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In the first part of this series of papers, we propose a functional
integral representation for local Archimedean L-factors given by
products of the Γ-functions. In particular, we derive a representa-
tion of the Γ-function as a properly regularized equivariant sym-
plectic volume of an infinite-dimensional space. The corresponding
functional integral arises in the description of a type A equivari-
ant topological linear sigma model on a disk. In this paper, we
provide a functional integral representation of the Archimedean
L-factors in terms of a type B topological sigma model on a disk.
This representation leads naturally to the classical Euler integral
representation of the Γ-functions. These two integral representa-
tions of L-factors in terms of A and B topological sigma models
are related by a mirror map. The mirror symmetry in our setting
should be considered as a local Archimedean Langlands correspon-
dence between two constructions of local Archimedean L-factors.

0. Introduction

In [8] we propose a framework of topological quantum field theory as a
proper way to describe arithmetic geometry of Archimedean places of the
compactified spectrum of global number fields. In particular, we provide a
functional integral representation of local Archimedean L-factors as corre-
lation functions in two-dimensional type A equivariant topological sigma
models. This representation implies that local Archimedean L-factors are
equal to properly defined equivariant symplectic volumes of spaces of holo-
morphic maps of a disk into complex vector spaces. Thus, the equivariant
infinite-dimensional symplectic geometry (in the framework of a topologi-
cal quantum field theory) appears as the Archimedean counterpart of the
geometry over non-Archimedean local fields [1, 5, 21].
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The construction of local Archimedean L-factors in terms of type A
equivariant topological sigma models should be considered as an analog of
“arithmetic” construction of local non-Archimedean L-factors in terms of
representations of local non-Archimedean Galois group. There is another,
“automorphic” construction of the non-Archimedean L-factors, which uses
a theory of infinite-dimensional representations of reductive groups. For
Archimedean places, this provides a representation of the corresponding
L-factors as products of classical Euler’s integral representations of the
Γ-functions. In [8], we conjecture that this finite-dimensional integral repre-
sentation of L-factors naturally arises in a type B topological sigma model
which is mirror dual to the type A topological sigma model considered in
[8]. This would lead to an identification of local Archimedean Langlands
correspondence between “arithmetic” and “automorphic” constructions of
L-functions with a mirror symmetry between corresponding type A and
type B equivariant topological sigma models. In this note, we propose the
type B topological sigma model dual to the one considered in [8] and iden-
tify a particular set of correlation functions on a disk with Archimedean
L-functions. As expected the resulting functional integral representation of
the L-factors is reduced to a product of the Euler integral representations
of Γ-functions.

The type B equivariant topological sigma model considered below is an
S1-equivariant sigma model on a disk D with the target space X = C

�+1

and a non-trivial superpotential W . We imply that S1 acts by rotations
of the disk D. A particular superpotential W corresponding to the mirror
dual to the type A equivariant topological sigma model with target space
C

�+1 is well-known [17]. However our considerations have some new inter-
esting features. At first, the S1-equivariance provides a new solution of the
so-called Warner problem in topological theories on non-compact manifolds.
The standard way to render the theory consistent is to introduce a non-
trivial boundary interaction corresponding to a collection of D-branes in
the target space [18, 20, 23]. We show that in the case of S1-equivariant
sigma model on the disk D there is a universal boundary term leading to
a consistent topological theory. Another not quite standard feature of our
approach is a choice of a real structure on the space of fields of the topolog-
ical theory. One can construct a topological quantum field theory starting
with an N = 2 SUSY quantum field theory [24] and using a twisting pro-
cedure (see e.g. [25, 26]). This provides a particular real structure on the
space of fields. Another approach is to construct directly topological theory
combining (equivariant) topological multiplets of quantum fields. Although
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this approach produces topological field theories closely related with those
obtained by the twisting procedure the resulting real structure may be dif-
ferent (for a discussion of an example see e.g. [25]). In our considerations
we use a real structure which is different from the one appeared in twisted
N = 2 SUSY two-dimensional sigma models.

We also comment on an explicit mirror map of type A and type B
topological sigma models. We provide a heuristic derivation of the B-model
superpotential W by applying Duistermaat–Heckman localization formula
to an infinite-dimensional projective space. The sum over fixed points can
be related to the sum over instantons used in the previous derivations of
the superpotential [17]. We also consider an explicit change of variables in
the functional integral transforming A-model into B-model. Although these
considerations are heuristic they reveal interesting features of the topological
theories discussed in this note and in [8].

Finally note that pairs of Langlands dual Lie groups already appear in
various instances of mirror symmetry (see e.g. [15]). The most relevant to
our discussion is the appearance of the Langlands dual groups in the con-
struction of a mirror dual description of type A topological sigma models
associated with flag spaces G/B in terms of eigenfunctions of the quan-
tum Toda chains associated with the dual Lie groups G∨ [12, 13]. One shall
also note that the global geometric Langlands correspondence due to [4]
allows an interpretation in terms of S-duality in four-dimensional topologi-
cal Yang–Mills theories [19] (and in turn can be also considered as a mirror
symmetry of associated moduli spaces following an old idea of [14]). We shall
stress however that in this paper we are dealing with the local arithmetic
(Archimedean) Langlands correspondence and the proposed quantum field
theory approach to this problem seems new. A quest of possible relations
with a (generalization of) geometric Langlands correspondence [4, 19] we
leave for a future.

The plan of the paper is as follows. In Section 1, we provide a construc-
tion of a S1-equivariant type B topological sigma model on a disk D. In
Section 2, we identify a particular correlation function of the topological
sigma model with a product of Γ-functions thus providing a new functional
integral representation of local Archimedean L-factors. In Section 3 we give
heuristic constructions of a mirror map of type A topological sigma model
considered in [8] to a type B topological sigma model considered in Section
2. In Section 4, we conclude with some general remarks and discuss further
directions of research.
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1. Type B Topological sigma-models

We start by recalling the standard construction of a topological sigma model
associated with a Kähler manifold with trivial canonical class supplied with
holomorphic superpotential. For general discussion of the two-dimensional
topological sigma models see e.g., [6] and reference therein.

Let X be a Kähler manifold of complex dimension (� + 1) with trivial
canonical class and let W ∈ H0(X,O). Let M(Σ, X) = Map(Σ, X) be the
space of maps Φ : Σ → X of a compact Riemann surface Σ into X. Let (z, z̄)
be local complex coordinates on Σ. We pick a hermitian metric h on Σ and
denote

√
h d2z the corresponding measure on Σ. The complex structure on

Σ defines a decomposition d = ∂ + ∂, ∂ = dz ∂z, ∂ = dz̄ ∂z̄ of the differential
d acting on the differential forms on Σ. Let K and K̄ be canonical and anti-
canonical bundles over Σ. Let ω and g be the Kähler form and the Kähler
metric on X and TCX = T 1,0X ⊕ T 0,1X be a decomposition of the com-
plexified tangent bundle of X. We choose local complex coordinates (φj ,φ̄j)
on X. Locally Levi–Civita connection Γ and the corresponding Riemann
curvature tensor R are given by

(1.1) Γi
jk = gin̄∂jgkn̄, Rij̄kl̄ = gmj̄∂l̄Γ

m
ik.

Now let us specify the standard field content of the type B topological
sigma model associated with a pair (X, W ). Denote Π the parity change
functor. Thus, ΠE is a bundle E with the opposite parity of the fibers. Let
η, θ be sections of Φ∗(ΠT 0,1X), ρ be a section of (K ⊕ K̄) ⊗ Φ∗(ΠT 1,0X).
We also introduce the fields Ḡ and G given by sections of Φ∗(T 0,1X) and
K ⊗ K̄ ⊗ Φ∗(T 1,0X) respectively. The BRST [24] transformation δ is defined
as follows:

δφ̄ī = η̄ī, δη̄ī = 0, δθī = Ḡī − Γī
j̄k̄η̄

j̄θk̄, δḠī = −Γī
j̄k̄Ḡ

j̄ η̄k̄,

(1.2)

δρi = −dφi, δφi = 0, δGi = dρi + Γi
jkdφj ∧ ρk + 1

2Ri
jkl̄η̄

l̄ρj ∧ ρk.

