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We give an Eynard–Orantin-type topological recursion formula for
the canonical Euclidean volume of the combinatorial moduli space
of pointed smooth algebraic curves. The recursion comes from the
edge removal operation on the space of ribbon graphs. As an appli-
cation we obtain a new proof of the Kontsevich constants for the
ratio of the Euclidean and the symplectic volumes of the moduli
space of curves.
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1. Introduction

The purpose of this paper is to identify a combinatorial origin of the topolog-
ical recursion formula of Eynard and Orantin [16] as the operation of edge
removal from a ribbon graph. As an application of our formalism, we estab-
lish a new proof of the formula for the Kontsevich constants ρ = 25g−5+2n

of [30, Appendix C].
In moduli theory it often happens that we have two different notions of

the volume of the moduli space. The volume may be defined by the push-
forward measure of the canonical construction of the moduli space. Or it may
be defined as the symplectic volume with respect to the intrinsic symplectic
structure of the moduli space. An example of such situations is the moduli
space of flat G-bundles on a fixed Riemann surface for a compact Lie group
G [26, 27,31,52]. In this case, the two definitions of the volume agree.

The space we study in this paper is the combinatorial model of moduli
space Mg,n of smooth algebraic curves of genus g with n distinct marked
points. It also has two different families of volumes parametrized by n
positive real parameters. One comes from the push-forward measure, and
the other comes from the intrinsic symplectic structure depending on these
parameters. And again these two notions of volume agree.

The moduli space Mg,n admits orbifold cell-decompositions para-
metrized by the collection of positive real numbers assigned to the marked
points. This orbifold is identified as the space of ribbon graphs of a pre-
scribed perimeter length, using the theory of Strebel differentials. In his
seminal paper of 1992, Kontsevich [30] calculated the symplectic volume of
orbi-cells, and compared it with the standard Euclidean volume. He found
that the ratio was a constant depending only on the genus of the curve
and the number of marked points. This constant plays a crucial role in his
main identity, and hence in his proof of the Witten conjecture. He wrote in
Appendix C of [30] that his proof of the evaluation of this constant “pre-
sented here is not nice, but we do not know any other proof”. In this article
we give another proof of the formula for the Kontsevich constant, based on
the topological recursion for ribbon graphs.

The idea of topological recursion (figure 1) has been used as an effective
tool for calculating many quantities related to the moduli space Mg,n and
its Deligne–Mumford compactification Mg,n. The quantities we can deal
with include tautological intersection numbers and certain Gromov–Witten
invariants. Suppose we have a collection of quantities vg,n for g ≥ 0 and
n > 0 subject to the stability condition 2g − 2 + n > 0, which guarantees
the finiteness of the automorphism group of an element of Mg,n. By an
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Figure 1: The topological recursion. The reduction of 2g − 2 + n by 1
corresponds to cutting off of a pair of pants from an n-punctured surface.

Eynard–Orantin type topological recursion formula [16] we mean a partic-
ular inductive formula for vg,n with respect to the complexity 2g − 2 + n of
the form

(1.1) vg,n = f1(vg,n−1) + f2(vg−1,n+1) +
stable∑

g1+g2=g
n1+n2=n−1

f3(vg1,n1+1, vg1,n2+1)

with linear operators f1, f2 and a bilinear operator f3, where the sum is
taken for all possible partitions of g and n− 1 subject to the stability condi-
tions 2g1 − 1 + n1 > 0 and 2g2 − 1 + n2 > 0. We refer to Section 7 for more
details.

There are many examples of such formulas.

1. The Witten–Kontsevich theory for the tautological cotangent class
(i.e., the ψ-class) intersection numbers

(1.2) 〈τd1 · · · τdn
〉g,n =

∫

Mg,n

c1(L1)d1 · · · c1(Ln)dn
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on the moduli stack Mg,n of stable algebraic curves of genus g with n
distinct smooth marked points. The Dijkgraaf–Verlinde–Verlinde for-
mula [9], which is equivalent to the Virasoro constraint condition, is a
topological recursion of the form (1.1).

2. The Mirzakhani recursion formula for the Weil–Petersson volume of
the moduli space of bordered hyperbolic surfaces with prescribed
geodesic boundaries [34, 35] is a topological recursion.

3. Mixed intersection numbers

〈τd1 · · · τdn
κm1

1 κm2
2 κm3

3 · · · 〉g,n

of ψ-classes and the Mumford–Morita–Miller κ-classes satisfy a topo-
logical recursion, first found in [37] for the case with κ1 and later
generalized in [32].

4. The expectation values of the product of resolvents of various matrix
models satisfy a topological recursion (see, e.g., [13]). This is the origin
of the work [16].

5. Indeed, the first three geometric theories turned out to be examples
of the general theory [16] of topological recursions [14, 17], though
geometric theories had been discovered earlier than the publication
of [16].

6. Both open and closed Gromov–Witten invariants of an arbitrary toric
Calabi–Yau three-fold are expected to satisfy a topological recursion.
This is the remodeling conjecture of [4, 33].

7. Simple Hurwitz numbers satisfy a topological recursion. It was first
conjectured in [5] based on a limit case of the remodeling conjecture,
and was recently proved in [3, 15,38].

8. The simplest case of the remodeling conjecture for C
3 was proved

in [7, 53,54] based on the Laplace transform technique of [15].

9. As shown below, the number of metric ribbon graphs with integer
edge lengths for a prescribed boundary condition satisfies a topological
recursion.

Our current paper provides an elementary approach to the idea of topological
recursion that uniformly explains the combinatorial nature of the geometric
examples (1)–(3), (7)–(9).
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The work of Harer [23], Mumford [39], Strebel [48], and Thurston and
others [47] show that there is a topological orbifold isomorphism

Mg,n × R
n
+
∼= RGg,n,

where

RGg,n =
∐

Γ ribbon graph
of type (g,n)

R
e(Γ)
+

Aut(Γ)

is the space of metric ribbon graphs of genus g and n boundary components,
and e(Γ) is the number of edges of a ribbon graph Γ. We denote by π :
RGg,n −→ R

n
+ the natural projection, and its fiber at p ∈ R

n
+ by RGg,n(p) =

π−1(p). To give a combinatorial description of tautological intersection
numbers (1.2) on Mg,n, Kontsevich [30, 8] introduced a combinatorial sym-
plectic form ωK(p) on RGg,n(p) ∼= Mg,n and its symplectic volume

(1.3) vS
g,n(p) =

∫

RGg,n(p)
exp
(
ωK(p)

)
.

The definition of this symplectic form is given in Section 6. At each orbi-
cell level, the derivative dπ of the projection map π is determined by the
edge-face incidence matrix

AΓ : R
e(Γ)
+ −→ R

n
+

of a ribbon graph Γ. Note that we have the standard volume forms d�1 ∧
· · · ∧ d�e(Γ) on R

e(Γ)
+ and dp1 ∧ · · · ∧ dpn on R

n
+. We can define the Euclidean

volume of the inverse image PΓ(p) = A−1
Γ (p) of p ∈ R

n
+ using the push-

forward measure by

vol(PΓ(p)) =
(AΓ)∗(d�1 ∧ · · · ∧ d�e(Γ))

dp1 ∧ · · · ∧ dpn

∣∣∣∣
p

,

where (AΓ)∗(d�1 ∧ · · · ∧ d�e(Γ)) is the n-form on R
n
+ obtained by integrating

the volume form on R
e(Γ)
+ along the fiber A−1

Γ (p). The Euclidean volume of
the moduli space is defined by

vE
g,n(p) =

∑

Γ ribbon graph
of type (g,n)

vol(PΓ(p))
|Aut(Γ)| .

In Appendix C of [30], Kontsevich proved the following.
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Theorem 1.1 [30]. The ratio of the symplectic volume and the Euclidean
volume of RGg,n(p) is a constant depending only on g and n, and its value is

(1.4) ρ =
vS
g,n(p)
vE
g,n(p)

= 25g−5+2n.

Remark 1.1. The Euclidean volume of the polytope

PΓ(p) = {x ∈ R
e(Γ)
+ | AΓx = p}

is a quasi-polynomial and is difficult to calculate in general. It is quite sur-
prising that the ratio ρ of the two functions is indeed a constant. Although
he says “not nice”, Kontsevich’s original proof is a beautiful application of
homological algebra to the complexes defined by the incidence
matrix AΓ.

The new proof we present here uses an elementary argument on the
topological recursion of ribbon graphs corresponding to the edge removal
operation. We show that both vS

g,n(p) and 25g−5+2n · vE
g,n(p) satisfy exactly

the same induction formula based on 2g − 2 + n, after taking the Laplace
transform. We then calculate the initial condition for the recursion formula,
i.e., the cases for (g, n) = (0, 3) and (1, 1), and see that the equality holds.
Since the topological recursion uniquely determines the value for every (g, n)
subject to the stability condition 2g − 2 + n > 0, we conclude that

vS
g,n(p) = 25g−5+2n · vE

g,n(p).

Here the appearance of the Laplace transform is significant. The
Laplace transform plays a mysterious as well as a crucial role in each of
the works [14, 15, 17, 30, 38, 45]. In the light of the Eynard–Orantin recur-
sion formalism [16] and the remodeling conjecture due to Mariño [33] and
Bouchard–Klamm–Mariño-Pasquetti [4], we find that the Laplace transform
appearing in these contexts is the mirror map. Usually mirror symmetry is
considered as a duality, and hence a family of Fourier–Mukai type transforms
naturally appears [25, 49]. In our context, however, the nature of duality
is not apparent. On one side of the story (the A-model side) we have a
combinatorial structure. The mirror symmetry transforms this combinato-
rial structure into the world of complex analysis (the B-model side). In the
complex analysis side we have such objects as the residue calculus of [16]
and integrable nonlinear PDEs such as the KdV equations [30, 32, 37, 51],
the KP hierarchy [28, 29, 44], Frobenius manifold structures [11, 12], the
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Ablowitz-Ladik hierarchy [6] and more general integrable systems consid-
ered in [18–20]. The mathematical apparatus of the mirror map hidden in
these structures is indeed the Laplace transform.

This paper is organized as follows. In Section 2 we review ribbon graphs
and combinatorial description of the moduli space Mg,n that are necessary
for our investigation. Although the definition of the Euclidean volume of
RGg,n(p) is straightforward, it seems to be difficult to calculate it and there
is no concrete formula. The approach we take in this paper is to appeal
to the counting of lattice points of RGg,n(p). Thus Section 3 is devoted to
proving an effective topological recursion formula for the number of lattice
points in the space of metric ribbon graphs with prescribed perimeters. Our
proof is based on counting ciliated ribbon graphs. Once we find the number
of lattice points in RGg,n(p), we can obtain its volume by taking the limit as
the mesh of the lattice tends to 0. To compare the number of lattice points
and the volume, the simplest path is to take the Laplace transform. Thus
we are led to calculating the Laplace transform of the topological recursion
for the number of lattice points in Section 4. After establishing the Laplace
transform formula, one can read off the information of the Euclidean volume
of RGg,n(p) as the leading terms of the Laplace transform, by introducing
the right coordinate system. This is carried out in Section 5. The Kontsevich
symplectic form is defined in Section 6, and the topological recursion for the
symplectic volume due to [2] is reviewed. With these preparations, we give a
new and simple proof of (1.4). In Section 7 we explain the Eynard–Orantin
formalism. This formalism is independent on the context and provides the
same formula. We then convert our recursion formulas into this formalism,
and observe how they all fit together in a single formula. This is the beauty
and strength of the Eynard–Orantin formalism.

