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Masha Vlasenko and Sander Zwegers

1. Introduction

Let r ≥ 1 be a positive integer, A a real positive definite symmetric r ×
r-matrix, B a vector of length r, and C a scalar. The series

(1.1) FA,B,C(q) =
∑

n=(n1,...,nr)∈(Z≥0)r

q
1
2
nT An+nT B+C

(q)n1 . . . (q)nr

,

converges for |q| < 1. Here we use the notation (a; q)n :=
∏n

k=1(1 − aqk−1)
for n ∈ Z≥0 ∪ {∞} and the convention that the second argument is removed
if it equals q (so (q)n = (q; q)n =

∏n
k=1(1 − qk)). We are concerned with the

following problem due to Werner Nahm [2–4]: describe all such A, B and
C with rational entries for which (1.1) is a modular form. This problem is
relevant in the study of conformal field theories.

In [8], Zagier studies this question and gives many examples of triples
(A, B, C) for which the series (1.1) is modular. An important tool in studying
the modularity is to consider the asymptotic expansion of (1.1), with q =
e−ε, for ε ↓ 0. In [8] three approaches to computing the asymptotic behavior
are outlined. By using the asymptotic behavior, Zagier then obtains for the
case r = 1 a complete list of triples (A, B, C) ∈ Q+ × Q × Q, for which (1.1)
is modular. The list contains seven triples (see Theorem 3.1 below). The
case B = 0 was previously solved by Terhoeven in [5, 7].

For r > 1 it becomes computationally very hard to use Zagier’s method.
However, by using the second approach, as outlined by Zagier, to obtain
the asymptotic expansion (see Theorem 2.1), we find all triples (A, B, C)
for which FA,B,C is modular, for A belonging to a particular family, namely
A =

(
a λ−a

λ−a a

)
, with a ∈ Q and λ ∈ {1

2 , 1, 2}. See Theorem 3.2, table 1 and
table 2 for the results.

Nahm has also given a conjectural criterion for a matrix A to be such
that there exist some B and C with modular FA,B,C (see [4]). The condition
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for the matrix A is given in terms of solutions of a system of algebraic
equations

(1.2) 1 − Qi =
r∏

j=1

Q
Aij

j , i = 1, . . . , r.

The conjecture (see Conjecture 4.1) states that all solutions should give tor-
sion elements in the Bloch group. Interestingly, some of the A in Theorem
3.2 and table 1 do not satisfy this criterion. Therefore we obtain counterex-
amples to Nahm’s conjecture: for A =

(
3/2 1/2
1/2 3/2

)
and A =

(
3/4 −1/4
−1/4 3/4

)
not

all solutions to (1.2) give a torsion element in the Bloch group, but we do
find a B and C such that FA,B,C is modular. In the last section, we then also
give a counterexample for r = 4 where the matrix A has integer coefficients.

Note that we only give counterexamples to the conjecture in one direc-
tion: we find that condition (ii) in Conjecture 4.1 does not imply condition
(i). In the other direction, the conjecture could very well still be true, that
is, that condition (i) implies condition (ii). The correct formulation of the
conjecture remains an interesting open question.

2. Asymptotical computations

Let us explain a method to compute the asymptotics of (1.1) when q → 1.
The idea comes from [8], where it is written in a very sketchy form. We denote
the general term of the sum (1.1) by an(q). Suppose q → 1 and ni → ∞ so
that qni → Qi for some numbers Qi /∈ {0, 1}. Then we have

an+ei
(q)

an(q)
=

qnT Aei+
1
2
eT

i Aei+eT
i B

1 − qni+1
→ QAi1

1 · · ·QAir
r

1 − Qi
,

where ei is a vector whose all but ith coordinates are 0 and ith coordinate
is 1. We have the following statement.

Lemma 2.1. Let A be a real positive definite symmetric r × r matrix. Then
the system of equations

(2.1) 1 − Qi =
r∏

j=1

Q
Aij

j , i = 1, . . . , r

has a unique solution with Qi ∈ (0, 1) for all 1 ≤ i ≤ r.
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Proof. We consider the function fA : [0,∞)r → R given by

fA(x) =
1
2
xT Ax +

r∑

i=1

Li2(exp(−xi)),

where Li2 is the dilogarithm function defined by the power series Li2(z) =∑∞
n=1

zn

n2 for |z| < 1. It has the property zLi′2(z) = − log(1 − z).
The gradient and the Hessian of fA are

∇fA(x) = Ax + (log(1 − exp(−xi)))1≤i≤r ,

HfA
(x) = A + diag

(
1

exp(xi) − 1

)

1≤i≤r

.

Using Qi = exp(−xi), the statement of the lemma is equivalent to saying
that fA has a unique critical point in (0,∞)r.

First, fA has at least one critical point in (0,∞)r, because it takes on
it is minimum in (0,∞)r: it is continuous, bounded from below by 0 and
fA(x) → ∞ if ||x|| → ∞, and so it takes on it is minimum in [0,∞)r. In fact,
it takes on that minimum in (0,∞)r, because

lim
xi↓0

∂fA

∂xi
(x) = −∞ < 0.

Second, fA has at most one critical point in (0,∞)r, because it’s differ-
entiable and strictly convex on (0,∞)r: since A is positive definite, we see
that the Hessian HfA

(x) is positive definite for all x ∈ (0,∞)r. �

Consider the unique solution Qi ∈ (0, 1) of (2.1) and let q = e−ε, ε > 0.
Then all the ratios an+ei

(q)
an(q) are close to 1 when n is near

(− log Q1

ε , . . . ,− log Qr

ε

)

and it is very likely that an(q) as a function of n is maximal around this point.
We will apply a version of Laplace’s method to describe the asymptotics of
FA,B,C(e−ε) for small ε. For this we need the so called polylogarithm

Lim(z) =
∞∑

n=1

zn

nm
, for |z| < 1, m ∈ Z,

which satisfies the obvious relation

z
d

dz
Lim(z) = Lim−1(z).
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Lemma 2.2. Let n ∈ N and q = e−ε with ε > 0. We fix Q ∈ (0, 1) and
introduce a variable ν = − log Q − nε. Then

(i) for all n, ε we have an inequality

(2.2) log
((q)∞

(q)n

)
< − Li2(Q)

ε
+
(ν

ε
− 1

2

)
log(1 − Q) +

ν

2
Q

1 − Q
;

(ii) we have an asymptotic expansion

(2.3) log
((q)∞

(q)n

)
∼ −

∑

r,s≥0

Li2−r−s(Q)Br

r!s!
νsεr−1 when ε, ν → 0,

where B0 = 1, B1 = −1
2 , B2 = 1

6 , . . . are the Bernoulli numbers.

