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Parabolic Whittaker functions and topological
field theories I

ANTON GERASIMOV, DIMITRI LEBEDEV AND SERGEY OBLEZIN

First, we define a generalization of the standard quantum Toda
chain inspired by a construction of quantum cohomology of partial
flags spaces GLyy1/P, P a parabolic subgroup. Common eigen-
functions of the parabolic quantum Toda chains are generalized
Whittaker functions given by matrix elements of infinite-dimen-
sional representations of gl,, ;. For maximal parabolic subgroups
(i.e., for P such that GLsy1/P =P*) we construct two different
representations of the corresponding parabolic Whittaker functions
as correlation functions in topological quantum field theories on a
two-dimensional disk. In one case the parabolic Whittaker func-
tion is given by a correlation function in a type-A equivariant
topological sigma model with the target space P‘. In the other
case, the same Whittaker function appears as a correlation func-
tion in a type-B equivariant topological Landau—Ginzburg model
related with the type-A model by mirror symmetry. This note is a
continuation of our project of establishing a relation between two-
dimensional topological field theories (and more generally topo-
logical string theories) and Archimedean (co-adic) geometry. From
this perspective the existence of two, mirror dual, topological field
theory representations of the parabolic Whittaker functions pro-
vide a quantum field theory realization of the local Archimedean
Langlands duality for Whittaker functions. The established rela-
tion between the Archimedean Langlands duality and mirror sym-
metry in two-dimensional topological quantum field theories should
be considered as a main result of this note.

0. Introduction

In [17,18] we propose two-dimensional topological field theories as a proper
framework for a description of the Archimedean completion of arithmetic
schemes (oco-adic geometry according to [28]). In particular, we give a repre-
sentation of local Archimedean L-factors (we include local epsilon-factor
in the definition of the L-factors) in terms of two-dimensional topologi-
cal field theories. It is well-known that local L-factors allow two types of
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constructions — “arithmetic” construction based on representation theory
of the Weil-Deligne group of the local field and “automorphic” construction
relying on representation theory of reductive groups over local field (see, e.g.,
[1,6,7]). The equivalence of these constructions for various types of L-factors
is a subject of the local Langlands duality. In an interpretation suggested
in [17,18] the “arithmetic” construction of local Archimedean L-factors is
naturally identified with a type-A topological field theory description [17] in
terms of equivariant volumes of spaces of holomorphic maps of a disk into
complex vector spaces. The “automorphic” construction of the same local
L-factors is realized using a type-B topological field theory via periods of
holomorphic forms [18]. The Archimedean Langlands duality between these
two constructions of the local Archimedean L-factors appears as a mirror
duality between underlying type-A and type-B topological sigma models.

The duality between two constructions of L-factors can be extended to
a duality between two constructions of the Whittaker functions. In the non-
Archimedean case, this duality manifests in the existence of the Shintani—
Casselman—Shalika (SCS) formula [8,31] for the non-Archimedean Whit-
taker functions along with a standard realization of the Whittaker functions
as matrix elements of representations of reductive groups G over local non-
Archimedean fields. According to [8,31] the non-Archimedean Whittaker
functions can be identified with characters of finite-dimensional represen-
tations of Langlands dual groups “G. In [16] we propose a g-version of the
classical SCS formula providing a g-version of the Langlands duality pattern
for the g-deformed Whittaker functions. In appropriate limit the g-version
of SCS formula reduces to the non-Archimedean one. The limiting case pro-
vides an Archimedean analog of the results of [8,31]. This leads to an explicit
realization of the Langlands duality pattern for the Archimedean Whittaker
functions.

In this note, the approach of [17, 18] to a construction of local
Archimedean L-factors in terms of topological field theories is generalized
to a class of Whittaker functions introduced below. Recall that standard
gly1-Whittaker functions are common eigenfunctions of quantum gl,, -
Toda chain Hamiltonians and according to [21] appear in a description of
S x Uyyq-equivariant Gromov-Witten invariants of complete flag spaces
GLy11(C)/B, B a Borel subgroup. In the first part of this note, we introduce
a class of generalized gl, ,,,-Whittaker functions associated with a parabolic
subgroup P C G'Ly4,(C). We conjecture that a P-parabolic gl ,,,-Whittaker
function describes S' x Uy p-equivariant Gromov-Witten invariants of
the partial flag space GLgy,(C)/P. The parabolic gl,,,,-Whittaker
functions are common eigenfunctions of quantum Hamiltonians of gen-
eralized quantum Toda chain. We explicitly check, in the case of
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GLy11m(C)/P = Gr(m, ¢+ m), that the corresponding Toda chain recovers
Astashkevich—Sadov—Kim description [2, 27] of quantum cohomology of
Grassmannian Gr(m, ¢+ m). In the case m = 1, we explicitly verify that
the corresponding parabolic Whittaker functions describe equivariant quan-
tum cohomology of Gr(1,£4 1) = P’

In the second part of this note, we propose two representations of the
parabolic Whittaker functions associated with maximal parabolic subgroup
P (i.e., such that GLy,1(C)/P = P*) as correlation functions in two-dimen-
sional topological fields theories on a disk. The first representation (see The-
orem 2.1) is given in terms of an equivariant type-A topological sigma
model with a target space P¢ and provides an integral representation of the
parabolic Whittaker function of the Mellin—Barnes type. In this represen-
tation, the Whittaker function arises as an equivariant volume of a space
of holomorphic maps of the disk into projective space P¢ and thus, follow-
ing [17], shall be considered as an “arithmetic” construction of the parabolic
Whittaker function. This representation provides an Archimedean analog of
SCS formula [8,31] for the parabolic Whittaker functions. The second repre-
sentation is given in terms of a type-B topological Landau—Ginzburg model
on a disk with a target space C*2 supplied with appropriate superpoten-
tial (see Theorem 3.1). In this description, the parabolic Whittaker function
is given by a holomorphic period [19] (see also [4,9,20]). In contrast with
the type-A model representation the correlation functions in B model can
be reduced to certain finite-dimensional integrals with simple integrands.
Thus obtained finite-dimensional integral representation naturally arises in
a matrix element interpretation of the Whittaker function according to [14].
Hence, in analogy with [18], the type-B topological field theory represen-
tation shall be considered as an “automorphic” /representation theory con-
struction of the parabolic Whittaker functions. The discussed type-A and
type-B topological quantum field theories are related by mirror transfor-
mation. This leads to interpretation of the Archimedean Langlands dual-
ity between “arithmetic” and “automorphic” constructions of the parabolic
Whittaker functions as a mirror duality between underlying topological field
theories.

Let us remark that pairs of Langlands dual Lie groups already appear
in various instances of mirror symmetry (see, e.g. [25]). In particular con-
struction of a mirror dual description of type-A topological sigma models
associated with flag spaces G/B in terms of eigenfunctions of the quantum
Toda chains associated with the dual Lie groups GV [21,22]. In this paper we
establish a relation of these results with the local arithmetic (Archimedean)
Langlands duality. Note that the global geometric Langlands correspondence
due to [5] allows an interpretation in terms of S-duality in four-dimensional
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topological Yang—Mills theories, which can be reformulated as a mirror
symmetry of the associated moduli spaces [26]. It would be interesting to
understand a possible relation between local arithmetic and geometric Lang-
lands dualities using quantum field theory interpretation.

Finally, let us note that the results of this note can be generalized to
the case of general parabolic Whittaker functions. For a general parabolic
subgroup, the corresponding parabolic version of the quantum gl,,,-Toda
chain provides a new interesting example of a quantum integrable system
and will be considered elsewhere. One should also stress that explicit calcu-
lations of correlation functions in topological field theories on non-compact
manifolds is an interesting subject by itself and undoubtedly deserves further
attention. According to the standard lore boundary conditions in topolog-
ical field theories encode geometry of topological branes in a target space.
It would be interesting to compare the choice of the boundary conditions
used in this note with an equivariant generalization of the standard brane
boundary conditions. We are going to clarify this relation elsewhere.

The plan of the paper is as follows. In Section 1, we introduce parabolic
generalizations of the standard gl,,,,-Whittaker function as particular
matrix elements of infinite-dimensional representations of Lie algebra gly, ,,,.
In Section 2, we construct a representation of the parabolic gl,, ;-Whittaker
functions associated with a maximal parabolic subgroup as correlation func-
tions of a type-A topological sigma model on a disk with a target space P,
In Section 3, we provide a mirror dual representation of the same Whittaker
function as a correlation function in a type-B topological Landau—Ginzburg
model on a disk. In Section 4, we give a heuristic derivation of the result
of Sections 2 and 3. In Section 5, we discuss directions of further research.
Finally, in Appendixes the proofs and some technical results are given.

1. Parabolic Whittaker functions

In this section, we introduce a generalization of gl,,,,-Whittaker functions
associated with a parabolic subgroup P C G L1, (C). The standard gl,,,-
Whittaker functions are associated with Borel subgroups B C GLyy,(C)
and are common eigenvalues of quantum gl ,,,-Toda chain Hamiltonians (for
standard facts on quantum Toda chains see, e.g., [30]). The classical Whit-
taker functions are relevant to a description of (equivariant) Gromov—Witten
invariants of flag spaces G/B [21]. The parabolic generalizations of Whit-
taker functions introduced below are common eigenvalues of generalized
quantum Toda chains defined below. In the next sections, we demonstrate
that the parabolic Whittaker functions describe equivariant Gromov—Witten
invariants of partial flag spaces. In this section, we restrict considerations to
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the case of the parabolic subgroup Py, ¢4 such that GLy1,,(C)/Pp, p4m =
Gr(m, ¢ + m) and refer to the corresponding Whittaker functions as (m, £ +
m)-Whittaker functions. The general case follows basically the same pattern
and will be treated elsewhere.

First, we recall the representation theory construction of the standard
gly1-Whittaker functions. Let E;;, 4,5 = 1,...,¢+ 1 be the standard basis
of the Lie algebra gl,, . Let Z(Ugl,, 1) C Ugl, | be the center of the uni-
versal enveloping algebra Ugl,, ;. Let B+ C GL;y1(C) be upper-triangular
and lower-triangular Borel subgroups and N1 C By be upper-triangular
and lower-triangular unipotent subgroups. We denote by = Lie(By) and
ny = Lie(N4) their Lie algebras. Let h C gl,,; be a diagonal Cartan subal-
gebra and Syy1 be the associated Weyl group of GLy41. Using the Harish—
Chandra isomorphism of Z(Ugl,, ;) with the Weyl group invariant subalge-
bra of the symmetric algebra of the Cartan subalgebra h we identify central
characters with homomorphisms ¢ : C[hy, ..., hgy1]%+ — C of an algebra
of Syyi-invariant polynomials of the generators of §h into complex numbers.
Let my :Ugly 1 — End(Vy), V) = IndZﬁ[f“ be a family of principal series
representations of Ugl,,; induced from one-dimensional representations of
Ub_ such that images of the symmetric polynomials of h; are symmetric
polynomials of A\; € C, A = (A1,...,Aep1) € CFL Let V4 be a dual module
supplied with induced action of Ugly}} (universal enveloping algebra of g[;%
obtained by inverting the signs of the structure constants of gl,, ;). Denote
(,) the pairing between 1} and V. We suppose that the action of the Car-
tan subalgebra b in representation V) can be integrated to the action of the
corresponding Cartan subgroup H C GLy1(C).

According to Kostant, the gl,, ;-Whittaker function can be defined as a
matrix element

(1.1) U (@1, ...y app1) = e PO (Yp | my(e7 2 =1 BB [yhg),

where the vectors (¢r| € V) and [¢r) € V) provide one-dimensional repre-
sentations of N_ and N, correspondingly

(1.2)  (WulEit1: = —(WLl,  FEiitilYr) = [Yr), i=1,...,¢,

and pr = (1/2)({ +2—2k), k=1,...,£+ 1 are the components of the vec-
tor p in R“*!. The standard considerations (see, e.g., [30]) show that matrix
element (1.1) is a common eigenfunction of a family of commuting differen-
tial operators descending from the action of the generators of Z(Ugl,, ) in
V. These differential operators can be identified with quantum Hamiltoni-
ans of gl,, ;-Toda chain.
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Below we propose a generalization of the gl ,,,-Whittaker functions (1.1)
(for convenience we slightly change notations replacing ¢ + 1 by ¢ + m). Let
Py, ¢+m be a parabolic subgroup of GLjy,(C) such that the correspond-
ing Levi factor is GL;,(C) x GLy(C). The corresponding partial flag space
GL4(C)/ Py g+m is isomorphic to Grassmannian Gr(m, £ + m). The asso-
ciated Whittaker function is then defined as the following matrix element
of the principle series representation V) = IndZ(EIHT”). Let us associate with
Py, ¢4+m a decomposition of the Borel subalgebra 7b+ C gl

b, — fmotm) g ngrm,@rm)

Y

with the commutative subalgebra h(7-4+m) b, generated by

(1.3)

Hy = E11 + -+ Enm, Hy=FEv, 2<k<m,

Hm+k = Eerk,Zera 1< k < l— 17 HZer = Em—l—l,m—i—l + -+ E£+m,é+m7
and the subalgebra nﬁ”’”m) C b, given by

v
14 2™ =By s Brnit; Bt Brin 2 <k < 0+m —1;
Ej7j+1,2 S] §€+m—2>.