We present a full detail of the calculations of the Laplace transform in
this paper, hoping it may lead to a deeper understanding of the Eynard–
Orantin theory and the mirror map. 7 is thus devoted to giving a proof
of (4.6) and (6.11). These recursion formulas start with the initial values
(g, n) = (0, 3) and (g, n) = (1, 1). The Eynard–Orantin theory also uses the
unstable case (g, n) = (0, 2). All these values are calculated in 7, together
with a few more examples.

2. The combinatorial model of the moduli space

Let us begin with reviewing basic facts about ribbon graphs and the com-
binatorial model of the moduli space Mg,n due to Harer [23], Mumford [39]
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and Strebel [48]. We refer to [36] for precise definitions and more detailed
exposition.

A ribbon graph of topological type (g, n) is the 1-skeleton of a cell
decomposition of a closed oriented topological surface Σ of genus g that
decomposes the surface into a disjoint union of v 0-cells, e 1-cells, and n
2-cells. The Euler characteristic of the surface is given by 2 − 2g = v − e+ n.
The 1-skeleton of a cell decomposition is a graph Γ drawn on Σ, which con-
sists of v vertices and e edges. An edge can form a loop. We denote by ΣΓ

the cell-decomposed surface with Γ its 1-skeleton. Alternatively, a ribbon
graph can be defined as a graph with a cyclic order given to the incident
half-edges at each vertex. By abuse of terminology, we call the boundary of
a two-cell of ΣΓ a boundary of Γ, and the two-cell itself as a face of Γ.

A metric ribbon graph is a ribbon graph with a positive real number
(the length) assigned to each edge. For a given ribbon graph Γ with e = e(Γ)
edges, the space of metric ribbon graphs is R

e(Γ)
+ /Aut(Γ), where the auto-

morphism group acts through permutations of edges (see [36, Section 1]).
We restrict ourselves to the case that Aut(Γ) fixes each two cell of the
cell decomposition. If we also restrict that every vertex of a ribbon graph
has degree (i.e., valence) 3 or more, then using the canonical holomorphic
coordinate system of a topological surface [36, Section 4] and the Strebel dif-
ferentials [48], we obtain an isomorphism of topological orbifolds [23,39,47]

(2.1) Mg,n × R
n
+
∼= RGg,n.

Here

RGg,n =
∐

Γ ribbon graph
of type (g,n)

R
e(Γ)
+

Aut(Γ)

is the orbifold consisting of metric ribbon graphs of a given topological type
(g, n) with degree 3 or more. The degree condition is necessary to bound
the number of edges e(Γ) for a given topological type (g, n). If we allow
degree 2 vertices, then there are infinitely many different ribbon graphs for
every (g, n). By restricting to ribbon graphs of degree 3 or more, we have
the bound e(Γ) ≤ 3(2g − 2 + n), which gives the dimension of each orbi-cell
R

e(Γ)
+ /Aut(Γ). The gluing of orbi-cells is done by making the length of a

non-loop edge tend to 0. The space RGg,n is a smooth orbifold (see [36,
Section 3]; [47]). We denote by π : RGg,n −→ R

n
+ the natural projection via

(2.1), which is the assignment of the collection of perimeter length of each
boundary to a given metric ribbon graph.
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Take a ribbon graph Γ. Since Aut(Γ) fixes every boundary component
of Γ, they can be labeled by N = {1, 2, . . . , n}. For a moment let us give a
label to each edge of Γ from an index set E = {1, 2, . . . , e}. The edge-face
incidence matrix is defined by

(2.2)
AΓ =

[
aiη

]
i∈N, η∈E

,

aiη = the number of times edge η appears in face i.

Thus aiη = 0, 1, or 2, and the sum of entries in each column is always 2. The
Γ contribution of the space π−1(p1, . . . , pn) = RGg,n(p) of metric ribbon
graphs with a prescribed perimeter p = (p1, . . . , pn) is the orbifold polytope

PΓ(p)/Aut(Γ), PΓ(p) = {x ∈ R
e
+ | AΓx = p},

where x = (�1, . . . , �e) is the collection of edge lengths of a metric ribbon
graph Γ. We have

(2.3)
∑

i∈N

pi =
∑

i∈N

∑

η∈E

aiη�η = 2
∑

η∈E

�η.

The canonical Euclidean volume vol(PΓ(p)) of the polytope PΓ(p) is the
ratio of the push-forward measure of the Lebesgue measure on R

e
+ by AΓ

and the Lebesgue measure on R
n
+ at the point p ∈ R

n
+:

(2.4) vol(PΓ(p)) =
(AΓ)∗(d�1 ∧ · · · ∧ d�e)

dp1 ∧ · · · ∧ dpn

∣∣∣∣
p

,

where (AΓ)∗(d�1 ∧ · · · ∧ d�e) is the n-form on R
n
+ obtained by integrating

the volume form on R
e
+ along the fiber π−1(p). This definition is equivalent

to imposing

(2.5)
∫

D
vol(PΓ(p))dp1 ∧ · · · ∧ dpn =

∫

A−1
Γ (D)

d�1 ∧ · · · ∧ d�e

for every open subset D ⊂ R
n
+ with compact closure. We define the

Euclidean volume function by

(2.6) vE
g,n(p) = vE

g,n(p1, . . . , pn) =
∑

Γ trivalent ribbon
graph of type (g,n)

vol(PΓ(p))
|Aut(Γ)| .
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This is the Euclidean volume of the moduli space Mg,n considered as the
orbi-cell complex

(2.7) RGg,n(p) def= π−1(p) =
∐

Γ ribbon graph
of type (g,n)

PΓ(p)
Aut(Γ)

∼= Mg,n

with the prescribed perimeter length p ∈ R
n
+. Only degree 3 (or trivalent)

graphs contribute to the volume function because they parametrize the top
dimensional cells. Since dimRRGg,n(p) = 2(3g − 3 + n), we expect that the
definition of the push-forward measure and the relation (2.5) imply that the
volume function vE

g,n(p) has the polynomial growth of order 2(3g − 3 + n)
as p → ∞. We will verify this growth order in Section 5 (5.3).

3. Topological recursion for the number of integral
ribbon graphs

It is a difficult task to find a topological recursion formula for the Euclidean
volume functions vE

g,n(p) directly from its definition. One might think that
the Weil–Petersson volume of the moduli of bordered hyperbolic surfaces
[34, 35] would give the Euclidean volume at the long boundary limit, but
actually the limit naturally converges to the symplectic volume we consider
in Section 6. The straightforward method for the Euclidean volume is indeed
to go through the detour of considering the lattice point counting. We there-
fore first derive a recursion formula for the number of metric ribbon graphs
with integer edge lengths, take its Laplace transform, and then extract the
topological recursion for the Euclidean volume functions.

Thus our main subject of this section is the set of all metric ribbon
graphs RGZ+

g,n whose edges have integer lengths. We call such a ribbon graph
an integral ribbon graph. Following [40], let us define the weighted number∣∣RGZ+

g,n(p)
∣∣ of integral ribbon graphs with prescribed perimeter lengths p ∈

Z
n
+ (figure 2):

(3.1) Ng,n(p) =
∣∣RGZ+

g,n(p)
∣∣ =

∑

Γ ribbon graph
of type (g,n)

∣∣{x ∈ Z
e(Γ)
+ | AΓx = p}∣∣
|Aut(Γ)| .

Since the finite set {x ∈ Z
e(Γ)
+ | AΓx = p} is a collection of lattice points in

the polytope PΓ(p) with respect to the canonical integral structure Z ⊂ R of
the real numbers,Ng,n(p) can be thought of as counting the number of lattice
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Figure 2: A ciliation in a face. The cilium is placed on a bordering edge, 0.5
unit length away from the nearest vertex.

points in RGg,n(p) with a weight factor 1/|Aut(Γ)| for each ribbon graph.
The function Ng,n(p) is a symmetric function in p = (p1, . . . , pn) because
the summation runs over all ribbon graphs of topological type (g, n) whose
boundaries are labeled by the index set N .

Remark 3.1. The function (3.1) was first considered in [40]. Note that we
do not allow the integer vector p ∈ Z

n
+ to have any 0 entry, since each face

of a ribbon graph must have a positive perimeter length. Note that AΓx = 0
has no positive solutions. Therefore, the natural extension of the definition
(3.1) to the case of p = 0 would give Ng,n(0) = 0.

Using the lattice point interpretation, it is easy to see that the relation
between this function and the Euclidean volume function is the same as
that of the Riemann sum and the Riemann integral. Let k be a positive
integer and D ⊂ R

n
+ an open domain with compact closure. Then for every

continuous function f(p) on D, the definition of the Riemann integration in
terms of Riemann sums gives

(3.2) lim
k→∞

∑

p∈D∩ 1
k

Z
n
+

Ng,n(kp)f(p)
1

k3(2g−2+n)
=
∫

D
vE
g,n(p)f(p)dp1 · · · dpn.

This equality holds because our definition of the volume uses the push-
forward measure. We note that as a function in p there is no simple direct
relation between the values Ng,n(p) and vE

g.n(p). For example, Ng,n(p) = 0
if
∑n

i=1 pi is odd because of (2.3), but the volume function is not subject to
such a relation.

To derive a topological recursion for Ng,n(p), we introduce the notion of
ciliation.

Definition 3.1. A ciliation is an assignment of a cilium in a face attached
to a bordering edge (see figure 2). Let � ∈ Z+ be the length of the edge on
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which the ciliation is attached. We place the root of the cilium at a half-
integer length away from the vertices bounding the edge. Thus no cilium is
attached to a vertex of a ribbon graph.

The number of ciliations of a metric ribbon graph Γ with integer edge
lengths is given by (2.3). Indeed, if we count with respect to the edges, then
there are 2� ways for a ciliation to each edge because the cilium can be
placed on each side of the edge. And each face i has pi ways of ciliation.
Thus the total number of ciliations is p1 + · · · + pn.

For brevity of notation, we denote by pI = (pi)i∈I for a subset I ∈ N =
{1, 2, . . . , n}. The cardinality of I is denoted by |I|.

Theorem 3.1. The number of integral metric ribbon graphs with prescribed
boundary lengths satisfies the following topological recursion formula:

p1Ng,n(pN ) =
1
2

n∑

j=2

[
p1+pj∑

q=0

q(p1 + pj − q)Ng,n−1(q, pN\{1,j})

+H(p1 − pj)
p1−pj∑

q=0

q(p1 − pj − q)Ng,n−1(q, pN\{1,j})

−H(pj − p1)
pj−p1∑

q=0

q(pj − p1 − q)Ng,n−1(q, pN\{1,j})

]

+
1
2

∑

0≤q1+q2≤p1

q1q2(p1 − q1 − q2)

⎡

⎢⎢⎣Ng−1,n+1(q1, q2, pN\{1})

+
stable∑

g1+g2=g
I�J=N\{1}

Ng1,|I|+1(q1, pI)Ng2,|J |+1(q2, pJ)

⎤

⎥⎥⎦ .(3.3)

Here

H(x) =

{
1 x > 0,
0 x ≤ 0.

is the Heaviside function, and the last sum is taken for all partitions g =
g1 + g2 and I � J = N \ {1} subject to the stability condition 2g1 − 1 + I > 0
and 2g2 − 1 + |J | > 0.
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Proof. The key idea is to count all integral ribbon graphs with a cilium
placed on the face named 1. The number is clearly equal to p1Ng,n(pN ).
We then analyze what happens when we remove the ciliated edge from the
ribbon graph. There are several situations after the removal of this edge.
The right-hand side of the recursion formula is obtained by the case-by-case
analysis of the edge removal operation. For any ciliated ribbon graph of
type (g, n) subject to the condition 2g − 2 + n > 1, removing the ciliated
edge creates a new graph of type (g, n− 1) or (g − 1, n+ 1), or two disjoint
graphs of types (g1, n1 + 1) and (g2, n2 + 1) subject to the stability condition
and the partition condition

{
g1 + g2 = g

n1 + n2 = n− 1.

