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Geometry and arithmetic of Maschke’s

Calabi–Yau three-fold

Gilberto Bini and Bert van Geemen

Maschke’s Calabi–Yau three-fold is the double cover of projective
three space branched along Maschke’s octic surface. This surface
is defined by the lowest degree invariant of a certain finite group
acting on a four-dimensional (4D) vector space. Using this group,
we show that the middle Betti cohomology group of the three-fold
decomposes into the direct sum of 150 2D Hodge substructures. We
exhibit 1D families of rational curves on the three-fold and verify
that the associated Abel–Jacobi map is non-trivial. By counting
the number of points over finite fields, we determine the rank of
the Néron–Severi group of Maschke’s surface and the Galois rep-
resentation on the transcendental lattice of some of its quotients.
We also formulate precise conjectures on the modularity of the
Galois representations associated to Maschke’s three-fold (these
have now been proven by M. Schütt) and to a genus 33 curve,
which parametrizes rational curves in the three-fold.

The Hodge structure on the middle dimensional Betti cohomology group of
a Calabi–Yau (CY) three-fold carries important information on the moduli
and the one-dimensional (1D) algebraic cycles on the three-fold. However,
if the three-fold is easy to define, say by one equation in a (weighted) pro-
jective space, the dimension h3 of this vector space tends to be large. For
example, a smooth quintic three-fold in P4 has h3 = 204 and a double octic,
i.e., a double cover of P3 branched along a smooth surface of degree 8, has
h3 = 300. Using automorphisms of the three-folds, one can decompose the
cohomology into subrepresentations, which give rise to Hodge substructures.
In this paper, we consider a double octic with a particularly large automor-
phism group G of order 16 · (6!) = 11, 520.

In 1887, Heinrich Maschke studied the invariants of a finite group G,
related to genus two theta functions, acting on a 4D complex vector space
[20]. The group G is the image of G in Aut(P3), it is the quotient of G
by its center, which is cyclic of order four. Maschke’s main result is the
determination of generators of the ring of G-invariants.
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In particular, the lowest degree invariant has degree 8 and is given
by [20], equation (12)

F :=
3∑

i=0
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The octic surface S in P3 defined by this polynomial

S := Zeroes(F ) (⊂ P3)

is a smooth surface, which we call Maschke’s surface. This surface, and a
subgroup G8 of its automorphism group, appeared recently in [4]. The double
cover X of P3, branched along S, is a smooth CY three-fold, which we call
Maschke’s double octic.

Using an easy generalization of a formula of Chênevert [8] (see Section
10) and a computer, we find in Section 6.2 that H3(X,Q) is a direct sum of
2D Hodge substructures. As the action of G on C4 is given by matrices with
coefficients in the field Q(i), i2 = −1, the étale cohomology group H3

ét(X,Q�)
is decomposed into 2D GQ(i) := Gal(Q/Q(i))-representations. Our numeri-
cal results, using point counting over finite fields with MAGMA [19] and the
Lefschetz fixed point formula, suggest that H3

ét(X,Q�) is a direct sum of 2D
GQ := Gal(Q/Q)-representations. For such representations there are now
various modularity results, and we did succeed in matching the numerical
data to explicitly given elliptic modular forms. Although we were not able
to provide a proof for our conjectured decomposition given in Section 7.3,
recently M. Schütt [29] succeeded in doing so.

The decomposition of H3(X,Q) shows that the Griffiths intermediate
Jacobian of X has an abelian subvariety J(X)a of dimension 149. In Section
8 we describe a family of rational curves on X, parametrized by a curve
C̃+, such that the Abel–Jacobi map J(C̃+)→ J(X)a is non-constant. This
provides some evidence for the generalized Hodge conjecture for X. We also
analyze the étale cohomology of C̃+ in Section 9. It seems that J(C̃+) is
isogeneous to a product of 33 elliptic curves, and that the image of the
Abel–Jacobi map might be ‘as big as possible’, that is, the image might
have dimension 24.

A somewhat similar study of the Abel–Jacobi map for complete inter-
sections of four quadrics in P7 with an involution was done in [1]. The
action of a finite group and the Galois representations associated with the
quintic three-folds of the Dwork pencil were analyzed in [5]. In that case,
each three-fold has a 1D family of lines, which was analyzed in [24], and
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recently Candelas obtained an explicit description of this family [6]. As far
as we know, the Abel–Jacobi map has not yet been described in detail. The
paper [15] considers surfaces, which are products of a P1 and an elliptic
curve E in certain CY three-folds and shows that in some cases H1(E,Q) ∼=
H3(E ×P1,Q) contributes to H3(X,Q). This can be viewed as an instance
of an injective Abel–Jacobi map associated to a family of P1’s parametrized
by E.

The group G also acts on Maschke’s surface S and in Sections 3, 4
and 5 we use it to study the Hodge structure on H2(S,Q) and the Galois
representation on H2

ét(S,Q�). This allows us to determine the rank of the
Néron–Severi group of S, from which we conclude that the classes of lines
in S generate a subgroup of finite index. We also give projective models of
some quotients of S.

In the first section, we briefly recall how a finite group of automorphisms
of an algebraic variety X can be used to decompose the cohomology of X.
The group G is introduced in Section 2.

We are indebted to Matthias Schütt for his comments on a first draft of
this paper.

1. Decomposing cohomology groups

1.1. Overview

The Betti cohomology groups Hk(X,Q) of a smooth complex projective
variety X are rational Hodge structures of weight k. A subgroup G of Aut(X)
induces a decomposition of these groups into Hodge substructures. Similarly,
if X and each g ∈ G are defined over Q, one obtains a corresponding (via
the comparison theorem) decomposition of the étale cohomology groups of
X into GQ-representations.

We briefly recall the basics of rational Hodge structures (see for example
[30], Chapter 7), representations of finite groups and their applications to
algebraic geometry.

1.2. Rational Hodge structures

The Betti cohomology groups Hk(X,Q) of a smooth complex projective
variety X are rational Hodge structures of weight k. A rational Hodge
structure is a finite dimensional Q-vector space with a decomposition of
its complexification VC := V ⊗C = ⊕V p,q with p, q ∈ Z≥0, p + q = k and
V p,q = V q,p. A morphism of Hodge structures is a Q-linear map f : V →
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W such that its C-linear extension satisfies f(V p,q) ⊂W p,q for all p, q.
Morphisms between varieties induce morphisms of Hodge structures on the
Betti cohomology groups. For a Hodge structure V , the (endo)morphisms of
Hodge structures V → V form a Q-algebra (so λf + μg, fg := f ◦ g are mor-
phisms of Hodge structures if f, g are, for any λ, μ ∈ Q). Thus if G ⊂ Aut(X)
is a subgroup, we get an action, by Hodge endomorphisms, of G on each
Hk(X,Q).

A subspace W ↪→ V is called a Hodge substructure if WC = ⊕W p,q

where W p,q := W ∩ V p,q, in that case W is a Hodge structure and the inclu-
sion is a morphism of Hodge structures. The kernel and image of a morphism
of Hodge structures are easily seen to be Hodge substructures.

A Hodge structure V is called simple if the only Hodge substructures
of V are {0} and V . As the Hodge structure on Hk(X,Q) is polarized,
it is a direct sum of simple Hodge structures and these are unique up to
isomorphism.

An automorphism φ : X → X induces endomorphisms of Hodge struc-
tures φ∗ on Hk(X,Q) for each k. For any a0, . . . , am ∈ Q, one has the Hodge
endomorphism

∑m
i=0 ai(φ∗)i, the kernel and image of which are thus Hodge

substructures of V .

1.3. Representations of finite groups

We recall some of the basics on representations of finite groups. Let G be
a finite group, let G = C1

∐
. . .
∐

CM be the partition of G in conjugacy
classes (so g, g′ ∈ Ci for some i iff g = hg′h−1 for some h ∈ G). A repre-
sentation of G is a homomorphism of groups ρ : G→ GL(V ) where V is a
finite dimensional vector space over a field K. A representation is said to
be irreducible (over K) if the only subspaces W ⊂ V with ρ(g)W ⊂W for
all g ∈ G are W = {0} and W = V . A representation ρ′ : G→ GL(V ′) is
said to be equivalent (or isomorphic) to ρ if there is a K-linear isomorphism
A : V → V ′ such that ρ′(g) = Aρ(g)A−1 for all g ∈ G.

The group G has M irreducible complex (i.e., K = C) representations,
we denote them by ρ1, . . . , ρM on vector spaces V1, . . . , VM . A complex rep-
resentation of G (so K = C) is isomorphic to a direct sum of the irreducible
representations, V ∼= ⊕V ni

i .

1.4. Characters

The isomorphism class of a complex representation ρ is determined by its
character χρ, so ρ, ρ′ are isomorphic representations iff χρ(g) = χρ′(g) for all
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g ∈ G. Here the character of ρ is the function

χρ : G −→ C, χρ(g) := Tr(ρ(g)),

where Tr is the trace of a linear map. This function is constant on the
conjugacy classes. Note that if V ∼= ⊕V ni

i , then χρ =
∑

niχi where χi := χρi

is the character of the irreducible representation ρi. The decomposition of a
character into irreducibles is easily done using a scalar product on the space
of characters for which the χi are an orthonormal basis. The trace of the
action of an automorphism on the primitive cohomology of a hypersurface
or a ramified cover of Pn+1 can be found in Proposition 10.1.

1.5. Decomposing representations

Given a complex representation ρ of G and a conjugacy class Cj , consider
the linear map

cj,ρ :=
∑

g∈Ci

ρ(g) (∈ End(V )).

By construction, ρ(h)cj,ρρ(h)−1 = cj,ρ for all h ∈ G. By Schur’s lemma, cj,ρ

is then scalar multiplication by a complex number λi,j on any irreducible
subrepresentation Vi ⊂ V . This scalar can be easily found by computing the
trace of cj,ρ on Vi in two ways. The first is simply Tr(cj,ρ|Vi) = (dim Vi)λi,j ,
the other uses a character: Tr(cj,ρ|Vi) = (�Cj)χi(g), for any g ∈ Ci. Thus on
the subspace V ni

i of V we get, for any g ∈ Ci:

λi,j := (cj,ρ)|V ni
i

=
�Cj

dimVi
χi(g), define Ṽi := ∩M

j=1 ker(cj,ρ − λi,j).

Then, by construction, Ṽi is a subrepresentation of V , and we have V ni

i ⊆ Ṽi.
One actually has equality here, since Tr(ρ(g)|Ṽi

) = niχi(g), for all g ∈ G

which implies that the character of the representation ρ(g)|Ṽi
coincides with

the character of V ni

i . Hence these representations are isomorphic:

Ṽi
∼= V ni

i ,

and this provides an explicit method to decompose V into isotypical
components.
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1.6. Applications

In this paper, we use the action of finite groups G ⊂ Aut(X) of auto-
morphisms of smooth complex varieties on the Betti cohomology groups
Hk(X,Q) of X. In particular, if ρi is an irreducible representation of G such
that its character satisfies χi(g) ∈ Q for all g ∈ G, then each λi,j ∈ Q and
we can split

Hk(X,Q) = Ṽi ⊕ Ṽ ′
i Ṽi := ∩M

j=1 ker(cj,ρ − λi,j) (χi(g) ∈ Q ∀g ∈ G),

where ρ : G→ GL(Hk(X,Q)) is the action of G, ρ(g) := g∗. As observed in
Section 1.2, Ṽi and Ṽ ′

i will be rational Hodge structures.
Similarly, one can decompose the étale cohomology group Hk

ét(X,Q�) =
Ṽi,� ⊕ Ṽ ′

i,�. The comparison isomorphism between étale and Betti cohomology
groups implies that these decompositions coincide after embedding Q� into
C and tensoring by C.