Straightforward calculations show that δ2 = 0. One can define new variables

(1.3) Ḡ ī = Ḡī − Γī
j̄k̄η̄

j̄θk̄, Gi = Gi +
1
2
Γi

jkρ
j ∧ ρk,
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such that the action of δ has the following canonical form:

δφ̄ī = η̄ī, δη̄ī = 0, δθī = Ḡ ī, δḠ ī = 0,(1.4)

δρi = −dφi, δφi = 0, δGi = dρi.

Here the property δ2 = 0 is obvious. The advantage of (1.2) is that the
fields Gi and Ḡj̄ are covariant with respect to diffeomorphisms of the target
space X.

Consider a topological sigma model with the action given by

(1.5) S = S0 + SW̄ + SW ,

where

S0 =
∫

Σ
(gij̄dφi ∧ ∗dφ̄j̄ + gij̄ρ

i ∧ ∗Dη̄j̄ − gij̄θ
j̄Dρi + gij̄G

iḠj̄(1.6)

− 1
2
Ril̄kj̄ η̄

l̄ θj̄ ρi ∧ ρk),

SW̄ =
∫

Σ
d2z

√
h
(
Dī∂j̄W̄ (φ̄) η̄īθj̄ + Ḡī ∂īW̄ (φ̄)

)
,(1.7)

SW =
∫

Σ

(
−1

2
Di∂jW (φ) ρi ∧ ρj + Gi ∂iW (φ)

)
,(1.8)

and

Di∂jW (φ) = ∂i∂jW − Γk
ij∂kW, Dη̄j̄ = dη̄j̄ + Γj̄

k̄�̄
dφk̄η�̄.

The Hodge ∗-operator acts on one forms as follows ∗dz = ıdz, ∗dz̄ = −ıdz̄.

The parts S0 and SW̄ are δ-exact as it follows from δ2 = 0 and the
following representation:

S0 =
∫

Σ
δV0, SW̄ =

∫
Σ

d2z
√

h δVW̄ ,

where

(1.9) V0 = −gij̄ρ
i ∧ ∗dφ̄j̄ + Giθi, VW̄ = θj̄∂j̄W̄ (φ̄),

and θi = gij̄θ
j̄ . The variation of SW is given by

(1.10) δSW =
∫

Σ
d(ρi∂iW (φ)),

and thus is trivial on a compact surface Σ. Note that the action SW is
δ-closed but does not δ-exact.
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In this paper, we consider a particular case of an equivariant type B
topological sigma model on a non-compact two-dimensional manifold Σ.
Let Σ be a disk D = {z ∈ C| |z| ≤ 1}. We fix a flat metric h on D

(1.11) h = 1
2(dzdz̄ + dz̄ dz) = (dr)2 + r2(dσ)2, r ∈ [0, 1], σ ∈ [0, 2π],

where z = reıσ. This metric is obviously invariant with respect to the rota-
tion group S1 acting by σ → σ + α.

We would like to consider an S1-equivariant version of the type B topo-
logical linear sigma model on a disk D with a superpotential W . To con-
struct an S1-equivariant extension of the topological field theory we modify
the δ-transformations taking into account an interpretation of δ as the de
Rham differential in the infinite-dimensional setting. Let us first recall a
construction of an algebraic model of S1-equivariant cohomology. Let M be
a 2(� + 1)-dimensional manifold supplied with an action of S1. The Car-
tan algebraic model of S1-equivariant de Rham cohomology H∗

S1(M) is the
following equivariant extension (Ω∗

S1(M), dS1) of the standard de Rham com-
plex (Ω∗(M), d):

(1.12) Ω∗
S1(M) = (Ω∗(M))S1 ⊗ C[�], dS1 = d + �ιv0 ,

where (Ω∗(M))S1
is an S1-invariant part of Ω∗(M), � is a generator of the

ring H∗(BS1) and v0 is a vector field on M corresponding to a generator of
Lie(S1). We have

(1.13) d2
S1 = �Lv0 , Lv0 = d ιv0 + ιv0 d,

where Lv0 is the Lie derivative along the vector field v0. The equivariant
differential dS1 satisfies d2

S1 = 0 when acting on Ω∗
S1(M). The cohomology

groups H∗
S1(M) of the complex (1.12) have a natural structure of modules

over H∗
S1(pt) = C[�].

The S1-equivariant version of the BRST transformations (1.4) is a direct
generalization of the expression (1.12) for the equivariant differential to the
infinite-dimensional setting. Taking into account an induced action of S1 on
the space of fields we have

δS1 φ̄ī = η̄ī, δS1 η̄ī = �ιv0dφ̄ī, δS1θī = Ḡ ī, δS1 Ḡ ī = �ιv0dθī,

δS1Gi = dρi, δS1ρi = −dφi − �ιv0Gi, δS1φi = �ιv0ρ
i.

Obviously, we have δ2
S1 = �Lv0 .
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In terms of the variables Gi and Ḡi we have the following transforma-
tions:

δS1 φ̄ī = η̄ī, δS1 η̄ī = �ιv0dφ̄ī, δS1θī = Ḡī − Γī
j̄k̄η̄

j̄θk̄,

δS1Ḡī = −Γī
j̄k̄η̄

j̄Ḡk̄ + �ιv0

(
Dθī) + �∂lΓī

j̄k̄(ιv0ρ
l)η̄j̄θk̄,

δS1Gi = dρi + Γi
jkdφj ∧ ρk +

1
2
Ri

jkl̄η̄
l̄ρj ∧ ρk + �Γi

jk(ιv0G
j) ∧ ρk,

δS1ρi = −dφi − �ιv0G
i − �Γi

jk(ιv0ρ
j)ρk, δS1φi = �ιv0ρ

i.

Now the S1-equivariant version of (1.6) and (1.7) on a disk Σ = D is obtained
by applying modified δS1 to V0 and VW̄ given by (1.9). The action SW given
by (1.8) is not δS1 invariant on the disk and needs a correction boundary
term.

Proposition 1.1. The following modified action functional of a type B
topological sigma model

S =
∫

D

(
gij̄

(
dφj + �ιv0G

j
) ∧ ∗dφ̄j̄ + gij̄ρ

i ∧ ∗Dη̄j̄(1.14)

−gij̄θ
j̄Dρi + gij̄G

iḠj̄ − 1
2
Ril̄kj̄ η̄

l̄θj̄ρi ∧ ρk

)

+
∫

D
d2z

√
h
(
Dī∂j̄W̄ (φ̄)η̄īθj̄ + ∂īW̄ (φ̄)Ḡī

)

+
∫

D

(
−1

2
Di∂jW (φ)ρi ∧ ρj + ∂iW (φ)Gi

)

− 1
�

∫
S1=∂D

dσW (φ)

is δS1-invariant.

Proof. Direct calculation shows that δS1-variation of the sum of the integrals
over D in (1.14) is given by the boundary term

δS1S =
∫

∂D
ρi∂iW (φ).

The δS1-variation of the boundary term in (1.14) precisely cancels this
contribution. �

Remark 1.1. The action (1.14) does not have a smooth limit � → 0. This
is a so called “Warner problem” in the type B topological sigma model
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with a non-trivial superpotential W ∈ H0(X,O) on non-compact surface
Σ. In non-equivariant setting it is resolved by imposing special boundary
conditions corresponding to a collection of D-branes on the target space X
[18, 20, 23]. Remarkably the S1-equivariant setting discussed above allows
a construction of a universal δS1-invariant boundary condition by adding
boundary term in (1.14).

