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field theories I

Anton Gerasimov, Dimitri Lebedev and Sergey Oblezin

We propose a functional integral representation for Archimedean
L-factors given by products of Γ-functions. The corresponding
functional integral arises in the description of type-A equivariant
topological linear sigma model on a disk. The functional integral
representation provides in particular an interpretation of
the Γ-function as an equivariant symplectic volume of an infinite-
dimensional space of holomorphic maps of the disk to C. This
should be considered as a mirror dual to the classical Euler inte-
gral representation of the Γ-function. We give an analogous func-
tional integral representation of q-deformed Γ-functions using a
three-dimensional equivariant topological linear sigma model on a
handlebody. In general, upon proper ultra violent completion, the
topological sigma model considered on a particular class of three-
dimensional spaces with a compact Kähler target space provides a
quantum field theory description of aK-theory version of Gromov–
Witten invariants.

0. Introduction

Archimedean local L-factors were introduced to simplify functional equa-
tions of global L-functions. From the point of view of arithmetic geometry
these factors complete the Euler product representation of global L-factors
by taking into account Archimedean places of the compactified spectrum of
global fields. A known construction of non-Archimedean local L-factors is
rather transparent and uses characteristic polynomials of the image of the
Frobenius homomorphism in finite-dimensional representations of the local
Weil–Deligne group closely related to the local Galois group. On the other
hand, Archimedean L-factors are expressed through products of Γ-functions
and thus are analytic objects avoiding simple algebraic interpretation. More-
over, Archimedean Weil–Deligne groups are rather mysterious objects in
comparison with their non-Archimedean counterparts. For instance, in the
case of the field of complex numbers the corresponding Galois group is trivial
while the Weil–Deligne group is isomorphic to the multiplicative group C

∗ of
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complex numbers. In many cases the multiplicative group C
∗ effectively plays

the role of the Galois group for complex numbers [6,12]. Thus, for instance,
by analogy with the action of the Galois group Gal(Fp/Fp) on étale cohomol-
ogy of schemes over Fp, the multiplicative group C

∗ acts on the complexified
cohomology of compact non-singular complex algebraic varieties providing
the standard Hodge decomposition. The Archimedean Weil–Deligne groups
also play an important role in a formulation of Archimedean local Langlands
correspondence (see e.g. [1]).

In a series of papers [21–23], we approach the problem of a proper
interpretation of Archimedean L-factors and in particular of Archimedean
Weil–Deligne group using our previous results on relations between quantum
integrable systems and representation theory as well as results of [27–29,31]
on quantum cohomology and quantum K-theory. In [21], we propose an
explicit description of the Archimedean local Hecke algebras in terms of
intertwining integral operators. These integral operators are instances of
the Baxter operator playing an important role in the construction of explicit
solutions of quantum integrable systems. We demonstrate that, by analogy
with the generators of non-Archimedean Hecke algebras, the common eigen-
functions of the Baxter operators are given by “class one” Whittaker func-
tions. Remarkably the corresponding eigenvalues are precisely Archimedean
L-factors in complete analogy with a non-Archimedean case. Here the “class
one” condition means that the Whittaker function rapidly decreases outside
some domain and is an Archimedean counterpart of the non-Archimedean
“class one” Whittaker function from [10,40].

In [30] Givental introduced new integral representations of the Whittaker
functions. These representation arise naturally in the description of the gen-
erating functions of the equivariant Gromov–Witten (GW) invariants of the
flag spaces. In [31] a K-theory analog of the GW-invariants was considered
and it was shown that the generating function of K-theory GW-invariants
are given by q-deformed Whittaker functions. However, one should note that
the Whittaker functions and their q-deformations considered in the frame-
work of GW theory [35] are not “class one” Whittaker functions and thus
do not have direct arithmetic interpretation. In [25], we show that Baxter
integral operators appear as an essential ingredient of the Givental integral
representations of the Whittaker functions.

The relevance of the Baxter integral operators both to the description of
Archimedean Hecke algebra and GW invariants implies a relation between
these two subjects. In [23], we confirm these expectations. We construct
explicit expressions of q-deformed “class one” Whittaker functions, q-analogs
of Baxter operators, q-analogs of Archimedean L-factors and relate these
constructions to counting problems on the moduli space of holomorphic
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maps of P
1 to the flag manifolds. In particular q-deformed L-factors and

q-deformed “class one” Whittaker functions corresponding to (�+ 1)-
dimensional representations of the Archimedean Weil–Deligne group C

∗ are
given by characters of C

∗ ×GL�+1(C) modules realized as cohomology of
holomorphic line bundles on the moduli space of holomorphic maps of P

1.
Thus for q-deformed L-factor, the corresponding C

∗ ×GL�+1(C)-module is
given by a limit of the space of degree d holomorphic polynomial maps of C

to C
�+1 when d→ ∞. Here C

∗ acts on C by multiplication and GL�+1(C)
acts on C

�+1 through the standard representation. We stress in [23] that
the constructed q-deformed local L-factors/Whittaker functions interpolate
Archimedean and non-Archimedean local L-factors/Whittaker functions.
Non-Archimedean L-factor associated to an (�+ 1)-dimensional representa-
tion V = C

�+1 of the Weil–Deligne group can be identified with a character
of a direct sum of symmetric powers of V . Similarly, according to [10, 40],
p-adic “class one” Whittaker functions for a reductive algebraic group G are
given by characters of irreducible finite-dimensional representations of the
Langlands dual group LG0 (Shintani–Casselman–Shalika (SCS) formula).
SCS formula essentially uses homomorphims of the local Weil–Deligne group
(simple modification of the local Galois group Gal(Qp/Qp)) to LG0 and thus
provides an arithmetic construction of p-adic Whittaker function. Remark-
ably, the representation [23] of the q-deformed Whittaker function as a char-
acter of a C

∗ ×GL�+1(C)-module reduces to SCS-formula in the appropriate
limit. Under the same limit q-deformed L-factor reduces to non-Archimedean
L-factors. Although the interpolation and limiting procedure allow us to
relate constructions of local Archimedean and non-Archimedean L-factors
a direct analytic construction of the Archimedean L-factors given by the
product of Γ-functions was missing.

In this paper, we provide an explicit construction of Archimedean
L-factors as functional integrals in equivariant type A topological linear
sigma model on a disk. We remark in [23] that the construction of the “class
one” q-deformed Whittaker function implies consideration of holomorphic
maps of a disk to flag spaces in contrast with [30,31] where holomorphic maps
of P

1 into flag spaces were considered. The type A topological sigma model
considered below is precisely of the kind that describes GW-invariants.
Specifically, we consider S1 × U�+1-equivariant type A topological linear
sigma model on D = {z | |z| ≤ 1} with the target space V = C

�+1 deformed
by a boundary observable. The target space here is a
finite-dimensional space V appearing in the standard construction of an
Archimedean L-factor in terms of a finite-dimensional representation of the
Archimedean Weil–Deligne group C

∗. The group S1 acts by rotations on
D and U�+1 acts in C

�+1 via the standard representation. The functional
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integral representation for local L-factors is given in Theorem 2.1. Let us
stress that the underlying action of the considered topological theory is
quadratic and the functional integral allows mathematical formulation using
ζ-function regularization [32,38].

The functional integral representation of local Archimedean L-factors
proposed in this note can be interpreted as a calculation of an equivari-
ant symplectic volume of the space of holomorphic maps of a disk D into
complex vector spaces. In particular, classical Γ-function coincides with an
equivariant volume of the space of holomorphic maps of D to C. It appears
that the infinite-dimensional symplectic geometry is a proper framework for
a mysterious geometry over Archimedean places.

The interpretation in terms of equivariant symplectic volumes provides
a natural way to deform Γ-function. According to standard arguments in
quantum mechanics equivariant symplectic volume can be interpreted as a
classical limit of the partition function of the quantum system obtained by
a quantization of the symplectic manifold. We apply this reasoning to the
space of holomorphic maps of D to C and obtain a canonical quantization of
Γ-functions and therefore of local Archimedean L-factors. Fortunately, thus
constructed quantum analogs of Γ-function and local Archimedean L-factors
coincide with q-deformations of their classical counterparts [22,23]. For these
q-deformed/quantum local Archimedean L-factors we provide a represen-
tation in terms of the functional integral in three-dimensional equivariant
topological linear sigma model on a handlebody S1 ×D. We also argue that
upon a proper ultraviolent completion the constructed three-dimensional
topological sigma model on a special type of compact three-dimensional
spaces with a Kähler target space provides a description of quantum K-
theory invariants [29, 31].

Let us finally refer to the various previous discussions of hidden struc-
tures behind local Archimedean L-factors related with our proposal. The
point of view that is most close to the approach of this note was advocated
by Deninger [13, 14] (see also [37]). Namely, Deninger proposed an inter-
pretation of local Archimedean L-factors as regularized infinite-dimensional
determinants. Corresponding infinite-dimensional vector spaces can be iden-
tified with cohomology groups of algebraic manifold with coefficients in an
Archimedean analog of the rings introduced by Fontaine [18] for a descrip-
tion of the p-adic Hodge periods. Let us note also that equivariant sym-
plectic volumes of the space of maps of a disk into symplectic manifolds
were discussed in [27] in connection with GW theory. Also Vojta [43] pro-
posed a detailed set of analogies between number theory and value distribu-
tion theory of holomorphic functions due to Nevanlinna. Finally, long ago
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Deligne considered an analogy between schemes over Qp allowing good inte-
ger models and families of complex manifolds over a disk [12]. This analogy
motivated the development of the theory of mixed Hodge structures.

The plan of the paper is as follows. In Section 1, we recall two basic con-
structions of local L-factors. In Section 2, we prove the main statement of
the paper (Theorem 2.1) by identifying Archimedean L-factors with a par-
ticular functional integral in the equivariant type A topological linear sigma
model on a disk. In Section 3, we provide interpretation of the functional
integral as an equivariant symplectic volume of the space of holomorphic
maps of the disk into complex vector space. In Section 4, we consider a
three-dimensional topological sigma model calculating quantum K-theory
invariants introduced in [29, 31]. We demonstrate that the functional inte-
gral in the three-dimensional equivariant topological linear sigma model on
the handle-body reproduces q-version of Archimedean L-factor introduced
in [22,23]. In Section 5, we conclude with some general remarks and discuss
further directions of research. In the appendix, the standard facts about
ζ-regularization of infinite-dimensional Gaussian integrals are collected.

1. Two constructions of L-factors

To put our results in the right perspective we briefly recall in this section
some standard facts on local and global L-functions (see e.g. [1,41,42]). This
section does not contain new results and can be skipped by a connoisseur.
For standard definitions and elementary detailed discussion, see for example
[9, 36].