1.7. Commuting group actions

Let again ρ : G→ GL(V ) be a representation of the finite group G on a
K-vector space V and let

V ∼= ⊕iṼi, Ṽi
∼= V ni

i

be the decomposition into representations Vi which are irreducible over K.
More intrinsically, one has

Ṽi
∼= Vi ⊗Wi, Wi := HomG(Vi, V ) = HomG(Vi, Ṽi) ∼= Kni ,

the G-equivariant maps; the isomorphism is given by v ⊗ f �→ f(v). In case
another group H acts linearly on V and the actions of G and H commute,
one has an action of the group G×H on V . Essentially by Schur’s lemma
(cf. [14], Section 3.3) each Wi is then an H-representation space and the
action of G×H on V is given by

V = ⊕iVi ⊗Wi, (g, h)(v ⊗ w) = (gv)⊗ (hw).

In particular, as an H-representation one has

V ∼= ⊕iW
mi

i , mi := dimVi.
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In case G acts on V = Hk(X,Q) by morphisms of Hodge structures,
then Wi is a rational Hodge structure and Ṽi

∼= Wmi

i , where mi = dimVi,
is an isomorphism of rational Hodge structures. In fact, the rational Hodge
structure on Ṽi is defined by a representation

h : C∗ −→ GL(Ṽi,R), h(z)vp,q := zpzqvp,q,

where vp,q ∈ (Ṽi)p,q and the action of h is extended C-linearly to Ṽi,C where
Ṽi,K := Ṽi ⊗Q K. As g ∈ G preserves the Hodge structure, it must commute
with h(z) for all z and hence G×C∗ acts on Vi,R. The representation h is
then obtained from a representation h′ : C∗ → GL(Wi). This representation
defines the Hodge structure on Wi.

In case X ⊂ Pn is defined by equations with coefficients in a number field
L and the action of any g ∈ G ⊂ Aut(X) is given by maps with coefficients
in L, the maps g∗ will commute with the action of GL := Gal(L/L) on
V� := Hk

ét(X,Q�). Thus, as a G×GL-representation,

V�
∼= ⊕iṼi,�

∼= ⊕iVi,� ⊗Wi,�.

In particular, the G-representation Ṽi,�
∼= V ni

i,� defines a Galois representation
on Wi,�, with dimWi,� = ni, and as GL-representations Ṽi,�

∼= Wmi

i,� where
mi := dimVi.

1.8. Cycles and motives

The splitting of the various cohomology groups comes from cycles on the
product X ×X and is thus motivic. The graph Γg := {(x, gx) : x ∈ X} has
a class [Γg] ∈ H2n(X ×X) with n = dimC X (where one can choose any
Weil cohomology group). Using the Künneth theorem and Poincaré duality
to identify End(Hk(X)) with H2n−k(X)⊗Hk(X), the Künneth components
of this class induce maps, compatible with the Hodge structure or the Galois
action, which are just the g∗ on Hk(X):

g∗ = [Γg]k : Hk(X) −→ Hk(X).

The operators cj,ρ are thus induced from (the action of) certain cycles in
CH∗(X ×X) and will act on any Weil cohomology group of X.
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2. The group G

2.1. A Heisenberg group H

For the groups in these sections we refer to [7].
The Heisenberg group we will use is defined as the set

H = μ4 × (Z/2Z)2 × (Z/2Z)2, μ4 := {z ∈ C : z4 = 1},

so, with the obvious group structure, H would be isomorphic to (Z/4Z)×
(Z/2Z)4. However, we define the group operation by

(s, x, x∗)(t, y, y∗) := (st(−1)y∗(x), x + y, x∗ + y∗) with
y∗(x) := y∗1x1 + y∗2x2,

where x = (x1, x2), y∗ = (y∗1, y∗2) ∈ (Z/2Z)2. One easily verifies that

(s, x, x∗)−1 = (s−1(−1)x∗(x), x, x∗)

and that the commutator of two elements in H is given by:

(s, x, x∗)(t, y, y∗)(s, x, x∗)−1(t, y, y∗)−1 = ((−1)x∗(y)−y∗(x), 0, 0).

The center of H is μ4 and the commutator defines a symplectic form E on
the F2-vector space H/μ4

∼= (Z/2Z)4:

E((x, x∗), (y, y∗)) = y∗(x)− x∗(y) = y∗1x1 + y∗2x2 + x∗
1y1 + x∗

2y2,

with x = (x1, x2), x∗ = (x∗
1, x

∗
2), y = (y1, y2) and y∗=(y∗1, y∗2), all in (Z/2Z)2.

2.2. The Schrödinger representation

There is a (unique, faithful) representation U of the finite group H on the
vector space C4, called the Schrödinger representation, such that s ∈ μ4 acts
as scalar multiplication by s. Identifying C4 with the C-vector space of maps
f : (Z/2Z)2 → C this representation is defined as:

(
U(s,x,x∗)f

)
(z) := s(−1)x∗(z)f(x + z),

where U(s,x,x∗) ∈ GL(4,C) gives the action of (s, x, x∗) ∈ H. The δ-functions
provide a basis of this vector space: δx(y) = 0 if x 
= y and δx(x) = 1 for
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x, y ∈ (Z/2Z)2. The Schrödinger representation is then:

U(s,x,x∗)δa := s(−1)x∗(x+a)δx+a.

Identifying {0, 1} with Z/2Z and writing

x0 = δ00, x1 = δ01, x2 = δ10, x3 = δ11

for the basis of C4 and writing

habcd := U(1,(a,b),(c,d)), c := U(i,(0,0),(0,0)), i2 = −1,

the Schrödinger representation on the four variables x0, . . . , x3 is:

x := (x0, x1, x2, x3) �−→

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

h0001(x) = (x0,−x1, x2,−x3)
h0010(x) = (x0, x1,−x2,−x3)
h0100(x) = (x1, x0, x3, x2)
h1000(x) = (x2, x3, x0, x1)

c(x) = (ix0, ix1, ix2, ix3).

2.3. The group G

For convenience, we will now identify the abstract group H with its image
under U in GL(4,C). The normalizer N in GL(4,C) of H is defined as:

N := {M ∈ GL(4,C) : MHM−1 = H}.

An element M ∈ N induces an automorphism of H, which we also denote
by M ,

M : H −→ H, h �−→ h′ if MUhM−1 = Uh′ .

As N acts by automorphisms on H, each M ∈ N induces a linear map
φM on the quotient of H by its center, H/μ4

∼= (Z/2Z)4. These linear maps
are easily seen to preserve the symplectic form E:

E(φMv, φMw) = E(v, w), (M ∈ N, φM ∈ Aut((Z/2Z)4) = GL(4,F2)),

for all v, w ∈ (Z/2Z)4. Thus we get a homomorphism to a finite symplectic
group:

N −→ Sp(4,F2), M �−→ φM ,
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which can be shown to be surjective. The group Sp(4,F2) is isomorphic to
the symmetric group S6: see, for instance, [7], Appendix C.

Any element Uw ∈ H is obviously an element of N . Since UwUvU
−1
w =

(−1)E(v,w)Uv we get φM = I if M = Uw ∈ H ⊂N . The homomorphism above
fits in an exact sequence:

0 −→ C× ·H −→ N −→ S6 −→ 0.

The group G is the subgroup of N generated by the following two ele-
ments in GL(4,C):

g1 :=

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 i 0
0 0 0 i

⎞

⎟⎟⎠ , g2 :=
1
2

⎛

⎜⎜⎝

−1 −i −i −1
i 1 −1 −i
i −1 1 −i
1 −i −i 1

⎞

⎟⎟⎠ , i :=
√−1.

The group G maps onto S6 and G ∩ (C× ·H) = H. It thus has order

�G = (�H)(�S6) = 26 · (6!) = 46, 080.

The homomorphism G→ S6 can be chosen so that the images of g1, g2 in
S6 are the cycles (12) and (123456), respectively. We used the computer
program MAGMA [19] for computations involving H and G.

3. The second cohomology group of S

3.1. The Hodge decomposition of H2(S, Q)

The second (singular) cohomology group with coefficients in Q of an octic
surface in P3 has dimension b2(S) = 302. As for any smooth surface, this
rational Hodge structure splits as

H2(S,Q) = TS,Q ⊕NS(S)Q (NS(S)Q := NS(S)⊗Z Q).

The Hodge substructure NS(S)Q is the Néron–Severi group of S tensored
with Q, it is pure of type (1, 1). The transcendental substructure, which is
the orthogonal complement of NS(S)Q w.r.t. the intersection form on H2,
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has the Hodge decomposition

TS,Q ⊗Q C = T 2,0
S ⊕ T 1,1

S ⊕ T 0,2
S , T 2,0

S = T 0,2
S .

One has h2,0(S) = dimT 2,0
S = dimh0(ωS) = pg(S), the geometric genus of

S (and ωS is the canonical bundle of S). For an octic surface we have, by
adjunction, that ωS

∼= OS(4) and thus

H2,0(S) ∼= R4, where R4 = H0(P3,O(4))

is the complex vector space of homogeneous polynomials of degree four in
x0, . . . , x3. Hence h2,0(S) = dimR4 = 35 and

b2(S) = dimH2(S,Q) = 302,
{

h2,0(S) = dimH2,0(S) = 35,
h1,1(S) = dimH1,1(S) = 302− 2 · 35 = 232.

From this we get that dimNS(S)Q ≤ 232 and dimTS,Q ≥ 70. We need to
work a little harder to actually find these dimensions, they are dimNS(S)Q =
202, dimTS,Q = 100, see Sections 3.3, 5.6.

3.2. The Néron–Severi group of S

To get a lower bound on the rank of the Néron–Severi group of S, we study
the subgroup LS spanned by the lines in S. In [4] it was shown that the
surface S contains exactly 352 lines. Under the action of G, there are two
orbits on the set of lines. The orbit of the line

l3 : 〈(α : 1 : 0, 0), (0 : 0 : α : 1)〉, α4 − 2α3 + 2α2 + 2α + 1 = 0,

(α = ζ12 + ζ2
12, where ζ12 is a primitive 12-th root of unity) contains 160

lines, whereas the orbit of l5 contains 192 elements with

l5 : 〈(1 : a : a
√−1 : 0), (0 : a : −a

√−1 : 1)〉, a := (1 +
√−1)(1 +

√
5)/4.

Using a computer, we found that the rank of the symmetric matrix of inter-
section numbers (l ·m), where l, m run over the 352 lines on S, is 202. Hence
these lines span a subspace LS of dimension 202 of NS(S)Q (⊂ H1,1(S)). We
will see later that actually LS = NS(S)Q, but at this point we only know:

dimLS = 202 ≤ dimNS(S)Q ≤ h1,1(S) = 232.
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3.3. The action of G on H2(S, Q)

Using Magma, we found the character table of G. There are 59 irreducible
representations. Using a formula of Chênevert, see Proposition 10.1, it is
easy to compute the traces of elements of G on H2(S,Q)pr, the primitive
cohomology, and thus to find the decomposition of the primitive cohomology
into irreducible G-representations. The decomposition of H2(S,Q) is then
just the sum of this decomposition with the 1D trivial representation.

The primitive cohomology group H2(S,Q)pr is the direct sum of 10
distinct irreducible representations, (which we do not describe explicitly)
with:

Dimension 1 5 5 10 15 15 30 45 45 45
Multiplicity 1 1 3 1 2 1 3 1 1 1

Moreover, the characters of these 10 representations take values in Z, so we
can split

H2(S,Q)pr =
10⊕

i=1

Vi ⊗Wi,

where the Vi are irreducible G-representations and Wi are rational Hodge
structures, and dimWi is the multiplicity of Vi in H2(S,Q)pr.

To relate this decomposition to the one in the transcendental and triv-
ial (Néron–Severi) Hodge substructures, we used the isomorphism of G-
representations H2,0(S) ∼= R4(ε), where ε is the unique non-trivial 1D rep-
resentation of G (recall that G/H ∼= S6, and ε factors over the sign repre-
sentation of S6).