Note that in each case the quantity 2g − 2 + n is reduced exactly by 1.
Let η be the edge bordering face 1 of a ribbon graph Γ on which the

cilium is placed, and a1η the incidence number of (2.2). Let � ∈ Z+ be the
length of edge η. There are two main situations: a1η = 1 and a1η = 2. Each
main situation breaks down further into three cases. Before examining each
care in detail, we first need to analyze the effect of Aut(Γ) in the edge
removal operation. Note that the automorphism group fixes each face. Thus
η moves to another edge η′ of face 1. If η = η′, then the automorphism is
unaffected by the edge removal and we have Aut(Γ) = Aut(Γ \ η), where
the right-hand side is a product group if Γ \ η is disconnected. If η = η′,
then placing a cilium on η or η′ inside face 1 is indistinguishable, and this
identification is accounted for in the counting p1Ng,n(pN ).

Case 1. a1η = ajη = 1 for j ≥ 2, p1 > � and pj > �. Define q = (p1 − �) +
(pj − �) > 0. Then we have

{
q − p1 + pj = 2(pj − �) > 0
q + p1 − pj = 2(p1 − �) > 0.

Therefore, q > |p1 − pj |. Geometrically, q is the perimeter length of the
face created by removing edge η that separates faces 1 and j (see figure 3).

To recover the original ribbon graph with a cilium on edge η of length
� from the one without edge η, we need to place the edge on the face of
perimeter q, and place a cilium on this edge. Here we note that the data
pi, pj , q and � are all prescribed. The number of ways to place an endpoint
of the edge on the face of perimeter length q is q. This point uniquely
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Figure 3: Case 1: a1η = ajη = 1, p1 > � and pj > �.

determines the edge we need, since the other endpoint is p1 − � away from
the first endpoint along the perimeter measured by the clockwise distance.
The enclosed face of perimeter length p1 becomes face 1, and the other side
of the newly placed edge is face j. Since the ciliation is done on face 1, there
are � choices for the assignment of the root of the cilium. Altogether, the
contribution of this case is

(3.4)
p1+pj∑

q=|p1−pj |+1

q
p1 + pj − q

2
Ng,n−1(q, pN\{1,j}).

Case 2. a1η = ajη = 1 for j ≥ 2, and p1 ≥ pj = �. Since pj = �, face j and
edge η are the same and forms a loop. This loop is connected to face 1 by
an edge η′ of incidence number 2. Let �′ be the length of this connecting
edge, which is bounded by (p1 − pj)/2 ≥ �′ ≥ 0 (see figure 4, left). This time
define q = p1 − pj − 2�′. This is the perimeter length of the face created by
removing face j and edge η′. In this situation, removing edge η (= face j)
alone does not create an admissible ribbon graph, since edge η′ remains
with a vertex of degree 1 at one end. Therefore, we need to remove the
entire tadpole consisting of a head of face j and a tail of edge η′. The cilium
is on face 1, which is attached to the outer boundary of face j.

To recover the original graph from the result of this tadpole removal,
we have q choices for the tadpole placement and pj = � choices for ciliation.
Therefore, the contribution from this case is

(3.5)
p1−pj∑

q=0

qpjNg,n−1(q, pN\{1,j}).

Case 3. a1η = ajη = 1 for j ≥ 2, and pj ≥ p1 = �. The situation is similar
to Case 2 (see figure 4, center). Let η′ be the edge of length �′ that connects
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Figure 4: Case 2 (left): a1η = ajη = 1 and p1 ≥ pj = �; Case 3 (center): a1η =
ajη = 1 and pj ≥ p1 = �; and Case 4 (right): a1η = 2 and the edge η connects
a loop j to the rest of the graph.

face 1 and face j. Define q = pj − p1 − 2�′. This is the perimeter length of
the face created by removing the entire tadpole consisting of face 1 with
a cilium as its head and edge η′ as its tail. We have q choices for tadpole
placement and p1 choices for ciliation. Thus the contribution is

(3.6)
pj−p1∑

q=0

qp1Ng,n−1(q, pN\{1,j}).

Case 4. a1η = 2 and removal of edge η separates a single loop j for some
j ≥ 2 from the rest of the graph (see figure 4, right). It is necessary that p1 >
pj in this case. Since a single loop alone is not an admissible graph, we need
to remove face j together when we remove edge η. Define q = p1 − pj − 2�,
which is the perimeter length of the face created after the removal of the
tadpole. This time the recovery process has q choices of tadpole placement
and 2� choices for ciliation, because the cilium can be placed on either side
of the tail. Thus the contribution is

(3.7)
p1−pj∑

q=0

q(p1 − pj − q)Ng,n−1(q, pN\{1,j}).

Case 5. a1η = 2 and removal of edge η creates a connected ribbon graph.
The removal of edge η breaks face 1 into two separate faces of perimeter
lengths q1 and q2 subject to the condition 0 < q1 + q2 < p1. The removal of
the edge reduces the genus by 1, and increases the number of faces by 1.
We have the equality p1 = q1 + q2 + 2� (see figure 5). To recover the orig-
inal graph from the result of the edge removal, we have q1 choices for one
endpoint of edge η, q2 choices for the other endpoint, and 2� choices for
ciliation, again because the cilium can be placed on either side of edge η.
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Figure 5: Case 5: a1η = 2 and removal of edge η creates a connected ribbon
graph.

Altogether the contribution is

(3.8)
1
2

∑

0≤q1+q2≤p1

q1q2(p1 − q1 − q2)Ng−1,n+1(q1, q2, pN\{1}).

Here we need the factor 1
2 , which is the symmetry factor of interchanging q1

and q2.

Case 6. a1η = 2 and removal of edge η creates a disjoint union of two ribbon
graphs. There are n faces in the original ribbon graph Γ. The removal of edge
η breaks face 1 into two separate faces of perimeter lengths q1 and q2. The
other faces 2, 3, . . . , n remain intact. Let I ⊂ N \ {1} be the label of faces
that are connected to the new face of perimeter length q1, and J ⊂ N \ {1}
for q2. Then the two disjoint ribbon graphs have types (g1, |I| + 1) and
(g2, |J | + 1) satisfying the partition condition (figure 6):

{
g1 + g2 = g

I � J = N \ {1}.
The contribution from this case is

1
2

∑

0≤q1+q2≤p1

q1q2(p1 − q1 − q2)
stable∑

g1+g2=g
I�J=N\{1}

Ng1,|I|+1(q1, pI)Ng2,|J |+1(q2, pJ)

(3.9)

with the symmetry factor 1
2 corresponding to interchanging q1 and q2.

Summing all contributions (3.4)–(3.9), we obtain

p1Ng,n(pN ) =
n∑

j=2

p1+pj∑

q=|p1−pj |+1

q
p1 + pj − q

2
Ng,n−1(q, pN\{1,j})
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Figure 6: Case 6: a1η = 2 and removal of edge η creates a disjoint union of
two ribbon graphs.

+
n∑

j=2

H(p1 − pj)
p1−pj∑

q=0

q(p1 − q) Ng,n−1(q, pN\{1,j})

+
n∑

j=2

H(pj − p1)
pj−p1∑

q=0

qp1 Ng,n−1(q, pN\{1,j})

+
1
2

∑

0≤q1+q2≤p1

q1q2(p1 − q1 − q2)

⎡

⎢⎢⎣Ng−1,n+1(q1, q2, pN\{1})

+
stable∑

g1+g2=g
I�J=N\{1}

Ng1,|I|+1(q1, pI)Ng2,|J |+1(q2, pJ)

⎤

⎥⎥⎦ .(3.10)

If we allow the variable q to range from 0 to p1 + pj in the first summation of
the right-hand side of (3.10), then we need to compensate the non-existing
cases. Note that we have

−
n∑

j=2

|p1−pj |∑

q=0

q
p1 + pj − q

2
Ng,n−1(q, pN\{1,j})

+
n∑

j=2

H(p1 − pj)
p1−pj∑

q=0

q
2p1 − 2q

2
Ng,n−1(q, pN\{1,j})

+
n∑

j=2

H(pj − p1)
pj−p1∑

q=0

q
2p1

2
Ng,n−1(q, pN\{1,j})

=
n∑

j=2

H(p1 − pj)
p1−pj∑

q=0

q
p1 − pj − q

2
Ng,n−1(q, pN\{1,j})
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−
n∑

j=2

H(pj − p1)
pj−p1∑

q=0

q
pj − p1 − q

2
Ng,n−1(q, pN\{1,j}).(3.11)

Substituting (3.11) in (3.10), we obtain (3.3). This completes the proof. �

Remark 3.2. The topological recursion for Ng,n(p) was first considered
by Norbury in [40]. His proof is similar in that it involved an edge removal
operation, but the main formula and its proof therein contained are incor-
rectly recorded — the terms involving products of functionsNg,n were double
counted and need a compensating factor of 1

2 . A corrected version appears
in [10,42]. Our proof presented here is new, and is based on a different idea
using ciliation.

4. The Laplace transform of the number of integral
ribbon graphs

The limit formula (3.2) tells us that Ng,n(p) asymptotically behaves like
a polynomial for large p ∈ Z

n
+, and the coefficients of the leading terms

correspond to that of the Euclidean volume function vE
g,n(p). The lack of

the direct relation between Ng,n(p) and vE
g,n(p), together with Equation

(3.2), suggest that we need to consider an integral transform, such as the
Laplace transform of Ng,n(p), to extract the information of the Euclidean
volume of RGg,n(p) from it. Since

∫ ∞

0
xme−xw dx =

m!
wm+1

for a complex variable w ∈ C with Re(w) > 0, the coefficients of the highest
order poles of the Laplace transform

(4.1) Lg,n(w1, . . . , wn) def=
∑

p∈Z
n
+

Ng,n(p)e−〈p,w〉

should represent the Euclidean volume of RGg,n(p). Here 〈p, w〉 =
p1w1 + · · · + pnwn. This section is devoted to the analysis of the Laplace
transform of the topological recursion (3.3).

To relate our investigation with the Hurwitz theory and the Witten–
Kontsevich theory, and in particular from the point of view of the polynomial
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expressions of [15, 38], we introduce new complex coordinates

(4.2) e−w =
t+ 1
t− 1

and e−wj =
tj + 1
tj − 1

,

and express the result of the Laplace transform in terms of these t-variables.
This substitution makes sense because the Laplace transform is a rational
function in e−wj ’s.

Theorem 4.1. Define Lg,n(t1, . . . , tn) by

Lg,n(t1, . . . , tn) dt1 ⊗ · · · ⊗ dtn

= (d1 ⊗ · · · ⊗ dn)Lg,n

(
w1(t), . . . , wn(t)

)

=
∂n

∂w1 · · · ∂wn
Lg,n(w1, . . . , wn) dw1 ⊗ · · · ⊗ dwn(4.3)

using the coordinate change (4.2). The differentials dtj and dwj are related
by

dwj =
2

t2j − 1
dtj .

Then every Lg,n(t1, . . . , tn) for 2g − 2 + n > 0 is a Laurent polynomial of
degree 3g − 3 + n in t21, t

2
2, . . . , t

2
n. The initial values are

(4.4) L0,3(t1, t2, t3) = − 1
16

(
1 − 1

t21 t
2
2 t

2
3

)

and

(4.5) L1,1(t) = − 1
128

(t2 − 1)3

t4
.