Note that dimh™™ = rank glpy, =C+m and dim ngml—’_m) =+
m)(f +m —1)/2. Let H™™) and NJ(rm’Hm) be the Lie groups correspond-

ing to the Lie algebras b+ and nim’“m). An open part Cnger of

GLgyp, allows the following analog of the Gauss decomposition:
Y m m m,ﬁ m
(1.5) GLpm = N_ HOmEHm) {mtem),

Definition 1.1. The Whittaker vectors (1| € V3, [¢Yr) € Vi are defined
by the following conditions: B

(1.6) (UL Engin =R WL, 1<n<l4+m-—1,

Eplyr) =0, 2<k<l+m-—1,

Erky1lvr) =0, 2<k<l+m-2,
(1.7) Eymt1lyr)) =0, 1#1,

B vmltr) =0, m# 1,

Bugembin) = (<1 L),

where €(€, m) is an integer number and h € R.



Parabolic Whittaker functions and topological field theories I ~ 141

Here, in comparison with (1.2), we introduce additional parameter A
to make a contact with the results of other Sections ((1.2) corresponds to
h =1). Note that Equations (1.6) define a one-dimensional representation
(11| of the Lie algebra n_ of strictly lower-triangular matrices and Equations

(1.7) define a one-dimensional representation of nim’ﬂm).

Definition 1.2. The (m,?+ m)-Whittaker function associated with the
principal series representation (WA, VA) is defined as the following matriz
element:

(1.8) W () = e P @ een) (g |y (g(2) [¥r).

where the left and right vectors solve Equations (1.6) and (1.7) respectively
and p1 = ({+m —1)/2. Here g(z) is a Cartan group valued function given
by

l+m
(1.9) g(x) = exp {— Z iUsz} )

=1

where the generators H;, i = 1,...,(¢ + m) are defined by (1.3).

Similar to the classical Whittaker functions (m, ¢ + m)-parabolic Whit-
taker functions are naturally common eigenfunctions of a family of com-

muting differential operators. Let us define a set of mutually commuting
(m,L+m)

differential operators H, ,k=1,...,(+m) by the following condi-
tions
(1.10) H (2,0,) - 0T (1)

— hk e—Pl($1—CC£+r:) <U)L’ ’n’A(Ck‘. g(l’)) ’Q,Z)R>,

where C, € Z(Ugly,,,) is a Casimir element of the center acting in V) by
multiplication on kth elementary symmetric polynomial oy (\) of the vari-
ables \;, i =1,...,(¢ 4+ m). Thus, Whittaker function \Pg\m,um) (z) tauto-
logically satisfy the following system of differential equations

(1.11) H ™ (,8,) - W ()

= o, (W) T (@), k=1,...,(C+m),
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Remark 1.1. The set of mutually commuting differential operators
H(m Hm) k=1,...,({+m) defines a quantum integrable system gener-

ahzmg the standard quantum gl,, ,-Toda chain. The Whittaker functions

\I'E\m’Hm) (z) provide a solution of the corresponding eigenfunction problem.

For the first two lowest degree differential operators H(m Am) H(m )

?

we have
+m
Ci=) Ej.
7j=1
(1.12) - .
Cy =Y (EuEj; — BjiEi) = Y piEjj + 0a(p),
i<j j=1

where p=(p1,...,pe1m) With pg = £+m+1 —kk=1,....,0+m and
o2(p) = Zi<j pipj. These operators act in the representation V, via mul-
tiplication on

l+m
aA) =N, )= D N
j=1 1<i<j<t+m

The explicit form of the differential operators H; and Hso corresponding to
C1 and C5 is as follows.

Proposition 1.1. The following differential operators satisfy FEquations

(1.10)
(1.13)
(mttm) (. 5y = _p 9 4 0
Hl (x7 ) axl 8x£+m7
2 m 2 2
(m,f+m) 9 0 0 0
H =" =—+ T ThTq
2 0210%¢1m P k@xlﬁxk 2; K 0x,0x,
-1 82 -1
_me+naxm+n3wz+m - Z Tm+nTm+b

1<n<b

+Z Pk) Thg

axm—l—’namerb
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+ h{(l - 6m,1)% - (1=, 1)L

15) ) 8x€+nL1
m—1 -2
0 0
+ x — X
2;: k8$k+1 22; m+n+1a nsz}

4 (_1)55\1+€(f,m) (l'm)l_&m’l(:L’m+1)1_6z'1 exl_xwrm
h2
- ﬂ(£+m—1)(£+m—2)(€+m—3).

143

Proof. The case of H(m’€+m) is trivial and the proof of the expression for

7{gn€+nﬁ

is given in Appendix A.

O

Corollary 1.1. The (m, ¢+ m)-parabolic Whittaker function (1.8) satisfies
the following equations:

(1.14)

where

l+m

}{Ynl+n”($,6%) ”1£+"1 j{: A q}n1£+nl )
E—i—m

Hém,um) (z, ax)q](gn,wrm) (z) = Z AMJ“P(Am’”m) (2),
i<j

Hgm,Hm)(%ax) and H(m Hm)(m 0xz) are given by (1.13).

Example 1.1. For m = 1 the quadratic Hamiltonian (1.13) has the follow-

ing form:
(1.15)
2
(1,6+1) 2 O 0
=h a
Hy 0210241 Zxk a$k3$£+1 Z Teal 00z,
2<k<a
V4
Z 2 } :
pk ﬂfkh - +h87;17£ h $]+1
k=2
h2
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For ¢ =1 the quadratic Hamiltonian (1.13) reads as follows:

(1.16)
2

6x18xk

— zmz xkxah2 >

) gz O 5
2
, 2 0x,0x,

- 8.%'1 8xm+1

m m—1
0 0 0
+ P =— 4+ h—+h > =z
S w5 g 3 g

2

ﬂm(m —1)(m—2).

_1)5(m71)$m e$1*$m+1 _

—~

We conjecture that (m, £+ m)-parabolic Whittaker functions describe
equivariant Gromov—Witten invariants of the Grassmannian Gr(m, ¢ + m) =
GLy41(C)/ P g+m thus generalizing the Givental description [21] of ST x
Uyy1-equivariant Gromov—Witten invariants of the complete flag spaces
GLy+1(C)/B. We support our conjecture by matching it with a description
of quantum cohomology of Gr(m, ¢+ m) due to Astashkevich-Sadov—Kim
[2, 27]. To establish a relation with [2, 27] let us define a quantum
L-operator associated with the quantum integrable system (1.10) as a
matrix-valued differential operator satisfying the relation

(1.17) L(w,0y) e P @) (g |y (g(2)) [Yom)
/+1
=Y ey e T (g (Byyg(2) [m),
ij=1
where (€i;)kn = dikdjn, 1,7, k,n=1,...,({ +m) are matrix unites.

Proposition 1.2. The matriz L = ||L;;|| of the quantum L-operator (1.17)
s given by

Liyij=1 1<j<l+m-—1,
Liysj=0, 1<j<tl+m—-1, 2<s</l+m-—j,

4 -1 &
L1 = *53:;:1 — hl + Z-’Ekhaxk, L1 = *haxka 2<k< m,
2 k=2 ’
Lipij=—xkh0y,, 2<k<m,0<j<m-—k,

Lignej = —(=1) My jenmm, 1<j<e-1,
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(1.18) Lipsm = <_1)€(f7m) o1 Tem
Limej = —(~1) Mgz, etn-tn 2<k<m, 1<j<l-1,
Liprm = (1) EMgeh=rem 2 < <m,
Loinptm = —hOy,, .., 1<n<l—1,

£m+n,m+n+j = xm+n+jhamm+n? 1 S n S g - 27 O S ] S g —n — 17
/—1

l+m—1
Lovmesm = —hy,, +h——"F— — kzl T khOy, .,
Proof. The proof is given in Appendix B. O

The classical limit L of the operator (1.17) is defined by replacing deriva-
tives by the classical momenta —h% — pj and taking the limit i — 0. Let
us specialize the resulting matrix function L(x1,...,Zesm; P1,---sDe+m) Dy
taking x9 = -+ = 2¢4,—1 = 0. This way we obtain the matrix L = ||L;;]|
with the following entries:

Lj+1,j:17 1§]§€—l—m—1,
Ll,k :pkH 1 S k S m)
Lm—i—n,ﬁ—i—m =Pmtn, 1<n< l,

Ll l+m — (_1)6(817‘"‘) exl—$e+m‘

(1.19)

It is easy to verify that thus defined matrix L = ||L;;|| coincides (up to
a conjugation by a simple matrix) with the matrix entering a description
of small quantum cohomology of Gr(m,¢+ m) [2,27]. This supports the
conjecture that (m, ¢ + m)-Whittaker functions are relevant to a description
of S* x Upym-equivariant quantum cohomology of Gr(m, £ 4 m).

In the rest of the note we will consider only the case of m =1 and
arbitrary £. In this case, the conjectural relation between solutions of the
generalized Toda chain given by (1,¢+ 1)-Whittaker functions and S! x
Uprm-equivariant Gromov—Witten invariants of Pt = GLgy1/P1 41 can be
proved as follows. For m = 1, there is a well-known description of S! x
Upy1-equivariant quantum cohomology of Gr(1,£ 4 1) = P’ in terms of the
functions given by the following integral expressions (see, e.g. [19]). Let us
introduce a modified I'-function

(1.20) [ (z|w) = wiT (5) :
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Then
¢ 1 [ ¢
(1.21)  Dy(x) = / I dtjexp - S Aitj A [z =Dt
Cji=1 j=1 j=1
¢ 14
—+ Z etj —+ ex_zjzl tj
j=1
1 0+1
(1.22) =57 . dH e w*H [T T1(H - X))|h)
—1€ ]:1
satisfies the differential equation
l+1
(1.23) [[(=10: = X)) —e” | ®p(z) = 0.
j=1

Here € > max(\;) j=1,...,£+1 and C is a slightly deformed subspace
R? C C* making the integral (1.21) convergent. For £ = 1 the function (1.21)
is the classical gly,-Whittaker function.

Theorem 1.1. The (1,¢+ 1)-parabolic Whittaker function specialized to
x=x1 and z; =0, i # 1 and for e(1,{+ 1) = @ + 1 coincides with the
generating function (1.21) of S* x Upy1-equivariant quantum cohomology of

P, That is

{41

(1,6+1) . 1 _ioH '
(t24) v (20,...,0) = M/R_%dHe po jl;IlI‘1<zH . Aj|h),
where A € R and € > max()\;), j=1,...,0+1.
Proof. The proof is given in Appendix C. O

The integral representation (1.22) arises naturally when the matrix ele-
ment (1.8) for m = 1 is represented by using the Gelfand—Zetlin realizations
of the infinite-dimensional representations of Ugl,,; [13] (similar relation
holds for the integral representation (1.21) and the representation of Ugl,
constructed in [14]). Note that one has an obvious symmetry Gr(m, ¢ +m) =
Gr(¢,0 4+ m). The compatibility of our conjecture with this isomorphism is
explicitly checked for m =1, £ = 2 in Appendix D.
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In the next sections, we propose an identification of the generating
functions given by the integral representations (1.22), (1.21) with particu-
lar correlation functions in type-A and type-B equivariant two-dimensional
topological sigma models on a disk.

2. Type-A topological sigma model with a target space P*

In this section, we define a class of correlation functions in S x Upyi-
equivariant type-A topological sigma model on a disk with a target space P
and calculate the correlation functions explicitly. The resulting expressions
coincide with the integrals (1.21). This provides an infinite-dimensional inte-
gral representations of (1, + 1)-Whittaker functions (1.8) in terms of topo-
logical type-A equivariant sigma models on a disk. As a background material
for two-dimensional topological field theories and functional integration of
the Gaussian measures over linear superspaces see e.g. [11].

2.1. Topological gauged linear sigma model

We start recalling a gauge linear sigma model realization of the sigma-model
with the target space P’ (see, e.g. [29,34,35]). Consider a type-A topological
linear sigma model on a Riemann surface X with the target space C/*1. Let
(2, Z) be local complex coordinates on 3. We pick a Hermitian metric A on
¥ and denote v/h d?z the corresponding measure on 3. The complex struc-
ture defines a decomposition d = 9 + 9, 9 = dz 0,, 0 = dz 05 of the de Rham
differential d acting on differential forms on 3. Let K and K be canonical
and anti-canonical bundles over 3. Let TeCl! = THOCHT @ TOICHL he a
decomposition of the (trivial) complexified tangent bundle to C**! induced
by a standard complex structure on C1. We denote linear complex coordi-
nates on C/*! by (¢7, @’). Consider a two-dimensional topological quantum
filed theory based in the maps ® : ¥ — C*! with the action functional

(2.1)
S = /2 d?2vVh 6V

l+1
:/ 4>z h*Vh g (tFIF, +1F10:07 —1FL0,@7 +wpl 9,57 — whl 05x7),
5 -
j=1
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where

{41

- [t . . . )
poie S (52 () ot (G20

j=1
and BRST [11] transformations are given by

o %@ = ol =0 dwi=F &Fi=0,
. So@’ =X/, Sox) =0, ol =F., 6&F!=0.

