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A conjectural recursive relation for the Poincaré polynomial of the
Hitchin moduli space is derived from wallcrossing in the refined
local Donaldson–Thomas theory of a curve. A doubly refined gen-
eralization of this theory is also conjectured and shown to similarly
determine the Hodge polynomial of the same moduli space.
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1. Introduction

Let X be a smooth projective curve over C and M1,M2 be line bundles on X
so thatM1 ⊗X M2 � K−1

X . Given any such triple X = (X,M1,M2), the total
space Y of the rank two bundle M−1

1 ⊕M−1
2 is a quasi-projective three-fold

with trivial canonical class. The stable pair theory [55] of such three-folds
has been reformulated in [13] as an enumerative theory of twisted quiver
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sheaves on X. The later are twisted representations of a quiver of the form

e •
a1

��

a2

��
b �� • e∞,
c

��

with a relation of the form [a1, a2] + cb, in the abelian category Coh(X) of
coherent sheaves on X. In more detail, one assigns coherent OX -modules
(E,E∞) to the nodes (e, e∞), and twisted morphisms Φi : E ⊗X Mi → E,
i = 1.2, φ : E ⊗X ⊗XM2 → E∞, ψ : E∞ → E to the arrows (a1, a2, b, c),
satisfying the relation

(1.1) Φ1 ◦ (Φ2 ⊗ 1M1) − Φ2 ◦ (Φ1 ⊗ 1M2) + ψ ◦ φ = 0.

The above quiver will be referred to as an ADHM quiver, and the resulting
quiver sheaves as ADHM sheaves on X. Note that such objects form natu-
rally an abelian category which contains in particular an abelian subcategory
CX of quiver sheaves with E∞ � V ⊗OX , where V is a finite-dimensional
complex vector space. The numerical invariants of objects in CX will be
denoted by (r, e, v) ∈ Z≥0 × Z × Z≥0 where (r, e) are the rank and degree of
E, respectively, and v = dim(V ). For the purpose of the present paper, it is
important to note that the v = 0 objects of CX are Higgs sheaves on X i.e.,
coherent OX -modules E decorated by a morphism E ⊗X (M1 ⊕M2) → E
satisfying the standard integrability condition

(1.2) Φ1 ◦ (Φ2 ⊗ 1M1) − Φ2 ◦ (Φ1 ⊗ 1M2) = 0.

Obviously, such objects form an abelian subcategory of CX .
As shown in [7, 8, 12], there is a natural slope stability condition on CX

parameterized by a real number δ ∈ R, which exhibits a nontrivial cham-
ber structure. Moreover, the Joyce–Song theory of generalized Donaldson–
Thomas invariants [38] applies to ADHM sheaves, resulting in counting
invariants defined via Behrend’s constructible function [3]. The counting
invariants of v = 1 objects in the asymptotic chamber δ >> 0 were related
to stable pair invariants of Y in [13].

In string theory, generalized Donaldson–Thomas invariants of ADHM
sheaves represent counting invariants of BPS bound states of D6–D2–D0
brane configurations on Y with multiplicities (v, r, e), respectively. Since Y
is noncompact, the gauge bundle on the D6-brane world volume is fixed to
be trivial and treated as framing data. In particular, for v = 0, the invariants
in question count D2–D0 bound states. According to the strong rationality
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conjecture formulated in [55], asymptotic v = 1 invariants are expected to
be also related to Gopakumar–Vafa invariants of Y , that is numbers of
BPS states of M-theory membranes wrapping holomorphic cycles in Y . The
later are in turn related to Nekrasov instanton sums in five-dimensional
supersymmetric gauge theory. As shown in detail later, this connection yields
an explicit conjectural formula for the refined asymptotic v = 1 theory, which
plays an important role in the present work.

The purpose of this paper is to present an application of ADHM sheaves
to computations of Betti and Hodge numbers of moduli spaces of stable
Hitchin pairs on the curve X. As a brief history of the subject, note that
the Poincaré polynomial of the moduli space of stable bundles on a curve
has been recursively computed in [11, 26] using number theoretic methods,
respectively, [2] using gauge theoretic methods. The Hodge polynomial of
the same moduli spaces, has been recursively computed in [18], and also
in [9,46–48] for bundles of rank two and three.1 The Poincaré polynomial of
the moduli space of stable Hitchin pairs with coprime rank and degree has
been computed by Hitchin in [29] for rank two, and Gothen [24], for rank
three. Using number theoretic techniques, a conjectural formula for any rank
has been derived by Hausel and Rodriguez-Villegas in [28] and generalized
to Hodge polynomials by Hausel in [27]. Similar results for parabolic rank
three Higgs bundles have been obtained in [22]. Finally, the motive of the
moduli space of rank four Hitchin pairs in the Grothedieck ring of algebraic
varieties is computed in the upcoming work [1].

This paper presents a string theoretic perspective on this subject based
on wallcrossing and refined generalized Donaldson–Thomas invariants
associated to ADHM sheaves. There are currently two theories of Donaldson–
Thomas invariants, the Kontsevich–Soibelman theory [42] and the Joyce–
Song theory [38]. The former is based on a construction of motivic
Donaldson–Thomas invariants which specialize to integral valued invariants
in a semiclassical limit. The later constructs Q-valued generalized
Donaldson–Thomas invariants which are conjecturally related to these inte-
gral invariants by a multicover formula [38, Section 6.2]. The application pre-
sented below relies on the motivic Donaldson–Thomas theory of Kontsevich
and Soibelman applied to ADHM sheaves, or, equivalently, on a conjectural
refinement of Joyce–Song theory.

As mentioned above, generalized Donaldson–Thomas theory of ADHM
sheaves has been studied using the formalism of [38] in [7, 8, 12]. The main

1According to [18], the Hodge polynomial of the moduli space of rank three
bundles has been first derived by P. Newstead in unpublished work.
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results for v = 1 objects, which is the relevant case in this paper, are reviewed
in Section 2.1. In particular for fixed numerical invariants γ = (r, e) ∈ Z≥1 ×
Z there is a finite set of critical stability parameters dividing the real axis
into stability chambers. Note that δ = 0 is critical for all (r, e) ∈ Z≥1 × Z.
Residual ADHM invariants Aδ(r, e) are defined in each chamber by equivari-
ant virtual integration [12]. Wallcrossing formulas for ADHM invariants are
derived in [7] using the formalism of Joyce [34–37] and Joyce and Song
[38]. The resulting wallcrossing formulas are also shown to be in agree-
ment with the Kontsevich–Soibelman formula [42]. Note that the theory of
Joyce and Song also yields residual generalized Donaldson–Thomas invari-
ants H(r, e) counting semistable Higgs sheaves on X with numerical invari-
ants (r, e) ∈ Z≥1 × Z. These invariants enter the wallcrossing formulas for
Aδ(r, e) derived in [7].

The conjectures formulated in Section 1.1 below summarize the main
results of Kontsevich–Soibelman theory needed in this paper. Since the vir-
tual enumerative theory of ADHM sheaves has been studied in [7,12] employ-
ing Joyce–Song theory, these conjectures can be also viewed as a refinement
of their generalized Donaldson–Thomas formalism. In particular, the con-
jectural invariants take in general values in a field of rational functions in
one or two formal variables and are conjecturally related to the quantum
Donaldson–Thomas invariants of Kontsevich and Soibelman by a refined
multicover formula.

In order to make contact with previous results, note that refined wall-
crossing formulas have been derived in physical theories defined by a Seiberg–
Witten curve in [6, 15–17, 21], and conjectured to hold in more general
situations. Moreover, motivic wallcrossing formulas for Donaldson–Thomas
invariants of quivers with potential have been also announced in [41]. The
wallcrossing formulas conjectured in this paper for refined generalized
Donaldson–Thomas invariants, are related to those of [6, 16, 17, 21] by a
refined multicover formula, as explained in more detail below. In addition,
it is worth noting that the invariants conjectured here are also equivari-
ant residual invariants with respect to a torus action. Therefore, a rigorous
construction would require an equivariant localization theorem for refined
Donaldson–Thomas invariants. Although the conjectures below are specif-
ically formulated for ADHM sheaves, analogous conjectures can be formu-
lated in more general situations including abelian categories of coherent
sheaves or coherent perverse sheaves on Calabi–Yau three-folds. Previous
results and conjectures in the mathematics literature are presented in [4,49].

The main application of the conjectures in Section 1.1 is a recursive
formula presented in Section 1.2. This formula determines the Poincaré and
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Hodge polynomial of moduli spaces of Hitchin pairs with coprime rank and
degree in terms of asymptotic refined ADHM invariants. The later are in turn
determined by string theoretic techniques, the results being summarized
in Section 1.4. In Section 4 it is checked by direct computation that the
resulting expressions are in agreement with the results of [24,27–29] in many
concrete examples. This provides strong evidence for the validity of the
conjectural formalism proposed here. Note that Higgs sheaves on curves are
also employed in [23] as a computational device for local BPS invariants of
toric surfaces.

1.1. Refined wallcrossing conjectures

In order to fix the notation, let Δ(r, e) ⊂ R>0 be the (finite) set of positive
critical stability parameters of type (r, e) ∈ Z≥1 × Z. For any n ∈ Z, and any
formal variable y let

[n]y =
yn − y−n

y − y−1
∈ Q(y).