Proof.

log
((q)∞

(q)n

)
=

∞∑

s=1

log
(
1 − qn+s

)
=

∞∑

s=1

log
(
1 − Q eν−sε

)

= −
∞∑

s=1

∞∑

p=1

Qp ep(ν−sε)

p
= −

∞∑

p=1

Qp

p

epν

epε − 1

Since ex > 1 + x for all x �= 0 and x
ex−1 > 1 − x

2 for x > 0 then

epν

epε − 1
> (1 + pν)

( 1
pε

− 1
2

)
=

1
pε

+
(ν

ε
− 1

2

)
− p

ν

2
,

and we get inequality (i) after summation in p. To prove (ii) we notice that
for every fixed p we have an asymptotic expansion

pε epν

epε − 1
∼
( ∞∑

r=0

Br

r!
(pε)r

)( ∞∑

s=0

(pν)s

s!

)
=
∑

r,s≥0

Br

r!s!
(pε)r(pν)s,

i.e., for every fixed N and δ > 0 we can find δ′ > 0 such that
∣∣∣ pε epν

epε−1 −∑r+s≤N
Brpr+s

r!s! εrνs
∣∣∣

pN max(ε, |ν|)N
< δ,

whenever pε, p|ν| < δ′. Also we observe that when x ↘ 0

(2.4)
1

xN

∑

p> δ′
x

paQp → 0
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for any a, as well as

(2.5)
1

xN

∑

p> δ′
x

Qp

p2

pε epν

epε − 1
<

1
xN

∑

p> δ′
x

Qp epν <
1

xN

e
δ′
x

(ν+log Q)

1 − eν+log Q
→ 0

uniformly in ν in small domains. Let us choose δ′′ > 0 such that expres-
sions (2.4) for all integer a between −2 and N − 2 and also the left-hand side
of (2.5) are smaller than δ whenever x < δ′′ and |ν| < δ′′. Now if
max(ε, |ν|) < δ′′ then

∣∣∣
∑

p≥1
Qp

p2

(
pε epν

epε−1 −∑r+s≤N
Brpr+s

r!s! εrνs
)∣∣∣

max(ε, |ν|)N

≤ δ
∑

p max(ε,|ν|)<δ′

pN−2Qp +
1

max(ε, |ν|)N

∑

p max(ε,|ν|)>δ′

Qp

p2

pε epν

epε − 1

+
∑

r+s≤N

|Br|
r!s!

εr|ν|s 1
max(ε, |ν|)N

∑

p max(ε,|ν|)>δ′

pr+sQp

≤
(

L2−N (Q) + 1 +
∑

r+s≤N

|Br|
r!s!

(δ′′)r+s

)
δ

and (ii) follows. �

Let Bp(X) =
∑

k

(
p
k

)
BkX

p−k, p ≥ 1 be the Bernoulli polynomials. Con-
sider polynomials Dp ∈ Q[B, X, T ], p ≥ 1 defined by the following equality
of formal power series in ε1/2:

exp

[(
B +

1
2

Q

1 − Q

)
Tε1/2 −

∞∑

p=3

1
p!

Bp

(
T

ε1/2

)
Li2−p(Q) εp−1

]
(2.6)

= 1 +
∞∑

p=1

Dp

(
B,

Q

1 − Q
, T

)
εp/2.

Observe that the coefficients of the series under the exponent are polynomials

in B, Q
1−Q and T because Li2−r(Q) = Pr−1

( Q

1 − Q

)
where Pr, r ≥ 1 are the

polynomials defined by P1(X) = X and Pp+1(X) = (X2 + X) d
dX Pp(X).
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Theorem 2.1. There is an asymptotic expansion

FA,B,C(e−ε) e−
α

ε ∼ β e−γε

(
1 +

∞∑

p=1

cpε
p

)
, ε ↘ 0

with the coefficients α ∈ R+, β, γ ∈ Q and cp ∈ Q, p ≥ 1 given below. Let
Qi ∈ (0, 1) be the solutions of (2.1). Denote ξi = Qi

1−Qi
, Ã = A + diag{ξ1, . . . ,

ξr} and let L(x) be the Rogers dilogarithm function. Then

α =
r∑

i=1

(
L(1) − L(Qi)

)
> 0,

β = det Ã−1/2
∏

i

QBi

i (1 − Qi)−1/2, γ = C +
1
24

∑ 1 + Qi

1 − Qi
,

cp = det Ã1/2(2π)−r/2

∫
C2p(B, ξ, t) e−

1
2
tT Ãtdt,

where the polynomials in 3r variables Cp ∈ Q[B, ξ, t] are defined as

(2.7) Cp(B, ξ, t) =
∑

p1+···+pr=p

r∏

i=1

Dpi
(Bi, ξi, ti),

where Dp are the polynomials in three variables defined by (2.6).

Recall that L(x) is an increasing function on R (therefore α > 0), we
have

(2.8) L(x) = Li2(x) + 1
2 log(x) log(1 − x)

for x ∈ (0, 1) and L(1) = π2

6 .

Proof. Let

α′ = −
r∑

i=1

L(Qi), β′ =
∏

i

QBi

i (1 − Qi)−1/2, γ′ = C +
1
12

∑

i

ξi

and ti = − log Qi

ε − ni. Consider the function

φ(t, ε) =
(q)r∞an(q)

β′ e
α′
ε

(q = e−ε)
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defined only for t ∈ t0(ε) + Z
r where t0i = t0i (ε) is the fractional part of

− log Qi

ε . We assume that an(q) = 0 if ni < 0 for some i. After a straight-
forward computation using (i) of Lemma 2.2 and equation (2.1) we obtain
that

(2.9) log φ(t, ε) <
(
−1

2 tTAt + tT
(
B + 1

2ξ
) − C

)
ε.

Then

(q)r∞FA,B,C(q)
β′ exp(α′

ε )
=

∑

t∈t0+Zr

φ(t, ε) ∼
∑

t∈t0+Zr,|ti|<ελ

φ(t, ε)

for every λ < −1
2 , where “∼” always means that the difference is o(εN ) for

every N . Indeed, for such λ we have
∑

|ti|>ελ φ(t, ε) = o(εN ) for every N due
to (2.9). We can further rewrite it as

∑

t∈t0+Zr,|ti|<ελ

φ(t, ε) =
∑

t∈(t0+Zr)
√

ε,|ti|<ελ+ 1
2

φ

(
t√
ε
, ε

)
.