We found that H2,0(S) is the direct sum of two irreducible representa-
tions, one of dimension 5 and one of dimension 30. As the 10 subrepresenta-
tions of H2(S,Q) have characters with values in Z, the direct sum of these
two representations is also isomorphic to H2,0 = H0,2. In particular, their
multiplicity in H2(S,Q)pr is at least 2. This suffices to identify them as the
Vi with i = 3, 7 in the order given in the table above, so:

H2,0(S) ∼= H0,2(S) ∼= V3 ⊕ V7, dimV3 = 5, dimV7 = 30.

Applying the methods of Section 1.7 to the Hodge structure V := TS,Q we
get a decomposition

TS,Q
∼= V3 ⊗W ′

3 ⊕ V7 ⊗W ′
7, dimW ′

3, dim W ′
7 ∈ {2, 3},
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where W ′
3, W ′

7 are Hodge substructures of W3, W7 (both of which are 3D),
respectively, with dim(W ′

i )
2,0 = 1.

To find the dimension of W ′
7, we consider the action of G on the subspace

LS of NS(S)Q spanned by classes of lines. Elements of G permute the lines
and using the intersection form one can find an explicit matrix which gives
the action of any g ∈ G on LS . Thus the representation of G on LS can be
decomposed into irreducibles. We found, of course, that all representations
in H2(S)pr, which do not appear in H2,0, do appear in LS . The interesting
thing is that V3 appears also in LS , hence we can conclude that dimW ′

3 = 2,
but V7 does not appear in LS . Thus we get the decomposition

H2(S,Q) = V3 ⊗W ′
3 ⊕ V7 ⊗W7 ⊕ LS .

Now it only remains to decide whether dimW ′
7 is 2 or 3 (equivalently,

whether dimNS(S)Q = 202 + 30, in this case LS 
= NS(S)Q, or 202, respec-
tively). We will see in Section 5.6 that

TS,Q
∼= V3 ⊗W ′

3 ⊕ V7 ⊗W7, dimW ′
3 = 2, dimW7 = 3,

hence LS = NS(S)Q and W7 is a simple 3D Hodge structure.

4. Quotients of Maschke’s surface S

4.1. Overview

In Section 3.3, we showed that the transcendental Hodges structure TS,Q ⊂
H2(S,Q) of S has a summand V3 ⊗W ′

3 which is isomorphic to (W ′
3)

⊕5

as a rational Hodge structure. We will now find desingularizations Ũ , W̃
of quotients of S by subgroups of G with transcendental Hodge structure
TŨ ,Q

∼= (W ′
3)

⊕5 and T
W̃ ,Q

∼= W ′
3. We did not succeed in finding a model of

a surface with transcendental Hodge structure isomorphic to W ′
7, the other

Hodge substructure in TS,Q.

4.2. K3 surfaces and W ′
3

The Heisenberg group H acts through H := H/μ4
∼= (Z/2Z)4, an abelian

group, on P3 and thus on S. This gives a natural splitting

TS,Q = TS,Q,1 ⊕ (⊕χ�=1TS,Q,χ),
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where the first summand is the subspace of H-invariants and the sum is over
the 15 non-trivial characters of H, which factor over H. The character table
of G shows that H acts trivially in the G-representation V3, so we conclude
that V3 ⊗W ′

3
∼= TS,Q,1 and this also identifies V7 ⊗W ′

7 ⊂ TS,Q:

TH
S,Q = TS,Q,1

∼= V3 ⊗W ′
3, ⊕χ�=1TS,Q,χ

∼= V7 ⊗W ′
7.

The desingularization Ũ of the quotient surface U := S/H will have tran-
scendental Hodge substructure TH

S,Q, hence

TŨ ,Q
∼= V3 ⊗W ′

3
∼= (W ′

3)
⊕5.

A further quotient of U by an involution ιU will give us a surface W whose
desingularization W̃ is a K3 surface with T

W̃
∼= W ′

3.

S −→ U := S/H (⊂ P4) −→ W := U/ιU (⊂ P3).

4.3. The surface U = S/H

To find a projective model of the quotient surface U = S/H, we consider
the subring of H-invariant polynomials in C[x0, x1, x2, x3]. It is generated
by the following 5 polynomials of degree 4:

p0 := x4
0 + x4

1 + x4
2 + x4

3, p1 := 2(x2
0x

2
1 + x2

2x
2
3), p2 := 2(x2

0x
2
2 + x2

1x
2
3),

p3 := 2(x2
0x

2
3 + x2

1x
2
2), p4 := 4x0x1x2x3,

and we have

C[x0, x1, x2, x3]H = C[p0, . . . , p4] ∼= C[y0, . . . , y4]/(GI),

where the isomorphism is given by yi �→ pi, with kernel the quartic polyno-
mial

GI := y4
4 + (y2

0 − y2
1 − y2

2 − y2
3)y

2
4 + y2

1y
2
2 + y2

1y
2
3 + y2

2y
2
3 − 2y0y1y2y3.

Thus the image of the map P3 → P4, x �→ (. . . : pi(x) : . . .) is the (singular)
quotient variety P3/H, which is known as the Igusa quartic, and it is defined
by GI = 0.
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The image U of Maschke’s surface S is the intersection of the Igusa
quartic with the quadric with defining equation

GM := y2
0 + 3(y2

1 + y2
2 + y2

3) + 6y2
4,

so GM(p0, . . . , p4) = F , the defining equation of S. In fact, the group G/H =
S6 acts on P4 = P(C5) and the representation on C5 is irreducible with
unique quadratic invariant GM. The singular locus of U := S/H consists of
30 nodes which are the images of the fixed points of H in S. By adjunction,
we get an isomorphism H2,0

Ũ
∼= H0(P4,O(1)), the vector space of linear forms

on P4.

4.4. The surface W = U/ιU

We define an involution ιU on U and we give an explicit projective model of
the surface W = U/ιU as a 12 nodal quartic surface in P3.

The matrix diag(−1, 1, 1, 1) lies in G and it induces the map diag(1, 1, 1,
1,−1) on the basis p0, . . . , p4 of the space of H-invariants of degree 4, and
hence on P4. In any case, it fixes the two defining equations GI and GM of
U and hence it induces an involution ιU on U .

The quotient W of U by ιU is the surface in P3, with coordinates
y0, . . . , y3, whose defining equation is obtained by substituting y2

4 = −(y2
0 +

3(y2
1 + y2

2 + y2
3)/6 in GI. Thus

U −→W := U/〈diag(1, 1, 1, 1,−1)〉, W = (H = 0) (⊂ P3),

where the quartic polynomial H is given by:

H := 5y4
0 + 6y2

0(y
2
1 + y2

2 + y2
3)− 27(y4

1 + y4
2 + y4

3)− 90(y2
1y

2
2 + y2

1y
2
3 + y2

2y
2
3)

+ 72y0y1y2y3.

The automorphism group of W contains a group G24 of 24 elements gener-
ated by a subgroup isomorphic to S3, given by permutations of the variables
y1, y2, y3, and a subgroup isomorphic to (Z/2Z)2, given by changing an even
number of signs of these three variables. The point p := (3 : 3 :

√−3 :
√−3)

is a singular point, a node, of W . Its orbit under G24 consists of 12 singular
points and this set is the singular locus of W .

The surface W contains the line m spanned by

m : 〈(3 : 0 :
√−3 : 0), (0 : 3 : 0 :

√−3)〉.
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The orbit of this line under G24 consists of 12 lines. Another line m′ on W
is given by

m′ : 〈(ω − 1 : −ω : 1 : 0), (−ω − 2 : ω + 1 : 0 : 1)〉, ω := (−1 +
√−3)/2,

so ω is a primitive cube root of unity.
The desingularization W̃ of W is a K3 surface. The subgroup of its

Néron–Severi group NS(W̃ ) generated by the classes of the 12 rational curves
over the nodes, the strict transforms of the 12 lines in the G24-orbit of m
and m′ has rank 20, as an explicit computation of the intersection matrix
of these curves shows. As this is also the maximal value that the rank can
have, we conclude that rank(NS(W̃ )) = 20. This agrees with the fact that
dimH2(W̃ ,Q) = 22, T

W̃
∼= W ′

3 and dimW ′
3 = 2 (cf. Section 3.3).

In Section 5.3 we will determine the Galois representation on H2
ét(W̃,Q�).

5. Galois representations and Maschke’s surface

5.1. Decomposing H2
ét(S, Q�)

Maschke’s surface S is defined by a polynomial with integer coefficients and
thus there is a representation of the Galois group GQ := Gal(Q/Q) on the
étale cohomology groups H2

ét(S,Q�) (where now S = SQ is considered as a
surface over Q). The ideal in Z[x, y, z] generated by the partial derivatives of
F (1, x, y, z) contains the integer 215325 (according to Magma). Hence, using
the invariance of F under permutations of the four variables, the surface S
has good reduction at all primes p with p > 5.

There is a decomposition of GQ-representations:

H2
ét(S,Q�) = TS,� ⊕NS(S)�,

where NS(S)� is the subspace spanned by divisor classes in SQ, so
dimNS (S)� = dimNS(S)Q, and TS,� = NS(S)⊥� .

The action of G ⊂ Aut(S) is defined by matrices with entries in Q(i).
Thus, the actions of G and GQ(i) := Gal(Q/Q(i)) ⊂ GQ on TS,� commute.
Using the results from Section 3.3 and the comparison theorem, we find the
splitting, as G×GQ(i)-representations:

TS,Q�

∼= V3,� ⊗W ′
3,� ⊕ V7,� ⊗W ′

7,�, dimW ′
3,� = 2, dimW ′

7 ∈ {2, 3},

we will see that dim W ′
7 = 3 in Section 5.6.
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As the representations V3, V7 of G are irreducible and have distinct
dimensions, the two summands are preserved by the GQ-action on TS,Q�

.
The G-representation on V3 ⊗W ′

3 factors over S6 and is then isomorphic to
the S6-representation on TŨ ,Q. As S6 acts by matrices with coefficients in
Q on U ⊂ P4, we conclude that W ′

3,� is in fact a GQ-representation.
Since W ′

3
∼= T

W̃
, as rational Hodge structures, we get by a similar argu-

ment that W ′
3,� is the Galois representation on the orthogonal complement

of NS(W̃ )� in H2
ét(W̃ ,Q�). We will describe it explicitly in Section 5.3.

5.2. The Galois representation on LS

The 202D subspace LS of NS(S)Q is spanned by the classes of the lines in
S. These lines are defined over the field Q(ζ12,

√
5), a subfield of Q(ζ60),

where ζk is a primitive k-th root of unity. The Galois representation on
LS , given by permutations of the classes of the lines, thus factors over
Gal(Q(ζ12,

√
5)/Q) ∼= (Z/2Z)3. This group has 8 1D representations, which

extend to GQ-representations:

σa,b,c := σa
1,0,0σ

b
0,1,0σ

c
0,0,1 : GQ −→ {±1}

for a, b, c ∈ {0, 1} where we define the following non-trivial Galois represen-
tations by their kernel, which has index two in GQ:

ker(σ1,0,0) = GQ(
√−1), ker(σ0,1,0) = GQ(

√−3), ker(σ0,0,1) = GQ(
√

5).

Thus for a Frobenius element Fp ∈ GQ at the prime p one has: σ1,0,0(Fp) =
−1 iff p ≡ 3 mod 4, σ0,1,0(Fp) = −1 iff p ≡ 2 mod 3 and σ0,0,1(Fp) = −1 iff
p ≡ 2, 3 mod 5.