Conjecture 1.1. Let γ = (r, e) ∈ Z≥1 × Z. Then there exist refined equiv-
ariant residual ADHM invariants Aδ(r, e)(y) ∈ Q(y), for any δ ∈ R, and
refined equivariant residual Higgs sheaf invariants H(r, e)(y) ∈ Q(y) so that
Aδ(r, e)(1) = Aδ(r, e), H(r, e)(1) = H(r, e) and the following wallcrossing
formulas hold:

(i) Let δc ∈ Δ(r, e) be a critical stability parameter and δc− < δc, δc+ >
δc be noncritical stability parameters so that [δc−, δc) ∩ Δ(r, e) = ∅, (δc, δc+] ∩
Δ(r, e) = ∅. The following wallcrossing formula holds for δc± sufficiently
close to δc:

Aδc+(γ)(y) −Aδc−(γ)(y)(1.3)

=
∑

l≥2

1
(l − 1)!

∑

γ1+···+γl=γ

μδc (γ1)=μ(γ2)=···=μ(γl)

Aδc−(γ1)

×
l∏

i=2

(−1)ei−r(g−1)[ei − ri(g − 1)]yH(γi)(y)

where the sum on the right-hand side of (1.3) is finite. Moreover [δc−, δc) ∩
Δ(r1, e1) = ∅, (δc, δc+] ∩ Δ(r1, e1) = ∅ for all γ1 = (r1, e1) on the right-hand
side of (1.3).

(ii) Let δ− < 0, δ+ > 0 be noncritical stability parameters so that
[δ−, 0) ∩ Δ(r, e) = ∅, (0, δ+] ∩ Δ(r, e) = ∅. The following wallcrossing
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formula holds for δ± sufficiently close to 0:

Aδ+(γ)(y) −Aδ−(γ)(y)(1.4)

=
∑

l≥1

1
l!

∑

γ1+···+γl=γ

μ(γi)=μ(γ), 1≤i≤l

l∏

i=1

(−1)ei−r(g−1)[ei − ri(g − 1)]yH(γi)(y)

+
∑

l≥2

1
(l − 1)!

∑

γ1+···+γl=γ

μ(γi)=μ(γ), 1≤i≤l

Aδ−(γ1)(y)

×
l∏

i=2

(−1)ei−r(g−1)[ei − ri(g − 1)]yH(γi)(y)

where the sum on the right-hand side of (1.4) is finite. Moreover, [δ−, 0) ∩
Δ(r1, e1) = ∅, (0, δ+] ∩ Δ(r1, e1) = ∅ for all γ1 = (r1, e1) in the second line
of the right-hand side of Equation (1.4).

Moreover Aδ(r, e) ∈ Z[y, y−1] if δ ∈ R is noncritical, and H(r, e)(y) ∈
Z[y, y−1] if (r, e) are coprime.

As mentioned above the invariants Aδ(r, e) ∈ Z[y, y−1], H(r, e)(y) are
conjecturally related to residual equivariant Kontsevich–Soibelman invari-
ants Aδ(r, e)(y) ∈ Z[y, y−1], H(r, e)(y) ∈ Z[y, y−1] by a refined multicover
formula. For v = 1 invariants this formula states simply that Aδ(r, e)(y) =
Aδ(r, e)(y), while the explicit formula for v = 0 is given below.

Conjecture 1.2. Under the same hypothesis as in Conjecture 1.1, the fol-
lowing relation holds for any (r, e) ∈ Z≥1 × Z:

(1.5) H(r, e)(y) =
∑

k∈Z, k≥1
k|r, k|e

1
k [k]y

H
( r
k
,
e

k

)
(yk).

The refined wallcrossing formulas (1.3), (1.4) are formal quantum
generalizations of the wallcrossing formulas derived in [7]. Refined, or quan-
tum, wallcrossing formulas have been physically derived in [6, 16, 17] using
arguments analogous to [10]. In particular, a refinement of the semiprimitive
wallcrossing formula of [10] has been formulated in [17]. A motivic wallcross-
ing formula has been also announced in [41]. By analogy with [7, Section 4;
8, Section 4], the wallcrossing formulas conjectured in (1.1) can be shown to
agree with the refined semiprimitive wallcrossing formulas of [6,17,21], once
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the multicover formula (1.5) is properly taken into account. In particular,
the above refined multicover formula can be easily inferred from [6, Sec-
tion 4.]. The details are similar to those in [7, Section 4; 8, Section 4], hence
will be omitted.

Finally, note that a refined formula has been also derived in [15] for
primitive wallcrossing using arguments analogous to [10], and shown to be in
a agreement with wallcrossing formulas for Poincaré and Hodge polynomials
of moduli spaces of stable sheaves on surfaces [25,62,63]. The formula derived
in [15] is in fact doubly refined, the BPS states being simultaneously graded
by spin and U(1)R-charge quantum numbers. This motivates the following
further refinement of Conjecture 1.1, which can be physically justified using
arguments analogous to [10,15,17].

Let (u, v) be formal variables, and (u1/2, v1/2) be formal square roots.
For any n ∈ Z set

[n](u,v) =
(uv)n/2 − (uv)−n/2

(uv)1/2 − (uv)−1/2
∈ Q(u1/2, v1/2).

Conjecture 1.3. Under the same conditions as in Conjecture 1.1 there
exist doubly refined equivariant residual ADHM invariants Aδ(r, e)(u, v) ∈
Q(u1/2, v1/2), and doubly refined Higgs sheaf invariants H(r, e)(u, v) ∈
Q(u1/2, v1/2) so that

(i) Aδ(r, e)(u, u) = Aδ(r, e)(u), H(r, e)(u, u) = H(r, e)(u),
Aδ(r, e)(u, v) ∈ Z[u1/2, u−1/2, v1/2, v−1/2] if δ is noncritical and H(r, e)
(u, v) ∈ Z[u1/2, u−1/2, v1/2, v−1/2] if (r, e) are coprime.

(ii) Aδ(r, e)(u, v) satisfy wallcrossing formulas obtained by substituting
Aδ(γi)(u, v), H(γi)(u, v), [ei − ri(g − 1)](u,v) for Aδ(γi)(y), H(γi)(y),
[ei − ri(g − 1)]y in (1.3), (1.4).

(iii) There exist alternative Higgs sheaf invariants H(r, e)(u, v) ∈
Z[u1/2, u−1/2, v1/2, v−1/2], (r, e) ∈ Z≥1 ×Z so that H(r, e)(u, v), H(r, e)
(u, v) satisfy a multicover formula obtained by making the same sub-
stitutions in (1.5).

Note that the same notation Aδ(r, e), H(r, e); Aδ(r, e)(y), H(r, e)(y);
Aδ(r, e)(u, v), H(r, e)(u, v) is (abusively) employed for rational, respectively,
refined and doubly refined invariants. By convention, the distinction will
reside only in the number of arguments of these rational functions. There-
fore if no arguments are present, Aδ(r, e), H(r, e) are rational numbers, if
one argument is present they are rational functions of one variable, etc.
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Moreover, the invariants H(r, e)(y) will be called refined Higgs invariants in
the following. The invariants Aδ±(r, e)(y) with δ± close to 0 as in Conjecture
1.1(ii) will be denoted by A0±(r, e)(y). Similarly the invariants Aδ(r, e)(y),
with δ > max Δ(r, e), respectively, δ < min Δ(r, e) will be denoted by
A±∞(r, e)(y) and referred to as asymptotic invariants.

Furthermore, note that whenever the moduli space of δ-semistable
objects in CX is a smooth quasi-projective variety, the corresponding doubly
refined invariant coincides with its Hodge polynomial up to multiplication
by a Laurent monomial in (u1/2, v1/2). As discussed in detail in Sections
1.3, 2.2, this is the case for Higgs sheaves on X with coprime numerical
invariants (r, e) ∈ Z≥1 × Z. If the moduli space is not smooth, the doubly
refined invariant should be regarded as a virtual Hodge polynomial obtained
by specializing the motivic invariant of Kontsevich and Soibelman.

Finally note that the duality isomorphisms (2.3), (2.5) yield relations of
the form

Aδ(r, e)(y) = A−δ(r,−e+ 2r(g − 1))(y),
H(r, e)(y) = H(r,−e+ 2r(g − 1))(y)

(1.6)

for all (r, e) ∈ Z≥1 × Z. Moreover, the isomorphisms (2.6) imply that

(1.7) H(r, e)(y) = H(r, e+ r)(y)

for any (r, e) ∈ Z≥1 × Z. Therefore for fixed r there are only r a priori dis-
tinct invariants H(r, e)(y). Obviously entirely analogous formulas hold for
the doubly refined invariants Aδ(r, e)(u, v), H(r, e)(u, v).

1.2. Recursion formula for refined Higgs invariants

For the purpose of the present paper, the main application of Conjectures
1.1, 1.3 is a recursion formula for the invariants H(r, e)(y), H(r, e)(u, v)
which determines inductively all invariants H(r, e)(y), H(r, e)(u, v), (r, e) ∈
Z≥1 × Z in terms of the asymptotic invariants A+∞(r, e)(y), A+∞(r, e)(u, v).

In the following X is assumed to be a smooth projective curve of genus
g ≥ 2 and p = deg(M1) ≥ 0. For any γ = (r, e), let γ̃ = (r,−e+ 2r(g − 1)),
ẽ = −e+ 2r(g − 1). For a stability parameter δ let μδ(γ) = (e+ δ)/r, μ(γ) =
e/r. Given γ = Z × Z, the notation γ = (r(γ), e(γ)) will also be used on
occasion.

