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Universal covers and the GW/Kronecker

correspondence

Jacopo Stoppa

The tropical vertex is an incarnation of mirror symmetry found
by Gross, Pandharipande and Siebert. It can be applied to m-
Kronecker quivers K(m) (together with a result of Reineke) to
compute the Euler characteristics of the moduli spaces of their
(framed) representations in terms of Gromov–Witten invariants
(as shown by Gross and Pandharipande). In this paper, we study
a possible geometric picture behind this correspondence, in par-
ticular constructing rational tropical curves from subquivers of the
universal covering quiver ˜K(m). Additional motivation comes from
the physical interpretation of m-Kronecker quivers in the context
of quiver quantum mechanics (especially, work of Denef).

1. Introduction

The m-Kronecker quiver K(m) is the bipartite quiver with m edges directed
from v1 (the source) to v2 (the sink):

v1

e1

��
e2

��

em−1

��

em

��
... v2

A stability condition (central charge) for its dimension vectors is specified by
a pair of integers (w1, w2). We will always refer to the choice (w1, w2) = (1, 0).
One can then form smooth, projective moduli spaces Ms,B

K(m)(d) for stable
representations of K(m) with dimension vector d and a one-dimensional
framing at v1 (respectively, Ms,F

K(m)(d) for a framing at v2, see e.g. [1] for
the general theory). By the results of Engel and Reineke [1] we have explicit
formulae for the topological Euler characteristics χ(Ms,B

K(m)(d)) (and also for
F -framings).
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Here, however, we are interested in an alternative and rather surprising
way of computing these Euler characteristics, using an incarnation of mirror
symmetry known as the tropical vertex of Gross et al. [2]. It turns out that
computing the generating function

∑

k≥0

χ(Ms,B
K(m)(ka, kb))xkaykb

is equivalent to working out a Gromov–Witten theory for a family of alge-
braic surfaces.

Fix coprime positive integers a, b and let P(a, b, 1) be the weighted projec-
tive plane (C3 \ {0})/C

∗, with action given by λ · (z1, z2, z3) = (λaz1,
λbz2, λz3). Its toric fan is given by the duals of the divisors D1, D2, Dout

cut out by z1, z2, z3. We denote by Do
1, D

o
2, D

o
out the subschemes obtained

by removing the three torus fixed points. Also choose length m-ordered par-
titions Pa, Pb with sizes |Pa| = ka, |Pb| = kb for an integer k > 0. Then the
relevant invariants for us are

Na,b[(Pa, Pb)] ∈ Q

counting rational curves in the weighted projective plane P(a, b, 1), which
pass through m-tuples of distinct points x1

1, . . . , x
1
m on Do

1, respectively
x2

1, . . . , x
2
m on Do

2, with multiplicities specified by Pa, Pb and which are tan-
gent to Do

out to order k. As an example N1,1(2 + 1, 1 + 1 + 1) = 3 counts
plane rational cubics with a prescribed node which pass through four other
prescribed points, and with Dout an inflectional tangent. We refer to [2] Sec-
tions 0.4 and 6.4 for precise definitions and further examples. The numbers
Na,b[(Pa, Pb)] are well defined and independent of the choice of points.

The GW/m-Kronecker correspondence is the identity in Q[[x, y]]

exp

⎛

⎝

∑

k≥1

∑

|Pa|=ka,|Pb|=kb

kNa,b[(Pa, Pb)]xkaykb

⎞

⎠(1.1)

=

⎛

⎝1 +
∑

k≥1

χ(Ms,B
K(m)(ka, kb))xkaykb

⎞

⎠

m/a

=

⎛

⎝1 +
∑

k≥1

χ(Ms,F
K(m)(ka, kb))xkaykb

⎞

⎠

m/b

,
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(summing over length m-ordered partitions Pa, Pb), first written down explic-
itly by Gross and Pandharipande [3] Corollary 3.

Gross and Pandharipande [3] Section 3.5 and Reineke [4] Section 6 have
asked if there is actually a correspondence between curves and represen-
tations underlying the equality (1.1). In particular, one could ask how to
costruct a rational curve starting from a given framed representation of
K(m).

This question was the original motivation for writing this paper. We
hoped initially that it would be possible to construct a rational tropical curve
starting from a suitable framed representation of the universal covering of
the quiver, ˜K(m) (due to Reineke and Weist). Our hope was motivated by
the case of the standard Kronecker quiver K(2), where we will see that this
is roughly true. By the results of Weist [5] (see Theorem 2.1 and (2.2) below)
passing to ˜K(2) is the same as localizing with respect to the natural (C∗)2-
action, so the Euler characteristics can be computed already on ˜K(2). On the
other hand, the GW invariants Na,b[(Pa, Pb)] do arise from certain tropical
counts N trop(w), see [2] Theorem 3.4 and Proposition 5.3 (summarized in
Theorem 2.66 below).

When m ≥ 3, however, this approach becomes problematic and we are
not able to construct a single rational tropical curve from a given repre-
sentation. What we do instead is roughly the following. For a finite sub-
quiver Q ⊂ ˜K(m) and a “perturbative” parameter k ≥ 1 we construct a
whole (finite) set of rational tropical curves SQ,k. By Weist’s Theorem, rep-
resentations of Q embed in representations of K(m), so we may think of
the assignment Q �→ SQ,k as a refinement of the construction in [2], where
a very similar set of curves arises simply from K(m). Counting the curves
in SQ,k for k � 1 which satisfy some constraints, with a suitable weight
(adapted from the usual tropical multiplicity), expresses the contribution of
Q to χ(Ms,B

K(m)(d)) for some dimension vector d. Constraints on the number
of “legs” of our tropical curves correspond to constraints on the dimension
vector d. We denote these ad hoc counts N trop

Q (w). We do not claim that
they are genuine tropical invariants, i.e., independent of a crucial choice
made in their construction. But via the GW/Kronecker correspondence, we
find a posteriori a way to think of N trop

Q (w′) as the contribution of Q to
some genuine invariants N trop(w).

Here is the plan of the paper. We collect the necessary preliminary
notions and results in Section 2. In Section 2.1, we discuss universal covering
quivers and Weist’s Theorem. In Section 2.2, we introduce the cornerstone of
our approach, Reineke’s Theorem 2.2. The genuine tropical counts N trop(w)
and their connection to the GW invariants Na,b[(Pa, Pb)] are discussed in
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Section 2.6. We first present the construction of tropical curves from sub-
quivers of ˜K(m) under some very strong assumptions, essentially restricting
us to ̂K(2). We do this both because we think that ̂K(2) is a good example
and because one has stronger results in this case. The construction takes up
Sections 2.3, 2.4 and the first part of 2.7. The construction which holds for
general m hinges on the factorization/deformation technique of [2], explained
in Section 2.5, and is done in Section 2.7. The numbers N trop

Q,k (w) are defined
at the end of that section. In Section 3, we present our results connecting
the tropical curves obtained from Q with its contribution to χ(Ms,B

K(m)(d)),
see especially Corollary 3.2 and Corollary 3.3. Very important additional
motivation for the present work came from the paper of F. Denef [6], so we
include in Section 4 some remarks about quiver quantum mechanics. How-
ever, our grasp of the necessary physical background is very limited, and
our discussion will be hardly satisfactory to the experts. The reader would
be well-advised to consult [6].

2. Preliminary notions and results

2.1. Universal covering quivers

Let Q be a quiver without closed loops, with vertices Q0 and edges Q1. The
algebraic torus T := (C∗)|Q1| acts on the affine spaces of representations
RepQ(d) for d ∈ NQ0, by scaling the linear maps in a representation. Let
us write X(T ) := Hom(T, C) ∼= ZQ1, the character group of T . The abelian
universal covering quiver of Q (due to Reineke, see [5] Section 3) is the
quiver ̂Q with vertices ̂Q0 = Q0 ×X(T ) and arrows given by

(α, χ) : (i, χ)→ (j, χ + eα)

for α : i→ j in Q1 and χ ∈ X(T ). Here eα is the character corresponding
to α ∈ Q1. We say that a dimension vector d̂ ∈ N ̂Q0 is compatible with
d ∈ NQ0 if di =

∑

χ d̂i,χ for all i ∈ Q0, and we write d̂ ∼ d. There is an action
of ZQ1 on ̂Q0 defined by λ · (i, χ) = (i, χ + λ), which extends to an action
on dimension vectors N ̂Q0 by linearity. In the following, we will denote by
[ d̂ ] the equivalence class of d̂ ∈ N ̂Q0.

Suppose now that we fix a stability function Θ: ZQ0 → C and a dimen-
sion vector d for which there are no strictly semistable objects (often we
call such dimension vectors coprime). Weist studied the fixed locus for the
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induced torus action onMs
Q(d), proving the isomorphism

(Ms
Q(d))T ∼=

⋃

[ d̂ ]∼d

Ms
̂Q
(d̂)

(see [6], Theorem 3.11). In turn each of the moduli spaces Ms
̂Q
(d̂) admits

a torus action, and this gives rise to a tower of fixed loci, described by
representations of iterated abelian covering quivers. We may then ask if for
a fixed d this process stabilizes after a finite number of iterations, and what
the iterated fixed locus looks like. Weist gave an answer in terms of the
universal covering quiver of Q.

So let W (Q) be the group of words on Q, generated by arrows and their
formal inverses. The universal covering quiver ˜Q of Q (see [6], Section 3.4)
is the quiver with vertices ˜Q0 = Q0 ×W (Q) and arrows given by

(α, w) : (i, w)→ (j, wα)

for α : i→ j in Q1 and w ∈W (Q). As in the abelian case we have the notion
of a compatible dimension vector d̃ ∈ N ˜Q0 for d ∈ NQ0, and an action of
W (Q) on N ˜Q0 given by w′ · (i, w) = (i, ww′), with equivalence classes [ d̃ ].

Theorem 2.1 Weist [6] Theorem 3.16. For a fixed coprime dimension
vector d for Q the iteration process stabilizes, and the iterated fixed locus
can be identified with the disjoint union

(2.1)
⋃

[ d̃ ]∼d

Ms
Q(d̃).

