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Abstract intersection theory and operators in

Hilbert space

Grzegorz Banaszak and Yoichi Uetake

For an operator in Hilbert space of a certain class, we introduce
axioms of an abstract intersection theory, which we prove to be
equivalent to the Riemann hypothesis regarding the spectrum of
that operator. In particular, if the nontrivial zeros of the Riemann
zeta-function arise from an operator of this class, the original Rie-
mann hypothesis is equivalent to the existence of an abstract inter-
section theory.

1. Introduction

Let A be a linear operator acting on a Hilbert space H such that its spec-
trum σ(A) consists only of the point spectrum σp(A) (i.e., eigenvalues). We
say that the operator A satisfies the Riemann hypothesis (RH, shortly) if
Re(s) = 1

2 for all s ∈ σ(A) = σp(A).
We introduce a set of axioms ((INT1) to (INT3) in Section 3.1), which we

show to be equivalent to the RH for the operator A. The axioms constitute a
theory that is analogous to Weil’s classical intersection theory on a surface
over a finite field Fq and to his explicit formulae [12] (see also [4, 6, 10]).
Recall that Weil developed his intersection theory to prove the RH for curves
over Fq. In this regard, we call our axioms an abstract intersection theory.

The paper is organized as follows. In Section 2, we impose some rea-
sonable conditions (OP1) to (OP5) on operators in Hilbert space to be
considered. Then we introduce a functional calculus for them, which has a
role of cutting off their spectra. Our abstract intersection theory consists of
conditions (INT1) to (INT2) on some specific vectors including what we call
a Hodge vector, and the Lefschetz type formula (INT3). We describe this
in Section 3.1. In Section 3.2, we give a model of the abstract intersection
theory, using a construction similar to the GNS (Gelfand–Naimark–Segal)
representation (e.g., [9]). Interestingly, Weil himself reviewed Segal’s work [9]
in the Mathematical Reviews. Using this model, we show in Theorem 3.1
(main theorem) that the RH for the operator A is equivalent to the existence
of an intersection theory in our sense.
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One of the key ideas of our paper is that an R-linear structure is intro-
duced in the abstract intersection theory while an operator regarding RH
acts on a C-Hilbert space. We also introduce R-valued functions q = q(Y )
and g = g(Y ) of the Y -coordinate of the critical strip. These can be seen as
analogs of q = �Fq and the genus number g of a curve C, respectively, in the
classical intersection theory on a surface C × C, which was used to prove
the RH for C over Fq. Moreover, we introduce an operator valued function
Φ = Φ(Y ), which is an analog of the operator acting on the Picard group of
C × C induced by the classical Frobenius morphism. For further comparison
of our constructions with the classical theory, see Section 4.

We note that there is a program by Connes and Marcolli [1] to adapt
Weil’s proof to the case of number fields. There is also a conjectural cohomol-
ogy theory by Deninger [2] for the interpretation of L-functions analogous
to the etale cohomology theory of varieties over finite fields.

2. Functional calculus for closed operators

Let A : H ⊃ dom(A) → H be a possibly unbounded operator on a separable
C-Hilbert space H. We assume the following properties of A.

(OP1) A is closed.

(OP2) The spectrum σ(A) consists only of the point spectrum (i.e., eigen-
values) σp(A) (i.e., σ(A) = σp(A)), which accumulates at most at
infinity.

(OP3) (a) Image(P{sα}) (see Lemma 2.1 below for definition) is finite
dimensional for any sα ∈ σp(A).

(b) The Riesz index ν(sα) = 1 for any sα ∈ σp(A). (See the para-
graph following Lemma 2.1 for definition.)

(OP4) σ(A) ⊂ Ω∞, where Ω∞ := {s ∈ C; 0 < Re(s) < 1}.
(OP5) (a) Re(sα) < 1

2 for some sα ∈ σ(A) if and only if there is sβ ∈ σ(A)
such that Re(sβ) > 1

2 .
(b) If sα ∈ σ(A) then sα ∈ σ(A) with the same multiplicity

mult(sα) = mult(sα). (See the paragraph following Lemma 2.1
for definition.)