With a computer we found that

LS
∼= σ44

0,0,0 ⊕ σ28
0,0,1 ⊕ σ28

0,1,0 ⊕ σ42
1,0,0 ⊕ σ33

1,0,1 ⊕ σ27
1,1,0,

note that dimLS = 202 = 44 + 28 + 28 + 42 + 33 + 27. The GQ-represen-
tation on LS,� ⊂ H2

ét(S,Q�) is then the tensor product of the representation
on LS above with Q�(−1). In particular, for p > 5 a Frobenius element Fp ∈
GQ at the prime p will act as σa,b,c(Fp)p on the summand σa,b,c ⊗Q�(−1).
This allows one to compute the trace of Fp on LS,� explicitly.
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5.3. The Galois representation on H2
ét(W̃ , Q�)

The surface W̃ , defined in Section 4.4, has good reduction at primes p > 5.
The Galois representation on H2

ét(W̃ ,Q�) splits into the 20D representa-
tion on NS(W̃ )� and a 2D representation on the orthogonal complement
T

W̃ ,�
∼= W ′

3,�. Using the explicit description of the generators of NS(W̃ )Q
one finds that all generators are rational over Q(

√−3) and that the non-
trivial element in the Galois group Gal(Q(

√−3)/Q) has 10 eigenvalues +1
and 10 eigenvalues −1 on this sublattice. Hence

NS(W̃ )�
∼= Q�(−1)10 ⊕ σ0,1,0 ⊗Q�(−1)10.

Moreover, we found that the determinant of the intersection matrix on a
basis of the sublattice spanned by the rational curves given previously is,
up to a square, equal to −15. The theory of the arithmetic of singular K3
surfaces then asserts that the representation on T

W̃�
is determined by a

Hecke character of the imaginary quadratic field L := Q(
√−15).

To determine the Hecke character, a computer counted the number of
points �W (Fp) on W in P3(Fq) for many small prime powers q. If q ≡ 1 mod
3, the 12 nodes are rational over Fq and thus �W̃ (Fq) = �W (Fq) + 12p, else
�W̃ (Fq) = �W (Fq). Then Lefschetz’s fixed point formula implies:

�W̃ (Fq) = 1 + 10(1 + σ0,1,0(Fq))q + aq + q2,

aq := Trace(F k
p |TW̃ ,�

), where q = pk.

The values of various ap are listed below.
Let OL := Z[α], α := (1 +

√−15)/2 be the ring of integers of L. Its class
number is 2, hence the square of any of its ideals is principal. As the units
in OL are ±1, a generator of a principal ideal is unique up to sign. As the
minimal polynomial of α is f := x2 − x + 4, and f ≡ x2 + 2x + 1 ≡ (x + 1)2

mod 3, there is a surjective homomorphism

φ3 : OL := Z[α] −→ Z/3Z, a + bα �−→ a− b mod 3

with φ3(−1) = −1. Thus any principal ideal I = βOL, prime with 3OL, has
a unique generator β such that φ3(β) = +1. We define a Hecke character χ
on OL by defining

χ(I) = β, where I2 = (β), φ3(β) = 1.
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To be explicit, if p = ℘℘ is a prime which splits inOL, then ℘2 = (a + bα)
for some integers a, b, with a, b 
= 0, which can be found by considering the
norm:

p2 = N(a + bα) := (a + bα)(a + bα) = a2 − ab + 4b2.

Changing signs, if necessary, to obtain a− b ≡ 1 mod 3, one thus has χ(℘) =
a + bα and χ(℘) + χ(℘) = 2a + b. For example, if p = 17 and ℘17 is one of
the primes over 17, then

112 − 11 · 8 + 82 = 172, φ3(11− 8α) = 19 ≡ 1 mod 3,

so χ(℘17) = 11− 8α.

This Hecke character determines a 1D �-adic Galois representation of
GL := Gal(Q/L) which induces a 2D Galois �-adic representation of GQ.
This is the representation of GQ on T

W̃�
= W ′

3,� which we found. In parti-
cular, the trace ap of Fp in this representation is:

ap =
{

χ(℘) + χ(℘), if p splits,
0, if pOL is prime.

For example, χ(℘17) = 11− 8α, so we get a17 = 2 · 11 + (−8) = 14, below
are some other values of ap.

p 7 11 13 17 19 23 29 31 . . . 79 83 89 97
ap 0 0 0 14 −22 −34 0 2 . . . 98 −154 0 0

The ap are also the Fourier coefficients of an elliptic modular form f
of weight three (cf. [28]). In this case f is one of the two newforms with
Dirichlet character p �→

(
−15

p

)
, it has level N = 15.

Before continuing with the study of H2
ét(S,Q�) in Section 5.6, we make

a digression to discuss various surfaces related to S.

5.4. Remark

The polynomial F defining S is a quartic in the x2
i , hence S is a ramified

cover of the surface S defined by

S :
3∑

i=0

x4
i + 14

∑

i<j

x2
i x

2
j + 168x0x1x2x3.
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The surface S is smooth and hence it is a K3 surface. It is the quotient of
S by the subgroup K ∼= (Z/2Z)4 of diagonal matrices with entries ±1 of G
and thus H2(S,Q) ∼= H2(S,Q)H .

The Galois representation on the transcendental lattice TS,� is the same
as the one on T

W̃ ,�
:

�S(Fp) = 1 + npp + ap + p2,

where npp is the trace of the Frobenius Fp on the Néron–Severi group of
S, with

np := (4σ0,0,0 ⊕ 4σ0,1,0 ⊕ 6σ1,0,0 ⊕ 3σ1,0,1 ⊕ 3σ1,1,0)(Fp).

5.5. The Galois representation on H2
ét(Ũ , Q�)

Using the action of S6 on H2(Ũ ,Q), we already concluded that TŨ
∼= W ′5

3 .
As the automorphisms of Ũ corresponding to the elements of S6 are defined
over Q this implies that the GQ-representation on H2

ét(Ũ ,Q�) splits into
TŨ ,�

∼= T 5
W̃ ,�

and a direct sum of Q�(−1)’s twisted by Dirichlet characters,
unramified for primes p > 5.

As U is a complete intersection of type (2, 4) in P4 with only nodes as
singularities, the Euler characteristic χ(Ũ) of Ũ is the same as the one of
a smooth complete intersection of type (2, 4), so χ(Ũ) = 64. As the cohomol-
ogy in odd degree is zero, we get dimH2(Ũ ,Z) = 62 and thus
dimNS(Ũ)Q = 52.

Note that U has 30 nodes, defined over Q(
√−3), hence �Ũ(Fp) = �U(Fp)

+ 30p if p ≡ 1 mod 3 and else �Ũ(Fp) = �U(Fp), for p > 5. Using a com-
puter and the Lefschetz fixed point formula one finds, for many small
primes p with p > 5,

�Ũ(Fp) = 1 + (26 + 25σ0,1,0(Fp) + σ0,0,1(Fp))p + 5ap + p2,

hence this determines the GQ-representation on H2
ét(Ũ ,Q�).

5.6. The Galois representation W7,�

From Sections 3.3, 5.1 we have the following decomposition of H2
ét(S,Q�) as

G×GQ(i)-representations:

H2
ét(S,Q�) = V3,� ⊗W ′

3,� ⊕ V7,� ⊗W7,� ⊕ LS,�
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where W7,� is 3D. As dim V3,� = 5, we have Tr(Fq|V3,� ⊗W ′
3,�) = 5aq with

aq := Tr(Fq|TW̃ ,�
) as in Section 5.3. Using that dimV7,� = 30 and taking

prime numbers q ≡ 1 mod 4, the Lefschetz fixed point formula gives:

�S(Fq) = 1 + 5aq + 30bq + tr(Fq|LS,�) + q2, bq := Tr(Fq|W7,�).

Some bq, for primes q, are listed in Section 5.7 below.
The GQ(i)-representation on W7,� is compatible with the non-degenerate

quadratic form induced by the intersection form on H2
ét(S,Q�). If W7,� is

reducible, then it must be the direct sum of a one and a 2D representation,
which is compatible with a non-degenerate quadratic form. The orthogonal
group O(2) has a normal abelian subgroup of finite index, and therefore
the 2D representation is of CM type, in particular the eigenvalues of the
Frobenius elements must be in a fixed CM field of degree at most two over
Q(i). However, we checked that this is not the case, using that the char-
acteristic polynomial for Fp with p a prime which is 1 mod 4, is given by
x3 − bpx

2 + εpbppx− εpp
3 with εp ∈ {±1} (cf. Section 5.7).

Therefore the GQ(i)-representation W7,� is irreducible and hence LS =
NS(S)Q as Q-vector spaces. This again implies that W7 is a simple Hodge
structure of dimension three.

In the recent paper [27] another approach to solve a similar problem is
given.

5.7. The Galois representation on H2
ét(S, Q�)

We conclude our study of the arithmetic of S by determining the GQ-
representation on H2

ét(S,Q�) in terms of known representations and a 3D
GQ-representation which restricts to the GQ(i)-representation W7,�.

Upon restriction to the Heisenberg group H, the irreducible 30D
G-representation V7 splits into a direct sum

V7
∼= ⊕χ�=1V7,χ, dimV7,χ = 2,

where the sum is over the 15 non-trivial 1D representations of H. As H is
defined over Q, we get a H ×GQ-subrepresentation

⊕χ�=1 V7,χ,� ⊗W7,χ,� ⊂ H2
ét(S,Q�),

where the W7,χ,� are 3D GQ-representations.
The group G acts on H and it permutes the 15 non-trivial χ transitively.

Thus, the GQ-representations W7,χ,� are all isomorphic when restricted to
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the subgroup GQ(i), and in fact they are all isomorphic to W7,�. Fix one
non-trivial χ0, then given a non-trivial χ we have that either

W7,χ,�
∼= W7,χ0,� or W7,χ,�

∼= W7,χ0,� ⊗ σ1,0,0.

As dim V7,χ,� = 2, we get a decomposition, as GQ-representations:

H2
ét(S,Q�) = (W ′

3,�)
⊕5 ⊕ (W7,χ0,�)⊕2a ⊕ (W7,χ0,� ⊗ σ1,0,0)⊕2b ⊕ LS,�,

a + b = 15,

for some integers a, b and a certain 3D GQ-representation W7,χ0,�. Replac-
ing W7,χ0,� by W7,χ0,� ⊗ σ1,0,0 if necessary, we may assume that a > b. This
determines the GQ-representation W7,χ0,� uniquely.

To determine a, b, we use the Lefschetz fixed point formula:

�S(Fq) = 1 + 5aq + (2a + 2bσ1,0,0(Fq))bp + R(Fq, LS,�) + q2,

bq := Tr(Fq|W7,χ0,�).

In case q ≡ 1 mod 4, one has σ1,0,0(Fq) = 1, so we recover the formula from
Section 5.6. In case q ≡ 3 mod 4, σ1,0,0(Fq) = −1 and the computer finds
2(a− b)bq. For small primes q, we found that the g.c.d. of these integers is
6. Hence

a− b = 1 or a− b = 3.

We now exclude the case a− b = 1. For q = 11 we found 2(a− b)b11 =
−78, hence b11 = −39 if a− b = 1. But |b11| ≤ 3q = 33 since b11 is the sum
of the three eigenvalues of Fq on W7,χ0,� ⊂ H2

ét(S,Q�). Therefore, we must
have a− b = 3 and thus

a = 9, b = 6.

The following is a table of some of the bp for primes p:

p 7 11 13 17 19 23 29 31 37 41 43 47 53
bp −7 −13 −11 5 7 13 −21 19 13 −9 29 −11 −55

To determine the characteristic polynomial of Fp on W7,χ0,�, knowing
only bp, we proceed as follows. First of all, if α is an eigenvalue of Fq on
W7,χ0,� then so is q2/α = ᾱ. As dim W ′

7,χ0,�
= 3 this implies that one of the

eigenvalues is ±q. Let α, ᾱ, εpp be the eigenvalues of Fp, with εp ∈ {±1}, then
det(Fp) = εpp

3. As the determinant is also a GQ-representation, unramified
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for p > 5, this allows us to determine it explicitly once we know it for small
primes.

To find εp for small primes we used the following identity involving bp, bp2 ,
which we determine by counting points, and εp:

bp = α + ᾱ + εpp, bp2 = α2 + ᾱ2 + p2 = b2
p − 2p(bp − εpp)− 2p2.

We found that

εp = σ1,0,1(Fp),

hence the determinant of the GQ-representation on W7,χ0,� is σ1,0,1. The
characteristic polynomial fp of Fp on W7,χ0,� is thus determined by bp:

fp = x3 − bpx
2 + εpbppx− εpp

3 = (x2 − (bp − εpp)x + p2)(x− εpp).

