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Anton Gerasimov, Dimitri Lebedev and Sergey Oblezin

First, we define a generalization of the standard quantum Toda
chain inspired by a construction of quantum cohomology of partial
flags spaces GL�+1/P , P a parabolic subgroup. Common eigen-
functions of the parabolic quantum Toda chains are generalized
Whittaker functions given by matrix elements of infinite-dimen-
sional representations of gl�+1. For maximal parabolic subgroups
(i.e., for P such that GL�+1/P = P

�) we construct two different
representations of the corresponding parabolic Whittaker functions
as correlation functions in topological quantum field theories on a
two-dimensional disk. In one case the parabolic Whittaker func-
tion is given by a correlation function in a type-A equivariant
topological sigma model with the target space P

�. In the other
case, the same Whittaker function appears as a correlation func-
tion in a type-B equivariant topological Landau–Ginzburg model
related with the type-A model by mirror symmetry. This note is a
continuation of our project of establishing a relation between two-
dimensional topological field theories (and more generally topo-
logical string theories) and Archimedean (∞-adic) geometry. From
this perspective the existence of two, mirror dual, topological field
theory representations of the parabolic Whittaker functions pro-
vide a quantum field theory realization of the local Archimedean
Langlands duality for Whittaker functions. The established rela-
tion between the Archimedean Langlands duality and mirror sym-
metry in two-dimensional topological quantum field theories should
be considered as a main result of this note.

0. Introduction

In [17,18] we propose two-dimensional topological field theories as a proper
framework for a description of the Archimedean completion of arithmetic
schemes (∞-adic geometry according to [28]). In particular, we give a repre-
sentation of local Archimedean L-factors (we include local epsilon-factor
in the definition of the L-factors) in terms of two-dimensional topologi-
cal field theories. It is well-known that local L-factors allow two types of
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constructions — “arithmetic” construction based on representation theory
of the Weil–Deligne group of the local field and “automorphic” construction
relying on representation theory of reductive groups over local field (see, e.g.,
[1,6,7]). The equivalence of these constructions for various types of L-factors
is a subject of the local Langlands duality. In an interpretation suggested
in [17, 18] the “arithmetic” construction of local Archimedean L-factors is
naturally identified with a type-A topological field theory description [17] in
terms of equivariant volumes of spaces of holomorphic maps of a disk into
complex vector spaces. The “automorphic” construction of the same local
L-factors is realized using a type-B topological field theory via periods of
holomorphic forms [18]. The Archimedean Langlands duality between these
two constructions of the local Archimedean L-factors appears as a mirror
duality between underlying type-A and type-B topological sigma models.

The duality between two constructions of L-factors can be extended to
a duality between two constructions of the Whittaker functions. In the non-
Archimedean case, this duality manifests in the existence of the Shintani–
Casselman–Shalika (SCS) formula [8, 31] for the non-Archimedean Whit-
taker functions along with a standard realization of the Whittaker functions
as matrix elements of representations of reductive groups G over local non-
Archimedean fields. According to [8, 31] the non-Archimedean Whittaker
functions can be identified with characters of finite-dimensional represen-
tations of Langlands dual groups LG. In [16] we propose a q-version of the
classical SCS formula providing a q-version of the Langlands duality pattern
for the q-deformed Whittaker functions. In appropriate limit the q-version
of SCS formula reduces to the non-Archimedean one. The limiting case pro-
vides an Archimedean analog of the results of [8,31]. This leads to an explicit
realization of the Langlands duality pattern for the Archimedean Whittaker
functions.

In this note, the approach of [17, 18] to a construction of local
Archimedean L-factors in terms of topological field theories is generalized
to a class of Whittaker functions introduced below. Recall that standard
gl�+1-Whittaker functions are common eigenfunctions of quantum gl�+1-
Toda chain Hamiltonians and according to [21] appear in a description of
S1 × U�+1-equivariant Gromov–Witten invariants of complete flag spaces
GL�+1(C)/B, B a Borel subgroup. In the first part of this note, we introduce
a class of generalized gl�+m-Whittaker functions associated with a parabolic
subgroup P ⊂ GL�+m(C). We conjecture that a P -parabolic gl�+m-Whittaker
function describes S1 × U�+m-equivariant Gromov–Witten invariants of
the partial flag space GL�+m(C)/P . The parabolic gl�+m-Whittaker
functions are common eigenfunctions of quantum Hamiltonians of gen-
eralized quantum Toda chain. We explicitly check, in the case of
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GL�+m(C)/P = Gr(m, �+m), that the corresponding Toda chain recovers
Astashkevich–Sadov–Kim description [2, 27] of quantum cohomology of
Grassmannian Gr(m, �+m). In the case m = 1, we explicitly verify that
the corresponding parabolic Whittaker functions describe equivariant quan-
tum cohomology of Gr(1, �+ 1) = P

�.
In the second part of this note, we propose two representations of the

parabolic Whittaker functions associated with maximal parabolic subgroup
P (i.e., such that GL�+1(C)/P = P

�) as correlation functions in two-dimen-
sional topological fields theories on a disk. The first representation (see The-
orem 2.1) is given in terms of an equivariant type-A topological sigma
model with a target space P

� and provides an integral representation of the
parabolic Whittaker function of the Mellin–Barnes type. In this represen-
tation, the Whittaker function arises as an equivariant volume of a space
of holomorphic maps of the disk into projective space P

� and thus, follow-
ing [17], shall be considered as an “arithmetic” construction of the parabolic
Whittaker function. This representation provides an Archimedean analog of
SCS formula [8,31] for the parabolic Whittaker functions. The second repre-
sentation is given in terms of a type-B topological Landau–Ginzburg model
on a disk with a target space C

�+2 supplied with appropriate superpoten-
tial (see Theorem 3.1). In this description, the parabolic Whittaker function
is given by a holomorphic period [19] (see also [4, 9, 20]). In contrast with
the type-A model representation the correlation functions in B model can
be reduced to certain finite-dimensional integrals with simple integrands.
Thus obtained finite-dimensional integral representation naturally arises in
a matrix element interpretation of the Whittaker function according to [14].
Hence, in analogy with [18], the type-B topological field theory represen-
tation shall be considered as an “automorphic”/representation theory con-
struction of the parabolic Whittaker functions. The discussed type-A and
type-B topological quantum field theories are related by mirror transfor-
mation. This leads to interpretation of the Archimedean Langlands dual-
ity between “arithmetic” and “automorphic” constructions of the parabolic
Whittaker functions as a mirror duality between underlying topological field
theories.

Let us remark that pairs of Langlands dual Lie groups already appear
in various instances of mirror symmetry (see, e.g. [25]). In particular con-
struction of a mirror dual description of type-A topological sigma models
associated with flag spaces G/B in terms of eigenfunctions of the quantum
Toda chains associated with the dual Lie groups G∨ [21,22]. In this paper we
establish a relation of these results with the local arithmetic (Archimedean)
Langlands duality. Note that the global geometric Langlands correspondence
due to [5] allows an interpretation in terms of S-duality in four-dimensional
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topological Yang–Mills theories, which can be reformulated as a mirror
symmetry of the associated moduli spaces [26]. It would be interesting to
understand a possible relation between local arithmetic and geometric Lang-
lands dualities using quantum field theory interpretation.

Finally, let us note that the results of this note can be generalized to
the case of general parabolic Whittaker functions. For a general parabolic
subgroup, the corresponding parabolic version of the quantum gl�+m-Toda
chain provides a new interesting example of a quantum integrable system
and will be considered elsewhere. One should also stress that explicit calcu-
lations of correlation functions in topological field theories on non-compact
manifolds is an interesting subject by itself and undoubtedly deserves further
attention. According to the standard lore boundary conditions in topolog-
ical field theories encode geometry of topological branes in a target space.
It would be interesting to compare the choice of the boundary conditions
used in this note with an equivariant generalization of the standard brane
boundary conditions. We are going to clarify this relation elsewhere.

The plan of the paper is as follows. In Section 1, we introduce parabolic
generalizations of the standard gl�+m-Whittaker function as particular
matrix elements of infinite-dimensional representations of Lie algebra gl�+m.
In Section 2, we construct a representation of the parabolic gl�+1-Whittaker
functions associated with a maximal parabolic subgroup as correlation func-
tions of a type-A topological sigma model on a disk with a target space P

�.
In Section 3, we provide a mirror dual representation of the same Whittaker
function as a correlation function in a type-B topological Landau–Ginzburg
model on a disk. In Section 4, we give a heuristic derivation of the result
of Sections 2 and 3. In Section 5, we discuss directions of further research.
Finally, in Appendixes the proofs and some technical results are given.

1. Parabolic Whittaker functions

In this section, we introduce a generalization of gl�+m-Whittaker functions
associated with a parabolic subgroup P ⊂ GL�+m(C). The standard gl�+m-
Whittaker functions are associated with Borel subgroups B ⊂ GL�+m(C)
and are common eigenvalues of quantum gl�+m-Toda chain Hamiltonians (for
standard facts on quantum Toda chains see, e.g., [30]). The classical Whit-
taker functions are relevant to a description of (equivariant) Gromov–Witten
invariants of flag spaces G/B [21]. The parabolic generalizations of Whit-
taker functions introduced below are common eigenvalues of generalized
quantum Toda chains defined below. In the next sections, we demonstrate
that the parabolic Whittaker functions describe equivariant Gromov–Witten
invariants of partial flag spaces. In this section, we restrict considerations to
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the case of the parabolic subgroup Pm,�+m such that GL�+m(C)/Pm,�+m =
Gr(m, �+m) and refer to the corresponding Whittaker functions as (m, �+
m)-Whittaker functions. The general case follows basically the same pattern
and will be treated elsewhere.

First, we recall the representation theory construction of the standard
gl�+1-Whittaker functions. Let Eij , i, j = 1, . . . , �+ 1 be the standard basis
of the Lie algebra gl�+1. Let Z(Ugl�+1) ⊂ Ugl�+1 be the center of the uni-
versal enveloping algebra Ugl�+1. Let B± ⊂ GL�+1(C) be upper-triangular
and lower-triangular Borel subgroups and N± ⊂ B± be upper-triangular
and lower-triangular unipotent subgroups. We denote b± = Lie(B±) and
n± = Lie(N±) their Lie algebras. Let h ⊂ gl�+1 be a diagonal Cartan subal-
gebra and S�+1 be the associated Weyl group of GL�+1. Using the Harish–
Chandra isomorphism of Z(Ugl�+1) with the Weyl group invariant subalge-
bra of the symmetric algebra of the Cartan subalgebra h we identify central
characters with homomorphisms c : C[h1, . . . , h�+1]S�+1 → C of an algebra
of S�+1-invariant polynomials of the generators of h into complex numbers.
Let πλ : Ugl�+1 → End(Vλ), Vλ = IndUgl�+1

Ub−
be a family of principal series

representations of Ugl�+1 induced from one-dimensional representations of
Ub− such that images of the symmetric polynomials of hi are symmetric
polynomials of λj ∈ C, λ = (λ1, . . . , λ�+1) ∈ C

�+1. Let V ′
λ be a dual module

supplied with induced action of Ugl
opp
�+1 (universal enveloping algebra of gl

opp
�+1

obtained by inverting the signs of the structure constants of gl�+1). Denote
〈 , 〉 the pairing between V ′

λ and Vλ. We suppose that the action of the Car-
tan subalgebra h in representation Vλ can be integrated to the action of the
corresponding Cartan subgroup H ⊂ GL�+1(C).

According to Kostant, the gl�+1-Whittaker function can be defined as a
matrix element

Ψλ(x1, . . . , x�+1) = e−ρ(x)〈ψL|πλ(e−
∑

i=1 xiEii) |ψR〉,(1.1)

where the vectors 〈ψL| ∈ V ′
λ and |ψR〉 ∈ Vλ provide one-dimensional repre-

sentations of N− and N+ correspondingly

〈ψL|Ei+1,i = −〈ψL|, Ei,i+1|ψR〉 = |ψR〉, i = 1, . . . , �,(1.2)

and ρr = (1/2)(�+ 2 − 2k), k = 1, . . . , �+ 1 are the components of the vec-
tor ρ in R

�+1. The standard considerations (see, e.g., [30]) show that matrix
element (1.1) is a common eigenfunction of a family of commuting differen-
tial operators descending from the action of the generators of Z(Ugl�+1) in
Vλ. These differential operators can be identified with quantum Hamiltoni-
ans of gl�+1-Toda chain.
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Below we propose a generalization of the gl�+m-Whittaker functions (1.1)
(for convenience we slightly change notations replacing �+ 1 by �+m). Let
Pm,�+m be a parabolic subgroup of GL�+m(C) such that the correspond-
ing Levi factor is GLm(C) ×GL�(C). The corresponding partial flag space
GL�+m(C)/Pm,�+m is isomorphic to Grassmannian Gr(m, �+m). The asso-
ciated Whittaker function is then defined as the following matrix element
of the principle series representation Vλ = IndU(gl�+m)

U(b−) . Let us associate with
Pm,�+m a decomposition of the Borel subalgebra b+ ⊂ gl�+m

b+ = h(m,�+m) ⊕ n
(m,�+m)
+ ,

with the commutative subalgebra h(m,�+m) ⊂ b+ generated by

(1.3)
H1 = E11 + · · · + Emm, Hk = E1,k, 2 ≤ k ≤ m,
Hm+k =Em+k,�+m, 1≤ k≤ �−1, H�+m =Em+1,m+1 + · · · + E�+m,�+m,

and the subalgebra n
(m,�+m)
+ ⊂ b+ given by

n
(m,�+m)
+ = 〈E1,�+m; E1,m+1;Em,�+m;Ekk, 2 ≤ k ≤ �+m− 1;(1.4)

Ej,j+1, 2 ≤ j ≤ �+m− 2〉.

Note that dim h(m,�+m) = rank gl�+m = �+m and dim n
(m,�+m)
+ = (�+

m)(�+m− 1)/2. Let H(m,�+m) and N (m,�+m)
+ be the Lie groups correspond-

ing to the Lie algebras h(m,�+m) and n
(m,�+m)
+ . An open part ĠL�+m of

GL�+m allows the following analog of the Gauss decomposition:

ĠL�+m = N−H(m,�+m)N
(m,�+m)
+ .(1.5)

Definition 1.1. The Whittaker vectors 〈ψL| ∈ V ′
λ, |ψR〉 ∈ Vλ are defined

by the following conditions:

〈ψL|En+1,n = �
−1〈ψL|, 1 ≤ n ≤ �+m− 1,(1.6)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Ekk|ψR〉 = 0, 2 ≤ k ≤ �+m− 1,
Ek,k+1|ψR〉 = 0, 2 ≤ k ≤ �+m− 2,
E1,m+1|ψR〉 〉 = 0, l 
= 1,
Em,�+m|ψR〉 = 0, m 
= 1,

E1,�+m|ψR〉 = (−1)ε(�,m) 1
�
|ψR〉,

(1.7)

where ε(�,m) is an integer number and � ∈ R.
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Here, in comparison with (1.2), we introduce additional parameter �

to make a contact with the results of other Sections ((1.2) corresponds to
� = 1). Note that Equations (1.6) define a one-dimensional representation
〈ψL| of the Lie algebra n− of strictly lower-triangular matrices and Equations
(1.7) define a one-dimensional representation of n

(m,�+m)
+ .

Definition 1.2. The (m, �+m)-Whittaker function associated with the
principal series representation

(
πλ,Vλ

)
is defined as the following matrix

element:

Ψ(m,�+m)
λ (x) = e−ρ1(x1−x�+m)〈ψL|πλ

(
g(x)

)|ψR〉,(1.8)

where the left and right vectors solve Equations (1.6) and (1.7) respectively
and ρ1 = (�+m− 1)/2. Here g(x) is a Cartan group valued function given
by

g(x) = exp

{

−
�+m∑

i=1

xiHi

}

,(1.9)

where the generators Hi, i = 1, . . . , (�+m) are defined by (1.3).

Similar to the classical Whittaker functions (m, �+m)-parabolic Whit-
taker functions are naturally common eigenfunctions of a family of com-
muting differential operators. Let us define a set of mutually commuting
differential operators H(m,�+m)

k , k = 1, . . . , (�+m) by the following condi-
tions

H(m,�+m)
k (x, ∂x) · Ψ(m,�+m)

λ (x)(1.10)

= �
k e−ρ1(x1−x�+m)

〈
ψL

∣
∣πλ

(
Ck g(x)

)∣
∣ψR

〉
,

where Ck ∈ Z(Ugl�+m) is a Casimir element of the center acting in Vλ by
multiplication on kth elementary symmetric polynomial σk(λ) of the vari-
ables λi, i = 1, . . . , (�+m). Thus, Whittaker function Ψ(m,�+m)

λ (x) tauto-
logically satisfy the following system of differential equations

H(m,�+m)
k (x, ∂x) · Ψ(m,�+m)

λ (x)(1.11)

= σk(λ) Ψ(m,�+m)
λ (x), k = 1, . . . , (�+m),
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Remark 1.1. The set of mutually commuting differential operators
H(m,�+m)
k , k = 1, . . . , (�+m) defines a quantum integrable system gener-

alizing the standard quantum gl�+m-Toda chain. The Whittaker functions
Ψ(m,�+m)
λ (x) provide a solution of the corresponding eigenfunction problem.