Automorphic scattering theory can provide a closed operator that sat-
isfies the above conditions except for (OP3-b). The operator of this the-
ory gives a spectral interpretation of the nontrivial zeros of the Dirichlet
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L-function. Hinted by Gelfand, the theory was initiated by Pavlov and Fad-
deev [7] using the Lax–Phillips scattering theory, and refined by Lax and
Phillips themselves [5]. Recently, in [11, Theorem 4.1], directly based on the
properties of Eienstein series over a modular curve, an algebraic method of
construction of a Dirac-type operator A0 for automorphic scattering that
satisfies (OP1) to (OP5) except for (OP3-b) has been developed for Dirich-
let L-functions including the Riemann zeta-function. The eigenvalues of the
operator A0 in [11] are shown to correspond, counted with multplicity, to
the nontrivial zeros of the associated Dirichlet L-function. The construction
in [11] does not appeal to either RH or GRH. The operator A0 satisfies also
(OP3-b) if and only if the multiplicity of nontrivial zeros of the L-function
corresponding to A0 constructed there is one (Theorem 4.1 (iii), (iv) of [11]).
See Corollary 3.1 in Section 3 for our result concerning the operator A0.

By (OP1) we can use the following lemma from [3, XV.2, Theorem 2.1,
p. 326].

Lemma 2.1. Suppose that A : H ⊃ dom(A) → H is a closed operator. For
a bounded subset W of σ(A), let PW : H → H be the Riesz projection

PW =
1

2πi

∮
∂Δ

(s − A)−1ds,

where Δ is a bounded domain of C such that W � Δ (i.e.,W ⊂ Δ◦) and
Δ ∩ τ = ∅ for τ = σ(A) \ W . Then

(i) M = Image(PW ) and N = Ker(PW ) are A-invariant
(i.e.A(N ∩ dom(A)) ⊂ N etc.).

(ii) M ⊂ dom(A) and A|M (the restriction of A to M) is bounded.

(iii) σ(A|M ) = W and σ(A|N ) = τ .

By (OP3) and Lemma 2.1 (i) and (iii), the resolvent (s − A)−1 has a pole
of order ν(sα) = 1 at s = sα ∈ σp(A). Here ν(sα) denotes the Riesz index of
sα defined as the smallest positive integer such that Ker((sα − A)ν(sα)) =
Image(P{sα}). We call mult(sα) := dim Image(P{sα}) the (algebraic) multi-
plicity of sα. By (OP2), (s − A)−1 is meromorphic in C.

For Y > 0 let σY (A) := {s ∈ σ(A); |Im(s)| ≤ Y }. By (OP2) one can take
some εY > 0 and ΩY = {s ∈ C; 0 < Re(s) < 1, |Im(s)| < Y + εY } so that
ΩY ∩ (σ(A) \ σY (A)) = ∅. Note that ΩY ∩ σ(A) = σY (A) by (OP4).

Let F be an R-algebra defined by

F := {φ; φ(s) is analytic in an open set � Ω∞ and φ(s̄) = φ(s)}.
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Note that no topological structure is imposed on F .
Given φ ∈ F , let φ(A) : H ⊃ dom(φ(A)) → H be defined by

φ(A)x = lim
Y →∞

1
2πi

(∮
∂ΩY

φ(s)(s − A)−1ds

)
x

for x ∈ dom(φ(A)) := {x ∈ H; the limit φ(A)x exists in H}. By (OP3-b),
Lemma 2.1 and the functional calculus for bounded operators, we have
φ(A) =

∑
sα∈σ(A) φ(sα)P{sα}.

We define tr(φ(A)) as a functional on F as follows: define

tr(·(A)) : F ⊃ dom(tr(·(A))) → C

by

tr(φ(A)) =
∑

sα∈σ(A)

mult(sα)φ(sα),

where

dom(tr(·(A))) := {φ ∈ F ;
∑

sα∈σ(A)

mult(sα)φ(sα) < ∞}.

Let q : F → R be defined by q(φ) = φ(1).

Lemma 2.2. Suppose that qY ∈ (0, 1) ∪ (1,∞) is given for each Y > 0.
Then for each Y > 0 there is a φY ∈ F such that

(i) φY (0) = 1,

(ii) q(φY ) = qY ,

(iii) φY (s) = qs
Y , if s ∈ σY (A),

(iv) φY (s) = 0, if s ∈ σ(A) \ σY (A).