The functions Lg,n(t1, . . . , tn) for all (g, n) subject to 2g − 2 + n > 0 are
uniquely determined by the topological recursion formula

Lg,n(tN ) = − 1
16

n∑

j=2

∂

∂tj

[
tj

t21 − t2j

(
(t21 − 1)3

t21
Lg,n−1(tN\{j})

− (t2j − 1)3

t2j
Lg,n−1(tN\{1})

)]
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− 1
32

(t21 − 1)3

t21

⎡

⎢⎢⎣Lg−1,n+1(t1, t1, tN\{1})

+
stable∑

g1+g2=g
I�J=N\{1}

Lg1,|I|+1(t1, tI)Lg2,|J |+1(t1, tJ)

⎤

⎥⎥⎦ .(4.6)

Here we use the same convention of notations as in Theorem 3.1.

If we assume (4.4) to (4.6), then it is obvious that Lg,n(tN ) is a Laurent poly-
nomial in t21, . . . , t

2
n of degree 3g − 3 + n. The proof of (4.6) is given in 7. The

initial values (4.4) and (4.5) are calculated in
7.

5. The Euclidean volume of the moduli space

In this section we extract the information on the Euclidean volume function
from the Laurent polynomial Lg,n(tN ). We then derive a topological recur-
sion for the Laplace transform of the Euclidean volume. Let us recall the
Euclidean volume function vE

g,n(p) of (2.6).

Proposition 5.1. Let V E
g,n(tN ) be the homogeneous leading terms of

Lg,n(tN ) for (g, n) subject to 2g − 2 + n > 0. Then we have

(5.1) V E
g,n(tN )dt1 ⊗ · · · ⊗ dtn = d1 ⊗ · · · ⊗ dn

∫

R
n
+

vE
g,n(p)e−〈w,p〉dp1 · · · dpn,

where we change the w-variables to the t-variables according to the transfor-
mation (4.2).

Proof. From (3.2), we have
∫

R
n
+

vE
g,n(p)e−〈w,p〉dp1 · · · dpn = lim

k→∞

∑

p∈ 1
k

Z
n
+

Ng,n(kp)e−〈w,p〉 1
k3(2g−2+n)

= lim
k→∞

∑

p∈Z
n
+

Ng,n(p)e−
1
k
〈w,p〉 1

k3(2g−2+n)

= lim
k→∞

Lg,n

(w1

k
, · · · , wn

k

) 1
k3(2g−2+n)

.
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The coordinate transformation (4.2) has the expansion near w = 0

(5.2)
t = t(w) = − 2

w
− w

6
+
w3

360
− w5

15,120
+ · · · ,

w = w(t) = −2
t
− 2

3t3
− 2

5t5
− · · · .

Since

Lg,n(tN ) =
∂n

∂t1 · · · ∂tnLg,n

(
w(t1), . . . , w(tn)

)

is a Laurent polynomial of degree 2(3g − 3 + n), and since the change w �→
w/k makes

t �−→ k t+ O
(

1
k

)

for a fixed value t, we have

∂n

∂t1 · · · ∂tn

∫

R
n
+

vE
g,n(p)e−〈w(t),p〉dp1 · · · dpn

= lim
k→∞

∂n

∂t1 · · · ∂tn Lg,n

(
w(t1)
k

, · · · , w(tn)
k

)
1

k3(2g−2+n)

= lim
k→∞

Lg,n

(
kt1 + O

(
1
k

)
, · · · , ktn + O

(
1
k

))
kn

k3(2g−2+n)

= V E
g,n(tN ).

This completes the proof. �
Since vE

g,n(p) is defined by the push-forward measure of the incidence
matrix AΓ of (2.2) at each point Γ ∈ RGg,n(p), we have

∫

R
n
+

vE
g,n(p)e−〈w,p〉dp1 · · · dpn

=
∑

Γ trivalent ribbon
graph of type (g,n)

1
|Aut(Γ)|

∫

R
n
+

vol(PΓ(p))e−〈w,p〉dp1 · · · dpn

=
∑

Γ trivalent ribbon
graph of type (g,n)

1
|Aut(Γ)|

∫

R
e(Γ)
+

e−〈w,AΓx〉dx1 · · · dxe(Γ)

=
∑

Γ trivalent ribbon
graph of type (g,n)

1
|Aut(Γ)|

e(Γ)∏

η=1

1
〈w, aη〉 ,(5.3)
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where a1, . . . , ae(Γ) are columns of the edge-face incidence matrix

AΓ =
[
a1

∣∣a2

∣∣ · · · ∣∣ae(Γ)

]
.

We note that e(Γ) takes its maximum value 3(2g − 2 + n) for a trivalent
graph. Thus the last line of (5.3) has a pole of order 3(2g − 2 + n) at w =
0. This expression also shows that the leading terms of Lg,n

(
w(tN )

)
as a

function in tN using the expansion (5.2) around tN ∼ ∞ are the Laplace
transform of the Euclidean volume function. In particular, we deduce that
Ng,n(p) behaves asymptotically like a polynomial of degree 2(3g − 3 + n)
for large p ∈ R

n
+.

Since V E
g,n(tN ) is the leading terms of Lg,n(tN ), it is easy to obtain a

topological recursion.

Theorem 5.1. The Laplace transformed Euclidean volume function
V E

g,n(tN ) in the stable range 2g − 2 + n > 0 satisfies the following topological
recursion:

V E
g,n(tN ) = − 1

16

n∑

j=2

∂

∂tj

[
tj

t21 − t2j

(
t41V

E
g,n−1(tN\{j}) − t4jV

E
g,n−1(tN\{1})

)]

− 1
32

t41
[
V E

g−1,n+1(t1, t1, tN\{1})

+
stable∑

g1+g2=g
I�J=N\{1}

V E
g1,|I|+1(t1, tI)V

E
g2,|J |+1(t1, tJ)

⎤

⎥⎥⎦ .(5.4)

Proof. The leading contribution of (4.6) comes from the leading term of

(t2 − 1)3

t2
= t4 − 3t2 + 3 − 1

t2
.

Thus (4.6) reduces to (5.4). �

6. The symplectic volume of the moduli space and the
Kontsevich constants

Suppose the ith face of a metric ribbon graph Γ ∈ RGg,n(p) consists of
edges labeled by 1, 2, . . . , k in this cyclic order. (Here again we are abusing
the notation to indicate a metric ribbon graph by the same letter Γ.) If an
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Figure 7: The vector field X0.

edge appears twice in this list, then we count it repetitively. Denote by �α
the length of edge α. They satisfy the relation �1 + · · · + �k = pi. Note that
the collection of edge lengths forms an orbifold coordinate system on RGg,n

at each point Γ. Kontsevich [30] defines a two-form on RGg,n by

(6.1) ωK(p) =
n∑

i=1

p2
iωi, ωi =

∑

α<β

d

(
�α
pi

)
∧ d
(
�β
pi

)
on face i.

If we change the cyclic order from (1, 2, . . . , k) to (2, 3, . . . , k, 1) and define
the form ω′

i in the same manner, then we have

ωi − ω′
i = 2d

(
�1
pi

)
∧ d
(
�2 + · · · + �k

pi

)
= 0.

Therefore, each ωi and ωK(p) are well defined as genuine two-forms on
RGg,n. The restriction of the two-form ωK(p) defines a symplectic structure
on RGg,n(p) ∼= Mg,n for each p ∈ R

n
+.

To see the non-degeneracy of ωK(p), let us analyze the perimeter map π
locally around a trivalent ribbon graph Γ. As in Section 2 we give a name to
all edges of Γ, this time without repetition, indexed by {0, 1, 2, . . . , e(Γ) − 1}.
Faces of Γ are indexed by N = {1, 2, . . . , n}. The edge-face incidence matrix
AΓ of (2.2) gives the differential of the perimeter map

AΓ = dπΓ

at the metric ribbon graph Γ if it is trivalent. To set notations simple, we
assume that faces 1–4 and edges 0–4 are arranged as in figure 7.

Define the vector field

(6.2) X0 = − ∂

∂�1
+

∂

∂�2
− ∂

∂�3
+

∂

∂�4
.
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We then have

ιX0

(
p2
1ω1

)∣∣
RGg,n(p)

= −d�0 − d�1 − d�4,

ιX0

(
p2
2ω2

)∣∣
RGg,n(p)

= d�1 + d�2,

ιX0

(
p2
3ω3

)∣∣
RGg,n(p)

= −d�0 − d�2 − d�3,

ιX0

(
p2
4ω4

)∣∣
RGg,n(p)

= d�3 + d�4.

Therefore,

ιX0ωK(p)
∣∣
RGg,n(p)

= −2d�0

on the tangent space TΓRGg,n(p). This shows that the two-form ωK(p)
restricted on Ker(dπΓ) is a linear isomorphism. We refer to [2] for more
detail.

Alternatively, we can introduce the symplectic structure on RGr,n(p)
through symplectic reduction. The ribbon graph complex RGg,n comes with
a natural fibration on it, the tautological torus bundle

(6.3)

T
μ−−−−→ R

n
+

τ

⏐⏐�

RGg,n

.

The fiber of τ at a metric ribbon graph Γ is the cartesian product of the
boundary of the n faces of Γ, which is identified with the collection of n
polygons. Topologically each fiber of T is an n-dimensional torus Tn = (S1)n.
We use the same letter T for the total space of this torus bundle, whose
dimension 2(3g − 3 + 2n) is always even.

The identification of the ith face of Γ ∈ RGr,n(p) and the circle S1 =
R/Z is given as follows. First we choose a vertex on the ith polygon, and
name the edges on the ith face as 1, 2, . . . , k in this cyclic order such that
the chosen vertex is the beginning point of edge 1 and the end point of
edge k. Let �α be the length of edge α as before. We choose a parameter φi

subject to 0 ≤ φi ≤ �1. Under the re-naming of the edges (1, 2, . . . , k) �−→
(2, 3, . . . , k, 1), φi changes to φ′i = φi + �1. The choice of the vertex and φi

is identified with an element of S1, and also determines the torus action on
the fibration T.
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Define a two-form Ω by

(6.4)

Ω =
n∑

i=1

ω̂i,

ω̂i =
∑

α<β

d�α ∧ d�β + d

(
φi

pi

)
∧ d(p2

i ),

The cyclic re-naming of edges changes ω̂i to

ω̂′
i =

∑

2≤α<β

d�α ∧ d�β +
∑

2≤α

d�α ∧ d�1 + d

(
φi + �1
pi

)
∧ d(p2

i ).

Therefore,

ω̂i − ω̂′
i =
∑

2≤β

d�1 ∧ d�β −
∑

2≤α

d�α ∧ d�1 + 2d�1 ∧ dpi = 0,

and hence Ω is a globally well-defined two-form on the total space T. The
moment map of the torus action on T is the assignment

μ : T � (Γ, φ1, . . . , φn) �−→ (p2
1, . . . , p

2
n) ∈ R

n
+.

The symplectic quotient μ−1(L)//Tn of T by this torus action is
(
RGg,n(p),

ωK(p)
)

of (6.1).
Now we define the symplectic volume of the moduli space Mg,n

∼=
RGg,n(p) by

(6.5) vS
g,n(p) =

∫

RGg,n(p)
exp
(
ωK(p)

)
.