Remark 1.2. The relation between the boundary term in (1.14) and the
variation (1.10) is a particular instance of a general descent relation between
various observables in topological field theories.

2. Linear sigma model on a disk

In this section we calculate a particular correlation function of the S1-
equivariant type B linear sigma model on the disk D with the target space
C

�+1 and a generic superpotential W . The δS1-transformations in the case
of X = C

�+1 are given by

δS1 φ̄ī = η̄ī, δS1 η̄ī = �ιv0dφ̄ī, δS1θī = Ḡī, δS1Ḡī = �ιv0dθī,

δS1ρi = −dφi − �ιv0G
i, δS1φi = �ιv0ρ

i, δS1Gi = d ρi.

(2.1)

The action (1.14) in this case is reduced to

S =
�+1∑
j=1

∫
D

(
(dφj + �ιv0G

j) ∧ ∗dφ̄j + ρj ∧ ∗dη̄j − θjdρj + GjḠj
)

(2.2)

+
�+1∑

i,j=1

∫
D

d2z
√

h
(
∂i∂jW̄ (φ̄)η̄iθ̄j + ∂iW̄ (φ̄) Ḡi

)

+
∫

D

(
−1

2
∂i∂jW ρi ∧ ρj + ∂iW Gi

)

− 1
�

∫
S1=∂D

dσW (φ).

Topological linear sigma model (2.2) allows a non-standard real structure.
This means the following. Let us consider the fields φi, φ̄i, θi, θ̄i, η̄i, ηi, ρi ρ̄i,
Gi and Ḡi as independent complex fields. The subspace of the fields entering
the description of the topological theory with the action (2.2) is defined as
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a subspace invariant with respect to an involution acting as follows:

(2.3)
(φi)† = φ̄i, (θi)† = θ̄i, (η̄i)† = ηi, (ρi)† = ρ̄i, (Gi)† = Ḡi.

The involution defines a real structure on the space of fields. One can, how-
ever, consider another real structure defined by the reality conditions

(φi)† = φi, (φ̄i)† = −φ̄i, (θi)† = −θi,(2.4)

(η̄i)† = −η̄i, (ρi)† = ρi, (Gi)† = Gi, (Ḡi)† = −Ḡi.

Thus for example the fields φi and ıφ̄i are real independent fields. To dis-
tinguish the real fields in the sense (2.4) let us introduce new notations φi

+,
φi−, Gi

+, Gi− for φi, ıφ̄i, Gi, ıḠi. Similarly we redefine the fields η̄ and θ by
multiplying them on ı and considering the resulting fields as real ones. The
S1-equivariant BRST operator can be defined on the new set of real fields
as follows:

δS1φi
− = ηi, δS1ηi = �ιv0dφi

−, δS1θi = Gi
−, δS1Gi

− = �ιv0dθi,

δS1ρi = −dφi
+ − �ιv0G

i
+, δS1φi

+ = �ιv0ρ
i, δS1Gi

+ = d ρi,

(2.5)

where now the fields ηi and θi are odd real zero-form valued fields, ρi are
odd real one-form valued fields, Gi− are even real zero-form valued fields and
Gi

+ are even real two-form valued fields. The action of the sigma model for
the new real structure is now given by

S = −ı
�+1∑
j=1

∫
D

(
(dφj

+ + �ιv0G
j
+) ∧ ∗dφj

− + ρj ∧ ∗dηj − θjdρj + Gj
+Gj

−
)

(2.6)

+
�+1∑

i,j=1

∫
D

d2z
√

h

(
−∂2W−(φ−)

∂φi−∂φj
−

ηiθj − ı
∂W−(φ−)

∂φi−
Gi

−

)

+
�+1∑

i,j=1

∫
D

(
−1

2
∂2W+(φ+)

∂φi
+∂φj

+

ρi ∧ ρj +
∂W+(φ+)

∂φi
+

Gi
+

)

− 1
�

∫
S1=∂D

dσW+(φ+).

Here W+ and W− are arbitrary independent regular functions on R
�+1. Thus

defined action is δS1-closed.
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Remark 2.1. Our choice of the real structure is such that the constructed
type B topological sigma model is a mirror dual to the type A topological
sigma model considered in [8]. In Section 3.3 we demonstrate that the mirror
correspondence applied to the type A topological sigma models from [8] leads
to the real structure of type (2.4). Note also that the construction of the
topological Yang–Mills theories using an equivariant setting [25] also leads
to the non-standard real structure analogous to the one we use.

In the following, we consider the case of W−(φ−) = 0. Thus we have

S = −ı
�+1∑
j=1

∫
D

(
(dφj

+ + �ιv0G
j
+) ∧ ∗dφj

− + ρj ∧ ∗dηj − θjdρj + Gj
+Gj

−
)

(2.7)

+
�+1∑

i,j=1

∫
D

(
−1

2
∂2W+(φ+)

∂φi
+∂φj

+

ρi ∧ ρj +
∂W+(φ+)

∂φi
+

Gi
+

)

− 1
�

∫
S1=∂D

dσW+(φ+).

Given an observable O(z, z̄) on the disk D we define its correlation function
as a functional integral below:

〈O(z, z̄)
〉
W+

:=
∫

Dμ O(z, z̄) e−S(2.8)

Dμ =
�+1∏
i=1

[Dφi
+][Dφi

−][Dηi][Dθi][Dρi][DGi
+][DGi

−].

Lemma 2.1. The following observable inserted at the center z = 0 of the
disk D

(2.9) O∗(0) := O∗(z, z̄)|z=0 =
�+1∏
i=1

δ(φi
−(z, z̄)) ηi(z, z̄)|z=0

is δS1-invariant.
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Proof. We have

δS1O∗(z, z̄) =
�+1∑
m=1

ηm(z, z̄)
∏
j �=m

δ(φj
−)

�+1∏
i=1

ηi(z, z̄)

+
�+1∑
m=1

∏
j

δ(φj
−)(−1)mη1 . . . ηm−1(�ιv0η

m)ηm+1 . . . .η�+1.

The first term is equal to zero since for odd variables η2 = 0. The second
term vanishes since the center of the disk z = 0 is a fixed point of the S1-
action so that ιv0(ηm)

∣∣
z=0

= 0. �

Theorem 2.1. The correlation function of the observable (2.9) in the type
B topological S1-equivariant linear sigma model (2.7) is given by

(2.10) 〈O∗(0)〉W+ =
∫

R�+1

�+1∏
j=1

dtj e
1
�

W+(t).

Proof. Firstly, we make an integration over Gi−:

∫
[DG−] exp

{
ı

∫
D

�+1∑
i=1

Gi
+(z)Gi

−(z)

}
=

�+1∏
i=1

δ(Gi
+).

The integration over Gj
+ is then equivalent to the substitution of Gj

+ = 0.
Thus we should calculate the following functional integral:

Z =
∫

[Dφ+] [Dφ−]O1(0) exp

{
ı

∫
D

�+1∑
i=1

dφi
+ ∧ ∗dφi

−(2.11)

−1
�

∫
S1

dσW+(φ+)

}
Zf (φ+),

where

Zf (φ+) =
∫

[Dρ] [Dθ][Dη] O2(0) exp

⎧⎨
⎩ı

∫
D

�+1∑
i=1

(
ρi ∧ ∗dηi − θidρi)

+
1
2

∫
D

�+1∑
i,j=1

∂2W+

∂φi
+∂φj

+

ρi ∧ ρj

⎫⎬
⎭ ,
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and

O1(0) =
�+1∏
j=1

δ(φi
−(0)), O2(0) =

�+1∏
j=1

ηi(0).

