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Donaldson invariants of CP1 × CP1 and mock

theta functions

Andreas Malmendier

We compute the Moore–Witten regularized u-plane integral on
CP1 × CP1 directly in a chamber where the elliptic unfolding tech-
nique fails to work. This allows us to determine explicit formulas
for the SU(2) and SO(3)-Donaldson invariants of CP1 × CP1 in
terms of mock modular forms.

1. Introduction and statement of results

There are two families of Donaldson invariants of a smooth, compact, ori-
ented, simply connected Riemannian four-manifold without boundary cor-
responding to the SU(2)-gauge theory and the SO(3)-gauge theory with
non-trivial Stiefel–Whitney class. From the viewpoint of theoretical physics
[25, 26], these two families of Donaldson invariants and their related Seiberg–
Witten invariants of a manifold are the correlation functions of a super-
symmetric topological gauge theory for the gauge group SU(2) and SO(3),
respectively, whose space-time is the given manifold. However, the compu-
tation of these correlation functions is in most cases too complicated to be
carried out explicitly.

Using physical considerations, Witten [24] argued that one should be able
to compute the correlation functions in a low-energy effective field theory
instead. The effective theory has the advantage of being an Abelian super-
symmetric topological gauge theory. This means that the data required to
define the theory only involves line bundles on the manifold. Seiberg and
Witten [22, 23] argued further that the moduli of the low-energy effective
field theory are parameterized by the modular elliptic surface over Γ0(4)\H,
henceforth called the u-plane.

Based on this effective low-energy description of the quantum theory,
Witten obtained an explicit formula for the generating function of the Don-
aldson invariants in terms of the Seiberg–Witten invariants if the manifold
has Betti number b+

2 > 1 and is of simple type. The simple type condition is
a condition on the structural relation between the Donaldson invariants of
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different degree. However, it is conjectured to be equivalent to the condition
b+
2 > 1. Kronheimer and Mrowka developed a structure theory for the instan-

ton invariants of manifolds of simple type [12]. They found that the generat-
ing function for the Donaldson invariants is an analytic function
q : H2(X, R) → R constructed from the intersection form of the manifold,
and a finite number of certain characteristic classes in H2(X, Z).

A general framework providing a complete evaluation was later estab-
lished in [20]: Moore and Witten obtained the generating function for the
correlation functions as a regularized integral over the u-plane, henceforth
called the u-plane integral. The integrand is a modular invariant function
which is determined by the elliptic surface and the gauge group. The regu-
larization procedure defines a way of extracting from the integrand certain
contributions for each boundary component near the cusps of the modular
elliptic surface at τ = 0, 2,∞. Moore and Witten observed that for b+

2 = 1
the cuspidal contributions at τ = 0, 2 to the u-plane integral coincided with
the generating function for the Seiberg–Witten invariants. They went further
and made the following comprehensive conjecture:

Conjecture 1.1 (Moore and Witten [20]). The contribution from the
cusp at τ = ∞ to the regularized u-plane integral of a smooth, compact,
oriented, simply connected four-manifold X without boundary and b+

2 = 1
is the generating function for the Donaldson invariants of X.

Based on the work in [2, 4, 6, 19, 20] it follows (cf. Theorem 4.4 and Corol-
laries 4.7 and 4.9) that the only case of Conjecture 1.1 that remains still
open is the following:

Conjecture 1.2. The contribution from the cusp at τ = ∞ to the regu-
larized u-plane integral of CP2 for the gauge group SU(2) is equal to the
generating function for the SU(2)-Donaldson invariants of CP2.

For CP2, the regularization procedure employed in the definition of the
u-plane integral depends on interpreting the integrand as a total derivative,
combined with constant term contributions from cusps. The integration by
parts naturally introduces non-holomorphic modular forms of weight 3/2 for
the gauge group SU(2). As evidence for Conjecture 1.2, Moore and Witten
[20] computed the first 40 coefficients of the u-plane integral and found them
to be in agreement with the Donaldson invariants previously determined by
Ellingsrud and Göttsche [2]. However, Conjecture 1.2 remains open. The
same technique was later used in [19] to evaluate the u-plane integral of CP2
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for the gauge group SO(3) using non-holomorphic modular forms of weight
1/2 and prove Conjecture 1.1 in this case. This article is continuation of
the work in [19], but for another four-manifold with b+

2 = 1, which is not of
simple type. More generally speaking, if the conjecture about the equivalence
of the simple-type-condition and b+

2 > 1 is true, then Conjecture 1.1 implies
that manifolds, which are not of simple type (i.e., the ones for which the
beautiful structure theorem of Kronheimer and Mrowka does not hold) have
mock modular forms of half-integral weight as the generating functions for
their Donaldson invariants instead.

At this point, we like to make an historic remark: mock theta functions
first appeared in a letter of Ramanujan to Hardy in 1920. In his letter,
Ramanujan listed several examples of functions that he called mock theta
functions. These functions have an asymptotic expansion at the cusps, sim-
ilar to that of modular forms of weight 1/2, possibly with poles at cusps,
but cannot be expressed in terms of ordinary theta functions. The theory
behind mock theta functions remained unclear until Sander Zwegers discov-
ered their connection to harmonic weak Maass forms in 2001. We refer to
the article [21] and the references therein for a more detailed overview over
the development and history of mock modular forms.

In modern terminology, a mock modular form is the holomorphic part
of a harmonic weak Maass form, and a mock theta function is a mock
modular form of weight 1/2. A harmonic weak Maass form is a smooth
complex-valued function on the upper half-plane that transforms like a mod-
ular form of weight k, although it may not be holomorphic at cusps, and
is harmonic with respect to the hyperbolic weight-k Laplacian. It is also
common to impose the condition that the Maass form grows at most expo-
nentially fast at cusps which for mock modular forms means that they are
meromorphic at cusps. It then follows from the definition that a mock mod-
ular form is holomorphic but not quite modular, while the harmonic weak
Maass form is modular but not quite holomorphic. The space of mock mod-
ular forms of weight k contains the space of modular forms that may be
meromorphic at cusps of weight k as a subspace.

Moreover, since any harmonic weak Maass form of weight k is annihilated
by the hyperbolic weight-k Laplacian, the anti-holomorphic part of a har-
monic weak Maass form is in turn related to a holomorphic modular form of
weight 2 − k through a complex anti-linear, first-order differential operator.
In fact, this map constitutes an isomorphism between the anti-holomorphic
part of harmonic weak Maass forms and the space of holomorphic modular
forms of weight 2 − k. The weight-(2 − k) modular form corresponding to a
mock modular form is called its shadow [28]. Conversely, given a shadow the
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non-holomorphic part of a harmonic weak Maass form is obtained through
a period-integral from its shadow by inverting the differential operator.

