensional (2D) CFT. Our analysis of the
Rademacher sums corresponding to the discrete groups of monstrous moon-
shine, and of moduli spaces of decorated solid tori points to a description
of all the spaces V �

g , for g ∈ M, via a family of g-twisted versions of the
simplest chiral 3D quantum gravity. We expect that our reformulation of
monstrous moonshine in terms of Rademacher sums and moduli of solid tori
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will eventually be understood from the properties of this remarkable chiral
3D quantum gravity.

In Section 7.3 we also elucidate the relationship between the higher-order
Rademacher sums, and the key object of Borcherds’ proof of the moonshine
conjecture; viz., the Monster Lie algebra, and its twisted counterparts. This
leads us to the stringy quantization (cf. [13]) of V �, and we generalize this
to all twisted sectors V �

g , for g ∈ M. We prove in Theorem 7.2 that the
resulting second quantized spaces have the same bi-graded dimensions as the
Verma modules Vg (cf. (1.43)) and thus may be viewed as stringy realizations
of the representations of the generalized Kac–Moody algebras mg. It is an
interesting problem to interpret the spaces Vg, and their subspaces with
graded dimension given by the higher order normalized Rademacher sums
(1.45), in terms of the second quantized chiral 3D quantum gravities. In
particular, the simple description of the singularities of the partition function
given by (1.44) should have a natural interpretation in terms of quantum
gravity.

Thus our present results on the Rademacher sums, and the new conjec-
tures about their origin, clearly indicate that the real nature of moonshine
might not be as remote anymore, and more than this, the full examination of
its structure might give new insight into the fundamental problem of modern
physics.

2. Conventions

We write Z
+ for the set of positive integers, and the notations Q

+ and R
+ are

to be interpreted similarly. We write N for the set of non-negative integers.
For R a ring without zero divisors, we write R× for the multiplicative monoid
of non-zero elements in R.

2.1. Functions

For z, s ∈ C with z 	= 0, we write zs as a shorthand for exp(s log(z)), where
log denotes the principal branch of the logarithm, so that

(2.1) −π < �(log(z)) ≤ π,

and we write z(s) as a shorthand for zs/Γ(s+ 1), where Γ(s) denotes the
Gamma function. We adopt the convention of setting

(2.2) e(z) = exp(2πiz) =
∑

k≥0

(2πiz)(k)
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for z ∈ C. We write Φ(a, b, z) for the analytic function on C
3 defined by

setting

(2.3) Φ(a, b, z) = 1F1(a; b; 2πiz)
Γ(b)

=
∑

k≥0

Γ(k + a)
Γ(a)Γ(k + b)

(2πiz)(k),

where 1F1(a; b;x) denotes the confluent hypergeometric function (cf. [1, Sec-
tion 13]). Kummer’s transformations for the confluent hypergeometric func-
tion yield the following identity for Φ.

(2.4) Φ(a, b, z) = e(z)Φ(b− a, b,−z).

The exponential function e(z) is a solution to the differential equation

(2.5) (z∂z + 1 − s)(∂z − 2πi)u(z) = 0,

which has a regular singular point at 0 and an irregular singularity at
∞. Another solution is furnished by the function z �→ Φ(1, 1 + s, z)(2πiz)s,
which we denote also by e(z, s).

(2.6) e(z, s) = Φ(1, 1 + s, z)(2πiz)s =
∑

k≥0

(2πiz)(k+s).

Observe that we have e(z, n) = e(z) − e(z)<n for n ∈ Z, where e(z)<K

denotes the partial exponential e(z)<K =
∑

0≤k<K(2πiz)(k). In particular,
e(z, n) = e(z) when n ≤ 0.

2.2. Divisors

For n ∈ Z
+ and s ∈ C we write σ(n, s) for the divisor function

(2.7) σ(n, s) =
∑

d|n
ds.

For a, b ∈ Z we write (a, b) for the greatest common divisor of a and b,
and we generalize this notation by writing ((a, b) for the greatest positive
integer c say, such that c2|a and c|b, and by writing (a∞, b) for the largest
divisor of b that divides some power of a.

((a, b) = max{c ∈ Z
+ | c2|a and c|b},(2.8)
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(a∞, b) = lim
n→∞(an, b).(2.9)

For d, n ∈ Z
+ we write d‖n in the case that d|n and (d, n/d) = 1, and call

such a d an exact divisor of n. We write Ex(n) for the set of exact divisors of
n. Then Ex(n) becomes a group of exponent 2 when equipped with the prod-
uct (e, f) �→ ef/(e, f)2. Indeed, if we write Π(n) for the set of primes that
divide n then there is a naturally defined isomorphism Ex(n) ∼= (Z/2)Π(n)

which associates to an exact divisor e ∈ Ex(n) the indicator function χe :
Π(n) → Z/2, satisfying χe(p) = 1 if p|e and χe(p) = 0 otherwise.

Let Π denote the set of all primes. Then the infinite product (Z/2)Π

comes equipped with a naturally defined projection (Z/2)Π → (Z/2)Π(n),
and a naturally defined section for it (Z/2)Π(n) → (Z/2)Π, for each n ∈ Z

+.
Consequently we have naturally defined morphisms of groups (Z/2)Π →
Ex(n) and Ex(n) → (Z/2)Π for each n, and for any m,n ∈ Z

+ we have
the natural map Ex(m) → Ex(n) furnished by the composition Ex(m) →
(Z/2)Π → Ex(n). If m divides n then the map Ex(m) → Ex(n) is injec-
tive, the map Ex(n) → Ex(m) is surjective, and the composition Ex(m) →
Ex(n) → Ex(m) is the identity on Ex(m).

2.3. Isometries

Let us write G(R) for the simple real Lie group PSL2(R). The group G(R)
acts naturally, from the left, on the upper-half plane H = {z ∈ C | �(z) > 0},
and is just the group of orientation preserving isometries of H when we equip
it with the hyperbolic measure dμ(z) = dxdy/y2, for z = x+ iy.

It is convenient to enlist matrices in SL2(R) for the purpose of specifying
elements of G(R). We write

[
a b
c d

]
for the image of a matrix

(
a b
c d

) ∈ SL2(R) in
G(R). Analogously, we write A �→ [A] for the canonical map SL2(R) → G(R).
The action of G(R) on H is now described explicitly by the formula

(2.10) γ · z =
az + b

cz + d

for γ =
[
a b
c d

]
. The matrix θ =

(−1 0
0 1

) ∈ GL2(R) induces an outer-
automorphism of G(R), which we call conjugation on G(R), and which we
denote γ �→ γ̄. Explicitly, we have

(2.11) γ̄ =
[−a b
c −d

]
⇐= γ =

[
a b
c d

]
.
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For each matrix A ∈ GL+
2 (Q) there is a unique μ ∈ R

+ for which A′ =
μA belongs to SL2(R). The assignment GL+

2 (Q) → G(R) given by A �→ [A′]
then factors through PGL+

2 (Q), and the resulting map PGL+
2 (Q) → G(R) is

an embedding of groups. We write G(Q) for the copy of PGL+
2 (Q) in G(R)

obtained in this way. We write G(Z) for the modular group PSL2(Z).
Extending the notation introduced above, we write [A] and

[
a b
c d

]
for the

image in G(Q) < G(R) of a matrix A =
(
a b
c d

)
in GL+

2 (Q). Given μ ∈ Q
+ we

write [μ] as a shorthand for [A] when A is the diagonal matrix
(
μ 0
0 1

)
. Then

[μ] · z = μz for z ∈ H.

(2.12) [μ] =
[
μ 0
0 1

]
.

Let B(R) denote the Borel subgroup of G(R) consisting of images of
upper-triangular matrices in SL2(R), so that B(R) is just the subgroup of
G(R) that fixes the distinguished point ∞ on the pointed real projective
line R̂ = R ∪ {∞}. Let B(Q) and B(Z) denote the intersections B(R) ∩
G(Q) and B(R) ∩G(Z), respectively. Then B(Z) is the group generated by
the modular translation T =

[
1 1
0 1

]
. Set Q̂ = Q ∪ {∞} ⊂ R̂. Then G(Q) acts

naturally on Q̂, and B(Q) is just the subgroup of G(Q) that fixes the point
∞. For α ∈ Q we write Tα for the element

[
1 α
0 1

] ∈ B(Q).

(2.13) Tα =
[
1 α
0 1

]
.

Then the elements of B(Q) of the form Tα for α ∈ Q constitute the unipotent
subgroup of B(Q), which we denote Bu(Q). Given α ∈ Q

+ we write B(αZ)
for the subgroup of Bu(Q) generated by Tα.

(2.14) B(αZ) =
{[

1 αn
0 1

]
| n ∈ Z

}
.

The elements of B(Q) of the form [μ] for μ ∈ Q
+ constitute the diagonal

subgroup of B(Q), which we denote Bd(Q). The group B(Q) is naturally
isomorphic to the semidirect product Bu(Q) �Bd(Q). In particular, Bu(Q)
is a normal subgroup of B(Q) and for any χ ∈ B(Q) we have χ = Tα[μ] for
some uniquely determined α ∈ Q and μ ∈ Q

+.
An element γ ∈ G(Q) will have many preimages in GL+

2 (Q), but among
these there will be exactly two that have integral entries with no common
divisor. Either of these two matrices will be called a preferred representative
for γ. We define functions Pdet : G(Q) → Z

+ and c : G(Q) → N and d :
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G(Q) → N by setting

(2.15) Pdet(γ) = ad− bc, c(γ) = |c|, d(γ) = |d|,

in case
(
a b
c d

) ∈ GL+
2 (Q) is a preferred representative for γ. We call Pdet

the projective determinant. The group G(Z) is exactly the preimage of 1
with respect to the projective determinant. The projective determinant is
not multiplicative, but we have Pdet(γσ) = Pdet(σ) = Pdet(σγ) for all σ ∈
G(Q) in case Pdet(γ) = 1, so for any n ∈ Z

+ the preimage of n under Pdet
admits commuting left and right actions of G(Z).

Observe that c(Tγ) = c(γT ) = c(γ) and d(Tγ) = d(γ). Given X ⊂ G(Q)
we set X∞ = X ∩B(Q) and X× = X −X∞. Then X∞ = {χ ∈ X | c(χ) =
0}. We define X×× to be the subset of X× consisting of χ ∈ X such that
both c(χ) and d(χ) are non-zero.

X∞ = {χ ∈ X | c(χ) = 0},(2.16)
X× = {χ ∈ X | c(χ) 	= 0}, X×× = {χ ∈ X | c(χ)d(χ) 	= 0}(2.17)

For γ ∈ G(Q) with
(
a b
c d

)
a preferred representative, we have

(2.18) γ · z − γ · z′ =
Pdet(γ)

(cz + d)(cz′ + d)
(z − z′)

for z, z′ ∈ H, so that the derivative of the function z �→ γ · z, which we will
denote jac(γ, z), is given by

(2.19) jac(γ, z) =
Pdet(γ)
(cz + d)2

.

Note that the assignment jac : G(Q) → O(H), which associates the function
z �→ jac(γ, z) to an element γ ∈ G(Q), descends naturally to the coset space
B(Z)\G(Q), and even further to Bu(Q)\G(Q).

From (2.18) and (2.19) we see that |γ · z − γ · z′| = |z − z′| just in the
case that z and z′ belong to the set {z ∈ H | | jac(γ, z)| = 1} which we call
the isometric locus of γ. The isometric locus of γ is a (Euclidean) semicircle
just when c(γ) > 0, in which case its center is γ−1 · ∞, and its radius is√
�(γ), where

(2.20) �(γ) =
Pdet(γ)
c(γ)2

=
ad− bc

c2
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in case
(
a b
c d

)
is a preferred representative for γ. We call �(γ) the scaling factor

associated to γ.

2.4. Cosets

Given a subset X ⊂ G(Q), we will write �X� for the set consisting of double
cosets of the form B(Z)χB(Z), for χ ∈ X. We will write �χ� as a shorthand
for the particular double coset B(Z)χB(Z).

(2.21) �χ� = B(Z)χB(Z), �X� = {�χ� ∈ B(Z)\G(Q)/B(Z) | χ ∈ X}.

Similarly, we will write �X for the set of right cosets of the form B(Z)χ, for
χ ∈ X, and χ �→ �χ will denote the natural map X → �X, and the notations
X� and χ �→ χ� will have the analogous meanings. Observe that B(Z) is sta-
ble under the operations of inversion and conjugation (cf. (2.11)), and thus
these operations descend naturally to the coset spaces �G(Q) and G(Q)�
and �G(Q)�.

Recall from Section 2.3 that the assignment χ �→ jac(χ, z) descends to
a well-defined association of holomorphic functions on H to right cosets of
B(Z) in G(Q). Accordingly, we may safely set jac(�χ , z) = jac(χ, z), when
given some �χ ∈ �G(Q) .

jac(· , z) : �G(Q) → O(H),
�χ �→ jac(�χ , z).

(2.22)

Given U ⊂ �G(Q) or S ⊂ �G(Q)� we set U∞ = U ∩ �B(Q) and U× = U −
U∞, and similarly, S∞ = S ∩ �B(Q)� and S× = S − S∞. In particular,
�G(Q)�× denotes the set of double cosets �χ�, for χ ∈ G(Q), for which
c(χ) 	= 0.

Observe that the isometric loci (cf. Section 2.3) associated to χ, χ′ ∈
G(Q) coincide when �χ = �χ′ . Thus we may regard these loci as naturally
attached to right cosets of B(Z) in G(Q), and the locus attached to �χ is
a Euclidean semicircle just when �χ ∈ �G(Q)×. Also, the loci associated to
cosets �χ , �χ′ ∈ �G(Q)× have the same radii when �χ� = �χ′�; that is to say,
the function � of (2.20) descends to a well-defined map �G(Q)�× → Q

+. It is
worth noting that the function χ �→ �(χ) actually satisfies an even stronger
invariance condition.

Lemma 2.1. The assignment �χ� �→ � �χ� descends naturally to a well-
defined function on the double coset space Bu(Q)\G(Q)/Bu(Q). That is, we
have � �Tαχ� = � �χTα� = � �χ� for any α ∈ Q and χ ∈ G(Q)×.
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The function � is also invariant under inversion and conjugation, so that
we have � �χ� = � �χ̄� = �

�
χ−1

�
for any χ ∈ G(Q)×. For χ ∈ G(Q)× the

identity (2.18) may be rewritten

(2.23) χ · z − χ · z′ =
� �χ�

(z − χ−1 · ∞)(z′ − χ−1 · ∞)
(z − z′),

and we may consider the limit as z′ → ∞, which yields a useful expression
for χ · z − χ · ∞; viz.,

(2.24) χ · z − χ · ∞ = − � �χ�

z − χ−1 · ∞ .

Comparing with (2.19) and (2.24) we have

(2.25) jac(�χ , z) =
� �χ�

(z − χ−1� · ∞)2

for �χ ∈ �G(Q)× (and jac(�χ , z) = 1 otherwise).
The functions c, d : G(Q) → N, of Section 2.3, descend to well-defined

functions on the coset space �G(Q) = B(Z)\G(Q). The function c descends
further, to be well-defined on the double coset space �G(Q)� = B(Z)\G(Q)/
B(Z). ForK ∈ R

+ and U a subset of �G(Q) , define U≤K to be the subset of U
consisting of cosets �χ ∈ U for which c(χ) ≤ K and d(χ) ≤ K2. Analogously,
for S a subset of �G(Q)�, define S≤K to be the subset of S consisting of
double cosets �χ� ∈ S for which c(χ) ≤ K.

U≤K = {�χ ∈ U | c(χ) ≤ K, d(χ) ≤ K2},(2.26)
S≤K = {�χ� ∈ S | c(χ) ≤ K}.(2.27)

2.5. Groups

The group G(Q) is the commensurator of G(Z). Consequently, any group
Γ < G(R) that is commensurable with the modular group G(Z) is automat-
ically a subgroup of G(Q), and is an example of a Fuchsian group of the
first kind. For such a group Γ there is a natural way to equip the orbit space
Γ\H with the structure of a Riemann surface; we will denote this object
by YΓ. Any group Γ commensurable with G(Z) has parabolic elements, and
any fixed point of any parabolic element of Γ lies on the (pointed) rational
projective line Q̂ ⊂ R̂. The orbit space PΓ = Γ\Q̂ is the set of cusps of Γ.
For Γ commensurable with G(Z), the Riemann surface YΓ is not compact,
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but can be compactified in a natural way by adjoining a single point for each
cusp of Γ. We will write XΓ for the corresponding compact Riemann surface
obtained by the adjunction of the cusps of Γ.

(2.28) XΓ = YΓ ∪ PΓ = Γ\H ∪ Γ\Q̂.

We will say that Γ is a group of genus zero in the case that XΓ has genus
zero as a Riemann surface. We set genus(Γ) = genus(XΓ) for Γ < G(R) com-
mensurable with G(Z).

We write Ĉ for the (pointed) complex projective line C ∪ {∞}, which we
regard as a compact Riemann surface in the usual way. If Γ is a group for
which the compact Riemann surface XΓ has genus zero, then there is an
isomorphism φ : XΓ

∼−→ Ĉ that witnesses this fact, and the set of such iso-
morphisms admits a simply transitive action by G(C). Thus we may assume
that φ maps the point of XΓ corresponding to the infinite cusp Γ · ∞ to
the distinguished point ∞ ∈ Ĉ. Such an isomorphism φ determines a Γ-
invariant holomorphic function, f say, on H, which admits an expression
f(z) =

∑
n≥−1 c(n/h)e(nz/h) with c(−1/h) 	= 0 for some positive integer h

called the width of Γ at infinity. After multiplying by 1/c(−1/h) we may
assume that c(−1/h) = 1. A Γ-invariant function of the form e(−z/h) +∑

n≥0 c(n/h)e(nz/h) which is holomorphic on H and induces an isomor-
phism XΓ

∼−→ Ĉ will be called a hauptmodul for Γ. In case c(0) = 0 we say
that f is a normalized hauptmodul for Γ.

The Hecke congruence groups, denoted Γ0(n) for n ∈ Z
+, play a special

rôle in our analysis.

(2.29) Γ0(n) =
{[

a b
cn d

]
| a, b, c, d ∈ Z, ad− bcn = 1

}
.

According to [8] the normalizerN(Γ0(n)) of Γ0(n) in G(R) is commensurable
with G(Z) and admits the description

N(Γ0(n))

(2.30)

=
{[

ae b/h
cn/h de

]
| a, b, c, d ∈ Z, e ∈ Z

+, e‖n/h, ade− bcn/eh2 = 1
}
,

where h = ((n, 24) is the largest divisor of 24 such that h2 divides n (cf.
Section 2.2). The expression (2.30) tells us, in particular, that N(Γ0(n))∞ =
〈T 1/h〉 for h = ((n, 24).
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Proposition 2.1. Let n ∈ Z
+. Then N(Γ0(n)) acts transitively on Q̂. We

have N(Γ0(n))∞ = Γ0(n)∞ if and only if n is not divisible by 4 or 9.

An important family of groups, each one commensurable with the mod-
ular group G(Z), and each one containing and normalizing some Γ0(n), was
introduced in [8]; these are the groups of n‖h-type, and we now recall their
definition. For n, h ∈ Z

+ with h|n, and for S a subgroup of Ex(n/h) (cf.
Section 2.2), we define a group Γ0(n|h) + S by setting

Γ0(n|h) + S =
{[
ae b/h
cn de

]
| a, b, c, d ∈ Z, e ∈ S, ade− bcn/eh = 1

}
.

(2.31)

Evidently the group Γ0(n|h) + S contains Γ0(nh). In case h|24 it also nor-
malizes Γ0(nh). Assume then that h|24. We say that Γ0(n|h) + S is of Fricke
type if the element

[
0 −1
nh 0

]
belongs to it.

The group Γ0(n‖h) + S is defined (cf. [8]) as the subgroup of Γ0(n|h) + S
arising as the kernel of a certain morphism Γ0(n|h) + S → Z/h which factors
through the canonical map Γ0(n|h) + S → (Γ0(n|h) + S)/Γ0(nh). In order
to describe it let S′ denote the image of S in Ex(nh) under the natural
injection Ex(n/h) → Ex(nh) (cf. Section 2.2). Then as generators for the
quotient (Γ0(n|h) + S)/Γ0(nh) we may take the cosets X, Y , and We′ for
e′ ∈ S′, given by

X =
[
1 1/h
0 1

]
Γ0(nh), Y =

[
1 0
n 1

]
Γ0(nh), We′ =

[
ae′ b
cnh de′

]
Γ0(nh),

(2.32)

where the a, b, c and d in the definition of We′ are arbitrary integers for
which ade′ − bcnh/e′ = 1, and we may define Γ0(n‖h) + S to be the kernel
of the composition

(2.33) Γ0(n|h) + S → (Γ0(n|h) + S)/Γ0(nh)
λ−→ Z/h,

where the map λ is determined by the requirements that λ(We′) = 0 for all
e′ ∈ S′, λ(X) = 1, and λ(Y ) is 1 or −1 according as Γ0(n|h) + S is of Fricke
type or not.

The group Γ0(n‖h) + S is also described in [14], where it is denoted
(1/h)Γ0(n|h) + e1, e2, . . . for S = {1, e1, e2, . . .}, although we should remark
that certain variations on λ are considered there (in the case that h is even),
so that the class of groups considered in [14] properly contains the groups
of n‖h-type.
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2.6. Scalings

Let Γ be a group commensurable with G(Z) and let p ∈ PΓ (cf. (2.28)) be a
cusp of Γ. An element p ∈ p ⊂ Q̂ will be called a representative for p.

Lemma 2.2. Let Γ be a group commensurable with G(Z) and let p ∈ Q̂.
Then there exists an element σp ∈ G(Q) such that

(2.34) p = σp · ∞, (σ−1
p Γσp)∞ = B(Z).

Proof. In case p = ∞ the group Γ∞ (cf. (2.16)) of elements in Γ that fix ∞ is
infinite cyclic and generated by some element γ∞ ∈ B(Q). We claim that in
fact γ∞ lies in Bu(Q), and thus equals Tα (cf. (2.13)) for some α ∈ Q

+. For
otherwise Pdet(γ∞) = e for some e > 1 (cf. (2.15)), so that Pdet(γn∞) = en

for n ∈ Z, since the restriction Pdet : B(Q) → Z
+ is multiplicative. Then

each power of γ∞ lies in a distinct coset of the intersection Γ ∩G(Z) in Γ
since Pdet is invariant under multiplication by elements of G(Z). This con-
tradicts the hypothesis that Γ is commensurable with G(Z), so we conclude
that Γ∞ = 〈Tα〉 for some α ∈ Q

+. Then we may take σ∞ = [α] (cf. (2.12)),
for upon calculating [μ]Tα[1/μ] = Tμα we find that

(2.35) ([1/α]Γ[α])∞ = [1/α]Γ∞[α] = [1/α]〈Tα〉[α] = 〈T 〉,

and the group 〈T 〉 is just B(Z), so the element σ∞ = [α] satisfies the two
conditions (2.34).

In case p = a/c for coprime integers a, c ∈ Z with c 	= 0, we may choose
b, d ∈ Z such that ad− bc = 1 and set σ =

[
a b
c d

]
. Then p = σ · ∞ and σ satis-

fies the first condition in (2.34). Now we rerun the argument of the paragraph
above with σ−1Γσ in place of Γ to find that (σ−1Γσ)∞ = 〈Tα〉 for some
α ∈ Q

+, and σp = σ[α] satisfies the two conditions (2.34). This completes
the proof of the lemma. �

An element σp ∈ G(Q) satisfying the two conditions (2.34) of Lemma 2.2
will be called a scaling element for Γ at the cusp representative p. It is useful
to have a replacement for the notion of scaling element that is independent
of a choice of cusp representative.

Lemma 2.3. Let Γ be a group commensurable with G(Z) and let p ∈ PΓ be
a cusp of Γ. Then there exists a coset Σp ∈ Γ\G(Q) such that

(2.36) p = Σp · ∞, (Σ−1
p Σp)∞ = B(Z).
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Proof. Let p ∈ p ⊂ Q̂ be a representative for p and let σp ∈ G(Q) satisfy
the conditions (2.34) of Lemma 2.2. Then the coset Σp = Γσp satisfies the
conditions (2.36). �

A coset Σp ∈ Γ\G(Q) satisfying the two conditions (2.36) of Lemma 2.3
will be called a scaling coset for Γ at the cusp p. Any element σ ∈ Σp is a
scaling element for Γ at the representative σ · ∞ for the cusp p, and if σp is
a scaling element for Γ at the cusp representative p then the coset Γσp is a
scaling coset for Γ at the cusp p = Γ · p represented by p.

Scaling cosets are determined only up to right multiplication by elements
of Bu(Q). Indeed, both the conditions defining the notion of scaling coset are
invariant under the replacement of Σp by ΣpT

α for some α ∈ Q (cf. (2.13)).
A set {Σp | p ∈ PΓ} ⊂ Γ\G(Q) such that Σp is a scaling coset for Γ at p for
each p ∈ PΓ will be called a system of scaling cosets for Γ.

The problem of constructing scaling cosets for a group Γ may be viewed
in the following way. The group G(Q) acts transitively on Q̂, and the sub-
group B(Q) is just the stabilizer of the distinguished point ∞ ∈ Q̂. Thus the
map Γ\G(Q) → PΓ given by Γσ �→ Γσ · ∞ induces an isomorphism Γ\G(Q)/
B(Q) ∼= PΓ, which we may regard as identifying the sets Γ\G(Q)/B(Q) and
PΓ. Now B(Q) is naturally isomorphic to the semidirect product Bu(Q) �

Bd(Q) (cf. Section 2.5), so the natural map Γ\G(Q) → Γ\G(Q)/B(Q) fac-
tors through Γ\G(Q)/Bu(Q), yielding a naturally defined sequence

(2.37) Γ\G(Q) → Γ\G(Q)/Bu(Q) → Γ\G(Q)/B(Q) ∼= PΓ,

where the fibers of the second map are torsors for the diagonal group
Bd(Q) � Q

+. Given a cusp p ∈ PΓ, any preimage of p in Γ\G(Q) under
the composition (2.37) is a coset of Γ satisfying the first condition defining
a scaling coset for Γ at p. In order to satisfy also the second condition we
should multiply this coset by [μ] (cf. (2.12)) for some (uniquely defined)
μ ∈ Q

+. Thus the two conditions defining scaling cosets define a section of
the Bd(Q)-bundle Γ\G(Q)/Bu(Q) → PΓ. We denote this map p �→ Sp. We
may naturally identify Sp with the set of scaling cosets for Γ at p, for these
are precisely the preimages of Sp in Γ\G(Q) under the first map of (2.37).

PΓ → Γ\G(Q)/Bu(Q),
p �→ Sp = {ΣpT

α | α ∈ Q}.(2.38)

One says that Γ has width one at infinity in the case that Γ∞ = B(Z).
Observe that Γ has width one at infinity if and only if Γ is a scaling coset
for itself at the infinite cusp Γ · ∞; that is, if and only if Γ ∈ SΓ·∞. If Γ
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does not have width one at infinity then there is a unique μ ∈ Q
+ with the

property that Γ[μ] is a scaling coset for Γ at the infinite cusp Γ · ∞, and
then the group Γ[μ] = [1/μ]Γ[μ] is a group with width one at infinity.

When engaged in the task of computing Fourier coefficients of modular
forms for a group Γ say, one frequently has use for double coset spaces of
the form Γp\Γ/Γq , for some p, q ∈ Q̂, where Γp denotes the stabilizer in Γ
of p. If σp and σq are scaling elements for Γ at p and q , respectively, then
we have σ−1

p Γpσp = B(Z), and similarly with q in place of p, so the set of
translates

(2.39) σ−1
p (Γp\Γ/Γq)σq = {σ−1

p ΓpγΓqσq | γ ∈ Γ}

is in fact a set of double cosets of B(Z). In the notation of Section 2.4 we
have

(2.40) σ−1
p (Γp\Γ/Γq)σq =

�
σ−1

p Γσq

�
= {�σ−1

p γσq

� | γ ∈ Γ}.

Set p = Γ · p and q = Γ · q , and set Σp = Γσp and Σq = Γσq , so that Σp

and Σq are scaling cosets for Γ at p and q, respectively. Then we have
σ−1

p Γσq = Σ−1
p Σq, so that these translates depend only on cusps, and not on

cusp representatives. We see from this discussion that for any pair of cusps
p, q ∈ PΓ, with scaling cosets Σp and Σq, respectively, the set Σ−1

p Σq is a
union of double cosets of B(Z). The assignment (p, q) �→ Σ−1

p Σq is sensitive
to the choice of scaling cosets Σp and Σq, to the extent that a different choice
will replace Σ−1

p Σq with a set of the form TαΣ−1
p ΣqT

β for some α, β ∈ Q.
In general there may be no canonical choice of scaling coset for a par-

ticular group at a particular cusp, but there are situations in which some
choices might be preferred over others. For example, it is natural to take
ΣΓ·∞ = Γ in case Γ has width one at infinity, for we then have Σ−1

p Σq = Σ−1
p

when q = Γ · ∞, and Σ−1
p Σq = Σq when p = Γ · ∞, and Σ−1

p Σq = Γ when
p = q = Γ · ∞. We shall always take the scaling coset ΣΓ·∞, for Γ at the
infinite cusp, to be of the form Γ[μ] for μ ∈ Q

+. This value μ is uniquely
determined.

Observe that if Σp and Σq are scaling cosets for Γ at p and q, respectively,
then the intersection Σ−1

p Σq ∩B(Q) = (Σ−1
p Σq)∞ can be non-empty only in

the case that p = q. For p and q cusps for Γ we define δΓ|p,q to be 1 or 0
according as p = q or not.

Given a system {Σp | p ∈ PΓ} of scaling cosets for Γ, we write Γp as a
shorthand for the group obtained as the conjugate of Γ by Σp.

(2.41) Γp = Σ−1
p Σp.
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The notation (2.41) suppresses the dependence on the choice of scaling coset:
a different choice will replace Γp with a group of the form T−αΓpTα for some
α ∈ Q.

2.7. Integrals

Write O(H) for the ring of holomorphic functions on the upper half plane H.
For κ ∈ Z, we define the weight 2κ (right) action of G(Q) on O(H), to

be denoted (f, χ) �→ f |κχ, by setting

(2.42) (f |κχ)(z) = f(χ · z) jac(χ, z)κ

for f ∈ O(H) and χ ∈ G(Q). For Γ a group commensurable with G(Z) (and
hence a subgroup of G(Q)), we call f ∈ O(H) an unrestricted modular form
of weight 2κ for Γ in case it is a fixed point for the weight 2κ action of
Γ. Suppose f is an unrestricted modular form of weight 2κ for Γ. Then for
X ∈ Γ\G(Q) a right coset of Γ in G(Q) we may define a function (f‖κ

ΓX)(z)
by setting

(2.43) f‖κ
ΓX = f |κχ,

where χ is any representative for the coset X ∈ Γ\G(Q). Let p ∈ PΓ be
a cusp of Γ and let Σp ∈ Γ\G(Q) a scaling coset for Γ at p. Then for f
an unrestricted modular form of weight 2κ for Γ we define f|p ∈ O(H) by
setting f|p = f‖κ

ΓΣp. Then f|p(z + 1) = f|p(z) for all z ∈ H, by the defining
properties of Σp (cf. Section 2.6), so we have

(2.44) f|p(z) =
∑

n∈Z

c|p(n)e(nz)

for some c|p(n) ∈ Z. We call the right-hand side of (2.44) the Fourier expan-
sion of f at p with respect to Σp, and we say that f is meromorphic at p
if the right-hand side of (2.44) is a meromorphic function of q = e(z) in a
neighborhood of q = 0. A different choice of scaling coset will replace c|p(n)
with e(nα)c|p(n) for some α ∈ Q, so the notion of being meromorphic at p
is independent of the choice of scaling coset at p.