Two essentially different constructions of L-functions are known. The
first one uses automorphic representations of reductive algebraic groups. In
this construction, one expresses L-functions in terms of a spectrum of the
corresponding Hecke algebra. In the case of a local field F , we consider
representations of the group G(F ) and in the case of a global field F the
group G is defined over adeles AF . The second construction of L-factors is
based on arithmetic properties of the base field F and uses homomorphims
of its Galois group (more precisely Weil–Deligne group) into the Langlands
dual group LG. Here the Langlands dual group LG for a field F is defined
as an extension of the Galois group Gal(F/F ) by a dual algebraic group
LG0(F ). The Langlands correspondence claims that both automorphic and
arithmetic constructions lead to the same set of L-functions.

Let us describe these two constructions of L-functions for the base
field F = Q in more details. We start with the automorphic construction
of L-functions. Let A be the adele ring of Q and G be a reductive algebraic
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group. An automorphic representation π of G(A) is an irreducible repre-
sentation entering the decomposition of the left representation of G(A) in
L2(G(A)/G(K)), where G(K) is a maximal compact subgroup in G(A). The
representation π can be characterized by an automorphic form φ, such that
it is an eigenfunction of any element of the global Hecke algebra H(G(A)).
The global Hecke algebra has natural structure of a product H(G(A)) =
(⊗pHp) ⊗H∞ of local non-Archimedean Hecke algebras Hp = H(G(Qp),
G(Zp)) for each prime p and an Archimedean Hecke algebra H∞ = H(G(R),
K), where K is a maximal compact subgroup in G(R). The local Hecke
algebra Hp is isomorphic to the algebra of characters of finite-dimensional
representations of a Langlands dual group LG, (e.g. for LG0 being A�, B�, C�,
D� the duals areA�, C�,B�,D� respectively). For each unramified representa-
tion of G(Qp) one can define an action of Hp such that the automorphic form
φ is a common eigenfunction of all elements of Hp for all primes p and thus
defines a set of homomorphisms Hp → C. Identifying local Hecke algebras
with the algebra of characters of finite-dimensional representations of LG one
can describe this set of homomorphisms as a set of conjugacy classes gp in
LG. Given a complex finite-dimensional representation ρV : LG→ GL(V,C)
one can construct L-function corresponding to the automorphic form φ as
the Euler product

(1.1) L(s, φ, ρV ) =
∏′

p

Lp(s, φ, ρV ) =
∏′

p

det
V

(1 − ρV (gp) p−s)−1,

where
∏′

p is a product over the primes p such that the corresponding rep-
resentation of G(Qp) is not ramified. It is natural to complete the product
by including local L-factors corresponding to Archimedean and ramified
places. We omit a discussion of L-factors for ramified representations and
consider the construction of Archimedean L-factors. For Archimedean places
the Hecke eigenfunction property is usually replaced by the eigenfunction
property with respect to a ring of invariant differential operators on G(R).
The corresponding eigenvalues are described by a conjugacy class t∞ in the
Lie algebra Lg0 = Lie(LG0). The Archimedean L-factor is then given by a
product of Γ-functions

LR(s, φ, ρV ) =
�+1∏

j=1

π−
s−αj

2 Γ
(
s− αj

2

)
(1.2)

= det
V

π−
s−ρV (t∞)

2 Γ
(
s− ρV (t∞)

2

)
,
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where ρ : LG0 → GL�+1(C) and ρV (t∞) = diag(α1, . . . , α�+1). In [21], we
demonstrate that the eigenvalue property with respect to the ring of invariant
differential operators on G(R) can be equivalently replaced by the eigenvalue
property with respect to a set of integral operators. These operators gener-
ate Archimedean Hecke algebra H(G(R),K), where K is a maximal com-
pact subgroup of G(R). Elements H(G(R),K) are K-biinvariant functions
on G(R) and the structure of the algebra is given by a convolution. This com-
pletely restores the symmetry between Archimedean and non-Archimedean
places. The local Archimedean L-factors (1.2) correspond to the real place
of Q. For more general global fields complex Archimedean places appear and
the corresponding complex local L-factors are given by analogous expressions

(1.3) LC(s, φ, ρV ) = det
V

(2π)−(s−ρV (t∞)) Γ (s− ρV (t∞)).

The global L-function can be defined as an analytic continuation of the
product

(1.4) Λ(s, φ, ρ) = L(s, φ, ρ)L∞(s, φ, ρ),

where L∞(s) is a product of local factors corresponding to Archimedean
places. Global L-functions should satisfy a functional equation

(1.5) Λ(1 − s, φ, ρ) = ε(s, φ, ρ)Λ(s, φπ∨ , ρ∨),

where the ε-factor is of the form ε(s, φ, ρ) = ABs,A ∈ C
∗, B ∈ R+ and π∨,

ρ∨ are dual to π, ρ.
Now let us describe another construction of the local L-functions based

on arithmetic properties of a base field F . To discuss both Archimedean and
non-Archimedean cases in the same setting one should introduce a notion of
the Weil–Deligne group generalizing the standard notion of the Galois group.
Let F̄ be an algebraic closure of a local number field F . The Weil group
WF of F should satisfy the following properties. First, there should exist a
homomorphism with a dense image in the natural topology on Gal(F̄ /F )

φ : WF → Gal(F̄ /F ).

Second, for any Galois extension E of F , there should be an inclusion in the
abelianization W ab

E = WE/[WE , WE ] of WE

r : E∗ →W ab
E ,
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such that the composition

E∗ → Galab(F̄ /E),

is a basic homomorphism of abelian class field theory.
In the case of the local field F = Qp this boils down to the following

construction. Let Fp be a residue field of Qp. Then we have the extension

0 −→ Ip −→ Gal(Q̄p/Qp) −→ Gal(F̄p/Fp) −→ 0,

where Ip is the inertia group and Gal(F̄p/Fp) is a pro-finite completion of the
cyclic groups with the generator given by Frobenius homomorphism Frp :
x→ xp. The Weyl group WQp

is then a subgroup of Gal(Q̄p/Qp) consisting
of the elements such that their image in Gal(F̄p/Fp) is an integer power of
Frobenius Frp. Maximal abelian subgroup of WQp

is canonically identified
with Q

∗
p.

For the field F = C of complex numbers, the Galois group Gal(C/C) is
trivial and WC = C

∗. The homomorphism φ is trivial and r is the identity
map. For real numbers F = R, the Galois group Gal(C/R) = Z2 is gener-
ated by complex conjugation Fr∞ and the Weil group WR = C

∗ ∪ jC∗ is
generated by a copy of C

∗ and an element j, subjected to the relations:

(1.6) jxj−1 = x, j2 = −1 ∈ C
∗,

with the maps

φ : WR → Gal(C/R), φ(x) = 1, φ(jx) = Fr∞, x ∈ C,(1.7)

r : R
∗ →W ab

R , r(x) = x.(1.8)

Note thatWR is non-abelian and its abelianization isW ab
R

= WR/[WR,WR] =
R
∗, where we identify Gal(C/R) = {±1}. Note that for Archimedean places

thus defined Weil group coincides with the Weil–Deligne group.
Let LG be a Langlands group dual to the reductive algebraic group G

used in the automorphic construction of L-factors above. Now with any
continuous homomorphism of the Weil group in LG and a finite-dimensional
representation of LG such that the image of the Weil group is semisimple
one can associate an L-factor. Let us fix a complex finite-dimensional rep-
resentation ρV : LG→ GL(V,C) and consider its composition with a homo-
morphism πp : WQp

→ LG such that the image of the inertia group is trivial.
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Then the corresponding local non-Archimedean L-factor is given by

(1.9) Lp(s, π, ρV ) = det
V

(1 − ρV (gp) p−s)−1,

and coincides with the one defined using the local Hecke algebra (1.1) under
appropriate identification of the parameters.

For Archimedean fields we consider the special case when the image of
the Weil group under a homomorphism W → LG is abelian and the compact
subgroup is in the kernel. Thus in the case of F = C, we have the multi-
plicative group R>0 and in the case of F = R we have R

∗ = R>0 × {±1}.
The corresponding local Archimedean L-factors are given by

LC(s, φ, ρV ) = det
V

(2π)−(s−Λ) Γ (s− Λ),(1.10)

LR(s, φ, ρV , F r∞ = +1) = det
V

π−
s−Λ

2 Γ
(
s− Λ

2

)
,(1.11)

LR(s, φ, ρV , F r∞ = −1) = det
V

π−
s−Λ

2 Γ
(
s+ 1 − Λ

2

)
,(1.12)

where Λ is an image of the generator of R>0 and Fr∞ = ±1 describes the
action of the Frobenius homomorphism Fr∞ ∈ Gal(C/R) in V .

Remark 1.1. Local Archimedean L factors are introduced in such a way
that the completed global L function (1.4) satisfies the functional Equa-
tion (1.5). This leaves a freedom to multiply the local Archimedean L-factor
by a function of the form ABs, A ∈ C

∗, B ∈ R>0 and is compensated by a
freedom to redefine ε-factor in (1.5).

2. Γ-function via 2d topological field theory

In this section, we provide a functional integral representation of a product
of Γ-functions using the Feynman path integral formulation of a two-
dimensional topological field theory. This leads to a functional integral rep-
resentation of Archimedean L-factors. The two-dimensional theory involved
is S1 × U�+1-equivariant version of the type A topological sigma model on
the disk D with the target space V = C

�+1. Here U�+1 acts on C
�+1 via

standard representation and S1 acts by rotations α : z → zeıα on the disk
D = {z ∈ C| |z| ≤ 1}. As a background material for two-dimensional topo-
logical field theories and functional integration of Gaussian measures over
linear superspaces see e.g. [39].
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2.1. Type A Topological sigma-models

We start by recalling the standard construction of a topological sigma model
associated with a Kähler manifold with non-negative first Chern class. For
general discussion of the two-dimensional topological sigma models see
[4, 11, 45,46] and reference therein.

Let X be a compact Kähler manifold of a complex dimension (�+ 1)
and M(Σ, X) = Map(Σ, X) be the space of maps Φ : Σ → X of a compact
Riemann surface Σ to X. Let (z, z̄) be local complex coordinates on Σ.
We pick a Hermitian metric h on Σ and denote

√
h d2z the corresponding

measure on Σ. The complex structure defines a decomposition d = ∂ + ∂,
∂ = dz ∂z, ∂ = dz̄ ∂z̄ of the differential d acting on the differential forms on
Σ. Let K and K̄ be canonical and anti-canonical bundles over Σ. Let ω and
g be a Kähler form and the Kähler metric on X and TCX = T 1,0X ⊕ T 0,1X
be a decomposition of the complexified tangent bundle of X. We denote
local complex coordinates on X by (ϕj ,ϕ̄j̄). Locally Levi–Civita connection
Γ and the corresponding Riemann curvature tensor R are given by

(2.1) Γi
jk = gin̄∂jgkn̄, Rij̄kl̄ = gmj̄∂l̄Γ

m
ik.