In particular, for topological Euler characteristics we get

χ(Ms
Q(d)) =

∑

[ d̃ ]∼d

χ(Ms
˜Q
(d̃)).

For our applications we need a small variant of this result, replacing the
coprime condition on d with the presence of a framing. We only state this for
the Kronecker quivers K(m). A B-framing (respectively, F-framing) for a
representation of K(m) is the choice of a one-dimensional subspace L ⊂ Vv1

(respectively, L ⊂ Vv2). Similarly, B or F framings of a representation of
˜K(m) are given by one-dimensional subspaces L ⊂ V(v1,w) or L ⊂ V(v2,w)

for some w ∈W (K(m)). There is a natural notion of stability for framed
representations, which implies ordinary semistability (we refer to [1]). The
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Figure 1: The universal abelian covering quiver ̂K(2).

Figure 2: The universal abelian covering quiver ̂K(3).

framing rules out strictly semistable objects, so that we have smooth moduli
spacesMs,B

K(m)(d) andMs,(v1,α)
˜K(m)

(d̃) (and similarly for F framings). Then one
can check that the proof of Theorem 2.1 carries over to this framed case,
giving for Euler characteristics

(2.2) χ(Ms,B
K(m)(d)) =

∑

[ d̃ ]∼d

∑

w

χ(Ms,(v1,w)
˜K(m)

(d̃)).

We will often use the crucial fact (see [5] Remark 3.18) that the con-
nected components of ˜K(m) are given by infinite m-regular trees with an
orientation.

Example. The universal covering ˜K(2) coincides with the universal abelian
covering ̂K(2) (see figure 1).

Example. The universal abelian covering quiver ̂K(3) is the infinite hexago-
nal quiver (see figure 2). The universal covering ˜K(3) is obtained by opening
up all the unoriented cycles in ̂K(3) (see figure 3).
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Figure 3: The universal covering quiver ˜K(3).

2.2. Reineke’s theorem

We start by fixing a finite subquiver Q ⊂ ˜K(m). This is a bipartite quiver,
i.e., every vertex is either a source or a sink. We label the sinks by i1, . . . , is,
the sources by is+1, . . . , is+S (so there are s sinks and S sources). Notice
that in particular Q has no oriented (or indeed unoriented) cycles, so we can
follow Reineke’s convention and fix an order such that ik → il ⇒ k > l. For
our purposes, we also need that the order is minimal, in the following sense:
we label the sources mapping to i1 by is+1, . . . , is+�1 , the remaining sources
mapping to i2 (if any) by is+�1+1, . . . , is+�2 , and so on.

A dimension vector d has a reduction d ∈ NK(m)0 ∼= N× N given by

(2.3) d =
(
∑

i>s

di,
∑

i≤s

di

)

.

We will write Ind d, Ind(d) for the index of a dimension vector and its reduc-
tion, i.e., the unique positive integer n such that d

n (respectively, d
n) is

primitive. Notice that we have Ind(d) ≤ Ind(d). The central charge (1, 0) ∈
(NK(m)0)∗ gives a notion of slope,

(2.4) μ(d′, d′′) =
d
′

d
′ + d

′′ .

We fix a notion of slope for dimension vectors of Q induced from the central
charge (1, 0) on K(m), namely

(2.5) μ(d) =
∑

k>s dk
∑

k dk
.

The set of dimension vectors with slope μ (together with the trivial repre-
sentation) forms a subsemigroup (NQ0)μ ⊂ NQ0.
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The Euler form is a bilinear form on ZQ0 defined by

(2.6) e(d′, d′′) =
∑

i∈Q0

d′id
′′
i −

∑

α:i→j

d′id
′′
j ,

where the second sum is over all arrows from i to j. We denote its skew-
symmetrization by

(2.7) 〈d′, d′′〉 = e(d′, d′′)− e(d′′, d′).

Remark. The form 〈 ·, ·〉 is sometimes called the Dirac–Schwinger–
Zwanziger (DSZ ) product in physics terminology. Notice that in our case
the product 〈ik, il〉 takes values in {0,±1}. A possible source of confusion
is that the skew-symmetrized Euler form is denoted by {·, ·} in Reineke’s
notation.
A crucial role is played by a Poisson algebra modelled on Q,

B = (C[[xk]]k∈Q0 , { ·, ·}),

with Poisson bracket generated by {xk, xl} = 〈k, l〉xkxl. For any dimen-
sion vector d ∈ NQ0 the Kontsevich–Soibelman Poisson automorphism Td ∈
Aut(B) (a version of the operators appearing in [7] Section 1.4) is defined
by

(2.8) Td(xk) = xk(1 + xd)〈d,k〉.

The fundamental object for us is the Poisson automorphism of B given by

(2.9) Ti1 ◦ Ti2 · · · ◦ Tis
◦ Tis+1 ◦ · · · ◦ Tis+S

.

By the general theory (see e.g. [2] Theorem 1.4) this can be written as a
product of Poisson automorphisms attached to each rational non-negative
slope,

∏←
μ θQ,μ. The symbol ← means we are writing factors in this prod-

uct in the descending slope order from left to right. Reineke showed that
the Poisson automorphisms θQ,μ can be computed in terms of the Euler
characteristics of moduli spaces of stable framed representations of Q.

Theorem 2.2 Reineke [4] Theorem 2.1. We have

(2.10) θQ,μ(xj) = xj

∏

i∈Q0

(θQ,μ,i(x))〈i,j〉,
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where

(2.11) θQ,μ,i(x) =
∑

d∈(NQ0)μ

χ(Ms,i
Q (d))xd

and Ms,i
Q (d) is the moduli space of stable representations of Q (with respect

to the choice of slope (2.5)) with a one-dimensional framing at i ∈ Q0.

Remark. While we are only concerned with finite subquivers of ˜K(m) we
should make it clear that Reineke’s result holds for general finite quivers
without oriented cycles.

2.3. Sorting diagrams

We will be concerned with an iterative process which sorts the factor of the
fundamental product (2.9) in the opposite slope order, possibly introducing
new factors at each step. This process is encoded by sorting diagrams. Here
we give a definition inspired by that of the scattering diagrams appearing
in [2] Section 1.4. For the sake of exposition, we initially make very strong
assumptions about (2.9), and give examples of sorting diagrams, which these
hold. The restrictive assumptions will be removed in the Section 2.5 by
working over more general base rings.

So to a fixed product (2.9), we associate a unique sequence of sorting
diagrams Si, i ≥ 0. These are simply ordered sequences of group elements
σi

j ∈ B,

(2.12) Si = (σi
1, . . . , σ

i
�i
).

We set

(2.13) S0 = (Ti1 , Ti2 , . . . Tis
, Tis+1 , . . . Tis+S

).

Notice that for all elements of S0 we have a well-defined notion of slope:
since σ0

j = Tij
we set μ(σ0

j ) = μ(ij). We define the Si for i > 0 inductively
as follows. We move along the sequence Si starting from the left until we
meet a pair of group elements with μ(σi

p) < μ(σi
p+1). We wish to commute
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σi
p past the elements to its right until we meet again an element with smaller

slope, μ(σi
p) ≥ μ(σi

q).

Assumption 2.1. Our first (very restrictive) assumption is that for p +
1 ≤ p′ ≤ q − 1 we have

(2.14) (σi
p′)−1σi

pσ
i
p′(σi

p)
−1 = Tdp′

for some dp′ ∈ NQ0 (we follow the convention that T0 = 1). Then we define
Si+1 by replacing the segment

(σi
p, . . . , σ

i
q−1)

in Si by

(σi
p+1, Tdp+1 , σ

i
p+2, Tdp+2 , . . . , Tdq−1 , σ

i
p).

In particular μ(σi+1
j ) is well defined for all σi+1

j ∈ Si+1.

Assumption 2.2. The sequence of sorting diagrams Si stabilizes for i� 1.
We write S∞ for the stable sorting diagram.

Assumption 2.3. Operators in S∞ with the same slope commute.

If σ, τ are two operators in S∞ with σ preceeding τ , we write σ ≺ τ .
The following simple lemma is enough to effectively compute sorting

diagrams, under their present (restrictive) definition.

Lemma 2.1. If 〈d, e〉 = 0 then Td ◦ Te = Te ◦ Td; and if 〈d, e〉 = 1 then Td ◦
Te = Te ◦ Td+e ◦ Td.

Proof. Both equalities can be checked by direct computation, the second is
the “pentagon identity” [7] Section 1.4. �
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Example. Consider a localization quiver Q1 ⊂ ̂K(2) with underlying graph
given by

i1

i3

���������

���
��

��
��

i2

The sorting diagrams Si stabilize for i ≥ 2 and we find

S0 = (Ti1 , Ti2 , Ti3),

S1 = (Ti1 , Ti3 , Ti2+i3 , Ti2),

S2 = (Ti3 , Ti1+i3 , Ti2+i3 , Ti1+i2+i3 , Ti1 , Ti2).

Example. Consider a localization quiver Q2 ⊂ ̂K(2) with underlying graph
given by

i4 ��

���
��

��
��

i1

i2

i5

���������
�� i3

One can check that the sorting diagrams stabilize for i ≥ 6. The first few
are given by

S0 = (Ti1 , Ti2 , Ti3 , Ti4 , Ti5),

S1 = (Ti1 , Ti2 , Ti4 , Ti5 , Ti3+i5 , Ti3),

S2 = (Ti1 , Ti4 , Ti2+i4 , Ti5 , Ti2+i5 , Ti3+i5 , Ti2+i3+i5 , Ti2 , Ti3),

S3 = (Ti4 , Ti1+i4 , Ti2+i4 , Ti1+i2+i4 , Ti5 , Ti2+i5 , Ti3+i5 , Ti2+i3+i5 , Ti1 , Ti2 , Ti3),

S4 = (Ti4 , Ti1+i4 , Ti2+i4 , Ti5 , Ti1+i2+i4+i5 , Ti2+i5 , Ti3+i5 , Ti1+i2+i3+i4+i5 ,

Ti1+i2+i4 , Ti2+i3+i5 , Ti1 , Ti2 , Ti3).
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We also give an example where the present naive definition of sorting dia-
grams breaks down (i.e., the sorting diagram is undefined for some finite
i > 1).