Proof. Let

{sn}N
n=1 := [σ(A) \ σY (A)] ∩ {s ∈ C; Im(s) > 0} (N ≤ ∞).

Note that we have N = ∞ if the operator A has an infinite spectrum. Let
hY (s) be an entire function which has zeros of order one only at sn and sn
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(1 ≤ n ≤ N). For example, one can set

hY (s) :=
N∏

n=1

En−1

( s

sn

)
En−1

( s

sn

)
,

where E0(s) = 1 − s and Ep(s) = (1 − s) exp
(∑p

k=1
sk

k

)
for p ≥ 1 (see e.g.

[8, Theorem 15.9, p. 324]). Then by (OP5-b) hY (sα) = 0 if and only if sα ∈
σ(A) \ σY (A). Note that hY (s̄) = hY (s). Observe that σY (A) is a finite set
by (OP2) and (OP4). Thus one can take a Lagrange polynomial 	Y (s) so that
	Y (0) = 1

hY (0) , 	Y (1) = qY

hY (1) , and 	Y (sα) = qsα
Y

hY (sα) if sα ∈ σY (A). Note that
by (OP5-b) we have 	Y (s̄) = 	Y (s). Then φY (s) := 	Y (s)hY (s) is a desired
function. �

Although it seems that the information of the spectrum of A is needed
to calculate φY (A), φY (A)x is actually obtained from (OP4) as

φY (A)x =
1

2πi

(∮
∂ΩY

qs
Y (s − A)−1ds

)
x for all x ∈ H,

provided that one can take εY = 0 in the definition of ΩY (This is generically
possible). From this expression we see that φY (A) is bounded.

We define g : F → [0,∞] by g(φ) = 1
2 dim Image(φ(A)). Note that

g(φY ) < ∞ for each Y > 0. Let us write

q = q(Y ) := q(φY )(= qY ) and g = g(Y ) := g(φY ).

3. Abstract intersection theory

3.1. Axioms of abstract intersection theory

Let V be an R-linear space, endowed with a symmetric bilinear form β : V ×
V → R. Let EndR(V ) denote the R-algebra of R-linear operators on V .
Suppose that there are nonzero vectors v01, v10 and ha in V , a mapping
vδ : F ⊃ dom(vδ) → V , and an R-algebra homomorphism Φ: F ⊃ dom(Φ)→
EndR(V ) that satisfy the conditions listed below, which we call an abstract
intersection theory. vδ and Φ are associated with the operator A in Section
2. We assume that dom(vδ) = dom(Φ) = dom(tr(·(A))) and that it is an
R-subalgebra of F . We also assume that φY ∈ F introduced in Lemma 2.2
belongs to dom(vδ). Let us write

vδ = vδ(Y ) := vδ(φY ) and Φ = Φ(Y ) := Φ(φY ).
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(INT1) (a) β(y, x) = β(x, y) ∈ R for x, y ∈ V ,
(b) β(v01, v01) = 0, (c) β(v10, v10) = 0, (d) β(v01, v10) = 1,
(e) β(Φnvδ, v01) = 1, (f) β(Φnvδ, v10) = O(qn),
(g) β(Φnvδ, Φnvδ) = O(qn).

(INT2) For x ∈ V , if β(x, ha) = 0 then β(x, x) ≤ 0.

Note that (INT1) is assumed to hold for each Y > 0. The Bachmann–Landau
notation O(qn) in (INT1) is with respect to n � 0 for q = q(Y ) fixed. We
call (INT2) the Hodge property, and ha a Hodge vector.

Lemma 3.1. Under the assumptions (INT1-a) to (INT1-d) and (INT2),
we have

β(x, x) ≤ 2β(x, v01)β(x, v10) (x ∈ V ).

Proof. Given any x ∈ V , define ˆ: R
3 → V by r̂ = r1v01 + r2v10 + r3x for

r =
∑3

j=1 rjej . Here e1 = (1, 0, 0)t, e2 = (0, 1, 0)t and e3 = (0, 0, 1)t. Let
E1 = e1 + e2 and E2 = e1 − e2. Then by (INT1-b) to (INT1-d), β(Ê1, Ê1) =
2, β(Ê2, Ê2) = −2 and β(Ê1, Ê2) = 0. Let E3 = e3 + k1E1 + k2E2. Then

β(Ê3, Ê1) = β(x, v01) + β(x, v10) + 2k1 and

β(Ê3, Ê2) = β(x, v01) − β(x, v10) − 2k2.