We define Mκ(Γ) to be the vector space consisting of unrestricted mod-
ular forms of weight 2κ for Γ that are meromorphic at the cusps of Γ. In
a slight departure from standard convention we call Mκ(Γ) the space of
modular forms of weight 2κ for Γ. We define Sκ(Γ) to be the vector space
consisting of modular forms of weight 2κ for Γ that vanish at the cusps of Γ.
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We call Sκ(Γ) the space of cusp forms of weight 2κ for Γ. The vector space
Sκ(Γ) is the zero vector space when κ ≤ 0.

Let κ ∈ Z such that κ ≤ 0, and let w ∈ H ∪ Q̂. Given a holomorphic
function g(z) on H with sufficiently rapid decay as the imaginary part of z
tends to ∞, we define a function Iκ

wg on C by setting Iκ∞g to be the zero
function and by setting

(2.45) (Iκ
wg)(z) = 2πi

∫ ∞

w
g(ξ)(2πi(ξ − z))(−2κ) dξ

for w 	= ∞, where the integral is taken over the vertical line {w + it | t ∈
R

+}. In our applications, g will either be a cusp form (for some Γ < PSL2(R)
commensurable with PSL2(Z)) or will admit a finite power series expansion
of the form g(z) =

∑N
n=1 c(n)e(nz). In these cases the convergence of the

integral defining Iκ
wg is clear.

We define a closely related operator g �→ Jκ
wg by setting

(2.46) (Jκ
wg)(z) = (Iκ

wg)(z̄).

Observe that when κ ≤ 0, the functions (Iκ
wg)(z) and (Jκ

wg)(z) are polyno-
mials of degree at most −2κ in z . For χ ∈ G(Q), we have

(2.47) (Iκ
wg)|κχ = Iκ

w·χ(g|1−κχ) − Iκ
∞·χ(g|1−κχ),

where w · χ = χ−1 · w denotes the natural right action of G(Q) on H ∪ Q̂.
In particular, if g ∈M1−κ(Γ) for some group Γ then we have (Iκ

wg)|κγ =
Iκ
w·γg − Iκ∞·γg for γ ∈ Γ.

Lemma 2.4. Let Γ be a group commensurable with G(Z), let κ ∈ Z such
that κ ≤ 0, and let g ∈ S1−κ(Γ). Then we have Iκ

p g = 0 for all p ∈ Q̂ if and
only if g = 0.

Proof. Certainly Iκ
p g = 0 for all p ∈ Q̂ if g = 0, so let g ∈ S1−κ(Γ) such that

Iκ
p g = 0 for all p ∈ Q̂. Following the proof of Lemma 3.2 in [50] we define a

function f(z) by setting

(2.48) f(z) = (Iκ
z g)(z) = 2πi

∫ ∞

z
g(ξ)(2πi(ξ − z))(−2κ) dξ.

The identity (2.47) implies f |κγ = f − Iκ∞·γg for γ ∈ Γ, so that f is an unre-
stricted modular form of weight 2κ for Γ. We should consider the behavior



882 John F. R. Duncan and Igor B. Frenkel

of f at the cusps of Γ. Let p ∈ PΓ, and let Σp be a scaling coset for Γ at p.
Then we have

(2.49) g|p(ξ) =
∑

n>0

b|p(n)e(nξ)

for some b|p(n) ∈ C, where g|p = g‖1−κ
Γ Σp (cf. (2.43)). In order to analyze

f|p = f‖κ
ΓΣp we choose σ ∈ Σp and compute

(2.50) f |κσ = Iκ
z (g|p) − Iκ

∞·σ(g|p)

by (2.47). Now the term Iκ∞·σ(g|p) vanishes, since we have

(Iκ
∞·σ(g|p))(z) = 2πi1−2κ

∫ ∞

σ−1·∞
g(σ · ξ) jac(σ, ξ)1−κ(ξ − z)(−2κ) dξ

(2.51)

= 2πi1−2κ

∫ ∞

σ−1·∞
g(σ · ξ)(σ · ξ − σ · z)(−2κ) jac(σ, z)κ d(σ · ξ)

= −(Iκ
σ·∞g) jac(σ, z)κ,

which vanishes by our hypothesis on g. So we have the Fourier expansion

(2.52) f|p(z) =
∑

n>0

c|p(n)e(nz)

for f at p, where c|p(n) is determined by b|p(n) according to the formula

(2.53) c|p(n) = b|p(n)2πi(Iκ
0 g)(0) = −n2κ−1bp(n).

We conclude that f is a cusp form of weight κ. Since κ ≤ 0 we have Sκ(Γ) =
0, and so c|p(n) = 0 for all n ∈ Z and all p ∈ PΓ, and so b|p(n) = 0 for all
n ∈ Z and all p ∈ PΓ. That is to say, g vanishes identically, which is what
we required to show. �

Let κ ∈ Z such that κ ≤ 0. Following Niebur (cf. [50]) we say that a
holomorphic function f ∈ O(H) is an unrestricted automorphic integral of
weight 2κ for Γ in case there exists a cusp form g ∈ S1−κ(Γ) such that

(2.54) f |κγ = f − Jκ
∞·γg

for each γ ∈ Γ. According to Lemma 2.4 the cusp form g ∈ S1−κ(Γ) satisfying
(2.54) is uniquely determined. We call it the cusp form associated to the
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unrestricted automorphic integral f . The operator f �→ f‖κ
ΓX, for X a right

coset of Γ, may be extended to unrestricted automorphic integrals as follows.
Suppose f is an unrestricted automorphic integral of weight 2κ for Γ with
associated cusp form g. Then for X ∈ Γ\G(Q) we may define f‖κ

ΓX ∈ O(H)
by setting

(2.55) f‖κ
ΓX = (f − Jκ

χ·∞g)|κχ,

where χ is any representative for the coset X ∈ Γ\G(Q). The transformation
properties (2.47) and (2.54) confirm that the function f‖κ

ΓX is independent
of the choice of coset representative χ. Let Σp be a scaling coset for Γ at a
cusp p ∈ PΓ, and define f|p by setting

(2.56) f|p = f‖κ
ΓΣp.

By the defining properties of scaling cosets we find that f|p(z + 1) = f|p(z)
for all z ∈ H, and so we have

(2.57) f|p(z) =
∑

n∈Z

c|p(n)e(nz)

for some c|p(n) ∈ C. We call (2.57) the Fourier expansion of f at p with
respect to Σp, and we say that f is meromorphic at p if the right-hand side
of (2.57) is a meromorphic function of q = e(z) in a neighborhood of q = 0.

We define Iκ(Γ) to be the vector space consisting of unrestricted auto-
morphic integrals of weight 2κ for Γ that are meromorphic at every cusp of
Γ. We call Iκ(Γ) the space of automorphic integrals of weight 2κ for Γ.

The space Mκ(Γ) of modular forms of weight 2κ for Γ is a subspace of
Iκ(Γ) by definition. Lemma 2.4 may be regarded as stating that Mκ(Γ) is
the kernel of the map Iκ(Γ) → S1−κ(Γ) which sends an automorphic integral
f to its associated cusp form g (cf. (2.54)). We will see in Section 4.5 that
the map Iκ(Γ) → S1−κ(Γ) is surjective, so that we have an exact sequence
of vector spaces

(2.58) 0 →Mκ(Γ) → Iκ(Γ) → S1−κ(Γ) → 0.

The sequence (2.58) is trivially exact in case κ > 0, for then S1−κ(Γ) = 0,
so that an automorphic integral of weight 2κ is automatically a modular
form. Indeed, and more generally, if κ ∈ Z is chosen so that S1−κ(Γ) = 0,
then the spaces Mκ(Γ) and Iκ(Γ) coincide by the definition (cf. (2.54)) of
an automorphic integral.
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3. Rademacher sums

In this section, we associate Rademacher sums, and conjugate Rademacher
sums (cf. Section 1.3), of arbitrary even integer weight to triples (Γ, p, q)
where Γ is a group commensurable with the modular group and p and q
are cusps for Γ. We derive explicit expressions for the Fourier expansions of
these functions, and study how they transform under the action of Γ.

3.1. Construction

Given κ,m ∈ Z and �χ ∈ �G(Q) , define a function z �→ P
κ(m)
�χ (z) on H by

setting

(3.1) P
κ(m)
�χ (z) = e(m �χ · z) jac(�χ , z)κ.

Given U ⊂ �G(Q) , define the holomorphic Poincaré series of weight 2κ and
order m associated to U , to be denoted P κ(m)

U (z), by setting

(3.2) P
κ(m)
U (z) = lim

K→∞

∑

�χ∈U≤K

P
κ(m)
�χ (z),

where U≤K is as in (2.26). Of course, the limit defining P κ(m)
U (z) may or may

not converge depending on the choice of κ, m and U . If κ > 1 and m ≥ 0
then for U = �Γ say, for Γ a group commensurable with G(Z), the limiting
sum in (3.2) converges absolutely and uniformly on compact subsets of H

(cf. Lemma 3.9) and the symbols limK→∞ and ≤K are unnecessary. If κ ≤ 0
then even with the limit the expression on the right-hand side of (3.2) fails
to converge, and the Poincaré series P κ(m)

U (z) is not defined.
As was originally demonstrated by Rademacher in [54], the non-

convergence of the Poincaré series P κ(m)
U (z) when κ = 0 can be circumvented

by replacing P 0(m)
�χ (z) with P 0(m)

�χ (z) − P
0(m)
0,�χ in the right-hand side of (3.2)

where

(3.3) P
0(m)
�χ (z) − P

0(m)
0,�χ = e(m �χ · z) − e(m �χ · ∞)

in case �χ ∈ �G(Q)×, and P 0(m)
0,�χ = 0 otherwise. Rademacher showed form =

−1 (cf. loc. cit.) that the resulting expression is a (conditionally) convergent
series which recovers a function invariant for the modular group G(Z) in the
case that U = �G(Z) . Generalizations of Rademacher’s construction were
given by Knopp (cf. [32]) and Niebur (cf. [50]) so as to obtain conditionally
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convergent Poincaré series for arbitrary real non-positive weights, for various
subgroups of G(R) = PSL2(R).

With the constructions of Rademacher, Knopp and Niebur in mind,
we introduce the Rademacher component function of weight 2κ and order
m associated to �χ , denoted z �→ R

κ(m)
�χ (z) and defined for κ,m ∈ Z and

�χ ∈ �G(Q) , by setting

(3.4) R
κ(m)
�χ (z) = e(m �χ · z) rκ(m, �χ , z) jac(�χ , z)κ,

where rκ(m, �χ , z) is the Rademacher regularization factor of weight 2κ,
given by

rκ(m, �χ , z) = Φ(1 − 2κ, 2 − 2κ,m �χ · ∞ −m �χ · z)(2πi(m �χ · z(3.5)

−m �χ · ∞))1−2κ

in case χ ∈ G(Q)×, and rκ(m, �χ , z) = 1 otherwise (cf. (2.3)). The function
R

κ(m)
�χ (z) is entire in case χ ∈ B(Q), and is otherwise holomorphic away

from z = χ−1 · ∞. For U ⊂ �G(Q) we define the classical Rademacher sum
of weight 2κ and order m associated to U , to be denoted Rκ(m)

U (z), by setting

(3.6) R
κ(m)
U (z) = lim

K→∞

∑

�χ∈U≤K

R
κ(m)
�χ (z).

Again, the expression defining Rκ(m)
U (z) will not converge for all choices of

κ, m and U . Employing the Kummer transformation (2.4) we may rewrite
the Rademacher component function Rκ(m)

�χ (z) as

(3.7) R
κ(m)
�χ (z) = e(m �χ · ∞)e(m �χ · z −m �χ · ∞, 1 − 2κ) jac(�χ , z)κ

in case �χ ∈ �G(Q)×, where e(z, s) is the generalized exponential function of
(2.6). Since we restrict attention to the case that κ is an integer (cf. [50] for
non-integral weights), the generalized exponential in (3.7) may in turn be
written in terms of the partial exponential function e(z)<K (cf. Section 2.1).
We thus obtain the identity

e(m �χ · z) rκ(m, �χ , z) = e(m �χ · z) − e(m �χ · ∞)e(m �χ · z(3.8)
−m �χ · ∞)<1−2κ,



886 John F. R. Duncan and Igor B. Frenkel

when χ ∈ G(Q)×. In particular, we have rκ(m, �χ , z) = 1 when κ is positive,
so that the Rademacher sum R

κ(m)
U (z) is exactly (albeit formally) the

Poincaré series P κ(m)
U (z) when κ > 0.

The case that κ = 0 is special, for the corresponding Poincaré series, if
it were to converge, would define a Γ-invariant function on H for any group
Γ satisfying UΓ = U . With κ = 0 we have r0(m, �χ , z) = 1 − e(m �χ · ∞ −
m �χ · z) when χ ∈ G(Q)×, and hence

(3.9) R
0(m)
�χ (z) = P

0(m)
�χ (z) − P

0(m)
0,�χ

for all �χ ∈ �G(Q)×. In other words, the Rademacher sum R
0(m)
U (z) is given

by

R
0(m)
U (z) = lim

K→∞

∑

�χ∈U×
≤K

P
0(m)
�χ (z) − P

0(m)
0,�χ

(3.10)

=
∑

�χ∈U∞

e(m �χ · z) + lim
K→∞

∑

�χ∈U×
≤K

e(m �χ · z) − e(m �χ · ∞),

with the latter expression holding at least when there are only finitely many
cosets of B(Z) in U∞. This expression (3.10), with m = −1 and U = �G(Z) ,
is the series originally considered by Rademacher in [54].

It is interesting to consider the function obtained by substituting z̄ for z
in the right-hand side of (3.6). We define the conjugate Rademacher sum of
weight 2κ and order m associated to U , to be denoted R̄κ(m)

U (z), by setting

(3.11) R̄
κ(m)
U (z) = lim

K→∞

∑

�χ∈U≤K

R̄
κ(m)
�χ (z),

where R̄
κ(m)
�χ (z) = R

κ(m)
�χ (z̄) by definition. Evidently, the conjugate

Rademacher sum R̄
κ(m)
U (z) is an anti-holomorphic function on H whenever

U , κ and m are such that the limit in (3.11) converges locally uniformly in
z. At first glance it appears that we should recover the classical Rademacher
sum R

κ(m)
U (z) from the conjugate Rademacher sum according to the iden-

tity Rκ(m)
U (z) = R̄

κ(m)
U (z̄), but as we shall see in Section 3.4 the relationship

between the holomorphic functions Rκ(m)
U (z) and R̄κ(m)

U (z̄) is generally more
interesting that this.

We typically take U to be of the form U =
�
Σ−1

p Σq where {Σp | p ∈ PΓ}
is a system of scaling cosets (cf. Section 2.6) for some group Γ commensurable
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with the modular group, and p, q ∈ PΓ are cusps of Γ. In this case we write
R

κ(m)
Γ,p|q(z) for Rκ(m)

U (z), and similarly for the holomorphic Poincaré series,
suppressing the choice of scaling cosets from notation. A change in the choice
of Σp and Σq replaces Rκ(m)

Γ,p|q(z) with a function of the form e(α)Rκ(m)
Γ,p|q(z +

β) for some α, β ∈ Q and similarly for the holomorphic Poincaré series
P

κ(m)
Γ,p|q (z).

In the case that p or q is the infinite cusp Γ · ∞ we omit it from notation,
writing Rκ(m)

Γ,p (z) for Rκ(m)
Γ,p|Γ·∞(z), and Rκ(m)

Γ|q (z) for Rκ(m)
Γ,Γ·∞|q(z), and similarly

for the holomorphic Poincaré series. The functions Rκ(m)
Γ,p (z) are, in a sense,

the most important, for we shall see in Section 3.4 that Rκ(m)
Γ,p (z) is, up to

addition by a certain constant function, an automorphic integral of weight
2κ for Γ with a single pole at the cusp p in case Γ has width one at infinity
(cf. Section 2.6) and κ ≤ 0 and m < 0. We shall see also in Section 3.4 (cf.
Theorems 3.5 and 3.6) that the function Rκ(m)

Γ,p|q(z), once corrected by adding
a certain constant function in case κ ≤ 0, is the expansion (of the correction
by addition of a certain constant) of Rκ(m)

Γ,p (z) at the cusp q in the sense of
Section 2.7.

To further emphasize the importance of the functions R
κ(m)
Γ,p (z) we

observe that every Rademacher sum R
κ(m)
Γ,p|q(z) is of the form R

κ(m)
Γ′,p′ (z) for

some group Γ′ with width one at infinity, and some cusp p′ of Γ′. For if Σp

and Σq are the chosen scaling sets for Γ at p and q, respectively, then we
have Rκ(m)

Γ,p|q(z) = R
κ(m)
U (z) for U =

�
Σ−1

p Σq . Recall (cf. (2.41)) that Γq is a
shorthand for the group Σ−1

q Σq, and this group Γq has width one at infinity
by the defining properties of scaling cosets. If we define pq = Σ−1

q · p ⊂ Q̂

then pq is a cusp of Γq, and Σpq = Σ−1
q Σp is a scaling coset for Γq at pq.

We now have Σ−1
p Σq = Σ−1

pq , so that U =
�
Σ−1

pq . Since Γq has width one at
infinity we may take it to be a scaling coset for itself at the infinite cusp,
and we thus have

(3.12) R
κ(m)
Γ,p|q(z) = R

κ(m)
Γq,pq (z)

subject to a consistent choice of scaling cosets for Γ and Γq. More explicitly,
the equality in (3.12) holds in case Γq = Σ−1

q Σq and pq = Σ−1
q · p and Σpq =

Σ−1
q Σp.

Our primary interest in this article is in the distinguished case that
κ = 0. In order to simplify notation, and maintain consistency with the
notation of Section 1, we write R(m)

Γ,p|q(z) as a shorthand for R0(m)
Γ,p|q(z).
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We conclude this section with a result which expresses the Rademacher
component function Rκ(m)

�χ (z) in terms of the functions P κ(m)
�χ (z) of (3.1) and

the integral operator Jκ
w of Section 2.7.

Lemma 3.1. Let κ,m ∈ Z such that κ ≤ 0 and m < 0, and let �χ ∈ �G(Q) .
Then we have

(3.13) R
κ(m)
�χ (z) = P

κ(m)
�χ (z) −m1−2κ(Jκ

∞·�χP
1−κ(−m)
�χ )(z).

Proof. In case �χ ∈ �G(Q)∞ the second term in the right-hand side of (3.13)
vanishes (cf. (3.15)), and the identity (3.13) then holds by the definition of
R

κ(m)
�χ (z), so we assume henceforth that �χ ∈ �G(Q)×. By (3.8) we may

write the Rademacher component function Rκ(m)
�χ (z) as

e(m �χ · z) jac(�χ , z)κ − e(m �χ · ∞)e(m �χ · z(3.14)
−m �χ · ∞)<1−2κ jac(�χ , z)κ.

The first term in (3.14) is just P κ(m)
�χ (z), and a contour integral calcula-

tion confirms that the second term in (3.14) is m1−2κ times the image of
P

1−κ(−m)
�χ (z) under Jκ

∞·�χ . The details of this contour integral calculation
are as follows. We have

(Jκ
∞·�χP

1−κ(−m)
�χ )(z)(3.15)

= (2πi)1−2κ

∫ ∞

χ−1�·∞
e(−m �χ · ξ) jac(�χ , ξ)1−κ(ξ − z̄)(−2κ) dξ

by the definition of Jκ
w (cf. Section 2.7). Choosing a representative χ for the

coset �χ we compute

∫ ∞

χ−1�·∞
e(−m �χ · ξ) jac(�χ , ξ)1−κ(ξ − z̄)(−2κ) dξ

(3.16)

= e(−mχ · ∞)
∫ χ·∞

∞
e(mχ · ∞ −mχ · ξ)

× (χ · ξ − χ · z̄)(−2κ)d(χ · ξ) jac(χ, z̄)κ

= −e(−mχ · ∞)
∫ ∞

χ·∞
e(mχ · ∞ −mξ)(ξ − χ · z̄)(−2κ) dξ jac(χ, z̄)κ

= −e(−mχ · ∞)
∫ ∞

0
e(−mξ)(ξ + χ · ∞ − χ · z̄)(−2κ) dξ jac(χ, z̄)κ,
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where the last integral in (3.16) is taken over the vertical line {it | t ∈ R
+}.

Thus, making the substitution 2πimξ = t, we find that

∫ ∞

χ−1�·∞
e(−m �χ · ξ) jac(�χ , ξ)1−κ(ξ − z̄)(−2κ) dξ

(3.17)

= −e(−mχ · ∞)(2πim)−1

∫ ∞

0
e−t((2πim)−1t

+ χ · ∞ − χ · z̄)(−2κ) dt jac(χ, z̄)κ

= −e(−mχ · ∞)
−2κ∑

k=0

(2πim)2κ−1(2πi(mχ · ∞ −mχ · z̄))(k) jac(χ, z̄)κ,

and from this we deduce that

(Jκ
∞·�χP

1−κ(−m)
�χ )(z)(3.18)

= m2κ−1e(mχ · ∞)e(mχ · z −mχ · ∞)<1−2κ jac(χ, z)κ.

Upon comparison with (3.14) we obtain the required identity (3.13). This
completes the proof. �

3.2. Coefficients

For �χ� ∈ �G(Q)�× and m,n ∈ Z we define a holomorphic function s �→
Kls�χ�(m,n) on C by setting

(3.19) Kls�χ�(m,n) = e(m �χ� · ∞) e(−n �
χ−1

� · ∞)� �χ�s .

Here � �χ� denotes the scaling factor of (2.20) (cf. Lemma 2.1). If χ ∈ G(Q)×

has a preferred representative
(
a b
c d

)
with c > 0, then we have

(3.20) Kls�χ�(m,n) = e

(
ma+ nd

c

)
(ad− bc)s

c2s
,

so that sums of the Kls�χ�(m,n) over suitable subsets of �G(Q)�× recover
zeta functions of various kinds, as we shall see presently. With this in mind
consider the series KlsS(m,n) defined for S a subset of �G(Q)�× by setting

(3.21) KlsS(m,n) = lim
K→∞

∑

�χ�∈S≤K

Kls�χ�(m,n),
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where S≤K is as in (2.27). Write KlsΓ,p|q(m,n) for KlsS(m,n) in the case
that S =

�
Σ−1

p Σq

�× for Γ a subgroup of G(Q) that is commensurable with
G(Z) and {Σp | p ∈ PΓ} is a system of scaling cosets for Γ. We will ver-
ify presently (cf. Proposition 3.1) that the Dirichlet series s �→ KlsΓ,p|q(m,n)
converges absolutely for 
(s) > 1 (so that the limit is unnecessary there)
and therefore defines a holomorphic function in this region; these functions
KlsΓ,p|q(m,n) are among the Selberg–Kloosterman zeta functions introduced
by Selberg in [55] and shown there to admit meromorphic continuation to
the entire complex plane. Selberg demonstrated further in loc. cit. that the
eigenfunctions of the hyperbolic Laplacian Δ = (z − z̄)2∂z∂z̄ on Γ\H deter-
mine the poles of KlsS(m,n) in such a way that a pole at s corresponds to an
eigenfunction with eigenvalue λ = s(1 − s). The convergence of expressions
very similar to (3.21) in certain regions 
(s) ≥ σ with σ ≤ 1 was considered
by Knopp in [34,35]1.

Proposition 3.1. Let Γ < G(Q) be a group commensurable with G(Z), let
{Σp | p ∈ PΓ} be a system of scaling cosets for Γ and set S =

�
Σ−1

p Σq

�×

for some p, q ∈ PΓ. Then the series (3.21) defining KlsS(m,n) converges for
s = 1 when m and n are not both zero, and converges absolutely and locally
uniformly in 
(s) > 1 for any m,n ∈ Z.

Proof. For positive integers r and c let Sr
c denote the subset of S consisting of

double cosets �χ� ∈ �G(Q)�× with Pdet(χ) = r and c(χ) = c, so that �(χ) =
r/c2 (cf. (2.15)) for �χ� ∈ Sr

c . Observe that there are at most c elements in
Sr

c so we have

(3.22) |KlsSr
c
(m,n)| ≤

∑

�χ�∈Sr
c

|Kls�χ�(m,n)| ≤ rsc1−2s

for s ∈ C. Now S =
⋃

r,c>0 S
r
c and there are only finitely many r for which

Sr =
⋃

c>0 S
r
c is non-empty since Γ is commensurable with G(Z), so (3.22)

and the identity KlsS(m,n) =
∑

c>0

∑
r>0 KlsSr

c
(m,n) implies that the series

of absolute values obtained from (3.21) is bounded above by a constant
independent of m and n so long as 
(s) > 1. Indeed, we have

(3.23) |KlsS(m,n)| ≤
∑

c>0

∑

r∈Pdet(S)

rσc1−2σ ≤ #Pdet(S)rσ
max

1
2σ − 2

,

1Please note that the latter of these references contains important corrections to
the former.
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where #Pdet(S) is the number of values of r for which Sr is non-empty, rmax

is the maximum r for which Sr is non-empty, and σ = 
(s). This proves the
required convergence of (3.21) in the region 
(s) > 1.

We now consider convergence at s = 1. As mentioned above, Selberg
demonstrated the meromorphic continuation of the Selberg–Kloosterman
zeta function s→ KlsS(m,n) and related its poles to the spectrum of the
Laplacian on Γ\H in [55]. It turns out that those poles in 
(s) > 1/2 are
finite in number and are confined to the real line segment (1/2, 1) in the
case that m and n are not both zero, and the absence of a pole at s = 1
derives from the fact that the eigenfunctions for Δ with eigenvalue 0 are har-
monic, and thus constant. (See [28], and Chapter 9 especially, for a thorough
development of these ideas.) In particular, if we write Zm,n(s) for Selberg’s
meromorphic continuation of KlsS(m,n), then Zm,n(s) is holomorphic at s
when 
(s) = 1 and m and n are not both zero, and the only pole of Z0,0(s)
on the line 
(s) = 1 is at s = 1. On the other hand, Goldfeld–Sarnak deter-
mined the estimate

(3.24) |Zm,n(s)| = O

(
|m||n| |s|1/2


(s) − 1/2

)

formn 	= 0 as �(s) → ∞ with 
(s) > 1/2 in [22]. (Loc. cit. considers the case
that m,n > 0. See [52] for the extension to mn 	= 0, and an improvement
upon (3.24).) Armed with this bound and the holomorphy of Zm,n(s) in

(s) > 1 − a for some a > 0, we can deduce the convergence of (3.21) at
s = 1 in the following way, which is an adaptation of the argument presented
in Section 2 of [34]. Note that we can choose a > 0 such that Zm,n(s) has no
poles in (1 − a, 1) for all m,n ∈ Z since the values of s such that 
(s) > 1/2
and s(1 − s) is an eigenvalue of Δ are finite in number. For such a the
estimate (3.24) holds uniformly in s for 
(s) > 1 − a.

Let a > 0 such that the interval (1 − a, 1) contains no poles of Zm,n(s) for
any m,n ∈ Z, let T > 0 and set C to be the positively oriented rectangular
contour with corners ±a± iT . Consider the contour integral

(3.25) I =
1

2πi

∫

C
Zm,n

(
t

2
+ 1
)
xtdt

t
,

where x > 0. By our choice of a the integrand has a unique simple pole inside
C and the residue there is Zm,n(1), so I = Zm,n(1). On the other hand, the
integral over the right most vertical segment of C contributes ΣT (x) where

(3.26) ΣT (x) =
1

2πi

∫ a+iT

a−iT
Zm,n

(
t

2
+ 1
)
xtdt

t
.
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Observe that in the limit as T → ∞ we obtain the function

(3.27) Σ(x) = lim
T→∞

ΣT (x) =
∑

r>0

∑

0<c<x
√

r

Kl1Sr
c
(m,n)

(so long as x does not coincide with c/
√
r for some c, r > 0 with Sr

c non-
empty) and the difference |Σ(x) − ΣT (x)| is O(xaT−1) where the implied
constant is independent of m and n. The estimate (3.24) implies that the
contribution to I of the left most vertical segment of C is O(|m||n|x−aT 1/2),
and we may show that the contributions of the two horizontal compo-
nents of C are O(|m||n|xaT 1/4−1/4a) so long as T < x4a by applying the
Phragmén–Lindelöf theorem (as stated in Theorem 14 of [26]) to the esti-
mates |Zm,n(t/2 + 1)| = O(|m||n||�(t)|1/2) for 
(t) = −a and |Zm,n(t/2 +
1)| = O(1) for 
(t) = a (where the former of these is another application of
(3.24) and the constant implied by the latter is independent of both m and
n according to Proposition 3.1). Setting T = x3a/2 we obtain

(3.28) |Σ(x) − Zm,n(1)| = O(|m||n|x−a/4)

under the condition that a < 3/13, and in the limit as x→ ∞ we arrive at
the convergence of the sum (3.21) at s = 1 in the case that mn 	= 0.

For the case that mn = 0 but m+ n 	= 0 we note that a similar estimate
to (3.24)

(3.29) |Zm,n(s)| = O(|s|1/2)

holds uniformly in s for 
(s) > 1 − a, with the implied constant independent
of m and n, as a consequence of the boundedness of Fourier coefficients of
non-analytic Einstein series in this region (cf. [38]). Now the argument of
the preceding paragraph goes through with (3.29) used in place of (3.24)
and we obtain the desired convergence of KlsS(m,n) at s = 1 for all m,n ∈
Z such that m and n are not both zero. This completes the proof of the
proposition. �

Remark 3.1. Consider the case that S = �G(Z)�×. Then the function
KlsS(m,n) is closely related to the Riemann zeta function ζ(s), for we have

(3.30) KlsS(m, 0) =
∑

c∈Z+

∑

a∈(Z/c)∗

e(ma/c)
c2s

=
σ(|m|, 1 − 2s)

ζ(2s)

for 
(s) > 1 in the case that m < 0, where σ(n, s) is the divisor function
of (2.7). In particular, the function s �→ Kls/2

S (1, 0) is just the reciprocal of
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the Riemann zeta function when S = �G(Z)�×. When m = n = 0 we have
KlsS(0, 0) =

∑
c>0 φ(c)c−2s where φ is Euler’s totient function so clearly the

sum diverges at s = 1 in this case. In general the residue of KlsS(0, 0) at s = 1
is the reciprocal of the hyperbolic area of the quotient Γ\H when S = �Γ�×

for some group Γ. (Cf. [28, Section 6.4].)

The following result is evident from the definition of Kls�χ�(m,n), and
the definition of the conjugation χ �→ χ̄ (cf. Section 2.3).

Lemma 3.2. For any χ ∈ G(Q)×, m,n ∈ Z, and s ∈ C, we have

Kls�χ�(m,n) = Kls�χ−1�(n,m) = Kls�χ̄�(−m,−n),(3.31)

Kls�χ�(m,n)� �χ�1−s = Kl1−s
�χ� (m,n)� �χ�s .(3.32)

For a continuous analog of the function Kls�χ�(m,n) we define Blκ�χ�(w, z),
for χ ∈ G(Q)×, w, z ∈ C and κ ∈ Z, by setting

(3.33) Blκ�χ�(w, z) = 2πiResξ=0 e

(
w� �χ�

ξ

)
e(zξ)

1
ξ2κ

dξ.

Lemma 3.3. The function Blκ�χ�(w, z) admits the following series repre-
sentations.

Blκ�χ�(w, z) =
∑

k≥0

(2πi)2k+2κ� �χ�k w(k)z(k+2κ−1),(3.34)

Blκ�χ�(w, z) =
∑

k≥0

(2πi)2k+2−2κ� �χ�k+1−2κw(k+1−2κ)z(k).(3.35)

The first expression (3.34) holds for κ > 0. The second expression (3.35)
holds for κ ≤ 0.