Example. Consider a localization quiver Q3 ⊂ ˜K(3) with underlying graph
given by

i5 ��

���
��

��
��

i1

i2 i7		




i6

���������
�� i3 i4

A tedious but straighforward computation using Lemma 2.1 shows that

S6 = (. . . , Ti1+i2+i3+i5+i6 , Ti7 , Ti1+i2+i5+i7 ,(2.15)
Ti2+i3+i6+i7 , Ti1+2i2+i3+i5+i6+i7 , . . . ).

Set

ξ = i1 + i2 + i3 + i5 + i6,

η = i1 + 2i2 + i3 + i5 + i6 + i7.

The slopes of the elements in the displayed segment are {2
5 , 1, 1

2 , 1
2 , 3

7}. There-
fore, to compute S7 we should commute Tξ past all the other elements in
this segment. This works initially since

〈ξ, i7〉 = 0,

〈ξ, i1 + i2 + i5 + i7〉 = 0,

〈ξ, i2 + i3 + i6 + i7〉 = 0,

but at the last step we find

〈ξ, η〉 = −1.

We claim that the product T−1
η TξTηT

−1
ξ is not given by a single Poisson

automorphism Td as in (2.14). To see this consider the action of Tξ, Tη on
the subalgebra generated by variables of the form xaξ+bη. We write T ξ, T η for
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these restricted operators. Products of the form T
−1
η T ξT ηT

−1
ξ are studied

in [7] Section 1.4. It is shown there that there is a slope-ordered expansion

(2.16) T ξT η = T η

→
∏

a,b

T
Ω(a,b)
aη+bξ T ξ

for certain Ω(a, b) ∈ Q, which are non-zero for infinitely many values of
(a, b) as soon as 〈ξ, η〉 ≤ −1 or 〈ξ, η〉 ≥ 2. As observed by Kontsevich and
Soibelman, a closed formula for the Ω(a, b) for 〈ξ, η〉 ≤ −1 is not yet known.
The first few terms are given by

(2.17) T ξT η ≈ T ηT
−1
3ξ+ηT 2ξ+ηT

2
3ξ+2ηT

−1
ξ+ηT

−2
2ξ+2ηT

2
2ξ+3ηT ξ+2ηT

−1
ξ+3ηT ξ.

This is enough to show that our present definition of sorting diagrams
is too weak in general. There is, however, a special case when it (almost)
works, that of the (abelian) universal covering quiver ˜K(2) ∼= ̂K(2).

Lemma 2.2. Let Q ⊂ ̂K(2) be a finite subquiver. Then the sorting dia-
grams Si exist for all i ≥ 0 and stabilize for i� 1 to a stable diagram S∞.
Moreover, operators in S∞ having the same slope μ �= 1

2 commute.

Proof. Let d be any dimension vector for Q. Recall that the moduli space
of stable representations Ms

Q(d), when not empty, has dimension

(2.18) 1− e(d, d).

In our case of Q ⊂ ̂K(2) it is not hard to show, by induction, that the Euler
form e(d, d) is a positive definite quadratic form. It follows that the moduli
space Ms

Q(d) must be empty for all but finitely many d. In fact, we even
have e(d, d) > 1 if di > 1 for some i ∈ Q0.

Suppose then that to form some sorting diagram Si for Q we must com-
mute some operator Td′ past Td′′ with 〈d′, d′′〉 /∈ {0, 1}. Then according to [7]
Section 1.4, the ordered product expansion for T−1

d′′ ◦ Td′ ◦ Td′′ ◦ T−1
d′ must

contain infinitely many factors Td with distinct slopes, μ(d′) < μ(d) < μ(d′′).
Therefore, by Reineke’s Theorem 2.2 there must exist nonempty moduli
spaces of (B or F ) framed representations for infinitely many d with dis-
tinct slopes. Since framed stability implies semistability, the moduli spaces
Mss

Q (d) must by non-empty for infinitely many d with distinct slopes. By the
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Jordan–Holder filtration, there also exist infinitely many distinct nonempty
moduli spacesMs

Q(d∗) for some dimension vectors d∗, which is a contradic-
tion. This shows that the Si exist for all i ≥ 1. Suppose that the Si do not
stabilize for i� 1. Then for i� 1 the diagram Si must contain an operator
Td with

(2.19) d =
∑

i∈A

di +
∑

j∈B

dj ,

where A and B are distinct subsets of Q0 with A ∩B �= ∅. In particular d is
coprime, so the appeareance of Td implies thatMs

Q(d) in non-empty. But for
some i ∈ Q0 we have di = 2, which again contradicts the dimension formula
(2.18).

Notice that we have actually proved a much stronger result: all the oper-
ators appearing in S∞ must be of the form Td for d =

∑

i∈A i, where A is
some nonempty subset of Q0. Moreover, by (framed) stability, the support
of the dimension vector d must be connected.

It follows that for two dimension vectors d′, d′′ with the same slope μ �= 1
2 ,

the number of sources (respectively sinks) in d′ and d′′ is the same (this
is clearly not true for μ = 1

2). Suppose d′ =
∑

i∈A i, d′′ =
∑

j∈B j. We can
easily reduce to the case when A ∩B = ∅, and in this latter case there are
obviously no arrows from the support of d′ to that of d′′, so 〈d′, d′′〉 = 0.
Therefore Td′ , Td′′ commute. �

Remark. It is easy to show by example that we may have [Td′ , Td′′ ] �= 1
when μ(d′) = μ(d′′) = 1

2 . This difficulty is related to the fact that the mod-
uli spaces of stable framed representations of dimension vector (n, n) are
nonempty for all n, namely Ms,B

K(2)(n, n) ∼= P
n. We do not address this

problem in the special example of K(2): it will be solved automatically
when working over the more general base rings of Section 2.5.

Let us also write down for later use the generating series of the Euler
characteristics of stable B-framed representations for K(2). In fact, the only
possible dimension vectors are those proportional to one of (a, a + 1), (1, 1)
or (a + 1, a) for a ≥ 1 (see, e.g., [3] Lemma 2.3), and we have (see e.g. [3]
Section 1.4 and Theorem 1)

Ba,a+1 =
∑

k≥1

χ(Ms,B
K(2))x

kayk(a+1) = (1 + xaya+1)a,(2.20)
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B1,1 =
∑

k≥1

χ(Ms,B
K(2))x

kyk = (1− xy)−2,(2.21)

Ba+1,a =
∑

k≥1

χ(Ms,B
K(2))x

k(a+1)yka = (1 + xa+1ya)a+1.(2.22)

So the generating series are just polynomials in x, y, except for B1,1.

2.4. Sorting trees

Assumptions 1 and 2 say that the sorting diagrams Si are well defined and
stabilize. Assumption 3 says that it is easy to compose operators with the
same slope in the stable sorting diagram S∞. We now spell out a further
condition, which allows us to associate a tree Γσ with each element σ ∈ Si.
Again we will see that this assumption holds automatically when we work
over the more general base rings of the next section. Our definition follows
that of the tree underlying the scattering diagrams of [2] Section 1.4.

Suppose that σ ∈ Si arises as the commutator of σ1, σ2 ∈ Si−1. We
define

(2.23) Parents(σ) = {σ1, σ2}.

We then have the recursive functions

(2.24) Ancestors(σ) = {σ} ∪
⋃

σ′∈Parents(σ)

Ancestors(σ′)

and

(2.25) Leaves(σ) = {σ′ ∈ Ancestors(σ) : σ′ ∈ S0}.

Assumption 2.4. If σ′ ∈ Ancestors(σ) \ {σ}, then σ′ is parent to a unique
element of Ancestors(σ). We denote this by Child(σ′).

Example.Going back to our examples in the previous section, we see that
again this assumption holds in the first two cases of Q1, Q2, and fails for
the subquiver Q3 ⊂ ˜K(3) that we considered. This is because S7 contains
the element Tη = Ti1+2i2+i3+i5+i6+i7 . Then clearly Ti2 must be parent to two
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different ancestors of Tη (a little computation shows that these are in fact
Ti2+i5 , Ti2+i7).

As before, Assumption 4 holds for subquivers of ̂K(2) without the need
to pass to more general base rings.

Lemma 2.3. Let Q ⊂ ̂K(2) be a finite subquiver and let σ be an element
of some sorting diagram Si. If σ′ ∈ Ancestors(σ) \ {σ}, then σ′ is parent
to a unique element of Ancestors(σ).

Proof. If there is σ′ ∈ Ancestors(σ) violating Assumption 4, then we can
actually choose σ′ = Tip

for some ip ∈ Q0. It follows that for some i > 0,
Si contains an element of the form TdA+dB

for some dimension vectors of
the form dA =

∑

i′∈A i′, dB =
∑

i′′∈B i′′ for some distinct A, B ⊂ Q0 with
ip ∈ A ∩B. As before this contradicts the dimension formula (2.18). �

Under Assumption 4, we proceed to construct the tree Γσ. Both the
vertices and edges of Γσ are parametrized by ancestors of σ:

Γ[0]
σ = {Vσ′ : σ′ ∈ Ancestors(σ)},(2.26)

Γ[1]
σ = {Eσ′ : σ′ ∈ Ancestors(σ) \ {σ}}.(2.27)

Then for σ′ ∈ Ancestors(σ) \ {σ} the vertices of Eσ′ are {Vσ′ , VChild(σ′)}.

Example. Going back to our two examples for ̂K(2) in the previous section,
the tree for ΓTi1+i2+i3

in Q1 is given by

Ti2

����������
Ti3

������������

Ti2+i3



����������
Ti1

�����������

Ti1+i2+i3
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while the tree ΓTi1+i2+i3+i4+i5
in Q2 is

Ti2





Ti4

��������������

Ti1





Ti2+i4

��												
Ti3





Ti5

��









Ti1+i2+i4

��������������
Ti3+i5

�������������

Ti1+i2+i3+i4+i5

We also define a related unbounded tree Γσ. We set

Γ[0]
σ = {Vσ′ : σ′ ∈ Ancestors(σ) \S0},(2.28)

Γ[1]
σ = {Eσ′ : σ′ ∈ Ancestors(σ)}.(2.29)

For σ′ ∈ Ancestors(σ) \ ({σ} ∪S0), the vertices of Eσ′ are defined as {Vσ′ ,
VChild(σ′)} as before. However, for σ′ ∈ Leaves(σ) we define Eσ′ to be an
unbounded edge with the single vertex VChild(σ′). Similarly we define Eσ to
be unbounded, with the single vertex Vσ.