Hence one can set

k1 = −1
2
{β(x, v01) + β(x, v10)} and k2 =

1
2
{β(x, v01) − β(x, v10)}

so that β(Ê3, Ê1) = β(Ê3, Ê2) = 0. Then one can check that

β(Ê3, Ê3) = β(x, x) − 2β(x, v01)β(x, v10).

Now suppose β(Ê3, Ê3) > 0. Then m := β(Ê3, ha) 
= 0 by the Hodge prop-
erty in (INT2) and for n := −β(Ê1, ha),

β(mÊ1 + nÊ3, mÊ1 + nÊ3) = m2β(Ê1, Ê1) + n2β(Ê3, Ê3) ≥ m2β(Ê1, Ê1)

= 2m2 > 0.

But we have β(mÊ1 + nÊ3, ha) = 0, which contradicts the Hodge property.
Hence we get the claim. �
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For x, y ∈ V let

(∗) 〈x, y〉V = β(x, v01)β(y, v10) + β(x, v10)β(y, v01) − β(x, y).

By Lemma 3.1, 〈·, ·〉V is positive semidefinite, i.e., 〈x, x〉V ≥ 0 for x ∈ V .
Indeed, as we will see soon below, this bilinear form must be positive semidef-
inite, not positive definite.

It is easy to see that from (INT1) and (∗) the following conditions follow.

(IP) (a) 〈y, x〉V = 〈x, y〉V ∈ R for x, y ∈ V .
(b) 〈v01, v01〉V = 0. (c) 〈v10, v10〉V = 0. (d) 〈v01, v10〉V = 0.
(e) 〈Φnvδ, v01〉V = 0. (f) 〈Φnvδ, v10〉V = 0.
(g) 〈Φnvδ, Φnvδ〉V = O(qn).

Here vδ, Φ and q are parameterized by Y as in (INT1).
From the positive semidefinite property, we obtain the Cauchy–Schwarz

inequality:

|〈x, y〉V | ≤
√
〈x, x〉V 〈y, y〉V , (x, y ∈ V ).

Note that by this inequality, 〈x, y0〉V = 0 for all x ∈ V if 〈y0, y0〉V = 0.
Accordingly, 〈x, v01〉V = 〈x, v10〉V = 0 for x ∈ V .

Now we introduce axiom (INT3), which we call the Lefschetz type
formula.

(INT3) For any φ ∈ dom(vδ) and any n ≥ 0,

tr(φ(A)n) = 〈Φ(φ)nvδ(φ), vδ(φ)〉V .

3.2. A model of abstract intersection theory and main theorem

The following construction, which we call a model of abstract intersection
theory, is hinted by the GNS (Gelfand–Naimark–Segal) construction [9].

Let {ej}dim H
j=1 (1 ≤ dim H ≤ ∞) be a complete orthonormal basis of H.

Embed H into a bigger Hilbert space K, so that K � H = C
2. Here K � H is

the orthogonal complement of H in K. In our convention the inner product
on X = H or C

2 satisfies the equality 〈λh1, h2〉X = λ〈h1, h2〉X . Hence we
have 〈λk1, k2〉K = λ〈k1, k2〉K . We understand that ej is embedded in K as
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ej �→ e′j =
(

ej
0
0

)
. Let B(K) denote a set of bounded operators on K. Put

V1 =

⎧⎨
⎩x ∈ B(K); ‖x‖2

V1
:=

dim H∑
j=1

〈x∗xe′j , e
′
j〉K < ∞

⎫⎬
⎭

as an R-linear space of Hilbert–Schmidt type class with a semidefinite inner
product 〈x, y〉V1 = 1

2

∑dim H
j=1 〈(y∗x + x∗y)e′j , e

′
j〉K for x, y ∈ V1.

Define some elements of V1 in block diagonal form (acting on K =
H
⊕

K � H
) as follows (blank = 0):

v01 :=
(

0

0 1

0 0

)
, v10 :=

(
0

0 0

1 0

)
,

vδ1(φ) :=
(

P∗
HφP

Hφ

0 0

0 0

)
,

vδ(φ) := vδ1(φ) + v01 + v10 (φ ∈ dom(vδ)).