Now let us specify the field content of a type A topological sigma model.
We define commuting fields F and F̄ as sections of K ⊗ Φ∗(T 0,1) and of
K̄ ⊗ Φ∗(T 1,0) correspondingly. The anticommuting fields χ, χ̄ are sections
of the bundles Φ∗(ΠT 1,0X), Φ∗(ΠT 0,1) and anticommuting fields ψ, ψ̄ are
sections of the bundles K ⊗ Φ∗(ΠT 0,1), K̄ ⊗ Φ∗(ΠT 1,0). Here ΠE denotes
the vector bundle E with the reverse parity of the fibers. Metrics g on X
and h on Σ induce a Hermitian paring 〈 , 〉 on the space of sections of the
considered bundles. Thus for example in local coordinates we have

(2.2) 〈χ, χ〉 =
�+1∑

j=1

gij̄ χ̄
j̄ χi, 〈F, F 〉 =

�+1∑

j=1

hzz̄gij̄F̄
j̄
z F

i
z̄ .

The action functional of the type A topological sigma model is given by

SΣ(t, t∗) = S0(t) + Stop(t∗),(2.3)

S0(t) =
∫

Σ
d2z

√
h
(
ı〈F , ∂ϕ〉 + ı〈F̄ , ∂ϕ̄〉 + ı〈ψ̄,Dχ̄〉

+ ı〈ψ, D̄χ〉 + t〈F F〉 + t〈ψ̄, R(ψ, χ̄)χ〉),(2.4)

Stop = t∗
∫

Σ
Φ∗(ω),
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where Φ∗(ω) is a pull back of the Kähler form ω on X along the map
Φ : Σ → X. The fields F , F̄ and the derivatives Dz, D̄z̄ are locally given by

F j
z̄ = F j

z̄ + Γj
klχ

kψl
z̄, F j̄

z = F j̄
z + Γj̄

k̄l̄
χk̄ψ l̄

z,(2.5)

(Dzχ̄)j̄ = ∂zχ̄
j̄ + Γj̄

k̄l̄
(ϕ)∂zϕ̄

k̄χ̄l̄, (D̄z̄χ)j = ∂z̄χ
j + Γj

kl(ϕ)∂z̄ϕ
kχl.(2.6)

Here and in the following we imply the summation over repeating indexes.
The action functional (2.3) is invariant with respect to the transforma-

tions A→ A+ εδA, where ε is an anticommuting parameter and the action
of δ on the fields is

δϕ = χ, δχ = 0, δψ̄ = F̄ , δF̄ = 0,(2.7)
δϕ̄ = χ̄, δχ̄ = 0, δψ = F, δF = 0,

and we have

(2.8) δ2 = 0.

The action S0(t) in (2.3) can be written in the following form:

(2.9) S0(t) =
∫

Σ
d2z

√
h δV(t),

where

V(t) = 〈ψ, 1
2 tF + ı∂ϕ〉 + 〈ψ̄, 1

2 tF̄ + ı∂ϕ̄〉.
The action (2.3) is obviously δ-invariant. Indeed, S0(t) is δ-invariant due
to (2.9) and (2.8) and the second term Stop is a topological invariant equal
to the degree of the map Φ : Σ → X and thus invariant under arbitrary
infinitesimal deformations of the fields.

The transformation (2.7) can be interpreted as an action of the de Rham
differential in the infinite-dimensional setting. Consider an odd vector bundle
E → M(Σ, X) over the space M(Σ, X) of maps Φ : Σ → X with a fiber
isomorphic to the direct sum

(
K ⊗ Φ∗(T 0,1X)

)⊕ (K ⊗ Φ∗(T 1,0X)
)
. Then

(2.7) defines the action of δ, which coincides with action of the de Rham
differential on differential forms on the infinite-dimensional supermanifold
E , where we imply χ := δϕ and F := δψ.

In the topological fields theories, we are interested in calculating the
Feynman path integrals with the action (2.3) of δ-closed functionals A of
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the fields ϕ, ϕ̄, F, F̄ , ψ, ψ̄, χ, χ̄

〈A〉Σ =
∫

[Dϕ] [Dϕ̄] [DF ] [DF̄ ] [Dψ] [Dψ̄] [Dχ] [Dχ̄] e−SΣ(t,t∗)(2.10)

×A(ϕ, ϕ̄, F, F̄ , ψ, ψ̄, χ, χ̄).

In general, a functional integral is mathematically not well-defined and is
usually handled using the standard renormalization routine of quantum field
theory. In the following, we consider particular correlation functions in a
special kind of type A topological sigma model when all calculations are
mathematically well defined. Here we proceed formally implying that the
integral (2.10) is well defined.

We would like to consider only correlation functions (2.10) of (the prod-
uct of) observables A which are δ-closed. Then δ-invariance of the action
functional and the integration measure guarantees that the addition of a
δ-exact term to a functional A does not change the correlation function 〈A〉.
This allows us to identify the space of observables with δ-cohomology. Local
observables, i.e., depending on the values of the fields in the vicinity of a
given point (z, z̄) can be described explicitly in terms of the cohomology
ring H∗(X). One has canonical evaluation map

(2.11) ev : Σ ×M(Σ, X) → X.

Then for any β ∈ H∗(X) we have ev∗(β) ∈ H∗(Σ ×M(Σ, X)) = H∗(Σ) ⊗
H∗(M(Σ, X)). Let ev∗(β) = O(0)

β + O(1)
β + O(2)

β be a decomposition of ev∗

(β) with respect to the grading on the space of the differential forms over
Σ. Then the condition

(2.12) (d+ δ)(O(0)
β + O(1)

β + O(2)
β ) = 0

implies that the function O(0)
β on Σ is δ-closed and its evaluation at any p ∈ Σ

gives a cohomology class in H∗(M(Σ, X)). Moreover due to relation (2.12)
we have

(2.13) dO(0)
β = −δO(1)

β ,

and therefore this cohomology class in H∗(M(Σ, X)) does not depend on
the choice of the point p ∈ Σ.
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For example, the local observable at p ∈ Σ constructed using the Kähler
form

(2.14) ω =
�+1∑

i,j̄=1

ωij̄ dϕ
j ∧ dϕ̄j̄ ,

on X is given by

(2.15) O(0)
ω (p) =

�+1∑

i,j̄=1

ωij̄(ϕ(p))χi(p) χ̄j̄(p).

The corresponding differential form on M(Σ, X) provides a Kähler form on
M(Σ, X).

Correlation functions in topological sigma models are closely related to
GW invariants counting holomorphic curves on symplectic manifolds. This
can be illustrated as follows. Taking t = 0 in (2.3) we obtain the action
linearly dependent on the fields F , F̄ . Functional integration over F , F̄
in (2.10) reduces to the integration over the subset of holomorphic maps
Φ : Σ → X. Thus the correlation functions in the topological sigma model
at t = 0 reduce to counting of holomorphic curves in X. Let us notice that
although variation of the parameter t in (2.3) changes the action by δ-exact
term the correlation functions of δ-closed functionals depend on t due to
holomorphic anomaly [7]. Thus the interpretation in terms of holomorphic
curves counting in general is not directly applicable for t 
= 0.

2.2. Equivariant topological linear sigma model

In the following, we need a simple generalization of the standard notion
of the topological sigma-model discussed above. We consider equivariant
version of type A topological linear sigma model on a disk D with a non-
compact target space. In the related context, the mathematical description
of correlation functions in equivariant topological sigma models for compact
X and compact Σ was considered by Givental [27–29]. For various applica-
tion of equivariant cohomology in topological field theory, see e.g. [11] and
reference therein.

Let us consider topological sigma model on the disk D = {z| |z| ≤ 1}
with the target space X = C

�+1 supplied with the Kähler form and Kähler
metric

(2.16) ω =
ı

2

�+1∑

j=1

dϕj ∧ dϕ̄j , g =
1
2

�+1∑

j=1

(dϕj ⊗ dϕ̄j + dϕ̄j ⊗ dϕj).
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We fix the flat metric h on D

(2.17) h = 1
2(dzdz̄ + dz̄ dz) = (dr)2 + r2(dσ)2, r ∈ [0, 1], σ ∈ [0, 2π],

where z = reıσ.
The action (2.3) for X = C

�+1 and t = t∗ = 0 is given by
(2.18)

SD =
∫

D
d2z δV = ı

∫

D
d2z

(〈F, ∂ϕ〉 + 〈F̄ , ∂ϕ̄〉 + 〈ψ̄, ∂χ̄〉 + 〈ψ, ∂χ〉),

where V = ı〈ψ, ∂ϕ〉 + ı〈ψ̄, ∂ϕ̄〉 and

δϕ = χ, δχ = 0, δψ̄ = F̄ , δF̄ = 0,(2.19)
δϕ̄ = χ̄, δχ̄ = 0, δψ = F, δF = 0.

To construct an equivariant extension of the topological theory with the
action (2.18) we modify transformations (2.19) following the interpretation
of δ as a de Rham differential in the infinite-dimensional setting. Let us
first recall the standard construction of an algebraic model of equivariant
cohomology. Let M be a 2(�+ 1)-dimensional manifold supplied with an
action of a compact Lie group G. Let g be the corresponding Lie algebra and
g∗ be its dual. Pick a bases {ta}, a = 1, . . . ,dim g in the Lie algebra g and let
{va} be the set of the corresponding vector fields on M . Introduce a bases
{ua}, a = 1, . . . ,dim g in g∗ dual to the bases {ta} a = 1, . . . ,dim g. The
Cartan algebraic model of G-equivariant de Rham cohomology H∗

G(M) is
defined as a cohomology of the following equivariant extension (Ω∗

G(M), dG)
of the standard de Rham complex (Ω∗(M), d)

(2.20) Ω∗
G(M) = (Ω∗(M) ⊗ S∗[g∗])G, dG = d−

∑

a=1

uaiva .

In (2.20) the standard coadjoint action of G on g∗ is implied. We have

(2.21) d2
G = −L∑dim g

a=1 uava , Lv = d iv + iv d,

where Lv is the Lie derivative along a vector field v. Note that the equiv-
ariant differential dG satisfies d2

G = 0 when acting on Ω∗
G(M). The coho-

mology groups H∗
G(M) of the complex (2.20) naturally have a structure of

modules over H∗
G(pt) = (S∗(g∗))G and the algebra (S∗(g∗))G of G invariant

polynomial functions on g can be identified with the algebra (S∗(h∗))W of
Weyl-invariant functions on the Cartan subalgebra h ⊂ g.
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We have the standard action of U�+1 on V = C
�+1 and an action of S1

on D by rotations σ → σ + α leaving the metric (2.17) invariant. The action
of G = S1 × U�+1 lifts naturally to the action on the fields (F, F̄ , ϕ, ϕ̄, ψ, ψ̄,
χ, χ̄). For instance the infinitesimal rotation acts via the Lie derivative Lv0

along the vector field v0 = ∂
∂σ

(2.22) δv0ϕ
j = Lv0ϕ

j = iv0dϕ
j , δv0F

j = Lv0F
j = iv0dF

j + d(iv0 F
j).