We define the weight on edges wΓσ
: Γ[1]

σ → N>0 as follows. We know
that σ′ ∈ Ancestors(σ) is a group element of the form Td for some d ∈ NQ0.
Recall that we defined a reduction d ∈ NK(m). We set

(2.30) wΓσ
(Eσ′) = Ind(d).

Remark. The reason that we further reduce to d is that we will be inter-
ested in constucting plane tropical curves from Γσ. Their integral struc-
ture is modelled on the rank 2 lattice ZK(m)0 rather then the higher rank
lattice ZQ0.

2.5. More general base rings

In this section, we apply the factorization-deformation technique developed
in [2] Section 1.4. The main advantage is that our Assumptions 1, 2 and 3
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will hold automatically in this context. On the other hand Assumption 4
does not hold in general, but we will see that composing operators in the
stable sorting diagram is still reasonably simple. Geometrically, in Section
2.7 this will give rise to correction terms coming from disconnected curves.

We introduce auxiliary variables t1, . . . , ts, ts+1, . . . , tS , and redefine the
Kontsevich–Soibelman operators as elements of the group

(2.31) AutC[[t•]] C[x1, x
−1
1 . . . , xS , x−1

S ][[t•]],

given by

(2.32) Td(xi) = xi(1 + tdxd)〈d,i〉,

for d ∈ NQ0. Fix an integer k ≥ 1. We will work modulo the ideal

(2.33) (tk+1
1 , . . . , tk+1

s , tk+1
s+1 , . . . , tk+1

s+S).

The full information of the Kontsevich–Soibelman operators is recovered in
the limit k →∞. To make this precise define the ring

(2.34) Rk = C[[t1, . . . , ts, ts+1, . . . , ts+S ]]/(tk+1
1 , . . . , tk+1

s , tk+1
s+1 , . . . , tk+1

s+S).

We describe how to pass to a version of the fundamental product (2.9) which
plays the same role as the standard scattering diagrams of [2] Definition 1.10.
Consider the ring

˜Rk = C[{uij , 1 ≤ i ≤ s + S, 1 ≤ j ≤ k}]/(u2
ij , 1 ≤ i ≤ s + S, 1 ≤ j ≤ k).

(2.35)

There is an inclusion Rk ↪→ ˜Rk induced by

(2.36) ti �→
k
∑

j=1

uij .

We can factor each of the operators Ti in (2.9) over ˜Rk. First, we have the
identity in Rk,

(2.37) log(1 + tixi) =
k
∑

j=1

(−1)j−1

j
tjix

j
i .
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Now in ˜Rk,

(2.38) tji =
∑

J⊂{1,...,k},#J=j

j!
∏

l∈J

uil.

Therefore,

log(1 + tixi) =
k
∑

j=1

∑

J⊂{1,...,k},#J=j

(−1)j−1(j − 1)!
∏

l∈J

uil x
j
i ,

and since the variables uil are 2-nilpotent,

1 + tixi = 1 +

(

k
∑

l=1

uil

)

xi

=
k
∏

j=1

∏

J⊂{1,...,k},#J=j

(

1 + (−1)j−1(j − 1)!
∏

l∈J

uil x
j
i

)

.

This leads to the factorization

(2.39) Ti ≡
∏

J⊂{1,...,k}
Ti,J mod (tk+1

1 , . . . , tk+1
s+S),

where the operators Ti,J act by

(2.40) Ti,J(xj) = xj

(

1 + (−1)#J−1(#J − 1)!
∏

l∈J

uil x
#J
i

)〈i,j〉
.

Notice that [Ti,J , Ti,J ′ ] = 0, so
∏

J Ti,J is well defined.
For any subset

I ⊂ {1, . . . , s + S} × {1, . . . , k}

we introduce the notation

(2.41) uI =
∏

(i,j)∈I

uij .
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The following computation should be compared to [2] Lemma 1.9.

Lemma 2.4. Let d1, d2 be two primitive dimension vectors. Consider two
operators A1, A2 acting by

A1(xj) = xj(1 + c1uI1x
r1d1)〈d1,j〉,

A2(xj) = xj(1 + c2uI2x
r2d2)〈d2,j〉,(2.42)

for some ci ∈ C, Ii ⊂ {1, . . . , s + S} × {1, . . . , k}, ri ∈ N>0, i = 1, 2. Then

(2.43) A−1
2 ◦A1 ◦A2 ◦A−1

1 = B,

where the operator B acts by

B(xj) = xj(1 + c1c2 Ind(r1d1 + r2d2)〈d1, d2〉uI1∪I2x
r1d1+r2d2)〈

r1d1+r2d2
Ind(r1d1+r2d2)

,j〉
.

(2.44)

In particular, if I1 ∩ I2 �= ∅, then the operators A1, A2 commute.

Proof. It is convenient to write A1, A2 as exponentials of derivations of the
noncommutative Poisson algebra,

(2.45) A1 = exp
(

{c1

r1
uI1x

r1d1 , · }
)

, A2 = exp
(

{c2

r2
uI2x

r2d2 , ·}
)

.

However, since for ξ, η in the Poisson algebra we have

(2.46) [{ξ, ·}, {η, ·}] = {{ξ, η}, ·}

we will be sloppy and identify {ξ, ·} with ξ in the following. We compute
(using the Baker–Campbell–Hausdorff formula and nilpotency)

A1 ◦A2 = exp
(

c1

r1
uI1x

r1d1 +
c2

r2
uI2x

r2d2(2.47)

+
1
2
〈d1, d2〉c1c2uI1∪I2x

r1d1+r2d2

)

,
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A−1
2 ◦A1 ◦A2 = exp

(

−c2

r2
uI2x

r2d2 +
c1

r1
uI1x

r1d1 +
c2

r2
uI2x

r2d2(2.48)

+
1
2
〈d1, d2〉c1c2uI1∪I2x

r1d1+r2d2

−1
2
〈d2, d1〉c1c2uI1∪I2x

r1d1+r2d2

)

= exp
(

c1

r1
uI1x

r1d1 + 〈d1, d2〉c1c2uI1∪I2x
r1d1+r2d2

)

,

therefore,

A−1
2 ◦A1 ◦A2 ◦A−1

1(2.49)

= exp
(

c1

r1
uI1x

r1d1 + 〈d1, d2〉c1c2uI1∪I2x
r1d1+r2d2 − c1

r1
uI1x

r1d1

)

= exp
(

〈d1, d2〉c1c2uI1∪I2x
r1d1+r2d2

)

,

which in turn is identified with exp
({〈d1, d2〉c1c2uI1∪I2x

r1d1+r2d2 , ·}), acting
as in (2.44). �

Remark. The formula (2.47) for the composition of operators, which we
obtained in the course of the proof will play a very important role in the
following.

We can now define the notions of sorting diagrams Si
k over ˜Rk. These

are ordered sequences of Poisson automorphisms σi
j over ˜Rk,

(2.50) Si
k = (σi

1, . . . , σ
i
�i
).

(of course σi
j , �i also depend on k, but we omit this in the notation for

brevity). We set

(2.51) S0
k := ((Ti1,J1)J1⊂{1,...,k}, . . . , (TiS ,JS

)JS⊂{1,...,k}},

where for each subsequence (TiS ,JS
)JS⊂{1,...,k} we choose the lexicographic

order induced by subsets of {1, . . . , k}. Notice that for all elements of S0 we
have a well-defined notion of slope: since σ0

j = Tij ,J for some vertex ij and
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subset J ⊂ {1, . . . , k}, we set

(2.52) μ(σ0
j ) = μ((#J)!ij) = μ(ij).

We then define the Si for i > 0 inductively precisely as in Section 2.3, with
the only caveat that in commuting an element σi

q past σi
q′ with μ(σi

q) <
μ(σi

q′) we use Lemma 2.4 in place of Assumption 1. In particular, by induc-
tion σi+1

j ∈ Si+1 is an operator of the form

(2.53) σi+1
j (xp) = xp(1 + c uIx

rd)〈d,p〉

for some c ∈ C, I ⊂ {1, . . . , s + S} × {1, . . . , k} and primitive d ∈ NQ0, and
we can define the slope

(2.54) μ(σi+1
j ) = μ(rd) = μ(d).

So we have well defined sorting diagrams Si
k for i > 0. Notice that since

uI1∪I2 = 0 if I1 ∩ I2 �= ∅, the Si
k stabilize for i > (s + S)k, i.e. our Assump-

tion 2 holds.
As in Section 2.4 we define the (bounded and unbounded) sorting trees

Γσ and Γσ for σ ∈Si. First, the recursive functions Ancestors(σ), Parents(σ),
Leaves(σ) are defined exactly as before. This extends immediately the defi-
nition of Γσ to the present case of diagrams over ˜Rk, provided we can show
that our Assumption 4 holds. Namely, if σ′ ∈ Ancestors(σ), we must show
that it is parent to a unique element of Ancestors(σ). By (2.53) we know
that σ′ is an operator of the form xp �→ (1 + cuIx

rd)〈d,p〉 for some nonempty
set I. By Lemma 2.4 and induction, all its descendents must be operators
of the form xp �→ (1 + cuI′xr′d′

)〈d′,p〉 where I ⊂ I ′. Applying again Lemma
2.4 we see that two operators of this form commute. Thefore, at most one
descendent of σ′ appears in Ancestors(σ). The unbounded tree Γσ is then
obtained from Γσ exactly as before.