Here Hφ := Image(φ(A)) and PHφ : H → Hφ denotes the orthogonal projec-
tion of H onto Hφ (not a Riesz projection in Lemma 2.1). In this model of
abstract intersection theory we let

dom(vδ) = dom(Φ) = dom(tr(·(A)))
:= {φ ∈ F ; φ has zeros at all but a finite number of sα ∈ σ(A)}.

If φ ∈ dom(vδ) then g(φ) < ∞. Note that φY ∈ dom(vδ). It is easy to see
that v01, v10 belong to V1, and that vδ(φ) ∈ V1 for φ ∈ dom(vδ).

Lemma 3.2. Suppose that an operator A : H ⊃ dom(A) → H that satisfies
(OP1) to (OP4) and (OP-5b) is given. Let φY (Y > 0) be as defined in
Section 2. Then for the above R-linear space V1 there exists an R-algebra
homomorphism Φ: F ⊃ dom(vδ) → EndR(V1), so that

(i) The conditions (IP-a) to (IP-f) with V replaced by V1 hold.

(ii) The Lefschetz type formula (INT3) with V replaced by V1 holds.

Proof. (i) (IP-a) is obvious from definition. Define Φ: F ⊃ dom(vδ) →
EndR(V1) by

Φ(φ)x =
(

φ(A)

φ(1) 0

0 φ(0)

)
x
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for φ ∈ dom(vδ) and x ∈ V1. It is easy to check that Φ(φ)x ∈ V1 if x ∈ V1.
Note that dom(vδ) is an R-subalgebra of F . Observe that if φ1, φ2 ∈ dom(vδ)
then φ1(A) and φ2(A) are bounded, and that (φ1φ2)(A) = φ1(A)φ2(A).
Hence one can easily see that Φ is a well-defined R-algebra homomorphism.
It is easy to check that Φ(φ)nvδ(φ) ∈ V1 (n ≥ 0) provided that φ ∈ dom(vδ).
We recall that φY ∈ dom(vδ). It is also easy to see that the vectors v01, v10

and vδ satisfy the conditions (IP-b) to (IP-f). For example, 〈v01, v01〉V1 =∑dim H
j=1 〈v∗01v01e

′
j , e

′
j〉K . However, since v01ej = 0 one gets (IP-b). To check

(IP-e) and (IP-f) note that

Φ(φ)nvδ(φ) = Φ(φ)nvδ1(φ) + φ(1)nv01 + φ(0)nv10.

(ii) For φ ∈ dom(vδ) let {ej}2g(φ)
j=1 be an orthonormal basis of Hφ. Then, since

φ(A)Hφ ⊂ Hφ, we have

〈Φ(φ)nvδ(φ), vδ(φ)〉V1 =
1
2

2g(φ)∑
j=1

{〈φ(A)nej , ej〉Hφ + 〈φ(A)∗nej , ej〉Hφ}

=
1
2

2g(φ)∑
j=1

{〈φ(A)nej , ej〉Hφ + 〈φ(A)nej , ej〉Hφ}

=
1
2
(tr(φ(A)n) + tr(φ(A)n)),

which is tr(φ(A)n) provided that tr(φ(A)n) ∈ R. This condition is satisfied
by (OP5-b) and the definition of F . �

The following lemma says that given V1 as above, one can find many V ’s
and β’s satisfying (INT1) and (INT2).

Lemma 3.3. In the same situation as in Lemma 3.2 and its proof, suppose
that Φ = Φ(Y )(= Φ(φY )) further satisfies (IP-g). Let V be an R-linear sub-
space of V1 such that v01, v10 and Φnvδ = Φ(Y )nvδ(Y ) all belong to V for
any Y > 0.

Then there is a bilinear form β : V × V → R and a Hodge vector ha ∈ V
which satisfy (INT1) and (INT2) and (∗).

Proof. (INT1) and (∗): In (∗) let 〈·, ·〉V be the inner product on V inher-
ited from 〈·, ·〉V1 . Given 〈·, ·〉V , one can determine β(x, y) from β(x, v01),
β(x, v10), β(y, v01) and β(y, v10) via (∗). Decompose V into a (not necessar-
ily orthogonal) direct sum of W1 and W2, where W1 is the R-linear span of
{v01, v10, Φ(Y )nvδ(Y ); Y > 0, n ≥ 0}.
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Let us write vδ1 = vδ1(Y ) := vδ1(φY ). Note that

spanR{Φ(Y )nvδ1(Y ) : Y > 0, n ≥ 0} ∩ spanR{v01, v10} = {0}.