The recursion formula will be written in detail only for the refined invari-
ants H(r, e)(y) since the analogous formula for the doubly refined invariants
H(r, e)(u, v) follows by obvious substitutions, as explained in Conjecture 1.3.
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Let γ = (r, e) ∈ Z≥1 × Z be an arbitrary numerical type. Then the following
wallcrossing formula holds:

(1.8)

(−1)e−r(g−1)[e− r(g − 1)]yH(γ)(y) = A+∞(γ)(y) −A+∞(γ̃)(y)

+
∑

l≥2

(−1)l−1

(l − 1)!

∑

γ1,...,γl∈Z≥1×Z

γ1+···+γl=γ
μ(γ)<μ(γi), 2≤i≤l

A+∞(γ1)(y)
l∏

i=2

(−1)ei−ri(g−1)

× [ei − ri(g − 1)]yH(γi)(y)

−
∑

l≥2

(−1)l−1

(l − 1)!

∑

γ1,...,γl∈Z≥1×Z

γ1+···+γl=γ̃
μ(γ̃)≤μ(γi), 2≤i≤l

A+∞(γ1)(y)
l∏

i=2

(−1)ei−ri(g−1)

× [ei − ri(g − 1)]yH(γi)(y)

−
∑

l≥2

1
l!

∑

γ1,...,γl∈Z≥1×Z

γ1+···+γl=γ
μ(γ)=μ(γi), 1≤i≤l

l∏

i=1

(−1)ei−ri(g−1)[ei − ri(g − 1)]yH(γi)(y)

where the sum on the right-hand side of Equation (1.8) contains only finitely
many nontrivial terms. The derivation of the recursion formula (1.8) from
the wallcrossing formulas (1.3), (1.4) is presented in Section 2.4.

Remark 1.1. (i) Note that only invariants H(ri, ei)(y) with ri < r enter
the sum on right-hand side of (1.8). Therefore this relation completely deter-
mines all invariants H(r, e), (r, e) ∈ Z≥1 × Z if all invariants A+∞(r, e)(y)
are known. A conjectural formula for the asymptotic refined ADHM invari-
ants A+∞(r, e)(y) will be derived in the next section using string duality.

(ii) Given relations (1.6), (1.7), Equations (1.8) are in fact an overdeter-
mined set of recursion relations for refined Higgs invariants. If Conjecture
1.1 holds, all these equations are compatible, and one can choose the most
economical one for concrete computations. In fact, one can obtain a simpler
relation by taking e > 2r(g − 1) − c(r) in (1.8). This results in A+∞(γ̃) = 0
and the second line on the right-hand side is zero as well. However, the sim-
pler relation obtained this way is not necessarily the most efficient as far as
computer time is concerned. Concrete examples and computations will be
presented in Section 4.
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1.3. Higgs invariants and cohomology of moduli spaces
of Hitchin pairs

The goal of this subsection is to formulate one more conjecture relating
refined Higgs invariants to the cohomology of moduli spaces of stable Hitchin
pairs on X, for coprime numerical invariants (r, e) ∈ Z≥ × Z. In the follow-
ing it is still assumed that the genus of X is g ≥ 2, and p = deg(M1) ≥ 0.
Moreover, M1 � OX if p = 0.

First recall that a Hitchin pair on X with coefficient line bundle L
is a coherent sheaf E equipped with a morphism Φ : E → E ⊗X L. The
moduli theory of such objects has been extensively and intensively stud-
ied in the mathematics literature [5, 29,54,56–58]. In particular, as recalled
in Section 2.2, there is a natural stability condition which yields an alge-
braic moduli stack H(X,L, r, e) of finite type. Moreover, suppose deg(L) ≥
2g − 2 and L � KX if deg(L) = 2g − 2. There also exists a coarse moduli
scheme Hs(X,L, r, e) parameterizing isomorphism classes of stable objects.
If (r, e) ∈ Z≥1 × Z are coprime, any semistable Hitchin pair is stable, and
Hs(X,L, r, e) will be denoted by H(X,L, r, e).

The connection between Higgs sheaves and Hitchin pairs is based on the
observation that there is a natural forgetful morphism of moduli stacks

Higgs(X,M1,M2, r, e) → H(X,M−1
2 , r, e)

which simply forgets Φ1 : E ⊗X M1 →M1. Moreover, under the current
assumptions, this morphism is compatible with stability for (r, e) coprime,
and has a very simple structure as explained in Section 2.2. This leads to
the conjecture formulated below.

First note that for (r, e) ∈ Z≥1 × Z coprime, the degree of the Poincaré
polynomial Py(H(X,L, r, e)) of the smooth moduli space H(X,L, r, e) is
an even integer 2m(r, e), m(r, e) ∈ Z≥0. Under the same conditions, let
H(u,v)(H(X,L, r, e)) denote the Hodge polynomial of H(X,L, r, e) (see [27,
Section 2]; [28, Section 2.1] for definition and properties.)

Conjecture 1.4. Under the above assumptions, let L �M−1
2 . Then

(1.9)
H(r, e)(y) = (−1)e−r(g−1−p)y−n(r,e)P(−y)(H(X,L, r, e))

H(r, e)(u, v) = (−1)e−r(g−1−p)(uv)−n(r,e)/2H(−u,−v)(H(X,L, r, e))

where
n(r, e) = r2(g − 1) + r(r − 1)p+m(r, e).
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Remark 1.2. (i) The recursion relation (1.8) and conjecture 1.4 determine
all Hodge polynomials H(u,v)(H(X,L, r, e)) with (r, e) ∈ Z≥1 × Z coprime if
the asymptotic refined ADHM invariants are known for all (r, e) ∈ Z≥1 × Z.
Conjectural formulas for these asymptotic invariants are presented in the
next subsection.

(ii) Note that the recursion formula (1.8) determines in fact all invariants
H(r, e)(y), H(r, e)(u, v), including non-coprime pairs. A priori, the Higgs
invariants H(r, e)(y) with (r, e) not coprime are not related in any direct
way to the cohomology of moduli spaces of semistable Hitchin pairs with
the same numerical invariants. However, a conjectural relation based on the
multicover formula (1.5) will be formulated in the next subsection.

1.4. Asymptotic refined ADHM invariants

As explained above, the invariants H(r, e)(y), H(r, e)(u, v) are completely
determined by the recursion relation (1.8) if all asymptotic refined ADHM
invariants are known. A conjectural formula for the generating function of
asymptotic refined ADHM invariants is derived from string duality in Sec-
tion 3. Basically, this generating function is determined by the Nekrasov
partition function [53] of a five-dimensional supersymmetric gauge theory.

As shown below, the resulting formula involves an infinite formal sum
over Young tableaus Y . In order to fix conventions, note that a nonempty
Young tableau Y is identified with a partition

|Y | = Y1 + · · · + Yl(Y )

where |Y | denotes the total number of boxes of Y and l(Y ) denotes the
number of rows. For any 1 ≤ i ≤ l(Y ), Yi denotes the length of the ith
row, and Y1 ≥ Y2 ≥ · · · ≥ Yl(Y ). Boxes of Y will be labeled by (i, j) ∈ Z × Z,
1 ≤ i ≤ l(Y ), 1 ≤ j ≤ Yi.

Conjecture 1.5. Let X = (X,M1,M2) be a triple as above and let p =
deg(M1). Let

(1.10) Z+∞(X , r;λ, y) =
∑

e∈Z

λeA+∞(r, e)(y)

be the generating function for the rank r ∈ Z≥1 asymptotic refined ADHM
invariants conjectured in (1.1). Then

(1.11) Z+∞(X , r;λ, y) =
∑

|Y |=r

Ω(g,p)
Y (λ, y)
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where

Ω(g,p)
Y (λ, y) = (−1)p|Y |y−p

∑
(i,j)∈Y (i+j−2)+(g−1)

∑
(i,j)∈Y (−2i+2j+1−2Yi+Y t

j )

(1.12)

λ−p
∑

(i,j)∈Y (−i+j)+(g−1)
∑

(i,j)∈Y (2i+2j−1−2Yi−Y t
j )

∏

(i,j)∈Y

F (λ−i−j+Yi+Y t
j +1yi−j+Yi−Y t

j , y)

and

F (q, z) = z1−g (1 − q)2g

(1 − qz)(1 − qz−1)
.

By convention Ω(p)
∅ (λ, y) = 1.

The generating function of asymptotic doubly refined ADHM invariants

(1.13) Z+∞(X , r;λ, u, v) =
∑

e∈Z

λeA+∞(r, e)(u, v)

is conjecturally determined as follows.

Conjecture 1.6. Under the same conditions as in Conjecture 1.5,

(1.14) Z+∞(X , r;λ, u, v) =
∑

|Y |=r

Ω(g,p)
Y (λ, u, v)

where

Ω(g,p)
Y (λ, u, v)

= (−1)p|Y |(uv)−p
∑

(i,j)∈Y (i+j−2)/2+(g−1)
∑

(i,j)∈Y (−2i+2j+1−2Yi+Y t
j )/2

λ−p
∑

(i,j)∈Y (−i+j)+(g−1)
∑

(i,j)∈Y (2i+2j−1−2Yi−Y t
j )

∏

(i,j)∈Y

G(λ−i−j+Yi+Y t
j +1(uv)(i−j+Yi−Y t

j )/2, (uv)1/2, (uv−1)1/2)

(1.15)

and

G(q, z, w) = z(1−g) (1 − qw)g(1 − qw−1)g

(1 − qz)(1 − qz−1)
.