Finally we define the weight over ˜Rk, wΓσ
: Γσ → N>0. By (2.53) we can

write σ′ ∈ Ancestors(σ) uniquely in the form xp �→ (1 + cuIx
rd)〈d,p〉. Then

we set

(2.55) wΓσ
(Eσ′) = Ind(rd) = r Ind(d).

2.6. Tropical curves and counts

In this section, we recall the notions of rational tropical curves in R
2 and of

their counting invariant. We follow [2] Sections 2.1 and 2.3.
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Let Γ be a weighted, unbounded tree with only trivalent vertices. We
have a weight

(2.56) wΓ : Γ[1] → N>0

and a distinguished subset of noncompact edges Γ[1]
∞ ⊂ Γ[1] (which as usual

we call unbounded edges). A parametrized rational tropical curve in R
2 is a

proper map h : Γ→ R
2 such that:

• for every E ∈ Γ[1], the restriction h|E : E → R
2 is an embedding with

image h(E) contained in an affine line of rational slope;

• for every V ∈ Γ[0], if Ei, i = 1, 2, 3 are the edges adjecent to V and
mi, i = 1, 2, 3 is the primitive integral vector emanating from h(V ) in
the direction of h(Ei), we have the balancing condition

(2.57) wΓ(E1)m1 + wΓ(E2)m2 + wΓ(E3)m3 = 0.

Two parametrized rational tropical curves h : Γ→ R
2, h′ : Γ′ → R

2, are equiv-
alent if there is a homeomorphism Φ: Γ→ Γ′, respecting the weights of the
edges, such that h′ ◦ Φ = h. A rational tropical curve is an equivalence class
of parametrized rational tropical curves.

Following the notation of balancing condition, we define the multiplicity
of a vertex V as

(2.58) MultV (h) = wΓ(Ei)wΓ(Ej)|mi ∧mj |

for i �= j. This gives a good definition by the balancing condition. The mul-
tiplicity of a tropical curve h is then defined as

(2.59) Mult(h) =
∏

V

MultV (h).

Write m1, . . . , mn for primitive vectors of R
2 (not necessarily distinct),

and m for their n-tuple. Choose generic vectors mij ∈ R
2 for 1 ≤ i ≤ n,

1 ≤ j ≤ li, and form the lines

(2.60) dij = mij + Rmi ⊂ R
2.

Let wi = (wi1, . . . , wili), 1 ≤ i ≤ n be weight vectors with

(2.61) 0 < wi1 ≤ wi2 ≤ · · · ≤ wili .
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The weight vector wi has length li and size |wi| =
∑

wij . We also need the
notion of the automorphism group of a weight vector: this is the subgroup
Aut(wi) of the permutation group Σli stabilizing the vector (wi1, . . . , wili).
We will write w = (w1, . . . ,wn) and set Aut(w) =

∏n
i=1 Aut(wi). We will

also use the notation mout =
∑

i |wi|mi.
Consider the (finite) set S(w) of tropical curves h : Γ→ R

2, which satisfy
the following constraints:

• the unbounded edges of Γ are

(2.62) Γ[1]
∞ = {Eij , 1 ≤ i ≤ n, 1 ≤ j ≤ li} ∪ {Eout},

and h(Eij) ⊂ dij , with −mi pointing in the unbounded direction of
h(Eij), and mout pointing in the unbounded direction of h(Eout);

• wΓ(Eij) = wij .

Theorem 2.3 [2] Proposition 2.7. The number of elements of S(w),
counted with the multiplicity of (2.59), is independent of the generic choice
of lines (i.e., of the vectors mij). We denote this number by N trop

m (w).

The Gromov–Witten invariants that appear in the GW/Kronecker cor-
respondence (1.1) arise from tropical counts. Fix an ordered partition P =
(P1, P2) (we wrote (Pa, Pb) for this in the Introduction). Choose m1 = (1, 0),
m2 = (0, 1). For this standard choice we omit m from the notation. A weight
vector w = (w1,w2) has the same type as P if |Pi| = |wi| for i = 1, 2. In this
case, we write w ∼ P . Let us write pij for the (ordered) parts of Pi, and I•
for a partition of the sets {1, . . . , li}:
(2.63) I1 ∪ · · · ∪ Ili = {1, 2, . . . , li}.
We call I• a set partition of wi, and say it is compatible with Pi if

(2.64) pij =
∑

r∈Ij

wir.

For an integer r > 0, we set Rr = (−1)r−1

r2 , and we define some coefficients

(2.65) RPi|wi
=
∑

I•

li
∏

j=1

Rwij
,

where the sum is over all set partitions of wi, which are compatible with Pi.
Set RP |w =

∏

i=1,2 RPi|wi
.
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Theorem 2.4 [2] Theorem 3.4 and Proposition 5.3.

(2.66) N(P ) =
∑

w∼P

RP |w
|Aut(w)|N

trop(w).

As we mentioned, one of the heuristic motivations for the present work
is to compare the formula (2.66) to Weist’s result (2.2). In other words, we
would like to regard a graded partition P as analogue to a dimension vector
d ∈ NK(m)0, and a weight vector w which has the same type as P as an
analogue of a dimension vector d ∈ N ˜K(m)0 which is compatible with d. We
achieve this at least in part in Section 3.

2.7. Tropical curves and counts from ˜K(m)

Fix Q ⊂ ˜K(m). Let σ ∈ S∞ be an element of the stable sorting diagram. To
this we will associate a rational tropical curve hσ : Γσ → R

2, together with
a dimension vector dout(hσ) ∈ NQ0.

We start in the simplified situation of Sections 2.3 and 2.4, where the
naive definition of sorting diagrams and trees apply. Fix s vertical lines, S
horizontal lines in R

2 generically. We label the vertical lines dij
with i1, . . . , is

starting from the rightmost line. Similarly, we label the horizontal lines dij

with is+1, . . . , is+S starting from the lowest line. In other words, the lines dij

are labelled with i1, . . . , is+S in clockwise order starting from the rightmost
vertical line.

Example. The line arrangement for the quiver Q2 of Section 2.3 is shown
in figure 4.

Pick σ ∈ S∞. It will appear for the first time in the sequence of dia-
grams Si for some finite i ≥ 0. If i = 0 we are in a degenerate case, σ = Tip

for some p and we just choose hσ to be the corresponding (vertical or horizon-
tal) line. In this case we also set dout(h) = ip. If σ first appears in S1 and
Parents(σ) = {Tip

, Tiq
} with p < q then 1 ≤ p ≤ s and s + 1 ≤ q ≤ S. We

define hσ as the unique tropical curve hσ : Γσ → R
2 with unbounded verti-

cal edge dip
and unbounded horizontal edge diq

. We also set dout(h) = ip + iq.
Suppose now σ first appears in Si with i > 1. We must have Parents(σ) =
{σ1, σ2} with σ1, σ2 ∈ Si−1 and μ(σ1) < μ(σ2). By induction we have well
defined rational tropical curves hσ1 : Γσ1 → R

2 and hσ2 : Γσ2 → R
2. Notice

that by construction the slope inequality μ(σ1) < μ(σ2) (using the slope for
quiver dimension vectors) implies the opposite inequality for the slopes of the
outgoing unbounded edges of the tropical curves. Namely, slope(h(Eσ1)) >
slope(h(Eσ2)) as rays in R

2. But notice also that by our choice of labels
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Figure 4: Line arrangement.

for the quiver Q, the set Leaves(σ1) preceeds the set Leaves(σ2) in the lex-
icographic order and so by our choice of labels for the lines dij the set
h(Leaves(σ1)) preceeds h(Leaves(σ2)) in the clockwise order in R

2. This
implies that the ray h(Eσ1) emanates from a point which lies below the
ray h(Eσ2). Therefore, the two rays must intersect in R

2. We then use the
balancing condition given by the weights (2.30) to construct hσ inductively
as a map from Γσ. We can also define dout(hσ) inductively as dout(hσ1) +
dout(hσ2). For a curve h corresponding to some σ ∈ S∞, we will write Legs(h)
for the set of lines di, i ∈ Q0 appearing in h.

Example. Consider once again the examples of Sections 2.3 and 2.4. For
Q2 ⊂ ̂K(2) the tree ΓTi1+i2+i3+i4+i5

maps to the curve in figure 5. On the other
hand, we can identify Q1 with the subquiver of Q2 spanned by i1, i2, i4,
and ΓTi1+i2+i4

maps to the bottom subcurve with legs i1, i2, i4. In general
for Q ⊂ ̂K(2), we know by the proof of Lemma 2.2 that we can identify
operators in S∞ with subquivers of Q, which then map to tropical curves
by the construction above, see figure 6 for a schematic picture.

As for all tropical curves, we have the notion of multiplicity at a ver-
tex MultV hσ. We modify the notion of multiplicity using the quiver Q as
follows. A vertex V ∈ hσ corresponds to a pair of incoming dimension vectors
dV,1, dV,2 with μ(dV,1) < μ(dV,2). We set

(2.67) MultQ,V hσ = 〈dV,1, dV,2〉.

The global multiplicity is

(2.68) MultQ hσ =
∏

V

MultQ,V hσ.
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Figure 5: The tropical curve for Ti1+i2+i3+i4+i5 .

Figure 6: From quivers to tropical curves for K(2).

To compare with the usual notion of tropical multiplicity, notice that in fact

(2.69) MultV hσ =
1
m
|〈dV,1, dV,2〉|

(we still write 〈·,·〉 for the product of the reduced dimension vectors, com-
puted on K(m)).

Example. In the example of subquivers Q1, Q2 ⊂ ̂K(2) of Section 2.3 we
have

MultQ1 hTi1+i2+i3
= MulthTi1+i2+i3

= 1,

and also

MultQ2 hTi1+i2+i3+i4+i5
= MulthTi1+i2+i3+i4+i5

= 1.
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Figure 7: Line arrangement with k = 2.

But we can compute

MultQ2 hTi1+i2+i4+i5
= 1, MulthTi1+i2+i4+i5

= 2.

Finally, we will denote by SQ the (finite) set of all rational tropical
curves hσ that we constructed for σ ∈ S∞, and by SQ(μ) ⊂ SQ the sub-
set of curves whose outgoing dimension vector has prescribed slope, namely
μ(dout(h)) = μ.