5.8. Remark

M. Schütt pointed out that there is a K3 surface X3,2/3, defined over Q,
whose GQ-representation on H2

ét has a rank three summand T3,2/3,� which
has the same characteristic polynomial of Fp for primes p with 7 ≤ p ≤ 131
as W7,χ0,�. This surface has an elliptic fibration given by:

X3,r : y2 = x3 − t2(r2t− 1− 2r)x2 − 2(t + 1)t3r(rt− 1)x− (t + 1)2t5r2,

with r = 2/3. This family of elliptic surfaces is studied in [12], Section 6,
where it is shown that the X3,r are birationally isomorphic to quotients of
products of two isogeneous elliptic curves. For r = 2/3 there is an elliptic
curve over Q(

√−5,
√−15), that is 2-isogeneous to its Gal(Q(

√−5)/Q) con-
jugate and 3-isogeneous to its Gal(Q(

√−15)/Q) conjugate, which produces
the K3 surface. It is the curve C(a) in the family parametrized by X∗(6)
with parameter value a = −16/5 in [26], p.312.

If there is indeed an isomorphism of GQ-representations T3,2/3,�
∼=

W7,χ0,�, then the Tate conjecture predicts a correspondence, defined over
Q, between S and X3,2/3. Recently, M. Schütt [29] provided an explicit
correspondence.
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6. Maschke’s double octic

6.1. The cohomology of X

Maschke’s double octic is the CY three-fold which is the double cover

π : X −→ P3

branched along Maschke’s (smooth) degree 8 surface S ⊂ P3. As the sur-
face S has Euler–Poincaré characteristic χtop = 304, X has Euler–Poincaré
characteristic

χtop(X) = 2 · χtop(P3)− χtop(S) = 8− 304 = −296.

Results of Lazarsfeld ( [17], Thm. 1, Prop. 3.1) imply that

H i(P3,Z)
∼=−→ H i(X,Z), i = 0, 1, 2.

Recall that H i(P3,Z) = 0 if i = 1 and H i(P3,Z) = Z if i = 0, 2, and that
X is a CY three-fold, hence we get:

h3(X) = 300, h3,0(X) = 1, h2,1(X) = 149.

As X is a hypersurface in weighted projective space WP (1, 1, 1, 1, 4), one
can also use toric methods (cf. [9], 4.1.3) to compute the hi.

6.2. The action of G on H3(X, Q)

Using our generalization of Chênevert’s formula, cf. Proposition 10.1, we
found that H3(X,Q) is the direct sum of seven distinct irreducible
G-representations, each with multiplicity two and of

dimension 1, 5, 9, 15, 30, 45, 45.

The characters of these representations are integer valued, thus, labeling
these irreducible G-representations by their dimension, we have (cf.
Section 1.7)

H3(X,Q) ∼= V1 ⊗W1 ⊕ V5 ⊗W5 ⊕ V9 ⊗W9 ⊕ V15 ⊗W15 ⊕ V30 ⊗W30

⊕ V45 ⊗W45 ⊕ V ′
45 ⊗W ′

45,
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where the Wi are rational Hodge structures of dimension two. Obviously,
H3,0(X) and H0,3(X) are 1D subrepresentations in H3(X,C) and the G-
action on V1 factors over the sign representation of S6, hence W 3,0

1
∼=H3,0(X).

The other six Wi thus have W 3,0
i = 0, dimW 2,1

i = 1, so they are Tate twists
of Hodge structures of weight one.

The rational Hodge structure H3(X,Q) is thus isomorphic to ⊕Wmi

i ,
where mi = dimVi, and all seven Wi have dimension two. We define (the
isogeny class of) the elliptic curve Ei by Ei = W p,q

i /Λi, where p < q, Λi ⊂
Wi, Λi

∼= Z2 and Λi ⊗Z Q = Wi. There are natural isomorphisms of Q-vector
spaces

H1(Ei,Q) −→Wi, (Ei = W p,q
i /Λi),

which, for i 
=1, are morphisms of rational Hodge structures with Hp,q(Ei)
∼=→

W p+1,q+1
i . For i = 1 there cannot exist a morphism of Hodge structures

between H1(E1,Q) and W1 because W 2,1
1 = 0. In particular, the Griffiths

intermediate Jacobian J(X) of X, a complex torus associated to H3(X,Q)
(cf. Section 8.5), is isogeneous to a product

∏
Emi

i of elliptic curves.

6.3. The action of H on H3(X, Q)

The Heisenberg group H ⊂ G acts through its abelian quotient H ∼= (Z/2Z)4

on X and thus on the cohomology groups H i(X,Q). We found that

H3(X,Q) = H3(X,Q)H ⊕ (⊕χ�=1H
3(X,Q)χ

)
,

where the sum is over the 15 non-trivial characters of H and

dimH3(X,Q)H = 30, dimH3(X,Q)χ = 18.

Comparing this to the G-decomposition above, we find that the H-invariants
are:

H3(X,Q)H ∼= V1 ⊗W1 ⊕ V5 ⊗W5 ⊕ V9 ⊗W9.

In the next section, we will consider the Heisenberg quotient Y := X/H of
X and its desingularization Ỹ .

7. The arithmetic of X

7.1. The Heisenberg quotient Y of X

The CY three-fold X is the double cover of P3 branched along Maschke’s
surface S. The Heisenberg group H acts on X, through its action on P3.
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The quotient of P3 by H is the Igusa quartic three-fold Z in P4, cf. Section
4.3, so there is a double cover

Y = X/H −→ Z ∼= P3/H,

which is branched along the image U of S in Z, which is the intersection of
Z with a quadric in P4.

The variety Z is singular along 15 lines, defined over Q, which are the
images of the fixed lines in P3 of elements in H. These 15 lines in Sing(Z)
intersect, three at the time, in 15 points. A desingularization Z̃ is obtained
by blowing up the singular locus (cf. [18]). The fiber of Z̃ → Z over a point
p ∈ Sing(Z) which lies on exactly one line is a P1, but the fiber over a point
in three lines consists of three P1’s meeting in one point.

The fixed point set in P3 of a non-trivial element h ∈ H is the union
of two lines and the stabilizer in H of a general point in such a line is the
subgroup generated by h. Locally the action of h is given by the action of
diag(1,−1,−1) on C3, which has quotient C×A1 where A1

∼= Spec(C[u, v,
w]/(uw − v2)). This gives the local description of the singular locus of Z =
P3/H. It follows, using adjunction, that the strict transform in Z̃ of a (linear)
hyperplane section of Z is an anti-canonical divisor in Z̃.

The variety Ỹ is the double cover of Z̃ branched along the strict trans-
form of the image U of S in Z, which is isomorphic to Ũ . As the smooth
surface Ũ is a divisor in | − 2KZ̃ |, the three-fold Ỹ has trivial canonical
bundle.

The variety Ỹ is birationally isomorphic to the crepant resolution Ỹ ′

of X/H, which is a CY three-fold. Thus the Hodge numbers of Ỹ and Ỹ ′

are the same (see [2]) and we determined them using orbifold cohomology
(see [10]):

h1(Ỹ ) = 0, h2(Ỹ ) = h1,1(Ỹ ) = 16, h3(Ỹ ) = 30,

h3,0(Ỹ ) = 1, h2,1(Ỹ ) = 14.

Comparing this with the H-invariants in H3(X,Q�), we conclude that

H3
ét(Ỹ ,Q�) ∼= H3

ét(X,Q�)
H ∼= V1,� ⊗W1,� ⊕ V5,� ⊗W5,� ⊕ V9,� ⊗W9,�,

where the Wi,� are 2D Q� vector spaces.
As the S6-representation on H3

ét(Ỹ ,Q�) is induced by the action of S6

on P4, where it acts by matrices with rational coefficients, the Wi,� are 2D
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GQ-representations:

σi : GQ := Gal(Q/Q) −→ GL(Wi,�) ∼= GL(2,Q�)

for i = 1, 5, 9.
Recent modularity results [13], [16], [11] imply that the Galois repre-

sentation σ1 corresponds to a newform of weight 4 on Γ0(N) for an integer
N which is divisible only by primes where Ỹ has bad reduction. The rep-
resentations σ5, σ9 are expected to be Tate twists of Galois representations
associated to elliptic curves defined over Q, these curves should become iso-
geneous, over C, to the curves E5, E9 from Section 6.2. This is now proven
in [29]. Hence, by Wiles’ theorem, these Galois representations correspond to
newforms of weight two on Γ0(Ni) (i = 5, 9) for certain integers Ni divisible
only by primes where Ỹ has bad reduction.

7.2. The Galois representation on H3
ét(Ỹ , Q�)

From the description of Z̃ as the blow up of Z, it follows in particular
that H2

ét(Z̃,Q�) is generated by classes of divisors defined over Q, hence
the Galois representation on H2

ét (and by duality, also the one on H4
ét) are

direct sums of the Tate representations Q�(−1) (and Q�(−2) respectively).
In particular:

�Z̃(Fq) = �Z(Fq) + 15(q2 + q).

Using the 2:1 map Ỹ → Z̃ it then follows that also

�Ỹ (Fq) = �Y (Fq) + 15(q2 + q).

(Use that over each singular line (∼= P1 in Z) there is a P1-bundle over P1

in Ẑ and after taking the double cover, its preimage is a P1-bundle over a
P1 in Ỹ .)

From the Lefschetz fixed point formula one has:

�Ỹ (Fq) =
6∑

i=0

(−1)itr(Fq|H i
ét(Ỹ ,Q�)).

The double cover Ỹ → Z̃ induces an isomorphism on H2 and H4 and this
map is defined over Q, so we get:

6∑

i=0

(−1)itr(Fq|H i
ét(Ỹ ,Q�)) = 1 + 16(q + q2) + q3 − tr(Fq|H3

ét(Ỹ ,Q�)).



806 Gilberto Bini and Bert van Geemen

The trace of the Frobenius Fq on H3
ét(Ỹ ) can thus be determined by counting

points on the (singular) variety Y ⊂ P5:

tr(Fq|H3
ét(Ỹ ,Q�)) = −�Y (Fq) + 1 + q + q2 + q3.

Computer computations lead to the following table:

q 7 11 13 17 19 23 29 72 . . . 192

tr(Fq|H3) 0 180 210 −90 −1020 −1560 1410 −10290 . . . −122970

The table below lists the Fourier coefficients of some newforms on Γ0(N)
of weight k, the names of the weight two forms are those from Table 3 in [23].

p 7 11 13 17 19 23 29 31 . . . 79 83 89 97
f120, k = 4 ap 0 4 54 114 44 96 134 −272 . . . 688 1188 −694 −1726
f24B, k = 2 bp 0 4 −2 2 −4 −8 6 8 . . . −8 −4 −6 2

f120E, k = 2 cp 0 −4 6 −6 −4 0 −2 −8 . . . −8 −12 10 2
f15C, k = 2 dp 0 −4 −2 2 4 0 −2 0 . . . 0 12 −6 2

Then one can verify that for 7 ≤ p ≤ 97 one also has:

tr(Fp|H3
ét(Ỹ ,Q�)) = ap + p(9bp + 5cp).

This leads us to conjecture that

W1,�

?∼= Vf120,�, W5,�

?∼= Vf120E,�(−1), W9,�

?∼= Vf24B,�(−1),

where Vg,� denotes the �-adic Galois representation associated to the new-
form g. The conjecture was recently proved by M. Schütt [29].

To find the ap, we assumed that σ5 and σ9 are Tate twists of Galois
representations, in particular that tr(Fp|Wi,�) is a multiple of p for i = 5, 9.
Thus, by counting points, one can find ap mod p. Comparing with the Fourier
coefficients of weight four newforms of level N = 2a3b5c for small a, b, c (using
Magma) we found that those of f120 match perfectly.
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Assuming that the ap are determined correctly, one can determine bp, cp

by counting points over Fp and Fp2 . In fact, let β, β̄, γ, γ̄ ∈ C be the eigen-
values of the Frobenius Fp in the 2D weight two representations, so

T 2 − bpT + p = (T − β)(T − β̄), T 2 − cpT + p = (T − γ)(T − γ̄).