Let also λ > −2
3 . Then

(2.10) φ

(
t√
ε
, ε

)
= e−

1
2
ttÃt−γ′ε

(
1 +

N∑

p=1

Cp(t)εp/2

)
+ o(εN(3λ+2))

uniformly in the domain |ti| ≤ ελ+ 1
2 . Here Cp(t) are the polynomials defined

by (2.7) and actually depending also on B and ξ. We observe that for any
polynomial P

(2.11)
∑

t∈(t0+Zr)
√

ε,|ti|<ελ+ 1
2

P (t) e−
1
2
tT Ãt ∼ ε−r/2

∫
P (t) e−

1
2
tT Ãtdt

(the difference is o(εN ) for every N) when λ < −1
2 . Combining (2.10) and

(2.11) (we will prove both facts later), we get

(q)r∞FA,B,C(q)
β′ exp(α′

ε − γ′ε)
∼
(2π

ε

)r/2
det Ã

−1/2

(
1 +

∞∑

p=1

cpε
p

)
.

Here we have only integer powers of ε because
∫

Cp(t) e−
1
2
tT Ãtdt = 0 when

p is odd. And this happens because the total t-degree of every monomial in
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Cp has the same parity as p, which in turn follows from the definition of Dp.
Now, since

log(q)∞ ∼ −π2

6
1
ε

+
1
2

log
(2π

ε

)
+

ε

24
,

when ε → 0, we obtain the statement of the theorem.
To prove (2.11) we notice again that

∑
|ti|>ελ+ 1

2
P (t) e−

1
2
ttÃt = o(εN ) for

every N , and using Poisson summation formula we have
∑

t∈(t0+Zr)
√

ε

P (t) e−
1
2
tT Ãt =

∑

t∈t0+Zr

P (t
√

ε) e−
ε

2
tT Ãt =

∑

s∈Zr

g(s) e2πisT t0 ,

where g(s) is the Fourier transform of P (t
√

ε)e−
ε

2
tT Ãt. Then g(0) is the

right-hand side (RHS) of (2.11), and the sum of all remaining terms are
o(εN ) since for any monomial P ′(t) and g′(s) being the Fourier transform of
P ′(t)e−

ε

2
ttA′t one can check by direct computation that

∑
s∈Z2\{0} |g′(s)| =

o(εN ) for any N .
It remains to prove (2.10). Using (ii) of Lemma 2.2 we get

log φ(t, ε) ∼ − 1
2
tT Ãt − γ′ε + tT

(
B +

1
2
ξ

)

−
∑

i

∞∑

p=3

1
p!

Bp(ti)Li2−p(Qi)εp−1, ε, tε → 0,

and therefore for every N

log φ

(
t√
ε
, ε

)
= −1

2
tT Ãt − γ′ε + tT

(
B +

1
2
ξ

)√
ε

∑

i

N∑

p=3

1
p!

Bp

( ti√
ε

)
Li2−p(Qi)εp−1 + o(εN(λ+1)−1)

uniformly in |ti| ≤ ελ+ 1
2 . If we rewrite the RHS as

∑N−2
p=0 gp(t)ε

p

2 then
deg gp ≤ p + 2 (because deg Bp = p). It follows that

∑N−2
p=1 gp(t)ε

p

2 =
O(ε3λ+2) uniformly in our domain since

(
λ +

1
2

)
(p + 2) +

p

2
= p(λ + 1) + 2λ + 1 ≥ 3λ + 2 > 0.

Therefore we can take a sufficiently long but finite part of the standard series
to approximate its exponent. Hence some sufficiently long but again finite
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part of

exp

[
∑

i

(
Bi +

1
2
ξ

)
ti
√

ε −
∑

i

∞∑

p=3

1
p!

Bp

(
ti√
ε

)
Li2−p(Qi)εp−1

]

= 1 +
∞∑

p=1

Cp(t)εp/2

will approximate φ
(

t√
ε
, ε
)
e

1
2
tT Ãt+γ′ε. One can easily see that deg Cp(t) ≤ 3p

(in the variable t). Since for p > N

Cp(t)ε
p

2 = O(ε(λ+ 1
2
)3p+ p

2 ) = O(εp(3λ+2)) = o(εN(3λ+2))

then it is sufficient to consider only the part with p ≤ N in (2.10). �

3. Modular functions FA,B,C

Let us search for those triples (A, B, C) for which FA,B,C(q) is a modular
function (of any weight and any congruence subgroup). We will call such
(A, B, C) a modular triple. The idea here is that in order for FA,B,C(q) to
be modular, the asymptotic expansion needs to be of a special type, as we
can see from the following lemma.

Lemma 3.1. Let F (q) be a modular form of weight w for some subgroup
of finite index Γ ⊂ SL(2, Z). Then when ε ↘ 0 one has

(3.1) e
a

ε F (e−ε) ∼ b ε−w + o(εN ), ∀N ≥ 0

for appropriate numbers a ∈ π2
Q and b ∈ C.

Proof. Consider S =
(

0 1
−1 0

)
∈ SL(2, Z). Then SF is a modular form on

the subgroup SΓS and in particular it has a q-expansion with some rational
powers α0 < α1 < · · · of q = e2πiz:

1
zw

F
(
e−2πi 1

z

)
= a0q

α0 + a1q
α1 + · · · .

Subsituting z = 2πi
ε we get

F (e−ε) =
(2πi

ε

)w[
a0 e−

4π2α0
ε + a1 e−

4π2α1
ε + · · ·

]

=
(2πi)wa0

εw
e−

4π2α0
ε

[
1 + o(εN )

]
∀N. �
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If we now compare the asymptotics from Theorem 2.1 with (3.1) we get
the following statement.

Corollary 3.1. If FA,B,C(q) is modular then

(i) its weight w = 0,

(ii) α ∈ π2
Q ⇐⇒ ∑r

i=1 L(Qi) ∈ π2
Q,

(iii) e−γε
(
1 +
∑∞

p=1 cpε
p
)

= 1 ⇐⇒ cp = γp

p! ∀p.