We now move on the the general case, working over the base rings of
Section 2.5. Recall in this case we have the additional parameter k ≥ 1. We
fix (2k − 1)s vertical lines, (2k − 1)S horizontal lines in R

2 generically. We
label the vertical lines dij ,I with elements of {i1, . . . , is} × {I ⊂ {1, . . . , k},
I �= ∅} in lexicographic order, starting from the rightmost line. Similarly we
label the vertical lines dij ,J with elements of {is+1, . . . , iS} × {J ⊂ {1, . . . , k},
J �= ∅} in lexicographic order, starting from the lowest line. In other words,
the set of all lines dij ,I is labelled with {i1, . . . , is+S} × {I ⊂ {1, . . . , k}, I �=
∅} in clockwise order starting from the rightmost vertical line, di1,{1} to the
top horizontal line, dis+S ,{1,...,k}.

Example. The simplest case of a subquiver i2 → i1 with k = 2 is shown in
figure 7.

Pick σ ∈ S∞. We want to construct a tropical curve hσ from σ. If σ first
appears in S0 then σ = Tip,I for some vertex ip and I ⊂ {1, . . . , k}. Then
we are in a degenerate case and we just choose hσ to be the corresponding
line dip,I . If σ first appears in S1 and Parents(σ) = {Tip,I , Tiq,J} with p < q
then 1 ≤ p ≤ s and s + 1 ≤ q ≤ S. We define hσ as the unique tropical curve
hσ : Γσ → R

2 with unbounded vertical edge dip,I and unbounded horizontal



Universal covers and the GW/Kronecker correspondence 381

edge diq,J . Then for σ ∈ Si with i > 1, we construct hσ inductively precisely
as in the discussion above, using now the weight (2.55) in the balancing
condition (2.57). Similarly, we define the multiplicity of a vertex V ∈ hσ by
(2.67), namely if the vertex arises from commuting xp �→ xp(1 + c1x

r1d1)〈d1,p〉

and xp �→ (1 + c2x
r2d2)〈d2,p〉 its multiplicity is 〈r1d1, r2d2〉. The global mul-

tiplicity of hσ is then given by (2.68).
As we mentioned in Section 2.5, Assumption 4 in the definition of naive

sorting diagrams does not hold in general for diagrams over ˜Rk. Correction
terms will arise from a class of disconnected tropical curves, i.e., maps from
disconnected trees, which we now define. Fix any ordered l-uple of elements
of S∞k with the same slope,

(2.70) (σ1, . . . , σl) ∈ S∞k , μ(σi) = μ(σi+1),

such that σi ≺ σi+1 in S∞k , and the sets I1, . . . , Il underlying σ1, . . . , σl are
pairwise disjoint. We define a tropical curve hσ1···σl

simply as the union of
the tropical curves hσ1 , . . . , hσl

(a map from the disjoint union ∪l
i=1Γσi

). We
still use the notation Legs(hσ1···σl

) for the set of lines di,I appearing in the
image of h.

To each curve hσ1···σl
we attach inductively a weight function fσ1···σl

as
follows. We know from (2.53) that σ acts by xp �→ xp(1 + cuIx

rd)〈d,ip〉 for
some primitive d. We set

(2.71) fσ =
c

r
uIx

rd.

Suppose then inductively that fσ1···σl−1 = αuIx
rd for some primitive d and

α ∈ C, and similarly fσl
= α′uI′xr′d′

. Then we set

(2.72) fσ1···σl
=

1
2
〈rd, r′d′〉α α′uI∪I′xrd+r′d′

.

Representing fσ1···σl
in the form cuIx

d, we set

(2.73) dout(hσ1···σl
) = d.

We extend the notion of multiplicity for hσ1···σl
inductively as follows:

(2.74) MultQ(hσ1···σl
) = 1

2 MultQ(hσ1···σl−1)〈dout(hσ1···σl−1), dout(σl)〉.

We write SQ,k for the set of all tropical curves hσ1···σl
(we do not fix l).

For a fixed slope μ, we write SQ,k(μ) for the subset of SQ,k given by all
curves hσ1···σl

with μ(dout(hσ1···σl
)) = μ.
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Fix a curve hσ1···σl
∈ SQ,k. From this we find a unique weight vector

w = (w1, . . . ,ws+S),
wq = (wq1, . . . , wqlq),

with 1 ≤ wp1 ≤ · · · ≤ wqlq , and pairwise disjoint sets

Jqj ⊂ {1, . . . , k}, q = 1, . . . , s + S; j = 1, . . . , lq,

with #Jqj = wqj , such that

Legs(hσ1···σl
) = {diq,Jqj

| q = 1, . . . , s + S; j = 1, . . . , lq}.

Let us denote by N trop
Q,k ({Jqj}) the number of curves hσ1···σl

giving rise to
the same sets Jqj , counted with the multiplicity (2.74). By the construction
of hσ1···σl

in terms of sorting diagrams, it is clear that N trop
Q,k ({Jqj}) only

depends on the vector w, not the actual subsets Jqj .
We denote this number by N trop

Q,k (w).
Notice that in fact dout =

∑

i |wi| i, so by abuse of notation we write
μ(w) and 〈·,w〉 for the slope μ(dout), respectively, the linear form 〈·, dout〉.
Similarly, we will often write

(2.75) xw = x
∑

i |wi| i = x
|w1|
i1
· · ·x|ws+S |

is+S

and

(2.76) [w ] = [
∑

i

|wi| i ],

the equivalence class of the underlying dimension vector. For a fixed weight
vector w, we set

(2.77) Rw =
s+S
∏

i=1

l1
∏

j=1

(−1)wij−1

w2
ij

and

(2.78) w =
∑

i

|wi| i = (
∑

i>s

|wi|,
∑

i≤s

|wi|).



Universal covers and the GW/Kronecker correspondence 383

3. Main results

Throughout this section we will concentrate on B-framings for K(m), and so
on framings at sources on ˜K(m). The situation for F -framings is completely
analogous. We will use the notation (f(x))[xd] to denote the coefficient of xd

in f(x). We start in the simple situation described in Sections 2.3 and 2.4.
According to Lemmas 2.2 and 2.3, our main example is a finite subquiver
Q ⊂ ˜K(2) (although soon we will need to restrict to representations of slope
μ �= 1

2 in order to have Assumption 3 in place). The following lemma simply
summarizes our simplified construction in Sections 2.3 and 2.4 and the first
part of Section 2.7.

Lemma 3.1. Suppose that Assumptions 1, 2, 4 hold. Then there is a bijec-
tive correspondence between operators Td with μ(d) = μ appearing in the
stable sorting diagram S∞ and tropical curves h ∈ SQ(μ). Moreover

(3.1) d = dout(h) =
∑

di∈Legs(h)

i.

Lemma 3.2. Suppose that Assumptions 1 to 4 hold. Let Td1 ≺ · · · ≺ Tdr
be

the maximal sequence of operators with μ(di) = μ appearing in S∞. Then
the composition Td1 ◦ · · · ◦ Tdr

acts by

(3.2) xp �→ xp

∏

h∈SQ(μ)

(1 + xdout(h))〈dout(h),p〉.

Proof. We know that Tdi
corresponds to a curve h ∈ SQ(μ(di)) and di =

dout(h), Tdi
(xp) = xp(1 + xdout(h))〈dout(h),p〉. This correspondence is bijective,

and operators of the same slope μ(di) commute, and so compose simply as
in the statement. �

Corollary 3.1. Let Q ⊂ ̂K(2) be a subquiver with s + 1 sinks, s sources.
Then for 1 ≤ p ≤ S, μ �= 1

2 ,

(3.3) θQ,μ,is+p
(x) =

∏

h∈SQ(μ)

(1 + xdout(h))〈ip−ip−1+···±i1,dout(h)〉.

In other words

(3.4) χ(Ms,is+p

Q (d)) =
∏

h∈SQ(μ)

(1 + xdout(h))〈ip−ip−1+···±i1,dout(h)〉[xd].
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Proof. First by Reineke’s Theorem 2.2 (and our choice of a minimal
labelling) we know

(3.5) θQ,μ(xi1) = xi1(θQ,μ,is+1(x))−1.

By Lemma 3.2, we have

(3.6) θQ,μ(xi1) = xi1

∏

h∈SQ(μ)

(1 + xdout(h))〈dout(h),i1〉,

from which of course we find

(3.7) θQ,μ,is+1(x) =
∏

h∈SQ(μ)

(1 + xdout(h))〈i1,dout(h)〉.

This establishes (3.3) for p = 1. For p > 1, we have again by Reineke’s
Theorem

(3.8) θQ,μ(xip+1) = xip+1(θQ,μ,is+p
(x))−1(θQ,μ,is+p+1(x))−1.

Therefore,

(3.9) θQ,μ,is+p+1(x) = xip+1(θQ,μ(xip+1))
−1(θQ,μ,is+p

(x))−1.

By Lemma 3.2 we have

(3.10) (θQ,μ(xip+1))
−1 =

1
xip+1

∏

h∈SQ(μ)

(1 + xdout(h))〈ip+1,dout(h)〉.

and assuming by induction that (3.3) holds for (θQ,μ,is+p
(x))−1 we find

θQ,μ,is+p+1(x) =
∏

h∈SQ(μ)

(1 + xdout(h))〈ip+1,dout(h)〉(3.11)

×
∏

h∈SQ(μ)

(1 + xdout(h))〈−ip+···±i1,dout(h)〉

=
∏

h∈SQ(μ)

(1 + xdout(h))〈ip+1−ip+···±i1,dout(h)〉.

�
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Corollary 3.2. Let d be a fixed dimension vector for K(2). Choose Q ⊂
̂K(2) with s + 1 sinks, s sources for s large enough (depending on d). Then

(3.12)

χ(Ms,B
K(2)(d)) =

∑

[d]∼d

s
∑

p=1

∏

h∈SQ(μ)

(1 + xdout(h))〈ip−ip−1+···±i1,dout(h)〉[xd],

where the first sum is over all equivalence classes [d] of dimension vectors
supported on Q and compatible with d.