Here the commuting fields F' and F are sections of K @ ®*(T%'C**1!) and
of K® ®*(T'9C*!) correspondingly. The anticommuting fields y, Y are
sections of the bundles ®*(IITO0C1), &*(IT%'C!) and anticommuting
fields ¢, 1) are sections of the bundles K ® ®*(IIT%'CHY), K @ &*(IIT"°
Ct1). By II€ we denote a vector bundle £ with a reversed parity of the
fibres. The action (2.1) is dp-invariant.

A gauged linear sigma model description of the sigma model with the
target space P’ is based on the representation of the projective space P*
as a Hamiltonian quotient of C*!. Let us supply C“*! with a symplectic
structure

o '
(2.3) Q= > dg? Ndp.
j=1
The following action of Uy:
(2.4) ¢ — el e U(1)

is Hamiltonian and the corresponding momentum, i.e., a solution of the
equation

1§ = du
is given by
1 0+1 ‘
(2:5) W, @) = —2; i

The projective space P¢ has the following representation as the Hamiltonian
quotient:

P’ = {u(p, ) +1%/2=0}/U(1).

where the value r%/2 of the momentum p defines a Kihler class of P’
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The interpretation of the projective space as a Hamiltonian reduction
allows to describe topological non-linear two-dimensional sigma model with
the target space P! in terms of a linear sigma model with the target space
C1 and gauged Uj-symmetry (2.4). Topological U; gauge theory can be
constructed using the following three sets of fields (A, \, o), (b,n), (§, H),
where A is a connection in Ui-bundle, v is an odd one-form, o, b, H are
real even zero forms and &,n are real odd zero forms. Define the topological
BRST transformations as follows

(2.6) dg A=\, 0g A = —udo, dgo =0,
' ogb=mn, ogn=0, dg&=H, JogH=0.

Note that c% acts as a gauge transformation with the gauge parameter o

e.g.

(2.7) §g A= —do, 0GA=0, &G0 =0.

The space of functionals of the fields (A, A, o) supplied with the action of dg
can be considered as a model for the G-equivariant de Rham complex on the
space of connections on a Riemann surface 3. In the following, we consider
the gauge multiplet (A, A, o) interacting with the fields (b,7), (£, H) and
with the fields entering the action (2.1). The gauge theory generalization dg
of the BRST transformation (2.2) acts as follows

(2.8) ogp’ =x7, dgx! = w0y, gl =F!, GgF! = -l
5o =X, Ogx! =@, gl =FI, 6gF! =0yl

Let xdz =1dz and *dZ = —1dZ be the Hodge star operators. A topological
Ui-gauged linear sigma model is described by the following action:

(2.9)
1

S:27r

— 0z (§ +m) — 2b0.0:0) + % / A2V RhE(AFIFL +4F2 (95 — Az)y’
D

— 1 FL(0. — A)@ +alop] —whd (0 — Asx?) + wl(0.% — As)

/d%\/ﬁagvz ! /dzzx/ﬁh“(—HFzz(A)+82A5(§—m)
¥ Y

2me2
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/+1 {41
— I @+ w0 + 0 (X — FXT) + 20> (K + ol )
j=1 j=1
(+1 (+1
il 2_,2| _% i 4 i
+ 5 lew\ il lew +x7¢0 |
J= J=

where F,3(A) = 0,4z — 0zA, and

Y= e%hzg(—szg(A) — (3 Az + OzN.)) + YL (;Fg — (0, — Az)goj>

.t . ’Lé- s 1 . .
+ 1) (2F§ +1(0: — Az%@]) + o5 | 2olel’ =77 |0 (X = ¢'X).
j=1

j=1

A relation of (2.9) (for a generic coupling constant e?) with the standard P
sigma model is illustrated in Appendix F. Let us note that a variation of the
coupling constants e? and ¢ leads to a change of the action (2.9) on a dg-
exact term. Thus, according to the standard considerations, the dependence
of correlation functions of dg-closed operators on e? and ¢ is given only
by the boundary contributions of the space of fields. In many cases these
boundary contributions are zero and the correlation functions are e?- and
t-independent. In the following, we make calculations at particular values
of the coupling constants e? and ¢ and will not consider the issue of the
coupling constant independence.

Now we consider S' x Uyyq-equivariant version of the theory (2.9) on
a Riemann surface ¥ allowing isometry S'. The action of Uy, is induced
from a linear action on the target space C/*! and the action of S! is induced
by Sl-isometry of ¥. To simplify notations we consider equivariance with
respect to a maximal abelian subgroup Uf“ C Uy and will work with func-
tions invariant with respect to the permutation group Sp4q (i.e., Weyl group
of Ugt1). Let hhand o5, j =1,..., (¢ + 1) be generators of abelian Lie alge-
bras Lie(S"') and Lie(U{™!). Correlation functions of S' x Uy, j-equivariant
extension of the topological field theory (2.9) now take values in the space
of functions of h and o, j =1,..., (¢ + 1) invariant with respect to permu-
tations of o;.

To construct an S' x Uy, j-equivariant version of type-A topological lin-
ear sigma model define S x Uf“—equivariant generalization of the BRST



Parabolic Whittaker functions and topological field theories I ~ 151

transformations (2.8) and (2.6) as follows:

00" =x7, o = —(1loj + o)’ + hLluy’), 0P =
SFI = —(1(oj + o)) + h Ly,

00" =%, 0 = —(=uloj +0)§ +hLy@), 0P =F
SFI = —(—1(oj + o)’ + hLyth),

JA =X, O0A=—wdo+ hd(ty,A) + hty,F(A), 00 =0,
0b=mn, on=hidb, 6&=H, O0H = hidE,

(2.10)

where vy =1 (za@ —Z az) and L, = ty,d + di,,. Note that the transforma-
tion rules (2.10) are not explicitly gauge-invariant (this is related with the
fact that the gauge group G and S' do not commute).

A St x Uf“—equivariant version of the topological gauged linear sigma
model (2.9) (for t = 0) is then given by

(2.11)
_ 1 2 _ 2 ZZ((__ _ _
S = o /Zd VRV = g [ e VRN (-HEA4) + (W de).
+ (AA*dn) .z — 1(db A #do) .z — hbd * (Ly, A + 1y, F(A))2z)

+ 21/ d?2Vhh [ 1FI(0: — As)g? —1F (9. — L)@
T Js

— 1l (9:x? — Asx?) + W%(azij — A, %) — W%Xz@j +uplAs?

{41 /41
+1 ) (P = @XT) 0D (2K + 20+ 0y)|
=1 =1

41
4+ B 1y, (d — A)p? — T 1y, (d — A)@ +— Z]g0|2—r

e (L.
-3 ZXJ¢J + ¥l 7
=1
where Fzg(A) = (9ZA2 - 82Az and
1. . i . )
V = S (EF(A) + b (dx N)sz) = wd(9: — AP + (0 — A=)
41 241

f
+5 Z!wIQ—TQ +bz WX — @)
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2.2. Calculations in type-A topological sigma model on a disk

Now we calculate a particular correlation function in a topological field
theory with the action (2.11) on a disk ¥ = D, D = {z € C||z|?> < 1} with
the coupling constant e? — 0. We chose a flat metric d?s = |dz|? on the disk
D invariant with respect to the standard action of the rotation group S*
generated by the vector field

The following boundary conditions on S = 9D are imposed:

(2.12) Aglsi =0, Agls1 =0, 9pols1 =0,
(2.13) Ipbls1 =0, plsr =0, Iynls: =0.

We also consider a restricted gauge group
(2.14) Go = {g € Map(D, U;)| g|s» = const}.
It is easy to see that the deformed action (2.11) and the boundary conditions
are compatible with the gauge symmetry Gy and BRST transformations
(2.10). For example, we have
0Ag = Ng, N9 = 0Ogo + hOyAy,

and restriction of the variations to the boundary S' = 0D gives

0Ag|st = Mgls1 =0, 0 Xg|ls1 = Dgol|s1 + hdpAg|sr = 0.
This verifies the compatibility of the boundary conditions (2.12) and BRST

transformations for the gauge multiplet. Similarly, under infinitesimal gauge
transformations we have

daAplsr = Opalst + Aglsr =0, «a € Lie(Go),
and thus the boundary conditions (2.12) are compatible with gauge invari-

ance with respect to group (2.14). We define a metric on the space of fields
using the standard quadratic form on the tensor fields on D.
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Proposition 2.1. A functional integral over fields on the disk with the
action (2.11) at e®> — 0 has an asymptotic given by a functional integral
with the effective action on the boundary 0D = S*

(2.15)

2 21

041 )
S =0 [an (Y1007 ) = [an Y- @000 0) + #000)
0 J=1 0 J=1
. 27 0+1 A ‘ A ‘
LI [ a3 (0)010) - 000 0)
o J=l

{41

2m
w3 gn [ ORO) +iloo + )P OF + 1P 0 0)
J= 0

Here in the functional integral over ¢ (z), x’(z) being even and odd holo-
morphic functions on D, og and by being even variables, & and ng being odd
variables. The measure on the space of ¢’ (z) and X7 (z) is induced from the
standard pairing of functions on D with the metric d*s = |dz|?.

Proof. We will need an asymptotic at e — 0 of the various integrals. Given
a function F'(e,y) of the coupling constant e and a variable y such that at
e? — 0 the leading asymptotic is given by F(y, e) = Q(e) fo(y) + --- , we call
fo(y) a leading term and denote it by [F'(e,y)]o-

Consider first an asymptotic of an integral over H. We have the following
identity:

([ pretrinrasnan) — [ ama(r(apelss),
0

where Hy is a constant mode of H and F;(H) is an arbitrary e?-independent
function of H such that the left-hand side of the identity is defined. Now let
us find an asymptotic of the following integral:

(216) Z]_-2 e /DbDo‘efD(elzdb/\*dO"f’b]:g(O'))’
where F(o) is a e’-independent function of o. Consider a quadratic form

(2.17) (. f) = /D df A xdf,
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on the space of functions such that dyf|si—gp = 0. We have the following
obvious exact sequence:

0 — Fung(D) — Fun(D) — Fun(S') — 0,

where Fun(D) is the space of functions on the disk, Funy(D) is the subspace
of functions taking zero values on the boundary S! = dD and Fun(S') is
a space of functions on the boundary. Then the orthogonal complement
Funy (D) to the space Fung(D) with respect to the quadratic form (2.17)
is given by the space of harmonic functions Af = 0. Due to the constraint
g flsr—op = 0 the space Funy (D) consists of constant functions. Taking into
account that the quadratic form (2.17) is non-degenerate on Fung(D), we
infer that the following asymptotic for (2.16) holds

1
(Z.T'Q)O = W /dbOdO'Oe-[D bOfQ(UO)),
where by and o( are constant modes of b and o.

By construction the functional integral with the action (2.11) is invariant
with respect to the gauge group Gy defined by (2.14). We fix the gauge sym-
metry using a gauge-fixing condition d * A = 0. In the case of abelian gauge
group the introduction of Faddeev—Popov ghosts is not necessary. Integra-
tion over H implies a constraint F'(A) = dA = 0. The gauge-fixing condition
for the gauge group (2.14) implies that the residual gauge symmetry group
is a subgroup of constant gauge transformations. Therefore, one can take
A = 0 and the effective action functional is given by

(2.18)
/ d?z2 ¢ S [(ANAdE).z + (N A *dn).2]
£+1 . . . . . . . . . .
+ ) [eF2(0.07) + 1F1 (0207) — . @ + upidzg’ + wp(0.%7)
j=1
. 1 et
— Wl (92X leo =) =5 D @N + @X)
j=1
£+1 . . . . Z+1 . . .
+0Y (@ = @) +bo Y 2% + 2(o0 + 7))
j=1 j=1

+ h(SEijod@j - SOJL’UUd@])]
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The integration over F' and F gives the constraints
o) =0, 0@ =0.
The solutions of the constraints are given by holomorphic functions
o =¢2), @¥=¢ .

From now on ¢’ will denote holomorphic functions. Now consider an asymp-
totic of the integrals over odd variables

(2.19) Zr, = / DADEDn el p(—EMAE= G Adn+ AT (n.))

where F3(n, &) is independent of e. Let us combine two zero forms & and 7
into a one form
p = d€ + xdn.

Taking integral over A in (2.19) we obtain the following asymptotic in the
limit e? — 0:

(2.20) ( / DA D¢ Dnelo SaMdﬁéM*dn“B> = det’(d * d)5(p).
0

‘We have
0:(§+wm) =0, 9:(§6—wm) =0,

and thus solutions of the equation p = 0 are given by holomorphic functions
F(z) =& — . This implies that the functions &, 7 are harmonic. Taking
into account the boundary conditions 9p&|s1 = 9pn|s: = 0, the functional
integration over ¢ and 7 reduces to the integration over constant modes &
and 7. B

Now integration over ng and ng_' provides constraints

65Xj =0, 82)23 =0,

solved by holomorphic functions x/(2):

X =X(2), ¥ =x(2).