In this article, we will compute the u-plane integral for ̂CP2 = CP2#CP2,
the blowup of the complex projective plane in one point, and the Cartesian
product CP1 × CP1 directly in a chamber where the elliptic unfolding tech-
nique fails to work. This allows us to determine explicit formulas for their
SU(2) and SO(3)-Donaldson invariants in terms of mock modular forms. The
generating functions for the Donaldson invariants can then all be expressed
in terms of a series of rational polynomials in a complex variable μ. For
a, b ∈ {0, 1} and m, n ∈ N0, we define

(1.1) ̂Dab
mn =

n
∑

k=0

⎡

⎣Rab
mnk e−μ2 T

ϑab

(

μ
2πh

∣

∣

∣τ
)

ϑ4(τ)
Ek[Q+

ab(τ)]

⎤

⎦

q0

where the modular functions T , R ab
mnk, and Ek[Qab(τ)] will be defined in

(3.4), (4.5) and (4.7), respectively. Q+
ab(τ) is the holomorphic part of the

harmonic Maass form of weight 3/2 and 1/2 whose shadow is ϑab(0|τ) and
η3(τ), respectively. (For the definition of the Jacobi theta functions and
Dedekind eta function see Table 1.3). Specifically, for a = 0 or b = 0, Qab(τ)
is one of Zagier’s weight 3/2 Maass–Eisenstein series [27], and for a = 1
and b = 1, Qab(τ) is the weight 1/2 harmonic Maass form described using a
non-holomorphic Jacobi form first constructed by Zwegers [29].

To state our results, we need to label the generators of the homology
group H2(X, Z) and its Poincaré duals. For CP1 × CP1 we denote by F
and G the Poincaré duals of the classes f, g of the fibers for the projections
onto its factors. It follows that F 2 = G2 = 0 and (F, G) = 1. Similarly, for
̂CP2 = CP2# CP2 we denote by H the first Chern class of the dual of the
hyperplane bundle over CP2 and by E the class of the exceptional divisor
on the blowup. It follows that H2 = −E2 = 1 and (H, E) = 0. We denote
the Poincaré duals of H and E by h and e, respectively.

Our main result is the following:

Theorem 1.1.

(1) On X = CP2# CP2 let ω = H − εE with 0 < ε � 1 be the period point
of the metric. The generating function for the SO(3)-Donaldson invari-
ants in the variables px ∈ H0(X, Z) and S = κh + μe ∈ H2(X, Z) is

Z =
∑

m,n∈N0

pm

m!
κ2n

(2n)!
̂D11

mn.
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(2) Assuming Conjecture 1.2 the generating function for the Donaldson
invariants of CP2# CP2 for the gauge group SU(2) is

Z =
∑

m,n∈N0

pm

m!
κ2n+1

(2n + 1)!
̂D 01

mn.

(3) On X = CP1 × CP1 let ω = 1
2F + G be the period point of the metric.

The generating function for the SU(2)-Donaldson invariants in the
variables px ∈ H0(X, Z) and S = κff + 2κgg ∈ H2(X, Z) is

Zτ=∞ =
1
2

∑

a,b∈{0,1}

∑

m,n∈N0

pm

m!
κ2n−ab+1

(2n − ab + 1)!
(−1)ab

̂Dab
mn,

where κ = κf + κg and μ = −κf + κg.

(4) Assuming Conjecture 1.2 the generating function for the Donaldson
invariants of CP1 × CP1 for the gauge group SO(3) is

Zτ=∞ =
1
2

∑

a,b∈{0,1}

∑

m,n∈N0

pm

m!
κ2n−ab+1

(2n − ab + 1)!
(−1)(a+1)b

̂Dab
mn.

As stated in Parts (1) and (2) of Theorem 1.1 the Donaldson invari-
ants of the blowup X = CP2# CP2 only make use of the coefficients (1.1)
for b = 1. As we shall see the reason is that X is not a spin manifold.
The original motivation for this article was to answer the question whether
the coefficients (1.1) have a geometric meaning in the case b = 0 as well.
Parts (3) and (4) of Theorem 1.1 give a positive answer to this question.
This means that Zagier’s weight 3/2 Maass–Eisenstein series Qab(τ) for b = 0
used in Equation (1.1) are the generating functions for certain Donaldson
invariants. The key technique in the proof of Theorem 1.1 is what is known
in string theory as ‘summing over all spin structures of the torus’.

This article is structured as follows. In Section 2, we recall the definition
and basic properties of the Donaldson invariants. In Section 3, we define the
u-plane integral and explain two of its fundamental properties, the so-called
wall-crossing and blowup formulas. In Section 4, we evaluate the u-plane
integral for the simplest complex surfaces: the complex projective plane CP2,
the blowup of the complex projective plane in one point CP2# CP2, and the
Cartesian product CP1 × CP1. To carry out this computation, we employ
the theory of harmonic Maass forms. Specifically, we relate the relevant
generating functions for the SU(2)-gauge theory and the SO(3)-gauge theory
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to the holomorphic parts of harmonic Maass forms of weight 3/2 and 1/2,
respectively. In Section 5, we combine these results to prove Theorem 1.1.
Throughout the article we will assume that the reader is familiar with the
results in [19]. More details in terms of the relevant background in number
theory and differential geometry can also be found there.

Notation: In this article, we will use the following definition for the Jacobi
theta function:

(1.2) ϑab(v|τ) =
∑

n∈Z

q(2n+a)2/8 eπi (2n+a)(v+(b/2)),

where a, b ∈ {0, 1}, v ∈ C, q = exp(2πiτ), τ = x + iy ∈ H and H is the com-
plex upper half-plane. The relation to the standard Jacobi theta functions
is summarized in the following table:

(1.3)

ϑ1(v|τ) = ϑ11(v|τ) ϑ1(0|τ) = 0 ϑ′
1(0|τ) = −2πη3(τ)

ϑ2(v|τ) = ϑ10(v|τ) ϑ2(0|τ) =
∑

n∈Z
q(2n+1)2/8

ϑ′
2(0|τ) = 0

ϑ3(v|τ) = ϑ00(v|τ) ϑ3(0|τ) =
∑

n∈Z
qn2/2

ϑ′
3(0|τ) = 0

ϑ4(v|τ) = ϑ01(v|τ) ϑ4(0|τ) =
∑

n∈Z
(−1)n qn2/2

ϑ′
4(0|τ) = 0

Here η(τ) is the Dedekind eta function with

(1.4) η3(τ) =
∞
∑

n=0

(−1)n (2n + 1) q(2n+1)2/8.

We will also use the notation ϑj = ϑj(0|τ), for j = 2, 3, 4.