Proof. This is an immediate consequence of Weist’s theorem in the form
(2.2) and the result we just proved, since the cardinality of the support of
d ∈ N ̂K(2)0 compatible with d is uniformly bounded (and so d can be moved
to an equivalent dimension vector in a large enough quiver Q of the type we
want). �
Example. By (2.20) we know B2,3(x, y) = (1 + x2y3)2, so χ(Ms,B

K(2))
(4, 6) = 1. This is witnessed already by a subquiver Q ⊂ ̂K(2) with s = 4,
S = 3. A lengthy but elementary computation shows that SQ(2

5) contains
only two curves h′, h′′ with Legs(h′) = {di1 , di2 , di3 , di5 , di6} and Legs(h′′) =
{di2 , di3 , di4 , di6 , di7} (see figure 8). So dout(h′) = i1 + i2 + i3 + i5 + i6 and
dout(h′′) = i2 + i3 + i4 + i6 + i7, and

(3.13)
∏

h∈SQ( 2
5
)

(1 + xdout(h))〈i2−i1,dout(h)〉 = (1 + xi1xi2xi3xi5xi6)(1 + xi2xi3xi4xi6xi7).

Expanding out we see a term xi1x
2
i2

x2
i3
xi5x

2
i6
x7 corresponding to

(3.14) χ(Ms,i6
Q (i1 + 2i2 + 2i3 + i5 + 2i6 + i7)) = 1,

the unique contribution to χ(Ms,B
K(2)(4, 6)).

Let us now move on to the general case of the base rings ˜Rk. We start
with a result, which says how to reconstruct the weight function fσ1···σl

from
the tropical curve hσ1···σl

.

Lemma 3.3. The weight function attached to the tropical curve h = hσ1···σl

is given by

(3.15) fσ1···σl
= MultQ(h)

∏

i,J

(

(−1)#J−1

#J
(#J − 1)!

∏

l∈J

uil

)

xdout(h),



386 Jacopo Stoppa

Figure 8: Curves contributing to χ(Ms,B
K(2)(4, 6)).

where the product is over all i ∈ Q0 and J ⊂ {1, . . . , k} for which di,J ∈
Legs(h), and

(3.16) dout(h) =
∑

di,J∈Legs(h)

(#J)i.

Proof. Suppose first that l = 1, so h = hσ for some σ ∈ S∞. If σ first appears
in S0

k, then hσ is just one of the lines di,J , we have MultQ(hσ) = 1 since
there are no trivalent vertices at all, and dout = (#J)i, Ind(dout) = #J . Thus
(3.15) holds by the definition of the operators Ti,J , (2.40), and of fσ, 2.71.
Suppose now that σ first appears in Si, k with i ≥ 1, and Parents(σ) =
{σ1, σ2}. Then by induction and Lemma 2.4 we see that

fσ = MultQ(hσ1) MultQ(hσ2)

· 〈d1,out, d2,out〉
∏

i,J

(

(−1)#J−1

#J
(#J − 1)!

∏

l∈J

uil

)

xd1,out+d2,out ,(3.17)

where the product is over all i ∈ Q0 and J ⊂ {1, . . . , k} for which di,J ∈
Legs(hσ1)∪ Legs(hσ2). Notice that Legs(hσ1)∩ Legs(hσ2) = ∅ and Legs(hσ1)∪
Legs(hσ2) = Legs(hσ). It is then clear by induction that

(3.18) dout = d1,out + d2,out =
∑

di,J∈Legs(h)

(#J)i.
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On the other hand,

(3.19) MultQ(hσ1) MultQ(hσ2)〈d1,out, d2,out〉 = MultQ(hσ)

by the definition of multiplicity (2.68).
For general, hσ1···σl

the same argument works, this time by induction
on l. �

Lemma 3.4. Let σ1 ≺ · · · ≺ σr be the maximal sequence of operators with
slope μ in S∞k . Then the product σ1 ◦ · · · ◦ σr acts by

(3.20) xp �→ xp · fp,

where

(3.21) log fp =
∑

h∈SQ,k(μ)

〈dout(h), ip〉fh.

Proof. As in the proof of Lemma 2.4 we write σi as the exponential of some
derivation in the non-commutaive Poisson algebra, exp({σ̃i, ·}). Retaining
only the first order corrections, the Baker–Campbell–Hausdorff formula tells
us that log

∏

i exp({σ̃i, ·}) is a sum of terms of the form

(3.22)
{

1
2

{

. . .
1
2

{

1
2
{σ̃j1 , σ̃j2}, σ̃j3

}

, . . . , σ̃jl

}

, ·
}

for l ≥ 1 and 1 ≤ j1 < j2 < · · · < jl. However, the formula (2.47) in the proof
of Lemma 2.4 tells us that this is an exact computation, i.e., only first-order
corrections actually happen. Again by (2.47) and the definition of weight
function (2.72), we have

(3.23)
1
2

{

. . .
1
2

{

1
2
{σ̃j1 , σ̃j2}, σ̃j3

}

, . . . , σ̃jl

}

= fσj1 ···σjl
.

In other words there is a one-to-one correspondence between correction
terms in the Baker–Campbell–Hausdorff formula and weight functions of
(possibly disconnected) curves in SQ,k(μ). �

We will express f in terms of our numbers N trop
Q,k . This computation should

be compared with [2] Theorem 2.8 (although our case is simpler).
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Lemma 3.5. The function fp in (3.21) can be written as

(3.24) fp(tx) =
∑

w:μ(w)=μ

〈w, ip〉 Rw

|Aut(w)|N
trop
Q,k (w) (tx)w.

Proof. For a fixed curve h ∈ SQ,k(μ) we find a weight vector w and sets Jqj

as in Section 2.7. We can rewrite (3.15) in terms of w as

(3.25) fh = MultQ(h)
s+S
∏

q=1

lq
∏

j=1

⎛

⎝

(−1)wqj−1

wqj
(wqj − 1)!

∏

r∈Jqj

uqr

⎞

⎠ xw.

Summing over all curves h which give rise to the same weight vector w and
the same sets Jqj , we find a contribution to log fp given by

(3.26) 〈w, ip〉N trop
Q,k (w)

s+S
∏

q=1

lq
∏

j=1

⎛

⎝

(−1)wqj−1

wqj
(wqj − 1)!

∏

r∈Jqj

uqr

⎞

⎠ xw.

Summing up over all Jqj would then give

〈w, ip〉N trop
Q,k (w)

s+S
∏

q=1

lq
∏

j=1

(−1)wqj−1

w2
qj

twxw,

but one can show that this overcounts curves by a factor |Aut(w)|. �

Theorem 3.1. Let ip (for some 1 ≤ p ≤ s) be a sink of Q with precisely
one source mapping to it, say ip̄ (s + 1 ≤ p̄ ≤ s + S). Then

log θQ,μ,p̄(tx)

(3.27)

≡
∑

w:μ(w)=μ

〈ip,w〉 Rw

|Aut(w)|N
trop
Q,k (w) (tx)w mod (tk+1

1 , . . . , tk+1
s+S).

Proof. Reineke’s Theorem 2.2 gives

(3.28) θμ(xp) = xp · (θQ,μ,p̄(tx))−1.

We also know

(3.29) θμ(xp) ≡ xp fp (1 + ρ), ρ ∈ (tk+1
1 , . . . , tk+1

s+S)
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where fp is given by (3.21). Therefore,

log θQ,μ,p̄(tx) ≡ − log fp mod (tk+1
1 , . . . , tk+1

s+S)

=
∑

w:μ(w)=μ

〈ip,w〉 Rw

|Aut(w)|N
trop
Q,k (w) (tx)w.

�
We say that a vertex i ∈ Q0 is a boundary vertex (i ∈ ∂Q) if it is has valency
1 in the undirected graph underlying Q. By making Q larger if necessary,
we can assume that the only boundary vertices of Q are sinks. The result
we just proved tells us how to compute θQ,μ,p(tx) (to all orders) for all
sources p ∈ Q0 mapping to a boundary sink, in terms of certain tropical
curves. Using the special feature that Q sits in a tree (since the connected
components of ˜K(m) are infinite directed m-regular trees), we can propagate
this calculation to an arbitrary sink of Q.

Theorem 3.2. Let Q ⊂ ˜K(m) be a finite connected subquiver, with only
sinks as boundary vertices. Then for each source i ∈ Q0, there exist distinct
sinks ipq with 1 ≤ p ≤ P , 1 ≤ q ≤ (m− 1)p−1 such that

log θQ,μ,i(x)

(3.30)

≡
∑

w:μ(w)=μ

〈ε(i),w〉 Rw

|Aut(w)|N
trop
Q,k (w) (tx)w mod (tk+1

1 , . . . , tk+1
s+S),

with

(3.31) ε(i) = i11 − (i21 + . . . i2(m−1)) + · · · ± (iP1 + · · ·+ iP (m−1)P−1
).

Proof. Let us define recursively subsets Xn, n ≥ 1 of the set of sources of Q,
by

X1 = {i is a source, i→ j ∈ ∂Q},
Xn = {i is a source, i→ j | for all sources i′ �= i with i′ → j, i′

∈ Xn−1} ∪Xn−1.

Recall that we denoted by S the number of sources. We claim that the set
XS contains all the sources in Q. Arguing by contradiction, let i0 be a source
which is not contained in XS . By the definition of XS , we can pick any sink
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j0 with i→ j0, and find a source i1 �= i with i1 → j0 and i1 /∈ XS−1. Notice
that i1 must map to a sink j1 �= j0, otherwise i1 would be a boundary vertex.
Then in turn by the definition of XS−1 we can find a source i2 �= i1 with
i2 → j1 and i2 /∈ XS−2. We must have i2 �= i0 too otherwise Q would con-
tain an (unoriented) cycle. Proceeding by induction, given in /∈ XS−n (with
n < S − 1) this maps to a sink jn �= jn−1 (otherwise in would lie on the
boundary), and in fact jn is also distinct from all j0, j1, . . . jn−2 (other-
wise Q would contain an unoriented cycle); then by definition of XS−n we
find in+1 �= in with in+1 → jn and in �= XS−n−1, in+1 also distinct from all
i0, i1, . . . in−1 (no cycles). We stop on reaching a source iS−1. Thus, we find
a sequence of distinct sources i0, i1, . . . iS−1, with in /∈ XS−n. In particu-
lar, this would say all the sources in Q do not lie in X1, which is clearly
impossible. This proves the claim.