By convention Ω(p)
∅ (λ, u, v) = 1.
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Remark 1.3. Note that expression (1.15) is not obtained from Equation
(1.12) by a simple substitution y = (uv)1/2, as follows by comparing Equa-
tions (3.14), (3.15) in Section 3. In the first equation, the equivariant gauge
theory instanton sum is evaluated at (λ−1y, λy, y−1) while in the second it
is evaluated at (λ−1(uv)1/2, λ(uv)1/2, u−1). Therefore in this case, the dou-
bly refined invariants of Hodge type (p, q) do not vanish for unequal Hodge
degrees, p = q. This is in contrast with the quantum prefactors in the dou-
bly refined refined wallcrossing formulas, which are obtained from the singly
refined ones by direct substitution y = (uv)1/2.

Using the recursion relation (1.8) and Conjectures (1.4–1.6), one can
derive explicit formulas for the Hodge polynomials of the moduli spaces
H(X,L, r, e) with (r, e) coprime. Note in particular that formulas (1.11),
(1.14) imply that all invariants A+∞(γ1)(y) on the right-hand side of Equa-
tion (1.8) are trivial if μ(γ1) < −(r − 1)(2g − 2 + p). Concrete computations
are presented in Section 4 for r = 1, 2, 3 and various values of g ≥ 2, p ≥ 0. In
all cases, the resulting formulas are in agreement with the direct localization
computations of Hitchin [29], Gothen [24] as well as the Hausel–Rodriguez–
Villegas formula [27, 28]. A brief survey of the results in the mathemat-
ics literature on the subject is presented in Appendix A. Moreover, direct
computations in all examples considered in Section 4 support the following
intriguing conjecture.

Conjecture 1.7. Under the same conditions as in Conjecture 1.5, for fixed
r ≥ 1, the refined invariants H(r, e)(y), H(r, e)(u, v) are independent of e ∈
Z. In particular, they take the same value for all pairs (r, e), coprime or not.

In fact, since the first version of this work was posted, the recursion rela-
tion (1.8) has been beautifully solved by Mozgovoy in [45], and the solution
has been proven to be in agreement with the Hausel–Rodriguez–Villegas
invariants. Furthermore, Mozgovoy’s solution also satisfies the multicover
formula (1.5) and has the property stated in Conjecture 1.7.

2. ADHM invariants, Hitchin pairs and wallcrossing

2.1. Review of ADHM sheaves

Let X be a smooth projective curve over C of genus g ≥ 2. Let M1,M2 be
line bundles on X so that M1 ⊗X M2 � K−1

X , and fix such an isomorphism
in the following. Let deg(M1) = p, deg(M2) = −2g − 2 − p, p ∈ Z and X =
(X,M1,M2).
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As mentioned in the introduction, the abelian category CX of ADHM
sheaves defined in [12, Section 3] consists of collections E=(E, V,Φ1,Φ2, φ, ψ)
on X where E is a coherent sheaf on X, V is a finite-dimensional complex
vector space, and Φi : E ⊗X Mi → E, i = 1, 2 , φ : E ⊗X M1 ⊗X M2 → V ⊗
OX , ψ : V ⊗OX → E are morphisms of OX -modules satisfying the ADHM
relation (1.1). The morphisms of CX are natural morphisms of quiver sheaves.

An object E of CX will be called locally free if E is a coherent locally free
OX -module. Given a coherent OX -module E we will denote by r(E), d(E),
μ(E) the rank, degree, respectively, slope of E if r(E) = 0. The type of an
object E of CX is the collection (r(E), d(E), v(E)) = (r(E), d(E),dim(V ))) ∈
Z≥0 × Z × Z≥0. Note that the objects of CX with v(E) = 0 are triples E =
(E,Φ1,Φ2) satisfying relation (1.2), and form a full abelian subcategory of
CX . These are known as Higgs sheaves onX with coefficient bundleM1 ⊕M2

(see [12, Appendix A] for a brief summary of definitions and properties.)
The dual of a locally free ADHM sheaf E = (E, V,Φ1,Φ2, φ, ψ) is defined

by

(2.1)

Ẽ = E∨ ⊗X M−1

Φ̃i = (Φ∨
i ⊗ 1Mi

) ⊗ 1M−1 : Ẽ ⊗Mi → Ẽ

φ̃ = ψ∨ ⊗ 1M−1 : Ẽ ⊗X M → V ∨ ⊗OX

ψ̃ = φ∨ : V ∨ ⊗OX → Ẽ

where i = 1, 2. Obviously, if E is of type (r, e, v), Ẽ is of type (r,−e+
2r(g − 1), v).

Any real parameter δ ∈ R determines a stability condition on CX [12,61].
An object E of CX is δ-(semi)stable if any proper nontrivial subobject 0 ⊂
E ′ ⊂ E satisfies the inequality

(2.2) r(E)(d(E ′) + δv(E ′)) (≤) r(E ′)(d(E) + δv(E)).

Standard arguments show that the δ-stability condition satisfies the Harder–
Narasimhan as well as Jordan–Hölder property for any δ ∈ R. Moreover, the
following properties hold for any object E = (E, V,Φ1,Φ2φ, ψ) of CX with
r(E) ≥ 1 and v(E) = 1 [12, Section 3]:

(S.1) If E is δ-semistable for some δ ∈ R, then E is locally free. In addition,
if δ > 0 then ψ is not identically zero; if δ < 0, φ is not identically zero.

(S.2) If E is δ-stable for some δ ∈ R, the endomorphism ring of E in CX is
canonically isomorphic to C.
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(S.3) E is δ-(semi)stable if and only if the dual Ẽ is (−δ)-(semi)stable.

One also has the following boundedness results [12, Lemmas 2.6, 2.7, Corol-
lary 2.8]:

(B.1) The set of isomorphism classes of locally free ADHM sheaves of fixed
type (r, e, 1) which are δ-semistable for some δ ∈ R is bounded.

(B.2) For any r ≥ 1 there exists an integer c(r) ∈ Z so that any δ-semistable
ADHM sheaf of type (r, e, 1) for some δ > 0 satisfies e ≥ c(r). Note
that the integer c(r) is not unique unless required to be optimal with
this property. In fact the proof of [12, Lemma 2.6] implies that any
integer

c(r) ≤ −2(r − 1)2max{|deg(M1)|, |deg(M2)|}

satisfies this condition.

Note that for v = 0 objects, δ-stability is independent of δ and reduces to
standard slope stability for Higgs sheaves on X.

A straightforward corollary of the above results is the existence of an
algebraic moduli stack of finite type Mss

δ (X , r, e) of δ-semistable ADHM
sheaves on X of type (r, e, 1) for any (r, e) ∈ Z≥1 × Z and any δ ∈ R. The
substack Ms

δ(X , r, e) of δ-stable objects is separated and has the structure
of a C

×-gerbe over an algebraic moduli space M ss
δ (X , r, e). Property (S.3)

also yields a canonical isomorphism

(2.3) Mss
δ (X , r, e) � Mss

δ (X , r,−e+ 2r(g − 1))

for any (r, e) ∈ Z≥1 × Z and any δ ∈ R.
Moreover, there is a stability chamber structure on R>0 as follows [12,

Section 4]. For a fixed type (r, e) ∈ Z≥1 × Z, three exists a finite set Δ(r, e) ⊂
R>0 of critical stability parameters so that

(C.1) For any δ ∈ R>0 \ Δ(r, e), δ-semistability is equivalent to δ-stability
i.e., Mss

δ (X , r, e) = Ms
δ(X , r, e).

(C.2) For any δ > max Δ(r, e) δ-stability is equivalent with the following
asymptotic stability condition. An object E = (E, V,Φi, φ, ψ) with
v = 1 is asymptotically stable if E is locally free, ψ nontrivial, and
there is no proper saturated subsheaf 0 ⊂ E′ ⊂ E preserved by Φi,
i = 1, 2 so that Im(ψ) ⊆ E′.
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Finally note that there is a torus S = C
× action on the moduli stacks

Mss
δ (X , r, e) so that

(2.4) t× (E, V,Φ1,Φ2, φ, ψ) → (E, V, t−1Φ1, tΦ2, φ, ψ)

on closed points. According to [12, Theorem 1.5], for noncritical stability
parameter δ ∈ R>0 \ Δ(r, e), the stack theoretic fixed locus Mss

δ (X , r, e)S is
universally closed over C. Moreover, the algebraic moduli space M ss

δ (X , r, e)
has a perfect obstruction theory. Therefore residual δ-ADHM invariants
Aδ(r, e) ∈ Z can be defined in each chamber by equivariant virtual local-
ization. Wallcrossing formulas for these invariants have been derived in [7,
Theorem 1.1] using Joyce–Song theory [38].

For future reference note that there is a completely analogous torus
action on the moduli stack Ob(CX ) of all objects of CX , which is an algebraic
stack of locally finite type over C. In particular, this yields a torus action
on the moduli stack Higgsss(X , r, e) of slope-semistable Higgs sheaves on X
with fixed (r, e) ∈ Z≥1 × Z, which is an algebraic stack of finite type over C.
The wallcrossing formulas in [7, Theorem 1.1] are written in terms residual
equivariant generalized Donaldson–Thomas invariants H(r, e) ∈ Q defined
via Joyce–Song theory applied to the stacks Higgsss(X , r, e). For curves X
of genus g ≥ 1, the invariants HS(r, e) are trivial, hence the wallcrossing
formulas state that the invariants Aδ(r, e) are independent of δ.