Let us first integrate over θ in Zf . We have

Zf (φ+) =
∫

[Dρ] [Dη] O2(0)
�+1∏
j=1

δ(dρj) exp

⎧⎨
⎩ı

∫
D

�+1∑
j=1

ρj ∧ ∗dηj

+
1
2

∫
D

�+1∑
i,j=1

∂2W+

∂φi
+∂φj

+

ρi ∧ ρj

⎫⎬
⎭ .

One-forms allow the following decomposition:

(2.12) ρi = df i
1 + ∗df i

2 = ∂zF̄ idz + ∂z̄F
idz̄, F i = f i

1 − ıf i
2.

It is easy to check (using for example series expansions) that for given ρi the
solutions f1, f2 of (2.12) always exist and are unique up to addition to F i a
holomorphic function. Therefore, we make the following change of variables
ρi → (f i

1, f
i
2)/∼ where the equivalence relation is generated by addition to

f j
1 and f j

2 of real and imaginary parts of a holomorphic function g(z)

(2.13) f i
1 ∼ f i

1 + Re(gi(z)), f i
2 ∼ f i

2 + Im(gi(z)).

Thus we have

[Dρ] =
[Df1] [Df2]

[Dg]
Jac−1

1 ,

where Jacobian is given by the determinant of the operator

(d ⊕ ∗d) : (f i
1, f

i
2) → ρi = df i

1 + ∗df i
2,

acting A0
orth ⊂ A0(D) orthogonal to its kernel. We define a determinant of an

operator acting between different spaces as a square root of the determinant
of the product of the operator and its conjugated

Jac1 = |det ′
A0

orth⊕A0
orth

(d + ∗d)|

:=
(
det ′

A0
orth⊕A0

orth
(d + ∗d)2

) 1
2 = det ′

A0
orth

Δ0,

where Δ0 = (d + d∗)2 acting in the space of functions A0. We have

δ(dρi) = δ(d(df i
1 + ∗df i

2)) = δ(d ∗ df i
2),
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and thus

Zf (φ+) =
∫

[Dη]
[Df1] [Df2]

[Dg]
1

det ′
A0

orth
Δ0

O2(0)
�+1∏
i=1

δ(d ∗ d f i
2)

× exp

⎧⎨
⎩ı

∫
D

�+1∑
i=1

(df i
1 + ∗d f i

2) ∧ ∗dηi

+
1
2

∫
D

�+1∑
i,j=1

∂2W+

∂φi
+∂φj

+

(df i
1 + ∗d f i

2) ∧ (df j
1 + ∗d f j

2 )

⎫⎬
⎭ .

Let us fix a representative for the equivalence relation (2.13) by the condi-
tion that f i

2 is in the subspace orthogonal to the space of harmonic func-
tions on the disk. This leaves a freedom to add to f i

1 a real constant (indeed
Im(gi(z)) = 0 implies gi(z) = ai ∈ R). We denote by [Df1]′ the induced mea-
sure on this subspace. The integration over f i

2 gives

Zf (φ+) =
∫

[Dη] [Df1]′ O2(0) exp

⎧⎨
⎩ı

∫
D

�+1∑
i=1

df i
1 ∧ ∗dηi

+
1
2

∫
D

�+1∑
i,j=1

∂2W+

∂φi
+∂φj

+

df i
1 ∧ df j

1

⎫⎬
⎭ ,

where the determinant in the denominator is canceled by the determinant
appearing from the integration of the delta-function.

We split the space of functions A0(D) on a disk on the space A0
h of

harmonic functions and the space A0
N of functions that have zero normal

derivative on the boundary:

f i = f i
h + f i

N , f i
h ∈ A0

h, f i
N ∈ AN

Δ0f
i
h = 0, ∂nf i

N |S1 = 0.

The subspace A0
h can be identified with the space Fun(S1) of functions on the

boundary S1 = ∂D. This is not an orthogonal decomposition with respect
to the natural scalar product on the space of functions on the disk. Thus we
have a non-trivial Jacobian in the integration measure:

[Df ] = [Dfh] [DfN ] Jac−1
2 ,
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which is a some constant. Note that the following relation holds:

∫
D

�+1∑
i=1

df i
1 ∧ ∗dηi =

∫
D

�+1∑
i=1

ηi
N ∗ Δf i

1,N −
∫

S1

�+1∑
i=1

ηi
h ∗ df i

1,h.

Taking integral over ηi
1,N and ηi

1,h, we obtain

Zf (φ+) =
1

Jac2

∫
[Df1]′

�+1∏
i=1

δ(Δ0f
i
1,N ) δ(∗df i

1,h)

× exp

⎧⎨
⎩

1
2

∫
D

�+1∑
i,j=1

∂2W+

∂φi
+∂φj

+

d(f i
1,N + f i

1,h) ∧ d(f j
1,N + f j

1,h)

⎫⎬
⎭

=
1

Jac2
2

det ′
A0

N
Δ0 det ′

Fun(S1)(∗d).

Now let us calculate the functional integral (2.11). The calculation is basi-
cally the same as in the case of Zf . The only difference (apart of the fact that
Jacobins and determinants appear inverse) is that the integral over constant
mode of φj

− is present and is eaten up by the delta-function insertion. On
the other hand the integral over constant mode of φj

+ remains. Taking into
account the cancelation of the Jacobians and determinants for fermions and
bosons the total integral is equal to

Z =
∫

R�+1

�+1∏
j=1

dtj e
1
�

W+(t),

where tj are constant modes of the fields φj
+. �

Corollary 2.1. The correlation function of the observable (2.9) in the type
B topological S1-equivariant linear sigma model (2.7) with the superpotential

(2.14) W
(0)
+ (φ+) =

�+1∑
j=1

(λjφ
j
+ − eφj

+), λj ∈ R+

is given by the following product of the Γ-functions

(2.15) 〈O∗(0)〉W (0)
+

=
�+1∏
j=1

�
λj

� Γ
(

λj

�

)
.
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Proof. Using the result of the previous Theorem for the superpotential (2.14)
we straightforwardly have

〈O∗(0)〉W (0)
+

=
∫

R�+1

�+1∏
j=1

dtj e
1
�

∑ �+1
j=1(λjtj−etj

) =
�+1∏
j=1

�
λj

� Γ
(

λj

�

)
.

�

The expression (2.15) is equivalent to the one obtained in type A topolo-
gical sigma model considered in [8]. The coincidence of a particular correla-
tion functions in type A model considered in [8] and the correlation function
from Corollary 2.1 is a manifestation of the mirror symmetry between two
underlying sigma models. Without taking into account the involved S1-
equivariance, the mirror correspondence between the two models follows
from the results of [17]. In particular the exponential terms in the super-
potential (2.14) are attributed to the summation over instantons in type A
sigma model. In the following section we provide heuristic arguments for the
mirror symmetry between the topological theory considered in this note and
the one considered in [8].

3. On equivalence of A and B topological sigma models

As it was demonstrated in the previous section the Euler integral represen-
tation of the Γ-function

(3.1) Γ(s) =
∫ +∞

−∞
dx exs e−ex

, Re(s) > 0,

naturally arises as a particular correlation function in a certain S1-
equivariant type B topological sigma model on the disk D. In [8] it was
argued that this integral representation is dual to the representation of the
Γ-function as an equivariant symplectic volume of an infinite-dimensional
space. The natural framework for this duality is a mirror symmetry. Below
we establish a direct relation of the Euler integral representation (3.1) of
the Γ-function with the representation of the Γ-function as an equivariant
symplectic volume of an infinite-dimensional space proposed in [8]. We also
discuss an explicit mirror map between the type A equivariant topological
linear sigma model considered in [8] and the type B equivariant topological
sigma model considered in the previous sections. Finally we elucidate the
appearance of the non-standard real structure (2.4) in a simple example of
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the mirror map for a sigma model on P
1 with the target space being an

infinite cylinder C
∗ = R × S1.