Condition (ii) is very interesting, we consider it in the next section. It
follows from (iii) that modular triples satisfy an infinite number of equations

(3.2)
(
cp − 1

p!
cp
1

)(
B, ξ, Ã−1

)
= 0, p = 2, 3, . . . ,

and these equations are polynomial in the entries of B, ξ, Ã−1. Indeed, let
us look at the expression for cp from Theorem 2.1. Since the generating
function for the moments of the Gaussian measure is

∑

a∈(Z≥0)r

xa

a1! . . . ar!
det Ã1/2

(2π)r/2

∫
ta e−

1
2
tT Ãtdt = exp

(
1
2
xT Ã−1x

)
,

all the moments are rational polynomials in the entries of Ã−1 and we obtain
that cp ∈ Q[B, ξ, Ã−1].

Now let r = 1. It is easy to see that the degrees of Dp(B, X, T ) in the
variables B, X and T are p, 2p and 3p, respectively. Since cp(B, ξ, (A + ξ)−1)
is the integral of D2p(B, ξ, t) w.r.t. the measure (A+ξ)1/2√

2π
e−(A+ξ)t2/2dt and the

integral of t2m is (2m − 1)!!(A + ξ)−m, the degrees of cp in the corresponding
variables are 2p, 4p and 3p. It is convenient to consider the polynomials

c̃p(B, ξ, A) = (A + ξ)3p

[
cp − 1

p!
cp
1

](
B, ξ,

1
A + ξ

)
, p = 2, 3, . . .

Although these polynomials look rather complicated, we have found using
the Magma algebra system ( [1]) that the ideal

I = 〈c̃2, c̃3, c̃4, c̃5〉 ⊂ Q[B, ξ, A]
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contains the element

ξ(ξ + 1)A13(A − 1)13(A + 1)(A − 2)(A − 1/2).

Consequently, if (A, B, C) is a modular triple then A ∈ {1
2 , 1, 2}. For each

A on this list it is not hard to find the corresponding values of B, and one
can compute C from the equality γ = c1. This way we obtain exactly the
list from the theorem below.

Theorem 3.1 D. Zagier [8]. Let r = 1. The only (A, B, C) ∈ Q+ × Q × Q

for which FA,B,C(q) is a modular form are given in the following table.

A B C FA,B,C(e2πiz)

2 0 −1/60 θ5,1(z)/η(z)

1 11/60 θ5,2(z)/η(z)

1 0 −1/48 η(z)2/η( z
2)η(2z)

1/2 1/24 η(2z)/η(z)

−1/2 1/24 2η(2z)/η(z)

1/2 0 −1/40 θ5,1( z
4)η(2z)/η(z)η(4z)

1/2 1/40 θ5,2( z
4)η(2z)/η(z)η(4z).

Here and below

η(z) = q1/24
∞∏

n=1

(1 − qn)

and
θ5,j(z) =

∑

n∈(2j−1)+10Z

(−1)[n/10]qn2/40.

We warn the reader that if (iii) of Corollary 3.1 holds for some (A, B, C)
this does not yet imply that FA,B,C is in fact modular. To get modularity one
needs to prove an identity between the corresponding q-series for each line
of the table. For example, the first two lines correspond to the well known
Rogers–Ramanujan identities.
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Further computer experiments showed that c̃p ∈ I for p = 6, . . . , 20.
Although we stopped at this point, it is very likely that the statement
is true for all p. Also with the help of Magma we have got the following
decomposition of the radical of I into prime ideals:

Rad(I) = P1 · · · · · P14

where the generators of Pi are given below:

i generators of Pi

1 ξ
2 ξ + 1
3 B − 1/2, ξ + 2, A
4 B − 1, ξ + 2, A
5 B, ξ + 2, A
6 B + 1/2, ξ2 + 3ξ + 1, A + 1
7 B − 1/2, ξ2 + 3ξ + 1, A + 1
8 B + 1/2, ξ − 1, A − 1
9 B, ξ − 1, A − 1
10 B − 1/2, ξ − 1, A − 1
11 B − 1, ξ2 − ξ − 1, A − 2
12 B, ξ2 − ξ − 1, A − 2
13 B − 1/2, ξ2 + ξ − 1, A − 1/2
14 B, ξ2 + ξ − 1, A − 1/2

Consequently, the set of all solutions of the system c̃p(B, ξ, A) = 0, p =
2, 3, . . . is a subset of this table, and if we indeed had c̃p ∈ I (or at least
c̃p ∈ Rad(I)) for all p then this table would be exactly the set of solutions.

Let us us now consider the case r = 2. The task of solving the sys-
tem (3.2) for several small values of p becomes already very complicated.
We failed to solve it with Magma in full generality for r = 2 as we did in
the case r = 1. However, we can still search for modular FA,B,C , where A is
of a special type. We will consider three families of matrices:

(3.3)

A =
(

a 1
2 − a

1
2 − a a

)
⇒ ξ1 = ξ2 =

√
5 − 1
2

,

A =
(

a 2 − a
2 − a a

)
⇒ ξ1 = ξ2 =

√
5 + 1
2

,

A =
(

a 1 − a
1 − a a

)
⇒ ξ1 = ξ2 =

1
2
.
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It is easy to check that (ii) of Corollary 3.1 holds for these matrices. For
these families of matrices we can do an analysis similar to what we did for
r = 1.

Theorem 3.2. Modular functions FA,B,C(z) with the matrix A being of the

form
(

a 1
2 − a

1
2 − a a

)
exist if and only if a = 1, a = 3/4 or a = 1/2. Below

is the list of all such modular functions.

A B C FA,B,C(e2πiz)

(
1 − 1

2− 1
2 1

) (
0
0

)
− 1

20

(
θ5, 3

4
(2z) + θ5, 13

4
(2z)

)
η(z)/η(2z)η(z/2)

+ 2θ5,2(2z)η(2z)/η(z)
2

(
− 1

2
0

)
and

(
0

− 1
2

)
1
20

2θ5,1(2z)η(2z)/η(z)
2

+θ5, 3
2
(z)θ5,2(2z)η(z)

3
/η(z/2)

2
η(2z)

2
η(10z)

(
3
4 − 1

4− 1
4

3
4

) (
1
4− 1
4

)
and

(
− 1

4
1
4

)
− 1

80 θ5,1(
z
8 )η(z)/η( z

2 )η(2z)

( 1
2
0

)
and

(
0
1
2

)
1
80 θ5,2(

z
8 )η(z)/η( z

2 )η(2z)

(
1
2 0
0 1

2

) (
0
0

)
− 1

20 (θ5,1(
z
4 )η(2z)/η(z)η(4z))2

( 1
2
0

)
and

(
0
1
2

)
0 θ5,1(

z
4 )θ5,2(

z
4 )(η(2z)/η(z)η(4z))2

( 1
2
1
2

)
1
20 (θ5,2(

z
4 )η(2z)/η(z)η(4z))2

Proof. Consider the ideal I ⊂ Q[b1, b2, ξ, a] generated by ξ2 + ξ − 1 and the
polynomials

(ξ2 + 2aξ + a − 1/4)3p ×
[
cp − cp

1

p!