In order to conclude this section, note that the stacks Higgsss(X , r, e)
have the following simple properties. By analogy with (2.3), there is a canon-
ical torus equivariant isomorphism

(2.5) Higgsss(X , r, e) � Higgsss(X , r,−e+ 2r(g − 1)).

In addition, taking tensor product by a fixed degree one line bundle on X
yields an equivariant isomorphism

(2.6) Higgsss(X , r, e) � Higgsss(X , r, e+ r)

for any (r, e) ∈ Z≥1 × Z. Finally note that for (r, e) coprime slope semista-
bility is equivalent to slope stability, and the stack Higgsss(X , r, e) has a
C
×-gerbe structure over a quasi-projective scheme Higgsss(X , r, e).

2.2. Connection with Hitchin pairs

Let L be a fixed line bundle on X. Recall that a Hitchin pair [29, 54] on X
with coefficient bundle L is defined as a pair (E,Φ) where E is a coherent



18 Wu-yen Chuang, Duiliu-Emanuel Diaconescu and Guang Pan

sheaf on X and Φ : E → E ⊗X L a morphism of coherent sheaves. Such a
pair is called (semi)stable if any proper nontrivial subsheaf 0 ⊂ E′ ⊂ E so
that Φ(E′) ⊂ E′ ⊗X L satisfies the inequality

(2.7) r(E)d(E′) (≤) r(E′)d(E).

Note that if r(E) > 0, semistability implies that E is locally free. In the
following L be either KX or a line bundle on X of degree d(L) > 2g − 2.
This will be implicitly assumed in all statements below.

Well-known results in the literature [5, 29, 54, 56–58] establish the exis-
tence of an algebraic stack of finite type H(X,L, r, e) of semistable Hitchin
pairs of fixed type (r(E), d(E)) = (r, e) ∈ Z≥1 × Z. Moreover, if (r, e) are
coprime, this stack is a C

×-gerbe over a smooth quasi-projective variety
H(X,L, r, e). For L = KX , H(X,L, r, e) is commonly referred to as the
Hitchin integrable system.

Note that there is a torus C
× action on the stack H(X,L, r, e) given by

t× (E,Φ) → (E, t−1Φ) on closed points. The stack theoretic fixed locus is
universally closed. In particular, for (r, e) coprime, there is an induced torus
action on the moduli scheme H(X,L, r, e), and the fixed locus is a smooth
projective scheme over C.

The relation between ADHM sheaves and Hitchin pairs is summarized
in the following simple observations:

(AH.1) Suppose M1 = OX , M2 = K−1
X and let (r, e) ∈ Z≥1 × Z be coprime.

Then there is an isomorphism

(2.8) Higgs(X , r, e) � C × H(X,KX , r, e).

(AH.2) Suppose M2 is a line bundle of degree 2 − 2g − p, where p ∈ Z>0.
Then there is an isomorphism

(2.9) Higgs(X , r, e) � H(X,M−1
2 , r, e).

Both statements rely on the fact that for coprime (r, e) slope semista-
bility is equivalent to slope stability. Therefore, the endomorphism ring of
any semistable object E is canonically isomorphic to C.

Then note that in the first case, given any semistable object E = (E,Φ1,
Φ2) relation (1.2) implies that Φ1 : E → E is an endomorphism of E since it
obviously commutes with itself. Therefore it must be of the form Φ1 = λ1E

for some λ ∈ C. In particular, it preserves any subsheaf E′ ⊂ E. Generalizing
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this observation to flat families it follows that there is an forgetful morphism

Higgs(X , r, e) → H(X,KX , r, e)

projecting (E,Φ1,Φ2) to (E,Φ2 ⊗ 1KX
). The isomorphism (2.8) then follows

easily.
In the second case, note that given a semistable Higgs sheaf (E,Φ1,Φ2),

of type (r, e), the data

E ′ =
(
E ⊗X M−1

1 ,Φ1 ⊗ 1M−1
1
,Φ2 ⊗ 1M−1

1

)

determines a semistable Higgs sheaf of type (r, e− rdeg(M1)) = (r, e− rp).
Relation (1.2) implies that Φ1 ⊗ 1M−1

1
is a morphism of (semistable) Higgs

sheaves. However μ(E) > μ(E ′) since p > 0, therefore any such morphism
must vanish. This completes the proof.

2.3. Remarks on refined wallcrossing conjectures

This subsection consists of several remarks on Conjectures 1.1, 1.3. It can
be skipped with no loss of essential information.

(i) First note that given any two objects E1, E2 of CX with v(E1) + v(E2) ≤
1, it has been proven in [12, Lemma 7.4] that the expression

dim Ext0CX (E1, E2) − dim Ext1CX (E1, E2) − dim Ext0CX (E2, E1)(2.10)

+ dim Ext1CX (E2, E1)

depends only on the numerical types of the two objects. Moreover, if E1, E2

determine closed points in the stack theoretic fixed locus Ob(CX )S, there
is an induced torus action on all the extension groups in (2.10) and the
same statement holds for the alternating sum of dimensions of fixed, respec-
tively, moving parts. This technical condition makes both Joyce–Song and
Kontsevich–Soibelman theories applicable to non-Calabi–Yau categories,
which is the present case.

(iii) As pointed out in [16], the quantum Donaldson–Thomas invariants
of Kontsevich and Soibelman can be naturally identified with the refined
topological string invariants constructed in [33] via the refined topological
vertex formalism. The asymptotic invariants A±∞(r, e)(y) are refinements of
the integral invariants A±∞(r, e), which are in turn identical to local stable
pair invariants according to [13]. Therefore it entirely natural to expect these
invariants to be determined by the refined BPS counting invariants of a local
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curve. The later can be inferred from the Nekrasov partition function of a
five dimensional gauge theory as explained in Section 3.

(v) Finally note that assuming an equivariant localization result for
refined invariants one can conjecture more refined wallcrossing formulas for
the residual contributions of individual components of the fixed loci. This
follows from the stack function relations derived in [7, Section 3].

2.4. Derivation of recursion formula

The purpose of this section is to prove the recursion relation (1.8), given
the wallcrossing formulas (1.3), (1.4). The proof is analogous to the proof
of [7, Lemma 3.8]. The main steps will be outlined below for completeness.

According to property (B.2) in Section 2.1 for any fixed r ≥ 1 there
exists an integer c(r) ∈ Z so that all invariants Aδ(r, e)(y), for any δ > 0,
are identically zero if e < c(r). Moreover, this integer is not unique unless
required to be optimal with this property; any integer c(r) ≤ −(r − 1)2(2g −
2 + p) satisfies this condition. In the following set

(2.11) c(r) = −r(r − 1)(2g − 2 + p) c(r′) = −r′(r − 1)(2g − 2 + p)

for any r ∈ Z≥q1, 1 ≤ r′ ≤ r. This is not an optimal choice, but it will facil-
itate the derivation of formula (1.8), as shown below.

Next note that the wallcrossing formula (1.3) is equivalent to
(2.12)

Aδc−(γ)(y) −Aδc+(γ)(y) =
∑

l≥2

(−1)l−1

(l − 1)!

∑

γ1+···+γl=γ

μδc (γ1)=μ(γ2)=···=μ(γl)

Aδc+(γ1)

×
l∏

i=2

(−1)ei−r(g−1)[ei−ri(g−1)]yH(γi).(y)

For any n ∈ Z≥1 and any collection of n positive integers (l1, . . . , ln) ∈ Z
n
≥1,

define

S
(l1,...,ln)
0,+∞ (γ) =

{
(γ1, η1,1, . . . , η1,l1 , . . . , ηn,1, . . . , ηn,ln)

(2.13)

∈ s(Z≥1 × Z)×(l1+...+ln+1)

∣∣∣∣γ1 +
n∑

i=1

li∑

j=1

ηi,j = γ,
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μ0(r) ≤ μ(γ) < μ(η1,1) = · · · = μ(η1,l1) < μ(η2,1) = · · · = μ(η2,l2)

< · · · < μ(ηn,1) = · · · = μ(ηn,ln), μ0(r) ≤ μ(γ1)
}

where μ0(r) = c(r)/r. Then it straightforward to check that the union

(2.14)
⋃

n≥1

⋃

l1,...,ln≥1

S
(l1,...,ln)
0,+∞ (γ)

is a finite set.
Let (γ1, η1,1, . . . , η1,l1 , . . . , ηn,1, . . . , ηn,ln) ∈ S

(l1,...,ln)
0,+∞ (γ) be an arbitrary

element, for some n ≥ 1 and l1, . . . , ln ≥ 1. Let μi, 1 ≤ i ≤ n denote the
common value of the slopes μ(ηi,j), 1 ≤ j ≤ li. If n ≥ 2, let also

γn−i+2 = γ1 + ηi,1 + · · · + ηn,ln

for 2 ≤ i ≤ n. Define the stability parameters δi, 1 ≤ i ≤ n by

(2.15)
μδ1(γ1) = μn

μδi
(γi) = μn+1−i, 2 ≤ i ≤ n (if n ≥ 2).

By construction, δi is a critical stability parameter of type γi for all
1 ≤ i ≤ n. Given the slope inequalities in (2.13), it is straightforward to
check that

(2.16) 0 < δn < δn−1 < · · · < δ1.