For the first two lowest degree differential operators H(m,�+m)
1 , H(m,�+m)

2 ,
we have

C1 =
�+m∑

j=1

Ejj ,

C2 =
�+m∑

i<j

(
EiiEjj − EjiEij

)−
�+m∑

j=1

ρjEjj + σ2(ρ),

(1.12)

where ρ = (ρ1, . . . , ρ�+m) with ρk = �+m+1
2 − k, k = 1, . . . , �+m and

σ2(ρ) =
∑

i<j ρiρj . These operators act in the representation Vλ via mul-
tiplication on

σ1(λ) =
�+m∑

j=1

λj , σ2(λ) =
∑

1≤i<j≤�+m
λiλj .

The explicit form of the differential operators H1 and H2 corresponding to
C1 and C2 is as follows.

Proposition 1.1. The following differential operators satisfy Equations
(1.10)

H(m,�+m)
1 (x, ∂x) = −�

∂

∂x1
− �

∂

∂x�+m
,

(1.13)

H(m,�+m)
2 = �

2

⎧
⎨

⎩

∂2

∂x1∂x�+m
+

m∑

k=2

xk
∂2

∂x1∂xk
−

m∑

2≤k≤a
xkxa

∂2

∂xk∂xa

−
�−1∑

n=1

xm+n
∂2

∂xm+n∂x�+m
−

�−1∑

1≤n≤b
xm+nxm+b

× ∂2

∂xm+n∂xm+b
+

m∑

k=2

(ρk)xk
∂

∂xk
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−
�−1∑

n=1

(ρm+n)xm+n
∂

∂xm+n

}

+ �

{

(1 − δm,1)
∂

∂x2
− (1 − δ�,1)

∂

∂x�+m−1

+
m−1∑

k=2

xk
∂

∂xk+1
−

�−2∑

n=1

xm+n+1
∂

∂xm+n

}

+ (−1)δ�,1+ε(�,m)(xm)1−δm,1(xm+1)1−δ�,1 ex1−x�+m

− �
2

24
(�+m− 1)(�+m− 2)(�+m− 3).

Proof. The case of H(m,�+m)
1 is trivial and the proof of the expression for

H(m,�+m)
2 is given in Appendix A. �

Corollary 1.1. The (m, �+m)-parabolic Whittaker function (1.8) satisfies
the following equations:

H(m,�+m)
1 (x, ∂x)Ψ

(m,�+m)
λ (x) =

�+m∑

j=1

λjΨ
(m,�+m)
λ (x),

H(m,�+m)
2 (x, ∂x)Ψ

(m,�+m)
λ (x) =

�+m∑

i<j

λiλjΨ
(m,�+m)
λ (x),

(1.14)

where H(m,�+m)
1 (x, ∂x) and H(m,�+m)

2 (x, ∂x) are given by (1.13).

Example 1.1. For m = 1 the quadratic Hamiltonian (1.13) has the follow-
ing form:

H(1,�+1)
2 = �

2 ∂2

∂x1∂x�+1
−

�∑

k=2

xk�
2 ∂2

∂xk∂x�+1
−

�∑

2≤k≤a
xkxa�

2 ∂2

∂xk∂xa

(1.15)

−
�∑

k=2

(ρk)xk�2 ∂

∂xk
+ �

∂

∂x�
− �

�−1∑

j=2

xj+1
∂

∂xj

+ (−1)ε(�,1)x2 ex1−x�+1 − �
2

24
�(�− 1)(�− 2).
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For � = 1 the quadratic Hamiltonian (1.13) reads as follows:

H(m,m+1)
2 = �

2 ∂2

∂x1∂xm+1
+

m∑

k=2

xk�
2 ∂2

∂x1∂xk
−

m∑

2≤k≤a
xkxa�

2 ∂2

∂xk∂xa

(1.16)

+
m∑

k=2

(ρk)xk�2 ∂

∂xk
+ �

∂

∂x2
+ �

m−1∑

k=2

xk
∂

∂xk+1

− (−1)ε(m,1)xm ex1−xm+1 − �
2

24
m(m− 1)(m− 2).

We conjecture that (m, �+m)-parabolic Whittaker functions describe
equivariant Gromov–Witten invariants of the GrassmannianGr(m, �+m) =
GL�+1(C)/Pm,�+m thus generalizing the Givental description [21] of S1 ×
U�+1-equivariant Gromov–Witten invariants of the complete flag spaces
GL�+1(C)/B. We support our conjecture by matching it with a description
of quantum cohomology of Gr(m, �+m) due to Astashkevich–Sadov–Kim
[2, 27]. To establish a relation with [2, 27] let us define a quantum
L-operator associated with the quantum integrable system (1.10) as a
matrix-valued differential operator satisfying the relation

L(x, ∂x) e−ρ1(x1−x�+m)〈ψL|πλ(g(x))|ψR〉(1.17)

:= �

�+1∑

i,j=1

eij e−ρ1(x1−x�+m)〈ψL|πλ(Eijg(x))|ψR〉,

where (eij)kn = δikδjn, i, j, k, n = 1, . . . , (�+m) are matrix unites.

Proposition 1.2. The matrix L = ‖Lij‖ of the quantum L-operator (1.17)
is given by

Lj+1,j = 1, 1 ≤ j ≤ �+m− 1,
Lj+s,j = 0, 1 ≤ j ≤ �+m− 1, 2 ≤ s ≤ �+m− j,

L11 = −�∂x1 − �
�+m− 1

2
+

m∑

k=2

xk�∂xk
, L1,k = −�∂xk

, 2 ≤ k ≤ m,

Lk,k+j = −xk�∂xk+j
, 2 ≤ k ≤ m, 0 ≤ j ≤ m− k,

L1,m+j = −(−1)ε(�,m)xm+j ex1−x�+m , 1 ≤ j ≤ �− 1,
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L1,�+m = (−1)ε(�,m) ex1−x�+m ,(1.18)

Lk,m+j = −(−1)ε(�,m)xkxm+j exx1−�+m , 2 ≤ k ≤ m, 1 ≤ j ≤ �− 1,

Lk,�+m = (−1)ε(�,m)xk ex1−x�+m , 2 ≤ k ≤ m,

Lm+n,�+m = −�∂xm+n
, 1 ≤ n ≤ �− 1,

Lm+n,m+n+j = xm+n+j�∂xm+n
, 1 ≤ n ≤ �− 2, 0 ≤ j ≤ �− n− 1,

L�+m,�+m = −�∂x�+m
+ �

�+m− 1
2

−
�−1∑

k=1

xm+k�∂xm+k
.

Proof. The proof is given in Appendix B. �

The classical limit L of the operator (1.17) is defined by replacing deriva-
tives by the classical momenta −�

∂
∂xj

→ pj and taking the limit � → 0. Let
us specialize the resulting matrix function L(x1, . . . , x�+m; p1, . . . , p�+m) by
taking x2 = · · · = x�+m−1 = 0. This way we obtain the matrix L = ‖Lij‖
with the following entries:

Lj+1,j = 1, 1 ≤ j ≤ �+m− 1,
L1,k = pk, 1 ≤ k ≤ m,

Lm+n,�+m = pm+n, 1 ≤ n ≤ �,

L1,�+m = (−1)ε(�,m) ex1−x�+m .

(1.19)

It is easy to verify that thus defined matrix L = ‖Lij‖ coincides (up to
a conjugation by a simple matrix) with the matrix entering a description
of small quantum cohomology of Gr(m, �+m) [2, 27]. This supports the
conjecture that (m, �+m)-Whittaker functions are relevant to a description
of S1 × U�+m-equivariant quantum cohomology of Gr(m, �+m).

In the rest of the note we will consider only the case of m = 1 and
arbitrary �. In this case, the conjectural relation between solutions of the
generalized Toda chain given by (1, �+ 1)-Whittaker functions and S1 ×
U�+m-equivariant Gromov–Witten invariants of P

� = GL�+1/P1,�+1 can be
proved as follows. For m = 1, there is a well-known description of S1 ×
U�+1-equivariant quantum cohomology of Gr(1, �+ 1) = P

� in terms of the
functions given by the following integral expressions (see, e.g. [19]). Let us
introduce a modified Γ-function

(1.20) Γ1(z|ω) = ω
z

ω Γ
( z

ω

)
.
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Then

Φλ(x) =
∫

C

�∏

j=1

dtj exp

⎛

⎝−1
�

⎛

⎝
�∑

j=1

λjtj + λ�+1

⎛

⎝x−
�∑

j=1

tj

⎞

⎠(1.21)

+
�∑

j=1

etj + ex−
∑ �

j=1 tj

⎞

⎠

⎞

⎠

=
1

2π�

∫

R−ıε
dH e−

ı

�
xH

�+1∏

j=1

Γ1(ıH − λj)|�)(1.22)

satisfies the differential equation
⎛

⎝
�+1∏

j=1

(−�∂x − λj) − ex

⎞

⎠Φλ(x) = 0.(1.23)

Here ε > max(λj) j = 1, . . . , �+ 1 and C is a slightly deformed subspace
R
� ⊂ C

� making the integral (1.21) convergent. For � = 1 the function (1.21)
is the classical gl2-Whittaker function.

Theorem 1.1. The (1, �+ 1)-parabolic Whittaker function specialized to
x = x1 and xi = 0, i 
= 1 and for ε(1, �+ 1) = �(�−1)

2 + 1 coincides with the
generating function (1.21) of S1 × U�+1-equivariant quantum cohomology of
P
�. That is

(1.24) Ψ(1,�+1)
λ (x, 0, . . . , 0) =

1
2π�

∫

R−ıε
dH e−

ı

�
xH

�+1∏

j=1

Γ1

(
ıH − λj |�

)
,

where λ ∈ R
�+1 and ε > max(λj), j = 1, . . . , �+ 1.

Proof. The proof is given in Appendix C. �

The integral representation (1.22) arises naturally when the matrix ele-
ment (1.8) for m = 1 is represented by using the Gelfand–Zetlin realizations
of the infinite-dimensional representations of Ugl�+1 [13] (similar relation
holds for the integral representation (1.21) and the representation of Ugl�+1

constructed in [14]). Note that one has an obvious symmetryGr(m, �+m) =
Gr(�, �+m). The compatibility of our conjecture with this isomorphism is
explicitly checked for m = 1, � = 2 in Appendix D.
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In the next sections, we propose an identification of the generating
functions given by the integral representations (1.22), (1.21) with particu-
lar correlation functions in type-A and type-B equivariant two-dimensional
topological sigma models on a disk.

2. Type-A topological sigma model with a target space P
�

In this section, we define a class of correlation functions in S1 × U�+1-
equivariant type-A topological sigma model on a disk with a target space P

�

and calculate the correlation functions explicitly. The resulting expressions
coincide with the integrals (1.21). This provides an infinite-dimensional inte-
gral representations of (1, �+ 1)-Whittaker functions (1.8) in terms of topo-
logical type-A equivariant sigma models on a disk. As a background material
for two-dimensional topological field theories and functional integration of
the Gaussian measures over linear superspaces see e.g. [11].

2.1. Topological gauged linear sigma model

We start recalling a gauge linear sigma model realization of the sigma-model
with the target space P

� (see, e.g. [29,34,35]). Consider a type-A topological
linear sigma model on a Riemann surface Σ with the target space C

�+1. Let
(z, z̄) be local complex coordinates on Σ. We pick a Hermitian metric h on
Σ and denote

√
h d2z the corresponding measure on Σ. The complex struc-

ture defines a decomposition d = ∂ + ∂, ∂ = dz ∂z, ∂ = dz̄ ∂z̄ of the de Rham
differential d acting on differential forms on Σ. Let K and K̄ be canonical
and anti-canonical bundles over Σ. Let TCC

�+1 = T 1,0
C
�+1 ⊕ T 0,1

C
�+1 be a

decomposition of the (trivial) complexified tangent bundle to C
�+1 induced

by a standard complex structure on C
�+1. We denote linear complex coordi-

nates on C
�+1 by (ϕj , ϕ̄j). Consider a two-dimensional topological quantum

filed theory based in the maps Φ : Σ → C
�+1 with the action functional

S =
∫

Σ
d2z

√
h δ0V

(2.1)

=
∫

Σ
d2z hzz̄

√
h
�+1∑

j=1

(tF̄ jzF
j
z̄ + ıF̄ jz ∂z̄ϕ

j − ıF jz̄ ∂zϕ̄
j + ıψjz̄ ∂zχ̄

j − ıψ̄jz ∂z̄χ
j),
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where

V = hzz̄
�+1∑

j=1

(

ψ̄jz

(
t

2
F jz̄ + ı∂z̄ϕ

j

)

+ ψjz̄

(
t

2
F̄ jz − ı∂zϕ̄

j

))

,

and BRST [11] transformations are given by

δ0ϕ
j = χj , δ0χ

j = 0, δ0ψ
j
z̄ = F jz̄ , δ0F

j
z̄ = 0,

δ0ϕ̄
j = χ̄j , δ0χ̄

j = 0, δ0ψ̄
j
z = F̄ jz , δ0F̄

j
z = 0.

(2.2)

Here the commuting fields F and F̄ are sections of K ⊗ Φ∗(T 0,1
C
�+1) and

of K̄ ⊗ Φ∗(T 1,0
C
�+1) correspondingly. The anticommuting fields χ, χ̄ are

sections of the bundles Φ∗(ΠT 1,0
C
�+1), Φ∗(ΠT 0,1

C
�+1) and anticommuting

fields ψ, ψ̄ are sections of the bundles K ⊗ Φ∗(ΠT 0,1
C
�+1), K̄ ⊗ Φ∗(ΠT 1,0

C
�+1). By ΠE we denote a vector bundle E with a reversed parity of the

fibres. The action (2.1) is δ0-invariant.
A gauged linear sigma model description of the sigma model with the

target space P
� is based on the representation of the projective space P

�

as a Hamiltonian quotient of C
�+1. Let us supply C

�+1 with a symplectic
structure

Ω =
ı

2

�+1∑

j=1

dϕj ∧ dϕ̄j .(2.3)

The following action of U1:

ϕj −→ eıαϕj , eıα ∈ U(1)(2.4)

is Hamiltonian and the corresponding momentum, i.e., a solution of the
equation

ιvΩ = dμ

is given by

μ(ϕ, ϕ̄) = −1
2

�+1∑

j=1

|ϕj |2.(2.5)

The projective space P
� has the following representation as the Hamiltonian

quotient:
P
� = {μ(ϕ, ϕ̄) + r2/2 = 0}/U(1).

where the value r2/2 of the momentum μ defines a Kähler class of P
�.
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The interpretation of the projective space as a Hamiltonian reduction
allows to describe topological non-linear two-dimensional sigma model with
the target space P

� in terms of a linear sigma model with the target space
C
�+1 and gauged U1-symmetry (2.4). Topological U1 gauge theory can be

constructed using the following three sets of fields (A, λ, σ), (b, η), (ξ,H),
where A is a connection in U1-bundle, ψ is an odd one-form, σ, b, H are
real even zero forms and ξ,η are real odd zero forms. Define the topological
BRST transformations as follows

δG A = λ, δG λ = −ıdσ, δG σ = 0,
δG b = η, δGη = 0, δG ξ = H, δGH = 0.

(2.6)

Note that δ2G acts as a gauge transformation with the gauge parameter σ
e.g.