]((
b1

b2

)
,

(
ξ
ξ

)
,

(
a + ξ 1

2 − a
1
2 − a a + ξ

)−1
)

for p = 2, 3, 4, 5. We find with Magma that the element

a(a − 1
4)(a − 1

2)(a − 3
4)(a − 1)(a2 − a − 1

16)

belongs to I. (We ran the function GroebnerBasis(I) which has computed
the Groebner basis for I using reversed lexicographical order on monomi-
als with the variables ordered as b1 > b2 > ξ > a. It took several hours, the
Groebner basis contains 15 elements, and the element above is one of them.)
The last term does not give rational values for a, and the reason it enters
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here is that we have multiplied every equation cp − cp
1/p! = 0 by 3pth power

of the determinant ξ2 + 2aξ + a − 1/4 = (ξ + 1/2)(ξ + 2a − 1/2) while pre-
cisely the denominator of cp − cp

1/p! is (ξ + 1/2)3p(ξ + 2a − 1/2)2p. There-
fore our polynomials are divisible by (ξ + 2a − 1

2)p for p = 2, 3, 4, 5, and since
ξ2 + ξ = 1 these factors are zero exactly when a2 − a = 1

16 . We now have a
finite list of values for a, and we plug each of them together with ξ into
the equations to find all values of b1 and b2 for which our equations vanish
for p = 2, 3, 4, 5. So, we get the list above. For each row we compute the
corresponding value of C from c1 = γ, i.e.

C = c1(b1, b2, ξ, a) − 1
24

∑

i

1 + Qi

1 − Qi
= c1(b1, b2, ξ, a) − 2ξ + 1

12
.

What remains is to prove that the FA,B,C satisfy the identities given
in the last column. For the case a = 1/2, this is easy, since FA,B,C splits
as the product of two rank 1 cases, for which an identity is given in The-
orem 3.1. For the case a = 3/4, the identities follow directly by applying
Theorem 4.1 below, with m = 2 and A = 1/2, and again using identities
from Theorem 3.1.

Only the case a = 1 is a bit more work: using

(3.4) (−xq1/2; q)∞ =
∑

k≥0

q
1
2
k2

xk

(q)k

(this is a direct consequence of the first identity in Proposition 2 of Chapter
2 [8]), with x = q−n/2, we find

∑

m,n≥0

q
1
2
m2− 1

2
mn+ 1

2
n2

(q)m(q)n
=
∑

n≥0

q
1
2
n2

(−q−
1
2
n+ 1

2 )∞
(q)n

=
∑

n≥0

q2n2
(−q−n+ 1

2 )∞
(q)2n

+
∑

n≥0

q2n2+2n+ 1
2 (−q−n)∞

(q)2n+1
.

Now using that for n ≥ 0 we have (−q−n+ 1
2 )∞ = q−

1
2
n2

(−q
1
2 )n(−q

1
2 )∞ and

(−q−n)∞ = 2q−
1
2
n2− 1

2
n(−q)n(−q)∞, this equals

(−q
1
2 )∞

∑

n≥0

q
3
2
n2

(−q
1
2 )n

(q)2n
+ 2q

1
2 (−q)∞

∑

n≥0

q
3
2
n2+ 3

2
n(−q)n

(q)2n+1
(3.5)

= (−q
1
2 )∞

∑

n≥0

q
3
2
n2

(q
1
2 )n(q2; q2)n

+ 2q
1
2 (−q)∞

∑

n≥0

q
3
2
n2+ 3

2
n

(q)n(q; q2)n+1
.
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To get identities for these last two sums, we use equations (19) and (44)
in [6], which (in our notation) read

∑

n≥0

(−1)nq3n2

(−q; q2)n(q4; q4)n
=

(q2; q5)∞(q3; q5)∞(q5; q5)∞
(q2; q2)∞

,

∑

n≥0

q
3
2
n2+ 3

2
n

(q)n(q; q2)n+1
=

(q2; q10)∞(q8; q10)∞(q10; q10)∞
(q)∞

.

If we use the Jacobi triple product identity (−xq1/2)∞(−x−1q1/2)∞(q)∞ =∑
n∈Z

xnqn2/2 on the RHS and replace q by −q1/2 in the first identity, we
get

∑

n≥0

q
3
2
n2

(q
1
2 )n(q2; q2)n

= q
7

120

θ5, 3
4
(2z) + θ5, 13

4
(2z)

η(z)
,

∑

n≥0

q
3
2
n2+ 3

2
n

(q)n(q; q2)n+1
= q−

49
120

θ5,2(2z)
η(z)

.

Further we have

(−q
1
2 )∞ =

(q; q2)∞
(q

1
2 ; q)∞

=
(q)2∞

(q2; q2)∞(q
1
2 ; q

1
2 )∞

= q
1
48

η(z)2

η(2z)η(z/2)
,

(−q)∞ =
(q2; q2)∞

(q)∞
= q−

1
24

η(2z)
η(z)

,

and so we get from (3.5)

FA,B,C(q) =
η(z)

η(2z)η(z/2)

(
θ5, 3

4
(2z) + θ5, 13

4
(2z)

)
+ 2

η(2z)
η(z)2

θ5,2(2z),

where A =
(

1 −1/2
− 1/2 1

)
, B = ( 0

0 ) and C = −1/20.

The proof for the identity for B =
(

−1/2
0

)
and C = 1/20 is very similar,

and so we omit some of the details. We have

∑

m,n≥0

q
1
2
m2− 1

2
mn+ 1

2
n2− 1

2
m

(q)m(q)n

= 2(−q)∞
∑

n≥0

q
3
2
n2− 1

2
n(−q)n

(q)2n
+ (−q

1
2 )∞

∑

n≥0

q
3
2
n2+n(−q

1
2 )n+1

(q)2n+1

= 2(−q)∞
∑

n≥0

q
3
2
n2− 1

2
n

(q)n(q; q2)n
+ (−q

1
2 )∞

∑

n≥0

q
3
2
n2+n(−q

1
2 )n+1

(q)2n+1
.
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Again we use two identities from Slater’s list (see [6]), namely (46) which
reads

∑

n≥0

q
3
2
n2− 1

2
n

(q)n(q; q2)n
=

(q4; q10)∞(q6; q10)∞(q10; q10)∞
(q)∞

,

and so we can identify it as q−1/120θ5,1(2z)/η(z), and (97), which should
read (note that there are mistakes in some of the exponents; we have given
the corrected version here)

∑

n≥0

q3n2+2n(−q; q2)n+1

(q2; q2)2n+1

=
(−q; q2)∞
(q2; q2)∞

(
(−q11; q30)∞(−q19; q30)∞

− q3(−q; q30)∞(−q29; q30)∞
)
(q30; q30)∞

=
(−q; q2)∞
(q2; q2)∞

(q3; q10)∞(q7; q10)∞(q10; q10)∞(q4; q20)∞(q16; q20)∞.