Moreover, μ(γi) ≥ μ0(r) for all 1 ≤ i ≤ n since the integers c(r′), 1 ≤ r′ ≤ r
defined in (2.11) satisfiy

(2.17)
c(r′)
r′

= −(r − 1)(2g − 2 + p) = μ0(r).

Next note that the set Δγ of all stability parameters constructed this
way, for all n ≥ 1 and any possible values of l1, . . . , ln is finite, since the
set (2.14) is finite. Therefore one can choose stability parameters 0 < δ0+ <
min Δγ , δ+∞ > max Δγ . By construction Δγ contains all possible decreasing
finite sequences of stability parameters of the form (2.16) with the property
that there exists

(γ1, η1,1, . . . , η1,l1 , . . . , ηn,1, . . . , ηn,ln) ∈ (Z≥ × Z)×(l1+···+ln+1)

for some l1, . . . , ln ≥ 1 so that
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(a) γ1 + η1,1 + · · · + ηn,ln = γ

(b) Conditions (2.15) hold.

In conclusion, successive applications of the wallcrossing formula (2.12) yield
(2.18)
A0+(γ) −A+∞(γ)

=
∞∑

n=1

∑

l1,...,ln≥1

n∏

i=1

(−1)li

li!

∑

γ1+η1,1+···+η1,l1+···+ηn,1+···+ηn,ln=γ,
μ0(r)≤μ(γ)<μ(η1,1)=···μ(η1,l1 )<···<μ(ηn,1)=···=μ(ηn,ln)

μ0(r)≤μ(γ1)

A+∞(γ1)(y)
n∏

i=1

li∏

j=1

(−1)ei,j−ri,j(g−1)[ei,j − ri,j(g − 1)]yH(ηi,j)(y)

where γ = (r1, e1) ∈ Z≥1 × Z, ηi,j = (ei,j , ri,j) ∈ Z≥1 × Z, 1 ≤ i ≤ n, 1 ≤ j ≤
li. T Moreover, the sum on the right-hand side of Equation (2.18) is finite
for any fixed γ = (r, e).

Then in Equation (1.4) Aδ−(γ) = Aδ+(γ̃) and

∑

l≥2

1
(l − 1)!

∑

γ1+···+γl=γ
μ(γi)=μ(γ),1≤i≤l

Aδ−(γ1)(y)
l−1∏

i=2

eei−ri(g−1)[ei−ri(g−1)]yH(γi)(y)

=
∑

l≥2

1
(l − 1)!

∑

γ1+···+γl=γ
μ(γi)=μ(γ),1≤i≤l

Aδ+(γ̃1)(y)
l−1∏

i=2

eei−ri(g−1)[ei − ri(g − 1)]y

×H(γi)(y)

=
∑

l≥2

(−1)l−1

(l − 1)!

∑

γ1+···+γl=γ̃
μ(γi)=μ(γ̃),1≤i≤l

Aδ+(γ1)(y)
l−1∏

i=2

eei−ri(g−1)

× [ei − ri(g − 1)]yH(γi)(y)

by a redefinition of variables. Substituting (2.18) and (2.19) in Equation
(1.4), Equation (1.8) follows by simple combinatorics.

3. Asymptotic refined ADHM invariants from gauge theory

The main goal of this section is to present a string theoretic derivation
of Conjecture 1.5. Readers who are not interested in this derivation are
encouraged to skip this section.
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Conjecture 1.5 will be shown to follow from type IIA/M-theory duality
using arguments analogous to [19,20,30–33,40,43,44,53]. Summarizing these
results, the topological string amplitudes of certain toric Calabi–Yau three-
folds (as well as some nontoric configurations of local rational curves) were
identified with the instanton partition function of five-dimensional gauge
theory compactified on a circle of finite radius. The later has been identified
in [53] with the generating function for the equivariant Hirzebruch genus
of the moduli space of torsion free framed sheaves on the projective plane.
A mathematical exposition can be found for example in [51, 52]. The rela-
tion between topological strings and five-dimensional gauge theory has been
subsequently refined in [33]. Moreover, the refined topological string par-
tition function constructed in [33] has been conjecturally identified in [16]
with the generation function of refined Donaldson–Thomas invariants. The
present problem requires a version of this identification for higher genus
local curves.

3.1. Geometric engineering via local ruled surfaces

Working under the same assumptions as in Section 2.2, M1,M2 are line
bundles on the curve X so that M1 ⊗X M2 � K−1

X , p = d(M1) ≥ 0 and
M1 � OX if p = 0. Let Y be the total space of the rank two vector bun-
dle M−1

1 ⊕M−1
2 on X, which is a noncompact Calabi–Yau three-fold under

the current assumptions. There is a torus action S × Y → Y scaling M−1
1 ,

M−1
2 with characters t, t−1, so that Y is equivariantly K-trivial. In prin-

ciple, the relevant five-dimensional gauge theory should be constructed by
geometric engineering, that is identifying the low-energy effective action of
an M-theory supersymmetric background defined by S1 × Y . This direct
approach is somewhat problematic in the present case. A much clearer pic-
ture emerges considering a different local Calabi–Yau threefold constructed
as follows.

Let S be the Total space of the projective bundle P(OX ⊕M1). S is a
smooth geometrically ruled surface over X and it has two canonical sections
X1, X2 with normal bundles

NX1/S �M−1
1 , NX2/S �M1

respectively. Note that the cone of effective curve classes on S is generated
by the section class [X2] and the fiber class.
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Let Z be the Total space of the canonical bundle KS , which is again a
noncompact Calabi–Yau three-fold. The normal bundle to X1 in Z is

NX1/Z �M−1
1 ⊕KX ⊗X M1 �M−1

1 ⊗M−1
2 ,

therefore the total space of NX1/Z is isomorphic to Y . Moreover, there is
a torus action S × Z → Z so that Z is equivariantly Calabi–Yau and the
induced torus action on NX1/Z is compatible with the torus action on Y .

Now the main observation is that the local three-fold Z engineers a super-
symmetric five-dimensional SU(2) gauge theory with g adjoint hypermulti-
plets on C

2 × S1, where g is the genus of X [39]. The integer p = deg(M1)
corresponds to the level of the five-dimensional Chern–Simons term [59].
Therefore by analogy with [19,20,30–33,40,43,44,53], the refined topological
string partition function of Z should be related with the equivariant instan-
ton partition function Z(p)

inst(Q, ε1, ε2, a1, a2, y), which has been constructed
in [53]. As explained in detail in the next subsection, Z(p)

inst(Q, ε1, ε2, a1, a2, y)
is the generating function for the χy-genus of a certain holomorphic bundle
on a partial compactification of the instanton moduli space. In particular
ε1, ε2, a1, a2 are equivariant parameters for a natural torus action, Q is a
formal variable counting instanton charge and y is another formal variable.

In order to make string duality predictions more precise, let Qf , Qb be
formal symbols associated to the fiber class, respectively, section class [X1]
on Z. Then string duality predicts that there is a factorization

(3.1) Zref(Z;Qf , Qb, q, y) = Zpert
ref (Z;Qf , q, y)Znonpert

ref (Z;Qf , Qb, q, y)

into a perturbative, respectively, nonperturbative parts. Moreover, and there
is an identification

Znonpert
ref (Z;Qf , Qb, q, y) = Z(p)

inst(Q, ε1, ε2, a1, a2, y)

subject to certain duality relations between the formal parameters in the
two partition functions.

Next note that only nonnegative powers of Qb, Qf can appear in Zref(Z;
Qf, Qb, q, y) since the section class [X1] and the fiber class generate the
Mori cone of S. Similarly, only nonnegative powers of Qf can appear in
Zpert

ref (Z;Qf , q, y), which represents the contribution of pure fiber classes
to Zref(Z;Qf, Qb, q, y). Therefore Zref(Z;Qf , Qb, q, y), Zpert

ref (Z;Qf , q, y) have
well-defined specialization at Qf = 0. Moreover, by construction
Zpert

ref (Z;Qf , q, y)
∣∣
Qf=0

= 1. Therefore Znonpert
ref (Z;Qf , Qb, q, y) has well-

defined specialization atQf = 0 as well, which is determined by the instanton
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expansion Z(p)
inst(Q, ε1, ε2, a1, a2, y). The refined theory of the local three-fold

Y is then determined by identifying the contributions of curves supported
on the section X1 to Znonpert

ref (Z;Qf , Qb, q, y)
∣∣
Qf=0

. Computations will be
carried out in detail in the next subsections, resulting in explicit formu-
las for the instanton partition function and duality relations among formal
variables.

3.2. Hirzebruch genus

Let M(r, k) denote the moduli space of rank r framed torsion-free sheaves
(F, f) on P

2 with second Chern class k ∈ Z≥0. The framing data is an iso-
morphism

(3.2) f : F |P1∞ → O⊕r
P1∞
.

M(r, k) is a smooth quasi-projective fine moduli space i.e., there is an univer-
sal framed sheaf (F, f) on M(r, k) × P

2. Let V = R1p1∗F ⊗ p∗2OP2(−1) where
p1, p2 : M(r, k) × P

2 →M(r, k),P2 denote the canonical projections. It fol-
lows from [50] that V is a locally free sheaf of rank k on M(r, k).