Let �v0 be an element of the Lie algebra of S1 and Λ be an image of the
element

∑dim g
a=1 uat

a of the Lie algebra u�+1 = Lie(U�+1) in the representation
V = C

�+1. The G-equivariant analog δG of the transformation δ (2.19) is
obtained adapting (2.20) to the considered action of G = S1 × U�+1 on the
fields of topological sigma model

δGϕ = χ, δGχ = −(ıΛϕ+ �Lv0ϕ), δGψ = F,

δGF = −(ıΛψ + �Lv0ψ),(2.23)
δGϕ̄ = χ̄, δGχ̄ = −(−ıΛϕ̄+ �Lv0ϕ̄), δGψ̄ = F̄ ,

δGF̄ = −(−ıΛψ̄ + �Lv0ψ̄).

It is easy to check that the action (2.18) is both G- and δG-invariant.
Equivariant observables are given by δG-closed G-invariant functionals

of the fields. The simple direct check shows that the following functional
defines an equivariant extension of the observable (2.15) corresponding to
the Kähler form (2.16)
(2.24)

OΛ,�(r) =
ı

2

∫ 2π

0
dσ (−〈χ(reıσ), χ(reıσ)〉 + 〈ϕ(reıσ), (ıΛ + �Lv0)ϕ(reıσ)〉).

We would like to consider the functional integral over the disk with
the action (2.18) deformed by the observable OΛ,� := OΛ,�(r = 1), where
OΛ,�(r) is given by (2.24). Note that this functional integral is a Gaussian
integral in the infinite-dimensional space and thus allows mathematically
correct formulation using for instance the ζ-function regularization [32,38].

Theorem 2.1. Let V = C
�+1 be the standard representation of U�+1. Let Λ

be the image of an element u ∈ u�+1 in End(V ). Then the following identity
holds

(2.25)
〈
eμOΛ,�

〉
D

= �
− �+1

2 det
V

(
2
μ�

)−Λ/�

Γ(Λ/�),
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where OΛ,� is given by (2.24) for r = 1. The functional integral in the
S1 × U�+1-equivariant Type A topological linear sigma model with the tar-
get space V = C

�+1 and the action functional (2.18) is calculated using ζ-
function regularization. After taking μ = 2/π, � = 1 and making the change
of variables Λ → (s · id − Λ)/2 the partition function (2.25) turns into local
Archimedean L-factor (1.11).

Proof. The functional integral in (2.25) regularized using ζ-function reg-
ularization is invariant with respect to the action of U�+1. Thus the cor-
relation function (2.25) is a central function of (�+ 1) × (�+ 1) matrix Λ
and can be reconstructed from its restriction to diagonal matrices Λ =
diag(λ1, . . . , λ�+1). Then the integral is factorized on the product of the func-
tional integrals in S1 × U1-topological sigma models with one-dimensional
target spaces X = C. Using the Proposition 2.1 proved in the next subsec-
tion we have
(2.26)
〈
eμOΛ,�

〉
D

= �
− �+1

2

�+1∏

j=1

(
2
μ�

)−λj/�

Γ(λj/�), Λ = diag(λ1, . . . , λ�+1).

Now it is clear that the r.h.s. of (2.26) is a restriction of r.h.s. of (2.25) to
the diagonal matrix Λ = diag(λ1, . . . , λ�+1) �

Remark 2.1. According to Remark 1.1, the correlation function (2.25) for
arbitrary μ and � can also be considered as a complex Archimedean L-factor.
The μ-dependence of the functional integral defines also a renormalization
scale dependence (see e.g. [32]). For example using another regularization of
the Gaussian functional integral (i.e., different form of ζ-function regular-
ization) we would obtain the same answer up to a multiplication by a factor
of the form ABs.

2.3. Calculation of the functional integral

In this subsection, we prove (2.26). It is enough to consider the case of � = 0.

Proposition 2.1. The following integral representation for Γ-function
holds

(2.27) Γ(λ/�) = �
1
2

(
2
μ�

)λ/� 〈
eμOλ,�

〉
D
,
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where

(2.28) Oλ,� =
ı

2

∫

∂D=S1

dσ(−χ̄ χ+ ϕ̄(ıλ+ �∂σ)ϕ),

and the functional integral is taken with the action functional

(2.29) SD = ı

∫

D
d2z

(
F̄z ∂z̄ϕ+ Fz̄ ∂zϕ̄+ ψz̄∂zχ̄+ ψ̄z∂z̄χ

)
.

Proof. Decompose the fields ϕ and χ

(2.30) ϕ = ϕ0 + ϕh, χ = χ0 + χh,

so that ϕ0 and χ0 satisfy the boundary conditions

(2.31) ϕ0|∂D=S1 = 0, χ0|∂D=S1 = 0,

and ϕh, χh are harmonic functions

(2.32) ∂z∂z̄ϕh = 0, ∂z∂z̄χh = 0.

Let us also decompose the fields F and ψ as follows:

F̄zdz = Ḡzdz + f̄zdz, Fz̄dz̄ = Gz̄dz̄ + fz̄dz̄,

ψ̄zdz = ξ̄zdz + ρ̄zdz, ψz̄dz̄ = ξz̄dz̄ + ρz̄dz̄,

where one-forms f , ρ and f̄ , ρ̄ satisfy the equations

(2.33) ∂z̄ f̄z = 0, ∂z fz̄ = 0, ∂z̄ ρ̄z = 0, ∂z ρz̄ = 0.

The fields G, Ḡ should be in the subspace orthogonal to the subspace
spanned by f and f̄ satisfying (2.33)

(2.34) 〈Ḡ, f〉 =
∫

D
d2z Ḡz fz̄ = 0, 〈G, f̄〉 =

∫

D
d2z Gz̄ f̄z = 0.

We impose similarly conditions on ξ and ξ̄. The following identity can be
easily checked

∫

D
d2z (F̄z∂z̄ϕ+ Fz̄∂zϕ̄) =

∫

D
d2z (Ḡz∂z̄ϕ0 +Gz̄∂zϕ̄0)(2.35)

+
∫

∂D
(dz f̄zϕh − dz̄fz̄ϕ̄h).
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Using (2.35) we have the decomposition of the action (2.29)

(2.36) SD = Sbulk + Sboundary,

where

(2.37) Sbulk = ı

∫

D
d2z (Ḡz ∂z̄ϕ0 +Gz̄ ∂zϕ̄0 + ξ̄z ∂z̄χ0 + ξz̄ ∂zχ̄0),

and

(2.38) Sboundary = ı

∫

S1=∂D
dσ(f̄z ϕh − fz̄ ϕ̄h + ρ̄z χh − ρz̄ χ̄h).

The integration measure is defined using the standard Hermitian metric on
tensor fields on the disk. For example, the measure [Dϕ] [Dϕ̄] over (ϕ, ϕ̄) is
induced by the metric

(2.39) ‖δϕ‖2 =
∫

D
d2z δϕ δϕ, ‖δχ‖2 =

∫

D
d2z δχ δχ.

Taking into account that super-manifolds have canonical integration mea-
sure (see the Appendix) the integration measures can be split as follows:

[DF ] [DF̄ ] [Dψ] [Dψ̄] = [DG] [DḠ] [Df ] [Df̄ ] [Dξ] [Dξ̄] [Dρ] [Dρ̄],(2.40)
[Dϕ] [Dϕ̄] [Dχ] [Dχ̄] = [Dϕ0] [Dϕ̄0] [Dϕh] [Dϕ̄h] [Dχ0] [Dχ̄0](2.41)

× [Dχh] [Dχ̄h].

Thus using the decomposition (2.36) we have a factorization of the functional
integral in (2.27) into the product of the integrals over (G,ϕ0, ξ, χ0) and
(f, ϕh, ρ, χh). Consider first the integration over (G,ϕ0, ξ, χ0) with the action

(2.42) Sbulk = ı

∫
d2z (Ḡz ∂z̄ϕ0 +Gz̄ ∂zϕ̄0 + ξ̄z ∂z̄χ0 + ξz̄ ∂zχ̄0).

This is an infinite-dimensional analog of the integral (A.5) defined by ζ-
function regularization. The integral gives a trivial contribution to (2.27)
(the corresponding integrals over odd and even variables cancel identically).
Thus one should calculate the following functional integral:

(2.43)
∫

[Dϕh] [Dϕ̄h] [Df ] [Df̄ ] [Dρ] [Dρ̄] [Dχh] [Dχ̄h] e−S∗ ,
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where

S∗ =
∫

S1=∂D
dσ(ıf̄z ϕh − ıfz̄ ϕ̄h + ıρ̄z χh − ıρz̄ χ̄h(2.44)

+ μ
ı

2
(χ χ̄ + ϕ̄(ıλ+ �∂σ)ϕ)) .

Consider decomposition of the fields

ϕh(z, z̄) =
∑

n>0

ϕ−n z̄
n +

∑

n≥0

ϕn z
n = ϕ−(z̄) + ϕ+(z),(2.45)

ϕ̄h(z, z̄) =
∑

n≥0

ϕ̄−n z̄
n +

∑

n>0

ϕ̄n z
n = ϕ̄−(z) + ϕ̄+(z̄),

χh(z, z̄) =
∑

n>0

χ−n z̄
n +

∑

n≥0

χn z
n = χ−(z̄) + χ+(z),

χ̄h(z, z̄) =
∑

n≥0

χ̄−n z̄
n +

∑

n>0

χ̄n z
n = χ̄−(z) + χ̄+(z̄).

Taking into account (2.33) one can write the action (2.44) as follows:

S∗ =
∫

S1=∂D
dσ(ıf̄z ϕ− − ıfz̄ ϕ̄− + ıρ̄z χ− − ıρz̄ χ̄−(2.46)

+ μ
ı

2
(χ χ̄ + ϕ̄(ıλ+ �∂σ)ϕ)).

Integrating over (ϕ−, ϕ̄−, f, f̄) and (χ−, χ̄−, ρ, ρ̄) and using (A.2) we are left
with the following integral:

(2.47)
〈
eμOλ,�

〉

D
=
∫

[Dϕ+] [Dϕ̄+] [Dχ+] [Dχ̄+] e−Sb ,

where

(2.48) Sb = −μ ı
2

∫ 2π

0
dσ(χ+ χ̄+ + ϕ̄+(ıλ+ �∂σ)ϕ+).

and functional measure is defined using the metric induced by (2.39) on the
space of the fields (ϕ+, ϕ̄+, χ+, χ̄+).