Hence one can define β(·, v01), β(·, v10), β(v01, ·) and β(v10, ·) on W1 so as
to satisfy (INT1-a) to (INT1-d) and

β(Φnvδ1, v01) = 0 (n ≥ 0), β(Φnvδ1, v10) = 0 (n ≥ 0).

Then, since Φnvδ = Φnvδ1 + qnv01 + v10 for all n ≥ 0, we see that β sat-
isfies (INT1-e) and (INT1-f). (INT1-g) also follows from (IP-g), (INT1-e)
and (INT1-f) via (∗).

Assign arbitrary R-linear mappings β(·, v01) and β(·, v10) of W2 to R.
Then one can determine β on V × V via (∗). One can check (INT1-a) since
(IP-a) holds in (∗).

(INT2): Let ha = v01 + v10. If β(x, ha) = 0, then β(x, v10) = −β(x, v01).
Thus β(x, x) = 2β(x, v01)β(x, v10) − 〈x, x〉V = −2β(x, v01)2 − 〈x, x〉V ≤ 0.
Therefore ha is a Hodge vector. �

We use the following lemma (e.g. [6, Lemma 2.2, p. 20]) in the proof of
Theorem 3.1 below.

Lemma 3.4. Let λj (1 ≤ j ≤ 2g) be complex numbers. Then there exist
infinitely many integers n ≥ 1 such that |λ1|n ≤ |∑2g

j=1 λn
j |.

Theorem 3.1. Let A : H ⊃ dom(A) → H be an operator satisfying (OP1)
to (OP5). The following conditions are equivalent.

(i) The Riemann hypothesis holds for A.

(ii) There exist an R-linear space V , a symmetric bilinear R-valued form β
on V , a mapping vδ of dom(vδ) ⊂ F into V , and an R-algebra homo-
morphism Φ of dom(vδ) ⊂ F into EndR(V ) associated with the opera-
tor A, giving vectors v01, v10, ha, Φnvδ = Φ(Y )nvδ(Y ) (Y > 0) in V so
that axioms (INT1) to (INT3) of the abstract intersection theory hold.

Proof. (ii) =⇒ (i): Suppose that the RH for A does not hold. Then by
(OP5-a) one can find and fix Y > 0 so that σY (A) as described in Section 2
contains sα, sβ ∈ σ(A) with Re(sα) < 1

2 , Re(sβ) > 1
2 . Therefore σY (A) con-

tains s1 such that qRe(s1) > q
1
2 , where q = q(Y ). Actually, if 0 < q < 1 (re)set

s1 = sα, while if q > 1 (re)set s1 = sβ .
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Recall that σY (A) is a finite set. Let sj (2 ≤ j ≤ 2g = 2g(Y ) = dim HφY )
be all the other eigenvalues of A in σY (A), counted with algebraic multi-
plicities. (Note that Image(PσY (A)) = HφY since φY (s) 
= 0 for s ∈ σY (A).)
Let λj = φY (sj) = qsj (1 ≤ j ≤ 2g). Then by Lemma 3.4, νn =

∑2g
j=1 λn

j is
not O(q

n

2 ), since we could choose s1 so that |λ1|n = |qs1 |n = q
n

2 (1 + ε)n for
some ε > 0. By the spectral mapping theorem, σ(φY (A)n) = σp(φY (A)n) =
φY (σY (A))n ∪ {0} = {λn

j ; 1 ≤ j ≤ 2g} ∪ {0}. However, by (INT3), the
Cauchy–Schwarz inequality and (IP-g), we see that νn is O(q

n

2 ). This is
a contradiction.