From now on %’ will denote holomorphic functions. Combining all ingredi-
ents together we obtain the following functional integral:

J/ dydio dHy dbodoo[D?g7] [D?x7] e~ S
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with

(2.21)
l+1

S :ZHO/%dQ Z| j(@)‘Z_TZ
eff An 0 =~ ¥

0+1
160

27
- % /0 do le 09X (0) + ¢ (O)x7 (6))

where 7(0) and x7 () are restrictions on S' = 9D of even and odd holo-
morphic functions ¢’ (2), x/(2). Here we make a change of variables
j ¥n

J
Xn
2.22 —
(2.22) YT

n+1’

J
Xn —

in the expansions of ¢/(z) and x7(z)
. s . . e .
P(2) = @lz", ()= xhe"
n=0 n=0

This change of variables converts the integrals of the product of the holomor-
phic and antiholomorphic functions over the disk D into integrals over the
boundary S!. By the standard properties of the canonical integration mea-
sure on super-manifold RVV the Jacobian of the change of variables (2.22)
is trivial. The resulting functional integral with the action (2.21) coincides
with the one defined by (2.15). O

Theorem 2.1. The functional integral in S' x Uy 1-equivariant topologi-
cal sigma model with the deformed action (2.15) has the following finite-
dimensional integral representation:

/+1
=1 1 2 F

(27h) = (297 = o | dHye'o's HF1(ZHO + oj|h),

00 = / dbo (),
St'=0D

where € > max(—oj),j=1,...,0+ 1.

(2.23) j=1
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Proof. We prove (2.23) using the representation obtained in Proposition 2.1.
We shall calculate the following functional integral:

1 r2
déodno dHy dbodog [D*p7] [D?xI] e Setrt 50
(27r)/§0770 o dbodog [D*¢7] [D?X] e
Integrating over by we obtain the delta-function factor

(2.24)
/+1

1 2 . 1 . .
) - / do szj(é? Z oo + )| (0)* + 1ip? (0) D’ (0)

Further integration over o( gives

o8 (S5t %0 - i 03l O)F + 5 0)0ng (2)
9SS e (0) ’

Taking into account that the integral over Hy implies the constraint

O-O(Spa X) =

1 o {41

— dGZIw

we obtain

£+1 I+1

1 2 ) )
70 = 5o [ a0 | S ndOF )= L+ @00 ).
j=1

After integration over Hj the integrand reduces to

(2.25)
4+1

2%5 _% /027r do ;\sﬂ(@)z—

o | g

X exp <2+770> / dGZcp
041

(- no) L /0 " d&Z@j(e)X”(é’)

| 2 041 041

+ 1 =" il (O + 1155 (0)0 (0) | ¢,
=1
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where ¢(z) and x(z) are even and odd holomorphic functions. We normalize
the measure as follows:

41 41
7 . . 2 . .
2.26 D2oD*y = | =Do'DZ T 2D\ Dy.
(2.26) wD*x j|_|12 @ ¢j|_|1z X’ Dx

In particular

(2.27) / D%y exp {4; /0 ” dexﬂ'(e)xf(e)} ~ 1.

It is useful to reintroduce the variable Hy by writing the first delta-function
in (2.25) in the integral form. Then integrating over odd variables d&y, dno
and d?y, we reduce the functional integral to the following one:

2 (0 o2 Hy 1 2 .
<e7(9( )> — / dHoDZSpe z  exp —4/ do Z((ZHO + Uj)‘gpﬂ(ﬁ)p
R—1e ™ Jo I
— 1h@’ (0)0e’ (0)) | ,
where € > max(—o;j), j=1,...,{+1. We can rewrite the expression for

correlator in equivalent form

2HO

<e%(9(°)> = / dHg 6”2 ZLSM(lHO + 0y, h),
R—2e
where
(2.28) ZLSM(U]', h) = /[DQX] [DZ@] e Susm(a;,h)

is a functional integral with the action
1 041 +1

2
Sislog ) = 1= [ a0 | o @0(0) = S ol 0)F
j=1 Jj=1

- 47
+ 10’ (0)9p0 ()

The functional integral (2.28) is a correlation function in S! x Up-
equivariant type-A topological linear sigma model on D with the target
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space V = C**!. This functional integral was calculated in [17] with the
following result:

+1 41
_1.9 gj _u
(2.20)  Zrsa(og,h) = [[(2xh) 37T (#) (2rh) =5 Hn a;|h),
j=1

provided Re(+Ho+0j) >0, j=1,...,0+ 1.

Using the expression (2.29) for Zysys and noting that the integration
contour (R — ¢ for € > max(—o;), j =1,...,¢+ 1) is compatible with the
condition Re(zHo +0j),j=1,...,£+ 1, we obtain the integral representa-

tion for (e O(O)>
f 1
2 ©(0) —a WHy 22 i
(2.30) <e : > (27h) dHy o5 T T1(eHo + o).
R—1e j=1
This complete the proof of the theorem. [l

Corollary 2.1. The parabolic Whittaker function (1.21) associated with P
has an infinite-dimensional integral representation as a correlation function

in type-A topological S* x Uy 1-equivariant sigma model with the target space
IP)Z

@) = @rh) 5 (5O,

where o; = —\; and x = —hr?/2.
3. Mirror-dual type-B topological Landau—Ginzburg model

In this section, we consider a type-B topological Landau—Ginzburg model
that is a mirror dual [33] to the topological type-A sigma model with the tar-
get space P! considered in the previous section. We calculate a correlation
function in the Landau—-Ginzburg model that is mirror dual to the corre-
lation function (2.23). This calculation naturally provides another integral
representation (1.21) of (1,£ + 1)-Whittaker function associated with P*.
The mirror duals of the topological gauged linear sigma models were
constructed in [24]. In the following, we apply this construction to a partic-
ular sigma model considered in the previous section. To provide a heuris-
tic explanation of the construction let us recall that the topological gauge
field multiplets can be obtained in a simple way from A = 2 SUSY gauge
multiplets described by twisted chiral superfields. Under mirror symmetry
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twisted chiral superfields are transformed into chiral multiplets. Thus a mir-
ror dual of the Uj-gauged type-A topological linear sigma model with the
target space C*1 should be described by a mirror dual of a type-A topo-
logical linear sigma model with the target space Ct! interacting with an
additional topologically twisted chiral multiplet =. The mirror dual of the
type-A twisted linear sigma model was considered in [24] (see also [18])
and is described by a Landau—Ginzburg sigma model. A coupling with the
additional topological multiplet = can be guessed from simple duality con-
siderations in quadratic theories [24]. Actually we are interested in the dual
to S x Uyyq-equivariant Uj-gauged type-A linear sigma-model. It is useful
to replace Uy 1-equivariance by Uf“—equivariance supplied with the over-
all invariance of the correlation functions with respect to the permutation
group Spi1 (the Weyl group of Upi1). The resulting Landau-Ginzburg the-
ory, dual to S x Uf“—equivariant Ui-gauged type-A linear sigma-model,
has the following superpotential:

2 /+1
(3.1) W(p,0) = —zha— + Z (10 + 0j)¢’ +e? ") + hlog(2h),

written in terms of the lowest components ¢;,j =1,..., (£ + 1) and o of chi-
ral superfields. In (3.1) 0, j = 1,...,¢ + 1 are Uf“-equivariant parameters
and ¢ = % is a parameter of the K&hler structure of P! in the dual-type-
A model. Note that usually one considers the Landau—Ginzburg theory on
(C*)**2 as a mirror dual to U;-gauged linear sigma model associated with
non-linear P! sigma model (this implies in particular that one uses the vari-
ables ®/ = e% as the correct description of the target space of the theory).
Taking into account that the mirror dual of Uy -equivariant P sigma model
has superpotential (3.1) which is single-valued on the universal covering
space C**2 we use the coordinates ¢; below.

We would like to calculate a particular correlation function on a disk D
in the Landau—Ginzburg topological theory with the superpotential (3.1).
Happily this calculation was already done in [18] for an arbitrary superpo-
tential W (¢). Let us recall briefly this derivation. We consider a set of fields

with the following S'-equivariant BRST transformations:

(3.2) 6516 =1, S5t = —hry,ddt, 5510 =G, 55GL = —huy,db’,
5g1p" = —dd', + iy, GYy 6519 = —huy,p', 651G =dp’,

where ¢4 and ¢_ are even real zero-form-valued fields, 7° and # are odd real
zero-form-valued fields, p’ are odd real one-form-valued fields, G°. are even
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real zero-form-valued fields and Gi are even real two-form-valued fields. The
action of the topological sigma model is given by

(3.3)

N
S = _ZZ/D ((d¢. — huy, G%) A xdg? + p? A xdy — 0;dp? + G7.G”)

2, i [ _EW=(8-) i OW_(0-) i
+Z/d ( 551 007 ol -5 G_)

i,j=1
1 PWo( ¢+) WL (¢4) i
+ij1/ ( 2 aoi00, * T 00 G*)

1
+ h/ doW. ().
S1=0D

Here W and W_ are arbitrary independent regular functions on RY. Thus
defined action is dg1-closed. Below we consider the case of W_(¢_) = 0 and
Wi(¢4) = W(p4). Thus, we have

(3.4)

N
S = —ZZ/D ((d?, — hey,G2) A xdd?. + p? A xdip — 0;dp? + GP.GY)

LPW(OL) 5y, W) g
+Z/< 23¢1 a¢] ’0]+ a¢z G+>

2,j=1

1
+ h/818D dUW(¢+)

Given an observable O (i.e., a functional of the fields), its correlation function
is defined as the following functional integral:

(Ohw = / DO,
(3.5) N ‘
Dy = [[IPe (Do) (Dy[D8) DA DG DG,

We consider a local dgi-invariant observable

N
(3'6) 0= H6(¢i—(zvz))ni(zvz)’210?
=1
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inserted at the center of the disk D. The calculation of the integral (3.5)
with the observable (3.6) was done in [18].

Theorem 3.1. A correlation function of the observable (3.6) in the type-B
topological S*-equivariant linear sigma model (3.4) is given by

N
(3.7) (O)\w :/ [[ dte e
RN 551

j J
where t/ are the constant modes of the fields ¢, .

Now we can apply this general result to a particular case of the superpoten-
tial (3.1).

Proposition 3.1. The correlation function of the observable (3.6) in the
type-B topological S*-equivariant linear sigma model (3.4) with the superpo-
tential

2 £+1
(3.8) W(¢p4,0) = —zﬁa— + Z (10 + o) (b] + e¢+) + hlog(2mh),

s given by

1 /41
) - d 100 dtj r ] 1((20'0+0'J)t1 et )
39) (O =g [ dre [ e 7

€e>—0j, j=1,...,0+1,

where oy and t/ are the constant modes of the real fields o and <Z>j , respec-
tively.

The expression (3.9) coincides with (2.23) and is equivalent to (1.21),
(1.22) obtained in Section 1. Thus type-A and type-B topological sigma
model representations related by mirror symmetry give rise to two differ-
ent integral representations (1.21), (1.22) of the same parabolic Whittaker
function (1.24).

4. Equivariant symplectic volume and its mirror

In this section, following [18], we provide a simple heuristic derivation of
the correlation function (2.23). This calculation directly relates type-A and
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type-B mirror-dual integral representations. First let us demonstrate that
(1.22) can be understood as a limit of equivariant volumes of spaces of
holomorphic maps of P! — P! when a degree of the maps goes to infinity.
The compactified space of holomorphic maps P! — P! of a degree d can be
identified with P¢FDE+D=1 a5 follows. Holomorphic maps of P! into P¢ of
degree d can be described as a collection of £ 4+ 1 mutually prime polynomials
of the degree d

d
(4.1) npj(z):Zcp{nzm, j=1,...,04+1,
m=0
modulo multiplication by rational functions

ol (2) — & (2) = g(2)¢’ (),

such that the resulting functions f7 (z) are again polynomials of the degree
d. In the case of mutually prime polynomials the function g(z) is neces-
sary constant and thus the space My (P!, P) of holomorphic maps P! — P*
is given by a projectivization of the space of mutually prime £+ 1 poly-
nomials. This space is non-compact and its compactification Q./\/ld(]P’l,}P’é)
obtained by omitting condition to be mutually prime is a projectivization
PEADE+) =L of the vector space of (£ + 1)-tuples polynomials of the degree
d. The space QM (P!, P¢) = PU+D(E+1)=1 can be obtained as the Hamil-
tonian reduction of the space of (¢ + 1)-tuples polynomials of the degree d
supplied with the symplectic structure

{+1 d

) . .
(4.2) =3 S 60l NG,

j=1m=0
with respect to a diagonal action of U; generated by the vector field
{+1 d ) S
w12 Y (e bt ).
j=1m=0 ¥m

The action of U; is Hamiltonian and the corresponding momentum (i.e.,
solution of the equation ¢, {2 = dpu) is given by

€+1 41

ffZZ\ ohl? = Z/ 46 | (0

7j=1m=0
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Here 7 () denotes a restriction of the polynomial ¢7(z) on the circle z = ¥,

6 € [0,27). The reduced space PUTDE+H)=1 s naturally supplied with a
symplectic structure 4.