If we replace q by q1/2, we find

∑

n≥0

q
3
2
n2+n(−q

1
2 )n+1

(q)2n+1
= q−

17
240

θ5, 3
2
(z)θ5,2(2z)η(z)

η(z/2)η(2z)η(10z)
,

which gives the desired result. �

In [8] one can find a list of triples (A, B, C) for r = 2 (table 2 on p. 47) for
which numerical experiments show that the condition (iii) of Corollary 3.1
holds, as well as (ii). We see that the cases of Theorem 3.2 with a = 1 are
on this list, but the ones with a = 3/4 appear to be new. We will come back
to the case a = 3/4 in the next section.

Similar analysis for the other two families in (3.3) gave the following
results. In both cases if the matrix in the family is diagonal then the modular
forms are products of the ones from Theorem 3.1. Non-diagonal cases are
listed in tables 1 and 2.

In table 1, the identities for the case a = 3/2 follow directly by applying
Theorem 4.1 with m = 2 and A = 2, and using identities from Theorem 3.1.
For the case a = 4/3 we were unable to find a proof.
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Table 1: A complete list of modular triples (A, B, C) with the matrix

A =
(

a 2 − a
2 − a a

)
, a > 1, a �= 2. The corresponding identities for a = 4

3

are not proved but have been verified to a high order in the power series
in q.

A B C FA,B,C(e2πiz)

(4
3

2
3

2
3

4
3

) (
0
0

)
− 1

30 ?

1
η(z)

∑

n∈Z

(−1)n
(
2q

15
2

(n+ 3
10

)2

+ q
15
2

(n+ 1
30

)2 − q
15
2

(n+ 11
30

)2
)

(
−2

3

− 1
3

)
and

(
−1

3

− 2
3

)
1
30 ?

1
η(z)

∑

n∈Z

(−1)n
(
2q

15
2

(n+ 1
10

)2

+ q
15
2

(n+ 13
30

)2 − q
15
2

(n+ 23
30

)2
)

(3
2

1
2

1
2

3
2

) (
1
4

− 1
4

)
and

(−1
4

1
4

)
− 1

120 θ5,1( z
2)/η( z

2)

(1
4
3
4

)
and

(3
4
1
4

)
11
120 θ5,2( z

2)/η( z
2)

In table 2, the identity for B = ( b −b ) is given in [8] (see (26) in Chapter
2). The proof uses that for any n ∈ Z

(3.6)
∑

k,l≥0

k−l=n

qkl

(q)k(q)l
=

1
(q)∞

.

The identity for B =
( − 1

2

− 1
2

)
is proven similarly, using

∑

k,l≥0

k−l=n

qkl− 1
2
k− 1

2
l

(q)k(q)l
=

qn/2 + q−n/2

(q)∞
,
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Table 2: The list containing all (B, C) such that FA,B,C is modular, where

A =
(

a 1 − a
1 − a a

)
, a > 1

2 , a �= 1.

B C FA,B,C(e2πiz)

(
b − b

) b2

2a
− 1

24
1

η(z)

∑

n∈Z+ b

a

qan2/2

(
−1

2

− 1
2

)
1
8a

− 1
24

2
η(z)

∑

n∈Z+ 1
2a

qan2/2

(
1 − a

2
a
2

)
and

(
a
2

1 − a
2

)
a

8
− 1

24
1

2η(z)

∑

n∈Z+ 1
2

qan2/2

for all n ∈ Z. This identity follows directly from (3.6):

∑

k,l≥0

k−l=n

qkl− 1
2
k− 1

2
l

(q)k(q)l
=
∑

k,l≥0

k−l=n

qkl− 1
2
k− 1

2
l
(
(1 − qk) + qk

)

(q)k(q)l

=
∑

k≥1,l≥0

k−l=n

qkl− 1
2
k− 1

2
l

(q)k−1(q)l
+
∑

k,l≥0

k−l=n

qkl+ 1
2
k− 1

2
l

(q)k(q)l
.

If we replace k by k + 1 in the first sum on the RHS, we see that it equals
q−n/2/(q)∞ and the second sum equals qn/2/(q)∞.

To get the identity for B =
( a

2
1− a

2

)
we use

(3.7)
∑

k,l≥0

k−l=n

qkl+l

(q)k(q)l
=

1
(q)∞

(−1)nq−
1
2
n2− 1

2
nsn,

with sn =
∑

k≥n(−1)kq
1
2
k2+ 1

2
k (this is easily obtained by checking that both

sides satisfy the recursion bn + qn+1bn+1 = 1/(q)∞ and limn→∞ bn = 1
(q)∞

)
to get

FA,B,C(q) =
qa/8

η(z)

∑

n∈Z

q(a−1)(n2+n)/2sn.
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If we replace n by −n − 1 in the sum and use that s−n−1 = sn+1 = sn −
(−1)nq

1
2
n2+ 1

2
n, we easily get that

∑
n∈Z

q(a−1)(n2+n)/2sn = 1
2

∑
n∈Z

qa(n2+n)/2, which gives the desired result.
We also checked for each matrix A in Zagier’s list for r = 2 (p. 47 in [8])

if the corresponding list of vectors B is complete. It appears to be complete

in all cases except A =
(

a 1 − a
1 − a a

)
. For such matrices only the modular

forms in the first row of table 2 were known.

4. Counterexamples to Nahm’s conjecture

The Bloch group B(K) of a field K is an abelian group defined as the
quotient of the kernel of the map

(4.1)
Z[K∗ \ 1] → Λ2K∗,

x �→ x ∧ (1 − x)

by the subgroup generated by all elements of the form

[x] + [1 − x], [x] +
[

1
x

]
, [x] + [y] + [1 − xy] +

[
1 − x

1 − xy

]
+
[

1 − y

1 − xy

]
.