Lemma 3.4. For any χ ∈ G(Q)× and w, z ∈ C and κ ∈ Z we have

Blκ�χ�(w, z)� �χ�κ = −Bl1−κ
�χ� (z, w)� �χ�1−κ = −Blκ�χ�(−w,−z)� �χ�κ .

(3.36)

The main construction of this section is the following. Given a subset S ⊂
�G(Q)�× and κ ∈ Z, we define the coefficient function, denoted (m,n) �→
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cκS(m,n), by setting

(3.37) cκS(m,n) = lim
K→∞

∑

�χ�∈S≤K

Klκ�χ�(m,n) Blκ�χ�(m,n)

(cf. (2.27)) whenever this limit converges. In applications we take S to be of
the form S =

�
Σ−1

p Σq

�× where Σp and Σq are scaling cosets for a group Γ at
cusps p, q ∈ PΓ where Γ is commensurable with G(Z). We will see presently
that cκS(m,n) converges for any such S. We obtain the following formulas
by combining (3.19) and Lemma 3.3.

Lemma 3.5. The coefficient functions cκS(m,n) admit the following series
representations:

cκS(m,n) = lim
K→∞

∑

�χ�∈S≤K

∑

k≥0

e(m �χ� · ∞)e(−n �
χ−1

� · ∞)(3.38)

× (−4π2� �χ�)k+κm(k)n(k+2κ−1),

cκS(m,n) = lim
K→∞

∑

�χ�∈S≤K

∑

k≥0

e(m �χ� · ∞)e(−n �
χ−1

� · ∞)(3.39)

× (−4π2� �χ�)k+1−κm(k+1−2κ)n(k).

The expression (3.38) holds for κ > 0. The expression (3.39) holds for κ ≤ 0.

Proposition 3.2. For S ⊂ �G(Q)�× and m,n, κ ∈ Z we have

(3.40) cκS(m,n) = −c1−κ
S−1 (n,m) = −cκS̄(−m,−n).

Proof. These identities follow directly from Lemma 3.5, and the observation
that the values � �χ�, �

�
χ−1

�
and � �χ̄� all coincide for any χ ∈ G(Q)×. �

Proposition 3.3. Let Γ be a group commensurable with G(Z) and let p, q ∈
PΓ be cusps of Γ. Then the expression (3.37) defining the coefficient function
cκS(m,n) converges for S =

�
Σ−1

p Σq

�× and any κ,m, n ∈ Z, and further, we
have

(3.41) |cκS(m,n)| = O(|m|1/2−κ|n|κ−1/2 eC|mn|1/2
)

as |n| → ∞ where C depends only on S and the implied constant depends
only on S and κ.



Rademacher sums, moonshine and gravity 895

Proof. Observe that according to the κ �→ 1 − κ symmetry of Proposition 3.2
it suffices to consider the case that κ > 0. Observe also that for κ > 0 the
coefficient function cκS(m,n) vanishes for all m when n = 0, and when m = 0
we have

(3.42) cκS(0, n) = (−4π2)κn(2κ−1) KlκS(0, n),

according to (3.38), so the convergence in case mn = 0 is either trivial
or follows from the convergence of the Selberg–Kloosterman zeta function
KlκS(m,n) which is established in Proposition 3.1. Assume then thatmn 	= 0.
By (3.38) we have

(3.43) cκS(m,n) = (−4π2)κ
∑

c>0

∑

r>0

∑

k≥0

Klκ+k
Sr

c
(m,n)(−4π2m)(k)n(k+2κ−1),

where Sr
c is defined as in the proof of Proposition 3.1 and the sum over r

is finite. In case κ > 1, we can reorder the summation over k in (3.43) past
the other two since the sum

(3.44) cκS(m,n) = (−4π2)κ
∑

k≥0

(−4π2m)(k)n(k+2κ−1) Klκ+k
S (m,n),

so obtained is absolutely convergent according to the estimate (3.23). In
detail,

|cκS(m,n)| ≤ (4π2)κ
∑

k≥0

(4π2|m|)(k)|n|(k+2κ−1)#Pdet(S)rκ+k
max

1
2κ− 2 + 2k

(3.45)

≤ #Pdet(S)(4π2rmax)κ
∑

k≥0

(4π2rmax|m|)(k)|n|(k+2κ−1) <∞.

Now for A and B non-negative we have

(3.46)
∑

k≥0

A(k)B(k+2κ−1) ≤ A1/2−κBκ−1/2
∑

k≥0

(2(AB)1/2)(2k+2κ−1),

so that setting A = 4π2rmax|m| and B = |n| in (3.46) we obtain the required
estimate (3.41) from (3.45) with C = 4πr1/2

max.
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It remains to establish the estimate (3.41) in case κ = 1. For this we
write

(3.47) cκS(m,n) = (−4π2)κn(2κ−1) KlκS(m,n) + cκS(m,n)+,

where

(3.48) cκS(m,n)+ = (−4π2)κ
∑

k>0

(−4π2m)(k)n(k+2κ−1) Klκ+k
S (m,n)

is an absolutely convergent sum (cf. (3.44)) and we have

(3.49) |cκS(m,n)+| = O(|m|1/2−κ|n|κ−1/2 eC|mn|1/2
)

with C = 4πr1/2
max according to the estimates (3.45) and (3.46). Now we see

from (3.47) that the estimate (3.49) also holds for cκS(m,n) since (3.24) (or
(3.29) in case m = 0) implies that KlκS(m,n) has at most polynomial growth
in n as |n| → ∞ when κ = 1. This completes the proof. �

We write cκΓ,p|q(m,n) for cκS(m,n) in the case that S =
�
Σ−1

p Σq

�×. This
notation suppresses the dependence on the choice of scaling cosets; the fol-
lowing lemma describes this dependence explicitly.

Lemma 3.6. Let p, q ∈ PΓ, let Σp and Σ′
p be scaling cosets for Γ at p and

let Σq and Σ′
q be scaling cosets for Γ at q. Set S =

�
Σ−1

p Σq

�× and S′ =
�
(Σ′

p)
−1Σ′

q

�×. Then we have Σ′
p = ΣpT

α and Σ′
q = ΣqT

β and cκS′(m,n) =
e(mα+ nβ)cκS(m,n) for some α, β ∈ Q.

With a fixed choice of subset S ⊂ �G(Q)�× and integer κ ∈ Z, we assem-
ble the coefficient functions cκS(m,n) into a formal series F̃ κ

S (p, q) by setting

(3.50) F̃ κ
S (p, q) =

∑

m,n∈Z

cκS(m,n)pmqn.

The formal Fourier coefficients of the formal series F̃ κ
S (p, q) with respect

to the variable p are of particular importance. For fixed S ⊂ �G(Q)�× and
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κ ∈ Z we define formal series F̃ κ(m)
S (q) by requiring that

(3.51) F̃ κ
S (p, q) =

∑

m∈Z

F̃
κ(m)
S (q)pm.

We define the singular and regular part of F̃ κ(m)
S (q), to be denoted F̃

κ(m)
S

(q)sing and F̃ κ(m)
S (q)reg, respectively, by setting

F̃
κ(m)
S (q)sing =

∑

n≥0

cκS(m,−n− 1)q−n−1, F̃
κ(m)
S (q)reg =

∑

n≥0

cκS(m,n)qn.

(3.52)

We define F̃ κ(m)
S (q)van to be the series obtained by removing the constant

term from F̃
κ(m)
S (q)reg.

(3.53) F̃
κ(m)
S (q)van =

∑

n>0

cκS(m,n)qn.

Given the formal series F̃ κ
S (p, q) for some S and κ, one may ask if the coeffi-

cient series F̃ κ(m)
S (q) define holomorphic functions on H upon the substitu-

tion of e(z) for q. Supposing this to be the case, we define F κ(m)
S (z) by setting

(3.54) F
κ(m)
S (z) = F̃

κ(m)
S (e(z)) =

∑

n∈Z

cκS(m,n)e(nz),

and we define F κ(m)
S (z)sing, F

κ(m)
S (z)reg and F

κ(m)
S (z)van in the analogous

way.
We write F κ(m)

Γ,p|q (z) for F κ(m)
S (z) in the case that S =

�
Σ−1

p Σq

�× for Γ
a group commensurable with G(Z) and for Σp,Σq ∈ Γ\G(Q) scaling cosets
for Γ at cusps p, q ∈ PΓ. We write F (m)

S (z) as a shorthand for F 0(m)
S (z), and

interpret the notation F (m)
Γ,p|q(z), &c., similarly.

The regular part of the formal series F̃ κ(m)
S (q) indeed defines a holomor-

phic function on H, for suitable κ,m ∈ Z, in the case that S is of the form�
Σ−1

p Σq

�×.

Proposition 3.4. Let Γ be a group commensurable with G(Z), let p, q ∈ PΓ

be cusps of Γ and let κ,m ∈ Z. Then the series

(3.55) F
κ(m)
Γ,p|q (z)van =

∑

n>0

cκΓ,p|q(m,n)e(nz)
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converges absolutely and locally uniformly for z ∈ H. In particular,
F

κ(m)
Γ,p|q (z)van is a holomorphic function on H for any κ,m ∈ Z.

Proof. For m 	= 0 the claim follows directly from the estimate (3.41). If m =
0 and κ ≤ 0 then F

κ(m)
Γ,p|q (z)van vanishes identically according to (3.39). For

m = 0 and κ > 0 the required convergence of (3.55) follows from (3.42) since
KlκS(0, n) has at most polynomial growth in n according to the proof of
Proposition 3.1. �

By a similar argument to that just given we see that the singular part of
the formal series F̃ κ(m)

S (q) defines an anti-holomorphic function on H when
S is of the form

�
Σ−1

p Σq

�×.

Proposition 3.5. Let Γ be a group commensurable with G(Z), let p, q ∈ PΓ

be cusps of Γ and let κ,m ∈ Z. Then the series

(3.56) F
κ(m)
Γ,p|q (z̄)sing =

∑

n>0

cκΓ,p|q(m,−n)e(−nz̄)

converges absolutely and locally uniformly for z ∈ H. In particular,
F

κ(m)
Γ,p|q (z̄)sing is an anti-holomorphic function on H for any κ,m ∈ Z.

The notation F κ(m)
Γ,p|q suppresses the dependence upon the choice of scaling

cosets Σp and Σq. The next result encodes this dependence precisely.

Proposition 3.6. Let Γ be a group commensurable with G(Z), and let
p, q ∈ PΓ. Let Σp and Σ′

p be scaling cosets for Γ at p and let Σq and Σ′
q be

scaling cosets for Γ at q. Set S =
�
Σ−1

p Σq

�× and S′ =
�
(Σ′

p)
−1Σ′

q

�×. Then
we have Σ′

p = ΣpT
α and Σ′

q = ΣqT
β and F κ(m)

S′ (z) = e(mα)F κ(m)
S (z + β) for

some α, β ∈ Q.

3.3. Convergence

Our main goal in this section is to establish the convergence, and Fourier
series expansion, of the Rademacher sum R

κ(m)
Γ,p|q(z) (cf. Section 3.1), attached

to a group Γ commensurable with G(Z), and cusps p and q for Γ. We will
require mostly minor modifications of the arguments furnished by Niebur
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in [50]. An important technical tool in these arguments is the identity

(3.57)
∑

n>0

n(s−1)e(nz) =
∑

n∈Z

(−2πi)−s(z + n)−s,

valid for 
(s) > 1, in which both sums converge absolutely and uniformly
in z on compact subsets of H. A nice proof of (3.57) appears in [37]. This
identity can be extended to s = 1 at the expense of absolute convergence.

Lemma 3.7. Let z ∈ H and let K ∈ Z
+ such that K + 1/2 > 
(z). Then

we have

(3.58)
∑

n>0

e(nz) =
∑

n∈Z

−K≤n≤K

(−2πi)−1(z + n)−1 + λK(z),

where the error term λK(z) is given by

λK(z) =
1
2π

∫ ∞

−∞

(
1

z + iv −K − 1/2
− 1
z + iv +K + 1/2

)
1

1 + e−2πv
dv.

(3.59)

Proof. The proof follows that of (the more general) Lemma 4.1 in [50]. Define
a function f(ξ) by setting f(ξ) = (2πiξ)−1(e(ξ − z) − 1)−1. Then f(ξ) has a
pole at ξ = 0 and a pole also at ξ = z + n for each n ∈ Z. For the residue of
f(ξ) dξ at ξ = 0 we have

(3.60) Resξ=0 f(ξ) dξ =
1

2πi
1

e(−z) − 1
=

1
2πi

∑

n>0

e(nz),

which is 1/2πi times the left hand side of (3.58), while the residue at ξ =
z + n is (2πi)−2(z + n)−1. Let K be a positive integer such that K + 1/2 >

(z) and set Q = K + 1/2 for convenience. Let γ be the positively oriented
boundary of the rectangle with corners 
(z) ±Q± iL where L > �(z). Then
by the residue theorem we have

(3.61)
∫

γ
f(ξ) dξ =

∑

n>0

e(nz) +
∑

−K≤n≤K

(2πi)−1(z + n)−1.

On the other hand, the contributions of the horizontal edges of γ to
∫
γ f(ξ) dξ

tend to 0 as L→ ∞ since f(ξ) decays exponentially as �(ξ) → ∞. The
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residues are independent of L for L sufficiently large so taking the limit as
L→ ∞ we obtain

(3.62)
∑

n>0

e(nz) +
∑

−K≤n≤K

(2πi)−1(z + n)−1 = λK(z),

where λK(z) is the limit as L→ ∞ of the contributions of the vertical edges
of γ. Setting x = 
(z) we have

(3.63) λK(z) = i
∫ ∞

−∞
(f(x+Q+ iv) − f(x−Q+ iv)) dv.

After replacing v with v + �(z) and observing that e(Q) = e(−Q) = −1
since K is an integer we obtain the expression

(3.64) λK(z) =
1
2π

∫ ∞

−∞

(
1

z + iv −Q
− 1
z + iv +Q

)
1

1 + e(iv)
dv

and combining this with (3.62) recovers the required identity. �
Setting Q = K + 1/2 and substituting Qv for v in (3.59) we find that

λK(z) =
1
2π

∫ ∞

−∞

(
1

z/Q+ iv − 1
− 1
z/Q+ iv + 1

)
1

1 + e(iQv)
dv(3.65)

=
1
π

∫ ∞

−∞
1

((z/Q+ iv)2 − 1)
1

1 + e−2πQv
dv,

which demonstrates that λK(z) tends to −1/π times
∫∞
0 (1 + v2)−1 dv = π/2

as K → ∞. We thus obtain

(3.66)
∑

n>0

e(nz) = −1
2

+ lim
K→∞

∑

−K<n<K

(−2πi)−1(z + n)−1.

The formulas (3.57) and (3.66) are collectively known as the Lipschitz sum-
mation formula.

Theorem 3.1. Let Γ be a group commensurable with G(Z), and let p, q ∈
PΓ be cusps of Γ. Let κ,m ∈ Z such that κ ≤ 0 and m < 0. Then the limit
defining the classical Rademacher sum R

κ(m)
Γ,p|q(z) converges locally uniformly

to a holomorphic function on H, and we have

(3.67) R
κ(m)
Γ,p|q(z) = δΓ,p|qe(mz) +

1
2
cκΓ,p|q(m, 0) + F

κ(m)
Γ,p|q (z)van.
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Proof. Set U =
�
Σ−1

p Σq

�
and S =

�
Σ−1

p Σq

�×. For κ < 0 the result follows
from Lemmas 4.2 and 4.3 of [50]. Indeed, using Lemma 3.1 we may identify
the Rademacher component function R

κ(m)
�χ (z) with the function s�χ (z) +

t�χ (z) defined on page 376 of [50]. Then the expression

(3.68)
∑

c∈Z+

lim
K→∞

∑

�χ∈U≤K

c(χ)=c

R
κ(m)
�χ (z)

is, up to addition by a certain constant function, the definition of
Rademacher sum used by Niebur in loc. cit. The Lipschitz summation for-
mula(s) (3.57) and (3.66) are the main tools used in equating (3.68) with
the right-hand side of (3.67).

In case κ = 0 we require to reinforce the argument of [50] with a non-
trivial estimate for the Selberg–Kloosterman zeta function KlsS(m,n) at
s = 1; we will apply the result (3.24) of Goldfeld–Sarnark to this purpose.
Assume then that κ = 0 and observe that we have

R
κ(m)
Γ,p|q(z) = δΓ,p|qe(mz) + lim

K→∞

∑

�χ∈U×
≤K

e(m �χ · ∞)e(m �χ · z −m �χ · ∞, 1)
(3.69)

= δΓ,p|qe(mz) + lim
K→∞

∑

�χ∈U×
≤K

e(m �χ · ∞)

×
∑

k≥0

(−2πi� �χ�)k+1m(k+1)(z − χ−1
� · ∞)−k−1

according to (3.7), the definition (2.6) of the generalized exponential e(z, s),
and the identity (2.24). We write Rκ(m)

Γ,p|q(z) = e(mz) +R0 +R+ where

R0 = lim
K→∞

∑

�χ∈U×
≤K

e(m �χ · ∞)(−2πi� �χ�)m(z − χ−1
� · ∞)−1,

(3.70)

R+ =
∑

�χ∈U×

e(m �χ · ∞)
∑

k>0

(−2πi� �χ�)k+1m(k+1)(z − χ−1
� · ∞)−k−1,

(3.71)

and the second sum R+ is absolutely convergent, locally uniformly for z ∈ H.
After choosing a representative χ for each double coset �χ� in S we may
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rewrite R+ as

R+ =
∑

�χ�∈S

e(m �χ� · ∞)
∑

k>0

(−2πi� �χ�)k+1m(k+1)(3.72)

×
∑

n∈Z

(z − χ−1
� · ∞ + n)−k−1,

and applying the Lipschitz summation formula (3.57) to this we obtain

R+ =
∑

n>0

∑

�χ�∈S

e(m �χ� · ∞)e(−n �
χ−1

� · ∞)(3.73)

×
∑

k>0

(−4π2� �χ�)k+1m(k+1)n(k)e(nz)

=
∑

n>0

cκS(m,n)+e(nz),

where cκS(m,n)+ satisfies cκS(m,n) = (−4π2)mKl1S(m,n) + cκS(m,n)+
according to (3.39). For K a positive integer set

(3.74) R0(K) = (−2πi)m
∑

U×
≤K

e(m �χ · ∞)� �χ� (z − χ−1
� · ∞)−1,

so that R0 = limK→∞R0(K). Then choosing as above a representative χ for
each �χ� ∈ S we have

R0(K) = (−2πi)m
∑

�χ�∈S≤K

e(m �χ� · ∞)� �χ�(3.75)

×
∑

n∈Z

−K2≤d(χ)+nc(χ)≤K2

(z − χ−1
� · ∞ + n)−1

= (−2πi)m
∑

0<c<K

∑

�χ�∈Sc

e(m �χ� · ∞)� �χ�

×
⎛

⎝
∑

|n|≤K2/c

(z − χ−1
� · ∞ + n)−1 +O(c/K2)

⎞

⎠ ,

where the term O(c/K2) accounts for the discrepancy between the two sum-
mations over n. Applying the Lipschitz summation formula (3.62) to the
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second line of (3.75) we obtain

R0(K) = (−4π2)m
∑

0<c<K

∑

�χ�∈Sc

e(m �χ� · ∞)� �χ�(3.76)

×
(

1
2

+
∑

n>0

e(−n �
χ−1

� · ∞)e(nz) +O(c/K2)

)

since the error term λX(z) appearing in (3.62) satisfies λX(z) + 1/2 =
O(1/X). We conclude from this that

R0 = lim
K→∞

∑

�χ�∈S≤K

e(m �χ� · ∞)(−4π2)� �χ�m(3.77)

×
(

1
2

+
∑

n>0

e(−n �
χ−1

� · ∞)e(nz)

)
.

We claim now that R0 = cκS(m, 0)/2 +
∑

n>0 c
κ
S(m,n)0e (nz) where

cκS(m,n)0 = cκS(m,n) − cκS(m,n)+ = (−4π2)mKl1S(m,n). To see this observe
that for fixed positive K we have

∑

�χ�∈S≤K

e(m �χ� · ∞)� �χ�
∑

n>0

e(−n �
χ−1

� · ∞)e(nz) =
∑

n>0

Kl1S≤K
(m,n)e(nz)

(3.78)

since the left-hand side converges absolutely. Now Kl1S≤K
(m,n) = Kl1S

(m,n) +O(n) as K → ∞ according to (3.28) since the Σ(x) there is just
Kl1S≤x

(m,n) (cf. (3.27)). Then (3.24) implies Kl1S≤K
(m,n) = O(n) uniformly

in K and n and we conclude that the limit as K → ∞ of the right-hand side
of (3.78) is

∑
n>0 Kl1S(m,n)e(nz), and thus

(3.79) R0 = cκS(m, 0)/2 +
∑

n>0

cκS(m,n)0e(nz)

as was claimed. Taking (3.79) together with (3.73) we arrive at the required
identity (3.67) in case κ = 0. The proof is complete. �

The next result identifies the Fourier series expansion of the conjugate
Rademacher sum R̄

κ(m)
Γ,p|q(z). As such it is a natural counterpart to Theo-

rem 3.1. The method of proof is directly analogous to that of Theorem 3.1.

Theorem 3.2. Let Γ be a group commensurable with G(Z), and let p, q ∈
PΓ be cusps of Γ. Let κ,m ∈ Z such that κ ≤ 0 and m < 0. Then the limit
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defining the conjugate Rademacher sum R̄
κ(m)
Γ,p|q(z) converges locally uniformly

to an anti-holomorphic function on H, and we have

(3.80) R̄
κ(m)
Γ,p|q(z) = δΓ,p|qe(mz̄) −

1
2
cκΓ,p|q(m, 0) − F

κ(m)
Γ,p|q (z̄)sing.

Theorems 3.1 and 3.2 furnish the Fourier expansions of the classical
and conjugate Rademacher sums of non-positive weight. Directly analogous
methods can be used to determine expressions for the Fourier coefficients
of the Rademacher sums of positive weight, which are, after all, just the
holomorphic Poincaré series (cf. Section 3.1). Indeed, there are fewer technical
difficulties in the case of positive weight, since the sum appearing in the
definition (3.2) of the Poincaré series P κ(m)

Γ,p|q is absolutely and locally uni-
formly convergent (at least when κ > 1). For completeness we state an analog
of Theorem 3.1 for κ > 0. The result is standard (cf. [28]).

Theorem 3.3. Let Γ be a group commensurable with G(Z), and let p, q ∈
PΓ be cusps of Γ. Let κ,m ∈ Z such that κ > 0 and m ≥ 0. Then for z ∈ H

we have

(3.81) R
κ(m)
Γ,p|q(z) = δΓ,p|qe(mz) + F

κ(m)
Γ,p|q (z)van.

Recall from Section 3.1 that we write R(m)
Γ,p|q(z) for R0(m)

Γ,p|q(z) and inter-

pret R̄(m)
Γ,p|q(z) similarly. To conclude this section we consider the difference

R
(m)
Γ,p|q(z) − R̄

(m)
Γ,p|q(z). Combining Theorems 3.1 and 3.2 we obtain the fol-

lowing identification of the Fourier expansion of this function in terms of
the exponential function e(z) and its conjugate e(−z̄).

Theorem 3.4. Let Γ be a group commensurable with G(Z), let p, q ∈ PΓ

be cusps of Γ, and let m < 0. Then we have

R
(m)
Γ,p|q(z) − R̄

(m)
Γ,p|q(z) = δΓ,p|q(e(mz) − e(mz̄))(3.82)

+ F
(m)
Γ,p|q(z̄)sing + cΓ,p|q(m, 0) + F

(m)
Γ,p|q(z)van

for z ∈ H.

3.4. Variance

Recall from Section 3.1 that we write Rκ(m)
Γ,p (z) for Rκ(m)

Γ,p|q(z) in case q is
the infinite cusp Γ · ∞. Suppose that Γ is commensurable with the modular
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group and has width one at infinity (cf. Section 2.6). We will establish in this
section that the Rademacher sum R

κ(m)
Γ,p (z), once corrected by the addition

of a certain constant function, is an automorphic integral of weight 2κ for
Γ whenever κ = 1 and m > 0 or κ > 1 and m ≥ 0 or κ ≤ 0 and m < 0.
This is quite general since, according to the discussion of Section 3.1, any
Rademacher sum R

κ(m)
Γ,p|q(z) can be expressed in the form R

κ(m)
Γ′,p′ (z) for some

group Γ′ having width one at infinity (cf. (3.12)).
Let us begin by considering the weight 2κ action of G(Q) on the

Rademacher component function Rκ(m)
�χ (z) of (3.4).

Lemma 3.8. Let �χ ∈ �G(Q)× and σ ∈ G(Q), and let κ,m ∈ Z. In case
κ > 0 and m ≥ 0 we have

(3.83) (Rκ(m)
�χ |κσ)(z) = R

κ(m)
�χσ (z),

and in case κ ≤ 0 and m < 0 we have

(3.84) (Rκ(m)
�χ |κσ)(z) = R

κ(m)
�χσ (z) +m1−2κ(Jκ

∞·�σP
1−κ(−m)
�χσ )(z).

Proof. Note that we have

(3.85) (P κ(m)
�χ |κσ)(z) = P

κ(m)
�χσ (z)

for all κ,m ∈ Z, where P κ(m)
�χ (z) = e(m �χ · z) jac(�χ , z)κ (cf. (3.1)), so the

identity (3.83) follows from (3.85) and the fact that Rκ(m)
�χ (z) = P

κ(m)
�χ (z)

in case κ > 0, by the definition of Rκ(m)
�χ (z) (cf. Section 3.1). For (3.84) we

suppose κ ≤ 0 and m < 0 and use Lemma 3.1 to write the Rademacher
component function R

κ(m)
�χ (z) in terms of the functions P κ(m)

�χ (z) and the

integral operator Jκ
w. Then, employing (3.85) and the identity (2.47), we

compute

(Rκ(m)
�χ |κσ)(z) = (P κ(m)

�χ |κσ)(z) −m1−2κ((Jκ
∞·�χP

1−κ(−m)
�χ )|κσ)(z)(3.86)

= P
κ(m)
�χσ (z) −m1−2κ(Jκ

∞·�χσP
1−κ(−m)
�χσ )(z)

+m1−2κ(Jκ
∞·�σP

1−κ(−m)
�χσ )(z).

Applying Lemma 3.1 once again we recognize the first two terms on the
right-hand side (of the second line) of (3.86) to be Rκ(m)

�χσ (z). We thus obtain
the required identity (3.84). �
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As for technical tools, in addition to Lemma 3.7, we also use the following
result which shows that there is some flexibility in the convergence of the
limit (3.6) defining the classical Rademacher sum.

Lemma 3.9. Let Γ be a group commensurable with G(Z), let p ∈ PΓ be a
cusp of Γ and let σ ∈ G(Q). Let κ,m ∈ Z such that either κ = 1 and m > 0
or κ > 1 and m ≥ 0 or κ ≤ 0 and m < 0. Then we have

(3.87) lim
K→∞

∑

�χ∈(U≤K)σ

R
κ(m)
�χ (z) = lim

K→∞

∑

�χ∈(Uσ)≤K

R
κ(m)
�χ (z)

for U =
�
Σ−1

p and z ∈ H.

Proof. For κ > 1 and m ≥ 0 both sums in (3.87) are absolutely convergent,
and the identity certainly holds. In case κ = 1 and m > 0, or κ ≤ 0 and
m < 0, the identity (3.87) is established via the argument of Lemma 4.3
in [50]. Note that this argument fails in the case that κ = 1 and m = 0,
and indeed, the identity (3.87) does not hold in general when κ = 1 and
m = 0. �

Theorem 3.5. Let Γ be a group commensurable with G(Z) that has width
one at infinity and let p ∈ PΓ be a cusp of Γ. Let κ,m ∈ Z such that κ > 1
and m ≥ 0 or κ = 1 and m > 0. Then the function R

κ(m)
Γ,p (z) is a modular

form of weight 2κ for Γ, and is a cusp form in case m > 0. Further, for
q ∈ PΓ another cusp of Γ the Fourier expansion of the function R

κ(m)
Γ,p|q(z) is

the expansion of Rκ(m)
Γ,p (z) at the cusp q.

Proof. Let κ and m be as in the statement of the proposition. Since Γ has
width one at infinity we may take Γ to be the scaling coset for Γ at the
infinite cusp. Let Σp be a scaling coset for Γ at p and set U =

�
Σ−1

p . Then
in the case that κ > 1 we have

(3.88) R
κ(m)
Γ,p (z) =

∑

�χ∈U

R
κ(m)
�χ (z) =

∑

�χ∈U

e(m �χ · z) jac(�χ , z)κ,

with the sum(s) in (3.88) converging absolutely for z ∈ H. Let σ ∈ G(Q).
Then we have

(Rκ(m)
Γ,p |κσ)(z) =

∑

�χ∈U

(Rκ(m)
�χ |κσ)(z) =

∑

�χ∈U

R
κ(m)
�χσ (z) =

∑

�χ∈Uσ

R
κ(m)
�χ (z)

(3.89)
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by Lemma 3.8, with all sums absolutely convergent, locally uniformly in
z. Taking σ ∈ Γ we see that Rκ(m)

Γ,p (z) is an unrestricted modular form of

weight 2κ for Γ since Σ−1
p σ = Σ−1

p for σ ∈ Γ. Taking q ∈ PΓ and σ ∈ Σq we
see that Theorem 3.3 gives the Fourier expansion of Rκ(m)

Γ,p (z) at q, in the
sense of Section 2.7, since Σ−1

p σ = Σ−1
p Σq for any σ ∈ Σq. We conclude that

the (a priori unrestricted) modular form R
κ(m)
Γ,p (z) is vanishing at every cusp

q ∈ PΓ, except possibly for q = p, and vanishes even there just when m > 0,
and thus the claim is verified for κ > 1.

Consider now the case that κ = 1. We have

R
1(m)
Γ,p (z) = lim

K→∞

∑

�χ∈U≤K

R
1(m)
�χ (z) = lim

K→∞

∑

�χ∈U≤K

e(m �χ · z) jac(�χ , z),
(3.90)

and it is necessary to consider (some kind of) a limit since the convergence
is not absolute in this case. Let σ ∈ G(Q) and consider the weight 2 action
of σ on R1(m)

Γ,p (z).

(R1(m)
Γ,p |1σ)(z) = lim

K→∞

∑

�χ∈U≤K

(R1(m)
�χ |1σ)(z) = lim

K→∞

∑

�χ∈U≤K

R
1(m)
�χσ (z).

(3.91)

Taking σ ∈ Γ and applying Lemma 3.9 we see that R1(m)
Γ,p (z) is a(n unre-

stricted) modular form for Γ. Applying Lemma 3.9 in the case that σ ∈ Σq

for some cusp q ∈ PΓ, we see that the Fourier expansion of the function
R

1(m)
Γ,p|q(z) is the expansion of R1(m)

Γ,p (z) at q in the sense of Section 2.7,

so Theorem 3.3 applies also when κ = 1, and thus R1(m)
Γ,p (z) is a modular

form of weight 2 for Γ and even a cusp form since m > 0. This completes
the proof. �

We now present an analog of Theorem 3.5 for the case that κ ≤ 0.