The functional integral (2.47) can be easily calculated using the ζ-
function regularization. Using the normalization of the integration measure
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given in the appendix we have

(2.49)
〈
eμOλ,�

〉

D
=

detD0

det D .

Here the differential operator D = − ı
2 μ (� ∂

∂σ + ıλ) acts in the space of
complex-valued functions on a circle σ ∼ σ + 2π which are restrictions of
holomorphic functions on the disk D. The operator D0 acts by multiplica-
tion on 2π · μ

2 . The spectrum of D is

(2.50) λn =
μ

2
(�n+ λ), n ≥ 0,

and using (A.8) we have

(2.51) ln detD =
(

1
2
− λ

�

)
ln
(
μ�

2

)
+

1
2

ln 2π − ln Γ
(
λ

�

)
.

The determinant of D0 is calculated using (A.9)

(2.52) ln detD0 =
1
2

ln
(
2π

μ

2

)
.

Substitution of (2.51) and (2.52) into (2.49) gives (2.27) �

3. Γ-function as an equivariant symplectic volume

In the previous section, we represent a product of Γ-functions as a particular
Gaussian functional integral. In this section, we interpret this functional inte-
gral as an equivariant symplectic volume of the space of holomorphic maps
of the disk D into C

�+1. According to the general correspondence principle
in quantum mechanics equivariant symplectic volume can be considered as
a classical limit of a partition function of quantum system obtained by a
quantization of the symplectic manifold. We apply this heuristic principle
to the space of holomorphic maps of the disk D → C

�+1. The correspond-
ing partition function is given by the product of q-deformed Γ-functions.
In the next section, we provide a quantum field theory interpretation of
this result by identifying the product of q-deformed Γ-functions with the
correlation function in the three-dimensional equivariant topological linear
sigma-model.
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3.1. U�+1-equivariant symplectic volume of C
�+1

In this subsection, we consider a calculation of U�+1-equivariant symplec-
tic volume of C

�+1 and its interpretation as an assymptotic of a partition
function of the associated quantum system. These considerations provide an
example for the discussion of the equivariant symplectic volume of the space
of holomorphic maps of the disk D into C

�+1.
Let M be a 2(�+ 1)-dimensional symplectic manifold with a symplectic

form ω. Let G be a compact Lie group acting on M . Let g∗ be a dual to
the Lie algebra g of G. Let the action of G on (M,ω) is Hamiltonian with
the momentum map H : M → g∗. Define G-equivariant symplectic volume
of M as follows

(3.1) Z(M,λ) =
∫

M
e〈λ,H〉+ω =

∫

M

ω�+1

(�+ 1)!
e〈λ,H〉, λ ∈ g,

where 〈 , 〉 is the paring between g and its dual g∗.
The term “equivariant volume” for the integral (3.1) comes from the

interpretation of ωG := ω + 〈λ,H〉 as a G-equivariant extension of the sym-
plectic form ω. Indeed, ωG is a G-invariant dG-closed two-form and thus
defines an element in H2

G(M) using the Cartan model (2.20) of the equiv-
ariant cohomology. The interpretation of (3.1) in terms of equivariant coho-
mology leads to a possibility to apply a powerful localization technique to
the calculation the integrals (3.1) (see [15] for a direct calculation and [5,47]
for equivariant localization approach in abelian and non-abelian cases).

Integral expression (3.1) is invariant with respect to the adjoint action of
G on λ ∈ g and thus can be uniquely reconstructed from the specialization
of (3.1) to the case when λ belongs to a Cartan subalgebra h ⊂ g

(3.2) Z(M,λ) =
∫

M
eω+

∑dim h
j=1 λj Hj , λ = (λ1, λ2, . . . , λdim h) ∈ h.

Let us consider a particular example of the equivariant symplectic vol-
ume calculation. Let M = C

�+1 be supplied with the symplectic structure

(3.3) ω =
ı

2

�+1∑

j=1

dzj ∧ dz̄j .

The symplectic structure (3.3) is invariant with respect to the standard
action of U�+1 on C

�+1. The momenta corresponding to the action of the
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generators of Cartan subgroup (U1)�+1 ⊂ U�+1 are given by

(3.4) Hj = −1
2
|zj |2, j = 1, . . . , �+ 1.

The (U1)�+1-equivariant extension ω(U1)�+1 of ω satisfies the condition

(3.5)

⎛

⎝d−
�+1∑

j=1

λjiVj

⎞

⎠ω(U1)�+1 = 0,

and is given by

(3.6) ωU�+1 = ω +
�+1∑

j=1

λjHj =
ı

2

�+1∑

j=1

(dzj ∧ dz̄j + ıλj |zj |2).

The simple direct calculation gives

Z(C�+1, λ) =
∫

C�+1

eω+
∑ �+1

j=1 λjHj =
∫

C�+1

ω�+1

(�+ 1)!
e
∑ �+1

j=1 λjHj =
(2π)�+1

∏�+1
j=1 λj

,

(3.7)

where λ = (λ1, λ2, . . . , λ�+1) is an element of the Cartan subalgebra of u�+1 =
Lie(U�+1).

It is useful to rewrite the integral (3.7) using auxiliary anticommuting
variables (ηj , η̄j), j = 1, . . . , (�+ 1). The standard identification of polyno-
mial differential forms on C

�+1 with polynomials in commuting and anti-
commuting variables C[zj , z̄j , ηj , η̄j ], leads to the following expression for
the symplectic form (3.3):

(3.8) ω =
ı

2

�+1∑

j=1

ηj η̄j .

The integral (3.7) can be rewritten using the integration over anticommuting
variables in the following form:

Z(C�+1, λ) =
∫

C�+1|�+1

�+1∏

j=1

dzjdz̄j
�+1∏

j=1

dηjdη̄j e
ıμ

2

∑ �+1
j=1(η

j η̄j+ıλj |zj |2)(3.9)

=
(2π)�+1

∏�+1
j=1 λj

,

Here C
�+1|�+1 shall be considered as an odd tangent bundle ΠTC

�+1 to C
�+1.

Note that the integral is independent on μ.
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According to the Correspondence Principle in quantum mechanics/
statistical mechanics the integral over symplectic manifolds of the form (3.1)
describes an asymptotic of the partition function of the corresponding quan-
tum system. More precisely, if a quantization of the symplectic manifold
(M,ω) exists and Ĥj are quantum counterparts of the Hamiltonians Hj

then the equivariant volume (3.2) describes the asymptotic of the following
trace over the Hilbert space of the corresponding quantum system:

Z
�̃
(M,β, λ) = TrH e−

β

�̃

∑ �+1
j=1 λjĤj ,(3.10)

where �̃ is parameter of quantum deformation.
For example in the case of M = C

�+1 supplied with the symplectic form
(3.3) the corresponding quantum system can be easily found. The quantum
counterpart of the algebra of polynomial functions C[z1, . . . , z�+1, z̄1, . . . ,
z̄�+1] is a Heisenberg algebra generated by ẑ1, . . . , ẑ�+1, ˆ̄z1, . . . , ˆ̄z�+1 with the
relations

(3.11) [ẑi, ẑj ] = 0, [ˆ̄zi, ˆ̄zj ] = 0, [ˆ̄zi, ẑj ] = −2�̃δij .

This algebra can be represented in the space of polynomials V(�+1) =
C[z1, . . . , z�+1] with the action of the generators

ẑj = zj , ˆ̄zj = −2�̃
∂

∂zj
.

The space V(�+1) has a natural structure of U�+1-module and U�+1-character
of the module V(�+1) is easy to calculate. The generators of the Cartan
subalgebra of u�+1 are realized by the following differential operators:

(3.12) Ĥj = �̃zj ∂

∂zj
, j = 1, . . . , �+ 1,

and provide a quantization of the classical Hamiltonians (3.4). The character
of U�+1-module V(�+1) is given by (3.10) and a simple calculation gives

(3.13) Z
�̃
(C�+1, β, λ) = Tr V�+1 e−

β

�̃

∑ �+1
j=1 λjĤj =

�+1∏

j=1

1
1 − e−βλj

.

Then the following relation between equivariant volume (3.7) and the char-
acter (3.13) holds

(3.14) Z(C�+1, λ) = lim
β→0

(2πβ)�+1 Z
�̃
(C�+1, β, λ).
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3.2. S1 × U�+1-equivariant volume of M(D, C
�+1)

In this subsection, we provide an interpretation of the functional integral
calculation in Section 2 as a calculation of an equivariant volume of a space
of holomorphic maps of the disk D into C

�+1.
Let M(D,C�+1) be the space of holomorphic map of D = {z| |z| ≤ 1}

into C
�+1. An element of M(D,C�+1) can be described by a set of functions

(ϕj(z, z̄), ϕ̄j(z, z̄)), satisfying the constraints

(3.15) ∂z̄ϕ
j(z, z̄) = 0, ∂zϕ̄

j(z, z̄) = 0, j = 1, . . . , (�+ 1).

Define a symplectic form on the space M(D,C�+1) of holomorphic maps as
follows:

(3.16) Ω =
ı

2

�+1∑

j=1

∫ 2π

0
δϕj(σ) ∧ δϕ̄j(σ) dσ,

where ϕj(σ), ϕ̄j(σ) are restrictions of ϕj(z, z̄), ϕ̄j(z, z̄) to the boundary
∂D = S1. This symplectic form is invariant with respect to the group S1

of loop rotations σ → σ + α and the action of U�+1 is induced from the
standard action on C

�+1. The action of S1 × U�+1 is Hamiltonian and the
momenta corresponding to the action of S1 and of the Cartan subgroup
U �+1

1 ⊂ U�+1 are given by

H0 =
ı

2

�+1∑

j=1

∫ 2π

0
ϕ̄j(σ)∂σϕ

j(σ) dσ, Hj = −1
2

∫ 2π

0
|ϕj(σ)|2 dσ,(3.17)

j = 1, . . . , �+ 1.

In the infinite-dimensional setting we can try to define an analog of the equiv-
ariant volume (3.2). We use an analog of the representation (3.9) in terms
of the integral over commuting and anticommuting variables. Let χj(z, z̄)
and χ̄j(z, z̄) be anticommuting counterparts of ϕj(z, z̄) ϕ̄j(z, z̄) satisfying
the equations

(3.18) ∂z̄χ
j(z, z̄) = 0, ∂zχ̄

j(z, z̄) = 0, j = 1, . . . , (�+ 1).