For a source i, we define d(i, ∂Q) to be the least n such that i ∈ Xn. We
will prove our statement by induction on d(i, ∂Q). If d(i, ∂Q) = 1 it reduces
to Theorem 3.1. Suppose now the statement is known for all sources j ∈ Q0

with d(i, ∂Q) ≤ P and choose i ∈ Q0 with d(i, ∂Q) = P + 1. Then by the def-
inition of distance i maps to a sink i11 such that all other sources j1, . . . , jm−1

mapping to i11 (except i) satisfy d(jq, ∂Q) ≤ P . We apply Reineke’s Theo-
rem to i11, finding

(3.32) θQ,μ(xi11) = xi11(θQ,μ,i(tx))−1
m−1
∏

q=1

(θQ,μ,jq
(tx))−1.

By our previous results,

(3.33) θQ,μ(xi11) = xi11fi11 ,

with

(3.34) fi11 =
∑

w:μ(w)=μ

〈w, i11〉 Rw

|Aut(w)|N
trop
Q,k (w) (tx)w.

By induction,

log θQ,μ,jq
(tx)

(3.35)

≡
∑

w:μ(w)=μ

〈ε(jq),w〉 Rw

|Aut(w)|N
trop
Q,k (w) (tx)w mod (tk+1

1 , . . . , tk+1
s+S)
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with

(3.36) ε(jq) = j11
q − (j21

q + · · ·+ j2(m−1)
q ) + · · · ± (jP1

q + · · ·+ jP (m−1)P−1

q ).

Therefore,

log θQ,μ,i(tx) ≡ − log fi11 − log θQ,μ,j1(tx)− · · · − log θQ,μ,jm−1(tx)(3.37)

≡
∑

w:μ(w)=μ

〈ε(i),w〉 Rw

|Aut(w)|N
trop
Q,k (w) (tx)w(3.38)

with

ε(i) = i11 − (j11
1 + · · ·+ j11

m−1) + (j21
1 + · · ·+ j21

m−1 + · · ·+ j22
1(3.39)

+ · · ·+ j22
m−1 + · · ·+ j

2(m−1)
1 + · · ·+ j

2(m−1)
m−1 )

...

± (jP1
1 + · · ·+ jP1

m−1 + · · ·+ jP2
1 + · · ·+ jP2

m−1

+ · · ·+ j
P (m−1)P−1

1 + · · ·+ j
P (m−1)P−1

m−1 ),

where equivalence is modulo (tk+1
1 , . . . , tk+1

s+S) as usual. �

Then Weist’s Theorem yields the following.

Corollary 3.3. Let d be a fixed dimension vector for K(m). Choose Q ⊂
˜K(m) large enough and k � 1 (depending on d). Then

χ(Ms,B
K(m)(d))

(3.40)

=
∑

[d]∼d

s+S
∑

p=s+1

exp

⎛

⎝

∑

w:μ(w)=μ

〈ε(ip),w〉 Rw

|Aut(w)|N
trop
Q,k (w) (tx)w

⎞

⎠ [(tx)d],

where the first sum is over all equivalence classes [d] of dimension vectors
supported on Q and compatible with d.

Finally, with these results in place, the GW/Kronecker correspondence
gives back a comparison between the genuine tropical invariants N trop(w′)
of [2] and our ad hoc counts N trop

Q (w), at least in a special case. Indeed by
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the Kronecker/GW correspondence (1.1), we have

χ(Ms,B
K(m)(ha, hb))(3.41)

= exp

⎛

⎝

a

m

∑

r≥1

∑

|Pa|=ra,|Pb|=rb

rNa,b[(Pa, Pb)]x(ra,rb)

⎞

⎠ [x(ha,hb)].

By Theorem 2.66, the right-hand side can be rewritten as

(3.42)

exp

⎛

⎝

a

m

∑

r≥1

∑

|Pa|=ra,|Pb|=rb

∑

w′∼(Pa,Pb)

R(Pa,Pb)|w′

|Aut(w′)|N
trop(w′)rx(ra,rb)

⎞

⎠ [x(ha,hb)].

On the other hand, for Q and k large enough the Euler characteristic can
also be computed as

(3.43)
∑

[d]∼(ha,hb)

s+S
∑

p=s+1

exp

⎛

⎝

∑

w:μ(w)= a

a+b

〈ε(ip),w〉 Rw

|Aut(w)|N
trop
Q,k (w)(tx)w

⎞

⎠ [(tx)d].

Suppose now that h = 1. Since the vector (a, b) is primitive, we must have
the equality

a

m

∑

|Pa|=a,|Pb|=b

∑

w′∼(Pa,Pb)

R(Pa,Pb)|w′

|Aut(w′)|N
trop(w′)

=
s+S
∑

p=s+1

∑

[w ]∼(a,b)

〈ε(ip),w〉 Rw

|Aut(w)|N
trop
Q,k (w).(3.44)

We do not know a direct proof of this equality, although we believe that one
exists which exploits the comparison between the multiplicities MultQ,V h
and MultV h as in (2.67) and (2.69).

4. Connection with quiver gauge theories

We will briefly explain the physical interpretation of K(m) and how this
picture (especially the paper of F. Denef [6]) gives a possible motivation
for the constructions we have presented. Unfortunately the author is not an
expert in the area, so our account will be very naive and imprecise. The
reader should consult [6].
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Let S1, S2 be two Lagrangian three-spheres in a compact Calabi–Yau
threefold X, meeting transversely and positively in m points, so for the inter-
section product (the DSZ product in this context) we have 〈[S1], [S2]〉= m.
In the terminology of [6] Section 3.1 S1, S2 are parton D3-branes. The gen-
eralized Kronecker quiver K(m) with dimension vector d = (d1, d2) arises in
the study of the string theory on spacetime compactified on X with m open
strings with boundaries on one of d1 D-branes of type [S1] and one of d2

D-branes of type [S2].
The fundamental parameter in this theory is the string coupling con-

stant gs. For positive gs ≈ 0, and when the D-branes have small but non-
vanishing phase difference and spacetime separation, the theory becomes a
quiver quantum mechanics modelled on K(m). In particular, the Witten
index of the theory can be computed as χ(MK(m)(d)).

A very different picture emerges for large coupling constant gs. In this
regime, the Bogomol’nyi–Prasad–Sommerfield (BPS) states for the theory
become multi-centered, molecule-like configurations of d1 “monopoles” with
charge Q and d2 “electrons” with charge q, with DSZ product 〈Q,q〉 = m
(i.e. the “monopoles” have magnetic charge m, the “electrons” have electric
charge 1). What Weist’s Theorem 2.1 says in this regime is that we can
compute the same Witten index by summing over all multi-centred BPS
configurations with charges Q1, . . . ,Q�1 and q1, . . . ,q�2 such that the DSZ
product 〈Qi,qj〉 is at most 1 for i = 1 . . . , �1, j = 1, . . . , �2 (i.e., such that
each pair of interacting particles looks like a simple monopole-electron sys-
tem, corresponding to K(1)). The ˜K(m) constraint in this regime means
that the splitting into charges Qi,qj must be compatible with the original
DSZ product 〈Q,q〉 = m.

For each of these multi-centred configurations, going back to gs ≈ 0 will
give theories based on configurations of partons, with the same total Witten
index. In other words one can compute the total Witten index by summing
up over all the ways of splitting the boundary conditions for the open strings.
Notice that so far we have ignored the framing, but this could easily be intro-
duced by adding an additional parton D-brane S to the discussion above.

Remark. The large gs viewpoint gives an interesting interpretation of
Weist’s gluing result [5] Corollary 5.28. Mathematically, in its simplest form,
this says that if we have two representations R′, R′′ of ˜K(m) with dimen-
sion vectors d′, d′′ and 〈d′, d′′〉 = 1 we can glue them by identifying two
sinks j′ ∈ R′0, j′′ ∈ R′′0 . The new dimension vector is d = d′ + d′′. Now from
the gs � 0 perspective we are simply superimposing our two special multi-
centred configurations at two “electrons”. Weist’s gluing corresponds to the
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statement that the total configuration we obtain is BPS, as long as the
two multi-centred configurations behave mutually like a simple monopole-
electron system,

〈
∑

i

Q′i +
∑

j

q′j ,
∑

i

Q′′i +
∑

j

q′′j 〉 = 1.

What we wish to retain from this physical picture is that passing to the uni-
versal cover for quiver representations corresponds to splitting either bound-
ary conditions (i.e., D-branes, partons) for small gs or particles (for large
gs) into a number of constituents. Then we can recover χ by summing up
over all configurations of all possible types. The advantage of this physi-
cal point of view is that it suggests an analogy between Weist’s Theorem
(2.2) and Theorem 2.66, i.e., in both cases we are computing our invariants
(Witten indexes) by summing up over all boundary conditions (in other
words it allows us to regard [ d̃ ] as specifying boundary conditions for open
strings, while w specifies “boundary conditions”, really legs, for tropical
curves).

Finally, we should mention that the special case m = 2 (with framing)
has a physical interpretation as a certain SU(2) Seiberg-Witten theory, as
discussed in [8] Section 2.2. The Kontsevich–Soibelman wall-crossing has
been interpreted in the context of Seiberg–Witten theories by
Gaiotto et al. [8]. In the special case, m = 2 the relevant identity is (using
Kontsevich–Soibelman operators on K(2))

T1,0 ◦ T0,1 = T0,1 ◦ T1,2 ◦ T2,3 · · ·T−1
1,1 · · ·T3,2 ◦ T2,1 ◦ T1,0,

which they interpret as going from strong coupling (the left-hand side) to
weak coupling (the right-hand side). In Corollary 3.2, we have seen which
curves carry a contribution to the operator which represents one of the states
of charge (a, a + 1).
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