δ2G A = −ıdσ, δ2G λ = 0, δ2G σ = 0.(2.7)

The space of functionals of the fields (A, λ, σ) supplied with the action of δG
can be considered as a model for the G-equivariant de Rham complex on the
space of connections on a Riemann surface Σ. In the following, we consider
the gauge multiplet (A, λ, σ) interacting with the fields (b, η), (ξ,H) and
with the fields entering the action (2.1). The gauge theory generalization δG
of the BRST transformation (2.2) acts as follows

δGϕj = χj , δGχj = −ıσϕj , δGψ
j
z̄ = F jz̄ , δGF

j
z̄ = −ıσψjz̄,

δGϕ̄j = χ̄j , δGχ̄j = ıσϕ̄j , δGψ̄jz = F̄ jz , δGF̄ jz = ıσ ψ̄jz.
(2.8)

Let ∗dz = ıdz and ∗dz̄ = −ıdz̄ be the Hodge star operators. A topological
U1-gauged linear sigma model is described by the following action:

S =
1
2π

∫

Σ
d2z

√
hδGV =

1
2π e2

∫

Σ
d2z

√
hhzz̄(−HFzz̄(A) + ∂zλz̄(ξ − ıη)

(2.9)

− ∂z̄λz(ξ + ıη) − 2b∂z∂z̄σ) +
1
2π

∫

Σ
d2z

√
hhzz̄(tF̄ jzF

j
z̄ + ıF̄ jz (∂z̄ −Az̄)ϕj

− ıF jz̄ (∂z −Az)ϕ̄j + ıtψjz̄σψ̄
j
z − ıψ̄jz(∂z̄χ

j −Az̄χ
j) + ıψjz̄(∂zχ̄

j −Az̄χ̄
j)
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− ıψjz̄λzϕ̄
j + ıψ̄jzλz̄ϕ

j + η
�+1∑

j=1

(ϕjχ̄j − ϕ̄jχj) + 2b
�+1∑

j=1

(χjχ̄j + ıσ|ϕj |2)

+
ıH

2

⎛

⎝
�+1∑

j=1

|ϕ|2 − r2

⎞

⎠− ıξ

2

⎛

⎝
�+1∑

j=1

χjϕ̄j + χ̄jϕj

⎞

⎠ ,

where Fzz̄(A) = ∂zAz̄ − ∂z̄Az and

V =
1
e2
hzz̄(−ξFzz̄(A) − ıb(∂zλz̄ + ∂z̄λz)) + ψjz̄

(
t

2
F̄ jz − ı(∂z −Az)ϕ̄j

)

+ ψ̄jz

(
t

2
F jz̄ + ı(∂z̄ −Az̄)ϕj

)

+
ıξ

2

⎛

⎝
�+1∑

j=1

|ϕ|2 − r2

⎞

⎠+ b

�+1∑

j=1

(ϕjχ̄j − ϕ̄jχj).

A relation of (2.9) (for a generic coupling constant e2) with the standard P
�

sigma model is illustrated in Appendix F. Let us note that a variation of the
coupling constants e2 and t leads to a change of the action (2.9) on a δG-
exact term. Thus, according to the standard considerations, the dependence
of correlation functions of δG-closed operators on e2 and t is given only
by the boundary contributions of the space of fields. In many cases these
boundary contributions are zero and the correlation functions are e2- and
t-independent. In the following, we make calculations at particular values
of the coupling constants e2 and t and will not consider the issue of the
coupling constant independence.

Now we consider S1 × U�+1-equivariant version of the theory (2.9) on
a Riemann surface Σ allowing isometry S1. The action of U�+1 is induced
from a linear action on the target space C

�+1 and the action of S1 is induced
by S1-isometry of Σ. To simplify notations we consider equivariance with
respect to a maximal abelian subgroup U �+1

1 ⊂ U�+1 and will work with func-
tions invariant with respect to the permutation group S�+1 (i.e., Weyl group
of U�+1). Let � and σj , j = 1, . . . , (�+ 1) be generators of abelian Lie alge-
bras Lie(S1) and Lie(U �+1

1 ). Correlation functions of S1 × U�+1-equivariant
extension of the topological field theory (2.9) now take values in the space
of functions of � and σj , j = 1, . . . , (�+ 1) invariant with respect to permu-
tations of σj .

To construct an S1 × U�+1-equivariant version of type-A topological lin-
ear sigma model define S1 × U �+1

1 -equivariant generalization of the BRST
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transformations (2.8) and (2.6) as follows:

δϕj = χj , δχj = −(ı(σj + σ)ϕj + �Lv0ϕj), δψj = F j ,

δF j = −(ı(σj + σ)ψj + �Lv0ψj),
δϕ̄j = χ̄j , δχ̄j = −(−ı(σj + σ)ϕ̄j + �Lv0ϕ̄j), δψ̄j = F̄ j ,

δF̄ j = −(−ı(σj + σ)ψ̄j + �Lv0ψ̄j),
δA = λ, δλ = −ıdσ + �d(ιv0A) + �ιv0F (A), δσ = 0,
δb = η, δη = �ιv0db, δ ξ = H, δH = �ιv0dξ,

(2.10)

where v0 = ı
(
z ∂
∂z − z̄ ∂

∂z̄

)
and Lv0 = ιv0d+ dιv0 . Note that the transforma-

tion rules (2.10) are not explicitly gauge-invariant (this is related with the
fact that the gauge group G and S1 do not commute).

A S1 × U �+1
1 -equivariant version of the topological gauged linear sigma

model (2.9) (for t = 0) is then given by

Seq =
1
2π

∫

Σ
d2z

√
hδ2V =

1
2π e2

∫

Σ
d2z

√
hhzz̄((−HFzz̄(A) + (λ ∧ dξ)zz̄

+ (λ ∧ ∗dη)zz̄ − ı(db ∧ ∗dσ)zz̄ − �bd ∗ (ιv0A+ ιv0F (A))zz̄)

+
1
2π

∫

Σ
d2z

√
hhzz̄

⎛

⎝ıF̄ jz (∂z̄ −Az̄)ϕj − ıF jz̄ (∂z −Az)ϕ̄j

− ıψ̄jz(∂z̄χ
j −Az̄χ

j) + ıψjz̄(∂zχ̄
j −Azχ̄

j) − ıψjz̄λzϕ̄
j + ıψ̄jzλz̄ϕ

j

+ η

�+1∑

j=1

(ϕjχ̄j − ϕ̄jχj) + b

�+1∑

j=1

(2χjχ̄j + 2ı(σ + σj)|ϕj |2

+ �ϕ̄jιv0(d−A)ϕj − �ϕjιv0(d−A)ϕ̄j) +
ıH

2

⎛

⎝
�+1∑

j=1

|ϕ|2 − r2

⎞

⎠

− ıξ

2

⎛

⎝
�+1∑

j=1

χjϕ̄j + χ̄jϕj

⎞

⎠

⎞

⎠ ,

(2.11)

where Fzz̄(A) = ∂zAz̄ − ∂z̄Az and

V =
1
e2
hzz̄(−ξFzz̄(A) + b (d ∗ λ)zz̄) − ıψjz̄(∂z −Az)ϕ̄j + ıψ̄jz(∂z̄ −Az̄)ϕj

+
ıξ

2

⎛

⎝
�+1∑

j=1

|ϕ|2 − r2

⎞

⎠+ b
�+1∑

j=1

(ϕjχ̄j − ϕ̄jχj).
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2.2. Calculations in type-A topological sigma model on a disk

Now we calculate a particular correlation function in a topological field
theory with the action (2.11) on a disk Σ = D, D = {z ∈ C | |z|2 ≤ 1} with
the coupling constant e2 → 0. We chose a flat metric d2s = |dz|2 on the disk
D invariant with respect to the standard action of the rotation group S1

generated by the vector field

v0 = ı

(

z
∂

∂z
− z̄

∂

∂z̄

)

, z = r eıθ.

The following boundary conditions on S1 = ∂D are imposed:

Aθ|S1 = 0, λθ|S1 = 0, ∂θσ|S1 = 0,(2.12)
∂θb|S1 = 0, ∂θξ|S1 = 0, ∂θη|S1 = 0.(2.13)

We also consider a restricted gauge group

G0 = {g ∈ Map(D,U1)| g|S1 = const}.(2.14)

It is easy to see that the deformed action (2.11) and the boundary conditions
are compatible with the gauge symmetry G0 and BRST transformations
(2.10). For example, we have

δAθ = λθ, δ λθ = ∂θσ + �∂θAθ,

and restriction of the variations to the boundary S1 = ∂D gives

δAθ|S1 = λθ|S1 = 0, δ λθ|S1 = ∂θσ|S1 + �∂θAθ|S1 = 0.

This verifies the compatibility of the boundary conditions (2.12) and BRST
transformations for the gauge multiplet. Similarly, under infinitesimal gauge
transformations we have

δαAθ|S1 = ∂θα|S1 +Aθ|S1 = 0, α ∈ Lie(G0),

and thus the boundary conditions (2.12) are compatible with gauge invari-
ance with respect to group (2.14). We define a metric on the space of fields
using the standard quadratic form on the tensor fields on D.
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Proposition 2.1. A functional integral over fields on the disk with the
action (2.11) at e2 → 0 has an asymptotic given by a functional integral
with the effective action on the boundary ∂D = S1

Seff =
ıH0

4π

2π∫

0

dθ

⎛

⎝
�+1∑

j=1

|ϕj(θ)|2 − r2

⎞

⎠− ıξ0
4π

2π∫

0

dθ
�+1∑

j=1

(ϕ̄j(θ)χj(θ) + ϕj(θ)χ̄j(θ))

+
η0

2π

2π∫

0

dθ
�+1∑

j=1

(ϕj(θ)χ̄j(θ) − ϕ̄j(θ)χj(θ))

+ 2b0
�+1∑

j=1

1
2π

2π∫

0

dθ[χj(θ)χ̄j(θ) + ı(σ0 + σj)|ϕj(θ)|2 + �ϕ̄j(θ)∂θϕj(θ)].

(2.15)

Here in the functional integral over ϕj(z), χj(z) being even and odd holo-
morphic functions on D, σ0 and b0 being even variables, ξ0 and η0 being odd
variables. The measure on the space of ϕj(z) and χj(z) is induced from the
standard pairing of functions on D with the metric d2s = |dz|2.

Proof. We will need an asymptotic at e2 → 0 of the various integrals. Given
a function F (e, y) of the coupling constant e and a variable y such that at
e2 → 0 the leading asymptotic is given by F (y, e) = Q(e)f0(y) + · · · , we call
f0(y) a leading term and denote it by [F (e, y)]0.

Consider first an asymptotic of an integral overH. We have the following
identity:

(∫

DHe
∫

D
( 1
e2
HF (A)+F1(H)

)

0

=
∫

dH0δ(F (A))e
∫

D
F1(H0),

where H0 is a constant mode of H and F1(H) is an arbitrary e2-independent
function of H such that the left-hand side of the identity is defined. Now let
us find an asymptotic of the following integral:

ZF2 =
∫

DbDσe
∫

D
( ı

e2
db∧∗dσ+bF2(σ)),(2.16)

where F(σ) is a e2-independent function of σ. Consider a quadratic form

〈f, f〉 =
∫

D
df ∧ ∗df,(2.17)



154 Anton Gerasimov, Dimitri Lebedev and Sergey Oblezin

on the space of functions such that ∂θf |S1=∂D = 0. We have the following
obvious exact sequence:

0 → Fun0(D) → Fun(D) → Fun(S1) → 0,

where Fun(D) is the space of functions on the disk, Fun0(D) is the subspace
of functions taking zero values on the boundary S1 = ∂D and Fun(S1) is
a space of functions on the boundary. Then the orthogonal complement
Fun∨

0 (D) to the space Fun0(D) with respect to the quadratic form (2.17)
is given by the space of harmonic functions Δf = 0. Due to the constraint
∂θf |S1=∂D = 0 the space Fun∨

0 (D) consists of constant functions. Taking into
account that the quadratic form (2.17) is non-degenerate on Fun0(D), we
infer that the following asymptotic for (2.16) holds

(ZF2)0 =
1

det′(d ∗ d)
∫

db0dσ0e
∫

D
b0F2(σ0)),

where b0 and σ0 are constant modes of b and σ.
By construction the functional integral with the action (2.11) is invariant

with respect to the gauge group G0 defined by (2.14). We fix the gauge sym-
metry using a gauge-fixing condition d ∗A = 0. In the case of abelian gauge
group the introduction of Faddeev–Popov ghosts is not necessary. Integra-
tion over H implies a constraint F (A) = dA = 0. The gauge-fixing condition
for the gauge group (2.14) implies that the residual gauge symmetry group
is a subgroup of constant gauge transformations. Therefore, one can take
A = 0 and the effective action functional is given by

Seff =
1
2π

∫

d2z

⎧
⎨

⎩

1
e2

[(λ ∧ dξ)zz̄ + (λ ∧ ∗dη)zz̄]

+
�+1∑

j=1

[−ıF jz̄ (∂zϕ̄j) + ıF̄ jz (∂z̄ϕ
j) − ıψjz̄λzϕ̄

j + ıψ̄jzλz̄ϕ
j + ıψjz̄(∂zχ̄

j)

− ıψ̄jz(∂z̄χ
j)] +

ıH0

2

⎛

⎝
�+1∑

j=1

|ϕj |2 − r2

⎞

⎠− ıξ

2

�+1∑

j=1

(ϕjχ̄j + ϕ̄jχj)

+ η
�+1∑

j=1

(ϕjχ̄j − ϕ̄jχj) + b0

�+1∑

j=1

[2χjχ̄j + 2ı(σ0 + σj)|ϕj |2

+ �(ϕ̄jιv0dϕ
j − ϕjιv0dϕ̄

j)]

⎫
⎬

⎭
.

(2.18)
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The integration over F and F̄ gives the constraints

∂ϕj = 0, ∂ϕ̄j = 0.

The solutions of the constraints are given by holomorphic functions

ϕj = ϕj(z), ϕ̄j = ϕ̄j(z̄).

From now on ϕj will denote holomorphic functions. Now consider an asymp-
totic of the integrals over odd variables

Z̃F3 =
∫

DλDξDη e
∫

D
(− 1

e2
λ∧dξ− 1

e2
λ∧∗dη+λF3(η,ξ)),(2.19)

where F3(η, ξ) is independent of e. Let us combine two zero forms ξ and η
into a one form

ρ = dξ + ∗dη.
Taking integral over λ in (2.19) we obtain the following asymptotic in the
limit e2 → 0:

(2.20)
(∫

DλDξDη e
∫

D
− 1

e2
λ∧dξ− 1

e2
λ∧∗dη+λB

)

0

= det ′(d ∗ d)δ(ρ).

We have
∂z(ξ + ıη) = 0, ∂z̄(ξ − ıη) = 0,

and thus solutions of the equation ρ = 0 are given by holomorphic functions
F (z) = ξ − ıη. This implies that the functions ξ, η are harmonic. Taking
into account the boundary conditions ∂θξ|S1 = ∂θη|S1 = 0, the functional
integration over ξ and η reduces to the integration over constant modes ξ0
and η0.

Now integration over ψj̄z and ψjz̄ provides constraints

∂z̄χ
j = 0, ∂zχ̄

j̄ = 0,

solved by holomorphic functions χj(z):

χj = χj(z), χ̄j = χj(z).

From now on χj will denote holomorphic functions. Combining all ingredi-
ents together we obtain the following functional integral:

∫

dξ0dη0 dH0 db0dσ0[D2ϕj ] [D2χj ] e−Seff
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with

Seff =
ıH0

4π

∫ 2π

0
dθ

⎛

⎝
�+1∑

j=1

|ϕj(θ)|2 − r2

⎞

⎠

(2.21)

− ıξ0
4π

∫ 2π

0
dθ

�+1∑

j=1

(ϕ̄j(θ)χj(θ) + ϕj(θ)χ̄j(θ))

+
η0

2π

∫ 2π

0
dθ

�+1∑

j=1

(ϕj(θ)χ̄j(θ) − ϕ̄j(θ)χj(θ))

+ 2b0
�+1∑

j=1

1
2π

∫ 2π

0
dθ[χj(θ)χ̄j(θ) + ı(σ0 + σj)|ϕj(θ)|2 + �ϕ̄j(θ)∂θϕj(θ)],

where ϕj(θ) and χj(θ) are restrictions on S1 = ∂D of even and odd holo-
morphic functions ϕj(z), χj(z). Here we make a change of variables

(2.22) ϕjn → ϕjn
n+ 1

, χjn → χjn
n+ 1

,

in the expansions of ϕj(z) and χj(z)

ϕj(z) =
∞∑

n=0

ϕjnz
n, χj(z) =

∞∑

n=0

χjnz
n.

This change of variables converts the integrals of the product of the holomor-
phic and antiholomorphic functions over the disk D into integrals over the
boundary S1. By the standard properties of the canonical integration mea-
sure on super-manifold R

N |N the Jacobian of the change of variables (2.22)
is trivial. The resulting functional integral with the action (2.21) coincides
with the one defined by (2.15). �

Theorem 2.1. The functional integral in S1 × U�+1-equivariant topologi-
cal sigma model with the deformed action (2.15) has the following finite-
dimensional integral representation:

(2π�)
�−1
2 〈e r2

2
O(0)〉 =

1
2π�

∫

R−ıε
dH0 eıH0

r2

2

�+1∏

j=1

Γ1(ıH0 + σj |�),

O(0) =
∫

S1=∂D
dθσ(θ),

(2.23)

where ε > max(−σj), j = 1, . . . , �+ 1.
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Proof. We prove (2.23) using the representation obtained in Proposition 2.1.
We shall calculate the following functional integral:

1
(2π)2

∫

dξ0dη0 dH0 db0dσ0 [D2ϕj ] [D2χj ] e−Seff+
r2

2
σ0

Integrating over b0 we obtain the delta-function factor

δ

⎛

⎝ 1
π

∫ 2π

0
dθ

⎛

⎝
�+1∑

j=1

ıχj(θ)χ̄j(θ) −
�+1∑

j=1

(σ0 + σj)|ϕj(θ)|2 + ı�ϕ̄j(θ)∂θϕj(θ)

⎞

⎠

⎞

⎠ .