Let � be a generator of Lie algebra of S1 and λ = (λ1, . . . , λ�+1) be genera-
tors of Cartan subalgebra of u�+1. The following formal integral should be
considered as a S1 × U�+1-equivariant volume of the space of holomorphic
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maps M(D,C�+1)

Z(M(D,μ,C�+1), β, λ)(3.19)

=
∫

ΠTM(D,C�+1)
dm(ϕ, χ) e

ıμ

2

∑ �+1
j=1 (

∫ 2π

0 dσ χj χ̄j +ıλjHj)+�H0 ,

where H0, Hj are given by (3.17) and dm(ϕ, χ) is an integration measure
to be defined. This functional integral is a product of functional integrals
(2.47), (2.48) arising at an intermediate step of the proof of Proposition 2.1.
Thus we can define the measure dm(ϕ, χ) in (3.19) in the same way as
in Proposition 2.1. Finally, taking into account Theorem 2.1 we arrive to
the conclusion that the r.h.s. of the relation (2.25) is indeed can be con-
sidered as S1 × U�+1-equivariant volume of the space of holomorphic maps
M(D,C�+1). Thus taking into account the definition of the equivariant sym-
plectic volume given above, Proposition 2.1 can be reformulated as follows.
The classical Γ-function is equal to the S1 × U(1)-equivariant symplectic vol-
ume of the space M(D,C) of holomorphic maps of the disk D to the complex
plane C.

Let us push further the analogy with the finite-dimensional case consid-
ered in the previous subsection. We would like to find a quantum system such
that the equivariant volume (3.19) appears in the assymptotic of its parti-
tion function. This is easy to accomplish taking into account that underlying
infinite-dimensional symplectic space M(D,C�+1) is a linear space. Consider
the Fourier series expansion

(3.20) ϕj(σ) =
∑

n≥0

(2π)−1/2ϕj
n e

ınσ, ϕ̄j(σ) =
∑

n≥0

(2π)−1/2 ϕ̄j
n e−ınσ.

In terms of the Fourier coefficients we have

Ω =
ı

2

�+1∑

j=1

∑

n≥0

δϕj
n ∧ δϕ̄j

n,(3.21)

H0 = −1
2

�+1∑

j=1

∞∑

n>0

n|ϕj
n|2, Hj = −1

2

∞∑

n≥0

|ϕj
n|2.(3.22)

Quantization of the algebra of polynomial functions on M(D,C�+1) with
the symplectic structure (3.21) is given by

(3.23) [ϕj
n, ϕ

k
m] = 0, [ϕ̄j

n, ϕ
k
m] = −2�̃ δjkδnm, [ϕ̄j

n, ϕ̄
k
m] = 0.
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We chose a polarization in such a way that the Hilbert space H(�+1) is
realized as a space of functions of ϕj

n, n ≥ 0, j = 1, . . . , (�+ 1). Then ϕ̄j
n,

n ≥ 0, j = 1, . . . , (�+ 1) act as first-order differential operators

(3.24) ϕ̄j
n = −2�̃

∂

∂ϕj
n

.

The Hilbert space H(�+1) has a natural action of S1 × (U1)�+1 induced by
the action on the linear coordinates

eıα0 : ϕj
n → eınα0ϕj

n, eıα0 ∈ S1,

eıαk : ϕj
n → eıδkjαjϕj

n eıαk ∈ U1.

The action of the corresponding Lie algebra is generated by the vector fields

(3.25) Ĥ0 = �̃

�+1∑

j=1

∞∑

n=0

nϕj
n

∂

∂ϕj
n

, Ĥj = �̃

∞∑

n=0

ϕj
n

∂

∂ϕj
n

.

Thus the infinite-dimensional counterpart of (3.13) is given by the following
partition function:

(3.26) Z
�̃
(M(D,C�+1, β, λ) = TrH(�+1) e−

β

�̃
(�Ĥ0+

∑ �+1
j=1 λjĤj),

where λ = (λ1, . . . , λ�+1).

Proposition 3.1. The following identity holds

(3.27) Z
�̃
(M(D,C�+1, β, λ) =

�+1∏

j=1

Γq(tj),

where q = e−β�, tj = e−βλj and the q-version of Γ-function is given by

(3.28) Γq(t) =
+∞∏

k=0

1
1 − tqk

.

Proof. Direct calculation. �

Note that the first order differential operators (3.25) can be considered as
a quantization of the Hamiltonians (3.22). Moreover, similarly to (3.14) the
asymptotic of (3.26) is proportional to the equivariant symplectic volume
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(3.19). Thus the proposed q-version of Γ-function is obtained by applying
the standard quantization rules to the classical Γ-function expressed as an
equivariant volume integral.

Remark 3.1. The Hilbert space H(�+1) can be considered as a Hilbert
space of a second quantized system, i.e., H(�+1) = S∗V is a space of multi-
particle states where V is a one-particle Hilbert space. Explicitly H(�+1) =
C[ϕj

n], n ≥ 0, j = 1, . . . , (�+ 1) is a space of polynomial functions on C
�+1 ⊗

C[ξ] and V ⊂ H(�+1) is a subspace of linear functions on C
�+1 ⊗ C[ξ].

4. q-deformed Γ-function: three-dimensional interpretation

In the previous sections, we propose the integral representation of the
Γ-function as a functional integral in the equivariant topological two-dimen-
sional linear sigma model. This integral representation can be interpreted
as an equivariant symplectic volume of the space of holomorphic maps of a
disk into a complex plain C. We also define a natural quantum version of
the equivariant symplectic volume. This is equal to a q-deformed Γ-function
expressed as a partition function of a quantum system. It is natural to look
for a topological field theory expression for q-deformed Γ-function similar
to the expression for classical Γ-function given in Section 2. In this Section
we propose such a formulation in terms of an equivariant topological three-
dimensional linear sigma model. This is an example of the representation of
a K-theory analog of GW invariants [29, 31] in terms of three-dimensional
topological field theories discussed below.

4.1. Path integral representation for the character

We start with a path integral representation of the partition function (3.13)
of the quantum system obtained by a quantization of the classical phase
space C

�+1 supplied with the symplectic form (3.3). We have the following
standard representation:

(4.1) Z
�̃
(C�+1, β, λ) =

∫

LΠT (C�+1)
[Dz] [Dz̄][Dη] [Dη̄] eSQM (z,z̄,η,η̄),

where

(4.2) SQM =
1
2̃�

�+1∑

j=1

∫ 2π

0
dτ

(
z̄j dz

j

dτ
+
ıβ

2π
(ηj η̄j + ıλj |zj |2)

)
.
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Here commuting periodic functions (zj(τ), z̄j(τ)), j = 1, . . . , (�+ 1) and
anticommuting periodic functions (ηj(τ), η̄j(τ)), j = 1, . . . , (�+ 1) param-
etrize the loop space of the odd tangent bundle ΠTC

�+1 = C
�+1|�+1 to C

�+1.
The role of the integral over anticommuting variables is to provide a proper
integration measure over commuting variables (see the appendix).

The path integral (4.1) is a Gaussian one. By the definition we use, it is
expressed through the determinants of the differential operators regularized
using the corresponding ζ-functions. The integral (4.1) is easily calculated
using the expression (A.10) for regularized determinants

(4.3) Z
�̃
(C�+1, λ) =

�+1∏

j=1

1
det( d

dτ − βλj/2π)
=

�+1∏

j=1

1
1 − e−βλj

.

This coincides with the result of the direct calculation of the partition func-
tion (3.13). Let us remark that the ζ-function regularization implies the
following normal ordering: given a monomial in zj , z̄j , j = 1, . . . , �+ 1, one
should put z̄j ’s to the l.h.s. and zj ’s to the r.h.s.

The functional integral (4.1) can be related with equivariant cohomology
of the loop space LC

�+1 (see e.g. [11]). Let us identify differential forms on
LC

�+1 with functions on the loop space of C
�+1|�+1. Let (zj(τ), z̄j(τ)), j =

1, . . . , (�+ 1) and anticommuting functions (ηj(τ), η̄j(τ)), j = 1, . . . , (�+ 1)
be linear coordinates on L(ΠTC

�+1). The standard de Rham differential on
LC

�+1 is then given by

(4.4) δzj(τ) = ηj(τ), δηj(τ) = 0, δz̄j(τ) = η̄j(τ), δη̄j(τ) = 0.

We have a natural diagonal action of (U1)�+1 on L(ΠTC
�+1) induced by

the diagonal action on C
�+1. Let S1

τ act by rotations of the loops τ → τ +
α, α ∈ [0, 2π] and let β̃ be a generator of the corresponding Lie algebra.
Let G0 = S1

τ × (U1)�+1 be an abelian subgroup of G = S1
τ × U�+1. Then G0-

equivariant de Rham differential is given by

δG0z
j(τ) = ηj(τ), δG0η

j(τ) = −
(
β̃−1dz

j

dτ
+ ıλjz

j

)
,

δG0 z̄
j(τ) = η̄j(τ), δG0 η̄

j(τ) = −
(
β̃−1dz̄

j

dτ
− ıλj z̄

j

)
,

and satisfy the relation

(4.5) δ2G0
= −β̃−1∂τ .
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The action functional (4.2) is proportional to the G0-equivariant extension
ωG of the symplectic form (3.8)

(4.6) ωG0 =
ı

2

�+1∑

j=1

∫ 2π

0
dτ

(
η̄j ηj + ıλj |zj |2 + β̃−1z̄j dz

j

dτ

)
,

where β̃ = ıβ/2π. Thus the functional integral with the action (4.2) can
be considered as (an analytic continuation of) a G0-equivariant symplectic
volume of the loop space LC

�+1.

4.2. Three-dimensional interpretation of K-theory
GW invariants

Givental in [29] (see also [31]) proposed a construction of quantum K-
theory invariants of complex manifolds generalizing quantum cohomology
invariants arising in GW theory. The Givental construction of quantum
K-theory invariants of a manifold X is formulated directly in terms of
the characteristic classes of complexes of coherent sheaves on compactified
moduli space of holomorphic curves in X. For example let X be a Fano
manifold with the cohomology ring generated by the second cohomology
H2(X), dimH2(X) = m. Let Md(Σ, X) be a compactified moduli space of
holomorphic maps of an algebraic curve Σ into X of a fixed multi-degree
d = (d1, . . . , dm) ∈ Z

m. The corresponding invariant is a generating function
of holomorphic Euler characteristics of line bundles on Md(Σ, X)

(4.7) G(X,Q,L) =
∑

d∈Zm

ch(Md(Σ, X),L)
m∏

a=1

Qda
a ,

where

ch(Md(Σ, X),L) =
∑

n

(−1)n dimHn(Md(Σ, X),L),

and L is a line bundle on Md(Σ, X).
In this subsection, we propose a topological field theory interpretation

of the quantum K-theory invariants. Les us start with some heuristic argu-
ments. Cohomology of a manifold X can be described in terms of differential
forms on X via the de Rham complex. On the other hand K-cohomology
of X can be described in terms of vectors bundles on X. Thus a relation
between cohomology and K-theory can be considered as a kind of a quanti-
zation. The general approach to quantization is via Feynman path integral.
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The Feynman path integral description of quantum mechanics implies that
a quantization of a symplectic manifold should be described in terms of the
geometry of the loop space on the symplectic manifold. Therefore K-theory
of X (modulo torsion) should allow interpretation in terms of cohomology
of the loop space LX. Let us apply this reasoning to quantum counterpart
of cohomology and K-theory. The quantum cohomology of a manifold X
are described in terms of a topological sigma model in two dimensions with
the target space X [46]. Thus it would be natural to guess that quantum
K-theory invariants should be described in terms of two-dimensional sigma
model on the loop space LX, i.e., in terms of three-dimensional topolog-
ical sigma models. We propose such three-dimensional topological theory
description below.