2. Donaldson theory of simply connected four-manifolds

The Donaldson invariants of a smooth, compact, oriented, simply connected
Riemannian four-manifold (X, g) without boundary are defined by using
intersection theory on the moduli space of anti-self-dual instantons for the
gauge group SU(2) or SO(3), respectively [5]. Given a homology orientation
some cohomology classes on the instanton moduli space can be associated
to homology classes of X through the slant product and then evaluated on
a fundamental class. Define A(X) = Sym(H0(X, Z) ⊕ H2(X, Z)) and regard
the Donaldson invariants as the functional

(2.1) DX,g
w2(E) : A(X) → Q,
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where w2(E) ∈ H2(X, Z2) is the second Stiefel–Whitney class of the gauge
bundles which are considered. Since X is simply connected there is an integer
class 2λ0 ∈ H2(CP2, Z) that is not divisible by two and whose mod-two
reduction is w2(E). Let {si}i=1,...,b2 be a basis of the two-cycles of X. We
introduce the formal sum S =

∑b2
i=1 κi si where κi are complex numbers.

The generator of the zero-class of X will be denoted by x ∈ H0(X, Z). The
Donaldson–Witten generating function is

(2.2) ZDW(p, κ) = DX,g
w2(E)(e

px+S),

so that the Donaldson invariants are read off from the expansion of (2.2) as
the coefficients of powers of p and κ = (κ1, . . . , κb2).

The Donaldson invariants are topological invariants of X and do not
depend on the metric g if b+

2 > 1. For b+
2 = 1, the Donaldson invariants

are no longer independent of the metric [11]. A metric g on X determines
a ray within the set of self-dual (with respect to g) harmonic two-forms
H2(X, R)+ = {α ∈ H2(X, R)|α2 > 0}. The choice of an homology orienta-
tion amounts to choosing a connected component of H2(X, R)+/R

+. A rep-
resentative for such a ray is given by a normalized self-dual two-form (or
period point) ω with ω2 = 1. We will always assume that a chosen period
point is located in the component determined by the homology orientation.
The generating function (2.2) for the Donaldson invariants of a manifold X
with b+

2 = 1 depends on the metric through the position of the period point
ω in H2(X, R)+ via a systems of walls and chambers. In fact, the generat-
ing function (2.2) has a discontinuous variation in ω if a cohomology class
λ ∈ H2(X, Z) + λ0 is such that the period ω · λ changes its sign. We then
say that λ defines a wall. The chambers are the complements of these walls.

3. The u-plane integral

From now on, we will assume that (X, g) is a smooth, compact, oriented, sim-
ply connected Riemannian four-manifold without boundary and
b+
2 = 1. The u-plane integral Z is a generating function in the variables

p and κ whose coefficients are the integrals of certain modular forms over
the fundamental domain of the group Γ0(4) and depend on the period point
ω, the lattice H2(X, Z) together with the intersection form (. , .), the second
Stiefel–Whitney classes of the gauge bundle w2(E) and the tangent bundle
w2(X) whose integral liftings are denoted by 2λ0 and w2, respectively. The
u-plane integral is non-vanishing only for manifolds with b+

2 = 1. The explicit
form of Z for simply connected four-manifolds was first introduced in [20].
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For the convenience of the reader we quickly review the explicit construction
of the u-plane in this chapter. Our approach to the u-plane integral, as well
as its normalization follows closely the approach in [14–16].

We will denote the self-dual and anti-self-dual projections of any two-
form λ ∈ H2(X, Z) + λ0 by λ+ = (λ, ω)ω and λ− = λ − λ+, respectively. We
first introduce the integral

(3.1) G(ρ) =
∫ reg

Γ0(4)\H

dxdy

y3/2
f̂(p, κ) Θ̄(ξ).

In this expression, f̂(p, κ) is the almost holomorphic modular form given by

(3.2) f̂(p, κ) =
√

2
64π

ϑσ
4

h3 · f2
e2 p u+S2 ̂T ,

where σ is the signature of X and S2 = (S, S) =
∑

i,j κiκj(si, sj). Θ̄ is the
Siegel–Narain theta function and is defined to be

Θ̄(ξ) = exp
[

π

2 y

(

ξ̄2
+ − ξ̄2

−
)

]

(3.3)

×
∑

λ∈H2+λ0

exp
[− iπτ̄(λ+)2 − iπτ(λ−)2 − 2πi (λ, ξ̄) + πi (λ, w2)

]

,

where ξ̄ = ξ̄+ + ξ̄−, ξ̄+ = ρ y h ω, ξ̄− = S−/(2πh) and ρ ∈ R. The Siegel-
Narain theta function only depends on the lattice data (H2(X), ω, λ0, w2).
We have denoted the intersection form in two-cohomology by (. , .) and used
Poincaré duality to convert cohomology classes into homology classes. In the
above expressions, u, T , h and f2 are the modular forms defined as follows:

(3.4)

u =
ϑ4

2 + ϑ4
3

2 (ϑ2ϑ3)2
, h = 1

2ϑ2ϑ3,

T = − 1
24

(

E2

h2
− 8u

)

, f2 =
ϑ2ϑ3

2ϑ8
4

.

T does not transform well under modular transformations, due to the pres-
ence of the second normalized Eisenstein series E2 = E2(τ) with

E2(τ) = 1 − 24
∞
∑

n=1

∑

d|n
d · qn.
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Therefore, in Equation (3.2) we have used the related form ̂T=T + 1/(8πyh2)
which is not holomorphic but transforms well under modular transforma-
tions. We also define the related holomorphic function f(p, κ) as in Equation
(3.2), but with T instead of ̂T . The u-plane integral is defined to be

(3.5) Z(X, ω, λ0, w2) =
[

(S, ω) + 2
d

dρ

]∣

∣

∣

∣

ρ=0

G(ρ).

If there is no danger of confusion we suppress the arguments (X, ω, λ0, w2)
of Z.

Remark. The definition of the u-plane integral in Equation (3.5) agrees
with the definition given in [15]. However, compared to the original defini-
tion in [20] a factor of exp [2πi(λ0, λ0) + πi(λ0, w2)] is missing. For all cases
considered in this article this factor is equal to one.

The regularization procedure applied in the definition of the integral
(3.1) was described in detail in [20]. It defines a way of extracting certain
contributions for each boundary component near the cusps of Γ0(4)\H. Since
the cusps are located at τ = ∞, τ = 0 and τ = 2, we obtain Z as the sum
of these contributions from the cusps

(3.6) Z = Zτ=0 + Zτ=2 + Zτ=∞.

For the complex surfaces considered in this article, we will show in Theo-
rem 4.3 and Corollary 4.6 that the regularization procedure in the integral
amounts to computing the constant coefficient term in the series expansion
of the integrand (3.1).

3.1. Wall-crossing for the u-plane integral

The integral (3.1) has a discontinuous variation in ω at the cusps of Γ0(4)\H

if for the cohomology class λ ∈ H2(X, Z) + λ0 the period ω · λ changes sign.
The conditions for wall-crossing are λ2 < 0 and λ+ = 0. The wall-crossing
of the u-plane integral associated with the cusp at infinity τ = ∞ was first
derived in Section 4 of [20].