(4.2)

If K is a number field than B(K) ⊗Z Q ∼= K3(K) ⊗Z Q and the regulator
map is given explicitly on B(K) by

B(K) → R
r2 ,

x �→ (D(σ1(x)), . . . , D(σr2(x))),

where r2 is the number of pairs of complex conjugate embeddings of K into
C, σ1, . . . , σr2 is any choice of such embedding from different pairs, and

D(x) = �(Li2(x) + log(1 − x) log |x|)

is the Bloch–Wigner dilogarithm function. It vanishes on all combinations
in (4.2).

Let (Q1, . . . , Qr) be an arbitrary solution of the system of algebraic equa-
tions (2.1) in some number field K. Then the element [Q1] + · · · + [Qr] ∈
Z[K∗ \ 1] belongs to the kernel of (4.1). Indeed, we have

∑

i

Qi ∧ (1 − Qi) =
∑

i

Qi ∧
∏

j

Q
Aij

j =
∑

i,j

AijQi ∧ Qj = 0,
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because of the symmetry Aij = Aji. Hence, every solution of (2.1) defines
an element in the Bloch group of the corresponding field.

Recall that there exists the unique solution (Q0
1, . . . , Q

0
r) of (2.1) with

Q0
i ∈ (0, 1), and we have used this solution to compute the asymptotics

of (1.1) when q → 1. If (1.1) is a modular function then for this solution we
have

(4.3) L(Q0
1) + · · · + L(Q0

r) ∈ π2
Q,

where L(x) is the Rogers dilogarithm function (condition (ii) of Corol-
lary 3.1). Rogers dilogarithm is defined on the interval (0, 1) by (2.8) and
then extended to R by setting L(0) = 0, L(1) = π2

6 , and

L(x) =

{
2L(1) − L(1/x), if x > 1,

−L(x/(x − 1)), if x < 0.

The resulting function is a monotone increasing continuous real-valued func-
tion, and one has

L(x) + L(1 − x) =
π2

6
, L(x) + L

(
1
x

)
=

{
π2

3 , if x > 0,

−π2

6 , if x < 0,

L(x) + L(y) + L(1 − xy) + L

(
1 − x

1 − xy

)
+ L

(
1 − y

1 − xy

)

=

⎧
⎪⎨

⎪⎩

−π2

2 , if x, y < 0,

xy > 1,

+π2

2 , otherwise.

We see that Rogers dilogarithm takes values in π2
Q on all combinations of

real arguments of the form (4.2). On the other hand, all known functional
equations for L(x) follow from these ones. Therefore it is very natural to
expect that [Q0

1] + · · · + [Q0
r ] is torsion in the corresponding Bloch group

because of (4.3). (It is automatically torsion if the field Q(Q0
1, . . . , Q

0
r) is

totally real.) Similar reasoning lead Werner Nahm to the following
conjecture.

Conjecture 4.1. For a positive definite symmetric r × r matrix with ratio-
nal coefficients A the following are equivalent:

(i) The element [Q1] + · · · + [Qr] is torsion in the corresponding Bloch
group for every solution of (2.1).
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(ii) There exist B ∈ Q
r and C ∈ Q such that FA,B,C is a modular function.

This conjecture is true in case r = 1, and there are a lot of examples
supporting the Conjecture also for r > 1 (see [8]). Although examples show
that it is not sufficient to require only [Q0

1] + · · · + [Q0
r ] to be torsion, it does

not actually follow from anywhere that one should consider all solutions
of (2.1) in (i). We will see soon that this requirement is indeed too strong.

As an example, let us consider matrices of the form A =
(

a 1 − a
1 − a a

)
.

The corresponding equations are
{

1 − Q1 = Qa
1 Q1−a

2 ,

1 − Q2 = Q1−a
1 Qa

2,

hence
1 − Q1

Q2
=
(Q1

Q2

)a
=

Q1

1 − Q2
,

(1 − Q1)(1 − Q2) = Q1Q2,

Q1 + Q2 = 1 ⇒ [Q1] + [Q2] = 0 in B(C).

This computation is the same for all values of a and we see from table 2
that indeed we have modular functions for every a.

Next, let us look at the table from Theorem 3.2. One can check that

the matrix A =
(

1 −1/2
− 1/2 1

)
satisfies condition (i) of the Conjecture.

(All solutions of (2.1) are (Q1, Q2) = (x, x) with 1 − x = x1/2.) However,

A =
(

3/4 −1/4
− 1/4 3/4

)
does not satisfy (i), and so we get a counterexample

to Nahm’s conjecture, since there do exist corresponding modular functions.
Indeed, consider the corresponding equation:

(4.4)

{
1 − Q1 = Q

3/4
1 Q

−1/4
2 ,

1 − Q2 = Q
−1/4
1 Q

3/4
2 .

It is algebraic equation in the variables Q
1/4
1 and Q

1/4
2 . Let t = Q

1/4
1 Q

−1/4
2 .

Then we have from the above equations

1 − Q1

Q
1/2
2

= t3 ⇒ Q
1/2
2 = t−3(1 − Q1),

1 − Q2

Q
1/2
1

= t−3 ⇒ Q
1/2
1 = t3(1 − Q2),
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and we substitute these equalities into Q
1/2
1 = t2Q

1/2
2 to get

t3(1 − Q2) = t2t−3(1 − Q1),

t4(1 − Q2) = 1 − Q1 = 1 − t4Q2,

t4 = 1.

Consequently, all solutions of (4.4) are (Q1, Q2) = (x, x) where x is a solution
of 1 − x = tx1/2 for a fourth root of unity t4 = 1. If we take t = ±i we get a
non-torsion element in the Bloch group. Indeed, we can rewrite the equation
for x as

(1 − x)4 = x2 ⇔ (x2 − 3x + 1)(x2 − x + 1) = 0.

We see that (Q1, Q2) =
(

1+
√−3
2 , 1+

√−3
2

)
is a solution of (4.4), and the corre-

sponding element 2
[

1+
√−3
2

]
is not torsion because D

(
1+

√−3
2

)
= 1.01494 . . . .

Here D is the Bloch–Wigner dilog (see [8, Chapter I, Section 3]) for which
it is known that D(x) = 0 if and only if x ∈ R.

A similar thing happens in table 1: the matrix A =
(

4/3 2/3
2/3 4/3

)
satis-

fies the Conjecture while A =
(

3/2 1/2
1/2 3/2

)
is a counterexample. So far, we

have two counterexamples, and we notice that both matrices match into the
following general pattern.