Applying the recursion argument similar to our proof of Theorem 3.1 to the
symplectic reduction of RGg,n by the torus action, the following theorem
was established in [2].
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Theorem 6.1 [2]. The symplectic volume satisfies the following topological
recursion:

p1v
S
g,n(pN ) =

n∑

j=2

[∫ p1+pj

0
q(p1 + pj − q)vS

g,n−1(q, pN\{1,j})dq

+H(p1 − pj)
∫ p1−pj

0
q(p1 − pj − q)vS

g,n−1(q, pN\{1,j})dq

−H(pj − p1)
∫ pj−p1

0
q(pj − p1 − q)vS

g,n−1(q, pN\{1,j})dq

]

+ 2
∫∫

0≤q1+q2≤p1

q1q2(p1 − q1 − q2)

[
vS
g−1,n+1(q1, q2, pN\{1})

+
stable∑

g1+g2=g
I�J=N\{1}

vS
g1,|I|+1(q1, pI)vg2,|J |+1(q2, pJ) dq1 dq2

]
.(6.6)

The initial values are easy to calculate. For the case of (g, n) = (0, 3),
since the perimeter (p1, p2, p3) ∈ R

3
+ determines the length of each edge, the

symplectic form is 1 on a single point. Thus we have

(6.7) vS
0,3(p1, p2, p3) = 1.

The unique trivalent graph of type (g, n) = (1, 1) is given in figure 8, which
has the automorphism group Z/6Z. The perimeter map is given by p =
2(�1 + �2 + �3). The restriction of ωK(p) on RG1,1(p) is 2d�1 ∧ d�2. There-
fore, we have

(6.8) vS
1,1(p) =

1
6

∫

0≤�1+�2≤ p

2

2d�1 ∧ d�2 =
1
24

p2.

We now consider the Laplace transform of the symplectic volume
vS

g,n(p).

Theorem 6.2. The symmetric function V S
g,n(tN ) defined by the Laplace

transform

V S
g,n(t1, . . . , tn)dt1 ⊗ · · · ⊗ dtn

def= d1 ⊗ · · · ⊗ dn

∫

R
n
+

vS
g,n(p)e−〈w,p〉dp1 · · · dpn

(6.9)
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Figure 8: The trivalent ribbon graph of type (1, 1).

and the coordinate change

(6.10) wj = − 2
tj

satisfies the topological recursion

V S
g,n(tN ) = −1

4

∞∑

j=2

∂

∂tj

[
tj

t21 − t2j

(
t41V

S
g,n−1(wN\{j}) − t4jV

S
g,n−1(wN\{1})

)]
(6.11)

− 1
4
t41

⎛

⎜⎜⎝V
S
g−1,n+1(t1, t1, tN\{1})

+
∑

g1+g2=g,
I�J=N\{1}

V S
g1,|I|+1(t1, tI)V

S
g2,|J |+1(t1, tJ)

⎞

⎟⎟⎠ .

The proof of this theorem is given in 7. The very reason that Kontsevich
was interested in the symplectic volume of the moduli space is that it gives
the generating function of the intersection numbers (1.2)

(6.12) V S
g,n(tN ) = (−1)n

∑

d1+···dn

=3g−3+n

〈τd1 · · · τdn
〉g,n

n∏

j=1

(2dj + 1)!!
(
tj
2

)2dj

.

The topological recursion (6.11) produces a relation among the coefficients,
which is known as the DVV formula of [9], and is equivalent to the Virasoro
constraint condition of [51].
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Since the volume is for Mg,n and the intersection numbers are for Mg,n,
it is not obvious why they are the same thing. From the deep theory of
Mirzakhani [34, 35], it becomes obvious why and how they are related.

We are now ready to calculate the Kontsevich constants.

Theorem 6.3. The ratio of the two volume polynomials V S
g,n(tN ) and

V E
g,n(tN ) is a constant depending only on g and n:

(6.13) ρg,n(t) def=
V S

g,n(tN )
V E

g,n(tN )
= 25g−5+2n.

Proof. We use induction on 2g − 2 + n. From (6.7), (6.8), (B.3) and (B.6),
we have

(6.14)

{
V E

0,3(t1, t2, t3) = − 1
16 ,

V S
0,3(t1, t2, t3) = −1

8 ,
and

{
V E

1,1(t) = − 1
128 t

2,

V S
1,1(t) = − 1

32 t
2.

Thus the initial values satisfy (6.13). We observe that the recursion formulas
(5.4) and (6.11) are the same except for the constant factors on the first and
the second lines of the right-hand side. Therefore, if we changed V E

g,n(tN ) to
25g−5+2n · V E

g,n(tN ) in (5.4), then its recursion formula would become iden-
tical to (6.11). Since the recursion uniquely determines all values for (g, n)
subject to 2g − 2 + n > 0 from the initial values (6.14), we establish (6.13).
This completes the proof. �

7. The Eynard–Orantin theory on P
1

The number of integral ribbon graphs Ng,n(p) is a difficult function to deal
with because it is not given by a single formula. As we have noted, it behaves
like a polynomial for large p ∈ Z

n
+, while it takes value 0 whenever p1 +

· · · + pn is odd. Compared to this, the Laplace transformed function such as
Lg,n(tN ) is a far nicer object. Indeed Lg,n(tN ) is a Laurent polynomial and
satisfies a simple differential recursion formula (4.6). We also note that the
recursion formulas (4.6), (5.4) and (6.11) take a very similar shape. Over
the years several authors (including [4, 5, 8, 14–17,30, 33, 38, 45, 53, 54]) have
noticed that many different combinatorial structures (on the A-model side
of a topological string theory) can be uniformly treated on the B-model side,
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after taking the Laplace transform. The importance of the Laplace transform
as the mirror map was noted in [15]. This uniform structure after the Laplace
transform is the manifestation of the Eynard–Orantin theory. We will show
in this section that the recursions (4.6), (5.4), and (6.11) become identical
under the formalism proposed in [16].

We are not in the place to formally present the Eynard–Orantin formal-
ism in an axiomatic way. Instead of giving the full account, we are satisfied
with explaining a limited case when the spectral curve of the theory is P

1.
The word “spectral curve” was used in [16] because of the analogy of the
spectral curves appearing in the Lax formalism of integrable systems.

We start with the spectral curve C = P
1 \ S, where S ⊂ P

1 is a finite
set. We also need two generic elements x and y of H0(C,OC), where OC

denotes the sheaf of holomorphic functions on C. The condition we impose
on x and y is that the holomorphic maps

(7.1) x : C −→ C and y : C −→ C

have only simple ramification points, i.e., their derivatives dx and dy have
simple zeros, and that

(7.2) (x, y) : C � t �−→ (
x(t), y(t)

) ∈ C
2

is an immersion. Let Λ1(C) denote the sheaf of meromorphic one-forms on
C, and

(7.3) Hn = H0
(
Cn,Symn(Λ1(C))

)

the space of meromorphic symmetric differentials of degree n. The Cauchy
differentiation kernel is an example of such differentials:

(7.4) W0,2(t1, t2) =
dt1 ⊗ dt2
(t1 − t2)2

∈ H2.

In the literatures starting from [16], the Cauchy differentiation kernel has
been called the Bergman kernel, even thought it has nothing to do with the
Bergman kernel in complex analysis. A bilinear operator

(7.5) K : H ⊗H −→ H
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naturally extends to

K : Hn1+1 ⊗Hn2+1 � (f0, f1, . . . , fn1) ⊗ (h0, h1, . . . , hn2)

�−→ (K(f0, h0), f1, . . . , fn1 , h1, . . . , hn2) ∈ Hn1+n2+1

K : Hn+1 � (f0, f1, . . . , fn1) �−→ (K(f0, f1), f2, . . . , fn1) ∈ Hn.

Suppose we are given an infinite sequence {Wg,n} of differentials Wg,n ∈ Hn

for all (g, n) subject to the stability condition 2g − 2 + n > 0. We say this
sequence satisfies a topological recursion with respect to the kernel K if

Wg,n = K(Wg,n−1,W0,2) +K(Wg−1,n+1)(7.6)

+
1
2

stable∑

g1+g2=g
I�J=N\{1}

K
(
Wg1,|I|+1,Wg2,|J |+1

)
.

The characteristic of the Eynard–Orantin theory lies in the particular choice
of the Eynard kernel that reflects the parametrization (7.2) and the ramified
coverings (7.1). Let A = {a1, . . . , ar} ⊂ C be the set of simple ramification
points of the x-projection map. Since locally at each aλ the x-projection is
a double-sheeted covering, we can choose the deck transformation map

(7.7) sλ : Uλ
∼−→ Uλ,

where Uλ ⊂ C is an appropriately chosen simply connected neighborhood
of aλ.

Definition 7.1. The Eynard kernel is the linear map H ⊗H → H
defined by

K
(
f1(t1)dt1, f2(t2)dt2

)
(7.8)

=
1

2πi

r∑

λ=1

∮

|t−aλ|<ε
Kλ(t, t1)

(
f1(t)dt⊗ f2

(
sλ(t)

)
dsλ(t)

+ f2(t)dt⊗ f1

(
sλ(t)

)
dsλ(t)

)
,

where

(7.9) Kλ(t, t1) =
1
2

(∫ sλ(t)

t
W0,2(t, t1) dt

)
⊗ dt1

1(
y(t) − y

(
sλ(t)

))
dx(t)

,
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and 1
dx(t) is the contraction operator with respect to the vector field

(
dx

dt

)−1 ∂

∂t
.

The integration is taken with respect to the t-variable along a small loop
around aλ that contains no singularities other than t = aλ. A topological
recursion with respect to the Eynard kernel is what we call the Eynard–
Orantin recursion in this paper.

To convert (4.6) to the Eynard–Orantin formalism, we need to iden-
tify the spectral curve of the theory and the unstable case L0,2(t1, t2). The
spectral curve is a plane algebraic curve

(7.10) C =
{
(x, y) ∈ C

2
∣∣ xy = y2 + 1

}
,

which is the same curve considered in [41]. Here we introduce a different
parametrization

(7.11)
x(t) =

t+ 1
t− 1

+
t− 1
t+ 1

= 2 +
4

t2 − 1
,

y(t) =
t+ 1
t− 1

with a parameter t ∈ P
1 \ {1,−1} so that the resulting differentials become

Laurent polynomials. This use of the parametrization is similar to that of
[15, 38]. The x-projection

(7.12) π : C � t �−→ x(t) ∈ C

has simple ramification points at t = 0 and ∞, since

dx = − 8t
(t2 − 1)2

dt.

We note that since the map π is globally a branched double-sheeted covering,
its covering transformation is globally defined and is given by

(7.13) s : C � t �−→ s(t) = −t ∈ C.

The unstable (0, 2) case is calculated in 7, (B.9). The result is

L0,2(t1, t2)dt1 ⊗ dt2 =
dt1 ⊗ dt2
(t1 + t2)2

=
dt1 ⊗ dt2(
t1 − s(t2)

)2 .
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This quadratic differential form plays the role of the Cauchy differentiation
kernel. For every holomorphic differential f(t)dt on C, we have

− 1
2πi

∮
1
dt

[
f
(
s(t)
)
ds(t)L0,2(t, t1)dt⊗ dt1 + f(t)dtL0,2

(
s(t), t1

)
ds(t) ⊗ dt1

](7.14)

=
(

1
2πi

∮
f(−t)

(t+ t1)2
dt

)
⊗ dt1 +

(
1

2πi

∮
f(t)

(t− t1)2
dt

)
⊗ dt1 = 2f ′(t1)dt1,

where the operation 1
dt is the contraction by the vector field ∂

∂t , and the
integration is taken with respect to t along a positively oriented simple loop
that contains both t1 and s(t1). Actually, the contour integral should be
considered as the residue calculation at t = ∞ with respect to the opposite
orientation. This explains the minus sign in (7.14).

Theorem 7.1. The topological recursion (4.6) is equivalent to the Eynard–
Orantin recursion of [16]:

Lg,n(tN )dtN(7.15)

=
1

2πi

∫

Γ
K(t, t1)

[
n∑

j=2

(
Lg,n−1(t, tN\{1,j})dt

⊗ dtN\{1,j} ⊗ L0,2

(
s(t), tj

)
ds(t) ⊗ dtj

+ Lg,n−1

(
s(t), tN\{1,j})ds(t) ⊗ dtN\{1,j} ⊗ L0,2(t, tj)dt⊗ dtj

)

+ Lg−1,n+1

(
t, s(t), tN\{1}

)
dt⊗ ds(t) ⊗ dtN\{1}

+
stable∑

g1+g2=g
I�J=N\{1}

(
Lg1,|I|+1(t, tI)dt⊗ dtI

)

⊗
(
Lg2,|J |+1

(
s(t), tJ

)
ds(t) ⊗ dtJ

)]
.