Theorem 3.1 Wall-crossing. Let

(3.7) Zτ=∞(X, ω1, λ0, w2) − Zτ=∞(X, ω2, λ0, w2) =
∑

λ

WC(λ)
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be the difference between the cusp contribution at τ = ∞ for the period points
ω1 and ω2. The sum is understood to run over all λ ∈ H2(X, Z) + λ0 with
ω1 · λ > 0 > ω2 · λ. We then have

WC(λ) = − i

2
(−1)(λ−λ0,w2) e2πiλ2

0(3.8)

×
[

q−λ2/2 ϑσ
4

h2 · f2
exp

[

2 p u + S2 T − i
h

(λ, S)
]

]

q0

,

where u, h, T and f2 were defined in (3.4) and px ∈ H0(X, Z), S ∈ H2(X, Z).

Proof. Using the q-expansion of the different modular forms, it is easy to
check that the wall-crossing term is different from zero only if 0 > λ2 ≥ p1/4,
where p1 is the Pontryagin number of the gauge bundle (and p1 ≡ w2(E)2

mod 4). By combining the contributions (3.8) for all crossed walls one finds
that the difference between the cusp contribution at τ = ∞ for ω1 and ω2 is
given by Equations (3.7) and (3.8). �

Remark. The expression (3.8) agrees with the wall-crossing formula for
the Donaldson invariants of non-simply connected manifolds with b+

2 = 1
derived in [4] under the assumption of the Kotschick–Morgan conjecture.
The equality of the two wall-crossing formulas means that for manifolds with
b+
2 = 1 and b−2 ≥ 1 the Moore–Witten conjecture can be proved effectively

by showing that the generating function for the Donaldson invariants and
the u-plane integral agree in one particular chamber.

3.2. Blowup formulas for the u-plane integral

The blowup formula relates the u-plane integral of a four-manifold X with
b+
2 = 1 to the u-plane integral of the connected sum ̂X = X# CP2 of X and

CP2 with the opposite orientation. In fact, the blowup formula expresses
the coefficients of the generating function of ̂X in terms of the coefficients
of the generating function of X.

Let E be the class of the exceptional divisor such that H2( ̂X, R) =
H2(X, R) ⊕ R E and H2(X, R) is identified with the classes in H2( ̂X, R)
orthogonal to E. Let e be the Poincaré dual of E. We need to choose the
metric on ̂X to be very close to the pullback of the metric on X to make
the computation of Moore and Witten applicable. Thus, if ω ∈ H2(X, R)+

denotes the period point of X we choose the period point ω+ := ω − εE with
0 < ε � 1 for ̂X. We also denote the integral lifting of w2( ̂X) by ŵ2. The
cycles {s1, . . . , sb2 , e} form a basis of the two-cycles of ̂X. Thus, the formal
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sum ̂S =
∑b2

i=1 κi si + μ e will be appearing in the u-plane integral where μ
is a complex variable. The result of [20, Section 6] can now be stated as
follows.

Theorem 3.2 Blowup formula for SO(3). For px ∈ H0( ̂X, Z) and ̂S =
S + μ e ∈ H2( ̂X, Z) we have that

Z

(

̂X, ω+, λ̂0 = λ0 +
1
2

E, ŵ2 = w2 + E

)

=
[

(S, ω) + 2
d

dρ

]∣

∣

∣

∣

ρ=0

̂G0(ρ),

(3.9)

where

(3.10) ̂G0(ρ) =
∫ reg

Γ0(4)\H

dxdy

y3/2
f̂(p, κ) Θ̄(ξ)

1
2
√

2
e−u μ2/3 σ(2

√
2 μ).

σ(2
√

2 μ) is the Weierstrass sigma function for the periods 2 ω = 4
√

2πh and
2 ω′ = τ 4

√
2πh. f̂ and Θ̄ depend on X only and were defined in (3.2) and

(3.3), respectively. The quantities u and h were defined in (3.4).

Proof. On ̂X the u-plane integral receives an additional factor of

(3.11) −
ϑ1

(

μ
2πh

∣

∣

∣τ
)

ϑ4(0|τ)
e−μ2 T .

To prove Equation (3.10), one uses the identity

(3.12)
σ(z)

z
= exp

(

π2 E2 z2

24 ω2

)

ϑ1(v|τ)
v ϑ′

1(0|τ)

for v = z/(2ω) in the definition of the u-plane integral and 2 η3 = ϑ2ϑ3ϑ4.
�

The additional factor in Equation (3.10) has a series expansion in μ
whose coefficients are rational polynomials in u since

(3.13) σ(z) =
∞
∑

m,n=0

amn

(

1
2
g2

)m

(2 g3)n z4m+6n+1

(4m + 6n + 1)!
,
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where g2 = u2/12 − 1/16, g3 = u3/216 − u/192. The coefficients am,n ∈ Q

can be found in [1, 18.5.8]. The first terms are

1
2
√

2
e−u μ2/3 σ(2

√
2 μ)(3.14)

= μ − (2u)
μ3

3!
+ ((2 u)2 + 2)

μ5

5!
− ((2u)3 + 6 (2u))

μ7

7!
+ O(μ11).

Remark. The blowup function 1
2
√

2
e−u μ2/3 σ(2

√
2 μ) agrees with the

blowup function for the SO(3)-Donaldson invariants derived in [3]. The
expansion (3.14) agrees with the relations D ̂X,ω+

w2+E(z e2k) = 0 for k ∈ N and
for z ∈ A(X)

D ̂X,ω+
w2+E(z e) = DX,ω

w2
(z),

D ̂X,ω+
w2+E(z e3) = −DX,ω

w2
(z x),

D ̂X,ω+
w2+E(z e5) = DX,ω

w2
(z x2) + 2DX,ω

w2
(z),

D ̂X,ω+
w2+E(z e7) = −DX,ω

w2
(z x3) − 6DX,ω

w2
(z),

for the Donaldson invariants. The latter relations were first derived in [13].

We have a similar result for the u-plane integral for the gauge group
SU(2):

Theorem 3.3 (Blowup formula for SU(2)). For p x ∈ H0( ̂X, Z) and ̂S =
S + μ e ∈ H2( ̂X, Z) we have that

(3.15) Z
(

̂X, ω+, ̂λ0 = λ0, ŵ2 = w2 + E
)

=
[

(S, ω) + 2
d

dρ

]∣

∣

∣

∣

ρ=0

̂G3(ρ),

where

(3.16) ̂G3(ρ) =
∫ reg

Γ0(4)\H

dxdy

y3/2
f̂(p, κ) Θ̄(ξ) e−u μ2/3 σ3(2

√
2 μ).