(2.24)

Further integration over σ0 gives

σ0(ϕ, χ) =
1
2π

∫ 2π
0 dθ

(∑�+1
j=1 ıχ

j(θ)χ̄j(θ) −∑�+1
j=1 σj |ϕj(θ)|2 + ı�ϕ̄j(θ)∂θϕj(z)

)

1
2π

∫ 2π
0 dθ

∑�+1
j=1 |ϕj(θ)|2

.

Taking into account that the integral over H0 implies the constraint

1
2π

∫ 2π

0
dθ

�+1∑

j=1

|ϕj(θ)|2 = r2,

we obtain

σ0(ϕ, χ) =
1

2πr2

∫ 2π

0
dθ

⎛

⎝
�+1∑

j=1

ıχj(θ)χ̄j(θ) −
�+1∑

j=1

σj |ϕj(z)|2 + ı�ϕ̄j(z̄)∂θϕj(z)

⎞

⎠.

After integration over H0 the integrand reduces to

2π
2r2

δ

⎛

⎝− 1
4π

∫ 2π

0
dθ

⎛

⎝
�+1∑

j=1

|ϕj(θ)|2 − r2

⎞

⎠

⎞

⎠

× exp

⎧
⎨

⎩

(
ıξ0
2

+ η0

)
1
2π

∫ 2π

0
dθ

�+1∑

j=1

ϕ̄j(θ)χj(θ)

+
(
ıξ0
2

− η0

)
1
2π

∫ 2π

0
dθ

�+1∑

j=1

ϕj(θ)χ̄j(θ)

+
1
4π

∫ 2π

0
dθ

⎛

⎝
�+1∑

j=1

ıχj(θ)χ̄j(θ) −
�+1∑

j=1

σj |ϕj(θ)|2 + ı�ϕ̄j(θ)∂θϕj(θ)

⎞

⎠

⎫
⎬

⎭
,

(2.25)
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where ϕ(z) and χ(z) are even and odd holomorphic functions. We normalize
the measure as follows:

(2.26) D2ϕD2χ =
�+1∏

j=1

ı

2
DϕjDϕ̄j

�+1∏

j=1

2
ı
DχjDχ̄j .

In particular

(2.27)
∫

D2χ exp
{
ı

4π

∫ 2π

0
dθχj(θ)χ̄j(θ)

}

= 1.

It is useful to reintroduce the variable H0 by writing the first delta-function
in (2.25) in the integral form. Then integrating over odd variables dξ0, dη0

and d2χ, we reduce the functional integral to the following one:

〈 e
r2

2
O(0)〉 =

∫

R−ıε
dH0D

2ϕ e
ır2H0

2 exp

⎛

⎝− 1
4π

∫ 2π

0
dθ
∑

j

((ıH0 + σj)|ϕj(θ)|2

− ı�ϕ̄j(θ)∂θϕj(θ))

⎞

⎠ ,

where ε > max(−σj), j = 1, . . . , �+ 1. We can rewrite the expression for
correlator in equivalent form

〈 e
r2

2
O(0)〉 =

∫

R−ıε
dH0 e

ır2H0
2 ZLSM(ıH0 + σj , �),

where

(2.28) ZLSM(σj , �) =
∫

[D2χ] [D2ϕ] e−SLSM(σj ,�)

is a functional integral with the action

SLSM(σj , �) =
1
4π

∫ 2π

0
dθ

⎛

⎝
�+1∑

j=1

ıχj(θ)χ̄j(θ) −
�+1∑

j=1

σj |ϕj(θ)|2

+ ı�ϕ̄j(θ)∂θϕj(θ)

⎞

⎠ .

The functional integral (2.28) is a correlation function in S1 × U�+1-
equivariant type-A topological linear sigma model on D with the target
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space V = C
�+1. This functional integral was calculated in [17] with the

following result:

(2.29) ZLSM (σj , �) =
�+1∏

j=1

(2π�)−
1
2 �

σj

� Γ
(σj

�

)
= (2π�)−

�+1
2

�+1∏

j=1

Γ1(σj |�),

provided Re(ıH0 + σj) > 0, j = 1, . . . , �+ 1.
Using the expression (2.29) for ZLSM and noting that the integration

contour (R − ıε for ε > max(−σj), j = 1, . . . , �+ 1) is compatible with the
condition Re(ıH0 + σj), j = 1, . . . , �+ 1, we obtain the integral representa-
tion for 〈e r2

2
O(0)〉

(2.30)
〈
e

r2

2
O(0)

〉
= (2π�)−

�+1
2

∫

R−ıε
dH0 eıH0

r2

2

�+1∏

j=1

Γ1(ıH0 + σj |�).

This complete the proof of the theorem. �

Corollary 2.1. The parabolic Whittaker function (1.21) associated with P
�

has an infinite-dimensional integral representation as a correlation function
in type-A topological S1 × U�+1-equivariant sigma model with the target space
P
�

Ψλ(x) = (2π�)
�−1
2

〈
e

r2

2
O(0)

〉
,

where σj = −λj and x = −�r2/2.

3. Mirror-dual type-B topological Landau–Ginzburg model

In this section, we consider a type-B topological Landau–Ginzburg model
that is a mirror dual [33] to the topological type-A sigma model with the tar-
get space P

� considered in the previous section. We calculate a correlation
function in the Landau–Ginzburg model that is mirror dual to the corre-
lation function (2.23). This calculation naturally provides another integral
representation (1.21) of (1, �+ 1)-Whittaker function associated with P

�.
The mirror duals of the topological gauged linear sigma models were

constructed in [24]. In the following, we apply this construction to a partic-
ular sigma model considered in the previous section. To provide a heuris-
tic explanation of the construction let us recall that the topological gauge
field multiplets can be obtained in a simple way from N = 2 SUSY gauge
multiplets described by twisted chiral superfields. Under mirror symmetry
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twisted chiral superfields are transformed into chiral multiplets. Thus a mir-
ror dual of the U1-gauged type-A topological linear sigma model with the
target space C

�+1 should be described by a mirror dual of a type-A topo-
logical linear sigma model with the target space C

�+1 interacting with an
additional topologically twisted chiral multiplet Ξ. The mirror dual of the
type-A twisted linear sigma model was considered in [24] (see also [18])
and is described by a Landau–Ginzburg sigma model. A coupling with the
additional topological multiplet Ξ can be guessed from simple duality con-
siderations in quadratic theories [24]. Actually we are interested in the dual
to S1 × U�+1-equivariant U1-gauged type-A linear sigma-model. It is useful
to replace U�+1-equivariance by U �+1

1 -equivariance supplied with the over-
all invariance of the correlation functions with respect to the permutation
group S�+1 (the Weyl group of U�+1). The resulting Landau–Ginzburg the-
ory, dual to S1 × U �+1

1 -equivariant U1-gauged type-A linear sigma-model,
has the following superpotential:

(3.1) W (φ, σ) = −ı�σr
2

2
+

�+1∑

j=1

(−(ıσ + σj)φj + eφ
j

) + � log(2π�),

written in terms of the lowest components φj , j = 1, . . . , (�+ 1) and σ of chi-
ral superfields. In (3.1) σj , j = 1, . . . , �+ 1 are U �+1

1 -equivariant parameters
and x = r2

2 is a parameter of the Kähler structure of P
� in the dual-type-

A model. Note that usually one considers the Landau–Ginzburg theory on
(C∗)�+2 as a mirror dual to U1-gauged linear sigma model associated with
non-linear P

� sigma model (this implies in particular that one uses the vari-
ables Φj = eφj as the correct description of the target space of the theory).
Taking into account that the mirror dual of U�+1-equivariant P

� sigma model
has superpotential (3.1) which is single-valued on the universal covering
space C

�+2 we use the coordinates φj below.
We would like to calculate a particular correlation function on a disk D

in the Landau–Ginzburg topological theory with the superpotential (3.1).
Happily this calculation was already done in [18] for an arbitrary superpo-
tential W (φ). Let us recall briefly this derivation. We consider a set of fields
with the following S1-equivariant BRST transformations:

δS1φi− = ηi, δS1ηi = −�ιv0dφ
i
−, δS1θi = Gi−, δS1Gi− = −�ιv0dθ

i,(3.2)

δS1ρi = −dφi+ + �ιv0G
i
+, δS1φi+ = −�ιv0ρ

i, δS1Gi+ = d ρi,

where φ+ and φ− are even real zero-form-valued fields, ηi and θi are odd real
zero-form-valued fields, ρi are odd real one-form-valued fields, Gi− are even
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real zero-form-valued fields and Gi+ are even real two-form-valued fields. The
action of the topological sigma model is given by

S = −ı
N∑

j=1

∫

D

(
(dφj+ − �ιv0G

j
+) ∧ ∗dφj− + ρj ∧ ∗dηj − θjdρ

j +Gj+G
j
−
)

(3.3)

+
N∑

i,j=1

∫

D
d2z

√
h

(

−∂
2W−(φ−)

∂φi−∂φ
j
−
ηiθj − ı

∂W−(φ−)
∂φi−

Gi−

)

+
N∑

i,j=1

∫

D

(

−1
2
∂2W+(φ+)

∂φi+∂φ
j
+

ρi ∧ ρj +
∂W+(φ+)
∂φi+

Gi+

)

+
1
�

∫

S1=∂D
dσW+(φ+).

Here W+ and W− are arbitrary independent regular functions on R
N . Thus

defined action is δS1-closed. Below we consider the case of W−(φ−) = 0 and
W+(φ+) = W (φ+). Thus, we have

S = −ı
N∑

j=1

∫

D

(
(dφj+ − �ιv0G

j
+) ∧ ∗dφj− + ρj ∧ ∗dηj − θjdρ

j +Gj+G
j
−
)

(3.4)

+
N∑

i,j=1

∫

D

(

−1
2
∂2W (φ+)

∂φi+∂φ
j
+

ρi ∧ ρj +
∂W (φ+)
∂φi+

Gi+

)

+
1
�

∫

S1=∂D
dσW (φ+).

Given an observable O (i.e., a functional of the fields), its correlation function
is defined as the following functional integral:

〈O〉W :=
∫

DμO e−S ,

Dμ =
N∏

i=1

[Dφi+][Dφi−][Dηi][Dθi][Dρi][DGi+][DGi−].
(3.5)

We consider a local δS1-invariant observable

(3.6) O =
N∏

i=1

δ(φi−(z, z̄))ηi(z, z̄)|z=0,
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inserted at the center of the disk D. The calculation of the integral (3.5)
with the observable (3.6) was done in [18].

Theorem 3.1. A correlation function of the observable (3.6) in the type-B
topological S1-equivariant linear sigma model (3.4) is given by

(3.7) 〈O〉W =
∫

RN

N∏

j=1

dtj e−
1
�
W (t),

where tj are the constant modes of the fields φj+.

Now we can apply this general result to a particular case of the superpoten-
tial (3.1).

Proposition 3.1. The correlation function of the observable (3.6) in the
type-B topological S1-equivariant linear sigma model (3.4) with the superpo-
tential

(3.8) W (φ+, σ) = −ı�σr
2

2
+

�+1∑

j=1

(−(ıσ + σj)φ
j
+ + eφ

j
+) + � log(2π�),

is given by

〈O〉W =
1

2π�

∫

R−ıε
dσ0 eıσ0

r2

2

∫

R�+1

�+1∏

j=1

dtj e
1
�

∑ �+1
j=1((ıσ0+σj)tj−etj

),(3.9)

ε > −σj , j = 1, . . . , �+ 1,

where σ0 and tj are the constant modes of the real fields σ and φj+, respec-
tively.

The expression (3.9) coincides with (2.23) and is equivalent to (1.21),
(1.22) obtained in Section 1. Thus type-A and type-B topological sigma
model representations related by mirror symmetry give rise to two differ-
ent integral representations (1.21), (1.22) of the same parabolic Whittaker
function (1.24).

4. Equivariant symplectic volume and its mirror

In this section, following [18], we provide a simple heuristic derivation of
the correlation function (2.23). This calculation directly relates type-A and
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type-B mirror-dual integral representations. First let us demonstrate that
(1.22) can be understood as a limit of equivariant volumes of spaces of
holomorphic maps of P

1 → P
� when a degree of the maps goes to infinity.

The compactified space of holomorphic maps P
1 → P

� of a degree d can be
identified with P

(�+1)(d+1)−1 as follows. Holomorphic maps of P
1 into P

� of
degree d can be described as a collection of �+ 1 mutually prime polynomials
of the degree d

(4.1) ϕj(z) =
d∑

m=0

ϕjm z
m, j = 1, . . . , �+ 1,

modulo multiplication by rational functions

ϕj(z) −→ ϕ̃j(z) = g(z)ϕj(z),

such that the resulting functions f̃ j(z) are again polynomials of the degree
d. In the case of mutually prime polynomials the function g(z) is neces-
sary constant and thus the space Md(P1,P�) of holomorphic maps P

1 → P
�

is given by a projectivization of the space of mutually prime �+ 1 poly-
nomials. This space is non-compact and its compactification QMd(P1,P�)
obtained by omitting condition to be mutually prime is a projectivization
P

(�+1)(d+1)−1 of the vector space of (�+ 1)-tuples polynomials of the degree
d. The space QMd(P1,P�) = P

(�+1)(d+1)−1 can be obtained as the Hamil-
tonian reduction of the space of (�+ 1)-tuples polynomials of the degree d
supplied with the symplectic structure

(4.2) Ω =
ı

2

�+1∑

j=1

d∑

m=0

δϕjm ∧ δϕ̄jm,

with respect to a diagonal action of U1 generated by the vector field

vU1 = ı
�+1∑

j=1

d∑

m=0

(

ϕjm
δ

δϕjm
− ϕ̄jm

δ

δϕ̄jm

)

.

The action of U1 is Hamiltonian and the corresponding momentum (i.e.,
solution of the equation ιvU1

Ω = δμ) is given by

μ = −1
2

�+1∑

j=1

d∑

m=0

|ϕjm|2 = − 1
4π

�+1∑

j=1

∫ 2π

0
dθ |ϕj(θ)|2,
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Here ϕj(θ) denotes a restriction of the polynomial ϕj(z) on the circle z = eıθ,
θ ∈ [0, 2π). The reduced space P

(�+1)(d+1)−1 is naturally supplied with a
symplectic structure Ωind.

The symplectic space QMd(P1,P�) allows a Hamiltonian action of the
larger Lie group S1 × U �+1

1 . In homogeneous coordinates it is given by

ϕjm −→ ϕjm eıαj eımβ, (eıβ, eıα1 , . . . , eıα�+1) ∈ S1 × U1 × · · · × U1.

The action of the corresponding Lie algebra generators is realized by the
vector fields

vS1 = ı
�+1∑

j=1

d∑

m=0

m

(

ϕjm
δ

δϕjm
− ϕ̄jm

δ

δϕ̄jm

)

,

vU(1)j
= ı

d∑

m=0

(

ϕjm
δ

δϕjm
− ϕ̄jm

δ

δϕ̄jm

)

, j = 1, . . . , �+ 1.

(4.3)

The corresponding momenta are

μS1 = −1
2

�+1∑

j=1

d∑

m=0

m|ϕjm|2 = − 1
4πı

�+1∑

j=1

∫ 2π

0
dθ ϕ̄j(θ)∂θ ϕj(θ),

μj = −1
2

d∑

m=0

|ϕjm|2 = − 1
4π

∫ 2π

0
dθ |ϕj(θ)|2.

The S1 × U �+1
1 -equivariant volume of QMd(P1,P�) is defined as the follow-

ing integral:

(4.4) Zd =
∫

QMd(P1,P�)
eΩ

S1×U
�+1
1

ind ,

where ΩS1×U�+1
1

ind is an S1 × U �+1
1 -equivariant extension of the symplectic

structure Ωind on QMd(P1,P�) induced from (4.2) by the Hamiltonian reduc-
tion. Let us identify H∗

S1×U�+1
1

(pt) with C[�, σ1, . . . , σ�+1] where � corre-

sponds to a generator of S1 and σj to a generator of jth factor in U �+1
1 .
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Proposition 4.1. The equivariant volume (4.4) has the following integral
representation:

Zd =
1

(2π)2

∫
D2ϕD2χDH0Dξ0Dη0DλDσ0

Vol(U1)
e

r2

2
φe−S ,

where

S = ıH0
1
4π

∫ 2π

0
dθ

⎛

⎝
�+1∑

j=1

|ϕj(θ)|2 − r2

⎞

⎠− ıξ0
4π

×
�+1∑

j=1

∫ 2π

0
dθ(ϕj(θ)χ̄j(θ) + ϕ̄j(θ)χj(θ))

+
η0

2π

�+1∑

j=1

∫ 2π

0
dθ(ϕj(θ)χ̄j(θ) − ϕ̄j(θ)χj(θ)) + 2λ

�+1∑

j=1

1
2π

×
∫ 2π

0
(ı(σ0 + σj)|ϕj(θ)|2 + �ϕ̄j(θ)∂θϕj(θ)) + χj(θ)χ̄j(θ))dθ,

where ξ0, η0 and χj, j = 1, . . . , (�+ 1) are considered to be Grassmann vari-
ables. Also the functions ϕj(θ) and χj(θ) are restricted to be degree d poly-
nomials of z = eıθ with the integration measure given by

D2ϕ =
�+1∏

j=1

d∏

m=0

ı

2
dϕjm ∧ dϕ̄jm, D2χ =

�+1∏

j=1

d∏

m=0

2
ı
dχjm ∧ dχ̄jm.