Theorem 3.6. Let Γ be a group commensurable with G(Z) that has width
one at infinity and let p ∈ PΓ be a cusp of Γ. Let κ,m ∈ Z such that κ ≤
0 and m < 0. Then the function R

κ(m)
Γ,p (z) + cκΓ,p(m, 0)/2 is an automor-

phic integral of weight 2κ for Γ, and for q ∈ PΓ another cusp of Γ the
Fourier expansion of the function Rκ(m)

Γ,p|q(z) + cκΓ,p|q(m, 0)/2 is the expansion

of Rκ(m)
Γ,p (z) + cκΓ,p(m, 0)/2 at the cusp q.
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Proof. Let κ and m be as in the statement of the theorem. Since Γ has width
one at infinity we take Γ to be the scaling coset for Γ at the infinite cusp.
Let Σp be a scaling coset for Γ at p and set U =

�
Σ−1

p . Let σ ∈ G(Q). Using
Lemma 3.8 we compute

(Rκ(m)
U |κσ)(z) = lim

K→∞

∑

�χ∈U≤K

R
κ(m)
�χσ (z) +m1−2κ(Jκ

∞·�σP
1−κ(−m)
�χσ )(z)

(3.92)

= lim
K→∞

∑

�χ∈(U≤K)σ

R
κ(m)
�χ (z) +m1−2κ(Jκ

∞·�σP
1−κ(−m)
�χ )(z)

for the weight 2κ action of σ on Rκ(m)
U (z) = R

κ(m)
Γ,p (z). Now Lemma 3.9 shows

that

(Rκ(m)
U |κσ)(z) = R

κ(m)
Uσ (z) +m1−2κ lim

K→∞

∑

�χ∈(U≤K)σ

(Jκ
∞·�σP

1−κ(−m)
�χ )(z),

(3.93)

suggesting that Rκ(m)
U (z) might be an automorphic integral of weight 2κ for

Γ with associated cusp form −m1−2κP
1−κ(−m)
U (z) (cf. Section 2.7). This is

not accurate, however, since the limit in (3.93) does not in general commute
with the integral operator Jκ

∞·�σ . Rather, by the argument of Lemma 4.4.
in [50], we have the identity

lim
K→∞

⎛

⎝Jκ
∞·�σ

⎛

⎝
∑

�χ∈(U≤K)σ

P
1−κ(−m)
�χ

⎞

⎠

⎞

⎠ (z)(3.94)

−
⎛

⎝Jκ
∞·�σ

⎛

⎝ lim
K→∞

∑

�χ∈(U≤K)σ

P
1−κ(−m)
�χ

⎞

⎠

⎞

⎠ (z)

= −m
2κ−1

2
(cκS(m, 0) jac(σ, z)κ − cκS′(m, 0)) ,

where S = {�χ� | �χ ∈ U×} and S′ = {�χ� | �χ ∈ (Uσ)×}. Lemma (3.7) plays
a crucial rôle in the verification of (3.94). Applying (3.94) to (3.93) we find
that

(
R

κ(m)
U +

1
2
cκS(m, 0)

)∣∣∣∣
κ

σ = R
κ(m)
U ′ +

1
2
cκS′(m, 0) +m1−2κJκ

∞·�σP
1−κ(−m)
U ′

(3.95)
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for U ′ = Uσ. Taking σ ∈ Γ and applying the identity (4.53) we obtain

(
R

κ(m)
Γ,p +

1
2
cκΓ,p(m, 0)

)∣∣∣∣
κ

σ = R
κ(m)
Γ,p +

1
2
cκΓ,p(m, 0) +m1−2κJκ

∞·�σP
1−κ(−m)
Γ,p

(3.96)

from (3.95), demonstrating that the function R
κ(m)
Γ,p (z) + cκΓ,p(m, 0)/2 is an

unrestricted automorphic integral of weight 2κ for Γ with associated cusp
form −m1−2κP

1−κ(−m)
Γ,p (z). Letting q ∈ PΓ and applying (3.95) with σ ∈ Σq

we obtain

R
κ(m)
Γ,p|q +

1
2
cκΓ,p|q(m, 0)(3.97)

=
(
R

κ(m)
Γ,p +

1
2
cκΓ,p(m, 0)

)∣∣∣∣
κ

σ −m1−2κJκ
∞·�σP

1−κ(−m)
Γ,p|q

=
(
R

κ(m)
Γ,p +

1
2
cκΓ,p(m, 0) +m1−2κJκ

σ·∞P
1−κ(−m)
Γ,p

)∣∣∣∣
κ

σ,

demonstrating that the Fourier expansion of the function R
κ(m)
Γ,p|q(z) +

cκΓ,p|q(m, 0)/2 is the expansion at q of the automorphic integral Rκ(m)
Γ,p (z) +

cκΓ,p(m, 0)/2 in the sense of Section 2.7. Now Theorem 3.1 confirms that
R

κ(m)
Γ,p (z) + cκΓ,p(m, 0)/2 is meromorphic at the cusps of Γ, and is thus an

automorphic integral of weight 2κ for Γ. This completes the proof of the
proposition. �

We now specialize to the case that κ = 0. Our final goal in this section
is to establish the Γ-invariance of the harmonic function R(m)

Γ,p (z) − R̄
(m)
Γ,p (z)

for m < 0 in case Γ has width one at infinity. For this we utilize the spectral
theory of the hyperbolic Laplacian Δ = (z − z̄)2∂z∂z̄.

Consider the Whittaker functions V (z, s) and W (z, s), defined for z, s ∈
C with z /∈ R by setting

V (z, s) = e(z)Γ(s)Φ(s, 2s, z − z̄)(2πi(z̄ − z))s,(3.98)

W (z, s) =
sin(πs)
sin(2πs)

(V (z, s) − V (z, 1 − s)),(3.99)

in case �(z) > 0 where the function Φ is defined in (2.3). The values V (z, s)
for �(z) < 0 are obtained by imposing the symmetry V (z, s) = V (z̄, s) and
similarly for W (z, s). Then V (z, s) and W (z, s) are eigenfunctions for Δ
with eigenvalue s(1 − s), and the identity V (z, 1) = e(z̄) − e(z) hints at a
connection with the right-hand side of (3.82). Define the free space Green’s
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function G(w, z, s), for w, z ∈ H with w 	= z and s ∈ C such that 
(s) > 1,
by setting

G(w, z, s) =
Γ(s)2

Γ(2s) 2F1(s, s; 2s;h)hs =
∑

k≥0

Γ(k + s)2

Γ(k + 2s)Γ(k + 1)
hk+s,(3.100)

where 2F1(a, b; c;x) denotes the Gauss hypergeometric function and h =
h(w, z) is given as follows and depends only on the hyperbolic distance
between w and z.

(3.101) h(w, z) =
(w − w̄)(z − z̄)
(w − z)(w̄ − z̄)

=
4�(w)�(z)
|w − z|2 .

Then the function z �→ G(w, z, s) satisfies ΔG(w, z, s) = s(1 − s)G(w, z, s)
and the integral operator with kernel G(w, z, s) furnishes a right-inverse to
the differential operator f �→ (Δ − λ)f when λ = s(1 − s).

Let Γ be a group commensurable with G(Z), let p and q be cusps of Γ,
and let Σp and Σq be scaling cosets for Γ at p and q, respectively. Define
GΓ,p|q(w, z, s) for w, z ∈ H such that Γ · w 	= Γ · z by setting

(3.102) GΓ,p|q(w, z, s) =
∑

χ∈Σ−1
p Σq

G(w,χ · z, s).

The series (3.102) converges absolutely and locally uniformly when 
(s) > 1
and the functions w �→ GΓ,p|q(w, z, s) and z �→ GΓ,p|q(w, z, s) are invariant
for the actions of Γp and Γq, respectively. According to [23] (see also [28])
we have the Fourier–Whittaker series expansion

GΓ,p|q(w, z, s) =
∑

m∈Z+

G
(m)
Γ,p|q(z, s)W (−mw̄, s) +G

(0)
Γ,p|q(z, s)�(w)1−s

(3.103)

+
∑

m∈Z+

G
(−m)
Γ,p|q (z, s)W (mw, s),

converging absolutely and locally uniformly when 
(s) > 1 so long as �(w) >
�(z) and �(z)�(w) > �Γ,p|q, for a certain constant �Γ,p|q depending only on
Γ and p and q, where the coefficient functions G(m)

Γ,p|q(z, s) are Γq-invariant,
and themselves admit the following series expansions of Poincaré type,
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converging absolutely for 
(s) > 1 and locally uniformly for �(z) > 0.

G
(m)
Γ,p|q(z, s) =

1
m

∑

�χ∈�Σ−1
p Σq

V (m �χ · z, s),(3.104)

G
(0)
Γ,p|q(z, s) =

4π
2s− 1

∑

�χ∈�Σ−1
p Σq

�(�χ · z)s,(3.105)

G
(−m)
Γ,p|q (z, s) =

1
m

∑

�χ∈�Σ−1
p Σq

V (−m �χ · z̄, s).(3.106)

Let m > 0. Then we have the following analog of (3.103) for the Green’s
function coefficient G(−m)

Γ,p|q (z, s), which is again reminiscent of the right-hand
side of (3.82).

G
(−m)
Γ,p|q (z, s) = δΓ,p|q

1
m
V (−mz̄, s) +

∑

n>0

gΓ,p|q(−m,−n, s)W (−nz̄, s)
(3.107)

+ gΓ,p|q(−m, 0, s)�(z)1−s +
∑

n>0

gΓ,p|q(−m,n, s)W (nz, s).

The coefficients in (3.107) may be defined via the following formulas, in
which we assume m,n > 0.

gΓ,p|q(−m,−n, s) =
1

m1−sns
lim

K→∞

∑

�χ�∈S≤K

∑

k≥0

e(−m �χ� · ∞)

(3.108)

× e(−n �
χ−1

� · ∞)(4π2� �χ�)k+sm(k)n(k+2s−1),

gΓ,p|q(−m, 0, s) =
1

m1−s

4π
2s− 1

lim
K→∞

∑

�χ�∈S≤K

∑

k≥0

e(−m �χ� · ∞)� �χ�s πs

Γ(s)
,

(3.109)

gΓ,p|q(−m,n, s) =
1

m1−sns
lim

K→∞

∑

�χ�∈S≤K

∑

k≥0

e(−m �χ� · ∞)e(n
�
χ−1

� · ∞)

(3.110)

× (−1)k(4π2� �χ�)k+sm(k)n(k+2s−1).

Comparing with Lemma (3.5) we obtain a direct relationship between the
coefficient functions gΓ,p|q(m,n, s) arising from the Green’s function, and
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the coefficient functions cκΓ,p|q(m,n) of Section 3.2, which arise from the
Rademacher sums.

Proposition 3.7. Let Γ be a group commensurable with G(Z), let p, q ∈ PΓ,
and let κ > 0 and m < 0. Then we have the following identities for n > 0.

c1−κ
Γ,p|q(m,−n) = −mκn1−κgΓ,p|q(m,−n, κ),(3.111)

c1−κ
Γ,p|q(m, 0) = −mκgΓ,p|q(m, 0, κ),(3.112)

c1−κ
Γ,p|q(m,n) = −mκn1−κgΓ,p|q(m,n, κ).(3.113)

Taking κ = 1 in Proposition 3.7 we obtain the identity cΓ,p|q(m,n) =
−mgΓ,p|q(m,n, 1) for m < 0, which, by Theorem 3.4, the series expansion
(3.107) and the identity W (z, 1) = e(z), may be reformulated as

(3.114) R
(m)
Γ,p|q(z) − R̄

(m)
Γ,p|q(z) = −mG(m)

Γ,p|q(z, 1)

for m < 0. The Γq-invariance of the difference R(m)
Γ,p|q(z) − R̄

(m)
Γ,p|q(z) of clas-

sical and conjugate Rademacher sums of weight 0 now follows from the Γq-
invariance of the Green’s function coefficient G(m)

Γ,p|q(z, s) at s = 1 (cf. [49]).
In particular, we have the following result.

Theorem 3.7. Let Γ be a group commensurable with G(Z) that has width
one at infinity, let p ∈ PΓ be a cusp of Γ, and let m < 0. Then the harmonic
function R

(m)
Γ,p (z) − R̄

(m)
Γ,p (z) is Γ-invariant.

4. Modified Rademacher sums

We have seen in Section 3.4 that the classical Rademacher sum R
κ(m)
Γ,p (z)

of Section 3 is an automorphic integral for Γ only after the addition of a
particular constant function, which does not generally vanish. In this section,
we introduce a modification of Rademacher’s construction via which the
correct constant term appears naturally. Our approach employs an analytic
continuation of the component functions defining the classical Rademacher
sums, and entails the assignment of a Dirichlet series to each triple (Γ, p, q)
where Γ is a group commensurable with the modular group and p, q ∈ PΓ

are cusps for Γ.
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4.1. Construction

For κ,m ∈ Z such that κ ≤ 0 andm < 0, and for �χ ∈ �G(Q)×, we define the
continued Rademacher component function, denoted (z, s) �→ T

κ(m)
�χ (z, s), by

setting

(4.1) T
κ(m)
�χ (z, s) = e(m �χ · z) tκ(m, �χ , z, s) jac(�χ , z)κ

for z ∈ H and s ∈ C such that 
(s) > 1, where tκ(m, �χ, z, s) is the continued
Rademacher regularization factor of weight 2κ which is in turn given by

tκ(m, �χ , z, s) = Φ(s− 2κ, 1 + s− 2κ,m �χ · ∞(4.2)

−m �χ · z)(2πi(m �χ · z −m �χ · ∞))s−2κ

in case �χ ∈ �G(Q)× and tκ(m, �χ , z, s) = 1 otherwise. We also define a
function s �→ T

κ(m)
0,�χ (s) by setting

T
κ(m)
0,�χ (s) = e(m �χ · ∞)(2πi(m �χ · 0 −m �χ · ∞))(s−2κ)jac(�χ , 0)κ

(4.3)

− e(s/2)e(m �χ · ∞)(2πi(m �χ · ∞ −m �χ · 0))(s−2κ)jac(�χ , 0)κ

in case �χ ∈ �G(Q)××, and by setting T κ(m)
0,�χ (s) = 0 otherwise, and we define

the modified continued Rademacher component function, denoted (z, s) �→
Q

κ(m)
�χ (z, s), by subtracting T κ(m)

0,�χ (z, s) from T
κ(m)
�χ (z, s).

(4.4) Q
κ(m)
�χ (z, s) = T

κ(m)
�χ (z, s) − T

κ(m)
0,�χ (z, s).

Now for U ⊂ �G(Q) , and for κ,m ∈ Z such that κ ≤ 0 and m < 0, we
define the continued Rademacher sum T

κ(m)
U (z, s), and the modified con-

tinued Rademacher sum Q
κ(m)
U (z, s), by setting

T
κ(m)
U (z, s) =

∑

�χ∈U

T
κ(m)
�χ (z, s),(4.5)

Q
κ(m)
U (z, s) =

∑

�χ∈U

Q
κ(m)
�χ (z, s),(4.6)

and we define T κ(m)
U (z) and Q

κ(m)
U (z) by taking the limit as s tends to 1

through the region 
(s) > 1 in T
κ(m)
U (z, s) and Q

κ(m)
U (z, s), respectively, so
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long as these limits exist.

T
κ(m)
U (z) = lim

s→1+
T

κ(m)
U (z, s),(4.7)

Q
κ(m)
U (z) = lim

s→1+
Q

κ(m)
U (z, s).(4.8)

The function Q
κ(m)
U (z) is the most important from the point of view of

automorphy for subgroups of G(Q), while the function T
κ(m)
U (z) plays a

special rôle in the critical case that κ = 0. We call Qκ(m)
U (z) the modified

Rademacher sum of weight 2κ and order m associated to U , and we call
T

κ(m)
U (z) the normalized Rademacher sum of weight 2κ and order m asso-

ciated to U .
Observe that we recover the Rademacher component function Rκ(m)

�χ (z)
by taking s = 1 in either the continued Rademacher component function
T

κ(m)
�χ (z, s) or the modified continued Rademacher component function

Q
κ(m)
�χ (z, s).

Lemma 4.1. Let κ,m ∈ Z such that κ ≤ 0 and m < 0, and let �χ ∈ �G(Q) .
Then we have T

κ(m)
�χ (z, 1) = R

κ(m)
�χ (z) and T

κ(m)
0,�χ (1) = 0, and hence

Q
κ(m)
�χ (z, 1) = R

κ(m)
�χ (z).

Despite the result of Lemma 4.1, it is generally not the case that the mod-
ified Rademacher sum Q

κ(m)
U (z) and the classical Rademacher sum R

κ(m)
U (z)

coincide (cf. Proposition 4.9).
We typically take U to be of the form U =

�
Σ−1

p Σq where {Σp | p ∈ PΓ}
is a system of scaling cosets (cf. Section 2.6) for some group Γ commensurable
with the modular group, and p, q ∈ PΓ are cusps of Γ. In this case, we write

Q
κ(m)
Γ,p|q(z) for Qκ(m)

U (z) and T
κ(m)
Γ,p|q (z) for T κ(m)

U (z), suppressing the choice of
scaling cosets from notation. A change in the choice of scaling cosets Σp and
Σq replaces Qκ(m)

Γ,p|q(z) with a function of the form e(α)Qκ(m)
Γ,p|q(z + β) for some

α, β ∈ Q, and similarly for T κ(m)
Γ,p|q (z).

In the case that p or q is the infinite cusp Γ · ∞ we omit it from nota-
tion, writing Q

κ(m)
Γ,p (z) for Qκ(m)

Γ,p|Γ·∞(z), and Q
κ(m)
Γ|q (z) for Qκ(m)

Γ,Γ·∞|q(z), and

similarly for the functions T κ(m)
Γ,p|q (z). The functions Qκ(m)

Γ,p (z) and T
κ(m)
Γ,p (z)

are the most important, for we shall see in Section 4.5 that Qκ(m)
Γ,p (z) is an

automorphic integral of weight 2κ for Γ with a single pole at the cusp p in

case Γ has width one at infinity, and we will see in Section 4.4 that Qκ(m)
Γ,p (z)
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and T κ(m)
Γ,p (z) differ only by a constant function. We call Qκ(m)

Γ,p (z) the mod-
ified Rademacher sum of weight 2κ and order m associated to Γ at the cusp
p, and we call T κ(m)

Γ,p (z) the normalized Rademacher sum of weight 2κ and
order m associated to Γ at the cusp p. We shall see also in Section 4.5 that
the Fourier expansion of the function Qκ(m)

Γ,p|q(z) is the expansion of Qκ(m)
Γ,p (z)

at the cusp q, in the sense of Section 2.7.
Just as for the classical Rademacher sums (cf. Section 3.1) we have the

result that every modified Rademacher sum Q
κ(m)
Γ,p|q(z) may be expressed in

the form Q
κ(m)
Γ′,p′ (z) for some group Γ′ with width one at infinity, and some

cusp p′ of Γ′, and similarly for the normalized Rademacher sums T κ(m)
Γ,p|q (z).

Precisely, we have

Q
κ(m)
Γ,p|q(z) = Q

κ(m)
Γq,pq (z),(4.9)

T
κ(m)
Γ,p|q (z) = T

κ(m)
Γq,pq (z),(4.10)

subject to the understanding that the data defining the right-hand sides of
(4.9) and (4.10) is related to the data defining the left hand sides of (4.9)
and (4.10) by Γq = Σ−1

q Σq and pq = Σ−1
q · p and Σpq = Σ−1

q Σp.
Our primary interest in this paper is in the distinguished case that κ = 0.

In order to simplify notation, and maintain consistency with the notation
of Section 1, we write Q(m)

Γ,p|q(z) as a shorthand for Q0(m)
Γ,p|q(z), and we write

T
(m)
Γ,p|q(z) as a shorthand for T 0(m)

Γ,p|q (z).

4.2. Coefficients

In order to recover explicit expressions of the Fourier coefficients of the modi-
fied Rademacher sums we employ the following generalizations of Blκ�χ�(m,n)
and cκS(m,n) for κ,m, n ∈ Z such that κ ≤ 0 and m < 0 < n. For κ ≤ 0 and
m < 0 < n we define the entire function s �→ Blκ�χ�(m,n, s) by setting

Blκ�χ�(m,n, s) = (−1)κ
∑

k≥0

(4π2)k−κ+s� �χ�k−2κ+s (−m)(k−2κ+s)n(k+s−1),

(4.11)

so that Blκ�χ�(m,n, 1) = Blκ�χ�(m,n). We then define the continued coefficient
function s �→ cκS(m,n, s) for κ ≤ 0 and m < 0 < n by setting

(4.12) cκS(m,n, s) =
∑

�χ�∈S

Klκ�χ�(m,n) Blκ�χ�(m,n, s).
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Lemma 4.2. The functions s �→ cκS(m,n, s) admit the following series rep-
resentation.

cκS(m,n, s) = (−1)κ lim
K→∞

∑

�χ�∈S≤K

∑

k≥0

e(m �χ� · ∞)e(−n �
χ−1

� · ∞)(4.13)

× (4π2� �χ�)k−κ+s(−m)(k−2κ+s)n(k+s−1).

We have cκS(m,n, 1) = cκS(m,n).

We usually take S to be of the form S =
�
Σ−1

p Σq

�× where Σp and Σq

are scaling cosets (cf. Section 2.6) for a group Γ commensurable with G(Z)
at cusps p, q ∈ PΓ. We write cκΓ,p|q(m,n, s) for cκS(m,n, s) in the case that

S =
�
Σ−1

p Σq

�×.
Utilizing the continued coefficient functions s �→ cκS(m,n, s) we general-

ize the function F κ(m)
S (z)van in case κ ≤ 0 and m < 0 by setting

(4.14) F
κ(m)
S (z, s)van =

∑

n>0

cκS(m,n, s)e(nz).

We write F κ(m)
Γ,p|q (z, s)van for F κ(m)

S (z, s)van in the case that S =
�
Σ−1

p Σq

�×

for Γ a group commensurable with G(Z) and for Σp,Σq ∈ Γ\G(Q) scaling
cosets for Γ at cusps p, q ∈ PΓ. We write F (m)

S (z, s)van as a shorthand for
F

0(m)
S (z, s)van, and interpret the notation F (m)

Γ,p|q(z, s)van similarly.
We have the following analog of Proposition 3.4 for the functions

F
κ(m)
S (z, s)van in case S is of the form

�
Σ−1

p Σq

�×.

Proposition 4.1. Let Γ be a group commensurable with G(Z), and let
p, q ∈ PΓ be cusps of Γ. Let κ,m ∈ Z such that κ ≤ 0 and m < 0. Then
the series

(4.15) F
κ(m)
Γ,p|q (z, s)van =

∑

n>0

cκΓ,p|q(m,n, s)e(nz)

converges absolutely and locally uniformly in z and s for z ∈ H and 
(s) ≥ 1.
In particular, the assignment z �→ F

κ(m)
Γ,p|q (z, s)van is a holomorphic function

on H whenever κ ≤ 0 and m < 0 and 
(s) ≥ 1.
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4.3. Dirichlet series

Given �χ� ∈ �G(Q)�×, and κ,m ∈ Z such that κ ≤ 0 and m < 0, we define
a Dirichlet series Zκ(m)

�χ� (s) by setting

Z
κ(m)
�χ� (s) = (−1)1−κ

∑

n∈Z×

e(m �χ� · ∞)e(−n �
χ−1

� · ∞)(4.16)

× (4π2� �χ�)1−s−κ|m|(1−s−2κ)n(−s)

= (−1)1−κe(m �χ� · ∞)(4π2� �χ�)1−s−κ|m|(1−s−2κ)

×
∑

n∈Z×

e(−n �
χ−1

� · ∞)n(−s).

(Recall that Z
× denotes the non-zero elements of Z.) This series (4.16)

converges absolutely and locally uniformly in the half-plane 
(s) > 1, and
admits a meromorphic continuation to all of C. Given S ⊂ �G(Q)�× we define
the zeta function of weight 2κ and order m associated to S, to be denoted
Z

κ(m)
S (s), by setting

(4.17) Z
κ(m)
S (s) =

∑

�χ�∈S

Z
κ(m)
�χ� (s).

As it is defined here Zκ(m)
S is only a formal sum but it will be shown to

converge, and admit an analytic continuation, for various choices of S in
Section 4.4 (cf. Proposition 4.5, Theorem 4.1). In order to describe the ana-
lytic continuation of the zeta function s �→ Z

κ(m)
S (s) explicitly, we formulate

an identity which expresses it in terms of the Hurwitz zeta function. In prepa-
ration for this we define a function s �→ Z̃

κ(m)
�χ� (s), for each �χ� ∈ �G(Q)�×,

by setting

Z̃
κ(m)
�χ� (s) = e(m �χ� · ∞)� �χ�s−κ (−2πim)(s−2κ)(e(s/2)(4.18)

− e(−s/2))ζ(1 − α�χ�, s),

where ζ(α, s) is defined by ζ(α, s) =
∑

n≥0(n+ α)−s for 
(α) > 0 and

(s) > 1, and α�χ� ∈ Q is chosen so that

(4.19) 0 ≤ α�χ� < 1, α�χ� + Z = −χ−1 · ∞ + Z.

We then define Z̃κ(m)
S (s) by setting Z̃κ(m)

S (s) =
∑

�χ�∈S Z̃
κ(m)
�χ� (s).
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Lemma 4.3. We have Zκ(m)
S (1 − s) = Z̃

κ(m)
S (s).

Proof. Let �χ� ∈ �G(Q)�× and choose α�χ� ∈ Q such that 0 ≤ α�χ� < 1 and
α�χ� + Z = −χ−1 · ∞ + Z for any χ ∈ �χ�. We will show that Zκ(m)

�χ� (s) =

Z̃
κ(m)
�χ� (1 − s). Observe that we have

∑

n∈Z×

e(−n �
χ−1

� · ∞)n(−s) =
1

Γ(1 − s)
(F (− �

χ−1
� · ∞, s)(4.20)

+ e(−s/2)F (
�
χ−1

� · ∞, s)),

where F (α, s) denotes the periodic zeta function, defined by F (α, s) =∑
n>0 e(nα)n−s for 
(s) > 1. The Hurwitz relation, which may be stated

in the form

(4.21) F (α, s) + e(−s/2)F (−α, s) =
(−2πi)s

Γ(s)
ζ(1 − α, 1 − s)

(cf. [37]) implies the identity

(4.22)
∑

n∈Z×

e(−n �
χ−1

� · ∞)n(−s) =
(−2πi)s

Γ(1 − s)Γ(s)
ζ(1 − α�χ�, 1 − s),

so the expression (4.16) may be reformulated as

Z
κ(m)
�χ� (s) = (−1)1−κe(m �χ� · ∞)(4π2� �χ�)1−s−κ|m|(1−s−2κ)(4.23)

× (−2πi)s

Γ(1 − s)Γ(s)
ζ(1 − α�χ�, 1 − s).

We obtain the coincidence of the right-hand side of (4.23) with Z̃κ(m)
�χ� (1 − s)

by applying the functional equation for the Gamma function, which may be
expressed as

(4.24) (e(s/2) − e(−s/2))Γ(s)Γ(1 − s) = 2πi.

This completes the proof of the claim. �

We write Zκ(m)
Γ,p|q (s) for Zκ(m)

S (s) in the case that S =
�
Σ−1

p Σq

�× for Γ
a group commensurable with G(Z) and for Σp,Σq ∈ Γ\G(Q) scaling cosets
for Γ at cusps p, q ∈ PΓ.
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4.4. Convergence

Our main objective in this section is to furnish explicit expressions for the
Fourier expansions of the functions z �→ T

κ(m)
Γ,p|q (z, s) and z �→ Q

κ(m)
Γ,p|q(z, s),

defined by the continued Rademacher sums and modified continued
Rademacher sums, respectively. This will yield the Fourier expansions of
the modified Rademacher sums Qκ(m)

Γ,p|q(z) and the normalized Rademacher

sums T κ(m)
Γ,p|q (z). In preparation for the derivation of these expansions we

verify the absolute and locally uniform convergence of the series defining
T

κ(m)
Γ,p|q (z, s) and Qκ(m)

Γ,p|q(z, s) in case 
(s) > 1.

Proposition 4.2. Let Γ be a group commensurable with G(Z) and let
p, q ∈ PΓ be cusps of Γ. Let κ,m ∈ Z such that κ ≤ 0 and m < 0. Then
the continued Rademacher sum

(4.25) T
κ(m)
Γ,p|q (z, s) =

∑

�χ∈�Σ−1
p Σq

T
κ(m)
�χ (z, s)

is absolutely convergent, locally uniformly in z and s, for z ∈ H and 
(s) > 1.

Proof. We begin by observing that we have

(4.26) T
κ(m)
�χ (z, s) = e(m �χ · ∞)e(m �χ · z −m �χ · ∞, s− 2κ) jac(�χ , z)κ

in case �χ ∈ �G(Q)×, and T
κ(m)
�χ (z, s) = e(m �χ · z) jac(�χ , z)κ otherwise,

where e(z, s) denotes the generalized exponential function of (2.6). This
identity (4.26) follows from an application of the Kummer transformation
Φ(a, b, z) = e(z)Φ(b− a, b,−z) to the expression (4.1) defining T

κ(m)
�χ (z, s).

The absolute and locally uniform convergence of (4.25) can be established by
implementing methods present in the proofs of Proposition 3.3 and Theorem
3.1. Namely, the right-hand side of (4.25) is very similar to the quantity R+

defined in (3.71) and we can rewrite it so as to arrive at an analog of (3.73).
Then the coefficients of e(nz) in the resulting sum can be estimated just as
the values cκS(m,n) are in (3.45) for κ > 1. �
Proposition 4.3. Let Γ be a group commensurable with G(Z) and let p, q ∈
PΓ be cusps of Γ. Let κ,m ∈ Z such that κ ≤ 0 and m < 0. Then the sum

(4.27)
∑

�χ∈�Σ−1
p Σq

T
κ(m)
0,�χ (s)

is absolutely convergent, locally uniformly in s, for 
(s) > 1.
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Propositions 4.2 and 4.3 imply the absolute and locally uniform conver-
gence of the expression defining the modified continued Rademacher sum
Q

κ(m)
Γ,p|q(z, s) for z ∈ H and 
(s) > 1.

Proposition 4.4. Let Γ be a group commensurable with G(Z), let p, q ∈
PΓ be cusps of Γ, and let Σp and Σq be scaling cosets for Γ at p and q,
respectively. Let κ ∈ Z such that κ ≤ 0, and let m ∈ Z

+. Then the modified
Rademacher sum

(4.28) Q
κ(m)
Γ,p|q(z, s) =

∑

�χ∈�Σ−1
p Σq

T
κ(m)
�χ (z, s) − T

κ(m)
0,�χ (s)

converges absolutely, and locally uniformly in z and s, for z ∈ H and

(s) > 1.

We next seek to relate the modified Rademacher sums Qκ(m)
Γ,p|q(z, s) to the

functions F κ(m)
Γ,p|q (z, s) and Zκ(m)

Γ,p|q (s) of Sections 4.2 and 4.3, respectively.

Proposition 4.5. Let Γ be a group commensurable with G(Z), let p, q ∈ PΓ

be cusps of Γ, with scaling matrices Σp and Σq, respectively. Let κ ∈ Z such
that κ ≤ 0 and let m ∈ Z

+. Then we have

(4.29)
∑

�χ∈�Σ−1
p Σq

T
κ(m)
0,�χ (s) = −Zκ(m)

Γ,p|q (1 − s)

for 
(s) > 1 where the convergence is absolute and locally uniform.