There is a torus T = C
× × C

× × (C×)×r action on acting on M(r, k),
where the action of the first two factors is induced by the canonical action on
C
× × C

× on P
2, and the last r factors act linearly on the framing. According

to [51] the fixed points of the T-action on M(r, k) are isolated and classified
by collections of Young diagrams Y = (Y1, . . . , Yr) so that the total number
of boxes in all diagrams is |Y | = |Y1| + · · · + |Yr| = k. Let Yr,k denote the
set of all such r-uples of Young diagrams. Note also that both the holomor-
phic cotangent bundle T∨

M(r,k) and the bundle V constructed in the previous
paragraph carry canonical equivariant structures.

The K-theoretic instanton partition function of an SU(2) theory with
g adjoint hypermultiplets and a level p Chern–Simons term is given by
the equivariant residual Hirzebruch genus of the holomorphic T-equivariant
bundle

(T∨
M(2,k))

⊕g ⊗ (detV)−p.

This is defined by equivariant localization as follows [44,52]. Let (ε1, ε2, a1, a2)
be equivariant parameters associated to the torus T. Then the localization
formula yields [44, 52]

(3.3) Z(g,p)
inst (Q, ε1, ε2, a1, a2, y) =

∞∑

k=0

QkZ(g,p)
k (ε1, ε2, a1, a2; y)
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where Z(g,p)
0 (ε1, ε2, a1, a2; y) = 1 and

(3.4)

Z(g,p)
k (ε1, ε2, a1, a2; y) =

∑

Y ∈Y2,k

2∏

α=1

(
e−|Yα|aα

∏

(i,j)∈Yα

e(i−1)ε1+(j−1)ε2

)p

2∏

α,β=1

∏

(i,j)∈Yα

(
1 − ye(Y t

β,j−i)ε1−(Yα,i−j+1)ε2+aαβ

)g

(
1 − e(Y t

β,j−i)ε1−(Yα,i−j+1)ε2+aαβ

)

∏

(i,j)∈Yβ

(
1 − ye−(Y t

α,j−i+1)ε1+(Yβ,i−j)ε2+aαβ

)g

(
1 − e−(Y t

α,j−i+1)ε1+(Yβ,i−j)ε2+aαβ

)

where for any Young tableau Y , Yi, i ∈ Z≥1 denotes the length of the ith
column and Y t denotes the transpose of Y . If i is greater than the number
of columns of Y , Yi = 0. Moreover aαβ = aα − aβ for any α, β = 1, 2.

3.3. Comparison with the ruled vertex

A conjectural formula for the unrefined topological string partition function
Ztop(Z;Qf , Qb, q) of the three-fold Z has been derived from large N duality
in [14]. The purpose of this subsection is to show that Ztop(Z;Qf , Qb, q) has
a factorization of the form (3.1) and there is an identification

Znonpert
top (Z;Qf , Qb, q) = Z(g,p)

inst (Q, ε1, ε2, a1, a2, y)

subject to certain duality relations between the formal parameters. This
will be a confirmation of duality predictions for local ruled surfaces in the
unrefined case. Moreover, it will provide a starting point for understanding
this correspondence in the refined case.

By analogy with [31,44], first set

(3.5) −ε1 = ε2 = �, y = 1.

Then a straightforward computation yields

Z(g,p)
2,k (−�, �, a1, a2, 1)(3.6)

=
∑

Y1,Y2

|Y1|+|Y2|=k

e−p(|Y1|a1+|Y2|a2)
2∏

α=1

∏

(i,j)∈Yα

ep(j−i)�
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×
(

2 sinh
�

2
(Yα,i + Y t

α,j − i− j + 1)
)2(g−1)

∏

(i,j)∈Y1

(
2 sinh

1
2
(a1,2 + (Y t

2,j + Y1,i − i− j + 1)�)
)2(g−1)

∏

(i,j)∈Y2

(
2 sinh

1
2
(a1,2 − (Y t

1,j + Y2,i − i− j + 1)�)
)2(g−1)

Using identity [44, Lemma 4.4], which was conjectured in [31] and proven
in [20], it follows that

Z(g,p)
2,k (−�, �, a1, a2, 1)(3.7)

=
∑

Y1,Y2

|Y1|+|Y2|=k

28(g−1)(|Y1|+|Y2|)e−p(|Y1|a1+|Y2|a2)ep(κ(Y1)+κ(Y2))�/2

2∏

α,β=1

∞∏

i,j=1

(
sinh 1

2(aα,β + (Yα,i − Yβ,j + j − i)�)
sinh 1

2(aα,β + (j − i)�)

)2(1−g)

where for any Young diagram Y

κ(Y ) = 2
∑

(i,j)∈Y

(j − i) = |Y | +
l(Y )∑

i=1

(Y 2
i − 2iYi)

l(Y ) being the number of rows of Y . Note that κ(Y ) = −κ(Y t).
The topological string partition function on Z computed by the ruled

vertex formalism [14] is

Ztop(Z; q,Qf , Qb) =
∑

Y1,Y2

(KY1,Y2(q,Qf))2(1−g)Q
|Y1|+|Y2|
b Q

p|Y2|
f (−1)p(|Y1|+|Y2|)

(3.8)

× qp(κ(Y2)−κ(Y1))/2

where

KY1,Y2(q,Qf) =
∑

Y

Q
|Y |
f WY2Y (q)WY Y1(q)

and

WR1,R2(q) = sR2(q
−i+1/2))sR1(q

R2,i−i+1/2)
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for any two Young tableaus R1, R2. Here sR(xi) denotes the Schur function
associated to the Young tableau R.

According to [20,31; Theorem 7.1, 44], KY1,Y2(q,Qf) = KY2,Y1(q,Qf) and

KY1,Y t
2
(e−z, e−b)

K∅,∅(e−z, e−b)
= (2−4Q

−1/2
f )|Y1|+|Y2|

2∏

α,β=1

∞∏

i,j=1

(3.9)

× sinh1
2(bα,β + (Yα,i − Yβ,j + j − i)z)

sinh 1
2(bα,β + (j − i)z)

.

where b1,2 = −b2,1 = b. Therefore (3.8) is equivalent to

Ztop(Z; q,Qf , Qb) =
∑

Y1,Y2

(KY2,Y t
1
(q,Qf))2(1−g)Q

|Y1|+|Y2|
b Q

p|Y2|
f (−1)p(|Y1|+|Y2|)

(3.10)

× qp(κ(Y1)+κ(Y2))/2.

Setting

Zpert
top (Z; q,Qf , Qb) = K∅,∅(q,Qf)2(1−g),

Znonpert
top (Z; q,Qf , Qb) =

Ztop(q,Qf , Qb)
K∅,∅(q,Qf)2(1−g)

.

Identity (3.9) yields

(3.11) Znonpert
top (Z; q,Qf , Qb) =

∞∑

k=0

QkZ(g,p)
2,k (−�, �, a1, a2; 1)

for the following change of variables:

(3.12) Qf = ea12 , q = e�, Q = QbQ
g−1
f , ea1 = −1.

This is a concrete confirmation of duality predictions in the unrefined case.
The refined case is the subject of the next subsection.

3.4. Refinement

As explained at the end of Section 3.1, string duality predicts that the
nonperturbative part of the refined topological partition function of Z is
determined by instanton partition function Z(p)

inst(Q, ε1, ε2, a1, a2, y) provided
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one finds the correct identification of formal parameters as in [30, 33].
Although local ruled surfaces are not discussed in [30, 33], a careful inspec-
tion of the cases discussed there leads to the following construction.

Recall that the contribution of a fixed point (Y1, Y2) ∈ Y2,k for some
arbitrary k ≥ 1 to the right-hand side of the localization formula (3.4) is

2∏

α=1

(
e−|Yα|aα

∏

(i,j)∈Yα

e(i−1)ε1+(j−1)ε2

)p

(3.13)

2∏

α,β=1

∏

(i,j)∈Yα

(
1 − ye(Y t

β,j−i)ε1−(Yα,i−j+1)ε2+aα−aβ

)g

(
1 − e(Y t

β,j−i)ε1−(Yα,i−j+1)ε2+aα−aβ

)

∏

(i,j)∈Yβ

(
1 − ye−(Y t

α,j−i+1)ε1+(Yβ,i−j)ε2+aα−aβ

)g

(
1 − e−(Y t

α,j−i+1)ε1+(Yβ,i−j)ε2+aα−aβ

) .

Let Z(g,p)
(∅,Y )(q1, q2, Qf , y) be the expression obtained by setting q1 = e−ε1 , q2 =

e−ε2 and
Qf = ea12 , ea1 = −1

in (3.13). Note that a simple power counting argument shows that the expres-
sion

Q
(g−1)|Y |
f Z(g,p)

(Y,∅)(q1, q2, Qf , y)

has well-defined specialization Z(g,p)
(Y,∅)(q1, q2, y)

(0) at Qf = 0, for any Y . Then,
for any r ∈ Z≥1, any Young diagram Y with |Y | = r, and any p ∈ Z let

(3.14) Ω(g,p)
Y (λ, y) = y2|Y |λ(g−1)|Y |Z(g,p)

(Y,∅)(λ
−1y, λy, y−1)(0).

Then string duality predicts that the generating function of asymptotic
singly refined ADHM invariants is given by

Z+∞(X , r;λ, y) =
∑

|Y |=r

Ω(g,p)
Y (λ, y).

Formula (1.12) follows by a straightforward computation.