Proof. The proof reduces to application of the standard technique (see, e.g.
[10]) and is given in Appendix F. �

Proposition 4.2. The equivariant symplectic volume (4.4) has the follow-
ing integral representation

(4.5) Zd = (2π)(�+1)(d+1)−2

∫

R−ıε
dH0

e
ır2

2
H0

∏�+1
j=1

∏d
m=0(ıH0 + σj + �m)

,

where ε > max(−σj), j = 1, . . . , �+ 1.



166 Anton Gerasimov, Dimitri Lebedev and Sergey Oblezin

Proof. Using Proposition 4.1, we have

−S +
r2

2
σ0 =

−ıH0

2

�+1∑

j=1

(
d∑

m=0

ϕjmϕ̄
j
m − 1

2
r2

)

+
ıξ0
2

�+1∑

j=1

d∑

m=0

(ϕjmχ̄
j
m + ϕ̄jmχ

j
m) − η0

�+1∑

j=1

d∑

m=0

(ϕjmχ̄
j − ϕ̄jmχ

j
m)

− 2λ

⎛

⎝ı

�+1∑

j=1

d∑

m=0

(σ0 + σj + �m)|ϕjm|2 + χjmχ̄
j
m

⎞

⎠+
r2

2
σ0.

Applying Proposition F.1 in Appendix F to QMd(P1,P�) = P
(�+1)(d+1)−1

with the action of S1 × U �+1
1 , we obtain

Zd = (2π)(�+1)(d+1)−2

∫

R−ıε
dH0

e
ır2

2
H0

∏�+1
j=1

∏d
m=0(ıH0 + σj + �m)

,

where ε > max(−σj), j = 1, . . . , �+ 1. �
Now let us consider the limit d→ ∞ of (4.5). We use ζ-function regular-

ization to define infinite products (see, e.g. [32] and the Appendix in [17]).
More precisely, define logarithm of the regularized infinite product as a
derivative of the zeta-function

ln

[ ∞∏

n=0

(ρn+ λ)

]

reg

:= −∂sζρ(s, λ)|s=0,

where ζρ(s, λ) is an analytic continuation of the infinite sum

ζρ(s, λ) =
∞∑

n=0

1
(ρn+ λ)s

, −π < arg(ρn+ λ) ≤ π, Re(s) > 1.

We have

ζρ(0, λ) =
1
2
− λ

ρ
, ∂sζρ(0, λ) = −

(
1
2
− λ

ρ

)

ln ρ+ ln
1√
2π

Γ
(
λ

ρ

)

,

and thus for the regularized infinite product we obtain

(4.6)

[ ∞∏

n=0

(ρn+ λ)

]

reg

= ρ1/2−λ/ρ (2π)1/2

Γ(λ/ρ)
.
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Taking λ = ıH0 + σj and ρ = �, we have

(4.7)
[

1
∏∞
n=0(ıH0 + σj + �n)

]

reg

=
1√
2π�

�
(ıH0+σj)/�Γ

(
ıH0 + σj

�

)

.

Now applying this regularization to the products in (4.5) for d→ +∞, we
obtain

lim
d→∞

(2π�)(�−1)/2

(2π)(�+1)(d+1)−2
Zd =

1
2π�

∫

R−ıε
dH0 e

ır2

2
H0

×
�+1∏

j=1

�
(ıH0+σj)/�Γ

(
ıH0 + σj

�

)

,

where we imply that −π < arg(ıH + σj + �n) ≤ nπ and ε > max(−σj), j =
1, . . . , �+ 1. Thus taking in appropriate way the limit d→ ∞ we recover the
integral representation (2.23) for the functional integral in topological field
theory on the disk D. Note that the interpretation of the limit d→ ∞ as
a replacement of P

1 by D seems quite natural as in the non-compact case
there is no notion of a finite degree map.

To relate the type-A model calculations given above with the integral
representation (3.9) arising in type-B model we follow the strategy used
in [18], i.e., we calculate the equivariant volume of the holomorphic maps
using the Duistermaat–Heckman formula [12]. We would like to calculate the
integral over the infinite-dimensional projective space PM(D,C�+1) assum-
ing � > 0 and σj > 0, j = 1, . . . , �+ 1. Let

(4.8) Z(�, σ) =
∫

PM(D,C�+1)
e�μ̃S1+

∑ �+1
j=1 σj μ̃j+Ω(x),

where Ω is a symplectic form on PM(D,C�+1) defined by the Hamiltonian
reduction with momentum x, μ̃S1 is a momentum corresponding to the S1-
action on PM(D,C�+1) and μ̃j , j = 1, . . . , �+ 1 are momentum correspond-
ing to the action of U �+1

1 on PM(D,C�+1). Note that the integral in (4.8) is
an infinite-dimensional one and thus requires a proper regularization. One
can formally apply the Corollary F.1 Appendix E to rewrite the integral as
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follows

Z(�, σ) =
1
2π

∫

dx1 · · · dx�+1 δ

⎛

⎝x−
�+1∑

j=1

xj

⎞

⎠(4.9)

×
�+1∏

j=1

2π
∫

PM(D,C)
exjωPM(D,C)+σjμ

PM(D,C)
j +�μ̃S1 .

Thus the calculation reduces to the calculation of the following integral:

Z1(�, σ) = 2π
∫

PM(D,C)
e�μ̃S1+σj μ̃j+xjωPM(D,C)(4.10)

= 2π e−σjxj

∫

PM(D,C)
e�μ̃S1+xjωPM(D,C) .

This integral was already calculated in [18]. Below, for completeness, we
recall the main steps of the calculation. To calculate the integral (4.10) we
use an infinite-dimensional version of the Duistermaat–Heckman formula
[12] (for a detailed introduction into the subject see e.g. [3]). Let M be
a 2N -dimensional symplectic manifold with the Hamiltonian action of S1

having only isolated fixed points. Let μ be the corresponding momentum.
The tangent space Tpk

M to a fixed point pk ∈MS1
has a natural action of

S1. Let v be a generator of Lie(S1) and let v̂ be its action on Tpk
M . Then

the following identity holds:

(4.11)
∫

M
e�μ+ω =

∑

pk∈MS1

e�μ(pk)

detTpk
M �v̂/2π

.

Let us formally apply (4.11) to the integral (4.10). A set of fixed points
of S1 acting on PM(D,C) can be easily found using linear coordinates
on M(D,C) (considered as homogeneous coordinates on PM(D,C)). Let
ϕ(z) be a holomorphic map of D to C. It represents an S1-fixed point on
PM(D,C) if rotations by S1 can be compensated by an action of U1

(4.12) eıα(β)ϕ(eıβz) = ϕ(z), β ∈ [0, 2π].

It is easy to see that solutions of (4.12) are enumerated by non-negative
integers and are given by

(4.13) ϕ(n)(z) = ϕnz
n, ϕn ∈ C

∗ n ∈ Z≥0.
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The tangent space to M(D,C) at an S1-fixed point ϕ(n) has natural lin-
ear coordinates ϕm/ϕn, m ∈ Z≥0,m 
= n where coordinates ϕk, k ∈ Z≥0 are
defined by the series expansion of ϕ ∈ M(D,C)

ϕ(z) =
∞∑

k=0

ϕkz
k.

After identification of � in (4.10) with a generator of Lie(S1) its action
on the tangent space at the fixed point is given by a multiplication of each
ϕm/ϕn on (m− n). Thus, to define an analog of the denominator in the right
hand side of the Duistermaat-Heckman formula (4.11) one should provide a
meaning to the infinite product

∏∞
m=0,m�=n �(m− n)/2π. We use a ζ-function

regularization

ln

⎡

⎣
∏

m∈Z≥0,m�=n

�

2π
(m− n)

⎤

⎦

a

(4.14)

:= − ∂

∂s

(
n∑

m=1

e−ıπs

(a�m/2π)s
+

∞∑

m=1

1
(a�m/2π)s

)∣
∣
∣
∣
∣
s→0

,

where a is a normalization multiplier. The introduction of a is to take
into account a multiplicative anomaly det(AB) 
= detA · detB appearing
for generic operators A and B. We specify a at the final step of the calcula-
tion of (4.10).

Lemma 4.1. The regularized product (4.14) is given by

(4.15)
1

[∏
m∈Z≥0,m�=n �(m− n)/2π

]

a

= (−1)n
(a�/2π)−n

n!

√
a�

2π
.

Proof. Using the Riemann ζ-function

ζ(s) =
∞∑

n=1

1
ns
,

one can express the right-hand side of (4.14) as follows:

ln

⎡

⎣
∏

m∈Z≥0,m�=n

�

2π
(m− n)

⎤

⎦

a

= (ζ(0) + n) ln a�/2π + lnn! − ζ ′(0) + ıπn.
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Taking into account ζ(0) = −1
2 and ζ(0)′ = −1

2 ln 2π we obtain (4.15). �

Let us now calculate the difference of the values of S1-momentum map
μ̃S1 at two S1-fixed points ϕ(n), ϕ(0) ∈ PM(D,C). Consider an embedded
projective line P

1 ⊂ PM(D,C), containing ϕ(n) and ϕ(0). Let us choose
homogeneous coordinates [z0 : z1] on P

1 such that ϕ(0) = [1 : 0] and ϕ(n) =
[0 : 1]. The action of S1 on PM(D,C) descends to the embedded P

1 via the
vector field

(4.16) V = ın

{

w
∂

∂w
− w̄

∂

∂w̄

}

, w = z1/z0.

The pull back of the symplectic form Ω(t) is given by

ωP1 = ıt
dw ∧ dw̄

(1 + |w|2)2 .

The action of the vector field (4.16) on P
1 is the Hamiltonian one. Let μ(n)

S1

be the corresponding momentum given by a restriction of the momentum
μ̃S1 for S1-action PM(D,C). From the definition of the momentum map we
have

(4.17) μ
(n)
S1 (ϕ(n)) − μ

(n)
S1 (ϕ(0)) =

∫ [0:1]

[1:0]
dμ

(n)
S1 =

∫ [0:1]

[1:0]
ιV ωP1 .

A momentum defined as a solution of the equation iV ω = dμ is unique up an
additive constant. To fix this constant we normalize the momentum μ̃S1(ϕ)
so that μS1(ϕ(0)) = 0. Thus, we obtain the following:

(4.18) μ
(n)
S1 (ϕ(n)) = −nt

∫ [0:1]

[1:0]

wdw̄ + w̄dw

(1 + |w|2)2 = nt

[
1

(1 + |w|2)
]∞

0

= −nt.

Substituting (4.18) and (4.15) into (4.11) for M = PM(D,C), we obtain

2π
∫

PM(D,C)
e�μ̃S1+tωPM(D,C) = 2π

√
a�

(2π)2

∞∑

n=0

(−1)n
e−nt�

(a�/2π)nn!
(4.19)

=
√
a� exp

{

−2π
a�

e−�t

}

,

where the dependence on the normalization constant a reflects an ambiguity
of the regularized infinite-dimensional integral.
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Taking into account (4.9), the regularized S1 × U�+1-equivariant sym-
plectic volume of the projectivization of the space of holomorphic maps of
D into C

�+1 can be written as follows:

Zreg =
1
2π

∫ ∞

0
· · ·

∫ ∞

0
dx1 · · · dx�+1 δ

⎛

⎝x−
�+1∑

j=1

xj

⎞

⎠

×
�+1∏

j=1

2πe−σjxj

∫

PM(D,C)
exjωPM(D,C)+�μ̃S1

= (a�)
�+1
2

∫

R−ıε
eıH0x

�+1∏

j=1

∫ ∞

0
dxj e−(ıH0+σj)xj− 2π

a�
e−�xj

.

Changing the variables

uj = −�xj − ln
(
a�

2π

)

, u = x+
1
�

ln
(
a�

2π

)

,

we obtain

Zreg =
1

4π2

(a

�

) �+1
2
( a

2π

) 1
�

∑
σj

∫

R−ıε
dH0 eıH0u

�+1∏

j=1

�

ıH0+σj

�

×
∫ − 1

�
ln( a�

2π )

−∞
duj e

1
�
(ıH0+σj)uj−euj

.

To get rid of the renormalization ambiguity we take the limit a→ 0

Z(σ, �) = lim
a→0

2π
�

(
�

a

) �+1
2
(

2π
a

) 1
�

∑
σj

Zreg

=
1

2π�

∫

R−ıε
dH0 eıH0u

�+1∏

j=1

Γ1(ıH0 + σj |�), ε > max(−σj).

Integrating over H0, we obtain precisely the mirror dual integral represen-
tation (1.21) for the Whittaker function associated with P

�

∫

C

�∏

j=1

dtj exp

⎛

⎝−1
�

⎛

⎝
�∑

j=1

λjtj + λ�+1

⎛

⎝x−
�∑

j=1

tj

⎞

⎠+
�∑

j=1

etj + ex−
∑ �

j=1 tj

⎞

⎠

⎞

⎠ ,

where σj = λj , x = −�u.
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5. Conclusions

To conclude we briefly outline some directions for future research. The
most obvious one is a generalization to the case of an arbitrary partial
flag manifold G/P . Recall that partial flag spaces allow a description in
terms of the non-abelian Hamiltonian reduction of a symplectic vector spaces
and thus the corresponding type-A sigma models can be represented as
gauged linear sigma models (of quiver type) with non-abelian gauge groups.
For G/P = Gr(m, �+m) the corresponding parabolic gl�+1-Whittaker func-
tion (1.8) has the following integral representation generalizing (1.22) (see
Appendix D for m = 2, � = 1):

Ψλ1,...,λj+1(x) =
∫

C
dγ1, . . . , dγm e−

x

�
(γ1+γ2+···+γm)

∏m
j=1

∏�+1
a=1 Γ1(γj − λa|�)

∏m
i,j=1,i�=j Γ1(γi − γj |�)

.

(5.1)

A detailed discussion of the (topological) gauged linear sigma models describ-
ing holomorphic maps into Gr(m, �+m) can be found in [29,34]. For a mir-
ror description of the corresponding gauged linear sigma models see [24]. We
expect that Gr(m, �+m) analogs of the correlation functions of the topo-
logical quantum field theories considered in the previous sections are given
by the integral expressions (5.1). Note also that the Givental-type integral
representation for Whittaker functions associated with classical groups was
constructed in [15]. This provides a Landau–Ginzburg model description of
the mirror dual to a type-A topological sigma models on the flag manifolds
associated with the classical groups. We are going to explicitly derive this
mirror duality following the line of this note elsewhere.

Another direction to pursue is a higher-dimensional generalizations of
the constructions proposed in this note. One of the motivations is a higher-
dimensional generalization of the connection between Archimedean Lang-
lands correspondence and mirror symmetry. This includes in particular an
instanton counting in higher dimensions. Note also that the higher-
dimensional examples considered in [17] provide also additional insights into
the conjectured relation between local Archimedean Langlands correspon-
dence and the mirror symmetry in two dimensions. We are going to discuss
various higher-dimensional generalization of the results of [17,18] and of this
note elsewhere.
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Appendix A: A proof of Proposition 1.1

We start with the following auxiliary result.

Lemma A.1. The adjoint action of the group element (1.9) on the algebra
b+ = 〈Eij , i ≤ j〉 is given by the following:

g−1E11g = E11 −
m∑

k=2

xkE1,k,

g−1Ekkg = Ekk + xkE1,k, 2 ≤ k ≤ m,(A.1)

g−1Ek,k+jg = Ek,k+j + xkE1,k+j , 2 ≤ k ≤ m− 1, 1 ≤ j ≤ m− k;

g−1Em+k,m+kg = Em+k,m+k − xm+kEm+k,�+m, 1 ≤ k ≤ �− 1,

g−1Em+k,m+k+jg = Em+k,m+k+j − xm+k+jEm+k,�+m,

1 ≤ k ≤ �− 2, 1 ≤ j ≤ �− 1 − k,(A.2)

g−1E�+m,�+mg = E�+m,�+m +
�−1∑

k=1

xm+kEm+k,�+m.

g−1E1,m+jg = ex1−x�+m(E1,m+j − xm+jE1,�+m), 1 ≤ j ≤ �− 1,(A.3)

g−1Ek,m+jg = ex1−x�+m
(
Ek,m+j + xkE1,m+j − xm+j(Ek,�+m + xkE1,�+m)

)
,

2 ≤ k ≤ m, 1 ≤ j ≤ �− 1,

g−1Ek,�+mg = ex1−x�+m(Ek,�+m + xkE1,�+m), 2 ≤ k ≤ m,

g−1E1,�+mg = ex1−x�+mE1,�+m.