Proof. Set U =
�
Σ−1

p Σq and S =
�
Σ−1

p Σq

�×. Recall that T κ(m)
0,�χ (s) = 0 when

�χ /∈ �G(Q)××, and otherwise

T
κ(m)
0,�χ (s) = e(m �χ · ∞) (2πi(m �χ · 0 −m �χ · ∞))(s−2κ) jac(�χ , 0)κ

− e(s/2)e(m �χ · ∞)(2πi(m �χ · ∞
−m �χ · 0))(s−2κ) jac(�χ , 0)κ,

(4.30)

by the definition (cf. Section 4.1) of T κ(m)
0,�χ (s). We apply the identities χ ·

∞ − χ · 0 = �(χ)/(−χ−1 · ∞) and jac(�χ , 0) = �(χ)/(−χ−1 · ∞)2 (cf. Sec-
tion 2.4) so as to write

T
κ(m)
0,�χ (s) = e(m �χ� · ∞)� �χ�s−κ (−2πim)(s−2κ)((− χ−1

� · ∞)−s(4.31)

− e(s/2)(χ−1
� · ∞)−s).
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Let �χ� ∈ �G(Q)�×. Then we have
∑

�χ∈�χ�

T
κ(m)
0,�χ (s) = e(m �χ� · ∞)� �χ�s−κ (−2πim)(s−2κ)(4.32)

×
∑

n∈Z

∗
((n+ α�χ�)

−s − e(s/2)(n− α�χ�)
−s),

where α�χ� ∈ Q is chosen so that 0 ≤ α�χ� < 1 and α�χ� + Z = −χ−1 · ∞ + Z,
and the superscript in the summation

∑∗
n∈Z

indicates to omit the term
corresponding to n = 0 in case α�χ� = 0. We compute

∑

n∈Z

∗
((n+ α�χ�)

−s − e(s/2)(n− α�χ�)
−s) = (e(−s/2) − e(s/2))ζ(1 − α�χ�, s),

(4.33)

where ζ(α, s) denotes the Hurwitz zeta function (cf. Section 4.3), so we have

∑

�χ∈U××

T
κ(m)
0,�χ (s) =

∑

�χ�∈S×

e(m �χ� · ∞)� �χ�s−κ (−2πim)(s−2κ)(e(−s/2)
(4.34)

− e(s/2))ζ(1 − α�χ�, s).

Comparing with the expression (4.18) defining Z
κ(m)
�χ� (s)′ we see that the

right-hand side of (4.34) coincides with −Zκ(m)
S× (s)′. Now Lemma 4.3 yields

the required identity (4.29). This completes the proof. �

Theorem 4.1. Let Γ be a group commensurable with G(Z) and let p, q ∈ PΓ

be cusps of Γ. Let κ,m ∈ Z such that κ ≤ 0 and m < 0. Then we have

(4.35) Q
κ(m)
Γ,p|q(z, s) = δΓ,p|qe(−mz) + Z

κ(m)
Γ,p|q (1 − s) + F

κ(m)
Γ,p|q (z, s)van

for z ∈ H and 
(s) > 1.

Proof. Let m < 0 < κ, let s ∈ C with 
(s) > 1, set U =
�
Σ−1

p Σq and set
S =

�
Σ−1

p Σq

�×. By the defining properties of scaling cosets (cf. Section 2.6)
and by the definition (4.1) of the continued Rademacher component function
T

1−κ(m)
�χ (z, s) we have

(4.36)
∑

�χ∈U

T
1−κ(m)
�χ (z, s) = δΓ,p|qe(mz) +

∑

�χ∈U×

T
1−κ(m)
�χ (z, s)
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so by Proposition 4.5, and the definition of the modified continued Rade-
macher component function Q1−κ(m)

�χ (z, s), it suffices for us to show that

(4.37)
∑

�χ∈U×

T
1−κ(m)
�χ (z, s) = F

1−κ(m)
S (z, s)van.

We will verify the equality of (4.37) by using the Lipschitz summation for-
mula (3.57) to transform the expression on the right-hand side of (4.37)
into that on the left. This is essentially the approach employed originally by
Rademacher in [54], and the reverse of that employed by Niebur in Lemma
4.2 of [50], except that we can avoid the technical difficulties of [54] and [50],
such as the need to employ the identity (3.66), by working only with the
versions of the Lipschitz summation formula (viz., 
(s) > 1) in which both
sides of the identity are absolutely and locally uniformly convergent series.

We begin by inspecting Lemma 4.2 to find that

(−1)1−κc1−κ
S (m,n, s)(4.38)

=
∑

�χ�∈S

∑

k≥0

e(m �χ� · ∞)e(−n �
χ−1

� · ∞)(4π2� �χ�)k+κ+s−1

× |m|(k+2κ+s−2)n(k+s−1).

As a shorthand let us set Fvan = F
1−κ(m)
S (z, s)van. Then we have the follow-

ing expression for Fvan as a triple sum

(−1)1−κFvan(4.39)

=
∑

n>0

lim∑

�χ�∈S

∑

k≥0

e(m �χ� · ∞)e(−n �
χ−1

� · ∞)(4π2� �χ�)k+κ+s−1

× |m|(k+2κ+s−2)n(k+s−1) e(nz),

where
∑lim

�χ�∈S is a shorthand for limK→∞
∑

�χ�∈S≤K
. We now move the

summation over n past the other two summations, simultaneously pulling
the terms e(m �χ� · ∞) outside the summation over k, and combining the
exponents involving n. We thus obtain

(−1)1−κFvan =
lim∑

�χ�∈S

e(m �χ� · ∞)
∑

k≥0

(4π2� �χ�)k+κ+s−1|m|(k+2κ+s−2)

(4.40)

×
∑

n>0

n(k+s−1) e(n(z − �
χ−1

� · ∞)).
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Applying the Lipschitz summation formula (3.57) to each summation over
n in (4.40) we find that

(−1)1−κFvan

=
lim∑

�χ�∈S

e(m �χ� · ∞)
∑

k≥0

(4π2� �χ�)κ−1|m|(k+2κ+s−2)
∑

n∈Z

(2πi� �χ�)k+s

× (z + n− χ−1
� · ∞)−k−s,

(4.41)

where χ−1
�

is any (left) coset of B(Z) in the double coset
�
χ−1

�
, for each

�χ� ∈ S. Using the identity (2.25) we write Fvan as Fvan =
∑lim

�χ�∈S e(m �χ� ·
∞)Fvan,�χ� where

Fvan,�χ� =
∑

k≥0

∑

n∈Z

(−2πi� �χ�m)k+2κ+s−2(z + n− χ−1
� · ∞)−k−2κ−s+2

× jac(�χ , z + n)1−κ.

(4.42)

Recalling the definition of the generalized exponential function e(z, s)
from (2.6) we see that

(4.43)

Fvan =
∑

�χ∈U×

e(m �χ� · ∞)e
( −� �χ�m

z − χ−1� · ∞ , s− 2(1 − κ)
)

jac(�χ , z)1−κ.

According to (2.24) we have � �χ� /(z − χ−1 · ∞) = χ · ∞ − χ · z. Using this
identity together with the Kummer transformation Φ(a, b, z) = e(z)Φ(b−
a, b,−z) (cf. (2.3)) we readily find that

(4.44)

e(m �χ� · ∞)e
( −� �χ�m

z − χ−1� · ∞ , s− 2(1 − κ)
)

= e(m �χ� · z) t1−κ(m, �χ , z, s),

so that we have

(4.45) Fvan =
∑

�χ∈U×

T
1−κ(m)
�χ (z, s).

This establishes the required identity (4.37). �
In the course of proving Theorem 4.1 we have also established the Fourier

expansion of the continued Rademacher sums T κ(m)
Γ,p|q (z, s). We record the

result as follows.
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Theorem 4.2. Let Γ be a group commensurable with G(Z) and let p, q ∈ PΓ

be cusps of Γ. Let κ,m ∈ Z such that κ ≤ 0 and m < 0. Then we have

(4.46) T
κ(m)
Γ,p|q (z, s) = δΓ,p|qe(mz) + F

κ(m)
Γ,p|q (z, s)van

for z ∈ H and 
(s) > 1.

Theorem 4.1 will facilitate the identification of the Fourier expansion
of the modified Rademacher sum Q

κ(m)
Γ,p|q(z) obtained by sending s to 1 in

Q
κ(m)
Γ,p|q(z, s). Indeed, we will see presently (cf. Proposition 4.7) that the

series F̃ κ(m)
Γ,p|q (q)reg encodes the regular part of the fourier series expansion

of Qκ(m)
Γ,p|q(z) precisely, in the case that κ ≤ 0. In preparation for this, we

state the following result, which identifies the value of the zeta function
Z

κ(m)
Γ,p|q (s) at s = 0.

Proposition 4.6. Let S ⊂ �G(Q)�×, let κ,m ∈ Z such that κ ≤ 0 and m <
0. Then we have

(4.47) Z
κ(m)
S (0) = cκS(m, 0).

Proof. According to the proof of Lemma 4.3 the function Γ(s)Zκ(m)
�χ� (s) coin-

cides with

(−1)1−κe(m �χ� · ∞)(4π2� �χ�)1−s−κ|m|(1−s−2κ)(F (α�χ�, s)(4.48)
+ e(−s/2)F (−α�χ�, s))

where 0 ≤ α�χ� < 1 and α�χ� + Z = −χ−1 · ∞ + Z. We have F (α, 0) +
F (−α, 0) = −1 for α ∈ R (cf. [37]), so taking s = 0 in (4.48) we obtain

(4.49) Z
κ(m)
�χ� (0) = e(m �χ� · ∞)(−4π2� �χ�)1−κm(1−2κ).

Upon inspection of (3.39) we see that

(4.50) cκS(m, 0) =
∑

�χ�∈S

e(m �χ� · ∞)(−4π2� �χ�)1−κm(1−2κ)

for κ ≤ 0, and the claim now follows since Zκ(m)
S (s) =

∑
�χ�∈S Z

κ(m)
�χ� (s) by

definition. �
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Proposition 4.7. Let Γ be a group commensurable with G(Z), and let
p, q ∈ PΓ be cusps of Γ. Let κ,m ∈ Z such that κ ≤ 0 and m < 0. Then
we have

(4.51) Q
κ(m)
Γ,p|q(z) = δΓ,p|q e(mz) + F

κ(m)
Γ,p|q (z)reg

for z ∈ H.

Proof. We take the limit as s tends to 1 in the right-hand side of the identity
(4.35). We have F κ(m)

Γ,p|q (z, 1)van = F
κ(m)
Γ,p|q (z)van by definition (cf. Section 4.2),

and we have Zκ(m)
Γ,p|q (0) = cκΓ,p|q(m, 0) by Proposition 4.6. The required iden-

tity (4.51) now follows from the fact that F κ(m)
Γ,p|q (z)reg = cκΓ,p|q(m, 0) + F

κ(m)
Γ,p|q

(z)van, also by definition (cf. Section 3.2). �

The proof of Proposition 4.7 implies a result analogous to (4.51) for the
normalized Rademacher sum T

κ(m)
Γ,p|q (z).

Proposition 4.8. Let Γ be a group commensurable with G(Z) and let p, q ∈
PΓ be cusps of Γ. Let κ,m ∈ Z such that κ ≤ 0 and m < 0. Then we have

(4.52) T
κ(m)
Γ,p|q (z) = δΓ,p|qe(mz) + F

κ(m)
Γ,p|q (z)van

for z ∈ H.

We may compare the functions Qκ(m)
Γ,p|q(z) and R

κ(m)
Γ,p|q(z) defined by the

modified and classical Rademacher sums, respectively. Inspecting Theo-
rem 3.1 and Proposition 4.7, we obtain the precise relationship, which we
record in the following proposition.

Proposition 4.9. Let Γ be a group commensurable with G(Z) and let p, q ∈
PΓ be cusps of Γ. Let κ,m ∈ Z such that κ ≤ 0 and m < 0. Then we have

(4.53) Q
κ(m)
Γ,p|q(z) = R

κ(m)
Γ,p|q(z) +

1
2
cκΓ,p|q(m, 0).

According to Propositions 4.7 and 4.8 the modified Rademacher sum
Q

κ(m)
Γ,p|q(z) and the normalized Rademacher sum T

κ(m)
Γ,p|q (z) also differ only by

a constant function.

Proposition 4.10. Let Γ be a group commensurable with G(Z) and let
p, q ∈ PΓ be cusps of Γ. Let κ,m ∈ Z such that κ ≤ 0 and m < 0. Then
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we have

(4.54) Q
κ(m)
Γ,p|q(z) = T

κ(m)
Γ,p|q (z) + cκΓ,p|q(m, 0).

4.5. Variance

In this section, we examine how the modified Rademacher sum Q
κ(m)
Γ,p (z)

transforms under the weight 2κ action of Γ. Combining Theorem 3.6 and
Proposition 4.9 we obtain the result that the modified Rademacher sum
Q

κ(m)
Γ,p (z) is an automorphic integral of weight 2κ for Γ in case Γ has width

one at infinity.

Theorem 4.3. Let Γ be a group commensurable with G(Z) that has width
one at infinity and let p ∈ PΓ be a cusp of Γ. Let κ,m ∈ Z such that κ ≤ 0
and m < 0. Then the modified Rademacher sum Q

κ(m)
Γ,p (z) is an automor-

phic integral of weight 2κ for Γ, and for q ∈ PΓ another cusp of Γ the
Fourier expansion of the function Q

κ(m)
Γ,p|q(z) is the expansion of Qκ(m)

Γ,p (z)
at the cusp q.

The proof of Theorem 3.6 yields the following explicit description of
the associated cusp form map Iκ(Γ) → S1−κ(Γ) on the subspace of Iκ(Γ)
spanned by the modified Rademacher sums Qκ(m)

Γ,p (z).

Proposition 4.11. Let Γ be a group commensurable with G(Z) that has
width one at infinity and let p ∈ PΓ be a cusp of Γ. Let κ,m ∈ Z such that
κ ≤ 0 < m. Then

(4.55) mκQ
κ(−m)
Γ,p �→ m1−κP

1−κ(m)
Γ,p �→ 0,

under the maps Iκ(Γ) �→ S1−κ(Γ) of Section 2.7.

We next seek to establish the utility of Proposition 4.11 by identifying
the subspace of Iκ(Γ) that is spanned by the modified Rademacher sums
Q

κ(m)
Γ,p (z).

Theorem 4.4. Let Γ be a group commensurable with G(Z) that has width
one at infinity, and let κ ∈ Z with κ ≤ 0. Then the set {Qκ(−m)

Γ,p (z) | p ∈
PΓ,m ∈ Z

+} is a basis for the space of automorphic integrals of weight 2κ
for Γ in case κ < 0. When κ = 0 the set {Q(−m)

Γ,p (z) | p ∈ PΓ,m ∈ Z
+} spans

a subspace of I0(Γ) of codimension 1.
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Proof. For m > 0 the function Qκ(−m)
Γ,p (z) has principal part e(−mz) at the

cusp p, and vanishes at all the other cusps, so the collection {Qκ(−m)
Γ,p (z) | p ∈

PΓ,m ∈ Z
+} is linearly independent. To show that it furnishes a basis we

follow Niebur’s proof of Theorem 3.3 in [50], employing Petersson’s general-
ized Riemann–Roch Theorem to show that the dimension of the subspace of
Iκ(Γ) containing automorphic integrals with poles of degree not more than
m say at p is bounded above by m less the dimension of the space S1−κ(Γ),
for m sufficiently large. �

We write I ′0(Γ) for the subspace of I0(Γ) spanned by the modified
Rademacher sums Q(−m)

Γ,p (z) of weight 0 for varying p ∈ PΓ and m ∈ Z
+.

Theorem 4.5. Let Γ be a group commensurable with G(Z) that has width
one at infinity. Then for any κ ∈ Z the sequence

(4.56) 0 →Mκ(Γ) → Iκ(Γ) → S1−κ(Γ) → 0

is exact.

Proof. The second map of (4.56) is an inclusion by definition, and we
observed already in Section 2.7 that Mκ(Γ) is the kernel of the associated
cusp form map Iκ(Γ) → S1−κ(Γ) (cf. Lemma 2.4), so we require to show
only that the second to last map of (4.56) is surjective. For this we recall
the fact (cf. [27]) that the holomorphic Poincaré series P 1−κ(m)

Γ,p (z), with
varying m ∈ Z

+, span the space S1−κ(Γ) of cusp forms of weight 2 − 2κ for
Γ whenever κ ≤ 0. Indeed, one need not vary the cusp p in order to obtain a
spanning set. Given an arbitrary cusp form g ∈ S1−κ(Γ) we may then write

(4.57) g =
∑

n>0

anP
1−κ(n)
Γ

for some an ∈ C, with only finitely many an non-zero. Employing Proposi-
tion 4.11, we see that the automorphic integral

(4.58) f =
∑

n>0

n2κ−1anQ
κ(−n)
Γ

is mapped to g by the associated cusp form map. We conclude that the
associated cusp form map is surjective. This completes the proof. �

Theorem 4.4 and Proposition 4.11 together describe the associated cusp
form map Iκ(Γ) → S1−κ(Γ) explicitly, and thus we obtain a powerful cri-
terion for determining when an automorphic integral f ∈ Iκ(Γ) lies in the
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subspace Mκ(Γ) of modular forms. For example, we have the following corol-
lary, indicating exactly when the modified Rademacher sum Q

κ(m)
Γ,p (z) is a

modular form for Γ in the sense of Section 2.7.

Corollary 4.1. Let Γ be a group commensurable with G(Z) that has width
one at infinity and let p ∈ PΓ be a cusp of Γ. Let κ,m ∈ Z such that κ ≤
0 and m < 0. Then the modified Rademacher sum Q

κ(m)
Γ,p (z) is a modular

form of weight 2κ for Γ if and only if the cusp form P
1−κ(−m)
Γ,p (z) vanishes

identically.

5. Structural applications

We have seen already in Section 4 various applications of the modified
Rademacher sums, and the continuation procedure introduced in Section 4.1,
such as the basis theorem (Theorem 4.4) for automorphic integrals, and the
explicit description (cf. Proposition 4.11) of the associated cusp form map
Iκ(Γ) → S1−κ(Γ). In this section, we explore further consequences of the
modified Rademacher sum construction for the structure of the spaces of
automorphic integrals associated to groups commensurable with the mod-
ular group. Applications of the modified Rademacher sums to monstrous
moonshine and quantum gravity will be developed in Sections 6 and 7.

5.1. Constants

Perhaps the most striking application of the continuation procedure of Sec-
tion 4.1 is the correction of the constant terms appearing in the classical
Rademacher sums. For negative weights, the constant term in the Fourier
expansion of an automorphic integral f ∈ Iκ(Γ) is determined by the auto-
morphy condition (2.54). At weight 0 constant functions are themselves auto-
morphic integrals, so the classical Rademacher sums R(m)

Γ,p (z) of weight 0 do
not fail to be automorphic, and it is natural then to wonder about the sig-
nificance of the constant term cΓ,p(m, 0) appearing in the Fourier expansion
of the modified Rademacher sum Q

(m)
Γ,p (z) of weight 0 associated to a group

Γ at a cusp p ∈ PΓ.
Let G denote the set of subgroups of G(Q) that are commensurable with

G(Z). Recall from Section 2.7 that for Γ ∈ G we write M0(Γ) for the space
of holomorphic functions on H that are invariant for the natural action of Γ
and are meromorphic at the cusps of Γ. Let M0 be the union of the spaces
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M0(Γ) for Γ ∈ G.

(5.1) M0 =
⋃

Γ∈G

M0(Γ).

Since G is closed under intersections, the set M0 is in fact a subalgebra of
the space O(H) of holomorphic functions on H. Since G(Q) is the commen-
surator of G(Z), the algebra M0 is G(Q)-invariant. The constant functions
evidently constitute a G(Q)-invariant subspace C1 ⊂ M0. We may enquire
as to the G(Q)-module structure of the quotient M0/C1. According to [51]
this quotient is irreducible, and the natural map M0 → M0/C1 admits a
section.

Theorem 5.1 [51]. There exists a unique G(Q)-submodule M′
0 ⊂ M0 with

the property that the natural inclusions C1,M′
0 ⊂ M0 induce an isomor-

phism

(5.2) M0
∼= C1 ⊕ M′

0

of G(Q)-modules.

According to Theorem 5.1, for each f ∈ M0 there is a unique c(f) ∈ C

with the property that f + c(f) ∈ M′
0. The value c(f) is called the Rade-

macher constant of f . The assignment f �→ c(f) defines a linear function
on M0 with kernel M′

0 which we call the Rademacher constant function.
We suggest that the Rademacher constant function may be generalized to
automorphic integrals of weight 0 in the following way. Let I0 be the union
of the spaces I0(Γ) for Γ ∈ G.

(5.3) I0 =
⋃

Γ∈G

I0(Γ).

Since G is closed under intersections, the set I0 is also a subalgebra of
O(H), and since G(Q) is the commensurator of G(Z), the algebra I0 is also
stable under the action of G(Q). The constant functions again constitute
a G(Q)-invariant subspace C1 ⊂ I0. We conjecture that the natural ana-
log of Theorem 5.1 holds for I0. Precisely, we conjecture that there is a
unique G(Q)-submodule I′

0 ⊂ I0 with the property that the natural inclu-
sions induce an isomorphism

(5.4) I0
∼= C1 ⊕ I′

0
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of G(Q)-modules. Further, we conjecture that I′
0 is just the space spanned

by the modified Rademacher sums Qκ(−m)
Γ,p (z) for Γ ∈ G and p ∈ PΓ and

m ∈ Z
+.

5.2. Inner products

Let Γ be a group commensurable with G(Z) and let κ ∈ Z
+. Then the

space Sκ(Γ) of cusp forms of weight 2κ for Γ becomes a Hilbert space when
equipped with the Petersson inner product, defined by setting

(5.5) 〈f, g〉 =
∫

FΓ

f(z)g(z)�(z)2κ dμ(z)

for f, g ∈ Sκ(Γ), where FΓ is a fundamental domain for Γ. Let us define a
normalized Petersson inner product of weight 2κ for Γ, to be denoted 〈· , ·〉κΓ,
by setting

(5.6) 〈f, g〉κΓ = (4π)(2κ−2)

∫

FΓ

f(z)g(z)�(z)2κ dμ(z)

for f, g ∈ Sκ(Γ). It is well known (and follows from Theorem 3.5), that for
κ,m ∈ Z

+ and p a cusp for Γ, the holomorphic Poincaré series P κ(m)
Γ,p (z) is a

cusp form of weight 2κ for Γ in case Γ has width one at infinity. A standard
calculation (cf. [27]) shows that we have

(5.7)
〈
P

κ(m)
Γ,p , P

κ(n)
Γ,q

〉κ
Γ

= n2−2κ(δΓ,p|qδm,n + cκΓ,p|q(m,n))

for p, q ∈ PΓ and m,n ∈ Z
+. According to Theorem 3.5 the right-hand side

of (5.7) is, up to the scalar factor n2−2κ, the coefficient of e(nz) in the
expansion P

κ(m)
Γ,p|q (z) of the Poincaré series P κ(m)

Γ,p (z) at q. Now the modified

Rademacher sums Qκ(m)
Γ,p (z), for −κ,−m ∈ Z

+, span the space Iκ(Γ) of auto-
morphic integrals for weight 2κ for Γ, according to Theorem 4.4, and thus
serve an analogous rôle for the spaces Iκ(Γ) as the Poincaré series P κ(m)

Γ,p (z)
do for the spaces Sκ(Γ). It is natural then to use the right-hand side of (5.7)
to extend the normalized Petersson inner product to negative weights. In
light of the fact, established in Proposition 4.7, that the coefficient of e(−nz)
in the expansion Qκ(−m)

Γ,p|q (z) of the modified Rademacher sum Q
κ(−m)
Γ,p (z) at

q is δΓ,p|qδm,n for m,n ∈ Z
+, we define an inner product 〈· , ·〉κΓ on Iκ(Γ)
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by setting

(5.8)
〈
Q

κ(−m)
Γ,p , Q

κ(−n)
Γ,q

〉κ
Γ

= n2−2κδΓ,p|qδm,n

for p, q ∈ PΓ and m,n ∈ Z
+, when κ < 0. In case κ = 0 the modified Rade-

macher sums Qκ(−m)
Γ,p (z) span a subspace I ′0(Γ) of I0(Γ) of codimension 1 (cf.

Theorem 4.4 and Section 5.1) and we may use the formula (5.8) to define
an inner product on this subspace I ′0(Γ).

(5.9)
〈
Q

(−m)
Γ,p , Q

(−n)
Γ,q

〉0
Γ

= n2δΓ,p|qδm,n.

A complement to I ′0(Γ) in I0(Γ) is spanned by the constant functions. We
extend the inner product 〈· , ·〉0Γ to all of I0(Γ) by adopting the convention
that

(5.10)
〈
Q

(−m)
Γ,p , f
〉0

Γ
= 0

for all p ∈ PΓ and m ∈ Z
+ whenever f is identically constant.

5.3. Branching

Let Δ and Γ be groups commensurable with G(Z) and suppose that Δ is a
subgroup of Γ. Then an automorphic integral for Γ is also an automorphic
integral for Δ. By Theorem 4.4 the modified Rademacher sums span the
spaces of automorphic integrals, so it is natural to consider the problem of
expressing the modified Rademacher sums Qκ(m)

Γ,p associated to Γ in terms

of the modified Rademacher sums Qκ(n)
Δ,r associated to Δ.

Suppose then that Δ and Γ are groups commensurable with G(Z) and
Δ is a subgroup of Γ. Let p be a cusp for Γ, let Σp be a scaling coset for Γ
at p, and choose a system {Σr | r ∈ PΔ} of scaling cosets for Δ. Suppose for
now that κ is a negative integer. Then by Theorem 4.4 we have

(5.11) Q
κ(m)
Γ,p (z) =

∑

r∈PΔ

bnr Q
κ(n)
Δ,r (z)

for some bnr ∈ C, and these bnr are non-zero for only finitely many n < 0.
Furthermore, since the modified Rademacher sum Q

κ(m)
Γ,p (z) has no poles

away from p, the coefficient bnr can be non-zero only when r lies in the
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preimage of p under the natural map XΔ → XΓ, which is to say, bnr is non-
zero only when r ∈ Δ\p. It is natural then to consider the map

Δ\Σp → Δ\p,
Δσ �→ Δσ · ∞(5.12)

sending right cosets of Δ in Σp to cusps of Δ contained in p ⊂ Q̂. The
map (5.12) is always surjective. We may ask under what circumstances it is
also injective.

Lemma 5.1. Let Δ and Γ be groups commensurable with G(Z) and suppose
that Δ is a subgroup of Γ. Let p be a cusp for Γ and let Σp be a scaling coset
for Γ at p. Then the map Δ\Σp → Δ\p of (5.12) is injective if and only if
Δσ is a scaling coset for Δ at Δσ · ∞ for every Δσ ∈ Δ\Σp.

Proof. Suppose the map Δ\Σp → Δ\p of (5.12) is injective, and let σ ∈
Σp. The forward implication of the lemma follows if we can show that
Δσ is a scaling coset for Δ at Δσ · ∞. For this it suffices to show that
(σ−1Δσ)∞ = B(Z). Since σ−1Δσ is a subgroup of σ−1Γσ, and (σ−1Γσ)∞ =
(Σ−1

p Σp)∞ = B(Z) by the defining properties of Σp, we have the inclusion
(σ−1Δσ)∞ ⊂ B(Z), so it suffices to show that the translation T belongs to
σ−1Δσ. Now ΔσT is also a coset of Δ in Σp, since Γσ = Σp is a union of left
cosets of B(Z). Since T fixes ∞ we have ΔσT · ∞ = Δσ · ∞, and thus the
cosets ΔσT and Δσ coincide by the assumed injectivity of the map (5.12).
It follows that T ∈ σ−1Δσ, so that Δσ is indeed a scaling coset for Δ.

For the reverse implication suppose that Δσ is a scaling coset for Δ
for every σ ∈ Σp. Let σ, σ′ ∈ Σp and suppose that Δσ · ∞ = Δσ′ · ∞. Then
σ−1δσ′ ∈ (Σ−1

p Σp)∞ = B(Z) for some δ ∈ Δ, so σ−1δσ′ = Tn for some n ∈
Z, and this implies Δσ′ = ΔσTn. Now the assumption that Δσ is a scaling
coset for Δ implies that Δσ is a union of left cosets of B(Z), so ΔσTn =
Δσ. We conclude that Δσ′ = Δσ, so that the map Δ\Σp → Δ\p is indeed
injective. This completes the proof of the lemma. �

According to the discussion of Section 2.6 a coset Δσ ∈ Δ\Σp becomes
a scaling coset for Δ at Δσ · ∞ only once we multiply it on the right by [β]
(cf. (2.12)) for some β ∈ Q

+. In fact, this β is a positive integer, for we have
(σ−1Δσ)∞ ⊂ (Σ−1

p Σp)∞ = B(Z), so that (σ−1Δσ)∞ is generated by Tn for
some n ∈ Z

+. In order that Δσ[β] be a scaling coset for Δ at Δσ · ∞ we
should have ([1/β]σ−1Δσ[β])∞ = B(Z), so the computation [1/β]Tn[β] =
Tn/β shows that β = n. Evidently, we may define a function Δ\Σp → Z

+

by mapping the coset Δσ to the positive integer n such that Tn generates



Rademacher sums, moonshine and gravity 933

(σ−1Δσ)∞. We next show that this function Δ\Σp → Z
+ factors through

the map Δ\Σp → Δ\p of (5.12).

Lemma 5.2. Let Δ and Γ be groups commensurable with G(Z), and sup-
pose that Δ is a subgroup of Γ. Let p ∈ PΓ be a cusp of Γ and let Σp be a
scaling coset for Γ at p. Then for any σ1, σ2 ∈ Σp the identity Δσ1 · ∞ =
Δσ2 · ∞ implies (σ−1

1 Δσ1)∞ = (σ−1
2 Δσ2)∞.

Proof. Set r = Δσ1 · ∞ = Δσ2 · ∞. Since (σ−1Γσ)∞ = (Σ−1
p Σp)∞ = B(Z)

for any σ ∈ Σp the groups (σ−1
1 Δσ1)∞ and (σ−1

2 Δσ2)∞ are both contained
in B(Z). Let n1 and n2 be the positive integers such that (σ−1

1 Δσ1)∞ is
generated by Tn1 and (σ−1

2 Δσ2)∞ is generated by Tn2 . Then Δσ1[n1] and
Δσ2[n2] are both scaling cosets for Δ at r, so Δσ1[n1] = Δσ2[n2]Tα for some
α ∈ Q. This implies that [n2]Tα[1/n1] is an element of (Σ−1

p Σp)∞ = B(Z),
so that [n2]Tα[1/n1] = T k for some k ∈ Z. Now we compute

(5.13) [n2]Tα[1/n1] =
[
n2 0
0 1

] [
1 α
0 1

] [
1 0
0 n1

]
=
[
n2 n2αn1

0 n1

]
=
[
1 k
0 1

]

and conclude that n1 = n2, as we required to show. �
On the basis of Lemma 5.2 we may define a function Δ\p → Z

+ for
each cusp p of Γ by first choosing a scaling coset Σp for Γ at p, and then
sending the cusp r ∈ Δ\p of Δ to the unique positive integer n satisfying
(σ−1Δσ)∞ = 〈Tn〉 when r = Δσ · ∞. Observe now that this map does not
depend upon the choice of scaling coset Σp, for if we replace σ ∈ Σp with
σ′ = σTα ∈ ΣpT

α for some α ∈ Q, then we have

((σ′)−1Δσ′)∞ = (T−ασ−1ΔσTα)∞ = T−α(σ−1Δσ)∞Tα = (σ−1Δσ)∞.