Let Σ be a Riemann surface and X be a Kähler manifold. We retain the
basic notations introduced in Section 2.1. Let us consider a three-dimensional
manifold Σ × S1. We pick a metric d2sΣ = hzz̄ dz dz̄ on Σ and a constant
metric d2sS1 = dτ2 on S1. Let π : Σ × S1 → Σ be a projection. Introduce
the fields F and F̄ as sections of π∗(K) ⊗ Φ∗(T 0,1) and of π∗(K̄) ⊗ Φ∗(T 1,0)
correspondingly. The anticommuting fields χ, χ̄ are sections of the bundles
Φ∗(ΠT 1,0X), Φ∗(ΠT 0,1) and anticommuting fields ψ, ψ̄ are sections of the
bundles π∗(K) ⊗ Φ∗(ΠT 0,1), π∗(K̄) ⊗ Φ∗(ΠT 1,0) respectively. Metrics g on
X and h on Σ induce a Hermitian paring 〈 , 〉 on the space of sections of the
considered bundles. An example of the pairing in local coordinates is given
by (2.2). Consider the following action functional in three dimensions:

S3d
0 (t) = β

∫

S1×Σ
dτ d2z

√
h
(
ı〈F , ∂ϕ〉 + ı〈F̄ , ∂ϕ̄〉 + ı〈ψ̄,Dχ̄〉 + ı〈ψ, D̄χ〉

(4.8)

+ t〈F F〉 +
t

2
〈ψ, ∂τψ〉 +

t

2
〈ψ, ∂τψ〉 + t〈ψ̄, R(ψ, χ̄)χ〉

+ 2t̃β−2〈∂τϕ, ∂τϕ〉 + ıt̃β−1〈χ, ∂τχ〉 + ıt̃β−1〈χ̄, ∂τ χ̄〉
)
.

The fields F , F̄ and the derivatives Dz, D̄z̄ are locally defined as in (2.5),
(2.6). The action functional (4.8) is invariant with respect to the transfor-
mations

δϕ = χ, δχ = −ıβ−1∂τϕ, δψ̄ = F̄ , δF̄ = −ıβ−1∂τ ψ̄,(4.9)

δϕ̄ = χ̄, δχ̄ = −ıβ−1∂τ ϕ̄, δψ = F, δF = −ıβ−1∂τψ,

and the following relation holds

(4.10) δ2 = −ıβ−1∂τ .
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Similarly to the action S0(t) in (2.3) the three-dimensional action (4.8) can
be written as follows

(4.11) S3d
0 (t) = β

∫

S1×Σ
dτ d2z

√
h δV(t),

where

V(t) = 〈ψ, 1
2 tF + ı∂ϕ〉 + ıt̃β−1〈χ, ∂τϕ〉 + 〈ψ̄, 1

2 tF̄ + ı∂ϕ̄〉 + ıt̃β−1〈χ̄, ∂τ ϕ̄〉.

Note that the form of the δ-transformations allows to interpret the three-
dimensional sigma model (4.8) in terms of S1-equivariant cohomology where
S1 acts by shits of τ .

Remark 4.1. The action (4.8) can be obtained by a twisting of a three-
dimensional N = 2 SUSY sigma model on Σ × S1 with the target space X
similarly to the two-dimensional case [46].

We consider the theory with the action (4.8) deformed by a δ-closed
functional. Let L be a holomorphic line bundle on X with a curvature two-
form ωL representing the first Chern class c1(L). Locally we can express the
curvature in terms of a connection one-form α

(4.12) ωL = ∂α.

The following functionals are invariant with respect to transformations (4.9):

exp(2πıO(L))(4.13)

= exp

⎛

⎝2πı
∫

Σ×S1

dτ
√
h d2z

⎛

⎝
�+1∑

i,j̄=1

ωL
ij̄χ

iχj̄ +
�+1∑

i=1

αi(ϕ)∂τϕ
i

⎞

⎠

⎞

⎠ ,

(4.14) exp(Oω(y)) = exp

⎛

⎝
rk H2(X)∑

a=1

ya

∫ 2π

0
dτ

∫

Σ
Φ∗(ωa)

⎞

⎠ .

where {ωa} is a bases in H2(X). Note that the observable (4.13) is well
defined. Indeed, although it is written using the local representation (4.12)
the ambiguity is given by the exponent of the 2πı multiplied by a period of
the two-form ωL ∈ H2(X,Z) and thus irrelevant.
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The three-dimensional sigma model with the action (4.8) is not well
defined in general as a quantum field theory. The sigma model provides a
long wave length (“infra-red”) description and needs a proper short wave
length (“ultraviolent”) completion in general. For the case of the target
space being a flag manifold (relevant to the quantum K-theory invariants
considered in [31]) the proper completion can be given for example in terms
of quiver gauge theories with N = 4 SUSY. We leave the detailed construc-
tion of these completions to another occasion. Here, we provide heuristic
arguments to support the conjecture that the topological field theory with
the action (4.8) specialized to t = 0 calculates quantum K-theory invari-
ants (4.7). The argument is very close to that for the standard descrip-
tion of GW invariants in terms of a two-dimensional twisted N = 2 SUSY
sigma model [4,46]. Integrating over F and ψ we reduce the integration over
other fields to the vicinity of the subspace of maps Σ × S1 → X holomorphic
along Σ

(4.15) ∂z̄ϕ
i = 0, Dz̄χ

i = 0.

The corresponding determinant contributions arising from the integration
over commuting and anticommuting fields in the quadratic approximation
around the subspace (4.15) cancel each other (we consider the situation when
there is no zero modes of F and ψ). Thus the integral reduces to the path
integral with the following action:

Sred(L) =
∫ 2π

0
dτ

⎡

⎣
∫

Σ

√
hd2z

⎛

⎝
�+1∑

i,j̄=1

t̃ωL
ij̄

(
β−2∂ϕ

i

∂τ

∂ϕ̄j̄

∂τ
+ β−1χ̄j̄ ∂χ

i

∂τ

)
(4.16)

+

⎛

⎝
�+1∑

i,j̄=1

ωL
ij̄χ

iχ̄j̄ +
�+1∑

i=1

αi(ϕ)∂τϕ
i

⎞

⎠

⎞

⎠+
rkH2(X)∑

a=1

ya

∫

Σ
Φ∗(ωa)

⎤

⎦ ,

where ϕ : Σ → X is a holomorphic map and χ is a section of the odd tangent
bundle ΠTM(Σ, X) to the space M(Σ, X) of the holomorphic maps. The
theory described by this action is a N = 1/2 SUSY one-dimensional sigma
model with the target space M(Σ, X) (first line in (4.16)) deformed by an
observable (second line in (4.16)). Using the standard facts on the partition
functions for N = 1/2 SUSY quantum mechanics (see [2, 3, 8, 17]) we can
identify the result of taking functional integral with the action (4.16) with
the generating function (4.7) given by the sum of holomorphic Euler charac-
teristics of the line bundle L with ω = c1(L) over components Md(Σ, X) of
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the moduli space of holomorphic maps with the identification Qj = exp yj .
It is easy to generalize these considerations to the case of an equivariant
three-dimensional sigma model taking into account proper ultraviolent com-
pletion. In the next subsection, we consider an example of an equivariant
three-dimensional topological linear sigma model which is a well-defined
quantum field theory by itself.

4.3. Equivariant linear sigma model on D × S1

In this subsection, we consider an equivariant version of the topological lin-
ear sigma model on a non-compact three-dimensional space D × S1 with
the target space X = C

�+1. We pick the flat metric (2.17) on the disk
and the symplectic structure (3.3) on C

�+1. Let U�+1 act on C
�+1 via the

standard representation and S1 act on the first factor in D × S1 by rota-
tions as it was introduced in Section 2. We would like to consider S1 ×
U�+1-equivariant version of the three-dimensional topological field theory
introduced in Section 4.2. Following the reasoning of the previous section
we consider an equivariance with respect to a Cartan subgroup G0 = S1 ×
(U1)�+1 of G = S1 × U�+1. The G0-equivariant modification of the transfor-
mations (4.9) is given by

δG0ϕ = χ, δG0χ = −(�∂σ + 2πıβ−1∂τ + ıλ)ϕ,

δG0ψz̄ = Fz̄, δG0Fz̄ = −(�∂σ + 2πıβ−1∂τ + ıλ)ψz̄.

Consider the δG0-invariant action (4.8) with t̃ = t = 0 on N = S1 ×D spe-
cialized to the case of X = C

�+1

S0 =
∫

S1×D
d2z dτ δG0 V(4.17)

= ı

∫

S1×D
d2z dτ

(
∂z̄χψ̄z + F̄z∂z̄ϕ+ ∂zχ̄ψz̄ + Fz̄∂zϕ̄

)
,

where
V = ∂z̄ϕ ψ̄z + ∂zϕ̄ ψz̄.

We deform the action by a δG0- and G0-invariant observable on the boundary
∂N = S1 × S1

(4.18) S = S0 + O,
where

(4.19) O =
ı

2
β

∫

∂N=S1×S1

dτ dσ (χ̄χ+ ϕ̄(�∂σ + 2πıβ−1∂τ + ıλ)ϕ).



90 Anton Gerasimov, Dimitri Lebedev and Sergey Oblezin

The integration over F and ψ localizes the functional integral to the subspace
of maps N → C

�+1 satisfying the equations

(4.20) ∂z̄ϕ = 0, ∂zϕ̄ = 0, ∂z̄χ = 0, ∂zχ̄ = 0.