Here the contour integration is taken with respect to t along a curve Γ that
consists of a large circle of the negative orientation centered at the origin with
radius r > maxj∈N |tj |, and a small circle around the origin of the positive
orientation. We use a simplified notation dtI =

⊗
i∈I dti for I ⊂ N .

Remark 7.1. 1. The contour integral (7.15) can be phrased as the sum
of the residues of the integrand at the raminfication points of the
spectral curve t = 0 and ∞, which is the language used in [16].
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2. The first and the second lines of the right-hand side of (7.15) are
unstable (0, 2) cases of the fourth line when we have (g1, I) = (0, {j})
or (g2, J) = (0, {j}).

3. In terms of the Cauchy differentiation kernel W0,2(t, t1) of (7.4), we
have

L0,2(t, t1)dt⊗ dt1 = W0,2(t, t1) − π∗W0,2(x, x1)

as proved in 7, (B.10). Since π∗W0,2(x, x1) is invariant under the deck
transformation s : C → C applied to the entry x, and since Lg,n(tN )
is an even function by Theorem 4.1, we can replace L0,2(t, t1)dt⊗ dt1
with W0,2(t, t1) in (7.15).

Proof. The Eynard kernel of our setting is

K(t, t1) =
1
2

(∫ s(t)

t
L0,2(t, t1) dt

)
⊗ dt1

1(
y(t) − y

(
s(t)
))
dx(t)

=
1
2

(∫ s(t)

t

dt

(t+ t1)2

)
⊗ dt1

1(
t+1
t−1 − −t+1

−t−1

)
∂
∂t

(
t+1
t−1 + t−1

t+1

) 1
dt

= −1
2

(
1

t− t1
+

1
t+ t1

)
1
32

(t2 − 1)3

t2
1
dt

⊗ dt1.

Thus for any symmetric Laurent polynomial f(t, s) in t2 and s2, we have

1
2πi

∫

Γ
K(t, t1)f

(
t, s(t)

)
dt⊗ ds(t) = −f(t1, t1)

1
32

(t21 − 1)3

t21
dt1,

since s(t) = −t. Therefore, the third and the fourth lines of the right-hand
side of (7.15) become

− 1
32

(t21 − 1)3

t21

[
Lg−1,n+1(t1, t1, tN\{1})
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+
stable∑

g1+g2=g
I�J=N\{1}

Lg1,|I|+1(t1, tI)Lg2,|J |+1(t1, tJ)

]
⊗ dtN .

This is because Lg,n(tN ) for (g, n) in the stable range is a Laurent polynomial
in t21, . . . , t

2
n, hence the only simple poles in the complex t-plane within the

contour Γ of (7.15) that appear in the third and fourth lines are located at
t = t1 and −t1.

Even though the first and the second lines of the right-hand side of (7.15)
are somewhat a degenerate case of the fourth line as remarked above, the
analysis becomes different because L0,2(t, tj) contributes new poles in the
t-plane. First we note that

Lg,n−1(t, tN\{1,j})dt⊗ dtN\{1,j} ⊗ L0,2

(
s(t), tj

)
ds(t) ⊗ dtj

(7.16)

+ Lg,n−1

(
s(t), tN\{1,j})ds(t) ⊗ dtN\{1,j} ⊗ L0,2(t, tj)dt⊗ dtj

= −Lg,n−1(t, tN\{1,j})
(

1
(−t+ tj)2

+
1

(t+ tj)2

)
dt⊗2 ⊗ dtN\{1}

= −2Lg,n−1(t, tN\{1,j})
∂

∂tj

tj
t2 − t2j

dt⊗2 ⊗ dtN\{1}.

Apply the operation 1
2πi

∫
ΓK(t, t1) to (7.16) and collect the residues at t = t1

and t1. We then obtain

− 1
16

∂

∂tj

[
tj

t21 − t2j

(t21 − 1)3

t21
Lg,n−1(tN\{j})

]
dtN .

When t ∼ tj or −tj , we use (7.14) to derive

− 1
2πi

∫

Γ

t

t2 − t21

1
32

(t2 − 1)3

t2
· 1
dt

⊗ dt1

⊗ (−1)Lg,n−1(t, tN\{1,j})
(

1
(−t+ tj)2

+
1

(t+ tj)2

)
dt⊗2 ⊗ dtN\{1}

= − 1
32

∂

∂tj

[
tj

t2j − t21

(t2j − 1)3

t2j
Lg,n−1(tj , tN\{1,j})

]
dtN



Topological recursion for the volume of the moduli of curves 677

− 1
32

(
− ∂

∂tj

)[ −tj
t2j − t21

(t2j − 1)3

t2j
Lg,n−1(−tj , tN\{1,j})

]
dtN

=
1
16

∂

∂tj

[
tj

t21 − t2j

(t2j − 1)3

t2j
Lg,n−1(tj , tN\{1,j})

]
dtN .

This completes the proof. �

Here we note that the spectral curve (7.11), and hence the topological
recursion theory of our case, has a non-trivial automorphism. It is given by
the transformation

(7.17) t �−→ 1
t
,

which induces an automorphism

(7.18) C � (x, y) �−→ (−x,−y) ∈ C

of the spectral curve. It interchanges the two ramification points of figure 9.
Let

u =
1
t
, uj =

1
tj

for j = 1, 2, . . . , n.

Then we have

L0,2(t, tj)dt⊗ dtj = L0,2(u, uj)du⊗ duj ,

and ydx = (−y)d(−x). It follows thatK(t, t1) = K(u, u1), and we have Z/2Z

as the automorphism group of the theory. Reflecting this automorphism, the
function Lg,n(tN ) exhibits the following transformation property:

(7.19) Lg,n

(
1
t1
, . . . ,

1
tn

)
= (−1)nLg,n(t1, . . . , tn)t21 · · · t2n.

The reason that we choose t as our preferred parameter rather than
1/t in (4.2) is to extract the polynomial behavior of the Laplace transform
of the Euclidean volume. As t→ ∞ the spectral curve C degenerates to a
parabola, and the theory changes from counting the integral ribbon graphs
to calculating the Euclidean volume, as we shall see below. By the symmetry
argument, the t→ 0 limit also deforms C to a parabola. We can see from
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Figure 9: The spectral curve x = y + 1
y .

(4.2) that

t→ ∞ ⇐⇒ e−w =
t+ 1
t− 1

→ 1 ⇐⇒ w → 0,

and the w → 0 behavior of the Laplace transform represents the Euclidean
volume function, as explained in Section 5. Even though there is a symmetry
in the t-variables, in terms of w, we have

t→ 0 ⇐⇒ e−w =
t+ 1
t− 1

→ −1,

and this limit does not correspond to bringing the mesh of the lattice to 0.
By restricting (7.15) to the top degree terms using

(t2 − 1)3

t2
= t4 − 3t2 + 3 − 1

t2
,

we obtain the recursion for the Euclidean volume (figure 10).
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Figure 10: The integration contour Γ. This contour encloses an annulus
bounded by two concentric circles centered at the origin. The outer one has
a large radius r > maxj∈N |tj | and the negative orientation, and the inner
one has an infinitesimally small radius with the positive orientation.

Theorem 7.2. Define the Eynard kernel for the Euclidean volume by

(7.20) KE(t, t1) = −1
2

(
1

t− t1
+

1
t+ t1

)
1
32

t4
1
dt

⊗ dt1

on the spectral curve CE defined by the parametrization

(7.21)

{
x− 2 = 4

t2 ,

y − 1 = 2
t .

Then the Laplace transformed Euclidean volume function V E
g,n(tN ) satisfies

an Eynard-Orantin type recursion

V E
g,n(tN )

(7.22)

= − 1
2πi

∮
KE(t, t1)

[
n∑

j=2

(
V E

g,n−1(t, tN\{1,j})dt⊗ dtN\{1,j} ⊗
ds(t) ⊗ dtj(
s(t) + tj

)2

+ V E
g,n−1

(
s(t), tN\{1,j}

)
ds(t) ⊗ dtN\{1,j} ⊗

dt⊗ dtj
(t+ tj)2

)

+ V E
g−1,n+1

(
t, s(t), tN\{1})dt⊗ ds(t) ⊗ dtN\{1}

+
stable∑

g1+g2=g
I�J=N\{1}

(
V E

g1,|I|+1(t, tI)dt⊗ dtI

)
⊗
(
V E

g2,|J |+1

(
s(t), tJ

)
ds(t) ⊗ dtJ

)]
.

Here the integration contour is a positively oriented circle of large radius.
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The geometry behind the recursion formula (7.22) is the following. The
Euclidean volume is obtained by extracting the asymptotic behavior of
Lg,n(tN ) as t→ ∞. The parameterization

{
x = 2 + 4

t2−1 ,

y = 1 + 2
t−1 .

of the spectral curve (7.11) of figure 9 near t ∼ ∞ gives a neighborhood of one
of the critical points (x, y) = (2, 1). Thus we define a new spectral curve CE

by the parametrization (7.21), which is simply a parabola x− 2 = (y − 1)2.
The deck-transformation of the x-projection of the parabola CE is still given
by t �→ s(t) = −t. The recipe of (7.9) then gives (7.20), provided that the
unstable (0, 2) geometry still gives the same kernel

(7.23) V E
0,2(t1, t2) =

dt1 ⊗ dt2
(t1 + t2)2

.

The continuum limit of (B.7) is

vE
0,2(p1, p2) =

1
p1
δ(p1 − p2).

We thus calculate

(∫ ∞

0

∫ ∞

0
p1p2v

E
0,2(p1, p2)e−(p1w1+p2w2)dp1 dp2

)
dw1 ⊗ dw2 =

dw1 ⊗ dw2

(w1 + w2)2
.

(7.24)

The coordinate change (4.2) near t ∼ ∞ becomes

e−w =
t+ 1
t− 1

�−→ 1 − w = 1 +
2
t
,

i.e., w = −2
t . Under this change, which is an automorphism of P

1, (7.24)
remains the same, and we obtain (7.23). The x-projection of the spectral
curve CE defined by the parametrization (7.21) now has only one ramifica-
tion point at t = ∞. Thus the integration contour Γ of (7.15) has changed
into a single large circle in (7.22).

The Eynard–Orantin recursion for the symplectic volume is given by the
choice of the spectral curve CS parametrized by

(7.25)

{
x = 1

t2 ,

y = 1
t .
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Since the curve is isomorphic to C, we use the same Cauchy differentiation
kernel W02(t1, t2) of (7.4) in place of V S

0,2(t1, t2). The Eynard kernel (7.9) for
this case is

(7.26) K(t, t1) = −1
2

(
− 1
s(t) + t1

+
1

t+ t1

)
t4

4
1
dt

⊗ dt1.

Then the recursion takes exactly the same form of (7.22).

Appendix A. calculation of the Laplace transforms

In this Appendix we prove the Laplace transform formulas used in the main
text. We first derive the topological recursion for

(A.1) L̂g,n(w1, . . . , wn) =
∑

p∈Z
n
≥0

p1p2 · · · pnNg,n(p)e−〈p,w〉.

Since we multiply the number of integral ribbon graphs by p1 · · · pn, we
can allow all non-negative integers pj in the summation, which makes our
calculations simpler.