Then the traces of F 2
p are given by:

bp2 = β2 + β̄2 = b2
p − 2p, cp2 = γ2 + γ̄2 = c2

p − 2p,

which allows one to find a degree two polynomial whose zeroes are bp and
cp, respectively. The polynomials turn out to have a double zero or a unique
zero which is an integer for the case p = 7, 11, 13, 17, 19 thus allowing one to
determine bp, cp for these primes. Comparing with the Fourier coefficients of
weight two newforms, we found the modular forms f24B and f120E.

7.3. The Galois representation on H3
ét(X, Q�)

The GQ-representation on H3
ét(X,Q�) has a summand which is

H3
ét(X,Q�)H ∼= H3

ét(Ỹ ,Q�), which we discussed in Section 7.2, we will use
Schütt’s results [29] on its modularity.

Its orthogonal complement H3
ét(X,Q�)c w.r.t. the intersection form was

decomposed as a sum of four irreducible G-representations of dimensions
15, 30, 45, 45 and each has multiplicity two (cf. Section 6.2):

H3
ét(X,Q�)c

∼= V15,� ⊗W15,� ⊕ V30,� ⊗W30,� ⊕ V45,� ⊗W45,� ⊕ V ′
45,� ⊗W ′

45,�.

Each Wi,� is a GQ(i)-representation (but not a GQ-representation in general,
as the actions of G and GQ do not commute). In particular, for q ≡ 1 mod
4, the trace of the Frobenius Fq on H3

ét(X,Q�)c should be divisible by 15 in
Z. Using a computer we found that

tr(Fq|H3
ét(X,Q�)c) = tr(Fq|H3

ét(X,Q�))− tr(Fq|H3
ét(Ỹ ,Q�))

= �X(Fq)− (1 + q + q2 + q3)− tr(Fq|H3
ét(Ỹ ,Q�))

is divisible by 45 for all such small q. This leads us to conjecture that W15,�
∼=

W30,� as GQ(i)-representations. Thus we conjecture (and recently M. Schütt
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[29] provided a proof):

H3
ét(X,Q�)c

∼= (V15,� ⊕ V30,�)⊗W15,� ⊕ V45,� ⊗W45,� ⊕ V ′
45,� ⊗W ′

45,�
?∼=GQ(i)

(
W15,� ⊕W45,� ⊕W ′

45,�

)⊕45
.

To determine the characteristic polynomial of Fp on W15,� ⊕W45,� ⊕W ′
45,�

for p ≡ 1 mod 4, we would have to compute points on X over Fpk , k = 1, 2, 3.
This took too much time, but we could compute the number of points over
Fp and Fp2 for some small primes. The characteristic polynomial must be
of the form

fp : X6 − s1X
5 + s2X

4 − s3X
3 + ps2X

2 − p2s1X + p3,

with coefficients:

s1 := tp, s2 := (1/2)t2p − (1/2)tp2 , s3 := (1/6)t3p − (1/2)tp2tp + (1/3)tp3 ,

where,

tpk := tr(F k
p |H3

ét(X,Q�)c(1)), |tpk | < 6
√

pk

by Weil’s estimate on the eigenvalues of Fpk . For all the primes 1 mod 4
from 13 to 41 we computed tp, tp2 and we found a unique integer n, with
|n| < 6

√
p3, such that the polynomial fp had three quadratic factors upon

substituting tp3 := n. Moreover, comparing the coefficients of the quadratic
factors (of the type X2 −mpX + p for an integer mp), we found three elliptic
modular forms of weight two whose Fourier coefficients were equal to the
coefficients mp. These forms are f15C (notation as in [23]) and the forms
f24B and f120E as in Section 7.2. Some Fourier coefficients, denoted by
dp, of f15C are given in the table there.

Using this, we next tried to understand the GQ-representation on
H3

ét(X,Q�)c(1)), so to find tr(Fq|H3
ét) also for the q ≡ 3 mod 4. For small

p, k we found

tr(Fpk |H3
ét(X,Q�)c(1)) =

{
45(bp + cp + dp), if pk ≡ 1 mod 4,
9(bp + cp + dp), if pk ≡ 3 mod 4.

This leads us to conjecture (and this is now proved in [29])

H3
ét(X,Q�)c(1))

?∼=GQ
W⊕27

c,� ⊕ (σ1,0,0 ⊗Wc,�)⊕18,
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with the 6D GQ-representation

Wc,� := Vf15C,� ⊕ Vf24B,� ⊕ Vf120E,�,

where the Vg,� are the �-adic GQ-representations corresponding to the weight
two new forms f15C, f24B and f120E, respectively.

Putting all conjectures together, and given the proofs of them in [29],
we have the following formula:

�X(Fp)=1 + p + p2 + p3 −
{

(ap + p(54bp + 50cp + 45dp), if p ≡ 1 mod 4,
(ap + p(18bp + 23cp + 9dp), if p ≡ 3 mod 4.

8. Rational curves and the Abel–Jacobi map for
Maschke’s CY three-fold

8.1. Outline

We show in Section 8.2 that Maschke’s CY three-fold X contains 1D families
of rational curves. One such family is denoted by L→ C̃+, it is parametrized
by a curve C̃+ of genus 33. Other families can be obtained by applying the
action of g ∈ G to this family.

From this family one obtains a morphism of Hodge structures

φ : H1(C̃+,Z) −→ H3(X,Z).

Similarly, one has maps φ� : H1
ét(C̃,Q�)→ H3

ét(X,Q�) which are maps of
Galois representations (up to Tate twist). To understand φ and thus also
the φ�, we use the Abel–Jacobi map in Section 8.5.

In Section 9 we study the Galois representation on H1
ét(C̃+,Q�) and

relate it, via the map φ�, to the Galois representation on H3
ét(X,Q�).

8.2. Four-tangent lines to Maschke’s octic surface

To obtain families of rational curves in X, we consider curves in X which
map isomorphically to lines in P3 under the 2:1 map π : X → P3. A line in
P3 intersects the branch locus S of π in a divisor D of degree 8, so in general
the inverse image of a line is a (hyperelliptic) genus three curve. However,
if the line is four tangent to S, so D = 2(p1 + · · ·+ p4), then the inverse
image will split into two rational curves, each of which maps isomorphically
to the line.
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It is a classical result that for a general surface of degree 8 in P3 there are
14752 lines which are four-tangent to it ( [21], p. 261). However, S is rather
special and in fact it does have positive dimensional families of four-tangent
lines, as we show with some explicit computations.

For c = (x, y) ∈ A
2 we consider the line lc ⊂ P

3, with parameter t:

lc : (x0, x1, x2, x3) := (x, 1, ty, t) (c = (x, y) ∈ A
2, t ∈ C).

The intersection of lc with the surface S is defined by the polynomial fc:

lc ∩ S : fc(t) := F (x, 1, ty, t) = 0.

The element g1 ∈ G acts as (x0, x1, x2, x3) �→ (x0, x1, ix2, ix3), with i2 = −1,
and thus (as is also easy to verify directly) F (x0, x1, x2, x3) = F (x0, x1, ix2,
ix3). Therefore, we have fc(t) = fc(it) and fc(t) is actually a polynomial in
t4 of degree 2. An explicit computation shows that

fc(t) = At8 + Bt4 + C

with

A := y8 + 14y4 + 1, B := 14(x4y4 + x4 + y4 + 12x2y2 + 1),

C := x8 + 14x4 + 1.

Now we impose that lc is four-tangent to the surface S by requiring that
this polynomial of degree two in t4 has a double zero. So we restrict the point
(x, y) to the algebraic subset of A

2 defined by Δ = B2 − 4AC = 0, where

Δ := (14x4y4 + 14x4 + 168x2y2 + 14y4 + 14)2

− 4(x8 + 14x4 + 1)(y8 + 14y4 + 1).

For each c ∈ A
2 with Δ(c) = 0 we have fc(t) = (λt4 + μ)2 for some λ, μ ∈ C

and thus lc is a four tangent line. Therefore, S has a positive dimensional
family of four-tangent lines.

To understand the locus Δ = 0 better, we observe that Δ is reducible:

Δ = 48g+g− (∈ Z[x, y])

with polynomials

g+(x, y) := (2y4 + y2 + 2)x4 − (y4 − 24y2 + 1)x2 + 2y4 + y2 + 2
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and

g−(x, y) := (2y4 − y2 + 2)x4 + (y4 + 24y2 + 1)x2 + 2y4 − y2 + 2,

note that g−(x, y) = g+(ix, iy). We define two curves, C±, by taking the
closure in P1 ×P1 of the loci g±(x, y) = 0 in A

2. These curves are isomor-
phic to the closure of the locus of the lines parametrized by g± = 0 in the
Grassmannian of lines in P3. We checked that C± are smooth curves. As
they have bidegree (4, 4), their genus is 32 = 9.

C+ : P+(y, v)x4 −Q+(y, v)x2u2 + P+(y, u)u4 = 0 (⊂ P 1
(x:u) ×P1

(y:v))

with P+(y, v) = 2y4 + y2v2 + 2v4, Q+(y, v) = y4 − 24y2v2 + v4.

8.3. Remark: lines in the surface

Some of the lines lc, parametrized by c ∈ C±, do lie entirely within S. For
such a line the coefficients of the degree eight polynomial in fc(t) must be
zero, so:

A = B = C = 0.

One verifies that there are 32 such lines:

l(x,y) ⊂ S ⇐⇒ x8 + 14x4 + 1 = 0 and y2 = x2 or y2 = x−2

and that the corresponding c = (x, y) are the points of intersection of C+

and C−:

lc ⊂ S ⇐⇒ c ∈ C+ ∩ C−.

As C+ and C− are curves of type (4, 4) on P1 ×P1 their intersection number
is 42 + 42 = 32, in particular, their intersection is transversal. Using the
factorization

x8 + 14x4 + 1 = (x4 − 2x3 + 2x2 + 2x + 1)(x4 + 2x3 + 2x2 − 2x + 1),

one easily checks that the line l3 ⊂ S from Section 3.2 is one of the lines lc
for c ∈ C+ ∩ C−.
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8.4. The double cover C̃+ of C+

Now we consider the inverse images of the lines lc with c ∈ C+ in the CY
three-fold X. Locally we have

X : w2 = F (x0, 1, x2, x3), π−1(lc) : w2 = At8 + Bt4 + C,

where t runs over C. On C+ we have B2 = 4AC and thus, for each c =
(x, y) ∈ C+ with A(c) 
= 0 we can rewrite the equation of π−1(lc) as

4Aw2 = 4A2t8 + 4ABt4 + 4AC = 4A2t8 + 4ABt4 + B2 = (2At4 + B)2.

The two irreducible components of the π−1(lc) are thus defined by the two
factors of

(2
√

Aw − (2At4 + B))(2
√

Aw + (2At4 + B)).

Thus the points of the double cover C̃+ of C+ defined by
√

A, where we
view A = y8 + 14y4 + 1 as a rational function on C+, parametrize rational
curves in X, which map to lines lc with c ∈ C+. The double cover C̃+ → C+

is branched over 4 · 8 = 32 points, and as C+ has genus 9, C̃+ has genus 33.

8.5. The Abel–Jacobi map

We refer to [30], chapter 12, for this section. We denote by L the total space
of the family of lines in X parametrized by C̃+, it is a surface in the product
C̃+ ×X. In the diagram f, g are the projection maps:

C̃+ ×X ⊇ L
f−→ X

↓ g

C̃+

L := {(c̃, x) ⊂ C̃+ ×X : x ∈ lc̃}.

The subvariety L has cohomology class, of Hodge type (2, 2),

[L] ∈ H4(C̃+ ×X,Z) = ⊕2
i=0H

i(C̃+,Z)⊗H4−i(X,Z).