3.1. Fixed point calculation of equivariant volume

In this subsection we derive the Euler integral representation of the Gamma-
function (3.1) applying the Duistermaat–Heckman fixed point formula to the
infinite-dimensional integral representation for the Gamma function pro-
posed in [8]. The main step of the derivation is a calculation (see Lemma
3.2) of the infinite-dimensional determinant entering the stationary phase
evaluation of the relevant functional integral.

Let us start with recalling the functional integral representation of the
Γ-function as an equivariant symplectic volume from [8]. Let M(D, C) be a
space of holomorphic maps of the disk D = {z ∈ C| |z| ≤ 1} into the complex
plane C. An element of M(D, C) can be described as a complex function
ϕ(z, z̄) on D, satisfying the equation

(3.2) ∂z̄ϕ(z, z̄) = 0.

We denote the complex conjugated function by ϕ̄(z, z̄). Define a symplectic
form on the space M(D, C) as follows:

(3.3) Ω =
ı

4π

∫ 2π

0
δϕ(σ) ∧ δϕ̄(σ) dσ,

where ϕ(σ), ϕ̄(σ) are restrictions of ϕ(z, z̄), ϕ̄(z, z̄) to the boundary ∂D = S1

and σ is a coordinate on the boundary such that σ ∼ σ + 2π. The symplectic
form (3.3) is invariant with respect to the action of the group S1 of loop
rotations and to the action of U(1) induced from the standard action of U(1)
on C

ϕ(z) −→ eiαϕ(z), ϕ̄(z̄) −→ e−iαϕ̄(z̄), eiα ∈ U(1),(3.4)

ϕ(z) −→ ϕ(eıβz), ϕ̄(z̄) −→ ϕ̄(e−ıβ z̄), eıβ ∈ S1.(3.5)

Let � and λ be generators of the Lie algebras of S1 and U(1) correspond-
ingly. The action of S1 × U(1) on (M(D, C), Ω) is Hamiltonian and the
corresponding momenta are given by

(3.6) HS1 = − ı

4π

∫ 2π

0
ϕ̄(σ)∂σϕ(σ) dσ, HU(1) =

1
4π

∫ 2π

0
|ϕ(σ)|2 dσ.
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The S1 × U(1)-equivariant volume of M(D, C) is defined formally as follows
[8]. Let χ(z, z̄) and χ̄(z, z̄) be a pair of complex conjugated odd functions
satisfying the equations

(3.7) ∂z̄χ(z, z̄) = 0, ∂zχ̄(z, z̄) = 0.

The functions (χ(z, z̄), χ̄(z, z̄)) can be considered as a section of the odd
tangent bundle ΠTM(D, C) to M(D, C). Using the standard correspon-
dence between differential forms on a manifold X and the functions on the
odd tangent bundle ΠTX one can write down the symplectic form (3.3) as
follows:

Ω =
ı

4π

∫ 2π

0
dσ χ(σ) χ̄(σ).

Below we freely use the equivalence between differential forms and functions
on superspaces without further notice.

The S1 × U(1)-equivariant volume of the space of holomorphic maps
M(D, C) is given by the following functional integral:

(3.8)

Z(λ, �, μ) =
∫

ΠTM(D,C)
dm(ϕ, χ) eμ(λHU(1)+�HS1+Ω), Re(μ) < 0,

where HS1 , HU(1) are given by (3.6), and dm(ϕ, χ) is a canonical integra-
tion measure on the superspace ΠTM(D, C) defined in [8]. The integral
(3.8) is an infinite-dimensional Gaussian integral and is understood using
the zeta-function regularization. Note that in general, regularized infinite-
dimensional integrals depend on auxiliary parameters defined by a particular
choice of a regularization scheme. For the integral (3.8) this leads to the fol-
lowing general dependence on a regularization scheme [8]:

(3.9) Z(λ, �, μ) = A(μ) B(μ)
λ

� Γ
(

λ

�

)
,

where A(μ) and B(μ) are some λ-independent functions. Thus taking into
account the dependence on a choice of a regularization scheme it is natural
to consider the S1 × U(1)-equivariant volume of the space of holomorphic
maps M(D, C) (and thus in particular the gamma-function) as a R

∗ × R+-
torsor. The regularization scheme we use below leads to a particular choice
of A and B.

In [8] the integral (3.8) was expressed in terms of infinite-dimensional
determinant and no obvious relation with the Euler integral representation
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(3.1) was given. Below we consider a heuristic derivation of (3.9) using an
infinite-dimensional version of the Duistermaat–Heckman fixed point for-
mula [7]. In this derivation the Euler integral representation (3.1) appears
in a natural way.

To proceed let us first recall a construction of a projective space P
N as

the Hamiltonian reduction of a symplectic manifold (CN+1, ωCN+1) by the
Hamiltonian action of the group U(1). Here the symplectic form ωCN+1 is
given by

(3.10) ωCN+1 =
ı

2

N+1∑
j=1

dzj ∧ dz̄j ,

and the U(1) action

(3.11) eıα : zj −→ eıα zj , eıα ∈ U(1), j = 1, . . . , N + 1

is generated by the vector field

v =
N+1∑
i=1

ı

{
zi

∂

∂zi
− z̄i

∂

∂z̄i

}
.

The momentum HU(1) corresponding to the Hamiltonian action (3.11) is
defined by the equation ιvω = −dHU(1) and is given by HU(1) = 1

2

∑N+1
j=1

|zj |2. Projective space P
N can be realized as a Hamiltonian reduction of

(CN+1, ωCN+1) by U(1)

(3.12) P
N =

{
z ∈ C

N+1
∣∣∣HU(1)(z, z̄) =

1
2
r2

}/
U(1) , r ∈ R.

Thus constructed P
N has a canonical symplectic structure ωPN proportional

to the Fubini–Study form. In terms of inhomogeneous coordinates wj =
zj/zN+1, zN+1 �= 0 it is given by

(3.13) ωPN =
ır2

2
(1 +

∑N
i=1 |wi|2)

∑N
j=1 dwj ∧ dw̄j −

∑N
i,j wiw̄jdwj ∧ dw̄i

(1 +
∑N

i=1 |wi|2)2
.

The symplectic space (CN+1, ωCN+1) allows also the Hamiltonian action of
the group U(1)N+1

(3.14) zi �−→ zie
ıαi , eıαi ∈ U(1)i, i = 1, . . . , N + 1,
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generated by vector fields

vi = ı

{
zi

∂

∂zi
− z̄i

∂

∂z̄i

}
, i = 1, . . . , N + 1.

Solving the equations ιvi
ωC�+1 = −dHi we find the corresponding momenta

Hi =
1
2
|zi|2, i = 1, . . . , N + 1.

The action of U(1)N+1 descents to the Hamiltonian action on (PN , ωPN

)
with the corresponding momenta

(3.15) HPN

j =
r2

2
|wj |2

1 +
∑N

j=1 |wj |2
, j = 1, . . . N,

and

(3.16) HPN

N+1 =
r2

2
1

1 +
∑N

j=1 |wj |2
.

Lemma 3.1. The following identity holds:
(3.17)

1
2πμ

∫
CN+1

δ
(
HU(1) − r2/2

)
eμ(ω

CN+1+
∑N+1

j=1 λjHj) =
∫

PN

eμ(ω
PN +

∑N+1
j=1 λjHP

N

j ),

where ωPN is given by (3.13) and the reduced Hamiltonians HPN

j are given
by (3.15) and (3.16).