σ3(2
√

2 μ) is the Weierstrass sigma function for the periods 2 ω = 4
√

2πh
and 2 ω′ = τ 4

√
2πh, and the half-period ω3 = ω′. f̂ and Θ̄ depend on X

only and were defined in (3.2) and (3.3), respectively. The quantities u and
h were defined in (3.4).
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Proof. For ωj = (1 − b) ω + (1 − a) ω′ with a, b not both equal to 1, it follows

(3.17)
ϑ1(v +

ωj

2ω |τ)

ϑ1

(

ωj

2ω |τ
) = e−δa,0πiv ϑab(v|τ)

ϑab(0|τ)
,

where v = z/(2ω). The index j is given in terms of (a, b) by the map j ↔
(a, b) with 1 ↔ (1, 0), 2 ↔ (0, 0), 3 ↔ (0, 1). The following relation between
the Jacobi theta functions and the Weierstrass sigma functions holds:

(3.18) σj(z) = exp
(

π2 E2 z2

24 ω2

)

ϑab(v|τ)
ϑab(τ)

.

For j ∈ {1, 2, 3} the function σj(2
√

2 μ) is the Weierstrass sigma function
for the periods 2ω = 4

√
2πh and 2ω′ = τ 4

√
2πh, and the half-period ωj .

Setting (a, b) = (0, 1) and j = 3, Equation (3.16) follows. �
The additional factor in Equation (3.16) has a series expansion in μ whose
coefficients are rational polynomials in u. The first terms are

e−u μ2/3 σ3(2
√

2μ) = 1 − 2
μ4

4!
+ 8 (2u)

μ6

6!
−
(

32 (2u)2 + 4
) μ8

8!
+ O(μ10).

(3.19)

Remark. The blowup function e−u μ2/3 σ3(2
√

2 μ) agrees with the blowup
function for the SU(2)-Donaldson invariants derived in [3]. The expansion
(3.19) agrees with the relations D ̂X,ω+

w2 (z e2k−1) = 0 for k ∈ N and for
z ∈ A(X)

D ̂X,ω+
w2

(z) = DX,ω
w2

(z),

D ̂X,ω+
w2

(z e4) = −2DX,ω
w2

(z),

D ̂X,ω+
w2

(z e6) = 8DX,ω
w2

(z x),

D ̂X,ω+
w2

(z e8) = −32DX,ω
w2

(z x2) − 4DX,ω
w2

(z),

for the Donaldson invariants.

4. Invariants for some complex surfaces

4.1. The projective plane

The Fubini–Study metric g on CP2 is a Kähler metric with the Kähler form
K = i

2gij̄ dzi ∧ dz j̄. It follows that the first Chern class of the dual of the
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hyperplane bundle over CP2 is H = K/π. We then have that
∫

CP2 H2 = 1,
c1(CP2) = 3H and p1(CP2) = 3H2. The Poincaré dual h of H is a generator
of the rank-one homology group H2(CP2, Z). We denote the integral lifting
of w2(E) by 2λ0 = a H ∈ H2(CP2, Z), and the integral lifting of w2(CP2) by
w2 = −b H ∈ H2(CP2, Z). Note that b = 1 as CP2 is not spin. However, all
formulas we will write down will remain well-defined for b = 0 as well. We
have the following lemma.

Lemma 4.1. On X = CP2 let ω = H be the period point of the metric.
Let 2 λ0 = a H with a ∈ {0, 1} be an integral lifting of w2(E) and b = 1. For
(X, ω, λ0, w2 = −b H) the Siegel–Narain theta function is

(4.1) Θ̄ = exp
(

π

2 y
ξ̄2
+

)

ϑab

(

(ξ+, H)
∣

∣

∣τ
)

,

where ξ̄ = ξ̄+ = ρ y h ω.

It was shown in [20] that for σ = 1 and any value of a and b we have

(4.2) Zτ=0 = Zτ=2 = 0,

hence Z = Zτ=∞. The u-plane integral in Equation (3.5) can be expanded
as follows:

(4.3) Zτ=∞ =
∑

m,n∈N0

pm

m!
κ2n−ab+1

(2n − ab + 1)!
D ab

mn,

where

(4.4) D ab
mn = −

√
2

32π

n
∑

k=0

∫ reg

Γ0(4)\H

dx dy

y3/2
R ab

mnk
̂Ek

2

[

ϑab(0|τ) − 4 y ϑ′
ab(0|τ)

]

.

For m, n ∈ N0 and 0 ≤ k ≤ n we have set

(4.5) R ab
mnk = (−1)k+ab+1 (2n − ab + 1)!

k! (n − k)!
2m−3k−ab−1

3n

ϑ4 · um+n−k

h3+2k−ab · f2
,

where u, h and f2 were defined in (3.4). To evaluate the regularized
u-plane integral we introduce the non-holomorphic modular form
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Qab(τ) = Q+
ab(τ) + Q−

ab(τ) for Γ0(4) of weight ((3/2) − ab) such that

(4.6) 8
√

2π i
d

dτ̄
Qab (τ) = y−3/2

[

ϑab(0|τ) − 4 y ϑ′
ab(0|τ)

]

.

We then have the following extension of [20, (9.18)] which includes the case
a = b = 1:

Lemma 4.2. The weakly holomorphic function
(4.7)

Ek [Qab] =
k
∑

j=0

(−1)j

(

k

j

)

Γ (3/2 − ab)
Γ (3/2 − ab + j)

22j 3j Ek−j
2 (τ)

(

q
d

dq

)j

Qab (τ)

has weight 2l + (3/2) − ab and satisfies

(4.8) 8
√

2π i
d

dτ̄
Ek [Qab] = y−3/2

̂Ek
2 (τ)

[

ϑab(0|τ) − 4 y ϑ′
ab(0|τ)

]

.

4.1.1. The case a = 0 or b = 0. These non-holomorphic modular forms
of weight 3/2 for Γ0(4) were constructed by Zagier [27] and reviewed in [20].
The holomorphic parts of Zagier’s weight 3/2 Maass–Eisenstein series, which
first arose [8] in connection with intersection theory for certain Hilbert mod-
ular surfaces, are generating functions for Hurwitz class numbers. The holo-
morphic part of Zagier’s weight 3/2 Maass–Eisenstein series is the generating
function for Hurwitz class numbers. They have series expansions of the form

Q+
10 (τ) =

1
q1/8

∑

l>0

H4l−1 ql/2,

Q+
00 (τ) =

∑

l≥0

H4l ql/2,
(4.9)

where Hα are the Hurwitz class numbers. The first non-vanishing Hurwitz
class numbers are as follows:

H0 H3 H4 H7 H8 H11 H12 . . .