By Poincaré duality, H1(C̃+,Z) is selfdual and thus

H1(C̃+,Z)⊗H3(X,Z) ∼= HomZ(H1(C̃+,Z), H3(X,Z)).
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As [L] has type (2, 2), it induces a morphism of Hodge structures

φ := [L]1 : H1(C̃+,Z) −→ H3(X,Z).

This map relates the cohomology of C̃+ and X. To understand φ we use the
Abel–Jacobi map.

The (Griffiths) intermediate Jacobian

J(X) := (H1,2(X)⊕H0,3(X))/H3(X,Z)
∼= (H3,0(X)∗ ⊕H2,1(X)∗)/H3(X,Z),

where the ∗ indicates the dual complex vector space, is a 150D complex
torus. The Jacobian of C̃+ is the abelian variety

J(C̃+) := H0,1(C̃+)/H1(C̃+,Z) ∼= H1,0(C̃+)∗/H1(C̃+,Z).

The morphism of Hodge structures φ corresponds to the holomorphic map
of complex tori

Φ : J(C̃+) −→ J(X)

which is induced, by the Albanese property of J(C̃+), by the (holomorphic)
Abel–Jacobi map

ΦC̃+
: C̃+ −→ J(X), c̃ �−→

∫

Γ
∈ (H3,0(X)∗ ⊕H2,1(X)∗)/H3(X,Z).

Here one fixes a base point c̃0 ∈ C̃+, and Γ ⊂ X is a differentiable 3-chain
in X with boundary

∂Γ = lc̃ − lc̃0 .

We now point out some easy facts on the domain and the codomain of the
Abel–Jacobi map ΦC and thus of φ.

The Hodge structure H1(C̃+,Q) has a decomposition into eigenspaces
for the covering involution:

H1(C̃+,Q) = H1(C̃+,Q)+ ⊕H1(C̃+,Q)−, H1(C̃+,Q)+ ∼= H1(C+,Q).

The double cover C̃+ → C+ induces the projection on the first factor in the
eigenspace decomposition.
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A point c ∈ C+ corresponds to the cycle π−1(lc) ⊂ X. But as any two
lines in P3 are fibers of a family of lines parametrized by a P1, the Abel–
Jacobi map restricted to the image of J(C+) ⊂ J(C̃+) is trivial, since there
are no non-constant holomorphic maps from P1 to a complex torus. Hence
Φ factors over the quotient abelian variety P (C̃+/C+) := J(C̃+)/J(C+), the
Prym variety of the double cover C̃+ → C+, and φ factors over
H1(C̃+,Q)−.

As φ is a morphism of Hodge structures, we have φ(Hp,q(C̃+)) ⊂
Hp+1,q+1(X). In Section 6.2 we showed that the G-action splits the rational
Hodge structure on H3(X,Q) into two Hodge substructures:

H3(X,Q) = H3(X,Q)t ⊕H3(X,Q)a,{
H3,0(X)t

∼= C, H2,1(X)t = 0,

H3,0(X)a
∼= 0, H2,1(X)a

∼= C149,

here H3(X,Q)t
∼= V1 ⊗W1 and H3(X,Q)a is a direct sum of six summands.

In particular, H1,2(X)a = H1,2(X). This implies that the intermediate Jaco-
bian J(X) has a codimension one subtorus

Ja(X) := H1,2(X)/H3(X,Z)a, H3(X,Z)a := H3(X,Z) ∩H3(X,Q)a,

which is actually an abelian variety, polarized by the restriction of the inter-
section form on H3(X,Q) to H3(X,Q)a. Moreover, Ja(X) is isogeneous to
a product of 149 elliptic curves (cf. Section 6.2). The image of Φ is thus con-
tained in Ja(X). Thus the map φ induces a morphism of Hodge structures:

φa : H1(C̃+,Q)− −→ H3(X,Q)a.

In Section 8.7, we show that Φ, and hence φa is non-trivial.

8.6. Remark

The surface S contains two G-orbits of lines, cf. Section 3.2. In Remark
8.3, we observed that the lines in the orbit of l3 deform to four tangent
lines of S. Thus these lines, viewed as cycles with multiplicity two, deform
in X. On the other hand, we checked that the normal bundle of the line
l5 in X is O(−1)⊕2, and thus these lines are rigid in X. The 1-cycle l3 −
l5 might therefore give a non-trivial element in the Griffiths group of X.
To check this, one could try to determine the image of this cycle in the
intermediate Jacobian J(X), in particular the component in the isogeny
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factor Jt(X) := H0,3(X)/H3(X,Z)t. The conjectures of Bloch and Beilinson
imply that the rank of the Griffiths group of X over a number field L is the
order of vanishing of the L-series of the GL-representation on W1,�. As this
is the restriction of the GQ-representation associated to the weight four
newform f120 (cf. Section 7.2), one might be able to compute the order of
zero of the L-series in case L = Q(ζ60), the field of definition of the 1-cycle.
We refer to [3] for an interesting example involving Schoen’s rigid CY three-
fold.

In case one has a family of CY three-folds and a relative family of
1-cycles, there is an associated inhomogeneous Picard–Fuchs equation. A
nice example, involving the Dwork family of quintic three-folds, appears
in [22].

8.7. The Abel–Jacobi map is non-trivial

To show that the Abel–Jacobi map Φ is non-trivial, we consider the dif-
ferential dΦC̃+,c̃ of the map ΦC̃+

which induces Φ at a point c̃ ∈ C̃+. This
differential is called the infinitesimal Abel–Jacobi map. There is a natural
map from the deformation space of the pair (l, X), where l is a smooth
curve in the CY three-fold X, to the deformation space of X. If this map
is not surjective, then the infinitesimal Abel–Jacobi map is non-zero ( [31],
Lemma 5.1).

The deformations Xε of X are given by deformations Sε of Maschke’s
octic S, thus they are defined by F + εG, where G is homogeneous of degree
8 in X0, . . . , X3 and ε2 = 0. Considering a rational curve lc̃ in X, which
maps onto the line lc, this curve deforms to Xε iff the line lc deforms to
a four tangent line lc,ε of Sε. As lc is parametrized by (x : 1 : ty : t), with
c = (x, y) ∈ C+, any deformation of lc can be parametrized as

lc,ε : t �−→ (x + ε(a + ct), 1, ty + ε(b + dt), t),

for some a, b, c, d ∈ C. Substituting this parametrization in F + εG one
obtains h(t) + εk(t), for certain polynomials h, k ∈ C[t]. As c ∈ C+, we have
h(t) = fc(t)2 and lc,ε is four tangent to Sε iff fc(t)2 + εk(t) = (fc(t) + εm(t))2

for some polynomial m. Equivalently, k(t) = 2fc(t)m(t) for some polynomial
m. Taking a point c = (x, y) ∈ C+ with y = 2 and taking G = X2

0X4
1X2

2 ,
we found that the coefficient of t2 in k(t) mod fc(t) is a non-zero con-
stant (i.e., independent of a, b, c, d), hence there is no polynomial m(t) such
that k(t) = 2fc(t)m(t) and thus the infinitesimal Abel–Jacobi map in c̃ is
non-zero.
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9. The geometry and arithmetic of C̃+

9.1. Outline

The map φ from Section 8.5 is defined by the algebraic cycle [L] on C̃+ ×X
which is defined over Q. Hence, after suitable restrictions, we also get maps

φa,� : H1
ét(C̃+,Q�)− −→ H3

ét(X,Q�)a,

which are, up to a Tate twist, compatible with the action of the Galois group
GQ. Thus if H1

ét(C̃+,Q�)− has a GQ-subrepresentation which does not occur
in H3

ét(X,Q�)a, then that subrepresentation is mapped to zero by φa,� and
hence also φa has a non-trivial kernel.

Our results indicate that the 66D GQ-representation on H1
ét(C̃+,Q�)

might be the direct sum of 33 2D GQ-representations. If this is the case,
then the Jacobian of C̃+ is isogeneous to the product of 33 elliptic curves.

Up to isomorphism, only the Galois representations associated to six
newforms (and their twists by σ1,0,0) of weight two appear in H1

ét(C̃+,Q�).
Up to twist by σ1,0,0, three of the six GQ-representations in H1

ét(C̃+,Q�)
occur only in H1

ét(C̃+,Q�)+ and none of these representations or their twist
appear, even after a Tate twist, in H3

ét(X,Q�)a. The remaining GQ-represen-
tations appear only in H1(C̃+,Q�)−. All of these do appear, after Tate twist,
in H3

ét(X,Q�)a.
In conclusion, we do not find an obvious obstruction to the surjectivity of

φa,�. We will leave a more detailed study of φa and φa,� to another occasion.

9.2. The Galois representation on H1
ét(C̃+, Q�)

The genus 33 curve C̃+ is a double cover, defined by t2 = A, of the genus 9
curve C+ ⊂ P1 ×P1 defined by g+(x, y) = Px4 −Qx2 + P = 0 where

A := y8 + 14y4 + 1, P := 2y4 + y2 + 2, Q := y4 − 24y2 + 1.

Hence there is a commutative diagram (see Section 8.4)

C+ ←− C̃+

↓ ↓
P1

y ←− C3, C3 : t2 = A,

where C3 is a hyperelliptic genus three curve.
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The covering involution induces the decomposition of GQ-represen-
tations, similar to the decomposition of the Hodge structures in Section 8.5:

H1
ét(C̃+,Q�) = H1

ét(C̃+,Q�)+ ⊕H1
ét(C̃+,Q�)−,

H1
ét(C̃+,Q�)+ ∼= H1

ét(C+,Q�).

In particular, H1
ét(C3,Q�) ⊂ H1

ét(C̃+,Q)−. As �C+(Fp) = 1− tr(Fp|H1
ét

(C̃+,Q�)+) + p, we get:

�C̃+(Fp) = 1− tr(Fp|H1
ét(C̃+,Q�)) + p = �C+(Fp)− tr(Fp|H1

ét(C̃+,Q�)−).

We computed the cardinality of C̃+(Fp) and C+(Fp) for all primes p
with 7 ≤ p ≤ 1000. The results are consistent with the following formula:

tr(Fp|H1
ét(C̃+,Q�)−) ?= (9 + 3σ1,0,0(Fp))bp + (5 + σ1,0,0(Fp))cp

+ (4 + 2σ1,0,0(Fp))dp

with bp, cp, dp the Fourier coefficients of the newforms f24B, f120E and
f15C, cf. Section 7.2. If this equality holds for all primes p > 5, or at least
for a large set of primes (but we do not know a good bound for this set),
then we would have an isomorphism of GQ-representations

H1
ét(C̃+,Q�)−

?∼= Vf24B,�
⊕9 ⊕ V ′

f24B,�
⊕3 ⊕ Vf120E,�

⊕5 ⊕ V ′
f120E,�

⊕ Vf15C,�
⊕4 ⊕ V ′

f15C,�
⊕2

,

where the twist by σ1,0,0 of a GQ-representation is denoted by

V ′
∗ := V∗ ⊗ σ1,0,0.

Note that the three representations and their twists in this decomposition
appear, after a Tate twist, in H3(X,Q�)a. See Remark 9.3 for a possible
geometric approach to the conjectured decomposition, with the observations
made there one can actually prove that

H1
ét(C3,Q�) ∼= Vf24B,�

⊕2 ⊕ V ′
f24B,�.
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Similarly, we conjecture (and we checked equality of the traces of Fp for
primes p with 5 < p < 1000):

H1
ét(C+,Q�)

?∼= Vf210,�
⊕3 ⊕ Vf840,�

⊕2 ⊕ V ′
f840,� ⊕ Vf1680,� ⊕ V ′

f1680,�
⊕2

,

where the fN are newforms of weight 2 on Γ0(N) characterized by the Fourier
coefficients in the table below:

p 11 13 17 19 23 29 31 37 . . . 79 83 89 97
f210, k = 2 b′p 4 −2 2 −4 −8 6 −8 −2 . . . 0 12 2 10
f840, k = 2 c′p −4 −2 2 −4 0 −10 0 6 . . . 8 −4 10 10

f1680, k = 2 d′p −4 −2 2 −4 0 −2 −8 −2 . . . 8 −4 2 −14

Note that none of these Galois representations occurs (even after Tate
twist) in H3

ét(X,Q�).