Proof. Let us introduce new variables wj = zj/zN+1, j = 1, . . . , N and t =
|zN+1|2, θ = 1

2ı ln zN+1

z̄N+1
, so that zN+1 =

√
t eıθ. Then we have

μN

2π

( ı

2

)N+1
∫

CN+1

N+1∧
i=1

dzi ∧ dz̄i δ
(1

2

N+1∑
i=1

|zi|2 − r2

2

)
eμ

∑N+1
j=1 λjHj

=
μN

2π

( ı

2

)N
∫ 2π

0
dθ

∫ ∞

0
dt tN

∫
CN

N∧
n=1

(dwn ∧ dw̄n)

1 +
∑ |wn|2

× δ
(
t − r2

1 +
∑ |wn|2

)
eμ

∑N+1
j=1 λjHj

= μNr2N
( ı

2

)N
∫

CN

N∧
n=1

(dwn ∧ dw̄n)
(
1 +

∑ |wn|2
)N+1

eμ
∑N+1

j=1 λjHP
N

j .
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Taking into account that

ωN
PN

N !
= r2N

( ı

2

)N

N∧
n=1

(dwn ∧ dw̄n)
(
1 +

∑ |wn|2
)N+1

,

we obtain the identity (3.17). �

We shall use an infinite-dimensional analog of the identity (3.17) to
calculate the integral (3.8). Let us rewrite the integral (3.8) as follows:

Z(λ, �, μ) =
∫ +∞

−∞
dt eμλt Zt(�, μ),

Zt(�, μ) =
∫
M(D,C)

eμ(�HS1+Ω) δ(t − HU(1)).(3.18)

Now taking into account (3.17), we can interpret Zt(�, μ) as an integral over
the infinite-dimensional projective space PM(D, C)

(3.19) Zt(�, μ) = 2πμ

∫
PM(D,C)

eμ(�H̃S1+Ω(t)),

where Ω(t) is an induced symplectic form on PM(D, C) and H̃S1 is a momen-
tum corresponding to the S1-action on PM(D, C). We should stress that the
integral in (3.19) is an infinite-dimensional one and thus requires a proper
regularization which will be discussed below.

To calculate the integral (3.19) we use an infinite-dimensional version of
the Duistermaat–Heckman formula [7], [2] (for a detailed introduction into
the subject see e.g. [3]). Let M be a 2N -dimensional symplectic manifold
with the Hamiltonian action of S1 having only isolated fixed points. Let H
be the corresponding momentum. The tangent space Tpk

M to a fixed point
pk ∈ MS1

has a natural action of S1. Let v be a generator of Lie(S1) and
let v̂ be its action on Tpk

M . Then the following identity holds:

(3.20)
∫

M
eμ(�H+ω) =

∑
pk∈MS1

eμ�H(pk)

detTpk
M �v̂/2π

.

Let us formally apply (3.20) to the integral (3.19). A set of fixed points
of S1 acting on PM(D, C) can be easily found using linear coordinates
on M(D, C) (considered as homogeneous coordinates on PM(D, C)). Let
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ϕ(z) be a holomorphic map of D to C. It represents an S1-fixed point on
PM(D, C) if rotations by S1 can be compensated by an action of U(1)

(3.21) eıα(β)ϕ(eıβz) = ϕ(z), β ∈ [0, 2π].

It is easy to see that solutions of (3.21) are enumerated by non-negative
integers and are given by

(3.22) ϕ(n)(z) = ϕnzn, ϕn ∈ C
∗ n ∈ Z≥0.

The tangent space to M(D, C) at an S1-fixed point ϕ(n) has natural linear
coordinates ϕm/ϕn, m ∈ Z≥0, m �= n, where coordinates ϕk, k ∈ Z≥0 are
defined by the series expansion of ϕ ∈ M(D, C)

ϕ(z) =
∞∑

k=0

ϕkz
k.

After identification of � in (3.19) with a generator of Lie(S1) its action on
the tangent space at the fixed point is given by a multiplication of each
ϕm/ϕn on (m − n). Thus to define an analog of the denominator in the
right-hand side of the Duistermaat–Heckman formula (3.20), one should
provide a meaning to the infinite product

∏∞
m=0,m�=n �(m − n)/2π. We use

a ζ-function regularization (see e.g. [16] and also Appendix in [8])

ln
[ ∏

m∈Z≥0,,m�=n

�

2π
(m − n)

]
a

:= − ∂

∂s

(
n∑

m=1

e−ıπs

(a�m/2π)s
+

∞∑
m=1

1
(a�m/2π)s

)∣∣∣∣∣
s→0

,(3.23)

where a is a normalization multiplier. The introduction of a is to take
into account a multiplicative anomaly det(AB) �= det A · det B appearing
for generic operators A and B. We specify a at the final step of the calcula-
tion of (3.19).

Lemma 3.2. The regularized product (3.23) is given by

(3.24)
1[∏

m∈Z≥0,m�=n �(m − n)/2π
]
a

= (−1)n (a�/2π)−n

n!

√
a�

2π
.
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Proof. Using the Riemann ζ-function

ζ(s) =
∞∑

n=1

1
ns

,

one can express the right hand side of (3.23) as follows:

ln
[ ∏

m∈Z≥0,,m�=n

�

2π
(m − n)

]
a

= (ζ(0) + n) ln a�/2π + lnn! − ζ ′(0) + ıπn.

Taking into account ζ(0) = −1
2 and ζ(0)′ = −1

2 ln 2π, we obtain (3.24). �

Let us now calculate the difference of the values of S1-momentum map
H̃S1 at two S1-fixed points ϕ(n), ϕ(0) ∈ PM(D, C). Consider an embedded
projective line P

1 ⊂ PM(D, C), containing ϕ(n) and ϕ(0). Let us choose
homogeneous coordinates [z0 : z1] on P

1 such that ϕ(0) = [1 : 0] and ϕ(n) =
[0 : 1]. The action of S1 on PM(D, C) descends to the embedded P

1 via the
vector field

(3.25) V = ın

{
w

∂

∂w
− w̄

∂

∂w̄

}
, w = z1/z0.

The pull back of the symplectic form Ω(t) is given by

ωP1 = ıt
dw ∧ dw̄

(1 + |w|2)2 .

The action of the vector field (3.25) on P
1 is the Hamiltonian one. Let H

(n)
S1

be the corresponding momentum given by a restriction of the momentum
H̃S1 for S1-action PM(D, C). From the definition of the momentum map
we have

(3.26) H
(n)
S1 (ϕ(n)) − H

(n)
S1 (ϕ(0)) =

∫ [0:1]

[1:0]
dH

(n)
S1 = −

∫ [0:1]

[1:0]
ιV ωP1 .

A momentum defined as a solution of the equation iV ω = −dH is unique
up an additive constant. To fix this constant we normalize the momentum
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H̃S1(ϕ) so that HS1(ϕ(0)) = 0. Thus we obtain the following:

(3.27) H
(n)
S1 (ϕ(n)) = nt

∫ [0:1]

[1:0]

wdw̄ + w̄dw

(1 + |w|2)2 = −nt
[ 1
(1 + |w|2)

]∞
0

= nt.

Substituting (3.27) and (3.24) into (3.20) for M = PM(D, C) we obtain

(3.28)

Zt(�, μ) = 2πμ

√
a�

(2π)2

∞∑
n=0

(−1)n entμ�

(a�/2π)n n!
= μ

√
a� exp

{
−2π

a�
eμ�t

}
,

where the dependence on the normalization constant a reflects an ambi-
guity of the regularized infinite-dimensional integral. Taking into account
(3.18), the regularized S1 × U(1)-equivariant symplectic volume of M(D, C)
is given by

Zreg(λ, �, μ) =
∫ ∞

0
dt eμλtZt(�, μ) = μ

√
a�

∫ ∞

0
dt eμλt e−

2π

a�
eμ�t

(3.29)

=
(a

�

)1/2
(

a�

2π

)λ

�

∫ +∞

− ln(a�/2π)
du e

λ

�
u e−eu

,

where u = μ�t − ln(a�/2π). To get rid of the renormalization ambiguity we
take the limit a → +∞ in the following way:

(3.30) Z(λ, �) = lim
a→+∞

(a

�

)−1/2 ( a

2π

)−λ

�

Zreg(M; λ, �) = �
λ

� Γ
(λ

�

)
.