− 1
12

1
3

1
2 1 1 1 4

3 . . .
.
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The non-holomorphic parts have series expansions of the form

Q−
10 (τ) =

1
8
√

2π

∞
∑

l=−∞
(l +

1
2
) · Γ

(

−1
2
, 2 π

(

l +
1
2

)2

y

)

q−(l+1/2)2/2,

Q−
00 (τ) =

1
8
√

2π

∞
∑

l=−∞
l · Γ

(

−1
2
, 2 π l2 y

)

q−l2/2,

(4.10)

where Γ(3/2, x) is the incomplete gamma function

(4.11) Γ(α, x) =
∫ ∞

x
e−t tα−1 dt.

We also have set Q01(τ) = Q00(τ) − Q10(τ) + 1
2Q00((τ + 2)/4) and write

(4.12) Q+
01 (τ) =

∑

n≥0

Rn qn/2.

The first non-vanishing coefficients in the series expansion are as follows:

R0 R1 R2 R3 R4 . . .

−1
8 −1

4
1
2 −1 5

4 . . .

All non-holomorphic parts have an exponential decay since

(4.13) Γ (α, t) = tα−1 e−t
(

1 + O(t−1)
)

, (t → ∞).

4.1.2. The case a = 1 and b = 1. The harmonic Maass form of weight
1/2 was constructed in [19]. The holomorphic part has a series expansion of
the form

(4.14)

Q+
11 (τ) =

1
q1/8

∑

l≥0

Hl ql/2=
1

q1/8

(

1+28 q1/2+39 q+196 q3/2+161 q2+ · · ·
)

,

where the coefficients Hl were computed in [19]. The non-holomorphic part
Q−

11 is

Q−
11 (τ) = − 2i√

π

∑

l≥0

(−1)l Γ

(

1
2
, 2 π

(

l +
1
2

)2

y

)

q−(l+1/2)2/2.(4.15)
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The non-holomorphic part Q−
11 has an exponential decay similar to the one

in Equation (4.13). The modular form Q11(τ) is naturally related to one of
Ramanujan’s mock theta functions

M(q8) = q−1
∞
∑

n=0

(−1)n+1q8(n+1)2
∏n

k=1(1 − q16k−8)
∏n+1

k=1(1 + q16k−8)2

= −q7 + 2q15 − 3q23 + · · · .

In [19], it was proved that Q11(q8) + 4 M(q8) is a weight 1/2 weakly holo-
morphic modular form, and

1
η(τ)

·
(

Q11(q) + 4 M(q)
)

is a modular function.

4.1.3. The evaluation of the u-plane integral. It was shown in [20]
that the cusp contribution at τ = ∞ to the regularized u-plane integral can
be evaluated as follows: in Equation (4.17) we integrate by parts using the
modular forms constructed in Lemma 4.2, i.e., we rewrite an integrand f as
a total derivative using

dx ∧ dy ∂τ̄f =
1
2

dx ∧ dy (∂x + i ∂y) f = − i
2

d
(

f dx + i f dy
)

.

We carry out the integral along the boundary x = Re(τ) ∈ [0, 4] and y  1
fixed. This extracts the constant term coefficient. We then take the limit
y → ∞. Since all non-holomorphic parts have an exponential decay the non-
holomorphic dependence drops out. The following expression for the u-plane
integral were obtained for the gauge group SU(2) in [20] and SO(3) in [19].
Additional information about the evaluation of the u-plane integral as well
as the geometry of the Seiberg–Witten curve can be found in [17, 18].

Theorem 4.3. On X = CP2 let ω = H be the period point of the metric.
Let 2 λ0 = a H with a ∈ {0, 1} be an integral lifting of w2(E) and b = 1. For
(X, ω, λ0, w2 = −b H) the u-plane integral in the variables p x ∈ H0(X, Z),
S = κ h ∈ H2(X, Z) is

(4.16) Z = Zτ=∞ =
∑

m,n∈N0

pm

m!
κ2n−ab+1

(2n − ab + 1)!
D ab

mn,
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where

(4.17) D ab
mn =

n
∑

k=0

[

R ab
mnk Ek[Q+

ab(τ)]
]

q0
,

and R ab
mnk and Ek[Qab(τ)] were defined in (4.5) and (4.7), respectively.

For concreteness we list the first non-vanishing coefficients of the generating
functions for a ∈ {0, 1} and b = 1 in Theorem 4.3:

m n D1,1
m,n D1,1

m,n D0,1
m,n D0,1

m,n

0 0 1
1
4

H1 − 6H0 −3
2

−1
2
R1 + 13R0

0 2
3
16

49
64

H2 − 9
4

H1 +
2133
64

H0 1 −2R2 + 7R1 − 30R0

1 1
5
16

7
64

H2 − 1
4

H1 +
195
64

H0 −1 −1
4
R2 +

1
2
R1 + 6R0

2 0
19
16

1
64

H2 +
1
4

H1 − 411
64

H0 −13
8

− 1
32

R2 − 7
16

R1 +
55
4

R0

As evidence for their conjecture in the case of X = CP2 and the gauge
group SU(2), Moore and Witten [20] computed the first 40 invariants D0,1

m,n

and found them to be in agreement with the results of Kotschick and Lisca
[10] and Ellingsrud and Göttsche [2] for the Donaldson invariants. However,
Conjecture 1.2 remains open. The main result in [19] concerned the case of
the SO(3)-gauge theory. The following theorem was proved:

Theorem 4.4. Conjecture 1.1 is true for the gauge group SO(3) and
X = CP2.

4.2. The blowup of the projective plane

Using the notation of the previous section we will write down an explicit
formula for Donaldson invariants of the connected sum ̂CP2 = CP2# CP2.
Let ω̂ = H+ = H − ε E with 0 < ε � 1 be the period point of the metric on
the blowup. The cycles {h, e} form a basis of the two-cycles of the blowup.
We set ̂S = κ h + μ e such that ̂S2 = κ2 − μ2. We also denote the integral
lifting of w2(̂CP2) by ŵ2 = b (−H + E) with b = 1.

Lemma 4.5. On ̂X = ̂CP2 let ω̂ = H+ be the period point of the met-
ric. Let 2 ̂λ0 = a (H − E) with a ∈ {0, 1} be an integral lifting of w2( ̂E) and
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b = 1. For ( ̂X, ω̂, ̂λ0, ŵ2 = b (−H + E)) the Siegel–Narain theta function is

̂Θ̄ab = (−1)ab exp
(

π

2 y
ξ̄2
+ +

1
8π y h2

μ2

)

ϑab

(

(ξ+, H)
∣

∣

∣τ
)

ϑab

( μ

2πh

∣

∣

∣ τ
)

,

(4.18)

where h was defined in (3.4).

Proof. Evaluating the Siegel–Narain theta function (3.3) for ̂CP2 gives an
additional factor of

(4.19) ϑa(−b)

( μ

2πh

∣

∣

∣ τ
)

= ϑab

(

− μ

2πh

∣

∣

∣ τ
)

= (−1)ab ϑab

( μ

2πh

∣

∣

∣ τ
)

.