(5.14)

In light of this we may define a map wΓ : PΔ → Z
+, which we call the width

function associated to Γ, by setting wΓ(r) = n in case r = Δσ · ∞ and Tn

generates (σ−1Δσ)∞ and Γσ is a scaling coset for Γ at the unique cusp of Γ
containing r.

wΓ : PΔ → Z
+,

r = Δσ · ∞, Γσ ∈ SΓr =⇒ (σ−1Δσ)∞ = 〈TwΓ(r)〉.(5.15)

We call wΓ(r) the width of r with respect to Γ. The next result gives upper
bounds for the width functions.
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Lemma 5.3. Let Δ and Γ be groups commensurable with G(Z), and sup-
pose that Δ is a subgroup of Γ. Then we have

(5.16)
∑

r∈Δ\p
wΓ(r) = #Δ\Γ

for every cusp p of Γ.

Proof. Let p be a cusp of Γ and choose a scaling coset Σp for Γ at p, and
let us temporarily write cp for the map Δσ �→ Δσ · ∞ of (5.12). We claim
that wΓ(r) is the cardinality of the preimage of r under cp, for each r ∈ Δ\p.
The identity (5.16) follows from this because the cardinality #Δ\Σp of the
source of cp is just the number of cosets of Δ in Γ. To compute #c−1

p (r)
suppose Δσ · ∞ = Δσ′ · ∞ for some σ, σ′ ∈ Σp. Then σ−1δσ′ ∈ (Σ−1

p Σp)∞ =
B(Z) for some δ ∈ Δ, so that Δσ′ = ΔσT k for some k ∈ Z. Now ΔσT is an
element of Δ\Σp whenever Δσ is, for Σp is a union of left cosets of B(Z) by
construction. So we have c−1

p (r) = {ΔσT k | k ∈ Z} for any σ ∈ Σp satisfying
r = Δσ · ∞. If wΓ(r) = n, so that (σ−1Δσ)∞ = 〈Tn〉 then ΔσT k = ΔσT l if
and only if n|(k − l). This establishes the claim that #c−1

p (r) = wΓ(r), and
completes the proof. �

We can now compute the coefficients bnr in (5.11) explicitly, and thus
obtain a branching theorem for the modified Rademacher sums. Even though
we formulated the expression (5.11) under the assumption that κ be nega-
tive, our methods will apply for all κ ∈ Z such that κ ≤ 0.

Theorem 5.2. Let Δ and Γ be groups commensurable with G(Z). Suppose
that Δ is a subgroup of Γ, and suppose that Δ and Γ both have width one
at infinity. Let p be a cusp of Γ and let Σp be a scaling coset for Γ at p. Let
κ,m ∈ Z such that κ ≤ 0 and m < 0. Then there exists a system of scaling
cosets {Σr | r ∈ PΔ} for Δ for which we have

(5.17) Q
κ(m)
Γ,p (z) =

∑

r∈Δ\p
wΓ(r)Qκ(mwΓ(r))

Δ,r (z).

Proof. Let Δ and Γ be as in the statement of the lemma. Under the assump-
tion that Γ has width one at infinity, and the convention that ΣΓ·∞ = Γ in
this case (cf. Section 2.6), we have

(5.18) Q
κ(m)
Γ,p (z) = Q

κ(m)

�Σ−1
p

(z) =
∑

Δσ∈Δ\Σp

Q
κ(m)
�σ−1Δ (z),
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and we may attempt to write each summand Q
κ(m)
�σ−1Δ (z) in terms of the

modified Rademacher sums Qκ(n)
Δ,r (z) associated to Δ. Let Δσ ∈ Δ\Σp and

set r = Δσ · ∞. Supposing that wΓ(r) = n, so that (σ−1Δσ)∞ = 〈Tn〉, we
set Σr = Δσ[n]. Then we have

(5.19) Q
κ(m)
�σ−1Δ (z) = Q

κ(m)
�[n][1/n]σ−1Δ (z) = Q

κ(mn)

�Σ−1
r

(z),

since Qκ(m)
�[n]χ (z, s) = Q

κ(mn)
�χ (z, s) (cf. Section 4.1). Under the assumption that

Δ has width one at infinity, so that ΣΔ·∞ = Δ, we may rewrite the right
most term in (5.19) as Qκ(mn)

Δ,r (z). We see then that a coset Δσ of Δ in

Σp contributes a term Q
κ(mwΓ(r))
Δ,r (z) to the right-hand side of (5.17), where

r = Δσ · ∞. According to the proof of Lemma 5.3 there are exactly wΓ(r)
cosets Δσ in Δ\Σp satisfying r = Δσ · ∞. The required identity (5.17) now
follows. �

From the proof of Theorem 5.2 we see that the existence of the scaling
cosets of the conclusion is verified constructively: if r = Δσ · ∞ for some
coset Δσ ∈ Δ\Σp, then we may take Σr = Δσ[wΓ(r)].

By utilizing the inner products 〈· , ·〉κΔ of Section 5.2 we can reformulate
Theorem 5.2 in a way that is independent of scaling coset choices.

Theorem 5.3. Let Δ and Γ be groups commensurable with G(Z). Suppose
that Δ is a subgroup of Γ, and suppose that Δ and Γ both have width one at
infinity. Let p be a cusp of Γ, let κminZ such that κ ≤ 0 and m < 0. Then
we have

(5.20)
∣∣∣
〈
Q

κ(m)
Γ,p , Q

κ(n)
Δ,r

〉κ
Δ

∣∣∣
2

= wΓ(r)δΓ,p|ΓrδmwΓ(r),n

for all r ∈ PΔ and n < 0, for any choice of scaling coset systems for Δ and Γ.

To conclude this section we comment on the branching of Rademacher
sums in the case that Γ both contains and normalizes Δ. Suppose then that
Δ and Γ have width one at infinity, and consider the case that p is the
infinite cusp Γ · ∞ in (5.12). Then we are speaking of the map

Δ\Γ → Δ\Γ · ∞,

Δγ �→ Δγ · ∞,
(5.21)

and this map is injective (and thus bijective) when Γ normalizes Δ. Indeed,
since Δ is supposed to have width one at infinity we have (γ−1Δγ)∞ =
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Δ∞ = B(Z), so that every coset Δγ ∈ Δ\Γ is indeed a scaling coset for Δ at
r = Δγ · ∞, and the injectivity of (5.21) follows from Lemma 5.1. Applying
Theorem 5.2 now with p = Γ · ∞ we obtain the following result.

Proposition 5.1. Suppose that Δ and Γ are groups commensurable with
G(Z) that both have width one at infinity, and suppose that Γ contains and
normalizes Δ. Let κ,m ∈ Z such that κ ≤ 0 and m < 0. Then we have

(5.22) Q
κ(m)
Γ (z) =

∑

r∈Δ\p
Q

κ(m)
Δ,r (z)

when the scaling cosets for Δ at the cusps r ∈ Δ\Γ · ∞ are taken to lie
in Δ\Γ.

Theorem 5.3 now implies the following reformulation of Proposition 5.1,
which is independent of scaling coset choices.

Proposition 5.2. Suppose that Δ and Γ are groups commensurable with
G(Z) that both have width one at infinity, and suppose that Γ contains and
normalizes Δ. Then we have

(5.23)
∣∣∣
〈
Q

κ(−1)
Γ , Q

κ(−1)
Δ,r

〉κ
Δ

∣∣∣
2

= δΓ,p|Γr

for all r ∈ PΔ, for any choice of scaling coset system for Δ.

5.4. Fractional orders

Let Γ be a group commensurable with G(Z), let φ, ψ ∈ G(Q) and set U =�
φ−1Γψ . Let us consider the problem of writing the modified Rademacher

sum Q
κ(m)
U (z) in terms of Rademacher sums of the form Q

κ(m′)
Γ′,p′ (z) for some

group Γ′ and some cusp p′ ∈ PΓ′ . According to Section 4.1 we have
Q

κ(m)
Γ,p|q(z) = Q

κ(m)
Γ′,p′ (z) for Γ′ = Γq and p′ = pq (cf. (4.9)), so we are done

if we can write Q
κ(m)
U (z) in terms of Qκ(n)

Γ,p|q(z) for some cusps p, q ∈ PΓ

for Γ. Set p = Γφ · ∞ and q = Γψ · ∞. By the discussion of Section 2.6
there exist unique μ, ν ∈ Q

+ such that the cosets Σp = Γφ[μ] and Σq =
Γψ[ν] (cf. (2.12)) are scaling cosets for Γ at p and q, respectively. We
then have U =

�
[μ]Σ−1

p Σq[1/ν] . Let χ ∈ Σ−1
q Σq and consider the contribu-

tion Q
κ(m)
�[μ]χ[1/ν] (z, s) of the coset �[μ]χ[1/ν] ∈ U to the modified continued

Rademacher sum Q
κ(m)
U (z, s). As the following lemma demonstrates, the

factor [1/ν] induces a re-scaling of the input variable z.



Rademacher sums, moonshine and gravity 937

Lemma 5.4. Let χ ∈ G(Q) and let ν ∈ Q
+. Let κ,m ∈ Z such that κ ≤ 0

and m < 0. Then we have

(5.24) Q
κ(m)
�χ[1/ν] (z, s) =

1
νκ
Q

κ(m)
�χ

(z
ν
, s
)
.

Proof. We recall from (4.4) that the modified continued Rademacher com-
ponent function Qκ(m)

�χ[1/ν] (z, s) is, by definition, the difference T κ(m)
�χ[1/ν] (z, s) −

T
κ(m)
0,�χ[1/ν] (s), where the functions T κ(m)

�χ[1/ν] (z, s) and T
κ(m)
0,�χ[1/ν] (s) are defined

by (4.1) and (4.3), respectively. We compute jac(�χ[1/ν] , z) =
jac(�χ , z/ν)/ν, and use the fact that [1/ν] fixes both ∞ and 0 to verify
that

(5.25) T
κ(m)
�χ[1/ν] (z, s) =

1
νκ
T

κ(m)
�χ

(z
ν
, s
)
, T

κ(m)
0,�χ[1/ν] (s) =

1
νκ
T

κ(m)
0,�χ (s).

The claim follows from these identities. �

We now seek to describe the effect of the factor [μ] in Q
κ(m)
�[μ]χ (z, s), for

arbitrary χ ∈ G(Q). Inspecting (4.1) we find that

(5.26) T
κ(m)
�[μ]χ (z, s) = μκe(mμχ · z) tκ(mμ,χ, z, s) jac(χ, z)κ,

which suggests that we generalize the notion of Rademacher sum so as to
allow for fractional orders. Recall from (2.14) that B(αZ) denotes the sub-
group of Bu(Q) generated by Tα (cf. (2.13)). For general μ ∈ Q

+ the right-
hand side of (5.26) will not be invariant under the replacement of χ by Tχ,
so a Rademacher sum of fractional order is not naturally defined by collec-
tions of cosets of B(Z), but rather, by cosets of B(hZ) for a suitably chosen
positive integer h ∈ Z

+.
Given h ∈ Z

+ and χ ∈ G(Q) let us write
�

hχ as a shorthand for B(hZ)χ,
and for X ⊂ G(Q) let us write

�
hX as a shorthand for the set of right cosets

of B(hZ) determined by elements of X, so that

(5.27)
�

hX = {B(hZ)χ | χ ∈ X} .

Let κ ∈ Z such that κ ≤ 0. We define modified and normalized fractional
Rademacher sums as follows, in analogy with the constructions of Sec-
tion 4.1. For μ = −g/h with (g, h) = 1 and g, h ∈ Z

+, and for
�

hχ ∈ �
hG(Q) ,

we define the continued fractional Rademacher component function of weight
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2κ and order μ associated to
�

hχ , denoted (z, s) �→ T
κ(μ)
�hχ (z, s), by setting

(5.28) T
κ(μ)
�hχ (z, s) = e(μ

�
hχ · z) tκ(μ,

�
hχ , z, s) jac(

�
hχ , z)κ,

where jac(
�

hχ , z) = jac(χ, z), and tκ(μ,
�

hχ , z, s) is the continued fractional
Rademacher regularization factor of weight 2κ, which is in turn given by

tκ(μ,
�

hχ , z, s) = Φ(s− 2κ, 1 + s− 2κ, μ
�

hχ · ∞
− μ

�
hχ · z)(2πi(μ

�
hχ · z − μ

�
hχ · ∞))s−2κ(5.29)

in case
�

hχ ∈ �
hG(Q)×, and tκ(μ,

�
hχ , z, s) = 1 otherwise. We define a

function s �→ T
κ(μ)
0,�hχ (s) by setting

T
κ(μ)
0,�hχ (s) = e(μ

�
hχ · ∞)

(
2πi(μ

�
hχ · 0 − μ

�
hχ · ∞)

)(s−2κ)
jac(

�
hχ , 0)κ

− e(s/2)e(μ
�

hχ · ∞)
(
2πi(μ

�
hχ · ∞ − μ

�
hχ · 0)
)(s−2κ)

× jac(
�

hχ , 0)κ

(5.30)

in case
�

hχ ∈ �G(Q)××, and by setting T
κ(μ)
0,�hχ (s) = 0 otherwise, and we

define the modified continued fractional Rademacher component function of

weight 2κ and order μ associated to
�

hχ , denoted (z, s) �→ Q
κ(μ)
�hχ (z, s), by

subtracting T κ(μ)
0,�hχ (z, s) from T

κ(μ)
�hχ (z, s).

(5.31) Q
κ(μ)
�hχ (z, s) = T

κ(μ)
�hχ (z, s) − T

κ(μ)
0,�hχ (z, s).

For U ⊂ �
hG(Q) we now define the continued fractional Rademacher sum of

weight 2κ and order μ associated to U , denoted T κ(μ)
U (z, s), and the modified

continued fractional Rademacher sum of weight 2κ and order μ associated
to U , denoted Qκ(μ)

U (z, s), by setting

T
κ(μ)
U (z, s) =

∑

�hχ∈U

T
κ(μ)
�hχ (z, s),(5.32)

Q
κ(μ)
U (z, s) =

∑

�hχ∈U

Q
κ(μ)
�hχ (z, s),(5.33)
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when these sums are absolutely locally uniformly convergent, and given such
circumstances we define T κ(μ)

U (z) and Qκ(μ)
U (z) by taking the limit as s tends

to 1 in T κ(μ)
U (z, s) and Qκ(μ)

U (z, s), respectively, so long as these limits exist.

T
κ(μ)
U (z) = lim

s→1+
T

κ(μ)
U (z, s),(5.34)

Q
κ(μ)
U (z) = lim

s→1+
Q

κ(μ)
U (z, s).(5.35)

We call T κ(μ)
U (z) the normalized fractional Rademacher sum of weight 2κ

and order μ associated to U , and we call Qκ(μ)
U (z) the modified fractional

Rademacher sum of weight 2κ and order μ associated to U .
We have the following vanishing result for fractional Rademacher sums.

Proposition 5.3. Let X be a union of cosets of B(Z) in G(Q), let μ =
−g/h for some g, h ∈ Z

+ and (g, h) = 1, and set U =
�

hX . Suppose that
the normalized fractional Rademacher sum T

κ(μ)
U (z) and the modified frac-

tional Rademacher sum Q
κ(μ)
U (z) converge. Then they vanish identically

unless h = 1.

Proof. Suppose that h 	= 1. By hypothesis we have a disjoint decomposition
X =
⋃

i �χi for some {χi} ⊂ X. This implies a disjoint decomposition X =⋃
i

⋃h−1
k=0

�
hT kχi , so that we have

T
κ(μ)
U (z, s) =

∑

i

h−1∑

k=0

e
(
−g
h
T kχi · z

)
tκ
(
−g
h
, T kχi, z, s

)
jac(T kχi, z)κ

=
∑

i

(
h−1∑

k=0

e

(
−gk
h

))
e
(
−g
h
χi · z
)

tκ
(
−g
h
, χi, z, s

)
jac(χi, z)κ,

(5.36)

since the continued fractional regularization factor is unaffected when the
second argument is multiplied by an element of B(Z) on the left. The sum∑h−1

k=0 e(−gk/h) vanishes for g coprime to h unless h = 1. This shows that
the continued fractional Rademacher sum T

κ(μ)
U (z, s) vanishes for all z and

s when h 	= 1. A directly analogous computation shows that the function
T

κ(μ)
0,U (s) vanishes in case h 	= 1. We conclude that both the continued frac-

tional Rademacher sum T
κ(μ)
U (z, s) and the modified continued fractional

Rademacher sum Q
κ(μ)
U (z, s) vanish identically in case h 	= 1. The claim of

the proposition follows. �
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We return now to the identification of the Rademacher sum Q
κ(m)
U (z),

in the case that U =
�
[μ]Σ−1

p Σq[1/ν] .

Theorem 5.4. Let Γ be a group commensurable with G(Z), let p, q ∈ PΓ be
cusps for Γ, and let Σp and Σq be scaling cosets for Γ at p and q, respectively.
Let μ, ν ∈ Q

+ and set U =
�
[μ]Σ−1

p Σq[1/ν] . Let κ,m ∈ Z such that κ ≤ 0
and m < 0. Let h be the smallest positive integer such that hμ ∈ Z. If h
divides m then we have

(5.37) Q
κ(m)
U (z) = h

μκ

νκ
Q

κ(mμ)
Γ,p|q
(z
ν

)
,

and if h does not divide m then Q
κ(m)
U (z) vanishes identically.

Proof. Set U ′ =
�
[μ]Σ−1

p Σq and U ′′ =
�
Σ−1

p Σq , so that U = U ′[1/ν] =
[μ]U ′′[1/ν]. By Lemma 5.4 we have Q

κ(m)
U (z) = Q

κ(m)
U ′ (z/ν)/νκ, so it suf-

fices for us to show that Qκ(m)
U ′ (z) is hμκQ

κ(mμ)
Γ,p|q (z) or vanishing, according

as h divides m or not.
Set X = Σ−1

p Σq ⊂ G(Q). Then X is a union of right cosets of B(Z), so
we have a disjoint decomposition X =

⋃
i �χi for some χi ∈ G(Q). By the

choice of h we have μ = g/h for some g ∈ Z
+ with (g, h) = 1. Then for the

set [μ]X we have

(5.38) [μ]X =
⋃

i

[μ] �χi =
⋃

i

h−1⋃

k=0

[μ]T k
�

hχi =
⋃

i

h−1⋃

k=0

T kμ �g[μ]χi

with all the unions disjoint, from which we conclude that �[μ]X admits the
disjoint decomposition �[μ]X =

⋃h−1
k=0

⋃
i T

kμ �[μ]χi . We have

(5.39) Q
κ(m)
T kµ�[μ]χi

(z, s) = e(mkμ)Qκ(m)
�[μ]χi

(z, s).

If h divides m then mμ ∈ Z and e(mkμ) = 1 for all k. Further, Qκ(m)
�[μ]χi

(z, s)

coincides with μκQ
κ(mμ)
�χi

(z, s) in this case, and so we deduce the required

identity Qκ(m)
U ′ (z) = hμκQ

κ(mμ)
Γ,p|q (z). On the other hand, if h does not divide

m, so that mμ is not an integer, then the sum
∑h−1

k=0 e(mkμ) vanishes and
this implies the vanishing of the modified Rademacher sum Q

κ(m)
U ′ (z). The

proof is complete. �

Taking q = Γ · ∞ in Theorem 5.4 we obtain the following result.
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Theorem 5.5. Let Γ be a group commensurable with G(Z), let Z be a
finite union of left cosets of Γ in G(Q) and set U = �Z . Let κ,m ∈ Z such
that κ ≤ 0 and m < 0. Then the modified Rademacher sum Q

κ(m)
U (z) is an

automorphic integral of weight 2κ for Γ.

5.5. Hecke operators

For the modified Rademacher sums, in contrast to the classical Rademacher
sums, it is natural to consider not only their variance with respect to group
actions, but also how they vary with respect to Hecke operators. The dis-
crepancy in constant terms between the classical and modified Rademacher
sums illustrated by Proposition 4.9 is a stubborn barrier to an exposition
of the interaction between Hecke operators and the classical Rademacher
sums.

Recall that Iκ(Γ) denotes the space of automorphic integrals of weight
2κ for Γ, in the sense of Section 2.7, and recall the operator Iκ(Γ) → O(H)
of (2.55), denoted f �→ f‖κ

ΓX, and defined for a right coset X ∈ Γ\G(Q)
by setting f‖κ

ΓX = (f − Jκ
χ·∞g)|κχ for any representative χ ∈ X where g ∈

S1−κ(Γ) is the cusp form associated to f (cf. (2.54)). Let us generalize this
operator by setting

(5.40) f‖κ
ΓX =
∑

i

(f − Jκ
χ·∞g)|κχi

in case X is a finite union of right cosets of Γ in G(Q) and the χi furnish
a transversal X =

⋃
i Γχi for X over Γ. The next lemma verifies that the

operator f �→ f‖κ
ΓX makes sense in case X is a double coset X = ΓσΓ of Γ

in G(Q).

Lemma 5.5. Let Γ be a group commensurable with G(Z), let σ ∈ G(Q),
set Δ = Γ ∩ σ−1Γσ and Δ′ = σΓσ−1 ∩ Γ, and suppose that

(5.41) Γ =
⋃

i

λ′iΔ
′, Γ =

⋃

i

Δρi,

are left and right transversals for Γ over Δ′ and Δ, respectively. Then the
double coset ΓσΓ admits disjoint decompositions

(5.42) ΓσΓ =
⋃

i

λ′iσΓ, ΓσΓ =
⋃

i

Γσρi,

into left and right cosets for Γ.
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Proof. Since G(Q) is the commensurator of G(Z), the intersection Δ = Γ ∩
σ−1Γσ has finite index in both Γ and σ−1Γσ, so there are only finitely many
λ′i and ρi. Observe next that σΔ = Δ′σ = σΓ ∩ Γσ. Consequently, we have
Δ′σ ⊂ σΓ and σΔ ⊂ Γσ, so that

ΓσΓ =
⋃
λ′iΔ

′σΓ ⊂
⋃
λ′iσΓΓ =

⋃
λ′iσΓ,(5.43)

ΓσΓ =
⋃

ΓσΔρi ⊂
⋃

ΓΓσρi =
⋃

Γσρi.(5.44)

The reverse inclusions hold since all the λ′i and ρi lie in Γ. The unions are
disjoint, for if Γσρi = Γσρj say, then ρiρ

−1
j ∈ σ−1Γσ, but ρiρ

−1
j ∈ Γ by our

choice of the ρi, so ρiρ
−1
j ∈ Δ, and this implies i = j. A similar argument

applies to the cosets λ′iσΓ. �

The right-hand identity of (5.42) shows that the operator f �→ f‖κ
ΓΓσΓ

is well defined for f ∈ Iκ(Γ) and σ ∈ G(Q). The left hand identity of (5.42)
shows that the function f‖κ

ΓΓσΓ again lies in Iκ(Γ). Indeed, if the cusp
form associated to f ∈ Iκ(Γ) is g ∈ S1−κ(Γ) then the cusp form associ-
ated to f‖κ

ΓΓσΓ is g‖κ
ΓΓσΓ. We call the operator Iκ(Γ) → Iκ(Γ) given by

f �→ f‖κ
ΓΓσΓ the weight 2κ Hecke operator associated to σ. In order to ease

notation we set

(5.45) f†κ
Γσ = f‖κ

ΓΓσΓ

for σ ∈ G(Q). We have f†κ
Γσ =
∑

i f |κχi when {χi} ⊂ G(Q) is a right trans-
versal ΓσΓ =

⋃
i Γχi for Γ in ΓσΓ. If σ belongs to the normalizer of Γ then we

have ΓσΓ = Γσ and hence f†κ
Γσ = (f − Jκ

σ·∞g)|κσ for any f ∈ Iκ(Γ). More
generally, Lemma 5.5 yields for us the formula

(5.46) f†κ
Γσ =
∑

i

(f − Jκ
σρi·∞g)|κ(σρi)

in the case that {ρi} is a right transversal for Γ over the intersection Δ =
Γ ∩ Γσ.

The action of the operator f �→ f‖κ
ΓX on holomorphic Poincaré series

can be described without reference to transversals. Indeed, if U is the set
of right cosets of B(Z) determined by a union of left cosets of some group
Γ commensurable with G(Z), and if X is a finite union

⋃
j Γχj say, of right

cosets of Γ, then, taking κ > 1 to ensure absolute (and locally uniform)
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convergence, we have

(5.47) P
κ(m)
U ‖κ

ΓX =
∑

j

P
κ(m)
U |κχj =

∑

j

P
κ(m)
Uχj

= P
κ(m)
UX ,

so that the Poincaré series are stable under the action of the operators f �→
f‖κ

ΓX. In particular, for the Hecke operator f �→ f†κ
Γσ we have P κ(m)

U †κ
Γσ =

P
κ(m)
UσΓ . This identity P

κ(m)
U ‖κ

ΓX = P
κ(m)
UX extends naturally to the modified

Rademacher sums.

Proposition 5.4. Let Γ be a group commensurable with G(Z), let Z be a
finite union of left cosets of Γ in G(Q) and set U = �Z . Let κ,m ∈ Z such
that κ ≤ 0 and m < 0. Then for X a finite union of right cosets of Γ in
G(Q) we have

(5.48) Q
κ(m)
U ‖κ

ΓX = Q
κ(m)
UX .

Proof. The modified Rademacher sum Q
κ(m)
U (z) is an automorphic integral

of weight 2κ for Γ according to Theorem 5.5, so it has an associated cusp
form g ∈ S1−κ(Γ) say. We may express X as a disjoint union X =

⋃
i Γχi for

some finitely many χi ∈ G(Q). We then compute

(5.49) Q
κ(m)
U ‖κ

ΓX =
∑

i

(Qκ(m)
U − Jκ

χi·∞g)|κχi =
∑

i

Q
κ(m)
Uχi

= Q
κ(m)
UX .

This proves the claim. �

In the case that Γ is the modular group G(Z) we have the classical Hecke
operators T̂ (n), defined for n ∈ Z

+ by setting

(5.50) n1−κ(T̂ (n)f)(z) =
∑

ad=n
0≤b<d

f

(
az + b

d

)
aκ

dκ

for f ∈Mκ(Γ). We deduce the relation between the operators T̂ (n) and
f �→ f†κ

Γσ, for Γ = G(Z), by observing the following coincidence of disjoint
unions of cosets and double cosets of Γ.

(5.51)
⋃

ad=n
0≤b<d

Γ
[
a b
0 d

]
=
⋃

ad=n
d|a

Γ
[
a 0
0 d

]
Γ.
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Both sides of (5.51) are decompositions of the image in G(Q) of the set of
2 × 2 matrices with integral entries and determinant n. From these decom-
positions we deduce the following result.

Lemma 5.6. For n ∈ Z
+ and κ ∈ Z we have

(5.52) n1−κ(T̂ (n)f) =
∑

d∈Z+, d2|n
f†κ

Γ[n/d2]

for any f ∈ Iκ(Γ).

As a partial converse to Lemma 5.6, observe that for Γ = G(Z) the action
of any Hecke operator f �→ f†κ

Γσ can be expressed in terms of the Hecke
operator associated to a diagonal element [μ] ∈ B(Q). Indeed, if σ ∈ B(Q)
then, according to (5.51), we have ΓσΓ = Γ[μ]Γ for some μ ∈ Q

+. In case
σ does not lie in B(Q) we have σ · ∞ = p 	= ∞ for some p ∈ Q. Since the
modular group acts transitively on Q̂ there is some σp ∈ Γ with σp · ∞ = p,
and then ΓσΓ = Γσ̃Γ where σ̃ = σ−1

p σ evidently lies in B(Q).

Lemma 5.7. Let Γ = G(Z) and let σ ∈ G(Q). Then there exists μ ∈ Q
+

such that

(5.53) f†κ
Γσ = f†κ

Γ[μ]

for all κ ∈ Z and all f ∈ Iκ(Γ).

We now consider the action of the Hecke operators T̂ (n) on the modified
Rademacher sumQ

(−1)
Γ (z) = Q

(−1)
�Γ (z) of weight 0 and order −1 associated to

the modular group Γ = G(Z). From Theorem 4.4 we have thatQ(−m)
�Γ (z) is an

automorphic integral of weight 0 (that is, an abelian integral) for Γ for m >
0. Since there are no non-zero cusp forms of weight 2 for the modular group,
we see from Corollary 4.1 that Q(−m)

�Γ (z) is in fact a Γ-invariant function on

H for all m ∈ Z
+. Consequently we have Q(−1)

�Γ †0Γ[n] = Q
(−1)
�Γ[n]Γ for n ∈ Z

+, by
Proposition 5.4 and the definition (5.45) of f†κ

Γσ. Suppose that n is square-
free. Then, according to Lemma 5.6, the action of the operator f �→ f†0Γ[n]
on M0(Γ) coincides with that of nT̂ (n). We anticipate an application of
Lemma 5.5. For σ = [n] we have Δ′ = σΓσ−1 ∩ Γ = Γ0(n), and for a left
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transversal of Δ′ = Γ0(n) in Γ we may take

(5.54) Γ =
⋃

e‖n

n/e−1⋃

k=0

T kST eΔ′,

where the first union is over exact divisors of n (cf. Section 2.1). We deduce
that

(5.55) Γ[n]Γ =
⋃

e‖n

n/e−1⋃

k=0

T kST e[n]Γ

by Lemma 5.5. Now
�
T kX = �X for any subset X ⊂ G(Q) and any k ∈ Z,

so we find that

(5.56) n(T̂ (n)Q(−1)
�Γ ) = Q

(−1)
�Γ[n]Γ =

∑

e‖n
Q

(−1)
�ST e[n]Γ .

Lemma 5.8. Let e be an exact divisor of n. Then we have �ST e[n]Γ =�
[n/e2]Γ when Γ is the modular group G(Z).

Proof. We compute

(5.57) ST e[n] =
[
0 −1
n e

]
, ST e[n]STn/eS =

[
n/e −1
0 e

]
,

and observe that T kAT l = [n/e2] for k, l ∈ Z such that ke+ ln/e = 1, where
A is given by A = ST e[n]STn/eS. �

We can now write

(5.58) n(T̂ (n)Q(−1)
�Γ ) =

∑

e‖n
Q

(−1)
�[n/e2]Γ

in the case that n is square-free, and we can employ the methods of Sec-
tion 5.4 to rewrite (5.58) in terms of the fractional Rademacher sums.
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Observe that B(gZ)[g/h] = [g/h]B(hZ). We thus have

(5.59) �[μ]χ =
g−1⋃

k=0

T k �g[μ]χ =
g−1⋃

k=0

T k[μ]
�

hχ

for any χ ∈ G(Q) when μ = g/h with g, h ∈ Z
+ and (g, h) = 1. We rewrite

the right-hand side of (5.58), taking g = n/h and h = e, as

(5.60)
∑

h‖n
Q

(−1)
�[n/h2]Γ =

∑

h‖n
Q

(−1)
[n/h2]�hΓ =

∑

h‖n
Q

(−n/h2)
�hΓ ,

and thus obtain the following result, relating the actions of Hecke operators
to the fractional Rademacher sums.

Theorem 5.6. Let n ∈ Z
+ be square-free and let Γ = G(Z). Then we have

(5.61) n(T̂ (n)Q(−1)
�Γ ) =

∑

h‖n
Q

(−n/h2)
�hΓ ,

where the sum is over the exact divisors of n.

It is interesting to compare the result (5.61) of Theorem 5.6 with the
identity

(5.62) n
(
T̂ (n)Q(−1)

�Γ

)
(z) = Q

(−n)
�Γ (z),

which holds since both sides are holomorphic on H, and have the same
singular terms in their Fourier expansion at Γ · ∞. This proves that the
Rademacher sum Q

(n/h2)
U (z) vanishes for U =

�
hΓ whenever h is an exact

divisor of n, and thus recovers a special case of the vanishing result of
Theorem 5.4.