Let us use the expansion of the solutions of the constraints (4.20)

ϕ(z, z̄, τ) =
+∞∑

n=0

(2π)−1/2ϕn(τ) zn, ϕ̄(z, z̄, τ) =
+∞∑

n=0

(2π)−1/2ϕn(τ) z̄n,

χ(z, z̄, τ) =
+∞∑

n=0

(2π)−1/2χn(τ) zn, χ̄(z, z̄, τ) =
+∞∑

n=0

(2π)−1/2χn(τ) z̄n.

Then the integral factorizes into the product of elementary integrals

(4.21) Z =
∞∏

n=0

Zn,

where

Zn =
∫

[Dϕn] [Dϕ̄n][Dχn] [Dχ̄n] e−Sn ,

and

Sn = − ı

2
β

∫ 2π

0
dτ(χ̄nχn + ϕ̄n(2πıβ−1∂τ + ı�n+ ıλ)ϕn).

Each Zn is a path integral of the form (4.1) and thus using previous calcu-
lations we have

(4.22) Zn =
1

1 − e−β(�n+λ)
.

Finally for the partition function of the three-dimensional topological linear
sigma model on S1 ×D, we obtain

(4.23) Z =
+∞∏

n=0

1
1 − tqn

,

where t = e−βλ, q = e−β�. This coincides with the representation given in
Proposition 3.1.

5. Conclusion

To conclude this paper we outline some directions for future research.
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In this paper, we consider equivariant topological sigma models on a disk
such that the equivariance group includes the group S1 of disk rotations.
It is natural to expect that this S1-equivariance is a remnant of Diff(S1)-
equivariance of two-dimensional topological quantum gravity. The relation
between S1-equivariance and topological gravity is well known. For exam-
ple in [27, 28], the correlation functions of S1-equivariant topological sigma
models on P

1 are expressed through the correlation functions of the topolog-
ical sigma model coupled with the topological quantum gravity. Thus one
should expect that the results of this papers can be put in the framework of
a first quantized topological string theory. However, let us note that there
are also indications that the proper interpretation of our results should be
in terms of a second quantized topological string field theory. The simplest
soluble example of the topological string theory is given by a pure topolog-
ical gravity completely solved in [34]. This solution can be reformulated in
terms of a quantum field theory on a disk with a quadratic action playing
the role of the second quantized string theory [19, 26]. In particular, such a
formulation provides an intriguing analogy with the considerations of this
note and seems to deserve further considerations.

The construction of the functional integral representation of local
Archimedean L-factors uses an integral representation of a Γ-function (see
Proposition 2.1). Thus classical Γ-function is equal to equivariant volume
of the space of holomorphic maps of the disk to complex plain. This func-
tional integral representation should be compared with the standard Euler
integral representation. As we demonstrate in [24] the Euler integral repre-
sentation naturally arises as a disk partition function in the equivariant type
B topological Landau-Ginzburg model on a disk with the target space C and
the superpotential W (ξ) = eξ + λξ, ξ ∈ C. This result is not surprising in
view of the mirror symmetry between the type A and type B topological
sigma model (see [33] for detailed discussion). Thus we have two integral
representations of Γ-function in terms of an infinite-dimensional equivariant
symplectic volume and in terms of an finite-dimensional complex integral.
Taking into account the mirror symmetry relating the two underlying topo-
logical theories, these two integral representations should be considered on
equal footing.

These two different integral representations of Γ-functions are similar to
two constructions of the local Archimedean L-factors discussed in Section 1.
The equivalence of the resulting L-factors is a manifestation of the local
Archimedean Langlands correspondence (see e.g. [1]). The analogy between
mirror symmetry and local Archimedean Langlands correspondence looks
not accidental and can eventually imply that local Archimedean Langlands
correspondence follows from the mirror symmetry.
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In Section 4, the q-deformed Γ-function was represented as a partition of
an equivariant three-dimensional topological linear sigma model on D × S1.
The functional integral reduces to the functional integral over the fields on
the boundary T 2 = S1 × S1. On the other hand, the q-deformed Γ-function
can be identified with a partition function of a chiral scalar field on T 2. This
relation between topological theory on a three-dimensional manifold and
holomorphic theory on its boundary resembles the relation between con-
formal blocks in Wess–Zumino–Witten (WZW) theory and Chern–Simons
(CS) theory [16, 48]. Such an analog of WZW/CS correspondence deserves
considerations.

Let us note that the proposed functional integral representation for
the classical Γ-function allows a straightforward quantization providing the
q-deformed Γ-function. On the other hand, the standard construction of the
q-deformed Γ-function in the classical setting is ad hoc. One can hope that
further development of our approach would provide a canonical construction
of q-deformations of other classical special functions.

Local L-factors and their q-counterparts are basic building blocks in
the description of semi-infinite periods associated with a type A topological
sigma model with the target space P

� and more generally a homogeneous
space of a classical Lie group [22,23]. The proposed functional integral rep-
resentations should lead to a direct derivation of the results of [23] in the
framework of topological sigma models in two- and three-dimensions.

Finally, let us stress that the main driving force of the whole project
including this note and the previous ones [20–23] is to uncover the proper
geometric description of Archimedean places in arithmetic geometry. The
results of this note imply that the infinite-dimensional symplectic geome-
try could be a proper setting to discuss quantum field theory models for
Archimedean arithmetic geometry seriously.
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Appendix A: Gaussian functional integral

In the appendix, we describe the standard approach to the calculation/
definition of the Gaussian functional integrals using ζ-function regularization
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[32, 38] (see also [44]). We start with a simple finite-dimensional Gaussian
integrals

(A.1) IC

N (A) =
( ı

2

)�+1
∫

CN

e−
1
2

∑N
i,j=1 z̄iAijzj

N∏

j=1

dzj dz̄j =
1

det A/2π
,

where matrix A is positively defined, i.e., is unitary equivalent to the diag-
onal matrix with positive eigenvalues. More generally, the Gaussian inte-
gral (A.1) for A having complex eigenvalues aj such that Re(aj) ≥ 0, j =
1, . . . , N is defined as a limit of the integral for A having complex eigenvalues
aj such that Re(aj) > 0, j = 1, . . . , N . The resulting expression for IC

N (A)
coincides with the r.h.s. of (A.1). The following integral is an example of
this more general case

(A.2) I =
( ı

2

)2
∫

C2

dzdz̄ dw dw̄ e−λ ı

2
(z̄w+zw̄+āw+w̄a) =

(
2π
λ

)2

, λ ∈ R.

Similar expression holds for Gaussian integral over anticommuting variables

JC

N =
∫

C0|N
eı
∑N

i,j=1 η̄iAijηj

N∏

j=1

(ı dηj dη̄j) = det A,

where we use standard Berezin integration over anticommuting variables
∫
dη = 0,

∫
ηdη = 1,

and the sign convention in the multi-variable case is defined by
∫
η1 η2 · · · ηN dη1 · · · dηN = 1.

Let C
N |N be a linear super-space with the space of polynomial holo-

morphic functions C[z1, . . . , zN , η1, . . . , ηN ]. We have a canonical measure
on this space

dm(z, η) = (dz1 dz̄1 dz2 dz̄2 · · · dzN dz̄N )(dη1 dη̄1 dη2 dη̄2 · · · dηN dη̄N ).
(A.3)

Then using the measure (A.3) the integral (A.1) can be rewritten as follows:

(A.4) IC

N (A) =
∫

CN|N
dm(z, η) e−

1
2

∑N
i,j=1 z̄iAijzj− ı

2

∑N
j=1 η̄jηj =

1
det A/2π

.
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In particular, an analog of (A.2) is given by

Ĩ =
1

(2π)2

∫

C2|2
dzdz̄ dw dw̄ dη dη̄ dξ dξ̄ e−λ ı

2
(z̄w+zw̄+āw+w̄a)+(η̄ξ+ξ̄η)(A.5)

= 1, λ ∈ R.

We need certain infinite-dimensional analogs of the integrals considered
above. Instead of matrix A we have some differential operator acting in
an infinite-dimensional space of functions. To define corresponding infinite-
dimensional Gaussian integrals one should define a notion of the determinant
of the corresponding differential operator. Let D be an operator with the
positive discrete spectrum with finite multiplicities

0 < d0 ≤ d1 ≤ d2 ≤ · · · ,

Consider ζ-function for the operator D + λ

(A.6) ZD(s, λ) =
∞∑

n=0

1
(dn + λ)s

,

where s ∈ C is such that the sum is convergent. The sum (A.6) can be
continued to a meromorphic function of s. The regularized determinant of
the operator D + λ is then defined as follows

(A.7) ln det(D + λ) = −∂sZ(s, λ)|s=0.

Consider a special case of this construction for the operator D with the
spectrum dn = ρn, n ∈ Z≥0. Corresponding ζ-function

ζρ(s, λ) =
∞∑

n=0

1
(ρn+ λ)s

, −π < arg(ρn+ λ) ≤ π,

is basically the Hurwitz ζ-function and has analytic continuation to all s ∈
C/{1}. We have

ζρ(0, λ) =
1
2
− λ

ρ
, ∂sζρ(0, λ) = −

(
1
2
− λ

ρ

)
ln ρ+ ln

1√
2π

Γ
(
λ

ρ

)
.

Thus for the regularized determinant of D + λ, we obtain

(A.8)

[ ∞∏

n=0

(ρn+ λ)

]

reg

= ρ1/2−λ/ρ (2π)1/2

Γ(λ/ρ)
.
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We also define the regularized determinant of the operator given by multi-
plication by ρ as

(A.9)

[
+∞∏

n=0

ρ

]

reg

= exp(ζ(0, 0) ln ρ) = ρ
1
2 .

Lemma A.1. The following identity holds

(A.10)

[
∏

n∈Z

(ρn+ λ)

]

reg

= 1 − e2πıλ/ρ, Im(ρ) > 0.

Proof. We have

ζ∗ρ(s, λ) :=
∑

n∈Z

1
(ρn+ λ)s

= ζρ(s, λ) + ζ−ρ(s, λ) − λ−s.

Simple calculation gives

∂

∂s
ζ∗ρ(s, λ)|s=0 = ζ ′ρ(0, λ) + ζ ′−ρ(0, λ) + lnλ

= − ıπ
2

− ıπ
λ

ρ
+ ln

(
1
2π

Γ
(
λ

ρ

)
Γ
(

1 − λ

ρ

))
.

Finally, we obtain

[
∏

n∈Z

(ρn+ λ)

]

reg

= exp(− ∂

∂s
ζ∗a(s, λ)|s=0)

= eıπλ/ρ 2πı

Γ
(

λ
ρ

)
Γ
(
1 − λ

ρ

) = (1 − e2πıλ/ρ).

where we use the identity

Γ(1 − z)Γ(z) =
π

sin(πz)
. �

Remark A.1. Note that the regularization in Lemma A.1 is different from
a more standard regularization which uses the Fredholm definition of the
infinite determinants (see e.g. [44]).
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