Proof. Consider functions Fij(x) := g(x)−1Eijg(x). The commutation rela-
tions above then can be derived by writing down and solving differential
equations for Fij(x) with the initial condition Fij(0) = Eij . �
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Let us introduce a notation

〈A〉 := 〈ψL|πλ(A)|ψR〉, A ∈ Ugl�+m.

Consider 〈C2g〉 where C2 is a quadratic Casimir operator (1.12). Taking into
account 〈ψL|Eji = 0 for j − i > 1, we have 〈C2g〉 = 〈C̃2g〉 with

(A.4) C̃2 =
�+m∑

i<j

EiiEjj −
�+m−1∑

j=1

Ej+1,jEj,j+1 −
�+m∑

i=1

ρiEii + σ2(ρ).

Let us derive contributions of each term in (A.4). First, we observe that

−
�+m∑

i=1

ρi〈Eiig〉 = −�+m− 1
2

[〈E11g〉 − 〈E�+m,�+mg〉
]−

�+m−1∑

j=2

ρj〈Ejjg〉

(A.5)

= −�+m− 1
2

[

〈(E11 + · · · + Emm)g〉

− 〈(Em+1,m+1 + · · · + E�+m,�+m)g〉 −
m∑

k=2

〈Ekkg〉

+
�−1∑

n=1

〈Em+n,m+ng〉
]

−
�+m−1∑

j=2

ρj〈Ejjg〉

= −�+m− 1
2

[〈(E11 + · · · + Emm)g〉
− 〈(Em+1,m+1 + · · · + E�+m,�+m)g〉]

−
m∑

k=2

(

ρk − �+m− 1
2

)

〈Ekkg〉

−
�−1∑

n=1

(

ρm+n +
�+m− 1

2

)

〈Em+n,m+ng〉

=
�+m− 1

2

[
∂

∂x1
− ∂

∂x�+m

]

−
m∑

k=2

(k − 1)xk
∂

∂xk
−

�−1∑

n=1

(�− n)xm+n
∂

∂xm+n
,

since ρk − ρ1 = 1 − k with

〈Ekkg〉 =
〈
g(Ekk − xkE1k)

〉
= −xk ∂

∂xk
〈g〉, k = 2, . . . ,m,



Parabolic Whittaker functions and topological field theories I 175

and ρm+n − ρ�+m = �− n with

〈Em+n,m+ng〉 =
〈
g(Em+n,m+n + xm+nEm+n,�+m)

〉

= xm+n
∂

∂xm+n
〈g〉, n = 1, . . . , �− 1.

Next, by using 〈ψL|Ej+1, j = �
−1〈ψL| for j = 1, . . . , �+m− 1, we find the

following:

−
�+m−1∑

j=1

〈Ej+1,jEj,j+1g〉 = −1
�

�+m−1∑

j=1

〈Ej,j+1g〉

= −1
�

⎛

⎝〈E12g〉 + 〈E�+m−1,�+mg〉 +
�+m−2∑

j=2

〈Ej,j+1g〉
⎞

⎠

=
1
�
{∂x2 + ∂x�+m−1}〈g〉 −

1
�

×
m−1∑

k=2

〈g(Ek,k+1 + xkE1,k+1)〉 − 1
�
〈Em,m+1g〉

− 1
�

�−2∑

n=1

〈g(Em+n,m+n+1 − xm+n+1Em+n,�+m)〉

In generic case when m > 1, � > 1, we have

− 1
�
〈Em,m+1g〉 = −1

�
ex1−x�+m

× 〈
g(Em,m+1 + xmE1,m+1 − xm+1Em,�+m − xmxm+1E1,�+m)

〉

and therefore

−1
�

�+m−1∑

j=1

〈Ej,j+1g〉 =
1
�

{
∂

∂x2
+

∂

∂x�+m−1
+

m−1∑

k=2

xk
∂

∂xk+1

(A.6)

−
�−2∑

n=1

xm+n+1
∂

∂xm+n
+

1
�
(−1)ε(�,m)xmxm+1ex1−x�+m

}

〈g〉.
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In the special case m = 1, the following holds:

−1
�

�∑

k=1

〈Ek,k+1g〉 = −1
�

�−1∑

k=1

〈Ek,k+1g〉 − 1
�
〈E�,�+1g〉

(A.7)

= −1
�

�−1∑

k=1

〈gEk,k+1 − xk+1Ek,�+1〉 − 1
�
〈E�,�+1g〉

=

⎧
⎨

⎩

(−1)ε(�,1)

�2
x2 ex�+1−x1 +

1
�

∂

∂x�
− 1

�

�−1∑

j=2

xj+1
∂

∂xj

⎫
⎬

⎭
〈g〉.

In the other special case � = 1, we have

−1
�

m∑

j=1

〈Ej,j+1g〉 =
1
�

{
∂

∂x2
− (−1)ε(1,m)

�
xm exm+1−x1 +

m−1∑

k=2

xk
∂

∂xk+1

}

〈g〉.

(A.8)

Finally, we calculate the contribution of the quadratic part of the Casimir
element (A.4). We have

∑

i<j

〈EiiEjjg〉 = 〈E11E�+m,�+mg〉 +
m∑

k=2

〈E11Ekkg〉 +
�−1∑

n=1

〈E11Em+n,m+ng〉

(A.9)

+
m∑

k=2

〈EkkE�+m, �+mg〉 +
�−1∑

n=1

〈Em+n,m+nE�+m,�+mg〉

+
m∑

2≤k<a
〈EkkEaag〉 +

�−1∑

1≤n<b
〈Em+n,m+nEm+b,m+bg〉

+
m∑

k=2

�−1∑

m=1

〈EkkEm+n,m+ng〉.
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Then for each term in the above decomposition, we derive the following:

〈E11E�+m,�+mg〉 = 〈(E11 + · · · + Emm)(Em+1,m+1 + · · · + E�+m,�+m)g〉

(A.10)

−
m∑

k=2

〈EkkE�+m,�+mg〉 −
�−1∑

n=1

〈(E11Em+n,m+ng〉

−
m∑

k=2

�−1∑

n=1

〈EkkEm+n,m+ng〉;

m∑

k=2

〈E11Ekkg〉 =
m∑

k=2

〈(E11 + · · · + Emm)Ekkg〉 −
m∑

k,a=2

〈EaaEkkg〉;
(A.11)

�−1∑

n=1

〈Em+n,m+nE�+m,�+mg〉(A.12)

=
�−1∑

n=1

〈Em+n,m+n(Em+1,m+1 + · · · + E�+m,�+m)g〉

−
�−1∑

n,b=1

〈Em+n,m+nEm+b,m+bg〉.

Substituting (A.10)–(A.12) into (A.9), and making evident cancelations, we
arrive at

∑

i<j

〈EiiEjjg〉 = 〈(E11 + · · · + Emm)(Em+1,m+1 + · · · + E�+m,�+m)g〉

(A.13)

−
m∑

k=2

〈E2
kkg〉 −

�−1∑

n=1

〈E2
m+n,m+ng〉

+
m∑

k=2

〈(E11 + · · · + Emm)Ekkg〉

−
m∑

k<a

〈EkkEaag〉 −
m∑

n<b

〈Em+n,m+nEm+b,m+bg〉
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+
�−1∑

n=1

〈Em+n,m+n(Em+1,m+1 + · · · + E�+m,�+m)g〉

=

{
∂2

∂x1∂x�+m
−

m∑

k=2

(

x2
k

∂2

∂x2
k

+ xk
∂

∂xk

)

−
�−1∑

n=1

(

x2
m+n

∂2

∂x2
m+n

+ xm+n
∂

∂xm+n

)

−
m∑

2≤k<a
xkxa

∂2

∂xk∂xa
−

�−1∑

1≤n<b
xm+nxm+b

∂2

∂xm+n∂xm+b

+
m∑

k=2

xk
∂2

∂x1∂xk
−

�−1∑

n=1

xm+n
∂2

∂xm+n∂x�+m

}

〈g〉,

since

〈E2
kkg〉 = (−xk∂xk

)(−xk∂xk
)〈g〉 = {x2

k∂
2
xk

+ xk∂xk
}〈g〉, 2 ≤ k ≤ m;

〈E2
m+n,m+ng〉 = (xm+n∂xm+n

)(xm+n∂xm+n
)〈g〉

= {x2
m+n∂

2
xm+n

+ xm+n∂xm+n
}〈g〉, 1 ≤ n ≤ �− 1.

At last, we collect (A.5), (A.6), (A.13), multiply by �
2 and conjugate

them by e−ρ1(x1−x�+m). We obtain (1.13). This completes the proof of
Proposition 1.1. �

Appendix B: A proof of Proposition 1.2

The lower-triangular part of the Lax-operator L = ‖Lij‖ easily follows from
(1.6):

(B.1) Ln+1,n = 1, Ln+j,n = 0, 2 ≤ j ≤ �+m− n,

for 1 ≤ n ≤ �+m− 1.
The calculation of the upper-triangular part of L can be done using

Lemma A.1. Namely, if Lij is in diagonal (m×m)-block the following holds:

L1,k〈g〉 = �〈E1,kg〉 = −�∂xk
〈g〉, 2 ≤ k ≤ m;

Lkk〈g〉 = �〈Ekkg〉 = �〈g(Ekk + xkE1,k)〉 = −�xk∂xk
〈g〉, 2 ≤ k ≤ m;
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L11〈g〉 = �〈(E11 + · · · + Emm)g〉 − �

m∑

k=2

〈Ekkg〉
(B.2)

=

{

−�∂x1 + �

m∑

k=2

xk∂xk

}

〈g〉;

Lk,k+j〈g〉 = �〈Ek,k+jg〉 = �〈g(Ek,k+j + xkE1,k+j)〉
= −�xk∂xk+j

2 ≤ k ≤ m, 1 ≤ j ≤ m− k.

For the diagonal (�× �)-block, we have

Lm+k,�+m〈g〉 = �〈Em+k,�+mg〉 = −�∂xm+k
〈g〉, 1 ≤ k ≤ �− 1;

Lm+k,m+k〈g〉 = �〈g(Em+k,m+k − xm+kEm+k,�+m)〉
= �xm+k∂xm+k

〈g〉, 1 ≤ k ≤ �− 1;

L�+m,�+m〈g〉 = �〈(Em+1,m+1 + · · · + E�+m, �+m)g〉 − �

�−1∑

k=1

〈Em+k,m+kg〉

= −�∂x�+m
〈g〉 − �

�−1∑

k=1

〈g(Em+k,m+k − xm+kEm+k,�+m)〉

=

{

�∂x�+m
− �

�−1∑

k=1

xm+k∂xm+k

}

〈g〉;

Lm+k,m+k+j〈g〉 = �〈g(Em+k,m+k+j − xm+k+jEm+k, �+m)〉
= �xm+k+j∂xm+k

〈g〉,
1 ≤ k ≤ �− 2, 1 ≤ j ≤ �− k − 1;

(B.3)

Finally, for the upper-triangular (m× �)-block the following holds:

L1,m+j〈g〉 = � ex1−x�+m〈g(E1,m+j − xm+jE1,�+m)〉
= −(−1)ε(�,m)xm+j ex1−x�+m〈g〉, 1 ≤ j ≤ �− 1;

L1,�+m〈g〉 = � ex1−x�+m〈gE1,�+m〉 = (−1)ε(�,m) ex1−x�+m〈g〉;
Lk,�+m〈g〉 = � ex1−x�+m〈g(Ek,�+m + xkE1,�+m)〉

= (−1)ε(�,m)xk ex1−x�+m〈g〉, 2 ≤ k ≤ m;
Lk,m+j〈g〉 = � ex1−x�+m

〈
g(Ek,m+j + xkE1,m+j

− xm+jEk,�+m − xkxm+kE1,�+m)
〉

= −(−1)ε(�,m)xkxm+ke
x1−x�+m〈g〉, 2 ≤ k ≤ m, 1 ≤ j ≤ �− 1.

(B.4)
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After conjugation L → e−ρ1(x1−x�+m)Leρ1(x1−x�+m), we arrive at the proof of
Proposition 1.18.

Appendix C: A proof of Theorem 1.1

Consider the following decomposition of the Borel subalgebra b+ = h(1,�+1) +
n

(1,�+1)
+ :

h(1,�+1) =
〈
E11, E11 + · · · + E�+1,�+1, Ek,�+1, 1 < k ≤ �

〉
,

n
(1,�+1)
+ =

〈
E12, E1,�+1;Ekk, 1 < k ≤ �;Ek,k+1, 1 < k < �

〉
.

(C.1)

Recall the construction of a generalized Gelfand–Zetlin representation of
gl�+1 [13]. Namely, let γ

1
, . . . , γ

�+1
be a triangular array consisting of �(�+

1)/2 variables γn = (γn1, . . . , γnn) ∈ C
n, n = 1, . . . , �+ 1. The operators

Ekk =
1
�

( n∑

j=1

γn,j −
n−1∑

i=1

γn−1, i

)
, 1 ≤ k ≤ �+ 1;

En, n+1 = −1
�

n∑

i=1

∏n+1
j=1 (γn,i − γn+1, j − �

2 )
∏
s �=i(γn,i − γn,s)

e−�∂n,i , 1 ≤ n ≤ �;

En+1, n =
1
�

n∑

i=1

∏n−1
j=1 (γn,i − γn−1, j + �

2 )
∏
s �=i(γn,i − γn,s)

e�∂n,i , 1 ≤ n ≤ �,

(C.2)

form a representation of gl�+1 in the space M of meromorphic functions
in �(�+ 1)/2 variables (γ

1
, . . . , γ

�
). The Whittaker vectors 〈ψL| ∈ V ′

λ and
|ψR〉 ∈ Vλ are defined by

〈ψL|En+1, n =
1
�
〈ψL|, 1 ≤ n ≤ �;

E12|ψR〉 = 0, E1, �+1|ψR〉 =
(−1)1+

�(�−1)
2

�
|ψR〉,(C.3)

Ekk|ψR〉 = 0, 2 ≤ k ≤ �, Ek, k+1|ψR〉 = 0, 2 ≤ k ≤ �− 1.

We identify both Vλ and V ′
λ with subspaces of the space of functions of γij ,

i = 1, . . . , �+ 1, j = 1, . . . , i. The action of Ugl�+1 on Vλ is given by (C.2)
and the action on V ′

λ is given adjoint generators

E†
ij = μ−1(γ)Eijμ(γ),



Parabolic Whittaker functions and topological field theories I 181

where

(C.4) μ(γ) =
∏

n=2

∏

s �=n
Γ−1

(γnj − γns
�

)
.

Lemma C.1. The equations (C.3) admit the solution

〈ψ|L =
1

2πı�
;(C.5)

|ψR〉 =
�∏

k=2

δ

⎛

⎝
k∑

j=1

γk, j −
k−1∑

i=1

γk−1, i

⎞

⎠
�−1∏

1≤i≤k
δ
(
γk, i − γk+1, i +

�

2

)

(C.6)

×
�∏

n=2

∏

in �=jn
Γ
(γn, in − γn, jn

�

) �+1∏

j=1

�

γ�, 1−γ�+1, j

�
+ 1

2 Γ
(γ�, 1 − γ�+1, j

�
+

1
2

)

Proof. The equations on the left vector are similar to those in [13] and by
the same reason admit the solution 〈ψ|L = 1

2πı�. To find the right Whittaker
vector one needs an explicit expression of the element E1, �+1 = [. . . [[E12,
E23], . . . , E�−1, � ], E�, �+1]

E1, �+1 = −1
�

(
�∑

i1=1

∏�+1
j1=1(γ�, i1 − γ�+1, j1 − �

2 )
∏
k1 �=i1(γ�, i1 − γ�, k1)

· · ·

(C.7)

2∑

i�−1=1

∏
j�−1 �=i�−2

(γ2, i2 − γ3,j2 − �

2 )
∏
k�−1 �=i�−1

(γ2, i�−1 − γ2, k�−1)

∏

j� �=i�−1

(

γ11 − γ2, j� −
�

2

)
⎞

⎠

× e−�
∑ �

i1=1

∑ �−1
i2=1···

∑ 1
i�=1

∑ �
k=1 ∂γ�+1−k, ik .