The symplectic space Q./\/ld(IP’l,IP’Z) allows a Hamiltonian action of the
larger Lie group S' x Uf“. In homogeneous coordinates it is given by

Ol — o e B (@B e ey e S U x - x UL

The action of the corresponding Lie algebra generators is realized by the
vector fields

{+1 d S 5
vs =1 Zm@né] —sazné_J),
(4.3) J=tm=0 o o
ANV 5
v =1 wj_goj)a ]:17 7£+1
The corresponding momenta are
g.,.l 4 I+1 )
s :—722 mlgh? =1 Z/ 06 5 (6)0y & (6).

j=1m=0

1 d 1 27
=== el =—— do |7 (0).
1 22 o7 47T/0 | (6)]

The S* x Uf“—equivariant volume of QM 4(P', P¢) is defined as the follow-
ing integral:

stxuft?
(4.4) Zg :/ g’ ind ,
oM, (P1Pt)
SIxUE! 1 0+1 . . .
where de is an §° x Uy -equivariant extension of the symplectic

structure Qiuq on QM y(P!, P¢) induced from (4.2) by the Hamiltonian reduc-
tion. Let us identify H, Ue+1(Pt) with C[h,01,...,0041] where K corre-

sponds to a generator of S' and oj to a generator of jth factor in UZH.



Parabolic Whittaker functions and topological field theories I 165

Proposition 4.1. The equivariant volume (4.4) has the following integral
representation:

7. - 1 / D2¢szDHO D§0 DT]O DADUOeque_S
d (27T)2 9y

Vol(Uy)
where
1 2 {+1 ' &
_ L j 2 2] 0
S ZH047T/0 do ;w 0)) —r o
<Y [ a0 0 +# 07 0)
j=1
- 1 .on ' . ' ' 1y
+ IS [ ON ) - FON )+ Y 5
T Jo o 27
21
X / (100 + a7) |7 () * + g’ (8) D (9)) + X7 ()X (6))db,
0
where &, ng and x?, j =1,..., (£ + 1) are considered to be Grassmann vari-

ables. Also the functions @’ () and x’ () are restricted to be degree d poly-
nomials of z = € with the integration measure given by

+1 d ) _ ) +1 d 9 ‘ )
Do =111 gd¢h ndeh, D> =] ] Sdxd, ndxd.
j=1m=0 j=1m=0

Proof. The proof reduces to application of the standard technique (see, e.g.
[10]) and is given in Appendix F. O

Proposition 4.2. The equivariant symplectic volume (4.4) has the follow-
ing integral representation

ﬁHo
e 2
(4.5)  Zg= (2m)EHN(dH1)=2 / dHy :
R—2e Hfi% an:(] (ZH() +o0;+ ﬁm)

where € > max(—oj), j=1,...,0+1.
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Proof. Using Proposition 4.1, we have

2 e A N
S (z - 2#)
7j=1 \m=0
Z&) +1 0+1 o
j=1m= 0 j=1m= 0
41 d ' o 2
—2x (1D ) (o0 + 05+ hm)l@hl* + XX | + 5 00-
j=1m=0

Applying Proposition F.1 in Appendix F to QM4(P!, P¢) = p+D(d+)-1
with the action of ST x U{™ | we obtain

M‘ Hg
_ e
Zy = (2m)(HD(@+D) 2/ dHy——
R—1e IT;Z Hm o(tHo +0; + hm)’

where € > max(—o;),j=1,...,0+1. O

Now let us consider the limit d — oo of (4.5). We use (-function regular-
ization to define infinite products (see, e.g. [32] and the Appendix in [17]).
More precisely, define logarithm of the regularized infinite product as a
derivative of the zeta-function

In [H (pn+ )
n=0

where (,(s,A) is an analytic continuation of the infinite sum

= —ast(& )\) |s:07

reg

o0

1
Co(s,A) = nz% ey —m <arg(pn+A) <m, Re(s) >1
We have
1 A 1A 1 A
A)=—-—— s AN=—(=—=|1 In—T'(—|,

GON=575 860N (2 p> N o <p>

and thus for the regularized infinite product we obtain
0 3 (271')1/2

4.6 pn + A = pl/2 M L
(1) T+ e

reg
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Taking A = 1Hy + 0; and p = h, we have

1 1 1Hy+ o
47 _ _ 1 GHebe)/np <Oa> ‘
(4.7) 115, (tHo + 0 + fm)]reg NG n

Now applying this regularization to the products in (4.5) for d — +o0, we
obtain

(2mh) (D)2 1

7, = dH e Ho
d 27h /R_% 0

41
Hy+ o,
j;(tHo+0;) /A thig J
<]1 )

dhfolo (2m) D (@) -2

J=1

where we imply that —m < arg(eH + 0 + hn) < nm and € > max(—0;), j =
1,...,£+ 1. Thus taking in appropriate way the limit d — oo we recover the
integral representation (2.23) for the functional integral in topological field
theory on the disk D. Note that the interpretation of the limit d — oo as
a replacement of P! by D seems quite natural as in the non-compact case
there is no notion of a finite degree map.

To relate the type-A model calculations given above with the integral
representation (3.9) arising in type-B model we follow the strategy used
in [18], i.e., we calculate the equivariant volume of the holomorphic maps
using the Duistermaat—Heckman formula [12]. We would like to calculate the
integral over the infinite-dimensional projective space PM (D, C**!) assum-
ingh>0ando; >0,j=1,...,0+ 1. Let

(48) Z(h’ o') = / ehﬂsl +> ;ii Uj[l«j-i-Q(z)’
PM(D,Ct1)

where (2 is a symplectic form on PM(D,C*1) defined by the Hamiltonian
reduction with momentum z, fig: is a momentum corresponding to the S'-
action on PM (D, C*1) and fij, 5 =1,...,£+1 are momentum correspond-
ing to the action of U™ on PM(D, C**1). Note that the integral in (4.8) is
an infinite-dimensional one and thus requires a proper regularization. One
can formally apply the Corollary F.1 Appendix E to rewrite the integral as
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follows
1 0+1
(49)  Z(ho) =5 /da:l S P
) j=1
0+1 “
X H 27T/ exjpr(D@+UJHHJ?M<DW)+EI151 ‘
Jj=1 PM(D,C)

Thus the calculation reduces to the calculation of the following integral:

(4.10) Zi(h,0) = 27-(/ Pkt 40 +a wem(p,c)
PM(D,C)

— O e TiTi / elhs1+T;Wpr(n,0)
PM(D,C)

This integral was already calculated in [18]. Below, for completeness, we
recall the main steps of the calculation. To calculate the integral (4.10) we
use an infinite-dimensional version of the Duistermaat—Heckman formula
[12] (for a detailed introduction into the subject see e.g. [3]). Let M be
a 2N-dimensional symplectic manifold with the Hamiltonian action of S!
having only isolated fixed points. Let u be the corresponding momentum.
The tangent space T, M to a fixed point p, € M 5" has a natural action of
St Let v be a generator of Lie(S!) and let 9 be its action on Tp, M. Then
the following identity holds:

eh:u(pk)

(4.11) / it =y
M kaMsl detTpkM fw/27r

Let us formally apply (4.11) to the integral (4.10). A set of fixed points
of S! acting on PM(D,C) can be easily found using linear coordinates
on M(D,C) (considered as homogeneous coordinates on PM(D,C)). Let
©(z) be a holomorphic map of D to C. It represents an S'-fixed point on
PM(D, C) if rotations by S! can be compensated by an action of Uy

(4.12) B p(ePz) = o(z), Be0,2n].

It is easy to see that solutions of (4.12) are enumerated by non-negative
integers and are given by

(4.13) ©™(2) = ppz", on€C* neZs.
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The tangent space to M(D,C) at an S'-fixed point (™ has natural lin-
ear coordinates ¢, /¢n, m € Z>o, m # n where coordinates gy, k € Z>( are
defined by the series expansion of ¢ € M(D,C)

oo

k

=D ot
k=0

After identification of A in (4.10) with a generator of Lie(S!) its action
on the tangent space at the fixed point is given by a multiplication of each
©m/en on (m — n). Thus, to define an analog of the denominator in the right
hand side of the Duistermaat-Heckman formula (4.11) one should provide a

meaning to the infinite product [[7_ ,,,,, A(m — n)/2m. We use a (-function

regularization
(4.14) In 11 E(m—n)
27
MEL>o,m#n a
9s \ ~— (ahm/27r — ahm/Qﬂ' 07

where a is a normalization multiplier. The introduction of a is to take
into account a multiplicative anomaly det(AB) # det A - det B appearing
for generic operators A and B. We specify a at the final step of the calcula-
tion of (4.10).

Lemma 4.1. The regularized product (4.14) is given by

(4'15) ! — (_1)11 (ah/Q'ﬂ')_" \gﬁ
[Hmezzom#n h(m — n)/QW} . n! T

Proof. Using the Riemann (-function

((s) = —
n=1 "

one can express the right-hand side of (4.14) as follows:

In H %(m—n) = (¢(0) + n)Inah/27 + Inn! — ¢'(0) + wn.

MEZL>o,m#N a
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Taking into account ((0) = —3 and ¢(0)' = —3 In 27 we obtain (4.15). O

Let us now calculate the difference of the values of S'-momentum map
fist at two S'-fixed points (™, ¢®) € PM(D,C). Consider an embedded
projective line P ¢ PM(D,C), containing ¢™ and ¢©. Let us choose
homogeneous coordinates [zg : z1] on P! such that ¢(® = [1:0] and ¢ =
[0 : 1]. The action of St on PM(D,C) descends to the embedded P! via the
vector field

(4.16) V—m{w(;ju—w;i}}, w = 21/20.

The pull back of the symplectic form Q(¢) is given by

; dw N dw
wpr = W0———==.
P w]?)?

The action of the vector field (4.16) on P! is the Hamiltonian one. Let ugi)
be the corresponding momentum given by a restriction of the momentum
fis: for St-action PM(D,C). From the definition of the momentum map we
have

[0:1] [0:1]
@10 @) e = [ = [ e,
[1:0] [1:0]

A momentum defined as a solution of the equation iyyw = dy is unique up an
additive constant. To fix this constant we normalize the momentum fig: ()
so that g1 (@) = 0. Thus, we obtain the following:

[0:1} dio od o)
(), (n)y _ _ / wdw + wdw _ [] _
4.18) o nt =nt = —nft.
(18)  ps (P ==t | PR T ),
Substituting (4.18) and (4.15) into (4.11) for M = PM(D,C), we obtain

fnth
419) 2 Pt HiweMD.0) = 9 § —
(4.19) " /IPM(D,(C) © i ah/27r )rn!

2
ah exp {—77; e_h’t} ,
a

where the dependence on the normalization constant a reflects an ambiguity
of the regularized infinite-dimensional integral.
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Taking into account (4.9), the regularized S!' x Uy, i-equivariant sym-
plectic volume of the projectivization of the space of holomorphic maps of
D into C*! can be written as follows:

l+1

1 00 00
Zreg:%/ / dxl"'dl“g_,_l(; :C—ij
141
x H 27Te—0'jlfj/ exijM(ch)J’_hﬁSl
j=1 PM(D,C)

41

oo
£4+1 2w —hx,
= (ah)z/ elHOxH/ daj e (Hotos)z—CRem
R—2e j=1 0

Changing the variables

we obtain
1 sa\% fa\n X0 S koo,
Tvog = —= (7) (7> 1 / dHo e T
reg 472 \h ot B 0¢ jl:[l m

—iln(ﬂ)
x/ o du; en (Hotas)u—e"s,

—00

To get rid of the renormalization ambiguity we take the limit a — 0

o (B [2r\n =7
Z(O’, h) = lim i <> <ﬂ—> Zreg

a—0 h \a a
1 {41
= dH, e'fov H I'1(eHop + 0j|h), € > max(—0j).
2mh R—2e j=1

Integrating over Hy, we obtain precisely the mirror dual integral represen-
tation (1.21) for the Whittaker function associated with P

J4 0 l J4
1 .
[Tty exp [—= | DoMti+ e [z =D t;| +D e +er 2l | ],

where 0; = \j, x = —hu.
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5. Conclusions

To conclude we briefly outline some directions for future research. The
most obvious one is a generalization to the case of an arbitrary partial
flag manifold G/P. Recall that partial flag spaces allow a description in
terms of the non-abelian Hamiltonian reduction of a symplectic vector spaces
and thus the corresponding type-A sigma models can be represented as
gauged linear sigma models (of quiver type) with non-abelian gauge groups.
For G/P = Gr(m,{ + m) the corresponding parabolic gl,, -Whittaker func-
tion (1.8) has the following integral representation generalizing (1.22) (see
Appendix D for m =2, £ = 1):

(5.1)
m {+1
. i STy = Aalh
U, () = /dm, ooy dym e_ﬁ(“*%*“'ﬂm)nj:nl [oza 1105 = Al )
¢ [T =1, D1 = 517)

A detailed discussion of the (topological) gauged linear sigma models describ-
ing holomorphic maps into Gr(m, ¢ + m) can be found in [29,34]. For a mir-
ror description of the corresponding gauged linear sigma models see [24]. We
expect that Gr(m, ¢+ m) analogs of the correlation functions of the topo-
logical quantum field theories considered in the previous sections are given
by the integral expressions (5.1). Note also that the Givental-type integral
representation for Whittaker functions associated with classical groups was
constructed in [15]. This provides a Landau—Ginzburg model description of
the mirror dual to a type-A topological sigma models on the flag manifolds
associated with the classical groups. We are going to explicitly derive this
mirror duality following the line of this note elsewhere.