6. Moonshine

Monstrous moonshine associates a group Γg commensurable with G(Z) and
having width one at infinity to each (conjugacy class of) element(s) g in
the Monster group M. In the article [7] the set of groups {Γg | g ∈ M} is
characterized in purely group theoretic terms. In this section we describe a
reformulation of this characterization in terms of normalized Rademacher
sums, and a certain family of moduli problems for solid tori with conformal
structure on the boundary.
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6.1. Genera

The main theorem of [7] gives four conditions which, taken together, char-
acterize the groups Γg for g ∈ M. The first of these conditions is the require-
ment that a group Γ have genus zero. Our first result in this section is a
reformulation of the genus zero condition in terms of Rademacher sums.

Theorem 6.1. Let Γ be a group commensurable with G(Z) that has width
one at infinity and let p be a cusp for Γ. Then the normalized Rademacher
sum T

(−1)
Γ,p (z) defines a Γ-invariant function on H if and only if Γ has

genus zero.

Proof. Let Γ be as in the statement of the theorem and let p, q ∈ PΓ be
cusps of Γ. By Theorem 4.2 we have

(6.1) T
(−1)
Γ,p|q(z) = δΓ,p|qe(−z) + F

(−1)
Γ,p|q(z)van.

Taking q = Γ · ∞ in (6.1) we see that T (−1)
Γ,p (z) is holomorphic on H, and

letting q range over PΓ we see from (6.1) that the only pole of T (−1)
Γ,p (z) is

a simple pole at the cusp p. We see then that if the function T (−1)
Γ,p (z) is Γ-

invariant then it defines a morphism φ say, of Riemann surfaces φ : XΓ → Ĉ

(cf. Section 2.5) which has degree one since the preimage of ∞ ∈ Ĉ under
φ is the single point p ∈ XΓ and φ is unramified here since Γ is assumed to
have width one at infinity. We conclude that φ is an isomorphism, so that
Γ indeed has genus zero.

Conversely, if Γ has genus zero then, since the space S1(Γ) of cusp forms
of weight 2 for Γ is isomorphic to the space of holomorphic differentials on
XΓ, we have S1(Γ) = {0}, so that any automorphic integral of weight 0 for Γ
is in fact a Γ-invariant function, by Corollary 4.1. The modified Rademacher
sum Q

(−1)
Γ,p (z) is an automorphic integral for Γ by Theorem 4.4. The normal-

ized Rademacher sum T
(−1)
Γ,p (z) differs from Q

(−1)
Γ,p (z) by a constant function

by Proposition 4.10, and thus T (−1)
Γ,p (z) is Γ-invariant whenever Q(−1)

Γ,p (z) is.

We conclude that T (−1)
Γ,p (z) is Γ-invariant in case Γ has genus zero. This

completes the proof. �

From the first part of the proof of Theorem 6.1 we see that the nor-
malized Rademacher sum T

(−1)
Γ,p (z) associated to Γ at a cusp p defines an

isomorphism XΓ → Ĉ mapping p to ∞ ∈ Ĉ in case Γ is a group of genus
zero.
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Theorem 6.2. Let Γ be a group commensurable with G(Z) that has width
one at infinity and let p ∈ PΓ be a cusp of Γ. If Γ has genus zero then the
normalized Rademacher sum T

(−1)
Γ,p (z) associated to Γ at the cusp p induces

an isomorphism XΓ → Ĉ mapping p to ∞.

Applying Theorem 6.2 with p = Γ · ∞ the infinite cusp we see that the
normalized Rademacher sum T

(−1)
Γ (z) induces an isomorphism XΓ → Ĉ map-

ping the infinite cusp to ∞ ∈ Ĉ. Applying Proposition 4.8 with p = q =
Γ · ∞ we see that the Fourier expansion of T (−1)

Γ (z) has vanishing constant
term. This shows that the normalized Rademacher sum T

(−1)
Γ (z) associated

to Γ at the infinite cusp is the normalized hauptmodul for Γ (cf. Section 2.5)
whenever this statement makes sense; i.e. whenever Γ has genus zero.

Theorem 6.3. Let Γ be a group commensurable with G(Z) that has width
one at infinity. If Γ has genus zero then the normalized Rademacher sum
T

(−1)
Γ (z) is the normalized hauptmodul for Γ.

From the second part of the proof of Theorem 6.1 we see that if Γ has
genus zero then not only the first order but in fact all the higher-order
normalized Rademacher sums T (−m)

Γ,p (z) (for m > 0) associated to Γ at an
arbitrary cusp p ∈ PΓ are Γ-invariant.

Theorem 6.4. Let Γ be a subgroup of G(Q) that is commensurable with
G(Z) and has width one at infinity and let p ∈ PΓ be a cusp of Γ. Let m ∈
Z

+. If Γ has genus zero then the normalized Rademacher sum T
(−m)
Γ,p (z) is

Γ-invariant.

6.2. Moduli

The second condition of the main theorem of [7] is that a group Γ be of n‖h-
type (cf. Section 2.5). In this section we provide a geometric description of
the groups of n‖h-type by furnishing a family of moduli problems for which
the corresponding moduli spaces may be realized as quotients of the form
YΓ = Γ\H where Γ is a group of n‖h-type.

Consider pairs (E,C) where E is an elliptic curve over C and C is an
oriented subgroup of E isomorphic to S1. We call such a pair a solid torus.
For (E,C) a solid torus, we call E the underlying elliptic curve, and we
call C the underlying primitive cycle. Note that for (E,C) a solid torus, the
group C determines a primitive element of the first homology group of (the
smooth real surface underlying) the elliptic curve E.
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Given z ∈ H let us write Λz for the lattice Zz + Z ⊂ C. Observe that
the lattices Λz and Λz′ coincide if any only if z − z′ ∈ Z, so the assign-
ment z �→ Λz descends naturally to the orbit space B(Z)\H. If we agree
to write �z as a shorthand for the B(Z) orbit determined by z ∈ H, then
we may unambiguously write Λ�z for the lattice Zz + Z. We write E�z for
the corresponding elliptic curve E�z = C/Λ�z = C/Zz + Z. Then the pair
(E�z , C�z ) is a solid torus when we take the subgroup C�z to be the image of
R in E�z under the composition R → C → E�z . Observe that for any solid
torus (E,C) there exists z ∈ H and a unique isomorphism of elliptic curves
E → E�z inducing an orientation preserving isomorphism C → C�z .

For (E,C) a solid torus and n ∈ Z
+ we write E[n] for the group of

n-division points of E, and we write C[n] for the intersection C ∩ E[n].
Since C is oriented, each group C[n] comes equipped with a distinguished
generator; viz., the point corresponding to 1/n+ Λ�z under an isomorphism
E → E�z inducing an orientation preserving isomorphism C → C�z . If K
is a subgroup of E[n] for some n then the quotient Ē = E/K is again an
elliptic curve, and the image C̄ say, of C under the natural map E → Ē
defines a primitive cycle of Ē, so that the pair (Ē, C̄) is again a solid torus.
We call this the quotient of (E,C) by K and denote it (E,C)/K.

For n ∈ Z
+ define an n-compatible isogeny of solid tori (E′, C ′) → (E,C)

to be an isogeny E′ → E of elliptic curves that maps C ′[n] to a subgroup of
C[n]. Then a 1-compatible isogeny of solid tori is just an isogeny of the under-
lying elliptic curves. We define an isogeny of solid tori (E′, C ′) → (E,C) to
be an isogeny E′ → E of elliptic curves that restricts to an orientation pre-
serving map C ′ → C on the underlying primitive cycles. For (E,C) a solid
torus and n ∈ Z

+, we may now interpret the canonical map E → E/C[n] as
defining an isogeny (E,C) → (E,C)/C[n] of solid tori. We call this isogeny
the canonical n-fold quotient of (E,C).

Observe that the elliptic curve E/C[n] underlying the quotient (E,C)/
C[n] both receives a natural map from E and maps naturally to E, for the
quotient E/E[n] is naturally isomorphic to E, and for the map E/C[n] → E
we may take the composition E/C[n] → E/E[n] ∼−→ E where the first map
is the natural projection and the second map is the isomorphism just men-
tioned. This map E/C[n] → E defines an isogeny (E,C)/C[n] → (E,C) of
solid tori; indeed, it restricts to an isomorphism on the underlying primitive
cycles. We call the isogeny (E,C)/C[n] → (E,C) of solid tori the canonical
n-fold cover of (E,C).

Say an n-compatible isogeny of solid tori (E′, C ′) → (E,C), for n ∈ Z
+,

is an n-compatible isomorphism of solid tori in case it admits an inverse
n-compatible isogeny; i.e., an isogeny E → E′ mapping C[n] to a subgroup
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of C ′[n] such that the compositions E′ → E → E′ and E → E′ → E are the
identity maps on E′ and E, respectively. Simply put, an n-compatible iso-
morphism of solid tori (E′, C ′) → (E,C) is an isomorphism of the underlying
elliptic curves E′ → E that induces an isomorphism of groups C ′[n] → C[n].
An isomorphism of solid tori (E′, C ′) → (E,C) is an isomorphism E′ → E
of elliptic curves that restricts to an orientation preserving isomorphism
C ′ → C on the underlying primitive cycles.

Suppose (E,C) and (E′, C ′) are solid tori. For n a positive integer and e
an exact divisor of n, say (E,C) and (E′, C ′) are n+ e-related if there is an
n-compatible isogeny (E′, C ′) → (E,C) that induces n/e-compatible isomor-
phisms (E′, C ′)/C ′[e] → (E,C) and (E′, C ′) → (E,C)/C[e]. More precisely,
we require that the n-compatible isogeny (E′, C ′) → (E,C) factor through
the canonical e-fold maps (E′, C ′) → (E′, C ′)/C ′[e] and (E,C)/C[e] →
(E,C), defining n/e-compatible isomorphisms of the specified type.

(6.2)

(E′, C ′) (E,C)/C[e]
n/e

∼ ��

(E′, C ′)/C ′[e] (E,C)
n/e

∼ ��
����

Then solid tori (E,C) and (E′, C ′) are n+ 1-related just if they are
n-compatible isomorphic, which is the case just if there is an isomorphism
of elliptic curves E′ → E mapping C ′[n] onto C[n]. In particular, the notion
of being n+ 1-related is an equivalence relation on solid tori. For S a sub-
set of the set of exact divisors of n, say solid tori (E,C) and (E′, C ′) are
n+ S-related if (E,C) and (E′, C ′) are n+ e-related for some e ∈ S.

Recall from Section 2.2 that the set of exact divisors of n, denoted Ex(n),
admits a naturally defined group structure.

Lemma 6.1. Let n ∈ Z
+ and let S ⊂ Ex(n). Then the n+ S-relation is an

equivalence relation on solid tori if and only if S is a subgroup of Ex(n).

In light of Lemma 6.1, we say that solid tori (E,C) and (E′, C ′) are
n+ S-equivalent if they are n+ S-related and S is a subgroup of the group
of exact divisors of n.

In a slight modification of the notation of [8], we write Γ0(n) + S for
the group formed by taking the union of the Hecke congruence group Γ0(n)
and the Atkin–Lehner involutions We(n) for e in S, when S is a subgroup
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of Ex(n).

(6.3) We(n) =
{[
ae b
cn de

]
∈ G(Q) | a, b, c, d ∈ Z, ade− bcn/e = 1

}
.

Let n be a positive integer and let h be a divisor of n. Then an
n-compatible isomorphism φ : (E′, C ′) → (E,C) naturally determines an nh-
compatible isogeny φ̂ : (E′, C ′) → (E,C) which factors through an n/h-
compatible isomorphism φ̄ : (E′, C ′)/C ′[h] → (E,C)/C[h] on the canonical
h-fold quotients, via the canonical maps (E′, C ′) → (E′, C ′)/C ′[h] and
(E,C)/C[h] → (E,C), as depicted in (6.4).

(6.4)

(E′, C ′) (E,C)
nh

φ̂ ��

(E′, C ′)/C ′[h] (E,C)/C[h]
n/h

φ̄ ��

��������������
��

��
��

��

We may take this nh-compatible isogeny φ̂ to be the composition E′ →
E → E/E[h] → E where the first map is the given map φ, the second map
is the natural projection, and the third map is the natural isomorphism.
Since φ is an n-compatible isomorphism the composition E′ → E → E/E[h]
factors through the natural projection E/C[h] → E/E[h], and the kernel
of the induced map E′ → E/C[h] is just C ′[h], and so we arrive at an iso-
morphism E′/C ′[h] → E/C[h] of elliptic curves, which defines the required
n/h-compatible isomorphism φ̄ : (E′, C ′)/C ′[h] → (E,C)/C[h] of the
corresponding solid tori.

(6.5)

(E′, C ′) (E,C) (E,C)/E[h] (E,C)n

φ �� �� ∼ ��

(E′, C ′)/C ′[h] (E,C)/C[h]
n/h

φ̄ ��

�����������

�����������������
��

��
��

��
��

�

More generally, and by the same argument, an n-compatible isogeny
(E′, C ′) → (E,C) naturally defines an nh-compatible isogeny (E′, C ′) →
(E,C) which factors through an n/h-compatible isogeny (E′, C ′)/C ′[h] →
(E,C)/C[h], via the canonical maps (E′, C ′) → (E′, C ′)/C ′[h] and (E,C)/
C[h] → (E,C).
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Not every n/h-compatible isogeny φ̄ : (E′, C ′)/C ′[h] → (E,C)/C[h]
arises in this way from an n-compatible isogeny φ : (E′, C ′) → (E,C), but,
given an n/h-compatible isogeny φ̄ : (E′, C ′)/C ′[h] → (E,C)/C[h], we
always have the nh-compatible isogeny φ̂ : (E′, C ′) → (E,C) obtained as
the composition

(6.6) (E′, C ′) → (E′, C ′)/C ′[h] → (E,C)/C[h] → (E,C)

where the first map is the canonical h-fold quotient, and the third map is the
canonical h-fold cover. We call this composition φ̂ the nh-compatible isogeny
induced from φ̄.

For n ∈ Z
+ and h a divisor of n say solid tori (E,C) and (E′, C ′) are

n|h-related if the canonical h-fold quotients (E,C)/C[h] and (E′, C ′)/C ′[h]
are n/h-compatible isomorphic. For e an exact divisor of n/h, say (E,C) and
(E′, C ′) are n|h+ e-related if the quotients (E,C)/C[h] and (E′, C ′)/C ′[h]
are n/h+ e-related. For S a subset of Ex(n/h) say (E,C) and (E′, C ′) are
n|h+ S-related if they are n|h+ e-related for some e ∈ S.

Lemma 6.2. Let n ∈ Z
+, let h be a divisor of n, and let S ⊂ Ex(n/h).

Then the n|h+ S-relation is an equivalence relation on solid tori if and only
if S is a subgroup of Ex(n/h).

Let N be a positive integer, set h = ((N, 24) (cf. Section 2.2), and set
n = N/h. Then for S a subgroup of the group of exact divisors of n/h
we arrive at the notion of n‖h+ S-equivalence of solid tori in the follow-
ing way. Suppose (E,C) and (E′, C ′) are Γ0(n|h) + S-equivalent. Then we
have isomorphisms (E,C) → (E�z , C�z ) and (E′, C ′) → (E�z′ , C�z′ ) for some
z, z′ ∈ H. Let S′ be the image of S under the natural injection Ex(n/h) →
Ex(N) (cf. Section 2.2), and define elements x, y and we′ for e′ ∈ S′ by
setting

(6.7) x =
[
1 1/h
0 1

]
, y =

[
1 0
n 1

]
, we′ =

[
ae′ b
cN de′

]
,

where the a, b, c and d in the definition of we′ are arbitrary integers for
which we have ade′ − bcN/e′ = 1. Then there is a sequence (γ0, γ1, . . . , γk)
with γ0 ∈ Γ0(N) and γi ∈ {x, y, we′ | e′ ∈ S′} for 1 ≤ i ≤ k for which we have
z′ = γk · · · γ1γ0 · z. We say now that (E,C) and (E′, C ′) are Γ0(n‖h) + S-
equivalent in the case that the sum

∑k
i=1 λ(γi) vanishes in Z/h, where λ(x) =

1, and λ(we′) = 0 for all e′ ∈ S′, and λ(y) is −1 or 1 according as Γ0(n|h) + S
is Fricke or not.
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Theorem 6.5. Let N ∈ Z
+, set h = ((N, 24) and set n = N/h. Let S be a

subgroup of Ex(n/h), and set Γ = Γ0(n‖h) + S. Then the quotient Γ\H is
in natural correspondence with n‖h+ S-equivalence classes of solid tori.

6.3. Exponents

The third of the four conditions of the main theorem of [7] states that if Γ
is of the form Γ0(n‖h) + S then the quotient group Γ/Γ0(nh) should be a
group of exponent two. In the present section, we investigate the relationship
between this exponent two condition and properties of scaling cosets.

Lemma 6.3. Suppose that Δ is a group commensurable with G(Z) that has
width one at infinity and let r ∈ PΔ be a cusp of Δ. Let κ,m ∈ Z such that
κ ≤ 0 and m < 0. If Σr is a scaling coset for Δ at r with the property that
Σ2

r = Δ then

(6.8) Q
κ(m)
Δ,r (z) = Q

κ(m)
Δ|r (z),

and Σr is contained in the normalizer of Δ.

Proof. Set U =
�
Σ−1

r and set U ′ = �Σr . Then, under the assumption that
Δ has width one at infinity, we have Qκ(m)

Δ,r (z) = Q
κ(m)
U (z) and Q

κ(m)
Δ|r (z) =

Q
κ(m)
U ′ (z). Let σ ∈ Σr. Then Σ2

r = Δ implies σΔσ = Δ, which is equivalent
to the identity Δσ = σ−1Δ. We conclude that Σ−1

r = Σr, so that U = U ′,
so that Qκ(m)

Δ,r (z) = Q
κ(m)
Δ|r (z). The identity σΔσ = Δ also implies σ2 ∈ Δ, so

that σΔσ = σ−1Δσ. We conclude that σ normalizes Δ, so that Σr = Δσ ∈
Δ\N(Δ). This completes the proof. �

Lemma 6.3 states that if a scaling coset at a cusp r of a group Δ can
be chosen so that its square is the trivial coset then we have a kind of
commutativity for the Rademacher sums associated to Δ; viz. the expansion
at infinity of the modified Rademacher sum associated to Δ and the cusp r
coincides with the expansion at r of the modified Rademacher sum associated
to Δ and the cusp at infinity.

We also have the following converse to Lemma 6.3.

Proposition 6.1. Suppose that Δ is a group commensurable with G(Z) that
has width one at infinity and let r ∈ PΔ be a cusp of Δ. Let κ,m ∈ Z such
that κ ≤ 0 and m < 0. If Σr is a scaling coset for Δ at r that is contained
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in the normalizer of Δ and

(6.9) Q
κ(m)
Δ,r (z) = Q

κ(m)
Δ|r (z)

then Σ2
r = Δ.

Proof. As in the proof of Lemma 6.3 we set U =
�
Σ−1

r and U ′ = �Σr . Then
since Δ is assumed to have width one at infinity we have Q

κ(m)
Δ,r (z) =

Q
κ(m)
U (z) and Q

κ(m)
Δ|r (z) = Q

κ(m)
U ′ (z). Let σ ∈ Σr. Then we have U =

�
σ−1Δ

and U ′ = �Δσ = �σΔ. Set r′ = Δσ−1 · ∞. Then Qκ(m)
U ′ (z) = Q

κ(m)
Δ,r′ (z), so the

coincidence Q
κ(m)
U (z) = Q

κ(m)
U ′ (z) implies that r = r′. This in turn implies

σ2 ∈ Δ, so that Σ2
r = Δ, as we required to show. �

6.4. Cusps

The forth condition of the main theorem of [7] is the following. Supposing
that a group Γ is of the form Γ = Γ0(n‖h) + S for some subgroup S of the
group of exact divisors of n/h, for each p ∈ Q̂ there should exist an element
σ̃p ∈ G(R) such that

(6.10) ∞ = σ̃p · p, (σ̃pΓσ̃−1
p )∞ = B(Z), σ̃pΓσ̃−1

p ⊃ Γ0(nh).

Observe that if we set σp = σ̃−1
p , then the conditions of (6.10) translate into

(6.11) σp · ∞ = p, (σ−1
p Γσp)∞ = B(Z), σ−1

p Γσp ⊃ Γ0(nh),

the first two of which are just the conditions (2.34) of Lemma 2.2 except
that we allow σp to lie in G(R) in (6.11) but insist that σp belong to G(Q)
in (2.34). Actually, an element σp ∈ G(R) satisfying (6.11) must lie in G(Q),
as the following result demonstrates.

Lemma 6.4. Let Δ and Γ be groups commensurable with G(Z) and sup-
pose that Δ has width one at infinity. Let p ∈ Q̂ and suppose that σ ∈ G(R)
satisfies σ · ∞ = p and σ−1Γσ ⊃ Δ. Then σ ∈ G(Q).

Proof. Suppose that σ ∈ G(R) satisfies the hypotheses of the lemma. Then
(σ−1Γσ)∞ is an infinite cyclic group containing Δ∞ and Δ∞ = B(Z) since
Δ has width one at infinity. It must be then that (σ−1Γσ)∞ is generated
by T 1/n for some n ∈ Z

+, so that ([n]σ−1Γσ[1/n])∞ = B(Z). According to
Lemma 2.2 there exists σ′ ∈ G(Q) such that σ′ · ∞ = p and ((σ′)−1Γσ′)∞ =
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B(Z). Now [n]σ−1σ′ fixes ∞ and so lies in B(R). Since σ′ and σ[1/n] both
conjugate Γ to a group with width one at infinity we must in fact have
[n]σ−1σ′ ∈ Bu(R), where Bu(R) consists of all the elements Tα (cf. (2.13))
with α ∈ R. We conclude that σ = σ′′Tα for some σ′′ ∈ G(Q) and α ∈ R. Let
γ ∈ Γ such that σ−1γσ ∈ Δ×, so that σ−1γσ · ∞ = q for some q ∈ Q. Then
q = q′′ − α for q′′ = (σ′′)−1γσ′′ · ∞. Since both q and q′′ lie in Q we conclude
that α also lies in Q. Then the identity σ = σ′′Tα implies that σ ∈ G(Q), as
we required to show. �

Recall from Section 2.6 that for Γ a group commensurable with G(Z),
for p ∈ PΓ a cusp of Γ, and for Σp ∈ Γ\G(Q) a scaling coset for Γ at p, we
write Γp as a shorthand for the group Σ−1

p Σp. In light of Lemma 6.4 we may
reformulate the fourth condition of the main theorem of [7] as follows.

Lemma 6.5. Let Γ be a group of n‖h-type, so that Γ = Γ0(n‖h) + S for
some positive integers n and h, and some subgroup S of the group of exact
divisors of n/h. Then the fourth condition of the main theorem of [7] is
satisfied if and only if for each cusp p ∈ PΓ of Γ there exists a scaling coset
Σp ∈ Γ\G(Q) for Γ at p such that Γp contains Γ0(nh).

We conclude this section by relating the reformulation of Lemma 6.5
to the normalized Rademacher sums associated to genus zero groups of
n‖h-type.

Proposition 6.2. Let Γ be a group of n‖h-type, so that Γ = Γ0(n‖h) + S
for some positive integers n and h, and some subgroup S of the group of
exact divisors of n/h, and suppose that Γ has genus zero. Let p, q ∈ PΓ be
cusps of Γ and let Σp and Σq be scaling cosets for Γ at p and q, respectively.
Then the normalized Rademacher sum T

(−1)
Γ,p|q(z) is Γ0(nh)-invariant if and

only if Γq contains Γ0(nh).

Proof. Let us set Δ = Γ0(nh). Observe that if we set pq = Σ−1
q Σp · ∞ then

pq is a cusp of Γq = Σ−1
q Σq, and Σ−1

q Σp is a scaling coset for Γq at pq, so
the function T

(−1)
Γ,p|q(z) may be identified with the normalized Rademacher

sum T
(−1)
Γq,pq (z) associated to Γq at the cusp pq, for Σpq = Σ−1

q Σp. Under the
assumption that Γ has genus zero, Γq also has genus zero, and has width one
at infinity by the defining properties (cf. Lemma 2.3) of Σq. By Theorem 6.3
then the normalized Rademacher sum T

(−1)
Γ,p|q(z) is, up to a constant func-

tion, the expansion at pq of the normalized hauptmodul of the group Γq. In
particular, T (−1)

Γ,p|q(z) defines an isomorphism of Riemann surfaces XΓq → Ĉ,
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and so we have T (−1)
Γ,p|q(γ · z) = T

(−1)
Γ,p|q(z) for all z ∈ H if and only if γ ∈ Γq. It

follows then that T (−1)
Γ,p|q(z) is Δ-invariant if and only if Δ is contained in Γq,

which is what we required to show. �

6.5. Rademacher sums and the Monster

We will now use Rademacher sums to reformulate the characterization of
the groups of monstrous moonshine due to Conway–McKay–Sebbar (cf. [7]).

Theorem 6.6. Let Γ be a subgroup of G(R). Then we have Γ = Γg for
some g ∈ M if and only if the following conditions are satisfied:

• Γ is the group defining n‖h+ S-equivalence of solid tori for some pos-
itive integers n and h, and some subgroup S < Ex(n/h);

• the normalized Rademacher sum T
(−1)
Γ (z) is Γ-invariant;

• there exists a system {Σp | p ∈ PΓ} of scaling cosets for Γ such that
T

(−1)
Γ|p (z) is Δ-invariant for every cusp p ∈ PΓ of Γ, where Δ = Γ0(nh);

• for every cusp r ∈ PΔ of Δ = Γ0(nh) that is contained in Γ · ∞ we
have T (−1)

Δ,r (z) = T
(−1)
Δ|r (z) when the scaling coset Σr for Δ at r is taken

to lie in Δ\Γ.

Proof. According to the main theorem of [7] it suffices to show that a group
Γ satisfies each of the four conditions of Theorem 6.6 if and only if it satisfies
the four conditions of the main theorem of [7]. As a first step in establishing
this equivalence, observe that the first condition of Theorem 6.6 is exactly
the same as the second condition of the main theorem of [7].

Suppose that Γ satisfies the four conditions of the main theorem of [7].
Then, in particular, it satisfies the first condition of Theorem 6.6, and has
genus zero. We may suppose then that Γ = Γ0(n‖h) + S for some n, h ∈ Z

+,
and S < Ex(n/h), so that Γ is commensurable with G(Z), has width one at
infinity, and contains and normalizes Δ = Γ0(nh). According to Theorem 6.1
the normalized Rademacher sum T

(−1)
Γ (z) is Γ-invariant, so the second con-

dition of Theorem 6.6 is satisfied. According to Lemma 6.5 there exists a
system {Σp | p ∈ PΓ} of scaling cosets for Γ such that Γp contains Δ for
each cusp p ∈ PΓ. Applying Proposition 6.2 we see that the normalized

Rademacher sum T
(−1)
Γ|p (z) is Δ-invariant when the scaling coset Σp of the

above scaling coset system is chosen for the definition of T (−1)
Γ|p (z). This

confirms that the third condition of Theorem 6.6 is satisfied. The fourth
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condition of the main theorem of [7] is that the quotient Γ/Δ have exponent
two. Let r ∈ PΔ be a cusp of Δ that is contained in Γ · ∞, and let Σr be
the unique right coset of Δ in Γ such that r = Σr · ∞. Then the exponent
two condition implies Σ2

r = Δ, so that the fourth condition of Theorem 6.6
follows from an application of Lemma 6.3.

Suppose now that Γ satisfies the four conditions of Theorem 6.6. Then
Γ satisfies the second condition of [7], and so we have Γ = Γ0(n‖h) + S for
some n, h ∈ Z

+, and S < Ex(n/h), and Γ is a group commensurable with
G(Z) that has width one at infinity. Applying Theorem 6.1 to the second
condition of Theorem 6.6 we conclude that Γ has genus zero, and so satisfies
the first condition of [7]. Set Δ = Γ0(nh), so that Γ contains and normalizes
Δ. Applying Proposition 6.2 to the third condition of Theorem 6.6 we see
that scaling cosets {Σp | p ∈ PΓ} can be chosen for Γ so that Γp contains Δ
for each cusp p ∈ PΓ. Applying Lemma 6.5 to this fact we conclude that Γ
satisfies the fourth condition of the main theorem of [7]. It remains to check
that the quotient Γ/Δ has exponent two. Let γ ∈ Γ and set r = Δγ · ∞.
If we take Σr = Δγ then the fourth condition of Theorem 6.6 states that
T

(−1)
Δ|r (z) = T

(−1)
Δ,r (z). Proposition 6.1 now implies that Σ2

r = Δ, which in turn
implies γ2 ∈ Δ. This argument applies to arbitrary γ ∈ Γ so we conclude that
the quotient Γ/Δ has exponent two. This completes the proof. �

Perhaps the most technical condition of Theorem 6.6 is the last one.
Beyond the monstrous moonshine conjectures, there are the generalized
moonshine conjectures of Norton (cf. [44]) which associate genus zero groups
to commuting pairs of elements in the Monster. A number of the groups
appearing in generalized moonshine do not satisfy the last condition of The-
orem 6.6, but they all satisfy the second property, and a slight weakening of
the first (cf. [14]), and we do not know of any examples that fail to satisfy the
third condition of Theorem 6.6. It is an interesting question then to deter-
mine if the first three conditions of Theorem 6.6 furnish a characterization
of the groups of generalized moonshine.

7. Gravity

In this section, we consider applications of the normalized Rademacher sums
to chiral 3D quantum gravity. We should note that the notion of chiral 3D
quantum gravity has not yet been defined, so the applications we make, and
in particular the conjectures we formulate, are intended to shed light on the
very problem of formulating a definition, in addition to elucidating impor-
tant structural properties that a certain distinguished (and conjectural)



958 John F. R. Duncan and Igor B. Frenkel

example might satisfy. In the absence of a precise definition of 3D quantum
gravity some of our discussion in this section is necessarily more speculative.

7.1. First conjecture

It is clear from our results that the Rademacher sums are particularly conve-
nient for understanding the special characteristics of the McKay–Thompson
series; in particular, their crucial genus zero property. In order to fully
explain the moonshine phenomena, one has to relate these sums to the struc-
ture of the VOA V �. In search for the new relation, one might look again for
hints from physics. Very recently, Witten, revisiting 3D quantum gravity,
has formulated a number of results and observations [62] including a conjec-
ture about the existence of the 3D quantum gravities with central charges
cL = cR proportional to 24. In particular, he asserted that the simplest in
his list of 3D quantum gravities should be equivalent to the 2D conformal
field theory V � ⊗ (V �)∗. Manschot [43] then suggested to consider chiral 3D,
quantum gravities, the simplest of which, with cL = 24 and cR = 0, should
be equivalent exactly to V �. Furthermore, Li et al. [40] have argued that the
chiral gravity possesses stability and consistency, the necessary properties
of a sound physical theory. A very recent work [47] by Maloney, Song and
Strominger provided further support for the existence of chiral gravities with
cL proportional to 24. These results and observations from physics taken
together suggest that there exists an alternative construction of the vertex
operator algebra V � that may be viewed as a rigorous version of the sim-
plest chiral 3D quantum gravity with c = 24, in the same way as the original
construction of V � was interpreted as a rigorous version of the chiral 2D con-
formal field theory with the partition function J(z). In 3D quantum gravity
one expects to obtain the partition function as a sum over minimum points
of a 3D quantum gravity action; i.e., over all 3D hyperbolic structures on a
solid torus with genus one boundary, whose conformal structure corresponds
to the point z on the moduli space. Since all such structures are naturally
parameterized by Γ∞\PSL2(Z) (cf. [12]), the partition function should be
a kind of Rademacher sum. In fact Manschot and Moore [46] argued that
the subtraction of constants in (1.4) can be explained by a regularization
of the partition function of 3D gravity. Our continued Rademacher sums
of Section 4, leading naturally to the modified and normalized Rademacher
sums, provide a good candidate for such a regularization.