9.3. Quotients of C̃+

The curve C̃+ has a big automorphism group, which one can use to decom-
pose the cohomology and to find quotient curves, of lower genus, of C̃+.
One might hope these automorphisms, and further automorphisms of the
quotient curves not induced automorphisms of C̃+, might suffice to prove
the conjectural decomposition of the étale cohomology. However, we did not
succeed in carrying this out, but the partial results we obtained were quite
helpful in finding the conjectured decomposition.

The group (Z/2Z)2, generated by the involutions

ι1 : (x, y, t) �−→ (−x, y, t), ι2 : (x, y, t) �−→ (x, y,−t).

on C̃+. From this one finds the following quotient curves.
The curve C+ = C̃+/(Z/2Z)2 is a double cover C+ → P1

y defined by
Px2 −Qx + P = 0. In particular, it is a hyperelliptic curve of genus 3,
defined by s2 = Q2 − 4P 2.

The quotient of C̃+ by the product ι1ι2 of these involutions is a curve
C17 of genus 17, which is a double cover of C3.

The curve C13 := C̃+/ι2 has genus 13, it is a double cover of both C+

and of C3, each of these covers is branched in 2 · 8 = 16 points. This curve
is again a (Z/2Z)2-cover P1

y, two quotients by involutions are C+ and C3,
the third quotient by an involution is a 2:1 cover of P1

y branched over the
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8 + 8 ramification points of the other two double covers, so it is a curve C7

of genus 7 with equation u2 = A(Q2 − 4P 2) = (y8 + 14y4 + 1)(y4 − 24y2 +
1)2 − 4(2y4 + y2 + 2)). Thus C7 has an involution (u, y) �→ (u,−y), with
quotient curve of genus three. Another involution on C7, which is fixed
point free, is (u, y) �→ (−u,−y) and it has a genus four quotient, etc. Using
similar involutions, one can find genus one quotients of C3 which lead to the
decomposition of H1

ét(C3,Q�) given in the previous section.

10. Trace formulas

10.1. Outline

In this section, we prove the formulas in Proposition 10.1. The first two,
which give the Euler characteristic and the dimension hn(X)pr of the primi-
tive cohomology group of a hypersurface in projective space, are well known.
The second is a formula of Chênevert [8], which determines the trace of an
automorphism of a hypersurface on the primitive cohomology. We derive it
directly from the Lefschetz trace formula. The last is an easy generaliza-
tion of Chênevert’s formula to cyclic ramified covers of projective space, like
Maschke’s CY. These trace formulas are remarkable and easy to use, since
they involve only the degree of X and the dimensions of certain eigenspaces
of σ, but not the specific geometry of X ⊂ Pn+1.

Proposition 10.1. Let X be a smooth hypersurface of degree d and dimen-
sion n in Pn+1 defined by an equation F = 0. Let σ : Cn+2 → Cn+2 be a lin-
ear map such that F (σ(x)) = F (x). Let r be a divisor of d and let Y → Pn+1

be the cyclic r:1 cover of Pn+1 branched along X and let σ̃ ∈ Aut(Y ) be the
automorphism induced by σ. Then we have:

1. The Euler characteristic of X is given by:

χ(X) = n + 2 +
1
d
((1− d)n+2 − 1),

hn
pr(X) := dimHn(X,Q)pr =

(−1)n

d
((1− d)n+2 + d− 1).

2. (Chênevert’s formula [8]) For α ∈ C such that αd = 1, let mα be the
multiplicity of the eigenvalue α of σ, where we put mα = 0 if α is not
an eigenvalue of σ. Then the trace of automorphism of X induced by
σ on the primitive cohomology of X is the following sum over all the
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d-th roots of unity:

tr(σ∗|Hn(X,Q)pr) =
(−1)n

d

∑

αd=1

(1− d)mα .

3. With the notations as above, we have:

tr(σ̃∗|Hn+1(Y,Q)pr) =
(−1)n+1

d

⎛

⎝
∑

αd=1

(1− d)mα − r
∑

γd/r=1

(1− d)mγ

⎞

⎠ .

Proof. 1. The first formula can be obtained from the Gauss–Bonnet for-
mula χ(X) = cn(TX). The normal bundle sequence implies that

c(TX) =
c(TPn+1|X)
c(O(d))

=
(1 + h)n+2

1 + dh
=

(
n+2∑

i=0

(
n + 2

i

)
hi

)⎛

⎝
∑

j

(−d)jhj

⎞

⎠

where h is the hyperplane class on X, so hn = d and hi = 0 for i > n.
In degree n we get:

cn(TX) = d
n∑

k=0

(
n + 2

k

)
(−d)n−k.

Comparing this with

(1− d)n+2 = d2

(
n∑

k=0

(
n + 2

k

)
(−d)n−k

)
− d(n + 2) + 1

gives the formula for χ(X).
By Lefschetz’s hyperplane theorem, one has H2i(X,Q) ∼= H2i(Pn+1,

Q) ∼= Q if 2i 
= n and H2i+1(X,Q) = 0 if 2i + 1 
= n. Thus the non-
primitive cohomology of X contributes d + 1 to the Euler character-
istic, the primitive cohomology is concentrated in Hn(X,Q), and its
dimension is hn

pr(X) = χ(X)− (n + 1). Hence

hn
pr(X) = (−1)n

(
1 +

1
d
((1− d)n+2 − 1)

)
=

(−1)n

d
((1− d)n+2 + d− 1).

2. An eigenvalue of σ is denoted by β and its multiplicity by mβ , so
that

∑
mβ = n + 2. Let Pβ ⊂ Pn+1 be the projectivization of the

eigenspace of σ with eigenvalue β, it has dimension mβ − 1. Let Xβ :=
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X ∩Pβ , then Xβ = Pβ ⊂ X if βd 
= 1 and else Xβ is a smooth subva-
riety of Pβ of dimension mβ − 2 and degree d (cf. [8], Lemma 2.3).

The Lefschetz fixed point formula for an automorphism σ of X is:

∑
(−1)itr(σ∗|H i(X,Q)) =

∑

j

χ(Xj),

where the right-hand sum is over the components of the fixed point
set of σ in X (cf. [25]). As we observed above, the right-hand side can
be written as a sum over the eigenvalues β of σ:

∑

j

χ(Xj) =
∑

β

χ(Xβ) =
∑

βd �=1

χ(Pβ) +
∑

βd=1

χ(Xβ),

where the Xβ are now all smooth hypersurfaces of degree d in Pβ
∼=

Pmβ−1. Thus, we get:

∑

j

χ(Xj) =
∑

βd �=1

mβ +
∑

βd=1

mβ + 1
d((1− d)mβ − 1),

which, using
∑

mβ = n + 2, simplifies to

∑

j

χ(Xj) = n + 2 + 1
d

∑

βd=1

(1− d)mβ − 1).

If αd = 1 and α is not an eigenvalue of σ, then mα = 0 and thus (1−
d)mα − 1 = 0. There are d complex numbers with αd = 1 and so:

∑

j

χ(Xj) = n + 2 +
∑

αd=1

1
d((1− d)mα − 1) = n + 1 + 1

d

∑

αd=1

(1− d)mα .

As σ∗ is trivial on the non-primitive cohomology, the left-hand side is

∑
(−1)itr(σ∗|H i(X,Q)) = n + 1 + (−1)ntr(σ∗|Hn((X,Q)pr),

hence Chênevert’s formula follows.
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3. Let r ∈ Z≥0 divide d and let Y be the r:1 cover of Pn+1 branched
along X. The variety Y has a natural embedding in the total space of
the line bundle O(d/r) over Pn+1, where it is defined by tr = F . The
automorphism σ of Pn+1 lifts to an automorphism σ̃ of the tautological
line bundle O(−1) ⊂ Pn+1 ×Cn+2, its action is induced by (σ, σ) on
Cn+2 ×Cn+2. This induces an action, again denoted by σ̃, on O(d/r)
such that if x ∈ Cn+2 is an eigenvector of σ with eigenvalue β, then
σ̃ acts as scalar multiplication by β−d/r on the fiber of O(d/r) over
〈x〉 ∈ Pn+1.

Let y ∈ Y be a fixed point of σ̃, then its image x ∈ Pn+1 is a fixed
point for σ, hence x ∈ Pβ for some eigenvalue β of σ. In case βd 
= 1,
Pβ ⊂ X, hence F (x) = 0 and x = y in the total space of O(d/r). Con-
versely, any point x ∈ Pβ ⊂ Y is a fixed point of σ̃. In case βd = 1,
there are two possibilities: if x ∈ Xβ = X ∩Pβ , then x = y and con-
versely any point in Xβ ⊂ Y is a fixed point of σ̃. If x /∈ Xβ , then we
must have β−d/r = 1, in that case all points in the preimage Yβ of
Pβ are fixed points of σ̃. The variety Yβ is a smooth r:1 cover of Pβ

branched along Xβ . Thus the fixed point set of σ̃ in Y is:

Y σ̃ =

⎛

⎝
∐

βd/r �=1

Xβ

⎞

⎠
∐

⎛

⎝
∐

βd/r=1

Yβ

⎞

⎠ .

The Euler characteristic of the fixed point set Y σ̃ is thus given by

χ(Y σ̃) =
∑

βd �=1

χ(Pβ) +
∑

βd=1,βd/r �=1

χ(Xβ) +
∑

βd/r=1

χ(Yβ),

where the Xβ which appear are smooth hypersurfaces of degree d in
Pβ
∼= Pmβ−1. The Hurwitz formula for the branched r:1 cover Yβ →

Pβ gives:

χ(Yβ) = rχ(Pβ)− (r − 1)χ(Xβ) = rmβ − (r − 1)(mβ +
1
d
((1− d)mβ − 1)).

Therefore we get:

χ(Y σ̃) =
∑

βd �=1

mβ +
∑

βd=1,βd/r �=1

mβ +
1
d
((1− d)mβ − 1)

+
∑

βd/r=1

mβ − r − 1
d

((1− d)mβ − 1),
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where we sum over all eigenvalues β of σ. As
∑

mβ = n + 2 we obtain:

χ(Y σ̃) = n + 2 +
1
d

∑

βd=1,βd/r �=1

((1− d)mβ − 1) − r − 1
d

∑

βd/r=1

((1− d)mβ − 1).

Since (1− d)mα − 1 = 0 if mα = 0, we can rewrite the formula with a
sum over all d-th roots of unity α and a sum over all d/r-th roots of
unity γ:

χ(Y σ̃) = n + 2 +
1
d

∑

αd=1

((1− d)mα − 1)− r

d

∑

γd/r=1

((1− d)mγ − 1),

which simplifies to

χ(Y σ̃) = n + 2 +
1
d

∑

αd=1

(1− d)mα − r

d

∑

γd/r=1

(1− d)mγ .

As any automorphism σ̃ is the identity on the non-primitive coho-
mology of Y , we find that

tr(σ̃|Hn+1(Y )pr) =
(−1)n+1

d

⎛

⎝
∑

αd=1

(1− d)mα − r
∑

γd/r=1

(1− d)mγ

⎞

⎠ .

This concludes the proof of the proposition. �

10.2. Remark

In case r = d, Y is a hypersurface in the total space of O(1), which can
be identified with Pn+2 − {(0 : . . . : 0 : 1)}. The bundle projection to Pn+1

is given by (x0 : . . . : xn+1 : xn+2) �→ (x0 : . . . : xn+1) and Y is defined by
F (x0, . . . , xn+1) = xd

n+2. The action of σ̃ is as σ on x0, . . . , xn+1 and is trivial
on xn+2. Hence the eigenspaces Pβ of σ and σ̃ are the same if β 
= 1 and the
dimension of P1 increases by one. One easily verifies that our generalization
of Chênevert’s formula in this case gives the original formula.
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