Finally, the result follows from ϑ(−a)b(v|τ) = ϑab(v|τ). �

The following is a reformulation of Theorems 3.2, 3.3 and 4.6 applied to
the blowup of the projective plane:

Corollary 4.6. On ̂X = ̂CP2 let ω̂ = H+ be the period point of the met-
ric. Let 2 ̂λ0 = a (H − E) with a ∈ {0, 1} be an integral lifting of w2( ̂E) and
b = 1. For ( ̂X, ω̂, ̂λ0, ŵ2 = b (−H + E)) the u-plane integral in the variables
p x ∈ H0( ̂X, Z) and ̂S = κ h + μ e ∈ H2( ̂X, Z) is

(4.20) Z = Zτ=∞ =
∑

m,n∈N0

pm

m!
κ2n−ab+1

(2n − ab + 1)!
̂D ab

mn,

where

(4.21) ̂D ab
mn =

n
∑

k=0

⎡

⎣R ab
mnk e−μ2 T

ϑab

(

μ
2πh

∣

∣

∣τ
)

ϑ4(τ)
Ek[Q+

ab(τ)]

⎤

⎦

q0

,

and T , R ab
mnk and Ek[Qab(τ)] were defined in (3.4), (4.5) and (4.7), respec-

tively.

The u-plane integral agrees with the Donaldson invariants and also sat-
isfies the same blowup formulas (3.9) and (3.15) and the same wall-crossing
formula (3.8). Thus, it follows immediately:

Corollary 4.7. Conjecture 1.1 is true for the gauge group SO(3) and
X = ̂CP2.
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Remark. We remark that Equations (4.20) and (4.17) also make sense
for b = 0. For b = 0, they are the evaluation of the u-plane integral for the
Siegel–Narain theta function for the non-geometric lattice H2 = {N1 H +
N2 E |N1, N2 ∈ N0} together with 2 λ0 = a (H − E), w2 = b (−H + E),
ω = H − εE.

4.3. CP1 × CP1 in limiting chambers

On X = CP1 × CP1 we will use the formal variable S = 2 κf f + κg g
with S2 = 4 κfκg in the u-plane integral. X has σ = 0 and is spin, hence
w2(X) = 0. We choose the period point

(4.22) ω =
1√
2 ε

F +
ε√
2

G, such that ω2 = 1.

First, we will describe the Donaldson invariants in the limiting chamber ε →
0 which corresponds to a small volume of F since

∫

f ω =
√

2 ε. As explained
in [20] the metric has positive scalar curvature in this chamber and hence

(4.23) Zτ=0 = Zτ=2 = 0.

Thus, the evaluation of the u-plane integral in this chamber amounts to eval-
uating the cusp contribution at τ = ∞. As explained in [20], the
u-plane integral can be evaluated by a general strategy due to Borcherds,
called lattice reduction method or unfolding technique. The evaluation was
described in great detail in [15]. The unfolding technique yields the following
results:

Theorem 4.8. On X = CP1 × CP1 let ω = F+ be the period point of
the metric. Let 2 λ0 = ρf F + ρg G with ρf , ρg ∈ {0, 1} be an integral lift-
ing of w2(E). For (X, ω, λ0, w2 = 0) the u-plane integral in the variables
p x ∈ H0(X, Z) and S = κf f + 2 κg g ∈ H2(X, Z) is

(4.24)

Z = Zτ=∞ =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

−1
4

[

1
h · f2

e2 p u+S2 T cot
(κg

h

)

]

q0

, if ρg = 0, ρf = 0,

−1
4

[

1
h · f2

e2 p u+S2 T csc
(κg

h

)

]

q0

, if ρg = 0, ρf = 1,

0, if ρg �= 0,

where h, f2, T and u were defined in (3.4).
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Corollary 4.9. Conjecture 1.1 is true for X = CP1 × CP1.

Proof. The u-plane integrals (4.24) of CP1 × CP1 in the limiting chamber
ω = F+ agree precisely with the formulas computed by Göttsche for the
Donaldson invariants in [4]. Moreover, Moore and Witten showed that the
u-plane integral satisfies the wall-crossing formula in Equation (3.8) which
agrees with the wall-crossing formula for the Donaldson invariants derived in
[4] under the assumption of the Kotschick–Morgan conjecture. The assump-
tion of the Kotschick–Morgan conjecture was later removed in [7]. �

If we choose the period point ω = 1
2 F + G on CP1 × CP1 then the

unfolding technique used to obtain the results for the u-plane integral stated
in Chapter 4.3 can no longer be applied. In principle, one could still use
the wall-crossing formula (3.8) to relate the results from Theorem 4.8 for
the period point ω = F+ to the u-plane integral for the period point ω =
1
2 F + G. However, since an infinite number of walls needs to be crossed in
the process it is difficult to obtain an explicit formula in this way. Instead
we will use a different approach. The insertion of a Z2-delta function into
the Siegel–Narain theta function (3.3) on CP1 × CP1 allows an evaluation
of the u-plane integral using the method of Chapter 4.2. We will show

Proposition 4.10. On X = CP1 × CP1 let ω = 1
2 F + G be the period

point of the metric. For (X, ω, λ0 = 0, w2 = 0) the u-plane integral in the
variables p x ∈ H0(X, Z), S = κf f + 2 κg g ∈ H2(X, Z) is

(4.25) Zτ=∞ =
1
2

∑

a,b∈{0,1}

∑

m,n∈N0

pm

m!
κ2n−ab+1

(2n − ab + 1)!
(−1)ab

̂D ab
mn,

where ̂D ab
mn was defined in (4.21), and κ = κf + κg, μ = −κf + κg.

We will give the detailed proof in Section 5.

4.4. Relations between CP1 × CP1 and ̂CP2

To state certain relations between the Donaldson invariants of CP1 × CP1

and the Donaldson invariants of ̂CP2 we introduce F̄ = H − E and Ḡ =
H + E on ̂CP2 such that (F̄ , Ḡ) = 2. On CP1 × CP1 we set S = κf f + 2 κg g,
and on ̂CP2 we set ̂S = κf f̄ + κg ḡ. We have the following result:
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Lemma 4.11. On CP1 × CP1 let ω = 1
2 F + G be the period point of the

metric. Under the assumption of Conjecture 1.2 it follows that:

Zτ=∞
(

CP1 × CP1, ω,
1
2

F, 0
∣

∣

∣ p, S
)

− Zτ=∞
(

CP1 × CP1, ω, 0, 0
∣

∣

∣ p, S
)

= Zτ=∞
(

̂CP2, H+,
1
2

F̄,−F̄
∣

∣

∣ p, ̂S
)

− Zτ=∞
(

̂CP2, H+, 0,−F̄
∣

∣

∣ p, ̂S
)

.