To obtain the McKay–Thompson series (1.3) from the chiral 3D quantum
gravity is a more challenging problem even at the heuristic level. However,
one may look at these series from a slightly different point of view. It has
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been shown in [11] that for any g ∈ M there exists a unique simple g-twisted
V �-module V �

g , whose partition function is equal to c(g)Tg(−1/z) where
c(g) is a constant depending on g ∈ M. The heuristic analysis of the twisted
sector V �

g in [59] strongly supports the general assumption that c(g) = 1
for all g ∈ M. (For more on this assumption please see the discussion of
“Hypothesis Ag” in [6].)

We now state our first conjecture.

Conjecture 7.1. There exists a family of twisted chiral 3D quantum grav-
ities at central charge c = 24 associated with elements of the Monster g ∈
M whose partition functions are naturally given by sums over geometries
parameterized by Γ∞\Γg, and these partition functions coincide with the nor-
malized Rademacher sum T

(−1)
Γ (−1/z), for Γ = Γg. Moreover, the untwisted

(g = e) chiral 3D quantum gravity has a VOA structure isomorphic to V �,
and the twisted 3D quantum gravity corresponding to g ∈ M has a structure
of g-twisted V �-module isomorphic to that of V �

g .

The special case g = e of Conjecture 7.1, corresponding to the untwisted
chiral 3D quantum gravity, is strongly supported by the physics literature
mentioned above. We will now make a few remarks about the general twisted
case. The principle of the 3D quantum gravity/2D CFT correspondence
suggests that all the structures in either theory should have appropriate
counterparts in the other. The g-twisted sector V �

g is an intrinsic part of
the extended theory of the chiral 2D CFT associated to V �, and, accord-
ing to the physical principle, should therefore have analogs in chiral 3D
quantum gravity. Basic information about these twisted chiral 3D quantum
gravities can be extracted from the Rademacher sums Jg(z) = Tg(−1/z).
We’ll illustrate the general case with the level two examples, which are the
cases that Γ = Γ0(2) or Γ0(2)+. (In the notation of Section 2.5 the symbols
Γ0(2)+ are a shorthand for Γ0(2) + Ex(2).) As in the case that g = e one
expects that each term of the Rademacher sum comes from a classical solu-
tion of the corresponding twisted chiral quantum gravity. Every Rademacher
sum Jg(z) contains the term e(1/z), which corresponds to the Bañados–
Teitelboim–Zanelli (BTZ) black hole solution (cf. [4]). The other terms aris-
ing for Γ = Γ0(2) can be characterized among all those arising for Γ = G(Z)
as the solutions that have the same spin structure as the BTZ black hole on
the boundary. The Rademacher sum Jg(z) in this case coincides with the
partition function of the Ramond sector in supergravity (cf. [48, Section 7]).
The group Γ = Γ0(2)+ is no longer a subgroup of the modular group G(Z).
In this case, we have to consider orbifold solutions in addition to smooth
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solutions; we consider orbifold solutions with a codimension 2 singularity
along the defining circle of the solid torus which looks locally like C/〈e(1/2)〉
(cf. [48, Section 2]), and we still impose the same spin structure boundary
condition. Note that on any space X, choices of spin structure on X (when
they exist) are in bijective correspondence with a particular family of double
covers of X (cf. e.g. [39]). Such a double cover smoothes the Z/2-orbifold
singularity. One may view the spin structure as a Z/2-structure, and for a
general level N group Γ, spin structures are replaced with Z/N -structures.
One can also allow singularities along the defining circle of the solid torus
that look locally like C/〈e(1/N)〉. In general, a choice of twisted gravity with
Z/N -structure group should impose an n‖h+ S equivalence for solid tori,
for some n and h with N = nh and h a divisor of 24 (cf. Theorem 6.5), which
yields the Rademacher sum Jg(z), for a corresponding g ∈ M, as the saddle
point approximation of the twisted quantum gravity partition function.

We expect that the conjectural twisted chiral 3D quantum gravity con-
struction of V �

g will imply the Γg-invariance of its partition function, in
analogy with the way in which 2D CFTs are found to have modular invari-
ant partition functions (cf. [61]). Then our conjecture, in combination with
our results on Rademacher sums, will naturally imply the genus zero con-
jecture of Conway–Norton (cf. [8]), and most importantly, will reveal the
geometric nature of moonshine. In particular, the solution to Conjecture 7.1
will answer the genus zero question: why the discrete groups attached to the
Monster via monstrous moonshine all have genus zero.

We also expect that the conditions on Rademacher sums in our reformu-
lation Theorem 6.6, of the group theoretic characterization of the groups of
monstrous moonshine due to Conway–McKay–Sebbar, will also find an inter-
pretation as consistency conditions for twisted chiral 3D quantum gravities.
In particular, the completeness of the family of twisted chiral 3D quantum
gravities at central charge 24 associated with elements of the Monster group
M should have a deep meaning in quantum gravity.

Our Conjecture 7.1 should have significance for the future development
of analytic number theory also. We already know from 2D CFT that various
constructions yield remarkable number theoretic identities. Our conjecture
implies that the development of the theory of 3D quantum gravity might
encompass a whole new family of number theoretic results such as the the-
ory of Rademacher sums studied in this work. In Section 7.3 we will show
that the Hecke operators also admit an interpretation in terms of quan-
tum gravity. In preparation for this we will recall in the next section some
results about a certain class of generalized Kac–Moody algebras and their
representations.
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7.2. Monstrous Lie algebras

In his paper [3], Borcherds constructed a remarkable generalized Kac–Moody
algebra (GKM algebra) m, called the Monster Lie algebra, which plays a key
rôle in his approach to monstrous moonshine. He also defined GKM super-
algebras m′

g, for each g ∈ M, by using the McKay–Thompson series Tg(z)
to specify the simple roots. In this section, we will consider another family
of GKM algebras mg, parameterized by elements g ∈ M, with simple roots
specified by the functions Jg(z) = Tg(−1/z). Since the Fourier coefficients
of the Jg(z) are non-negative integers, the algebras mg are purely even. We
will also study Verma modules for the GKM algebras mg.

In the following section Section 7.3, we will explain how these algebraic
structures arise from the Rademacher sums, and the conjectural twisted
chiral 3D quantum gravities. This will lead us to a further extension of our
first conjecture.

The algebras mg were introduced and studied by Carnahan in [5] and
were discovered independently by the second author. We will now recall the
relevant results of [5].

Let L = II1,1 denote a copy of the unique even self-dual Lorentzian lat-
tice of rank 2. We identify L with the group Z × Z and set the norm of the
pair (m,n) to be −2mn. For any positive integer N we denote the sublattice
Z ×NZ by L(N), and we let L(N)∨ denote the dual lattice 1

N Z × Z. Let
VL denote the vertex operator algebra (VOA) associated to the lattice L
(cf. [17]),

(7.1) VL =
⊕

(m,n)∈L

V
(m,n)
L ,

and let hN denote the automorphism of VL which acts as multiplication by
e(n/N) on the subspace V (m,n)

L . Then VL(N) is a vertex operator subalgebra
of VL(N) fixed by hN . Following [10] each coset L+ (k/N, 0) of L in L(N)∨

defines an hk
N -twisted module for VL. We denote this twisted module by

VL+(k/N,0), and regard it as graded in the natural way by L+ (k/N, 0).
For g ∈ M such that the level of Γg is N (i.e., N = nh in the notation

of [8]) define W �
g to be the following L(N)∨-graded space invariant under 〈g〉.

(7.2) W �
g =

N−1⊕

k=0

(
V �

gk ⊗ VL+(k/N,0)

)〈g〉
.
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The summand corresponding to k = 0 has a natural VOA structure, while
the other summands are naturally modules for this VOA. There also exists
a unique (up to scalar) intertwining operator between the product of the
kth and lth summands and the (k + l)th summand. Carnahan asserts that
there is a consistent choice of these constants such that one has

Theorem 7.1. The space W �
g naturally admits a VOA structure.

By construction W �
g has rank 26 and one can define the semi-infinite

cohomology of the Virasoro algebra with coefficients in W �
g . The the first

semi-infinite cohomology group acquires a Lie algebra structure according
to [41]. In this way we obtain a monstrous Lie algebra mg for each g ∈ M.

(7.3) mg = H∞/2+1(W �
g ).

An alternative construction of mg may be based on the no-ghost theorem
of the 26D bosonic string (cf. [3, 18]). For g = e, the Lie algebra me is the
original Monster Lie algebra of Borcherds [3].

The Lie algebra mg inherits an L(N)∨-grading

(7.4) mg =
⊕

m,n∈Z

m(m/N,n)
g .

The same argument as in the case g = e applied to the semi-infinite coho-
mology or no-ghost theorem construction of mg yields natural isomorphisms

(7.5) m(m/N,n)
g

∼= V �
g−m,n/N (mn/N),

where V �
g−m,n/N is the subspace of V �

g−m upon which g acts by e(n/N) and

V �
g−m,n/N (mn/N) is the L0-eigenspace of V �

g−m,n/N with eigenvaluemn/N + 1.

Remark 7.1. Let us write V Λ for the vertex operator algebra associated
to the Leech lattice. In his paper [59] Tuite gave strong evidence that the
genus zero property of monstrous moonshine is equivalent to the following
duality isomorphisms:

V �
gm,n/N

∼= V �
gn,m/N ,(7.6)

V �
gm,n/N

∼= V Λ
hn,m/N ,(7.7)

the first holding in the case that g is Fricke, and the second in the case
that g is non-Fricke. In the second case, we may take g to lie in a subgroup
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21+24.Co1 of M and the h in (7.7) denotes an element of 224.2.Co1, a sub-
group of Aut(V Λ), such that h and g project to the same conjugacy class of
Co1. Thus the Tuite duality in the Fricke case implies the symmetry

(7.8) m(m/N,n)
g

∼= m(n/N,m)
g

of the monstrous Lie algebra mg, as is known to hold in the case g = e
studied in [3]. In the non-Fricke case the Tuite duality suggests an alternative
construction of the VOA W �

g as

(7.9) W �
g =

N−1⊕

k=0

(
V Λ

hk ⊗ VL̃+(0,k)

)〈h〉
,

where L̃ = 1
N Z ×NZ.

We now re-scale the grading in W �
g and mg by interchanging (m/N, n)

with (m,n/N), and we set

(7.10) mm
g =
⊕

n∈ 1
N

Z

m(m,n/N)
g

for m ∈ Z. Then (7.5) implies isomorphisms of graded spaces

(7.11) m1
g
∼= V �

g−1 , m−1
g

∼= V �
g ,

and we also have

(7.12) m0
g = m(0,0)

g = Cc⊕ Cd,

where c and d are the degree operators for the re-scaled grading.
In [5] Carnahan shows that mg is a GKM algebra, thus generalizing a

result of [3]. When g is Fricke, mg has a structure very similar to that of the
original Borcherds Monster Lie algebra m = me. In particular, it has one real
simple root and all simple roots correspond to a basis for V �

g . This implies
that mg can be reconstructed from the subalgebra

(7.13) m1
g ⊕ m0

g ⊕ m−1
g ,

which is called the local subalgebra of mg (cf. [15]).

Remark 7.2. When g is non-Fricke mg does not have real simple roots,
and in general it cannot be reconstructed from its local subalgebra (7.13).
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However the Tuite duality suggests that if one considers the second grading
of mg then the local subalgebra consists of V Λ

h and V Λ
h−1 and the h-twisted

Heisenberg algebra. This local subalgebra is expected to generate mg in the
case that g is non-Fricke.

In his thesis [5] Carnahan also obtained remarkable generalizations of
the Borcherds identities for each of the monstrous Lie algebras mg; viz.,

(7.14) p(Tg(w) − Jg(z)) =
∏

m∈Z+,n∈Z

(1 − pmqn/N )cgm,n/N (mn/N),

where we have set

(7.15) cgm,n/N (mn/N) = dimV �
gm,n/N (mn/N).

When g is Fricke the invariance of Tg(w) under the Fricke involution and a
re-scaling w �→ Nw yields

(7.16) p(Jg(Nw) − Jg(Nz)) =
∏

m∈Z+,n∈Z

(1 − pmqn)cgm,n/N (mn/N).

Dividing both sides of (7.16) by (1 − pq−1) we obtain expressions which are
invariant under the transposition of p with q. This entails the identity

(7.17) cgm,n/N (mn/N) = cgm,m/N (mn/N),

which is in agreement with the Tuite duality of (7.6). The identity (7.14)
implies an unexpected formula for the graded dimension of the Verma mod-
ule with trivial character Vg associated to g.

(7.18) Vg = U(m−
g ).

In fact the standard product formula

(7.19) gdimVg =
∏

m∈Z+,n∈Z

(1 − pmqn/N )−cgm,n/N (mn/N)

for the graded dimension of Vg follows from (7.5) and (7.15). The identity
(7.14) yields the alternative expression

(7.20) gdimVg =
1

p(Tg(w) − Jg(z))
.
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This expression allows us to view the bi-graded dimension as a meromorphic
function on H × H. Thanks to the properties of principal moduli for curves
of genus zero, the expression (7.20) is singular at the point (w, z) precisely
when Γg · w = Γg · (−1/z). In Section 7.3, we will give an interpretation of
this fact in the setting of 3D quantum gravity.

With the goal of making such an interpretation in mind we propose to
rewrite the first expression (7.19) for the bi-graded dimension of the Verma
module Vg as

(7.21) gdimVg = exp

(
∑

m∈Z+

T̂g(m)Jg(z)pm

)

using generalized Hecke operators T̂g(m) such as those discussed in Sec-
tion 5.5; we have verified there the existence of such operators for g = e and
we conjecture that suitable T̂g(m) exist for every g ∈ M. Comparing then
with the generating functions

(7.22) Zg(p, q) =
∑

m∈Z+

mT̂g(m)Jg(z)pm

of the higher order Rademacher sums J
(−m)
g (z) we obtain the following

expression.

(7.23) Zg(p, q) = p∂p log(gdimVg).

An identity of this form is well-known in the theory of symmetric functions
(cf. [42]), where it serves to relate the generating function of the power
symmetric functions

(7.24) pn =
∑

1≤i

xn
i

with that of the complete symmetric functions

(7.25) hn =
∑

1≤i1≤···≤in

n∏

k=1

xik
.

Thus the graded dimensions of the Verma modules Vg may be viewed as
complete Rademacher sums, where the rôle of the variables xi, for i ∈ Z

+,
in (7.24) and (7.25) is taken up by the exponential expressions e(�γ · z′) for
z′ = −1/z and �γ ∈ �Γg .
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Since all the coefficients appearing in the bi-graded dimension Zg(p, q)
are non-negative integers, one may expect to naturally find a bi-graded vec-
tor space, and possibly even an mg-module, with bi-graded dimension given
by Zg(p, q). The next result suggests that one can expect to find such a space
within Vg.

Given two elements F =
∑
Fm,np

mqn and G =
∑
Gm,np

mqn in
Z((q))[[p]], let us write F ≤ G in the case that Fm,n ≤ Gm,n for all m,n ∈ Z.

Proposition 7.1. Let g ∈ M. If g is Fricke then we have Zg(p, q) ≤
gdimVg.

Proof. Dividing both sides of (7.16) by (1 − pq−1) we obtain

1 −
∑

m,n∈Z+

cg, m+n−1
N

(
m+ n− 1

N

)
pmqn =

∏

m,n∈Z+

(1 − pmqn)cgm,n/N (mn/N).

(7.26)

We denote the sum in the left-hand side by Σ+ and the product in the
right-hand side by Π+. Then we have

(7.27) Zg(p, q) = −p∂p log(1 − pq−1)Π+ =
pq−1

1 − pq−1
+
p∂pΣ+

1 − Σ+
.

On the other hand,

(7.28) gdimVg =
1

1 − pq−1

1
1 − Σ+

=
1

1 − pq−1
+

Σ+

(1 − pq−1)(1 − Σ+)
.

Thus, it is sufficient to show that

(7.29) p∂p(Σ+) ≤ 1
1 − pq−1

Σ+,

but this follows from the observation that both sides of (7.29) have non-
negative coefficients and the left-hand side may be obtained from the right-
hand side by deleting the terms which are singular or constant with respect
to q. �

To formulate a conjecture on the nature of the subspaces of Vg with
bi-graded dimensions Zg(p, q), as well as the origin of the higher order
Rademacher sums, we turn again, in the next section, to the structures
of twisted chiral 3D quantum gravity.
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7.3. Second conjecture

We have shown in Section 5.5 that the higher order Rademacher sums
recover the action of the Hecke operators on the first order Rademacher
sums. In view of the conjectural relation between first order Rademacher
sums and chiral 3D quantum gravities at central charge c = 24, we may
consider an analogous interpretation for the higher order Rademacher sums
given by m(T̂g(m)Jg)(z) for g ∈ M and m ∈ Z

+. Since all the Fourier coef-
ficients of these expressions are non-negative integers, one might guess that
there exist families of twisted chiral 3D quantum gravities for all central
charges c = 24m, for m ∈ Z

+. In particular, the untwisted (g = e) chiral 3D
quantum gravities possess the structure of certain extremal vertex algebras
with the Monster symmetry.

The aforementioned class of extremal vertex algebras, with the addi-
tion of a Virasoro element, has been originally conjectured by Witten [62].
However, it was shown in [19] and [25] that the addition of a Virasoro ele-
ment precludes a non-trivial action of the Monster group. The higher-order
Rademacher sums also point to the partition functions without elements
of spin 2. We may modify Witten’s conjecture by asking for the existence
of extremal vertex algebras with partition functions given by the func-
tion J (−m)(z) for m > 0, related to the higher-order Rademacher sums via
J (−m)(z) = Q

(−m)
Γ (z) − cΓ(−m, 0), with Γ = PSL2(Z). The validity of this

conjecture remains open.
Note that the Virasoro algebra, even when not represented by any actual

state, may still act on a vertex algebra with partition function J (−m)(z).
Regardless of whether or not spaces V (−m) with partition function J (−m)(z)
admit natural vertex algebra structures, they certainly naturally inherit
actions of the Monster group, since the actions of Hecke operators mT̂ (m)
on the Fourier coefficients of J(z) may be interpreted as actions on repre-
sentations of M (cf. [29]).

It is natural to enquire as to the meaning of the spaces V (−m)
g , form ∈ Z

+

and g ∈ M, with graded dimension J (−m)
g (z). In light of our First Conjecture,

it is unlikely that the spaces V (−m) can represent states of a 3D quantum
gravity with c = 24m, since a Virasoro element is generally not present. Thus
we have to conclude that the 3D quantum gravity V (−1) = V � is the only
viable candidate. Then one might view the spaces V (−m) for m > 1 as some
higher overtones of the basic m = 1 theory.

In fact, we have shown in Section 5.5 that the action of the classical Hecke
operator T̂ (m) on the Rademacher sum (1.4) yields a sum over Γ∞\M(m),
where M(m) denotes the (image in G(Q) of the) set of 2 × 2 matrices
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with integral entries and determinant m. This sum may be viewed as the
m-instanton correction of the partition function in 3D quantum gravity. By
n-instanton in this context one understands an elliptic curve which admits a
holomorphic map of degree n into a given elliptic curve E�z (cf. [13]). Thus
the sum over Γ∞\M(n) becomes a sum over all 3D hyperbolic structures
on a solid torus with genus one boundary whose conformal structure corre-
sponds to an n-instanton on E�z . The same phenomena is expected for all
the twisted 3D quantum gravities corresponding to elements g ∈ M.

Collecting all the m-instanton contributions in one generating function,
we then obtain a partition function

(7.30) Zg(p, q) =
∑

m∈Z+

m(T̂g(m)Jg)(z)pm

depending on two variables, for each g ∈ M. This partition function Zg(p, q)
may be viewed as a part of the full partition function

(7.31) Z̃g(p, q) = exp

(
∑

m∈Z+

(T̂g(m)Jg)(z)pm

)

of the stringy second quantization of V �
g , introduced in [13] in the untwisted

case g = e. (See also [60].) We will now generalize their construction to an
arbitrary twisted module V �

g .
Let V be an arbitrary VOA; in our case V = V �. For n a positive inte-

ger, let V ⊗n denote the tensor product of n copies of V , and let Zn be
the group of cyclic permutations of the factors generated by an n-cycle
σn = (1, 2, . . . , n). Let g be an automorphism of V of order N , then g × σn

is an automorphism of V ⊗n of order nN/d where d = (n,N). To the pair
(V ⊗n, g × σn) is canonically associated a twisted module (cf. [2]), which we
denote V(g,n). The group Zg,n = 〈g × σn〉 acts naturally on V(g,n). We write
V

Zg,n

(g,n) for the Zg,n-invariant subspace. The stringy second quantization of the
twisted module Vg, to be denoted SVg, is, by definition, the space

(7.32) SVg =
⊕

λ∈P

⊗

r>0

SmrV
Zg,r

(g,r) ,

where the sum is taken over all partitions λ with mr parts of length r >
0. The space SVg is doubly graded: by the degrees of products of twisted
sectors and by the value of |λ|. For g = e our definition of the stringy second
quantization coincides with that of [13].
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Next we establish a relation between the second quantization SV �
g and

the Verma module Vg. First note the canonical isomorphism

(7.33) U(m−
g ) ∼= S(m−

g ).

Then we obtain the following result.

Theorem 7.2. There is a canonical isomorphism of bi-graded vector spaces

(7.34) SV �
g
∼= S(m−

g ).

Proof. The isomorphism (7.34) follows from the existence of isomorphisms

(7.35) (V �
(g,n))

Zg,n ∼= m−n
g

of bi-graded vector spaces for each n ∈ Z
+. To establish the existence of

these we will use the isomorphism

(7.36) V �
(g,n)

∼= V �
gn

of [2].
We wish to show that the subspace of V �

gn fixed by the operator

(7.37) g × e((L0 − 1)/n)

is naturally isomorphic to mn
g . Consider the invariant subspace of V �

gn with
respect to the Nth power of the operator (7.37), which may be expressed
as e((L0 − 1)N/n). Its action on the graded subspace V �

gn(kd/N) for k ∈ Z

is multiplication by e(kd/n), and this scalar is 1 if and only if k = (n/d)m
for some m ∈ Z. Thus, we are only concerned with the graded subspaces
V �

gn(nm/N) where m ∈ Z. To find the invariant subspaces with respect to
the operator (7.37) we consider its action on the subspaces of the form
V �

gn,m′/N (mn/N). The action is scalar multiplication by e(−m′/N)e(m/N)
and is therefore trivial if and only if m ≡ m′ (mod N). Thus the full sub-
space of V �

gn invariant under (7.37) is given by

(7.38)
⊕

m∈Z

V �
gn,m/N (mn/N) ∼= m−n

g .

To complete the proof we note that the group generated by the action of
the operator (7.37) has order nN/d, and under the isomorphism (7.36) its
action recovers that of Zg,n. �
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The isomorphism of Theorem 7.2 suggests that the stringy second quan-
tization SV �

g admits an action by the Lie algebra mg and thus provides a
Fock space realization of the Verma module Vg. When mg is generated by
its local subalgebra (7.13), as happens in the Fricke case, it is sufficient to
describe the action of brackets [m±1

g ,m−n
g ] ⊂ m−n±1

g via the action of V �
g±1

on the twisted sector for ((V �)⊗n, g × σn). Note also that the removal of the
subspaces corresponding to the terms which are singular or constant with
respect to q, as in the proof of Proposition 7.1, will yield an embedding of
the instanton subspace Ig inside the stringy second quantization of V �

g .
Our interpretation of the higher order Rademacher sums and the com-

plete Rademacher sums, and their relation to the second quantization of
the moonshine VOA and its twisted modules, as well as the monstrous Lie
algebras and their Verma modules, suggests the following extension of our
first conjecture, Conjecture 7.1.

Conjecture 7.2. Assuming the existence of a family of g-twisted chiral 3D
quantum gravities for g ∈ M, having the properties stated in Conjecture 7.1,
there also exists a natural geometric interpretation of the family of twisted
monstrous Lie algebras mg, the instanton spaces Ig, and the denomina-
tor formulas for all g ∈ M via the second quantization of the corresponding
g-twisted chiral three 3D quantum gravities.

First of all, the partition function of the second quantized g-twisted chi-
ral 3D quantum gravity should depend on two modular parameters w and
z, and should respect the symmetry that interchanges w with −1/z. Second,
there should be a quantum gravity theoretic explanation for why these par-
tition functions are singular precisely when w and −1/z belong to the same
orbit of Γg. This will explain the remarkable denominator formulas (7.14) of
Carnahan, and ultimately, the fundamental rôle of the principal moduli in
the moonshine Conjectures.

Where can we find an appropriate setting for all the structures that
appear in our Second Conjecture? The first answer that might come to mind
is the 26-dimensional bosonic string theory. It was known for a long time
that the physical space has a Lie algebra structure (cf. [18, 21]), which can
also be recovered from the semi-infinite cohomology (cf. [16, 41]). However,
in this way one can only get a fake Monster Lie algebra (cf. [3]) and there
is no (straight forward) geometric way to turn it into the real Monster Lie
algebra that appears in the 3D quantum gravity approach. Also, the 26
dimensions of the bosonic string have nothing to do with the 3 dimensions
of the quantum gravity. It is still possible that some constructions of string
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theory can be applied in the 3D quantum gravity setting. In particular, one
can expect to identify the negative part m− of the Monster Lie algebra in
the space of the second quantization of V � with a certain version of BPS
states (cf. [24]).

Clearly, our results on Rademacher sums, their relation to the moonshine
module, monstrous Lie algebras, and 3D quantum gravity, admit a super-
counterpart [9]. In this case the promise of relationships with the structures
of the 10 dimensional superstring is even more tempting, since the latter
has played such a prominent rôle in physics over the past 25 years. How-
ever, in spite of the remarkable mathematical similarity, the 10 of the 10D
superstring and the 3 of the 3D quantum supergravity emerging from the
super-counterpart of the Rademacher sums have different geometric meaning
and are not related by a compactification of any kind.

The most fascinating fact about the 3D quantum supergravity is that
while it is similar, but not directly related, to the initial 3D quantum gravity,
the corresponding second quantized theories are directly related. The higher
order Rademacher sums point to a larger second quantized space in the
super-case; a space which contains the second quantized space we considered
above.

Then what can these second quantized 3D quantum gravities mean in
physics? Näıvely, any quantization can be interpreted as a categorification,
which lifts a given theory one dimension up. One can then wonder if the
second quantization in our case might point to an extreme sector of cer-
tain 4D quantum gravities, such as the extreme Kerr black hole, which was
recently found in [20] also to be dual to a chiral 2D CFT. In this case the
Monster (or moonshine) might be the answer to the perpetual question of
what is behind the letter M in the theory that has not yet revealed its
true name.
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weights and the Eichler cohomology, Notices Amer. Math. Soc. 37(4)
(1990), 385–393.

[37] M. Knopp and S. Robins, Easy proofs of Riemann’s functional equation
for ζ(s) and of Lipschitz summation, Proc. Amer. Math. Soc. 129(7)
(electronic) (2001), 1915–1922.

[38] T. Kubota, Elementary theory of Eisenstein series, Kodansha Ltd.,
Tokyo, 1973.

[39] H. B. Lawson Jr and M.-L. Michelsohn, Spin geometry, vol. 38 of
Princeton Mathematical Series. Princeton University Press, Princeton,
NJ, 1989.

[40] W. Li, W. Song and A. Strominger, Chiral gravity in three dimensions,
J. High Energy Phys. 082(4) (2008), 15.



Rademacher sums, moonshine and gravity 975

[41] B. H. Lian and G. J. Zuckerman, Moonshine Cohomology,
arXiv:q-alg/9501015v1, January 1995.

[42] I. G. Macdonald, Symmetric functions and Hall polynomials. Oxford
Mathematical Monographs. The Clarendon Press Oxford University
Press, New York, 2nd edn, 1995. With contributions by A. Zelevinsky,
Oxford Science Publications.

[43] J. Manschot, AdS3 partition functions reconstructed, J. High Energy
Phys. 103(10) (2007), 7.

[44] G. Mason, Finite groups and modular functions, In The Arcata Confer-
ence on Representations of Finite Groups (Arcata, Calif., 1986), vol. 47
of Proc. Symp. Pure Math., pp. 181–210. Amer. Math. Soc., Providence,
RI, 1987. With an appendix by S. P. Norton.

[45] C. McMullen, Riemann surfaces and the geometrization of 3-manifolds,
Bull. Amer. Math. Soc. (N.S.) 27(2) (1992), 207–216.

[46] J. Manschot and G. Moore, A modern Farey tail, arXiv:0712.0573v1,
December 2007.

[47] A. Maloney, W. Song and A. Strominger, Chiral gravity, log gravity and
extremal CFT, arXiv:0903.4573v1, March 2009.

[48] A. Maloney and E. Witten, Quantum gravity partition functions in three
dimensions, arXiv:0712.0155v1, December 2007.

[49] D. Niebur, A class of nonanalytic automorphic functions, Nagoya Math.
J. 52 (1973), 133–145.

[50] D. Niebur, Construction of automorphic forms and integrals, Trans.
Amer. Math. Soc. 191 (1974), 373–385.

[51] S. P. Norton, More on moonshine, In Computational group theory
(Durham, 1982), pp. 185–193. Academic Press, London, 1984.

[52] W. de Azevedo Pribitkin, A generalization of the Goldfeld–Sarnak
estimate on Selberg’s Kloosterman zeta-function, Forum Math. 12(4)
(2000), 449–459.

[53] H. Rademacher, The Fourier Coefficients of the Modular Invariant J(τ)
Amer. J. Math. 60(2) (1938), 501–512.

[54] H. Rademacher, The Fourier series and the functional equation of the
absolute modular invariant J(τ), Amer. J. Math. 61(1) (1939), 237–248.



976 John F. R. Duncan and Igor B. Frenkel

[55] A. Selberg, On the estimation of Fourier coefficients of modular forms,
In Proc. Sympos. Pure Math., Vol. VIII, pp 1–15. Amer. Math. Soc.,
Providence, RI, 1965.

[56] D. Sullivan, On the ergodic theory at infinity of an arbitrary discrete
group of hyperbolic motions, In Riemann surfaces and related topics:
Proceedings of the 1978 Stony Brook Conf. (State Univ. New York,
Stony Brook, N.Y., 1978), vol. 97 of Ann. Math. Stud., pp. 465–496.
Princeton Univ. Press, Princeton, NJ, 1981.

[57] J. G. Thompson, Finite groups and modular functions, Bull. London
Math. Soc. 11(3) (1979), 347–351.

[58] J. G. Thompson, Some numerology between the Fischer–Griess Mon-
ster and the elliptic modular function, Bull. London Math. Soc. 11(3)
(1979), 352–353.

[59] M. P. Tuite, On the relationship between Monstrous Moonshine and the
uniqueness of the Moonshine module, Commun. Math. Phys. 166(3)
(1995), 495–532.

[60] M. Tuite, Monstrous and Generalized Moonshine and permutation
orbifolds, arXiv:0811.4525v1, November 2008.

[61] E. Witten, Physics and geometry, In Proceedings of the International
Congress of Mathematicians, Vol. 1, 2 (Berkeley, California, 1986),
pp. 267–303, Providence, RI, 1987. Amer. Math. Soc.

[62] E. Witten, Three-dimensional gravity revisited, arXiv:0706.3359v1,
June 2007.

Department of Mathematics

Case Western Reserve University

10900 Euclid Avenue

Cleveland, OH 44106

USA

E-mail address: john.duncan@case.edu

Department of Mathematics

Yale University

10 Hillhouse Avenue

New Haven, CT 06520

USA

E-mail address: igor.frenkel@yale.edu

Received October 24, 2009