(i) =⇒ (ii): By Lemma 3.2, we have (IP-a) to (IP-f) and (INT3) for
vectors in V1 and Φ = Φ(Y ). All we have to do now is to verify (IP-g). Let
us take a constant q > 1 so that q = q(Y ) for all Y > 0. If the RH for the
operator A holds, then each eigenvalue λ	 (1 ≤ 	 ≤ 2g) besides 0, counted
with algebraic multiplicities, of φY (A) can be written as λ	 = q

1
2 eiθ�(θ	 ∈

R). By (OP3-b) one can choose eigenvectors w	 associated with λ	 so that
φY (A)w	 = λ	w	. Let {ej}2g

j=1 be an orthonormal basis of HφY . Now one can
write ej as ej =

∑2g
	=1 αj	w	 for some αj	 = αj	(Y ) ∈ C. Then in a similar

way as in the proof of Lemma 3.2 (ii),

〈Φ(Y )nvδ(Y ), Φ(Y )nvδ(Y )〉V =
2g∑

j=1

〈φY (A)nej , φY (A)nej〉HφY

=
2g∑

j=1

〈
2g∑

	=1

αj	φY (A)nw	,

2g∑
m=1

αjmφY (A)nwm

〉

HφY

.

Since φY (A)nw	 = λn
	 w	, we have (IP-g). Therefore by Lemma 3.3, we have

(INT1) and (INT2) for a subspace V ⊂ V1. We have of course (INT3) by
restricting to V . �

Remark 3.1. Note that (OP3-b) is used only in the proof of (i) =⇒ (ii).
To prove the RH for A from the existence of an abstract intersection theory
one does not need (OP3-b).

As mentioned in Section 2, the operator A0 constructed in [11] satisfies
all the conditions except for (OP3-b). Thus we have the following corollary.

Corollary 3.1. Assume that the operator A0 in [11, Theorem 4.1] satis-
fies additionally the condition (OP3-b), or equivalently, the order of every
nontrivial zero of the corresponding Dirichlet L-function is one. Then the
following conditions are equivalent.
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(i) The Riemann Hypothesis holds for A0 (and for the corresponding
Dirichlet L-function).

(ii) There exists an abstract intersection theory as described in Theorem
3.1 for A0.

4. Analogy with the intersection theory on a surface over Fq

Let C be a smooth projective curve over a finite field Fq, and S = C × C
the surface over Fq. Let Pic(S)(� H1(S,O×

S )) be its Picard group, which we
regard as a Z-module, so as to preserve the analogy with Weil divisors. V
in Section 3 is modeled on Pic(S) ⊗Z R, and β(·, ·) in Section 3 is modeled
on the R-tensored intersection pairing i(·, ·) on Pic(S) ⊗Z R. Φ = Φ(Y ) in
(INT1) is an analog of the linear mapping on Pic(S) ⊗Z R induced by the
morphism Frob × id on S. Then one may regard v01, v10, vδ and Φnvδ in
(INT1) as analogs of cycles pt × C, C × pt, Δ and ΓFrobn , respectively. The
Hodge property comes from the Hodge index theorem. A Hodge vector ha

corresponds to an (ample) hyperplane section of S, thereby β(·, ha) gives an
analog of the degree function deg⊗Z1: Pic(S) ⊗Z R → R. Lemma 3.1 is an
analog of Castelnuovo’s inequality.

If ϕ = Frobn, then it turns out that

tr(ϕ∗|H0
ét
) = 1 = i(Γϕ, pt × C)i(Δ, C × pt)

and

tr(ϕ∗|H2
ét
) = qn = i(Γϕ, C × pt)i(Δ, pt × C).

So the Lefschetz fixed-point formula for the 	-adic cohomology reads for
ϕ = Frobn as

tr(ϕ∗|H1
ét
) = i(Γϕ, pt×C)i(Δ, C ×pt) + i(Γϕ, C ×pt)i(Δ, pt×C)− i(Γϕ, Δ)

=: 〈Γϕ, Δ〉Pic(S)⊗ZR.

(INT3) is modeled on this, and φ(A)n acting on H is an analogy of ϕ∗|H1
ét

acting on the first 	-adic étale cohomology group H1
ét(C ⊗Fq

Fq, Q	).
Introducing a cutoff function φ is modeled on Weil’s explicit formula

[1952b], [1972] in [12].
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functions, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov.
(LOMI) 27 (1972), 161–193 (Russian); Engl. Transl.: J. Soviet Math.
3 (1975), 522–548.

[8] W. Rudin, Real and complex analysis, Second Ed., McGraw-Hill, New
York, 1974.

[9] I. E. Segal, Irreducible representations of operator algebras, Bull. Amer.
Math. Soc. 53 (1947), 73–88.
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