(4.26)

Remark. In [6, Theorem 5.3], Göttsche and Zagier proved a general version
of the relation (4.26) for the generating function of Donaldson invariants of
CP1 × CP1 and the blowup of CP2. The relation (4.26) but for the generat-
ing function of the Donaldson invariants is obtained by setting a = (1 + ε)/2
and b = (1 − ε)/2) in [6, Theorem 5.3] and then taking the limit ε → 0.

Proof. Based on the previous remark the proof follows from the fact that
the u-plane integral is equal to the generating function for the Donald-
son invariants. For X = CP1 × CP1 this follows from Corollary 4.9. For the
gauge group SO(3) and CP2# CP2 the statement follows from Corollary
4.7. For the gauge group SU(2) we need to assume that Conjecture 1.2 is
true. Under this assumption it follows that the u-plane integral for the gauge
group SU(2) on CP2# CP2 agrees with the SU(2)-Donaldson invariants since
both satisfy the same blowup formula (3.15) and the same wall-crossing for-
mula (3.8). �

Corollary 4.12. On CP1 × CP1 let ω = 1
2 F + G be the period point of the

metric. Let 2 λ0 = F be an integral lifting of w2(E). Under the assumption
of Conjecture 1.2 it follows that for (X, ω, λ0, w2 = 0) the u-plane integral
in the variables p x ∈ H0(X, Z), S = κf f + 2κg g ∈ H2(X, Z) is

(4.27) Zτ=∞ =
1
2

∑

a,b∈{0,1}

∑

m,n∈N0

pm

m!
κ2n−ab+1

(2n − ab + 1)!
(−1)(a+1)b

̂D ab
mn,

where ̂D ab
mn was defined in (4.21), and κ = κf + κg, μ = −κf + κg.

Proof. Assuming Conjecture 1.2, Equation (4.26) provides a formula for the
u-plane integral for the gauge group SU(2) on CP1 × CP1 in terms of the
u-plane integral for the gauge group SO(3) on CP1 × CP1 and the u-plane
integrals on ̂CP2. Using the results of Proposition 4.10 and Corollary 4.6,
we obtain Equation (4.27). �
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5. The proof of Theorem 1.1

Proof. We first prove Proposition 4.10. To do so we compute the Siegel–
Narain theta function of CP1 × CP1 for w2 = 0, λ0 = 0, and the period
point

(5.1) ω =
(

1
2

+
ε

2

)

F + (1 − ε) G.

If we write λ = M1 F + M2 G with M1, M2 ∈ Z we obtain

−iπτ̄ (λ+)2 = −iπτ̄
(λ, ω)2

(ω, ω)
= −iπτ̄

[2 M1 (1 − ε) + M2 (1 + ε)]2

4 (1 − ε2)
,

−iπτ (λ−)2 = −iπτ (λ − λ+)2 = iπτ
[2 M1 (1 − ε) − M2 (1 + ε)]2

4 (1 − ε2)
.

(5.2)

For ξ̄ = ρ y h ω + S−/(2πh) and S = κf f + 2 κg g, we also have that

(ξ+)2 = ρ2 y2 h2 (1 − ε2),

(ξ̄−)2 = − [κf(1 − ε) − κg (1 + ε)]2

4 π2 h2(1 − ε2)
,

π

2y

(

ξ̄2
+ − ξ̄2

−
)

=
1
2

π y ρ2 h2 (1 − ε2) − [κf (1 − ε) − κg (1 + ε)]
8 π y h2 (1 − ε2)

,

−2πi (λ, ξ̄) = −iπ y h ρ [2 M1 (1 − ε) + M2 (1 + ε)]

+
i [2 M1 (1 − ε) − M2 (1 + ε)] [κf (1 − ε) − κg (1 + ε)]

2 h (1 − ε2)
.

(5.3)

In the equation for the Siegel–Narain theta function

Θ̄(ξ) = exp
[

π

2y

(

ξ̄2
+ − ξ̄2

−
)

]

(5.4)

×
∑

M1,M2∈Z

exp
[

− iπτ̄(λ+)2 − iπτ(λ−)2 − 2πi (λ, ξ̄)
]

,

we replace M1 = (N1 − N2)/2 and M1 = N1 + N2 + a, insert the Z2-delta
function

(5.5) δ
(

N1 − N2 (mod 2)
)

=
1
2

∑

b∈{0,1}
exp [πi (N1 − N2) b ],
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and take the sums over N1, N2 ∈ Z and a, b ∈ {0, 1}. We obtain

Θ̄(ξ) =
1
2

∑

a,b∈{0,1}
exp

[

π

2y

(

ξ̄2
+ − ξ̄2

−
)

]

(5.6)

×
∑

N1,N2∈Z

exp
[

− iπτ̄(λ+)2−iπτ(λ−)2 − 2πi (λ, ξ̄) + πi (N1 − N2) b
]

.

A short calculation shows that (5.6) is equal to

(5.7) Θ̄(ξ) =
1
2

∑

a,b∈{0,1}
(−1)ab ̂Θ̄ab(ξ),

where ̂Θ̄ab(ξ) is the Siegel–Narain theta function for the lattice H2={N1 H +
N2 E |N1, N2 ∈ Z} together with 2 ̂λ0 = a (H − E), ŵ2 = b (−H + E) and
ω̂ = H − ε E. If we also set ̂S = κ h + μ e with κ = κf + κg and μ = −κf + κg

then ̂Θ̄ab(ξ) is the Siegel–Narain theta function already evaluated in Equa-
tion (4.18). Since S2 = ̂S2 and (S, ω) = (̂S, ω̂) applying Corollary 4.6 and
taking the limit ε → 0 then yields (4.25). This concludes the proof of Propo-
sition 4.10.

For CP2# CP2 the u-plane integral was evaluated in (4.20). Corollary
4.7 proves that the u-plane integral equals the generating function for the
Donaldson invariants for the gauge group SO(3). This proves Part (1) of
Proposition 1.1. The same statement is true for the gauge group SU(2) if
we assume Conjecture 1.2. The reason is that the u-plane integral already
satisfies the same blowup formula (3.15) and the same wall-crossing formula
(3.8) as the generating function for the Donaldson invariants. This proves
Part (2) of Theorem 1.1.

Corollary 4.9 proves that the u-plane integrals (4.25) and (4.27) are
the generating functions for the Donaldson invariants of CP1 × CP1 for the
gauge groups SU(2) and SO(3), respectively. Equations (4.25) and (4.27)
provide the explicit formulas for the u-plane integrals. In the case of the
gauge group SU(2) the assumption of Conjecture 1.2 is needed since we have
used Equation (4.26). This proves Parts (3) and (4) of Theorem 1.1. �
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