Theorem 4.1. Let A be a real positive definite symmetric r × r-matrix, B
a vector of length r, and C a scalar. For an arbitrary m ≥ 1 we define

A′ = Imr + Em ⊗ (A − Ir), B′ = lmr + em ⊗ (B − lr), C ′ = C/m,

where Em ∈ Mm×m(Q) such that (Em)ij = 1/m, em ∈ Q
m such that (em)i =

1/m and lr ∈ Q
r such that (lr)i = 2i−r−1

2r . Then

FA′,B′,C′(q) = FA,B,C(q1/m).

Proof. The proof relies on the following identity

q
1
2
n2

(q)n
=

∑

k∈(Z≥0)m

k1+···+km=n

q
m

2
kT k+mlTmk

(qm; qm)k1 · · · (qm; qm)km
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which holds for all n ≥ 0. It follows directly if we use (3.4) on both sides in
the trivial identity

(−xq1/2; q)∞ = (−xq1/2; qm)∞(−xq3/2; qm)∞ · · · (−xqm−1/2; qm)∞,

and compare the coefficient of xn on both sides.
Using the identity we find

FA,B,C(q) =
∑

n∈(Z≥0)r

q
1
2
nT An+nT B+C

(q)n1 . . . (q)nr

=
∑

n∈(Z≥0)r

q
1
2
nT (A−Ir)n+nT B+C

∑

K∈Mr×m(Z≥0)

mKem=n

q
m

2
||K||2+mreT

r Klm

(qm; qm)K
,

where ||K||2 =
∑r

i=1

∑m
j=1 K2

ij and (q; q)K =
∏r

i=1

∏m
j=1(q; q)Kij

. Now
changing the order of summation, we get that this equals

∑

K∈Mr×m(Z≥0)

q
m2

2
eT

mKT (A−Ir)Kem+ m

2
||K||2+meT

mKT B+mreT
r Klm+C

(qm; qm)K
.

If we turn the r × m matrix K into a vector of length rm by putting
the columns of K under each other, we can recognize this last sum as
FA′,B′′,C′(qm), where A′ and C ′ are as in the theorem and B′′ = em ⊗ B +
rlm ⊗ er. We can easily verify that

rlm ⊗ er = lmr − em ⊗ lr,

which gives B′′ = B′, with B′ as in the theorem. So we have found

FA,B,C(q) = FA′,B′,C′(qm).

Now replacing q by q1/m gives the desired result. �

Let us take r = 1 and m = 2. Then

A =
1
2

� A′ =
(

3/4 −1/4
− 1/4 3/4

)
,

A = 2 � A′ =
(

3/2 1/2
1/2 3/2

)



640 Masha Vlasenko and Sander Zwegers

and the theorem produces modular functions for these 2 × 2 matrices from
the ones known for r = 1. One can construct more counterexamples with
higher r using Theorem 4.1.

Finally, we would like to give one more counterexample, this time such
that A has integer entries. Let

A =

⎛

⎜⎜⎝

3 1 1 0
1 3 0 1
1 0 1 0
0 1 0 1

⎞

⎟⎟⎠ , B =
1
2

⎛

⎜⎜⎝

1
− 1
1
1

⎞

⎟⎟⎠ , C =
1
15

.

All solutions of (2.1) in this case are

(Q1, Q2, Q3, Q4) =
(
u, u,

1
1 + u

,
1

1 + u

)
with 1 − u2 = u4

and

(Q1, Q2, Q3, Q4) =
(
u,−u,

1
1 + u

,
1

1 − u

)
with 1 − u2 = −u4.

A solution of the first type gives the element 2[u] + 2[ 1
1+u ], which by the

five-term relation equals −[1 − u2] = [u2] = [v], where v satisfies 1 − v = v2

and so it is indeed torsion in the Bloch group. However, solutions of the
second type give non-torsion elements: using the relations [t] + [1/t] = 0 =
[t] + [1 − t] we get

[−u] =
[

1
1 + u

]
,

[
1

1 − u

]
= [u],

and so these solutions give the element 2[u] + 2[ 1
1+u ], which again equals

−[1 − u2] = [u2] = [v], where v satisfies 1 − v = −v2. Since v is not real, we
see that the element is not torsion in the Bloch group.

On the other hand, we have that

FA,B,C(q) =
η(2z)2θ5,1(z)

η(z)3
.

We get this identity by applying the theorem below to A =
(

3/2 1/2
1/2 3/2

)
, B =(

1/4
−1/4

)
and C = −1/120, and using the identity for this case given in table 1.

Theorem 4.2. Let A be a real positive definite symmetric r × r-matrix, B
a vector of length r, and C a scalar. Let A′, B′ and C ′ be the symmetric
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2r × 2r-matrix, the vector of length 2r and the scalar, resp., given by

A′ =
(

2A Ir
Ir Ir

)
, B′ =

⎛

⎜⎜⎜⎝

2B
1
2
...
1
2

⎞

⎟⎟⎟⎠ , C ′ = 2C +
r

24
,

then

FA′,B′,C′(q) =
η(2z)r

η(z)r
FA,B,C(q2).

Proof. Using (q2; q2)n = (q; q)n(−q; q)n, (q2; q2)∞ = (q; q)∞(−q; q)∞ and
(3.4), we see that

(q2; q2)∞
(q; q)∞

1
(q2; q2)n

=
(−q; q)∞

(q; q)n(−q; q)n
=

(−qn+1; q)∞
(q; q)n

=
1

(q)n

∑

k≥0

q
1
2
k2+ 1

2
k+nk

(q)k
,

and so

(q2; q2)r∞
(q)r∞

FA,B,C(q2)

=
∑

n∈(Z≥0)r

qnT An+2nT B+2C

(q)n1 · · · (q)nr

∑

k∈(Z≥0)r

q
1
2
kT k+nT k+ 1

2
(k1+k2+···+kr)

(q)k1 · · · (q)kr

=
∑

n,k∈(Z≥0)r

qnT An+ 1
2
kT k+nT k+2nT B+ 1

2
(k1+k2+···+kr)+2C

(q)n1 · · · (q)nr
(q)k1 · · · (q)kr

.

If we turn the two vectors n and k into one vector of length 2r by putting k
below n, we can recognize this last sum as q−r/24FA′,B′,C′(q), where A′, B′

and C ′ are as in the theorem. So we have found

(q2; q2)r∞
(q)r∞

FA,B,C(q2) = q−r/24FA′,B′,C′(q).

Multiplying both sides by qr/24 gives the desired result. �
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