Another direction to pursue is a higher-dimensional generalizations of
the constructions proposed in this note. One of the motivations is a higher-
dimensional generalization of the connection between Archimedean Lang-
lands correspondence and mirror symmetry. This includes in particular an
instanton counting in higher dimensions. Note also that the higher-
dimensional examples considered in [17] provide also additional insights into
the conjectured relation between local Archimedean Langlands correspon-
dence and the mirror symmetry in two dimensions. We are going to discuss
various higher-dimensional generalization of the results of [17,18] and of this
note elsewhere.
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Appendix A: A proof of Proposition 1.1

We start with the following auxiliary result.

Lemma A.1. The adjoint action of the group element (1.9) on the algebra
by = (Eij, @ < j) is given by the following:

m
9 'Bug=FEn— ) xBiy,
k=2
(A1) 9 'Exg = By + ok Erg, 2<k<m,

9 ' Eyprj9 = Erprj t apBrpsj, 2<k<m-—1, 1<j<m—k;

-1
g Em+k,m+kg = Em+k,m+k - xm+kEm+k,€+m7 1<k<l-1,

-1
g Em+k,m+k+j9 = Em+k,m+k+j - $m+k+jEm+k,e+m,

(A.2) 1<k<l-2 1<j<(—1—F
-1
9 Ervmyesm9 = Eopmrm + Z Ttk Emtk t4m-
k=1

(A3) g 'Bimijg =" (Bl myj — TmijBrosm), 1<j<l—1,

P (Bmtj + TEUmts — Tmi (Bretm + B em)),
2<k<m, 1<j<l-1,

9 ' Eppmg = " (B pvm + 6B p4m),  2<k<m,

-1 - m
g El,(-i—mg =e" T El,(-l—m-

gilEk,m—i-jg =€

Proof. Consider functions Fjj(z) := g(x) 'E;jg(z). The commutation rela-
tions above then can be derived by writing down and solving differential
equations for Fj;(x) with the initial condition Fj;(0) = E;;. O
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Let us introduce a notation

(A) = (YrlmA(A)[Yr), A€Ulysp,.

Consider (C2g) where (3 is a quadratic Casimir operator (1.12). Taking into
account (Y,|Ej; =0 for j —i > 1, we have (Cag) = (Cag) with

_ l+m l+m—1 l+m
(A4) Cy = Z E;Ej; — Z Ejv1 )41 — Z piEi + oa(p
i<j

Let us derive contributions of each term in (A.4). First, we observe that

(A.5)
{+m l+m—1
f +m—1
- Z pilEig) = ———5——[(Bng) = (Brempsmg)] = Y pi(Eijo)
=2
l+m—1
S (Bii+ -+ Emm)g)

m
—((Bmt1m+1 + -+ Erpmo4m)g Z (Ekrg)
k=2

/-1 l+m—1
+ Z(Em+n,m+ng> Z pj<Ejjg>
n=1 j=2
+m—1
= - (B + -+ Bum)g)

- <(Em+1,m+1 +-+ E€+m,€+m)g>]

- i <Pk - £+m2_1> (Ekkg)

k=2
/-1
l+m-—1
- <Pm+n + 2) <Em+n, mtng)
n=1
_lt+m—1 i B 0
N 2 81'1 8xg+m
m 9 /—1 9
- Z(k - 1)1’143873% - Z(ﬁ n)merna .
k=2 n=1
since pr — p1 = 1 — k with
0

(Erkg) = (9(Brp — zpBw)) = —mp5—(9), k=2,....m,
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and pmin — Pram = £ —n with

<Em+n,m+ng> == <g(Em+n,m+n + xm+nEm+n,Z+m)>

0
:$m+n8$7<g>, nzl,,ﬁ—l

m—+n

Next, by using (¢1|Ej1,; =h (] for j=1,...,4+m—1, we find the
following:

l+m—1 1 +m—
- Z (Ej+1,Ejj+19) = 7 Z G.d+19)
j=1 =
1 l4+m—2
=73 (Er29) + (Eopm—1,64m9g) + Z (Ejj+19)
=2
1 1
= ﬁ{aﬂw + aﬂ?e+m—1}<g> - ﬁ
m—1 1
X Z (9(Ekk+1 + 2pE1g41)) — ﬁ<Em,m+lg>
k=2
1 -2
- ﬁ <g(Em+n,m+n+1 - $m+n+1Em+n,Z+m)>

n=1

In generic case when m > 1, > 1, we have

1 1 _
- ﬁ<Em,m+1.g> = _ﬁ eT1 T Tetm

X <g(Em,m+1 + $mE1,m+1 - xm+1Em,€+m - xm$m+1E1,€+m)>

and therefore

(A.6)
m—1 m—1
1 1] 0 0
Tk E 7 + T
h = (Big+19) h {81’2 0Tpo4m—1 kZZQ k@xk_,_l
£—2
6 1 x x
— Z$m+n+1 D h( 1)6(@ m)l’ml' €7t z+m} <g>
n=1 mTn
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In the special case m = 1, the following holds:

(A7)
¢ -1
1 1 1
% Z Epk1+19) ~7 (Ekks19) — ﬁ<E£,Z+19>
k=1 k=1
1 &l 1
=% 2 {9Ekk+t1 — en1 Bren) — 2 (Breng)
k=1
(_1)6(&1) .
=\ e h@xg Z Titi g
In the other special case £ = 1, we have
(A.8)
1 & 1f e (ptm 9
. -~ S m+41—T1
5 z:: j.j+19) {(%2 T Tm © + ; B s (9)

Finally, we calculate the contribution of the quadratic part of the Casimir
element (A.4). We have

(A.9)
m /-1
> (EiEjjg) = (EuErymermg) + > _(EnEirg) + Y (EviBogn,ming)
i<j k=2 n—1
/-1
<EkkEZ+m,€+mg> + Z<Em+n,m+nE€+m,€+mg>
n=1
/-1
<Ek'kEaag> =+ Z <Em+n,m+nEm+b,m+bg>
<a 1<n<b
-1

+

+
Ms &MS

Ed

%)
A
ko

EkkEm+n,m+ng> .

7

>
Il

2m=1
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Then for each term in the above decomposition, we derive the following:

(A.10)
<E11Eé+m,€+mg> = <(E11 ++ Emm)(Eerl,erl +-+ E€+m,€+m)g>
m /—1
- Z(EkkE€+m,€+mg> - Z<(E11Em+n,m+ng>
k=2 n=1
m £—1
- Z Z<EkkEm+n,m+ng>;
k=2n=1
(A.11)
m m m
E Ev1Eirg) = E (B11+ -+ Emm) Exrg) — Z (EaaErg);
k=2 k=2 k,a=2
-1
(A12) Z<Em+n,m+nEf+m,€+mg>
n=1
-1
== Z<Em+n,m+n(Em+1,m+1 +---+ EZ+m,€+m)g>
n=1
-1
- Z (Em+n,m+nEm+b m+bg>
n,b=1

Substituting (A.10)-(A.12) into (A.9), and making evident cancelations, we
arrive at

(A.13)
Z<EiiEjjg> = (B + -+ Enm) (Bmg1me1 + -+ EZ+m,£+m)g>
1<j

m l—1
- Z<Elzkg Z m+n, m+ng
k=2 n=1

+ Z«Ell + -+ Enm) Ekig)

m

m
- Z<EkkEaag> - Z<Em+n,m+nEm+b,m+bg>
k<a n<b
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/—1
+ <Em+n,m+n (Em+1,m+1 + - EE—i—m,Z—i—m)g)
n=1
8? mo )
= —~ +
{89:18:cg+m Z( kD2 ’“axk>
k=2
/—1 2
_ Z (xfmrnaz + Tmtn >
ne1 8xm 8 m+n
DT, S .
- k - +nTm+b
o “Oxp0z, S e OTmnO0Tm+b
m /—1
0? 0?
+ - )
DI T D DRl e

since

(Birg) = (—2100,) (~205,)(9) = {2303, + 2105, }(9), 2 <k <my
<E72n+n,m+ng> = ($m+n8wm+n)($m+naxm+n)<9>
= {22,024 TminOs,, }g), 1<n<{-1

MAN"Lmgn
At last, we collect (A.5), (A.6), (A.13), multiply by A% and conjugate

them by e (#1—%eem)  We obtain (1.13). This completes the proof of
Proposition 1.1. O

Appendix B: A proof of Proposition 1.2

The lower-triangular part of the Lax-operator £ = ||£;;|| easily follows from
(1.6):
(B.1) Lovin=1 Lnyjn=0, 2<j<Ll+m—n,

forl1<n</l+m-—1.
The calculation of the upper-triangular part of £ can be done using
Lemma A.1. Namely, if £;; is in diagonal (m x m)-block the following holds:

L1x(9)
Lix(9)

(Bvkg) = —hOe, (g), 2<k<m;

=h
= WEgrg) = W(g(Ep + 2B k)) = —har0z, (9), 2 <k <m;
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(B.2)
L11{g) = W{(En + -+ + Epm)g) — h Y _(Eikg)
k=2
= {—h&rl + hiwk&vk} (9);
k=2

Likri(9) = MErk59) = Mg(Erkrj + 1B kr5))
= —hw0p,, 2 <k<m, 1<j<m-—k.

For the diagonal (¢ x £)-block, we have

(B.3)
Linikerm(9) = MEmikermg) = —hoe,, ., (9), 1<k<Ll—1;
Lonskmik(9) = Mg(EBmikmik — Tmik Bk, e1m))
= hx m+ka:cm+k <g>7 1 < k < I 1;

/—1
Covmesm(9) = M(Emst st + -+ Erpm e1m)9) = 1Y (Emhmh9)
k=1
/—1
= —h@wm <g> — hz<g(Em+k,m+k - -rerkEerk,@er))
k=1
/—1
= {haxw -hy xm+k81m,+k} (9);
k=1

Lont, mtk+i(9) = WG(Emtk, m+k+j — Tmek+j Emek, (4m))
= NTm1k+5O02 (9)s
1<k<t-2, 1<j</l—-k-1;
Finally, for the upper-triangular (m x £)-block the following holds:
(B.4)
L1mtj <g> he® ™ (g(Bymyg — T EBreem)
(=)Mot T (g), 1< <l
51,e+m<9> he T H e (B gy ) = (—1) (6™ T (g),
Liorm(g) = he™ " (g(Ep pym + 1B 01m))
= (1) e lg), 2 <k < m
»Ck,erj <g> = he® tm <9(Ek,m+j + wkEl,m-i-j
— Tt Brtrm — ThTmak B eem))
= (=DM gz, pe™ T (g), 2<k<m, 1<j<{—1.
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After conjugation £ — e P1(#1=%e4m) Lopr(@1—Teim) we arrive at the proof of
Proposition 1.18.

Appendix C: A proof of Theorem 1.1

Consider the following decomposition of the Borel subalgebra b = h(1E+1)
(1,6+1)
n :

hHHD = (Eyy, B+ -+ Epyr41, Brern, 1 < k < 0),

(C.1)
0 = (Bio, By B 1 < k < 6 By, 1 < k < 0).

Recall the construction of a generalized Gelfand—Zetlin representation of
glgyy [13]. Namely, let v ,...,7,, | be a triangular array consisting of ¢(¢ +
1)/2 variables v, = (Yn1, -« Ynn 6 C",n=1,...,£+ 1. The operators

1 n n—1
Epr = h(Z’Yn,g‘ — Z;’Yn—m), 1<k<i+1;

n n+1

’Ynz Yn+1,5 — E)
(02) n n+l — Z J L & 2 eim"’i, 1<n< E;
h s;éz(’ynl 77175)

h
j 1 ”)/nz 'Yn—l,j+§) ho.
1,n = et 1<n< f,
7’L+ n hz S;éz(rynl ’YTL,S)

form a representation of gl,,; in the space M of meromorphic functions
in £(¢+1)/2 variables (v,,...,7,). The Whittaker vectors (¢r| € V} and
|Yr) € Vy are defined by ;

1
<¢L‘En+1,n:ﬁ<1/}L|, 1<n <Y,

(_1)1+2(z 1)
(C3) E12‘¢R> =0, El,ﬁ+1|¢R> = 7‘¢R>

Erp|tr) =0, 2<k<{, Ek,k+1\¢R>—0, 2<k<l-1.
We identify both V) and Vf\ with subspaces of the space of functions of ~;;,

i=1,...,041, j=1,...,7. The action of Ugl,,; on V, is given by (C.2)
and the action on V| is given adjoint generators

Bl = 1 () Eijuly),
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where

(C.4) “TITI (%y vns)

n=2 s#n

Lemma C.1. The equations (C.3) admit the solution

1

C.5 = .
(©5) (Wl 2mih’
(C.6)

¢ k k-1 -1 .
[VR) = H5 D s = > w-ni | ] 5(%,1‘ _'7k+1,i+§>

= Jj=1 i=1 1<i<k

g ’Y e Yo, — Vev1,j 1
F( Potn T ) — “+%r<77+vﬂ 7)
’ 7!_121;{ Eh oo 2

Proof. The equations on the left vector are similar to those in [13] and by
the same reason admit the solution (1|, = 52=. To find the right Whittaker
vector one needs an explicit expression of the element Ey 11 = [...[[E2,
Eos),... s Erq,e]s Ee eq1]