Proposition A.1. The Laplace transform L̂g,n(wN ) satisfies the following
topological recursion:

L̂g,n(wN ) =
n∑

j=2

∂

∂wj

[(
ew1

ew1 − ewj
− ew1+wj

ew1+wj − 1

)
(A.2)

×
(
L̂g,n−1(wN\{j})
(ew1 − e−w1)2

− L̂g,n−1(wN\{1})
(ewj − e−wj )2

)]

+
1

(ew1 − e−w1)2

[
L̂g−1,n+1(w1, w1, wN\{1})

+
stable∑

g1+g2=g
I�J=N\{1}

L̂g1,|I|+1(w1, wI)L̂g2,|J |+1(w1, wJ)

]
.

Proof. First we multiply both sides of (3.3) by p2p3 · · · pn and compute its
Laplace transform. The left-hand side gives L̂g,n(wN ).
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The first line of the right-hand side is

n∑

j=2

∑

p∈Z
n
≥0

p1+pj∑

q=0

pj
p1 + pj − q

2
[
qp2 · · · p̂j · · · pnNg,n−1(q, pN\{1,j})

]
e−〈p,w〉

=
n∑

j=2

∞∑

q=0

∑

pN\{1,j}∈Z
n−2
≥0

[
qp2 · · · p̂j · · · pnNg,n−1(q, pN\{1,j})

]

× e−〈pN\{1,j},wN\{1,j}〉e−qw1

∞∑

�=0

�e−2�w1

q+2�∑

pj=0

pjepj(w1−wj),

where the symbol ̂ indicates omission of the variable, and we set p1 +
pj − q = 2�. Note that Ng,n(pN ) = 0 unless p1 + · · · + pn is even. There-
fore, in the Laplace transform we are summing over all pN ∈ Z

n
≥0 such that

p1 + · · · + pn ≡ 0 mod 2. Since Ng,n−1(q, pN\{1,j}) = 0 unless q + p2 + · · · +
p̂j + · · · + pn ≡ 0 mod 2, only those p1, pj and q satisfying p1 + pj − q ≡ 0
mod 2 contribute in the summation. We now calculate from the last factor
(the pj-summation)

q+2�∑

pj=0

e−qw1�e−2�w1pjepj(w1−wj)

= e−qw1�e−2�w1
∂

∂w1

ewj − ewje(1+q+2�)(w1−wj)

ewj − ew1

=
e−qw1�e−2�w1

(ew1 − ewj )2

[
ew1+wj + (q + 2�)e2w1e(q+2�)(w1−wj)

− (1 + q + 2�)ew1+wje(q+2�)(w1−wj)

]

=
1

(ew1 − ewj )2

[
ew1+wje−qw1�e−2�w1 + �(q + 2�)e2w1e−qwje−2�wj

− �(1 + q + 2�)ew1+wje−qwje−2�wj

]

followed by the �-summation and then the q-summation. We obtain

=
n∑

j=2

[
ew1+wj

(ew1 − ewj )2

(
L̂g,n−1(wN\{j})
(ew1 − e−w1)2

− L̂g,n−1(wN\{1})
(ewj − e−wj )2

)
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− ew1

ew1 − ewj

∂

∂wj

L̂g,n−1(wN\{1})
(ewj − e−wj )2

]
.

The second line of (3.3) contributes

n∑

j=2

∑

p∈Z
n
≥0

H(p1 − pj)
p1−pj∑

q=0

pj
p1 − pj − q

2

× [qp2 · · · p̂j · · · pnNg,n−1(q, pN\{1,j})
]
e−〈p,w〉

=
n∑

j=2

∞∑

�=0

�e−2�w1

∞∑

pj=0

pje−pj(w1+wj)

×
∞∑

q=0

e−qw1
∑

pN\{1,j}∈Z
n−2
≥0

[
qp2 · · · p̂j · · · pnNg,n−1(q, pN\{1,j})

]

× e−〈pN\{1,j},wN\{1,j}〉

=
n∑

j=2

ew1+wj

(1 − ew1+wj )2
L̂g,n−1(wN\{j})
(ew1 − e−w1)2

.

In this calculation we set p1 − pj − q = 2�. Similarly, after putting pj − p1 −
q = 2�, the third line of (3.3) yields

−
n∑

j=2

∑

p∈Z
n
≥0

H(pj − p1)
pj−p1∑

q=0

pj
pj − p1 − q

2

× [qp2 · · · p̂j · · · pnNg,n−1(q, pN\{1,j})
]
e−〈p,w〉

= −
n∑

j=2

∞∑

q=0

∞∑

�=0

∞∑

p1=0

(p1 + q + 2�)�e−p1(w1+wj)e−2�wje−qwj

×
∑

pN\{1,j}∈Z
n−2
≥0

[
qp2 · · · p̂j · · · pnNg,n−1(q, pN\{1,j})

]
e−〈pN\{1,j},wN\{1,j}〉

= −
n∑

j=2

ew1+wj

(1 − ew1+wj )2
L̂g,n−1(wN\{1})
(ewj − e−wj )2

+
n∑

j=2

ew1

ew1 − e−wj

∂

∂wj

L̂g,n−1(wN\{1})
(ewj − e−wj )2

.
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Summing all contributions, we obtain

n∑

j=2

[
ew1+wj

(ew1 − ewj )2

(
L̂g,n−1(wN\{j})
(ew1 − e−w1)2

− L̂g,n−1(wN\{1})
(ewj − e−wj )2

)

− ew1

ew1 − ewj

∂

∂wj

L̂g,n−1(wN\{1})
(ewj − e−wj )2

]

+
n∑

j=2

ew1+wj

(1 − ew1+wj )2
L̂g,n−1(wN\{j})
(ew1 − e−w1)2

−
n∑

j=2

ew1+wj

(1 − ew1+wj )2
L̂g,n−1(wN\{1})
(ewj − e−wj )2

+
n∑

j=2

ew1

ew1 − e−wj

∂

∂wj

L̂g,n−1(wN\{1})
(ewj − e−wj )2

=
n∑

j=2

∂

∂wj

[(
ew1

ew1 − ewj
− ew1+wj

ew1+wj − 1

)

×
(
L̂g,n−1(wN\{j})
(ew1 − e−w1)2

− L̂g,n−1(wN\{1})
(ewj − e−wj )2

)]
.

To compute the Laplace transform of the fourth line of (3.3), we note
that

1
2

∞∑

p1=0

∑

0≤q1+q2≤p1

q1q2(p1 − q1 − q2)e−p1w1f(q1, q2)

=
1
2

∞∑

q1=0

∞∑

q2=0

∞∑

�=0

2�e−2�w1e−(q1+q2)w1q1q2f(q1, q2)

=
1

(ew1 − e−w1)2
f̂(w1, w1),

where we set p1 − q1 − q2 = 2�, and

f̂(w1, w2) =
∞∑

q1=0

∞∑

q2=0

q1q2f(q1, q2)e−(q1w1+q2w2).

The reason that p1 − q1 − q2 is even comes from the fact that we are sum-
ming over pN ∈ Z

n
≥0 subject to p1 + · · · + pn ≡ 0 mod 2, while on the fourth

line of (3.3) contributions vanish unless q1 + q2 + p2 + · · · + pn ≡ 0 mod 2.
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Therefore we can restrict the summation over those p1, q1 and q2 subject to
p1 ≡ q1 + q2 mod 2. The calculation of the Laplace transform then becomes
straightforward, and the contribution is as in (A.2).

To change from the w-coordinates to the t-coordinates, we use (4.2) to
find

dwj =
2

t2j − 1
dtj ,

∂

∂wj
=
t2j − 1

2
∂

∂tj
.

Each factor changes as follows:

1
(ewj − e−wj )2

=
1
16

(t2j − 1)2

t2j
,

ew1

ew1 − ewj
− ew1+wj

ew1+wj − 1
=
tj(t21 − 1)
t21 − t2j

,

L̂g,n

(
w1(t), . . . , wn(t)

)
= (−1)n2−nLg,n(t1, . . . , tn)(t21 − 1) · · · (t2n − 1).

We can now convert (A.2) to (4.6) by a straightforward calculation. �
We now prove Theorem 6.2.

Theorem A.1. The symmetric function V̂ S
g,n(wN ) defined by the Laplace

transform

V̂ S
g,n(w1, . . . , wn)dw1 ⊗ · · · ⊗ dwn

= d1 ⊗ · · · ⊗ dn

∫

R
n
+

vS
g,n(p)e−〈w,p〉dp1 · · · dpn

satisfies the topological recursion

V̂ S
g,n(wN ) = −2

∞∑

j=2

∂

∂wj

[
wj

w2
1 − w2

j

(
V̂ S

g,n−1(wN\{j})
w2

1

− V̂ S
g,n−1(wN\{1})

w2
j

)]
(A.3)

− 2
w2

1

⎛

⎜⎜⎝V̂
S
g−1,n+1(w1, w1, wN\{1})

+
∑

g1+g2=g,
I�J=N\{1}

V̂ S
g1,|I|+1(w1, wI)V̂ S

g2,|J |+1(w1, wJ)

⎞

⎟⎟⎠ .
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Proof. Since

V̂ S
g,n(wN ) = (−1)n

∫

R
n
+

p1 · · · pnv
S
g,n(p)e−〈w,p〉dp1 · · · dpn,

we multiply both sides of (6.6) by (−1)np2 · · · pn and take the Laplace trans-
form. The left-hand side gives V̂ S

g,n(wN ).
For a continuous function f(q), by putting p1 + pj − q = �, we have

∫ ∞

0
dp1

∫ ∞

0
dpj

∫ p1+pj

0
dq pjq(p1 + pj − q)f(q)e−(p1w1+pjwj)(A.4)

=
∫ ∞

0
dq

∫ ∞

0
d�

∫ q+�

0
dpj q�f(q)e−qw1e−�w1pjepj(w1−wj)

=
1

(w1 − wj)2

∫ ∞

0
dq

∫ ∞

0
d� q�f(q)

×
[
e−(q+�)w1 − e−(q+�)wj + (q + �)(w1 − wj)e−(q+�)wj

]

=
1

(w1 − wj)2

(
f̂(w1)
w2

1

− f̂(wj)
w2

j

)
− 1
w1 − wj

∂

∂wj

(
f̂(wj)
w2

j

)

=
∂

∂wj

[
1

w1 − wj

(
f̂(w1)
w2

1

− f̂(wj)
w2

j

)]
,

where f̂(w) =
∫∞
0 qf(q)e−qwdq. By setting p1 − pj − q = � we calculate

∫ ∞

0
dp1

∫ ∞

0
dpjH(p1 − pj)

∫ p1−pj

0
dq pjq(p1 − pj − q)f(q)e−(p1w1+pjwj)

(A.5)

=
∫ ∞

0
dq

∫ ∞

0
d�

∫ ∞

0
dpj q�f(q)e−qw1e−�w1pje−pj(w1+wj)

=
1

(w1 + wj)2
f̂(w1)
w2

1

,

and similarly,

−
∫ ∞

0
dp1

∫ ∞

0
dpjH(pj − p1)

∫ pj−p1

0
dq pjq(pj − p1 − q)f(q)e−(p1w1+pjwj)

(A.6)

= −
∫ ∞

0
dq

∫ ∞

0
d�

∫ ∞

0
dp1 q�f(q)e−qwje−�wj (p1 + q + �)e−p1(w1+wj)
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= −
∫ ∞

0
dq

∫ ∞

0
d� q�f(q)e−qwje−�wj

[
1

(w1 + wj)2
+

q + �

w1 + wj

]

= − 1
(w1 + wj)2

f̂(wj)
w2

j

+
1

w1 + wj

∂

∂wj

(
f̂(wj)
w2

j

)
.