Thus, we show that the formal application of the Duistermaat–Heckman
formula to the infinite-dimensional integral (3.8) in the form (3.18) leads to
the Euler integral representation (3.1) of the Γ-function and reproduces the
results of Section 2.

3.2. On explicit mirror map for the target space C

In this subsection we consider an explicit mirror map of the type A topo-
logical sigma model considered in [8] to the type B topological sigma model
considered in Section 1.

In the previous sections, we take into account the action (3.4) of U(1) on
the symplectic space (M(D, C), Ω) of holomorphic maps of the disk D into
the complex plane C. Now we introduce a larger infinite-dimensional group
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acting on (M(D, C), Ω) in a Hamiltonian way. The space (M(D, C), Ω) sup-
ports the Hamiltonian action of a commutative Lie algebra G = Map(S1, R)
of real functions on S1 given by

α · ϕ(σ) = ı [α(σ)ϕ(σ)]+ , α · ϕ̄(σ) = −ı [α(σ)ϕ̄(σ)]− ,

where α(σ) ∈ G and ϕ(σ), ϕ̄(σ) are restrictions of ϕ(z), ϕ̄(z̄) to the boundary
S1 = ∂D. The projectors [ ]± are defined as follows:

[eınσ]+ = eınσ, n ≥ 0, [eınσ]+ = 0, n < 0, [eınσ]− = eınσ − [eınσ]+.

Given a Hamiltonian action of G one can define corresponding momentum
map of M(D, C) into the dual to the Lie algebra G. The value of the momen-
tum on the element α(σ) of the Lie algebra G is given by

(3.31)

HG(α) =
∫ 2π

0
dσ α(σ) HG(ϕ̄(σ), ϕ(σ)), HG(ϕ̄(σ), ϕ(σ)) =

1
4π

|ϕ(σ)|2.

Note that the subalgebra u(1) ⊂ G corresponding to α(σ) = const coincides
with the Lie algebra of the group U(1) considered in the previous subsection.
The momenta (3.31) motivate an introduction of a new parametrization of
M(D, C)

ϕ(σ) = τ1/2(σ) eıφ(σ), ϕ̄(σ) = τ1/2(σ) e−ıφ(σ),

and thus

(3.32) τ(σ) = |ϕ(σ)|2, φ(σ) = − ı

2
ln

(
ϕ(σ)
ϕ̄(σ)

)
.

Note that thus defined τ(σ) is constrainted by the condition to be a restric-
tion to the boundary S1 of the square module of a holomorphic function
on D. Also let us stress that φ(σ) given by (3.32) is not single-valued.
Indeed let ϕ(n)(z) = pn(z)ϕ(0)(z) be a holomorphic function on D such that
pn(z) =

∏n
j=1(z − aj), aj ∈ D is a polynomial of degree n and ϕ(0)(z) is a

holomorphic function without zeroes inside D. Then we have for the corre-
sponding function φ(σ)

(3.33) φ(n)(σ + 2π) = φ(n)(σ) + 2πn, n ∈ Z≥0.
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Hence the space of holomorphic maps has the following decomposition (mod-
ulo subspaces of non-zero codimension):

(3.34) M(D, C) = ∪∞
n=0M(n)(D, C),

where M(n)(D, C) includes holomorphic maps ϕ(z) such that for the corre-
sponding function φ the relation (3.33) holds. We would like to reformulate
the integral (3.8) using new variables (3.32) and the decomposition (3.34).
Let us decompose the space of fields τ(σ) on the subspace of constant modes
τ(σ) = 2t and the orthogonal subspace of τ∗(σ) such that

∫
S1 dσ τ∗(σ) = 0.

For ϕ ∈ M(n)(D, C) the momenta (3.31) for U(1)- and S1-actions in the
new variables (τ, φ) are given by

HU(1) =
1
4π

∫ 2π

0
dσ τ(σ) = t, HS1 =

1
4π

∫ 2π

0
dσ τ(σ)∂σφ(σ)

= − 1
4π

∫ 2π

0
dσ ∂στ(σ)φ(σ) + nt,

where we take into account (3.33). Thus we have the following equivalent
representation for (3.8):

(3.35)

Z(λ, �, μ) =
+∞∑
n=0

∫
M(n)(D,C)

dt [Dτ∗] [Dφ] J(τ∗ + t) e−
μ

4π

∫
S1 dσ �∂στ∗ φ+μt(�n+λ),

where J(τ∗ + t) is a Jacobain of the transformation from the variables (ϕ, ϕ̄)
to the variables (τ, φ). The integration over φ leads to a delta-function with
a support on the space of solutions of the equation

(3.36) ∂στ(σ) = 0, τ(σ) = |ϕ(z)|2|z=eıσ ,

where ϕ(z) is a holomorphic function on the disk D. The solutions of (3.36)
are given by

(3.37) ϕ(n)(z) = ϕnzn, n ∈ Z≥0

and coincide with the fixed points (3.22) of the S1-action on PM(D, C). Thus
the sum over n for a fixed t is an analog of the sum over S1-fixed points
entering Duistermaat–Heckman formula applied to PM(D, C). It remains
to integrate the delta-function δ(∂στ) in the vicinity of each solution (3.37)
taking into account that τ(σ) is a square of a holomorphic function such
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that the integral
∫ 2π
0 dστ(σ) = 2t is fixed. Actually we already evaluated

this integral which is equivalent to the regularized product (3.24) entering
the Duistermaat–Heckman formula. Thus we obtain

Z(λ, �, μ)reg = μ
√

a�

∞∑
n=0

∫ +∞

0
dt

(−1)n

(a�/2π)nn!
etμ(�n+λ)(3.38)

= μ
√

a�

∫ +∞

0
dt eμtλ− 2π

a�
eμ�t

.

Note that to make the integral (3.38) well-defined we should sum the series
for an appropriate range of the variables μ and a. The integral (3.38) repro-
duces the regularized integral (3.29). Taking appropriate limit (3.30) we
recover the expression obtained using the Duistermaat–Heckman formula.

Using the evaluation of the integral (3.35) near the solutions (3.37) and
summing the series one can rewrite (3.35) in the following form:

(3.39) Z(λ, �, μ)reg =
∫ ∞

0
dt

∫
[Dτ∗] det Δ δ(Δτ∗) δ(∂στ∗|S1)eμtλ− 2π

a�
eμ�t

,

where Δ is a Laplace operator on the disk D and now the functional inte-
gral is taken over the space of real functions on the disk orthogonal to the
subspace of constant functions. It is easy to see that the integral over τ∗
reduces to an additional t-independent factor for Z(λ, �, a)reg. Combining
the variables t and τ∗ into a new variable τ = τ∗ + t − �

−1 ln(a�/2π) and
taking the limit a → +∞ we obtain the following:

Z(λ, �, μ) =
1
�

lim
a→∞ C(a, �) a−λ/� Z(λ, �, a)reg(3.40)

=
∫

[Dτ ] det Δ δ(Δτ) δ(∂στ |S1) e
1
2π

∫ 2π

0 dσ(μλτ(σ)−e�μτ(σ)),

where C(a, �) is an appropriate function. Let us note that the integral rep-
resentation (3.40) can be directly derived from (3.35) in the limit a →
+∞. Indeed, in the limit a → ∞ (taking into account the shift t → t −
�
−1 ln(a�/2π)) the Jacobain becomes field independent and the condition

on the function τ to be the square of a holomorphic function reduces to the
harmonicity condition on τ due to the expansion

Δ ln(τ − �
−1 ln a�/2π) = − �

ln a�/2π
Δτ∗ + · · · , a → +∞.
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The summation over n with the weight factor obtained by a proper integra-
tion over n zeroes of τ leads to the exponential term in (3.40).