(C.7)
4
E 1 zf: Hjj_—l(fyg 11 ’7€+17]'1 - g)
1,041 = — 7%
M\ e (i = 8)
22: Il i (200 — V3,50 — %) H (711 i h)
7]
ir_1=1 Hk[ 1700 1(72 i1 V2, szl) GeAie1 ‘ 2
- Zfl 1 le 1Zk 1 W+1 ki
The constraints
Eglr) = -+ = Eulr) =0,
obviously hold. Similarly, due to the presence of the product of delta-
functions
-1 5
H 5(’ch,z’ — Ye+1,i t §>,
1<i<k
we have Ei2|¢r) = -+ = Ey_1 ¢|Yr) = 0. Thus we have to check that (C.6)

satisfies the relation Ey g41|wgr) = h1|¢g) with (C.7). At first we note that
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due to the factor
-1 5
H 5(%,7; — Vk+10 T 5)7
1<i<k

we have

(C.8) Ei ¢11|¥r)
¢
1 ng(w,l — Y415 — 5) (21 =2 — BY(vo1 —v33 — 1)

h Tls(ve 1 — o) Y21 — Y22
hy —pye -1 st ;) ]
X (11 — 722 — 5) o MR D= Dy Tk Qe [VR) -

Finally, straightforward calculations provide

h
2

-1 k
(C.9) Ei oi1|UR) = (71)1+@ H H Tk, 1~ Vh+1,i41
fe1 =1 TRHL LT Tkl il T

(_1)1+e(z2—1)

- =)

hW’R>

g

Now we are ready to prove Proposition 1.1. Define the left and right
U-modules as V' = (Y| and V =UpR) respectively. Let ¢ € V' and
1 € V. Define the paring (-,-) : V@ V — C by

l
(C.10) (6, ) = /C w66 TT TT dmss

n=1j<n

where we define the integration domain C shortly below. Let x = z;. We
have

_£ —
U(2,0,...,0) = o5 (Y, Py,

and thus

(C.11)

(1,0+1)
\I/LZ+1 (x,0,...,0)

¢ ¢ k k—1
1 . 1
= o2mh’ QI/H% ZCIC | N D BETED SLTE
m Cn=1 k=2 i=1 i=1
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o T Tnyin = Vn,jn
X H 5<’Yk,i—7k+1,i+§)n H F(?)

1<i<k n=21in#jn
l+1 S . ~ ~ 1
017V, 1 1= 1,4
x [[arme i p (T ),
. h 2
J=1

for appropriate choice of integration domain C. Taking into account the
Stirling formula for gamma function

D(c+ 2) = V2rz 126721 4 0(1/2),
for z — 00, 0 < |arg(z)| < m and ¢,z € C we infer that the integral (C.11)

converges absolutely. Making obvious cancelations and integrating out the
delta-functions one obtains

1 £ 1 £—1
C.12 gL e+) = 29”/ d — ettt
( ) Yo (2) 2mhe et Ye1€ n
/+1 ” - 1
e 1TV G 1 Ve, g
X h +3 F(i ,)7

where € > v,415, j =1,...,£+ 1. Finally, introducing the variable v, 1 =
oH — [ and setting Aj = 411, we obtain (1.24). O

Appendix D: Explicit calculations for Gr(2, 3)

In this appendix, we derive, using another version of the Gelfand—Zetlin real-
ization, an integral representation for a specialization of the matrix elements
(1.8) for m = 2, £ = 1. Note that due to isomorphism Gr(1,3) = Gr(2,3) =
P2 the resulting integral expressions should be equal to (1.24) for £ = 2 after
appropriate identification of the parameters. Below we explicitly verify this
equivalence using an integral identity due to Gustafson [23].

We use the following version of the Gelfand—Zetlin realization of the
universal enveloping algebra U(gl3) (see [13]):

1 1
En = 71 Egy = ﬁ(’721 + Y22 — V11),
(D.1)

1
Es3 = ﬁ(’m + v32 + Y33 — Y21 — 22)
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1
E21 = ﬁeh/auv
D.2
(D-2) EBQ_1{721—’711-1-’565521+722—711+§em22}
hU 91 — 22 Y22 — V21 ’
(D.3)
1 h h
Bia = =% (31— 71 — 2 (1 = — ) e0n,
12 7 Y11 — Y21 9 Y11 — Y22 5 e
3 3
Fys = _1 Hj:1(’Y21 — 3 — %)e_mﬂ B Hj:1(722 — 3 — %)e_mm
h Y21 — Y22 Y22 — Y21 ’
3 B
1 h 121 — 735 — 5
Ey3 = [Erg, Bas] = —— (’Yu — Y22 — *) [z o1 = 79 2)e’ha?f"”‘"’11
h 2 Y21 — Y22
3 h
h . — .o e
+ <’711 — Yo1 — 7) H]—1(722 73‘7 2)e—h822—ha11
2 Y22 — Va1

The conjugated generators

1
1“(’)’21%’722 )F(’YMFL’YM ) ’

Bl = (ME;u(r),  uiy) =

are given by

1
By = Lo

h bl
(D.4) 1 m _h Ly B
ml = 7{721 Y1 =9 gy, | 1227711 7 3 ,ham}
32 = - ¢ + ——FF— e .
h Y21 — Y22 Y22 — Y21

In the case P2 ~ Gr(2,3) we have the following defining equations on the
Whittaker vectors:

St =

1
(Wil = 3 (0ul, (Wl B = 2 ()

(D.5) X
Elr) =0, Es|yr) = —ﬁWR% Eas|ir) = 0.

The defining equations for the right vector (D.5) also can be solved.
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Lemma D.1. The Whittaker vectors defined by (D.5) read as follows:

1
D. -
(D.6) (ol = 5.
2 3
i—s 1
(D?) ‘wR> = H H h(%i—%g‘)/h‘*‘l/gr‘(Lh’ygj + 5) 5(721 + Yoo — fyll) .
k=1j=1
Proof. Direct verification. O

Finally, we consider the Gr(2,3)-Whittaker function

\11&273) (1,22, 23) = e_(ml_“)(@bﬂ WA(e_ml(E11+E22)_x2E12_x3E33) [¥R)

with \j =73, j=1,2,3and 1 =z, v20 = 23 = 0.

Proposition D.1. There is the following integral representation of Gr(2, 3)-
Whittaker function:

23),y_ 1 L2, yey)e
o S dryo1d W (257
A (x) omh /CF1 ‘., V210722 €

3 2

! 2101 TRV

X
[Tz T1(v2i = 72410 j=li=1

where €, > X\j, 1=1,2, j=1,2,3.

Proof. We have

e*x
(D-8) ‘I’(;’S) (z) = 57 /d721d722d’>’11 S(711 — 721 — 722)
« or (V3= y2r)z 172_7%.
[Tz D(Z57)
3 2 N1
X H H h(’sz‘Aj)/ﬁ‘i‘l/QF(Lh_] + ) X
2

Jj=1k=1
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After taking integral over 711 and shifting the variables vo; — 21 — /2,
Yoo — 722 — h/2 one obtains

1
[Tiz; T1(v2i — 725|R)

(Z?:l Ya25)T

1 1
(D.9) \Ifg\2’3) (1’) dryordyss e n

= 21h Je, xce,

3 2
x JTTIT1(vai = vs51m) -

j=1i=1 0

Proposition D.2. The following relation between (1,3)- and (2,3)-
Whittaker functions holds

VLR @) = 0% ¢ (@),

)\17A2,)\3 - 5\1,5\2,X3

where /\i:S\j+5\k,i7éj7ék.
Proof. We have

1 1
723 (2) = — d’)/ld'}/Ze_E('Yl-l-’Yz)x
A Az, 2rh Je, xc.,

[T}= Ti(n = M| (2 — Ajlh)
L1 —2lh)T(y2 — k)

where C,, =R +¢;, ¢ > A;,5=1,2,3. Let us introduce new variables
¥ =7+ 72 and 74« = 71 — 72 to obtain

(2,3)

e (%) = Ih

y [T T1(3 (v + %) = MIDTL(G (v — ) — Aj1h)
INICAIDINCLAID)

dfyd’y*efiw

Thus to establish equivalence with ¥(3) we should prove

/ o T P10 90) = DL =) = A
Cley—ez)/2 ) Fl('Y*‘h)Fl(_”Y*‘h)

= H Ci(y = Ai = AjlR).
1<i<j<3



Parabolic Whittaker functions and topological field theories I~ 187

This follows from the limiting form of the identity due to Gustafson [23]
(Equation (9.4) with n =1 and a4 = 00)

15— Ta(ay + tR)T1(cy — t|h)

dt _ et i,
Co Iy (2¢|)L1 (—2t[Rh) [T Tilei+ayin)

where the integration contour Cy is goes between the sets of poles a; + nh,
nec ZZO and —a; — nh, n € Zzo. O

Appendix E: Gauge theory description of non-linear
sigma models

In this appendix, we recall the standard representation of a bosonic two-
dimensional sigma model with the target space P! in terms of U;-gauged
sigma model. To simplify the arguments, we consider the equivalence of the
classical theories, i.e., identifying the spaces of solutions of the equations of
motions in two theories. Omitting fermionic fields in the action (2.9), we
obtain the following action of the bosonic Uj-gauged sigma model

(E.1)

Shos = / d%2vVhh??
>

1 (+1 41

4 y » Y

x| 5 (92 — A2)¢")(0: — A.)@ + b Z;UW' +H Z;WI —r
J= J=

To obtain the classically equivalent field theory one may eliminate some
fields using conditions of zero variations of the action Spes (substituting
instead of an independent field ® a solution of the equation §.Sy,4s/0® = 0).
Using a shift of the variable H — H — 2:bo and eliminating the fields b and
o via zero variation condition, we obtain (up to some r-dependent additive
constant)

(E.2)
{41

(1 . . ‘
Shos = / PV [ -((0: — A2)p?)(0: — AP + H [ Y|P =17
2 t =

Now it is easy to show that the field theory with the action (E.2) after a
gauge fixing is equivalent on the classical level to the sigma model on P
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with the action
(3) S = [ VAN Gip(e(2)056 (2, 20. (2, 2),
%

where the Kéhler metric G(§) is associated with the Fubini-Studi two form
on P! locally written as

w

_ i dej ndgy (D5 §485) N (Sis §ids)
2mt \ = 1+ 5 1412 (14 X5 1412

Indeed, eliminating gauge fields A by using zero variation condition we
obtain

(E.4)

Shos = / d%2/hh??
>

/+1
1 . ) )
x| 70z = A2(0))¢")(0: — Ax(0))¢’ + H Sl =],
j=1
with

-1 -1
I+1 I+1 41 £+1

A= D_IP | DFod, A= 1P| D e
j= j=1 j=1 i=1

Note that the action functional (E.4) is still invariant with respect to U
gauge symmetry

¢ (2).

Zero variation condition over H imposes the constraint

QDl(Z) . ela(z)

/41

(E.5) > )=
j=1

The solutions of (E.5) can be parameterized as follows:

) fj
) = I
(r2 4+ 35, 16212

ret©

(r2+ 5 g2

j=1,....¢,

Pe+1 =
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Fixing the gauge freedom by taking © = 0, we recover the standard repre-
sentation (E.3) of P sigma model.

Appendix F: Intersection theory on P¢ via
Hamiltonian reduction

Let us given a manifold X supplied with an action of a Lie group G and an
G-equivariant vector bundle E. Let s be a section E such that G acts freely
on the zero locus s~1(0). There is a universal representation of integrals
of closed differential forms over factor s~1(0)/G in terms of integrals over
X (see, e.g. [10] for detailed exposition and relations with quantum field
theory constructions). Below we review a simple instance of this construction
providing a description of integrals of (equivariantly) closed differential forms
over P!, In this case X = C**!, the bundle F is trivial and the group G is
abelian group U;.
Let us supply complex vector space C/*1 with a symplectic structure

/+1
(F.1) Q=2 dpl ndp.
j=1
The action of U
SOj SN ezaspj’ eza c Ul,

is Hamiltonian, i.e., there exists a momentum

41

1 .
u(e) =—5 D ¥
=1

such that ¢,Q2 = du where

{41
.0 _; 0
=3 (v5 - 735)

generates the action of U; on CT!. Complex projective space P! can be
constructed via Hamiltonian reduction as a quotient of a hypersurface of
the fixed level of the momentum p over a free action of U

1
(F.2) Pt =t <2r2> JUi, rER.
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Thus, constructed P! is supplied with a canonical symplectic structure wpe
proportional to the Fubini-Study form. In terms of inhomogeneous coordi-

nates w; = @;j/@et1, Per1 # 0, it is given by

2 (1 + Zle \wi\Q) Z?:l dwj N\ dw; — Zf,j w;wjdw; A dw;
(FB) Wwpe = 7 7 o .
(1+ 2251 [wil?)