The constraints
E22|ψR〉 = · · · = E��|ψR〉 = 0,

obviously hold. Similarly, due to the presence of the product of delta-
functions

�−1∏

1≤i≤k
δ
(
γk, i − γk+1, i +

�

2

)
,

we have E12|ψR〉 = · · · = E�−1, �|ψR〉 = 0. Thus we have to check that (C.6)
satisfies the relation E1, �+1|ψR〉 = �

−1|ψR〉 with (C.7). At first we note that
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due to the factor
�−1∏

1≤i≤k
δ
(
γk, i − γk+1, i +

�

2

)
,

we have

E1, �+1|ψR〉(C.8)

= −1
�

∏�+1
j=1(γ�, 1 − γ�+1, j − �

2 )
∏�
k=2(γ�, 1 − γ�, k)

· · · (γ21 − γ32 − �

2 )(γ21 − γ33 − �

2 )
γ21 − γ22

× (
γ11 − γ22 − �

2
)
e−�

∑ �
i1=1

∑ �−1
i2=1···

∑ 1
i�=1

∑ �
k=1 ∂γ�+1−k, ik

∣
∣ψR

〉
.

Finally, straightforward calculations provide

E1, �+1|ψR〉 = (−1)1+
�(�−1)

2

�−1∏

k=1

k∏

i=1

γk, 1 − γk+1, i+1 − �

2

γk+1, 1 − γk+1, i+1 − �
|ψR〉(C.9)

=
(−1)1+

�(�−1)
2

�
|ψR〉. �

Now we are ready to prove Proposition 1.1. Define the left and right
U-modules as V ′ = 〈ψL|U and V = U|ψR〉 respectively. Let φ ∈ V ′ and
ψ ∈ V . Define the paring 〈·, ·〉 : V ′ ⊗ V → C by

(C.10) 〈φ, ψ〉 =
∫

C
μ(γ)φ(γ)ψ(γ)

�∏

n=1

∏

j≤n
dγnj ,

where we define the integration domain C shortly below. Let x = x1. We
have

Ψ(1, �+1)
γ

�+1
(x, 0, . . . , 0) = e−

�

2
x〈ψL, e−xE11ψR〉,

and thus

Ψ(1, �+1)
γ

�+1
(x, 0, . . . , 0)

(C.11)

=
1

2πı�
e−

�

2
x

∫

C

�∏

n=1

dγ
n
μ(γ)e−

1
�
xγ11

�∏

k=2

δ

⎛

⎝
k∑

j=1

γk, j −
k−1∑

i=1

γk−1, i

⎞

⎠
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×
�−1∏

1≤i≤k
δ
(
γk, i − γk+1, i +

�

2

) �∏

n=2

∏

in �=jn
Γ
(γn, in − γn, jn

�

)

×
�+1∏

j=1

�

γ�, 1−γ�+1, j

�
+ 1

2 Γ
(γ�, 1 − γ�+1, j

�
+

1
2

)
,

for appropriate choice of integration domain C. Taking into account the
Stirling formula for gamma function

Γ(c+ z) =
√

2πzc+z−1/2 e−z(1 +O(1/z),

for z → ∞, 0 < |arg(z)| < π and c, z ∈ C we infer that the integral (C.11)
converges absolutely. Making obvious cancelations and integrating out the
delta-functions one obtains

Ψ(1, �+1)
γ

�+1
(x) =

1
2πı�

e−
�

2
x

∫

ıR+ε− �

2

dγ�,1 e−
1
�
γ�,1x+

�−1
2
x(C.12)

×
�+1∏

j=1

�

γ�, 1−γ�+1, j

�
+ 1

2 Γ
(γ�, 1 − γ�+1, j

�
+

1
2

)
,

where ε > γ�+1,j , j = 1, . . . , �+ 1. Finally, introducing the variable γ�, 1 =
ıH − �

2 and setting λj = γ�+1,j , we obtain (1.24). �

Appendix D: Explicit calculations for Gr(2, 3)

In this appendix, we derive, using another version of the Gelfand–Zetlin real-
ization, an integral representation for a specialization of the matrix elements
(1.8) for m = 2, � = 1. Note that due to isomorphism Gr(1, 3) = Gr(2, 3) =
P

2 the resulting integral expressions should be equal to (1.24) for � = 2 after
appropriate identification of the parameters. Below we explicitly verify this
equivalence using an integral identity due to Gustafson [23].

We use the following version of the Gelfand–Zetlin realization of the
universal enveloping algebra U(gl3) (see [13]):

E11 =
1
�
γ11, E22 =

1
�
(γ21 + γ22 − γ11),

E33 =
1
�
(γ31 + γ32 + γ33 − γ21 − γ22)

(D.1)
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E21 =
1
�
e�∂11 ,

E32 =
1
�

{γ21 − γ11 + �

2

γ21 − γ22
e�∂21 +

γ22 − γ11 + �

2

γ22 − γ21
e�∂22

}
,

(D.2)

E12 = −1
�

(
γ11 − γ21 − �

2

)(
γ11 − γ22 − �

2

)
e−�∂11 ,

E23 = −1
�

{∏3
j=1(γ21 − γ3j − 1

2)
γ21 − γ22

e−�∂21 −
∏3
j=1(γ22 − γ3j − �

2 )
γ22 − γ21

e−�∂22

}

,

E13 = [E12, E23] = −1
�

{
(
γ11 − γ22 − �

2

)∏3
j=1(γ21 − γ3j − �

2 )
γ21 − γ22

e−�∂21−�∂11

+
(
γ11 − γ21 − �

2

)∏3
j=1(γ22 − γ3j − �

2 )
γ22 − γ21

e−�∂22−�∂11

}

(D.3)

The conjugated generators

E†
ij = μ−1(γ)Eijμ(γ), μ(γ) =

1
Γ(γ21−γ22

�
)Γ(γ22−γ21

�
)
,

are given by

E†
21 =

1
�
e−�∂11 ,

E†
32 =

1
�

{γ21 − γ11 − �

2

γ21 − γ22
e−�∂21 +

γ22 − γ11 − �

2

γ22 − γ21
e−�∂22

}
.

(D.4)

In the case P
2 � Gr(2, 3) we have the following defining equations on the

Whittaker vectors:

〈ψL|E†
21 =

1
�
〈ψL|, 〈ψL|E†

32 =
1
�
〈ψL|;

E22|ψR〉 = 0, E13|ψR〉 = −1
�
|ψR〉, E23|ψR〉 = 0.

(D.5)

The defining equations for the right vector (D.5) also can be solved.
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Lemma D.1. The Whittaker vectors defined by (D.5) read as follows:

〈ψL| =
1

2π�
,(D.6)

|ψR〉 =
2∏

k=1

3∏

j=1

�
(γ2i−γ3j)/�+1/2Γ

(γ2i − γ3j

�
+

1
2

)
δ(γ21 + γ22 − γ11) .(D.7)

Proof. Direct verification. �

Finally, we consider the Gr(2, 3)-Whittaker function

Ψ(2,3)
λ (x1, x2, x3) = e−(x1−x3)〈ψL|πλ

(
e−x1(E11+E22)−x2E12−x3E33

) |ψR〉 ,

with λj = γ3,j , j = 1, 2, 3 and x1 = x, x2 = x3 = 0.

Proposition D.1.There is the following integral representation of Gr(2, 3)-
Whittaker function:

Ψ(2,3)
λ (x) =

1
2π�

∫

Cε1×Cε2

dγ21dγ22 e−
1
�
(
∑ 2

j=1 γ2j)x

× 1
∏
i�=j Γ1(γ2i − γ2j |�)

3∏

j=1

2∏

i=1

Γ1(γ2i − λj |�),

where εi > λj , i = 1, 2, j = 1, 2, 3.

Proof. We have

Ψ(2,3)
λ (x) =

e−x

2π�

∫

dγ21dγ22dγ11 δ(γ11 − γ21 − γ22)(D.8)

× e
1
�
(
∑
γ3j−∑ γ2k)x 1

∏
i�=j Γ(γ2i−γ2j

�
)

×
3∏

j=1

2∏

k=1

�
(γ2k−λj)/�+1/2Γ

(γ2k − λj
�

+
1
2

)
.
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After taking integral over γ11 and shifting the variables γ21 → γ21 − �/2,
γ22 → γ22 − �/2 one obtains

Ψ(2,3)
λ (x) =

1
2π�

∫

Cε1×Cε2
dγ21dγ22 e−

1
�
(
∑ 2

j=1 γ2j)x 1
∏
i�=j Γ1(γ2i − γ2j |�)

(D.9)

×
3∏

j=1

2∏

i=1

Γ1(γ2i − γ3j |�) .

�

Proposition D.2. The following relation between (1, 3)- and (2, 3)-
Whittaker functions holds

Ψ(1,3)
λ1,λ2,λ3

(x) = Ψ(2,3)

λ̃1,λ̃2,λ̃3
(x),

where λi = λ̃j + λ̃k, i 
= j 
= k.

Proof. We have

Ψ(2,3)
λ1,λ2,λ3

(x) =
1

2π�

∫

Cε1×Cε2

dγ1dγ2e−
1
�
(γ1+γ2)x

×
∏3
j=1 Γ1(γ1 − λj |�)Γ1(γ2 − λj |�)
Γ1(γ1 − γ2|�)Γ1(γ2 − γ1|�)

,

where Cεi = ıR + εi, εi > λj , j = 1, 2, 3. Let us introduce new variables
γ = γ1 + γ2 and γ∗ = γ1 − γ2 to obtain

Ψ(2,3)
λ1,λ2,λ3

(x) =
1

2π�

∫

dγdγ∗e−
1
�
γx

×
∏3
j=1 Γ1(1

2(γ + γ∗) − λj |�)Γ1(1
2(γ − γ∗) − λj |�)

Γ1(γ∗|�)Γ(−γ∗|�)
.

Thus to establish equivalence with Ψ(1,3), we should prove

∫

C(ε1−ε2)/2

dγ∗

∏3
j=1 Γ1(1

2(γ + γ∗) − λj |�)Γ1(1
2(γ − γ∗) − λj |�)

Γ1(γ∗|�)Γ1(−γ∗|�)

=
∏

1≤i<j≤3

Γ1(γ − λi − λj |�).
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This follows from the limiting form of the identity due to Gustafson [23]
(Equation (9.4) with n = 1 and a4 = ∞)

∫

C0

dt

∏3
j=1 Γ1(αj + t|�)Γ1(αj − t|�)

Γ1(2t|�)Γ1(−2t|�)
=

∏

1≤i<j≤3

Γ1(αi + αj |�),

where the integration contour C0 is goes between the sets of poles αi + n�,
n ∈ Z≥0 and −αi − n�, n ∈ Z≥0. �

Appendix E: Gauge theory description of non-linear
sigma models

In this appendix, we recall the standard representation of a bosonic two-
dimensional sigma model with the target space P

� in terms of U1-gauged
sigma model. To simplify the arguments, we consider the equivalence of the
classical theories, i.e., identifying the spaces of solutions of the equations of
motions in two theories. Omitting fermionic fields in the action (2.9), we
obtain the following action of the bosonic U1-gauged sigma model

Sbos =
∫

Σ
d2z

√
hhzz̄

(E.1)

×
⎛

⎝1
t
((∂z̄ −Az̄)ϕj)(∂z −Az)ϕ̄j + 2ıb

�+1∑

j=1

σ|ϕj |2 +H

⎛

⎝
�+1∑

j=1

|ϕj |2 − r2

⎞

⎠

⎞

⎠.

To obtain the classically equivalent field theory one may eliminate some
fields using conditions of zero variations of the action Sbos (substituting
instead of an independent field Φ a solution of the equation δSbos/δΦ = 0).
Using a shift of the variable H → H − 2ıbσ and eliminating the fields b and
σ via zero variation condition, we obtain (up to some r-dependent additive
constant)

(E.2)

Sbos =
∫

Σ
d2z

√
hhzz̄

⎛

⎝1
t
((∂z̄ −Az̄)ϕj)(∂z −Az)ϕ̄j +H

⎛

⎝
�+1∑

j=1

|ϕj |2 − r2

⎞

⎠

⎞

⎠.

Now it is easy to show that the field theory with the action (E.2) after a
gauge fixing is equivalent on the classical level to the sigma model on P

�
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with the action

(E.3) Sσ−mod =
1
2

∫

Σ
d2z

√
hhzz̄ Gij̄(ξ(z, z̄))∂z̄ξ

i(z, z̄)∂z ξ̄j̄(z, z̄),

where the Kähler metric G(ξ) is associated with the Fubini–Studi two form
on P

� locally written as

ω =
ı

2πt

⎛

⎝
�∑

j=1

dξj ∧ dξ̄j
(1 +

∑�
j=1 |ξj |2)

− (
∑�

j=1 ξ̄jdξj) ∧ (
∑�

i=1 ξidξ̄i)

(1 +
∑�

j=1 |ξj |2)2

⎞

⎠ .

Indeed, eliminating gauge fields A by using zero variation condition we
obtain

Sbos =
∫

Σ
d2z

√
hhzz̄

(E.4)

×
⎛

⎝1
t
((∂z̄ −Az̄(ϕ))ϕj)(∂z −Az(ϕ))ϕ̄j +H

⎛

⎝
�+1∑

j=1

|ϕj |2 − r2

⎞

⎠

⎞

⎠,

with

Az̄ =

⎛

⎝
�+1∑

j=1

|ϕj |2
⎞

⎠

−1
�+1∑

j=1

ϕ̄j∂z̄ϕ
j , Az =

⎛

⎝
�+1∑

j=1

|ϕj |2
⎞

⎠

−1
�+1∑

j=1

ϕj∂zϕ̄
j .

Note that the action functional (E.4) is still invariant with respect to U1

gauge symmetry
ϕi(z) −→ eıα(z) ϕi(z).

Zero variation condition over H imposes the constraint

(E.5)
�+1∑

j=1

|ϕj |2 = r2.

The solutions of (E.5) can be parameterized as follows:

ϕj =
ξj

(r2 +
∑�

j=1 |ξj |2)1/2
, j = 1, . . . , �,

ϕ�+1 =
reıΘ

(r2 +
∑�

j=1 |ξj |2)1/2
.
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Fixing the gauge freedom by taking Θ = 0, we recover the standard repre-
sentation (E.3) of P

� sigma model.

Appendix F: Intersection theory on P
� via

Hamiltonian reduction

Let us given a manifold X supplied with an action of a Lie group G and an
G-equivariant vector bundle E. Let s be a section E such that G acts freely
on the zero locus s−1(0). There is a universal representation of integrals
of closed differential forms over factor s−1(0)/G in terms of integrals over
X (see, e.g. [10] for detailed exposition and relations with quantum field
theory constructions). Below we review a simple instance of this construction
providing a description of integrals of (equivariantly) closed differential forms
over P

�. In this case X = C
�+1, the bundle E is trivial and the group G is

abelian group U1.
Let us supply complex vector space C

�+1 with a symplectic structure

(F.1) Ω =
ı

2

�+1∑

j=1

dϕj ∧ dϕ̄j .

The action of U1

ϕj −→ eıαϕj , eıα ∈ U1,

is Hamiltonian, i.e., there exists a momentum

μ(ϕ) = −1
2

�+1∑

j=1

|ϕj |2.

such that ιvΩ = dμ where

v = ı
�+1∑

j=1

(

ϕj
∂

∂ϕj
− ϕ̄j

∂

∂ϕ̄j

)

generates the action of U1 on C
�+1. Complex projective space P

� can be
constructed via Hamiltonian reduction as a quotient of a hypersurface of
the fixed level of the momentum μ over a free action of U1

(F.2) P
� = μ−1

(
1
2
r2
)

/U1, r ∈ R.
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Thus, constructed P
� is supplied with a canonical symplectic structure ωP�

proportional to the Fubini-Study form. In terms of inhomogeneous coordi-
nates wj = ϕj/ϕ�+1, ϕ�+1 
= 0, it is given by

(F.3) ωP� =
ır2

2
(1 +

∑�
i=1 |wi|2)

∑�
j=1 dwj ∧ dw̄j −

∑�
i,j wiw̄jdwj ∧ dw̄i

(1 +
∑�

i=1 |wi|2)2
.

The problem to write down the integral of closed differential forms over P
�

in terms of integrals over C
�+1 is naturally divided into two parts. First, we

shall write an integral over hypersurface in a complex space in terms of an
integral over the ambient space. Second, we shall write down an integral over
a factor of a space over a free action of a Lie group in terms of an integral
over a space before factorization. Let us first consider the problem of writing
integral over hypersurface. Thus given a real valued function s(x) on R

N let
i : Z ↪→ R

N be a zero locus subset of s (we consider the case when Z is
compact). Let RZ be a de Rham current such that for a closed differential
form ω on R

N the following holds

(F.4)
∫

Z
i∗ω =

∫

RN

ω ∧RZ .