To make a contact with the representation of the equivariant volume
integral (3.8) in terms of type B topological sigma model described in Section
1 we note that the condition ∂στ |S1 = 0 imposed on restrictions of harmonic
functions to the boundary S1 = ∂D is equivalent to the condition ∂nτ |S1 = 0
where ∂n is a normal derivative to the boundary of D. Therefore we have

(3.41) Z(λ, �, μ) =
∫

[Dτ ] det Δ δ(Δτ) δ(∂nτ |S1) e
1
2π

∫ 2π

0 dσ(μλτ(σ)−eμ�τ(σ)).

The δ-functions can be replace by an integral over an auxiliary field κ(σ).
Thus we obtain the following integral representation:

(3.42)

Z(λ, �, μ) =
∫

[Dτ ] [Dκ] det Δ e
∫

D
ı dκ∧∗dτ+

∫
S1 dσ(μλτ(σ)−e�μτ(σ)) δ(κ(0)).

This functional integral is equivalent to the one entering the formulation of
the Corollary 2.1 for � = 0 with τ = φ+ and κ = φ−. This can be demon-
strated by integrating over the fields η, θ and ρ in the type B model con-
sidered in previous section.

3.3. T -duality for target space C
∗

Finally we clarify the appearance of the non-standard real structure in the
topological type B-model proposed in Section 1 as a mirror dual to the
topological type A-model considered in [8]. To elucidate this issue we con-
sider a simple example of the bosonic sigma model on P

1 with the target
space C

∗ = R × S1. The mirror symmetry in this case is straightforwardly
realized as a T -duality with respect to S1. We will demonstrate below that
starting with a sigma model similar to the one considered in [8] we obtain
after T -duality the topological sigma model with the real structure on the
space of fields considered in Section 1.

Let us given the following action functional:

S =
∫

P1

(
t

2
F ∧ ∗F + F ∧ ∂ϕ̄ − F ∧ ∂ϕ

)
(3.43)

=
∫

P1

( t

2
F ∧ ∗F − ıF ∧ ∗dτ − ıF ∧ dφ

)
,(3.44)
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where ϕ = τ + ıφ is a complex coordinate on the cylinder R × S1, φ ∼ φ +
2π and F = F̄zdz + Fz̄dz̄ is a real valued one-form. We imply that P

1 is
supplied with the Kähler metric associated with the standard Kähler form

ω =
ı

2
dz ∧ dz̄

(1 + |z|2)2 .

Note that (in the classical theory) the action (3.43) does not depend on the
choice of the two-dimensional Kähler metric. This action (3.43) is a part of
an action of the topological sigma model consider in [8] adopted to the case
of the target space C

∗. Indeed, the integration over F gives the standard
functional integral for the sigma-model

Z =
∫

[DF ][Dϕ] e−S

(3.45)

=
∫

[DFz̄][DF̄z][Dϕ] exp
{
−

∫
P1

d2z
(
tF̄zFz̄ − ıFz̄∂zϕ̄ − ıF̄z∂z̄ϕ

)}

= C(t)
∫

[Dϕ] exp
{
−t−1

∫
P1

d2z ∂zϕ̄ ∂z̄ϕ

}
,

where d2z = ıdz ∧ dz̄ and C(t) is a function of t.

The standard way to implement T -duality is to introduce an auxil-
iary field B = Bzdz + Bz̄dz̄ and κ and consider a theory with the following
action:

(3.46) S = ı

∫
P1

dκ ∧ B +
∫

P1

(
t

2
F ∧ ∗F − ıF ∧ ∗dτ − ıF ∧ B

)
.

Indeed integrating over κ leads to a constraint B = dφ, where φ is a real
valued field and thus we come back to the action (3.44). On the other hand,
integration over B leads to the action

S =
∫

P1

(
t

2
F ∧ ∗F − ıF ∧ ∗dτ

)
,

with the constraint

(3.47) F = dκ.

Thus, the integration over F with the constraint (3.47) gives

(3.48) S =
∫

P1

(
t

2
dκ ∧ ∗dκ − ıdκ ∧ ∗dτ

)
.
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In [8], we consider a sigma-model without F ∧ ∗F -term (i.e., we imply that
t = 0). Taking t = 0 in (3.48) we obtain

(3.49) S = − ı

∫
P1

dκ ∧ ∗dτ.

This action is precisely the two-derivative term in (2.2) where the role of
κ and τ is played by the fields φ+ and φ−. Thus the non-standard real
structure on the fields in (2.2) is a consequence of taking a limit t → 0 in
the mirror dual model discussed in [8]. Note that the action (3.49) can be
straightforwardly obtained by taking t = 0 in (3.44) and integrating out φ.
Let us finally note that the action (3.49) arising in the limit t → 0 is anal-
ogous to the action functionals describing discrete light-cone quantization.
This relation will be discussed elsewhere.

4. Conclusion

To conclude this paper we briefly outline some directions for future research.
The constructions of [8] and of this note allow several straightforward gener-
alizations. For instance, one can consider an equivariant type A topological
sigma model on a disk D with a compact target space being (partial) flag
manifolds. Their mirror dual type B topological theories are also known [12].
Simple examples are provided by projective spaces P

� and more generally
Grassmannian spaces Gr(m, � + 1). Such topological sigma models can be
described in terms of a twisting of N = 2 SUSY gauged linear sigma models
[22, 27]. For instance in the case of the target space X = P

� the correspond-
ing linear sigma model has target space C

�+1 gauged by the diagonal action
of U(1). For its mirror dual see for example [17]. An analog of the correlation
functions considered in [8] but for the target space P

� should be equal to a
degenerate gl�+1-Whittaker function given by

(4.1) Ψλ1,...,λj+1(x) =
∫
C
dγ eıγx

�+1∏
j=1

Γ
(

γ − λj

�

)
.

For a detailed discussion of the relation of (4.1) to Toda chains see [9].
The same expression should be equal to an analog of the correlation func-
tion in mirror dual type B equivariant topological sigma model with the
target space C

� and a superpotential W (φ) =
∑�

j=1 ((λj − λ�+1)φj − eφj ) −
ex−∑ �

k=1 φk . The structure of the integral (4.1) is quite transparent. The prod-
uct of Γ-functions is a correlation function in the type A topological sigma
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model with the target space C
�+1 of the type considered in [8] (as well as

a correlation function in the mirror dual type B theory) and the integral
over γ is a projection corresponding to an integration over the fields in the
topological U(1)-gauge multiplet (over dual scalar topological multiplet in
the mirror dual type B theory). Similar reasoning can be applied to the case
of the Grassmannian target space [28]. We will provide a detailed discussion
of these cases in [10]. The case of general partial flag manifolds is a bit more
complicated but accessible by the technique developed in [11] and will be
discussed elsewhere.

Let us stress that the discussed examples of explicit calculations of
particular correlation functions in topological theories on non-compact man-
ifolds is not restricted to the case of dimension two. The three- and four-
dimensional examples of such calculations have an interesting interpretation
(see e.g. [8]). These higher dimensional examples should provide additional
insights on the conjectural relation between local Archimedean Langlands
correspondence and the mirror symmetry. We are going to pursue these
directions elsewhere.
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