The problem to write down the integral of closed differential forms over P’
in terms of integrals over C*! is naturally divided into two parts. First, we
shall write an integral over hypersurface in a complex space in terms of an
integral over the ambient space. Second, we shall write down an integral over
a factor of a space over a free action of a Lie group in terms of an integral
over a space before factorization. Let us first consider the problem of writing
integral over hypersurface. Thus given a real valued function s(z) on R let
i:Z < RY be a zero locus subset of s (we consider the case when Z is
compact). Let Rz be a de Rham current such that for a closed differential
form w on RY the following holds

(F.4) /i*w:/ wARgz.
Z RN

To write R, explicitly let us fix coordinates (z!,...,2") on RY. We identify
algebra of differential forms A*(RY) on RY with the algebra of functions
Fun(RM™) on the superspace RNIN = IITRN where II is a functor of the
parity change of the fibers of vector bundles. Thus, we have associated coor-
dinates (z!,..., Nl wN) in RVIYV and de Rham differential is given
by a vector field

Nooo
Q= P—, Q*=0.
]Z:; oxJ

Consider an extended space RNTLN+1 — RNIN o RUT with the second factor
understood as reversed-parity tangent bundle to the one-dimensional odd
space RO, Let (H,£) be coordinates in R'' and the de Rham differential
on extended space is given by the vector field

Noog 9
(F.5) Q= ; Vo +Ha—£.
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Now a one-parameter family of the differential forms Rz(t) is given by the
following Berezin integral over the superspace R

(F6)  Ry(t) = % /Rm dé dH exp (Q (5 (zs(m) _ ;H)>) ,

satisfies the relation (F.4) (see e.g. [10]).

To write down an integral of a closed differential form over a factor of a
space Y over a free action of Lie group G = Uj in terms of an integral over
Y we use G-equivariant cohomology of Y. Let us recall that for a free action
of a compact Lie group G on Y equivariant cohomology are isomorphic to
the cohomology of the factor

(F.7) HL(Y) = H(Y/G).

Cartan model of Uj-equivariant de Rham complex on X is given by
(F.8)
0 (V)= (@) @Clo), dg=d— iy, o€uj=(Lie(U1)),

where o is of degree two. Equivariant cohomology Hy; (Y) is a module over
the algebra Hy; (pt) = H*(BU;) isomorphic to Clo]. The algebra Hy; (pt)
is generated by Chern class c‘m“’ of a universal U;-bundle EU; — BU1
Given a free action of Uy on Y one has a principle Uj-bundle V given by
the projection 7 :Y — Y/U;. By definition of the universal bundle for a
principle Uj-bundle V over Y/U; there exist a map u: Y/U; — BU; such
that V is a pull back of the universal bundle over BU;. and ¢; = u*(c{™") is
a pull back of the first Chern class c¢{™"V of the universal bundle EU;. The
structure of Hy; (Y) ~ H*(Y/Uy) as H*l(pt)-module is then defined by the
condition that c“m" acts on H*(Y/Uy) by a multiplication on ¢;. In terms
of the algebraic model (F.8) the image of the class ¢!V is represented by o.

Now we would like to relate integration of cohomology classes in
H*(Y/Uy) and H{; (Y). Equivariant de Rham complex can be represented
as a space of functions on a super-space IITY x u; with an odd vector field
Q given in local coordinates (3%, o) b

Q= Zwa, ")W
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To defined an integration over a U;-factor we consider S L_equivariant coho-
mology of the extended space Y =Y x R where the last factor is under-
stood as a reversed parity Lie algebra u;. Then we have

0,(Y) = (" ()" ® Clo] ® CIA, 11,
where the de Rham differential Qy, acts as follows:

Qu.y' =", Qu.v' = —av'(y), Qu,A =1, Qu,n = 0.

Let w(y,®,0) be a representative of a cohomology class in H{j (V) and
w is a representative of the corresponding class in H*(Y/U;) according to
identification (F.7). Then the following identity holds

~ 1 dy dip do dX dn

F9 / w = — w y’w,o- eZQU1(>\Ui(y)wi)’
(£-9) Y/G 27 Jury xRxR1 Vol(Uy) ( )

where (\,n) are local coordinates on R, The identity (F.9) can be derived
replacing w(y, 1, o) by a representative of the same class in Hy; (Y') which
does not contain . Then integrating over A, 7 and ¢ in the right hand side
of (F.9) one obtains the left hand side of (F.9).

Now we can apply (F.4) and (F.9) to the P’ obtained via Hamiltonian
reduction of C*1. Let us introduce the following variables:

(F.10) (¢, @' x' X' 0), (&H), (A\n)

and the action of the Uj-equivariant de Rham differential @y, is given by

QUl(Pi :Xi7 Qlei = —ZJQOi, QUlg = H> QU1H: 07
QU1)\:777 QUlnzo

We take as a function s(p) on X = C*! the shifted momentum

Then we have

(F.11)

/ 5 / d>p d*x do d\d€ dndH (0, B2 %, )
= ) ) b 70-
s=1(0)/U, [ITY xRxR22 (27m)2Vol(Uy)

x e'Qui (Awi(@)x'+£5(¢))
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where Y = s71(0), s71(0))/U; = P* according to (F.2) and we take ¢t = 0 in
(F.4). We consider the following cohomology class:

(F.12) O =e ¢ H*(PY), acR,

where ¢; is a first Chern class of the line bundle O(1) on P‘. As it was
discussed above ¢ can be represented by ¢ in Cartan model of equivariant
cohomology. Thus we can chose w = €7 as a representative of (F.12). Thus
we have the following integral representation

(F.13)
/ qacr 1 / o d*x do d\d¢ dndH _,,
P (2m)? Jury xrxrer Vol(Uy)
1 {+1 1 5 £0+1
x exp | +H —724)0904_ Zp2 Z‘:DX‘i‘%DX
j=1
41 041 041

—n) (@' —dX) =22 w0 D e+ ) KX
=1 =1 i1

Define an action of Uy, on C**1, so that jth factor in the diagonal subgroup
UZ+1 C Uyyq acts as follows

PRITIS Soi N ewzjéij Soj-
This action is Hamiltonian with respect to (F.1) and the corresponding
momenta are given by

ni(e) = =3l .
The action of Upy1 descends to the Hamiltonian action on P obtained by

the Hamiltonian reduction (F.2). Corresponding momenta are given in inho-
mogeneous coordinates w; = ¢;/et1, Pe+1 # 0 by

2 2
0 r \w[ .
(F.14) gy =————F——, j=1...1
2 1430wy
2
¢ ’I” 1
(F.15) ME)H

——.
21+ Zj:l |w;

Let cllj’“’+1 be a Uyyi-equivariant extension of the first Chern class ¢; of the
Ue+1)

line bundle O(1) on P*. We would like to express the integral of exp(ac;
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over P! in terms of an integral over larger space generalizing (F.13) to
Uyy1-equivariant setting. To simplify the presentation we use the standard
properties of equivariant cohomology to replace the calculations in Upy -
equivariant cohomology by equivalent calculations in equivariant cohomol-
ogy with respect to a diagonal subgroup Uf“ C Upy1 with additionally
imposed condition of an invariance with respect to the Weyl group W = Sy
of U€+1-

In the following, we need a Upjii-equivariant version of (F.13) which
can be obtained straightforwardly generalizing the previous constructions.
Thus we just state the main identity in this case. Consider the same set
of coordinates as in (F.10) but with the following equivariant de Rham
differential ) given by

QU@+1()0i = XZ’ QU2+1Xi = _Z(J + O‘j)sp’L? QU(+1£ = H?
Qu,..H=0, Qu., =7 Qu,n=0,

where (01, ...,0.41) are elements of the Lie algebra of Uf“. The expression

for the UL ™! equivariant version (F.13) is given by

(F.16)

/ et
exp (acl1 >
Ip)l
1 / d2<pd2xdad/\dfdndH ao
= e
(2m)? Jury xrxR22 Vol(Uy)
1 041 1 041
o 5 S
xexp | WQu,,, | & —Q;WW + 57’ —i—z)\;(cpjxj — &) ,

where
RS e S o
Quan [ €| =5 2_¢# + 57 |+ D _(#'X = ¢'X)
j=1 i=1

/+1 1 1 +1
S B e R R e i 4 iy
=H | =52 @@+ 5" | + 583 (X +@X)
7j=1 7=1
0+1 4+1 +1

+m Y (PN = @) =20 (0 + ) P+ 20 XN
j=1

J=1 J=1
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Proposition F.1. Let (01,...,0041) be an element of the Lie algebra of
Uf"”. The Uf"'l—equivariant symplectic volume (F.16) has the following inte-
gral representation

r2 pen oy 2n 1
F.17 / exp (c ! > = (2m)" / dHe 2 ————,
(.17) Pt 21 (2m) R—1e [1(H +05)

where € > max(—oj), j=1,...,0+ 1.

Proof. Integrating over H, A and o, we obtain the following:
€+1

1 d?p d?o d€ dn 1
Fi1 acy _ — [ 277 TS jao(e, _ E 2 il
(F.18) (™) 27 Vol(Uy) ‘ el + T 2r2

{+1 {41
X exp <—7I)Z<PX +< +n>290x

where
+1 41

a(x, ) = Zxx —Z%I%

Here, we use the following normalization of the integration measure:

0+1 . 0+1 9
Podx =] S’ dg’ 11 “dydy’.
j=1 i=1

It is useful to reintroduce the variable H by writing the first delta-function
in (F.18) in the integral form. Then integrating over odd variables d¢ dn and
d*x and taking into account that Vol(U;) = 27 we arrive at

(F.19)
ao 1 2& g 3 750 ot ’H —L15 I (tH+2%0;)p"
=y () [t [ T qartagrersn eimotmsiess,

For a finite-dimensional Gaussian integral, we have

1 1
F.20 DR ii=1 ZiAijz 2didyi = ——
(F-20) /cw ¢ ]Hl T Jet Af2n
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where the matrix A has positive eigenvalues. More generally, the Gaussian
integral (F.20) for A having complex eigenvalues a; such that Re(a;) >
0, j=1,...,N is defined as a limit of the integral for A having complex
eigenvalues a; such that Re(a;) >0, j =1,..., N expressed through (F.20).
Now assuming Re(+H + %Uj) >0, j=1,...,¢+ 1 and taking integral over
, we obtain

2a ¢ /—1 r2H 1
(F.21) (e9%) = <2> (2m)" /]R dHe™ s ——————

r [T6H + Zay)’
where € > max(—f,—g‘aj), j=1,...,£+ 1. Taking a = %, we finally obtain
(F.22) (eT%) = (21)t"! / dHet L
R—ze H(ZH + Uj)

where € > max(—oj), j=1,...,£+ 1. This completes the proof of the
proposition. Il

Finally, let us provide a reformulation of the integral representation of
the integrals of the equivariantly closed forms over P¢ that does not include
integrations over odd variables.

Lemma F.1. Leto; >0, j=1,...,£+ 1. The following identity holds:

(F.23)
— 5(MU(1) + 7"2/2> elwern +3 55 o5my) / elwre t 55 o)
2 Cr+1 pe

where wpe is given by (F.3) and the reduced Hamiltonians uI]EM are given by
(F.14) and (F.15).

Proof. This can be deduced from the previous considerations but allows
simple direct derivation. Let us introduce new variables w; = ¢;pp41,
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j=1,...,0 and t = |pp1]?, 0 = %ln gii, so that @1 = v/te?. Then we
have

l+1 Z—H

e+1 , 72 S o,
)7 L Adenana(5 e = )

:T%( /%d&/ dt ¢! /\ 1(dwn N diwn)
(F.24) 2 oo 142wl

+
j=1043Hj

X

2(

(5(15 1+Z‘wn’2>e
N (dun A i) s-ros
<> ce 1+1Zu|) I)Zle o

Taking into account that

Whe _ o (2) Nz (duwn 1 divy)
Yil 2 (1 + Z ’wn‘2)€+l 9

we obtain the identity (F.23). O

Corollary F.1. Let C' =C" @--- o C™, SF_ dim(V,) =¢+1 be a
decomposition of the symplectic space vector space (C*1,Q), where symplec-
tic structure is given by (F.1) and (@n,4-ny_y+1s -+ -5 Prytn,) 0re coordi-
nates on C". Let Uf“ act on C*1 diagonally. The action is Hamiltonian
and let puj, j=1,...041 be the momenta corresponding to the action of
j-th factor (Uy);. Let UF c U™ act on CH' so that the a-th (Uy)a acts
non-trivially only on C" by multiplication on complex numbers. Let U
be diagonally embedded in UF. Let P(C'*Y) be a Hamiltonian reduction of
CH* over Uy with momentum x and P(C") be a Hamiltonian reduction of
C™ over (Uy), with the momentum xo. Then the following relation between
U -equivariant integrals holds

pcttl)

/ ewp(czﬂ)(:v)—&- o
P(C+1)

k
1
:%/dxy'-d:cké x—Z;xj
J:

1+ -t+na LP’(C”G)
P(
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where wp(cna) 8 a standard Fubini-Studi symplectic form on P(C"*) multi-

plied by x; and ,uI;

©) is o momentum for the action of (Uy);.

Proof. This identity straightforwardly follows from Lemma F.1 and the fol-
lowing identity:

1]

k k k
/dxl---da:kné(uj—l—xj)& :B—Z:Bj =9 Z,uk+:z:
j=1 j=1 j=1
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