Adding (A.5) and (A.6) we obtain
∫ ∞

0
dp1

∫ ∞

0
dpjH(p1 − pj)

∫ p1−pj

0
dq pjq(p1 − pj − q)f(q)e−(p1w1+pjwj)

−
∫ ∞

0
dp1

∫ ∞

0
dpjH(pj − p1)

∫ pj−p1

0
dq pjq(pj − p1 − q)f(q)e−(p1w1+pjwj)

=
1

(w1 + wj)2

(
f̂(w1)
w2

1

− f̂(wj)
w2

j

)
+

1
w1 + wj

∂

∂wj

(
f̂(wj)
w2

j

)

= − ∂

∂wj

[
1

w1 + wj

(
f̂(w1)
w2

1

− f̂(wj)
w2

j

)]
.

The sum of the right-hand sides of (A.4) to (A.6) thus becomes

∂

∂wj

[(
1

w1 − wj
− 1
w1 + wj

)(
f̂(w1)
w2

1

− f̂(wj)
w2

j

)]
.

Therefore, the first three lines of (6.6) yield

−2
∞∑

j=2

∂

∂wj

[
wj

w2
1 − w2

j

(
V̂ S

g,n−1(wN\{j})
w2

1

− V̂ S
g,n−1(wN\{1})

w2
j

)]
.

For a continuous function f(q1, q2), we have
∫ ∞

0
dp1

∫ ∫

0≤q1+q2≤p1

q1q2(p1 − q1 − q2)f(q1, q2)e−p1w1dq1dq2

=
∫ ∞

0
dq1

∫ ∞

0
dq2

∫ ∞

0
d� q1q2�f(q1, q2)e−�w1e−(q1+q2)w1 =

f̂(w1, w1)
w2

1

,

where f̂(w1, w2) =
∫

R
2
+
p1p2f(p1, p2)e−(p1w1+p2w2)dp1 dp2. Thus the last two

lines of (6.6) give

− 2
w2

1

⎛

⎜⎜⎝V̂
S
g−1,n+1(w1, w1, wN\{1}) +

∑

g1+g2=g,
I�J=N\{1}

V̂ S
g1,|I|+1(w1, wI)V̂ S

g2,|J|+1(w1, wJ )

⎞

⎟⎟⎠.
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This completes the proof of (A.3). �
Let us now change the coordinates from wj ’s to tj ’s that are given by

wj = − 2
tj

this time. This change of coordinate gives

dwj =
2
t2j
dtj ,

∂

∂wj
=
t2j
2

∂

∂tj
.

Thus the relation in terms of symmetric differential form is

V S
g,n(tN )dtN = V̂ S

g,n(wN )dwN ,

or

V S
g,n(tN ) = 2n

V̂ S
g,n(wN )
t21 · · · t2n

.

So we multiply both sides of (A.3) by 2n

t21···t2n . From the first term of the first
line we obtain

− 2
2n

t21 · · · t2n

∞∑

j=2

∂

∂wj

[
wj

w2
1 − w2

j

V̂ S
g,n−1(wN\{j})

w2
1

]

= −2
∞∑

j=2

∂

∂tj

[
1
2

t21 tj
t21 − t2j

t21
4
V S

g,n−1(tN\{j})

]

= −1
4

∞∑

j=2

∂

∂tj

[
tj

t21 − t2j
t41 V

S
g,n−1(tN\{j})

]
.

Similarly, the second term of the first line becomes

2
2n

t21 · · · t2n

∞∑

j=2

∂

∂wj

[
wj

w2
1 − w2

j

V̂ S
g,n−1(wN\{1})

w2
j

]

= 2
∞∑

j=2

∂

∂tj

[
1
2

t21 tj
t21 − t2j

t2j
4
t2jV

S
g,n−1(tN\{1})

t21

]

=
1
4

∞∑

j=2

∂

∂tj

[
tj

t21 − t2j
t4j V

S
g,n−1(tN\{1})

]
.
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The second line of (A.3) is easy to convert. This completes the proof of
Theorem 6.2.

Appendix B. Examples

For (g, n) = (0, 3), there are three topological shapes of ribbon graphs listed
in figure B.1. Cyclic permutations of (p1, p2, p3) produce different graphs.

Which ribbon graph corresponds to a point (p1, p2, p3) ∈ Z
3
+ depends

on which inequality these three numbers satisfy. If p1 > p2 + p3, then the
dumbbell shape (figure B.1, bottom left) corresponds to this point. If p1 =
p2 + p3, then the shape of ∞ (figure B.1, bottom right) corresponds, and
if no coordinate is greater than the sum of the other two, then the double
circle graph (figure B.1, top) corresponds. These inequalities divide Z

3
+ into

four regions as in figure B.2.

Figure B.1: Three ribbon graphs for (g, n) = (0, 3).

Figure B.2: The partition of Z
3
+.
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Thus we conclude

(B.1) N0,3(p1, p2, p3) =

{
1 p1 + p2 + p3 ≡ 0 mod 2,
0 otherwise.

The even parity condition can be met if all three are even or only one of
them is even. Let us substitute pj = 2qj when it is even and pj = 2qj − 1 if
it is odd. Thus the Laplace transform can be calculated by

L0,3(w1, w2, w3) =
∑

(p1,p2,p3)∈Z
3
+

N0,3(p1, p2, p3)e−(p1w1+p2w2+p3w3)

=
∑

(q1,q2,q3)∈Z
3
+

(
1 + ew1+w2 + ew2+w3 + ew3+w1

)

× e−2(q1w1+q2w2+q3w3)

=
(

1 + ew1+w2 + ew2+w3 + ew3+w1

)

× e−(w1+w2+w3)

(ew1 − e−w1)(ew2 − e−w2)(ew3 − e−w3)
.

Using e−wj = tj+1
tj−1 , we obtain

L0,3

(
w(t1), w(t2), w(t3)

)
= − 1

16
(t1 + 1)(t2 + 1)(t3 + 1)

(
1 +

1
t1t2t3

)(B.2)

and

L0,3(t1, t2, t3) =
∂3

∂t1∂t2∂t3
L0,3

(
w(t1), w(t2), w(t3)

)
= − 1

16

(
1 − 1

t21 t
2
2 t

2
3

)
.

(B.3)

For (g, n) = (1, 1), there are two ribbon graphs (see figure B.3) corre-
sponding to a hexagonal and a square tiling of the plane. The hexagonal
tiling gives a ribbon graph on the left, and the square one on the right is
a degeneration obtained by shrinking the horizontal edge to 0. The auto-
morphism group is Z/6Z for the degree 3 graph, and Z/4Z for the degree 4
graph.
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Figure B.3: Two ribbon graphs of type (1, 1).

The number of integral ribbon graphs in this case is the number of parti-
tions of the half of the given perimeter length p = 2q ∈ 2Z+ into two or three
positive integers corresponding to edge lengths. Taking the automorphism
factors into account, we calculate

N1,1(2q) =
1
4
(q − 1) +

1
6

q−1∑

r=1

(r − 1) =
1
12

(q2 − 1).

Therefore,

(B.4) N1,1(p) =

{
1
48 (p2 − 4) p ≡ 0 mod 2,
0 otherwise.

The Laplace transform can be calculated immediately

L1,1(w) =
∞∑

p=2

N1,1(p)e−pw =
1
12

∞∑

q=1

(q2 − 1)e−2qw =
3e2w − 1

12(e2w − 1)3
.

We thus obtain

(B.5) L1,1

(
w(t)

)
= − 1

384
(t+ 1)4

t2

(
t− 4 +

1
t

)

and

(B.6) L1,1(t) = − 1
27

(t2 − 1)3

t4
.

The values of (g, n) corresponding to genus 0 unstable geometries (0, 1),
(0, 2) play an important role in topological recursion. We have seen this
phenomena in Hurwitz theory [15, 38]. Let us consider the unstable (0, 2)
case for the integral ribbon graph counting. Although we have restricted
our ribbon graphs to have vertices of degree 3 or more, it is indeed more
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Figure B.4: A ribbon graph of type (0, 2).

consistent to allow vertices of degree 2. Actually, a metric ribbon graph with
integer edge lengths is a plain ribbon graph whose vertices have degree 2
or more. For such a ribbon graph, we assign length 1 to every edge. We
recover a metric ribbon graph with integer edge length by disregarding all
vertices of degree 2. This point of view is natural when we assign a Belyi
morphism [1,36,46] to a ribbon graph.

Once we allow degree 2 vertices, there is only one kind of ribbon graph
of type (0, 2), which is a circle (figure B.4). If the graph has p edges, then
the automorphism group of this graph is Z/pZ. Therefore, we have

(B.7) N0,2(p1, p2) =
1
p1
δp1p2 ,

and its Laplace transform becomes

L0,2(w1, w2) =
∞∑

p1=1

∞∑

p2=1

N0,2(p1, p2)e−(p1w1+p2w2) = − log(1 − e−w1−w2).

In terms of the t-coordinates we have

(B.8) L0,2

(
w(t1), w(t2)

)
= − log

(
1 − t1 + 1

t1 − 1
· t2 + 1
t2 − 1

)
,

which gives

(B.9) L0,2(t1, t2) =
1

(t1 + t2)2
.

Note that (B.9) is not a Laurent polynomial and exhibits an exception to
the general statement of Theorem 4.1.
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The parametrization of the spectral curve (7.11) defines the
x-projection map

π : P
1 � t �−→ x =

t+ 1
t− 1

+
t− 1
t+ 1

∈ P
1.

We find that the difference of the Cauchy differentiation kernels of the curve
upstairs and downstairs is L0,2(t1, t2):

(B.10) L0,2(t1, t2)dt1 ⊗ dt2 =
dt1 ⊗ dt2
(t1 + t2)2

=
dt1 ⊗ dt2
(t1 − t2)2

− π∗
dx1 ⊗ dx2

(x1 − x2)2
,

where π is the x-projection map (7.12). We note that this situation is exactly
the same as the Hurwitz theory [15, Remark 4.5].

The other genus 0 unstable case (0, 1) is important because it identifies
the embedding of the spectral curve (7.11) in C

2. It is also subtle because
we need to allow degree 1 vertices. Since all possible trees can be included if
we allow degree 1 vertices, we have to make a choice as to what kind of trees
are allowed. For example, we could allow arbitrary trees as in the Hurwitz
theory [45]. In the current integral ribbon graph case, we need to make a
more restrictive choice. Since this topic has no direct relevance to the main
theorems of this paper, we refer to [21] for more details of this matter.

Using the recursion formula (4.6), we can calculate Lg,n(tN ) systemati-
cally. A few examples are listed below:

L0,4(t1, t2, t3, t4) =
1
28

[
3

4∑

j=1

t2j − 9 −
∑

i<j

1
t2i t

2
j

(B.11)

− 9
t21 t

2
2 t

2
3 t

2
4

+
3

t21 t
2
2 t

2
3 t

2
4

4∑

j=1

1
t2j

]
.

(B.12)

L1,2(t1, t2) =
1

211

[
5
(
t41 + t42

)
+ 3t21 t

2
2 − 18

(
t21 + t22

)
+ 27 − 4

(
1
t21

+
1
t22

)

+
27
t21 t

2
2

− 18
t21 t

2
2

(
1
t21

+
1
t22

)
+

3
t41 t

4
2

+
5

t21 t
2
2

(
1
t41

+
1
t42

)]
.

(B.13) L2,1(t) = − 21
219

(t2 − 1)7

t8

(
5 t2 + 6 +

5
t2

)
.
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(B.14)

L3,1(t) = − 11
230

(t2 − 1)11

t12

(
2275 t4 + 4004 t2 + 4722 +

4004
t2

+
2275
t4

)
.
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