To write Rz explicitly let us fix coordinates (x1, . . . , xN ) on R
N . We identify

algebra of differential forms A∗(RN ) on R
N with the algebra of functions

Fun(RN |N ) on the superspace R
N |N = ΠTR

N where Π is a functor of the
parity change of the fibers of vector bundles. Thus, we have associated coor-
dinates (x1, . . . , xN , ψ1, . . . ψN ) in R

N |N and de Rham differential is given
by a vector field

Q =
N∑

j=1

ψi
∂

∂xj
, Q2 = 0.

Consider an extended space R
N+1,N+1 = R

N |N × R
1|1 with the second factor

understood as reversed-parity tangent bundle to the one-dimensional odd
space R

0|1. Let (H, ξ) be coordinates in R
1|1 and the de Rham differential

on extended space is given by the vector field

(F.5) Q =
N∑

j=1

ψj
∂

∂xj
+H

∂

∂ξ
.
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Now a one-parameter family of the differential forms RZ(t) is given by the
following Berezin integral over the superspace R

1|1

(F.6) RZ(t) =
1
2π

∫

R1|1
dξ dH exp

(

Q

(

ξ

(

ıs(x) − t

2
H

)))

,

satisfies the relation (F.4) (see e.g. [10]).
To write down an integral of a closed differential form over a factor of a

space Y over a free action of Lie group G = U1 in terms of an integral over
Y we use G-equivariant cohomology of Y . Let us recall that for a free action
of a compact Lie group G on Y equivariant cohomology are isomorphic to
the cohomology of the factor

(F.7) H∗
G(Y ) = H∗(Y/G).

Cartan model of U1-equivariant de Rham complex on X is given by
(F.8)

Ω∗
U1

(Y ) = (Ω∗(Y ))U1 ⊗ C[σ], dG = d− ιv(σ), σ ∈ u∗1 = (Lie(U1))∗,

where σ is of degree two. Equivariant cohomology H∗
U1

(Y ) is a module over
the algebra H∗

U1
(pt) = H∗(BU1) isomorphic to C[σ]. The algebra H∗

U1
(pt)

is generated by Chern class cuniv
1 of a universal U1-bundle EU1 → BU1.

Given a free action of U1 on Y one has a principle U1-bundle V given by
the projection π : Y → Y/U1. By definition of the universal bundle for a
principle U1-bundle V over Y/U1 there exist a map u : Y/U1 → BU1 such
that V is a pull back of the universal bundle over BU1. and c1 = u∗(cuniv

1 ) is
a pull back of the first Chern class cuniv

1 of the universal bundle EU1. The
structure of H∗

U1
(Y ) ∼ H∗(Y/U1) as H∗

U1
(pt)-module is then defined by the

condition that cuniv
1 acts on H∗(Y/U1) by a multiplication on c1. In terms

of the algebraic model (F.8) the image of the class cuniv
1 is represented by σ.

Now we would like to relate integration of cohomology classes in
H∗(Y/U1) and H∗

U1
(Y ). Equivariant de Rham complex can be represented

as a space of functions on a super-space ΠTY × u1 with an odd vector field
Q given in local coordinates (yi, ψi, σ) by

Q =
M∑

i=1

ψi
∂

∂yi
+ σvi(y)

∂

∂ψi
.
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To defined an integration over a U1-factor we consider S1-equivariant coho-
mology of the extended space Ỹ = Y × R

0|1 where the last factor is under-
stood as a reversed parity Lie algebra u1. Then we have

Ω∗
U1

(Ỹ ) = (Ω∗(Y ))U1 ⊗ C[σ] ⊗ C[λ, η],

where the de Rham differential QU1 acts as follows:

QU1y
i = ψi, QU1ψ

i = −σvi(y), QU1λ = η, QU1η = 0.

Let ω(y, ψ, σ) be a representative of a cohomology class in H∗
U1

(Y ) and
ω̃ is a representative of the corresponding class in H∗(Y/U1) according to
identification (F.7). Then the following identity holds

(F.9)
∫

Y/G
ω̃ =

1
2π

∫

ΠTY×R×R1|1

dy dψ dσ dλ dη

Vol(U1)
ω(y, ψ, σ) eıQU1 (λvi(y)ψi),

where (λ, η) are local coordinates on R
1|1. The identity (F.9) can be derived

replacing ω(y, ψ, σ) by a representative of the same class in H∗
U1

(Y ) which
does not contain σ. Then integrating over λ, η and σ in the right hand side
of (F.9) one obtains the left hand side of (F.9).

Now we can apply (F.4) and (F.9) to the P
� obtained via Hamiltonian

reduction of C
�+1. Let us introduce the following variables:

(F.10) (ϕi, ϕ̄i, χi, χ̄i, σ), (ξ,H), (λ, η)

and the action of the U1-equivariant de Rham differential QU1 is given by

QU1ϕ
i = χi, QU1χ

i = −ıσϕi, QU1ξ = H, QU1H = 0,
QU1λ = η, QU1η = 0.

We take as a function s(ϕ) on X = C
�+1 the shifted momentum

s(ϕ) = μ(ϕ) + 1
2r

2.

Then we have

∫

s−1(0)/U1

ω̃ =
∫

ΠTY×R×R2|2

d2ϕd2χdσ dλ dξ dη dH

(2π)2Vol(U1)
ω(ϕ, ϕ̄, χ, χ̄, σ)

(F.11)

× eıQU1 (λvi(ϕ)χi+ξs(ϕ)),
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where Y = s−1(0), s−1(0))/U1 = P
� according to (F.2) and we take t = 0 in

(F.4). We consider the following cohomology class:

(F.12) ω̃ = eac1 ∈ H∗(P�), a ∈ R,

where c1 is a first Chern class of the line bundle O(1) on P
�. As it was

discussed above c1 can be represented by σ in Cartan model of equivariant
cohomology. Thus we can chose ω = eaσ as a representative of (F.12). Thus
we have the following integral representation

∫

P�

eac1 =
1

(2π)2

∫

ΠTY×R×R2|2

d2ϕd2χdσ dλ dξ dη dH

Vol(U1)
eaσ

(F.13)

× exp

⎛

⎝ıH

⎛

⎝−1
2

�+1∑

j=1

ϕjϕ̄j +
1
2
r2

⎞

⎠+
ıξ

2

�+1∑

i=1

(ϕiχ̄i + ϕ̄iχi)

− η
�+1∑

i=1

(ϕiχ̄i − ϕ̄iχi) − 2λ

⎛

⎝ıσ
�+1∑

j=1

|ϕi|2 +
�+1∑

i=1

χiχ̄i

⎞

⎠

⎞

⎠ .

Define an action of U�+1 on C
�+1, so that jth factor in the diagonal subgroup

U �+1
1 ⊂ U�+1 acts as follows

eıαj : ϕi −→ eıαjδij ϕj .

This action is Hamiltonian with respect to (F.1) and the corresponding
momenta are given by

μj(ϕ) = −1
2 |ϕj |2.

The action of U�+1 descends to the Hamiltonian action on P
� obtained by

the Hamiltonian reduction (F.2). Corresponding momenta are given in inho-
mogeneous coordinates wj = ϕj/ϕ�+1, ϕ�+1 
= 0 by

μP
�

j = −r
2

2
|wj |2

1 +
∑�

j=1 |wj |2
, j = 1, . . . �,(F.14)

μP
�

�+1 = −r
2

2
1

1 +
∑�

j=1 |wj |2
.(F.15)

Let cU�+1

1 be a U�+1-equivariant extension of the first Chern class c1 of the
line bundle O(1) on P

�. We would like to express the integral of exp(acU�+1

1 )
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over P
� in terms of an integral over larger space generalizing (F.13) to

U�+1-equivariant setting. To simplify the presentation we use the standard
properties of equivariant cohomology to replace the calculations in U�+1-
equivariant cohomology by equivalent calculations in equivariant cohomol-
ogy with respect to a diagonal subgroup U �+1

1 ⊂ U�+1 with additionally
imposed condition of an invariance with respect to the Weyl groupW = S�+1

of U�+1.
In the following, we need a U�+1-equivariant version of (F.13) which

can be obtained straightforwardly generalizing the previous constructions.
Thus we just state the main identity in this case. Consider the same set
of coordinates as in (F.10) but with the following equivariant de Rham
differential Q given by

QU�+1ϕ
i = χi, QU�+1χ

i = −ı(σ + σj)ϕi, QU�+1ξ = H,

QU�+1H = 0, QU�+1λ = η, QU�+1η = 0,

where (σ1, . . . , σ�+1) are elements of the Lie algebra of U �+1
1 . The expression

for the U �+1
1 equivariant version (F.13) is given by

∫

P�

exp
(
ac
U�+1

1
1

)

(F.16)

=
1

(2π)2

∫

ΠTY×R×R2|2

d2ϕd2χdσ dλ dξ dη dH

Vol(U1)
eaσ

× exp

⎛

⎝ıQU�+1

⎛

⎝ξ

⎛

⎝−1
2

�+1∑

j=1

ϕjϕ̄j +
1
2
r2

⎞

⎠+ ıλ

�+1∑

j=1

(ϕjχ̄j − ϕ̄jχj)

⎞

⎠

⎞

⎠ ,

where

QU�+1

⎛

⎝ξ

⎛

⎝−1
2

�+1∑

j=1

ϕjϕ̄j +
1
2
r2

⎞

⎠+ ıλ
�+1∑

j=1

(ϕjχ̄j − ϕ̄jχj)

⎞

⎠

= H

⎛

⎝−1
2

�+1∑

j=1

ϕjϕ̄j +
1
2
r2

⎞

⎠+
1
2
ξ

�+1∑

j=1

(ϕjχ̄j + ϕ̄jχj)

+ ıη
�+1∑

j=1

(ϕjχ̄j − ϕ̄jχj) − 2λ
�+1∑

j=1

(σ + σj)|ϕj |2 + 2ıλ
�+1∑

j=1

χjχ̄j .
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Proposition F.1. Let (σ1, . . . , σ�+1) be an element of the Lie algebra of
U �+1

1 . The U �+1
1 -equivariant symplectic volume (F.16) has the following inte-

gral representation

(F.17)
∫

P�

exp
(
r2

2
c
U�+1

1
1

)

= (2π)�−1
∫

R−ıε
dHe

ır2H

2
1

∏
(ıH + σj)

,

where ε > max(−σj), j = 1, . . . , �+ 1.

Proof. Integrating over H, λ and σ, we obtain the following:

〈eaσ〉 =
1
2π

∫
d2ϕd2σ dξ dη

Vol(U1)
eaσ(ϕ,χ) δ

⎛

⎝−1
2

�+1∑

j=1

|ϕj |2 +
1
2
r2

⎞

⎠ 1
2r2

(F.18)

× exp

⎧
⎨

⎩

(
ıξ

2
− η

) �+1∑

j=1

ϕjχ̄j +
(
ıξ

2
+ η

) �+1∑

j=1

ϕ̄jχj

⎫
⎬

⎭
,

where

σ(χ, ϕ) =
1
r2

⎛

⎝ı
�+1∑

j=1

χjχ̄j −
�+1∑

j=1

σj |ϕj |2
⎞

⎠.

Here, we use the following normalization of the integration measure:

d2ϕd2χ =
�+1∏

j=1

ı

2
dϕjdϕ̄j

�+1∏

j=1

2
ı
dχjdχ̄j .

It is useful to reintroduce the variable H by writing the first delta-function
in (F.18) in the integral form. Then integrating over odd variables dξ dη and
d2χ and taking into account that Vol(U1) = 2π we arrive at

(F.19)

〈eaσ〉 =
1

(2π)2

(
2a
r2

)� ∫

dH

∫ �+1∏

j=1

ı

2
dϕjdϕ̄j e+ ır2

2
H e−

1
2

∑
ϕj(ıH+ 2a

r2 σj)ϕ̄j

.

For a finite-dimensional Gaussian integral, we have

(F.20)
∫

CN

e−
1
2

∑N
i,j=1 z̄iAijzj

N∏

j=1

ı

2
dzj dz̄j =

1
det A/2π

,
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where the matrix A has positive eigenvalues. More generally, the Gaussian
integral (F.20) for A having complex eigenvalues aj such that Re(aj) ≥
0, j = 1, . . . , N is defined as a limit of the integral for A having complex
eigenvalues aj such that Re(aj) > 0, j = 1, . . . , N expressed through (F.20).
Now assuming Re(ıH + 2a

r2 σj) > 0, j = 1, . . . , �+ 1 and taking integral over
ϕ, we obtain

(F.21) 〈eaφ〉 =
(

2a
r2

)�
(2π)�−1

∫

R−ıε
dHe

ır2H

2
1

∏
(ıH + 2a

r2 σj)
,

where ε > max(−2a
r2 σj), j = 1, . . . , �+ 1. Taking a = r2

2 , we finally obtain

(F.22) 〈e r2

2
φ〉 = (2π)�−1

∫

R−ıε
dHe

ır2H

2
1

∏
(ıH + σj)

,

where ε > max(−σj), j = 1, . . . , �+ 1. This completes the proof of the
proposition. �

Finally, let us provide a reformulation of the integral representation of
the integrals of the equivariantly closed forms over P

� that does not include
integrations over odd variables.

Lemma F.1. Let σj > 0, j = 1, . . . , �+ 1. The following identity holds:

(F.23)
1
2π

∫

C�+1

δ
(
μU(1) + r2/2

)
e(ω

C�+1+
∑ �+1

j=1 σjμj) =
∫

P�

e(ω
P�+

∑ �+1
j=1 σjμP

�

j ) ,

where ωP� is given by (F.3) and the reduced Hamiltonians μP
�

j are given by
(F.14) and (F.15).

Proof. This can be deduced from the previous considerations but allows
simple direct derivation. Let us introduce new variables wj = ϕjϕ�+1,
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j = 1, . . . , � and t = |ϕ�+1|2, θ = 1
2ı ln

ϕ�+1

ϕ̄�+1
, so that ϕ�+1 =

√
t eıθ. Then we

have

1
2π

( ı

2

)�+1
∫

C�+1

�+1∧

i=1

dϕi ∧ dϕ̄i δ
(1

2

�+1∑

i=1

|ϕi|2 − r2

2

)
e
∑ �+1

j=1 σjμj

=
r2�

2π

( ı

2

)� ∫ 2π

0
dθ

∫ ∞

0
dt t�

∫

C�

∧�
n=1(dwn ∧ dw̄n)
1 +

∑ |wn|2

× δ
(
t− r2

1 +
∑ |wn|2

)
e
∑ �+1

j=1 σjμj

= r2�
( ı

2

)� ∫

C�

∧�
n=1(dwn ∧ dw̄n)

(
1 +

∑ |wn|2
)�+1

e
∑ �+1

j=1 σjμP
�

j .

(F.24)

Taking into account that

ω�
P�

�!
= r2�

( ı

2

)�
∧�
n=1(dwn ∧ dw̄n)

(
1 +

∑ |wn|2
)�+1

,

we obtain the identity (F.23). �

Corollary F.1. Let C
�+1 = C

n1 ⊕ · · · ⊕ C
nk ,

∑k
a=1 dim(Va) = �+ 1 be a

decomposition of the symplectic space vector space (C�+1,Ω), where symplec-
tic structure is given by (F.1) and (ϕn1+···na−1+1, . . . , ϕn1+···na

) are coordi-
nates on C

na. Let U �+1
1 act on C

�+1 diagonally. The action is Hamiltonian
and let μj, j = 1, . . . �+ 1 be the momenta corresponding to the action of
j-th factor (U1)j. Let Uk1 ⊂ U �+1

1 act on C
�+1 so that the a-th (U1)a acts

non-trivially only on C
na by multiplication on complex numbers. Let U1

be diagonally embedded in Uk1 . Let P(C�+1) be a Hamiltonian reduction of
C
�+1 over U1 with momentum x and P(Cna) be a Hamiltonian reduction of

C
na over (U1)a with the momentum xa. Then the following relation between

Uk-equivariant integrals holds
∫

P(C�+1)
eωP(C�+1)(x)+

∑ �+1
j=1 σjμ

P(C
�+1)

j

=
1
2π

∫

dx1 · · · dxk δ
⎛

⎝x−
k∑

j=1

xj

⎞

⎠

×
k∏

a=1

2π
∫

P(Cna)
exaωP(Cna )+

∑n1+...+na
i=n1+...na−1+1 σiμ

P(C
na )

i ,
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where ωP(Cna ) is a standard Fubini–Studi symplectic form on P(Cna) multi-
plied by xj and μP(Cna )

j is a momentum for the action of (U1)j.

Proof. This identity straightforwardly follows from Lemma F.1 and the fol-
lowing identity:

∫

dx1 · · · dxk
k∏

j=1

δ(μj + xj)δ

⎛

⎝x−
k∑

j=1

xj

⎞

⎠ = δ

⎛

⎝
k∑

j=1

μk + x

⎞

⎠ .

�
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