3.5. Double refinement

Physical arguments [15] present compelling evidence for the existence of a
doubly refined BPS counting function, which is graded by U(1)R charge in
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addition to spin quantum number. In this section it is conjectured that the
doubly refined partition function of asymptotic ADHM invariants is obtained
again from the equivariant instanton sum (3.4) by a different specialization
of the equivariant parameters. Namely, for r ∈ Z≥1, any Young diagram Y
with |Y | = r, and any p ∈ Z let
(3.15)
Ω(g,p)

(Y,∅)(λ, u
1/2, v1/2) = u(g+1)|μ|v(g−1)|μ|Z(g,p)

(Y,∅)(λ
−1(uv)1/2, λ(uv)1/2, u−1)(0).

The generating function of doubly refined asymptotic ADHM invariants is
then conjectured to be

Z+∞(X , r;λ, u, v) =
∑

|Y |=r

Ω(g,p)
Y (λ, u1/2, v1/2).

A straightforward computation yields formula (1.15). In conjunction with
the doubly refined wallcrossing conjecture (1.3), the above formula will be
shown to yield correct results for the Hodge polynomial of the Hitchin moduli
space in many examples recorded in Appendix B.

3.6. Localization interpretation for r = 2

Suppose the conditions of Section 2.2 are satisfied, that is p ≥ 0, and M1 =
OX , M2 = K−1

X if p = 0. The goal of this section is to discuss the geometric
interpretation of Conjecture 1.5 for r = 1, 2. The main observation is that
in these cases, Equation (1.11) can be interpreted as a sum of contributions
of torus fixed loci in the moduli space Mss

+∞(X , r, e). However, a rigorous
geometric computation would require a localization theorem for the refined
Donaldson–Thomas invariants defined in [42], which has not been formulated
and proven so far.

First let r = 1. The moduli stack of δ-semistable ADHM sheaves of type
(1, e) on X with δ > 0 and e ≥ 0 is a C

×-gerbe over the smooth variety

(3.16) Se(X) ×H0(X,M−1
1 ) ×H0(X,M−1

2 ).

A C-valued point of Mss
δ (X , 1, e) is an ADHM sheaf of the form (E,Φ1,Φ2, 0,

ψ) where E is a degree e line bundle on X, Φ1 ∈ HomX(E ⊗X M1, E) �
H0(X,M−1

1 ), Φ2 ∈ HomX(E ⊗X M2, E) � H0(X,M−1
2 ) and ψ ∈ H0(X,E).

The δ-stability condition, δ > 0 is equivalent to ψ not identically zero. Obvi-
ously, the moduli stack is empty if e < 0.

The fixed point conditions require Φ1 = 0, Φ2 = 0. Therefore the torus
fixed locus is a C

×-gerbe over the symmetric product Se(X).
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Conjecture 1.5 and Equation (1.12) yield

(3.17) Z+∞(X , 1;λ, y) = (−1)py1−g (1 − λ)2g

(1 − λy)(1 − λy−1)
.

Now recall Macdonald’s formula

(3.18)
∑

n≥0

Pz(Sn(X))xn =
(1 − xz)2g

(1 − x)(1 − xz2)

for the generating function of Poincaré polynomials of symmetric products
of X. Then Equations (3.17) and (3.18) imply

(3.19) Z+∞(X , 1;λ, y) = (−1)p
∑

e≥0

λey1−g−ePy(Se(X))

for all e ∈ Z≥0.
Next let r = 2. Property (B.2) implies that the moduli space Mss

+∞(X ,
r, e) is empty unless e ≥ 2 − 2g. Assuming this to be the case, a straightfor-
ward analysis shows that the components of the torus fixed locus are of two
types. The ADHM sheaves corresponding to the C-valued fixed points are
presented as follows:

(i) E � E−1 ⊕ E0, Φ2 = 0, Im(ψ) ⊆ E0 and

Φ1 =
[
0 ϕ
0 0

]

with ϕ : E0 ⊗X M1 → E−1 a nontrivial morphism of line bundles.
Components of this type are isomorphic to C

×-gerbes over the smooth
varieties

Se0(X) × Se−1−e0−p(X)

where 0 ≤ e0 ≤ e−1 − p and e0 + e−1 = e.

(ii) E � E0 ⊕ E1, Φ1 = 0, Im(ψ) ⊆ E0 and

Φ2 =
[
0 0
ϕ 0

]

with ϕ : E0 ⊗X M2 → E1 a nontrivial morphism of line bundles.
Components of this type are isomorphic to C

×-gerbes over the smooth
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varieties

Se0(X) × Se1−e0+2g−2+p(X)

where 0 ≤ e0 ≤ e1 + 2g − 2 + p and e0 + e1 = e.
Note that in both cases, the moduli stack of asymptotically stable ADHM

sheaves is not smooth along the fixed loci, although the fixed loci are smooth.
Conjecture 1.5 and Equation (1.12) yield

(3.20)
Z+∞(X , 2;λ, y) = Ω(g,p)(λ, y) + Ω(g,p)(λ, y)

Ω(g,p)(λ, y) = (λ−1y)−py2−2g (1 − λ2y−1)2g(1 − λ)2g

(1 − λ2)(1 − λ2y−2)(1 − λy)(1 − λy−1)

Ω(g,p)(λ, y) = (λy)−py4−4gλ2−2g (1 − λ2y)2g(1 − λ)2g

(1 − λ2)(1 − λ2y2)(1 − λy)(1 − λy−1)
.

A straightforward computation using Equation (3.18) yields

Ω(g,p)(λ, y) =
∑

e≥p

λe
∑

e0+e−1=e

0≤e0≤e−1−p

y2−2g−p−e0 y−e0Py(Se0(X))(3.21)

y−e−1+e0+pPy(Se−1−e0−p(X))

Ω(g,p)(λ, y) =
∑

e≥2−2g−p

λe
∑

e0+e1=e
0≤e0≤e1+2g−2+p

ye0−p y−e0Py(Se0(X))

y−e1+e0−2g+2−pPy(Se1−e0+2g−2+p(X)).

Given the explicit description of the fixed loci, Equations (3.17) and (3.19)–
(3.21) clearly suggest an equivariant localization theorem for refined ADHM
invariants. Such a formula would presumably allow a rigorous computation
of the polynomial weights assigned to each component of the fixed locus.

For future reference, let us record the expressions Ω(p)
Y (λ, y) for |Y | = 3.

Ω(g,p)(λ, y) = (−1)p(λ3y−3)py3−3g (1 − λ)2g(1 − λ2y−1)2g(1 − λ3y−2)2g

(1 − λy)(1 − λy−1)(1 − λ2y−2)(1 − λ2)
(1 − λ3y−3)(1 − λ3y−1)

(3.22)

Ω(g,p)(λ, y) = (−1)py2py5−5gλ2−2g (1 − λ)4g(1 − λ3)2g

(1 − λy)2(1 − λy−1)2(1 − λ3y)(1 − λ3y−1)
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Ω(g,p)(λ, y) = (−1)p(λ−3y−3)py9−9gλ6−6g

× (1 − λ)2g(1 − λ2y)2g(1 − λ3y2)2g

(1 − λy)(1 − λy−1)(1 − λ2y2)(1 − λ2)(1 − λ3y3)(1 − λ3y)
.

4. Examples, comparison with existing results

This section will present several concrete results for Poincaré polynomials
of moduli spaces of Hitchin pairs obtained from the recursion relation (1.8)
and Conjecture 1.5. In all cases considered below, these results are identical
to the computations of Hitchin [29] and Gothen [24], as well as the conjec-
ture of Hausel and Rodriguez-Villegas [27,28], which are briefly reviewed in
Appendix A. In addition, entirely analogous computations have been done
for the Hodge polynomial of moduli spaces of pairs, employing the doubly
refined version of the recursion formula and Conjecture 1.6. The results are
presented in Appendix B. Again, all cases considered there are in agreement
with the results of [24, 27–29].

In order to simplify the formulas set Ã+∞(r, e)(y) = (−1)rpA+∞(r, e)(y),
H̃(r, e)(y) = (−1)e−r(g−1−p)H(r, e)(y) for all (r, e) ∈ Z≥1 × Z. Then Equa-
tion (1.8) becomes

[e− r(g − 1)]yH̃(γ)(y)

(4.1)

= Ã+∞(γ)(y) − Ã+∞(γ̃)(y) +
∑

l≥2

(−1)l−1

(l − 1)!

∑

γ1,...,γl∈Z≥1×Z

γ1+···+γl=γ
μ0(r)≤μ(γ)<μ(γi), 2≤i≤l,

μ0(r)≤μ(γ1)

× Ã+∞(γ1)(y)
l∏

i=2

[ei − ri(g − 1)]yH̃(ri, ei)(y) −
∑

l≥2

(−1)l−1

(l − 1)!

×
∑

γ1,...,γl∈Z≥1×Z

γ1+···+γl=γ̃
μ0(r)≤μ(γ̃)≤μ(γi), 2≤i≤l

μ0(r)≤μ(γ1)

Ã+∞(γ1)(y)
l∏

i=2

[ei − ri(g − 1)]yH̃(ri, ei)(y)

−
∑

l≥2

1
l!

∑

γ1,...,γl∈Z≥1×Z

γ1+···+γl=γ
μ(γ)=μ(γi), 1≤i≤l

l∏

i=1

[ei − ri(g − 1)]yH̃(ri, ei)(y)
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where μ0(r) = −(r − 1)(2g − 2 + p), and the sum on the right-hand side of
Equation (1.8) is finite.

4.1. Rank r = 1

There are no positive critical parameters of type (1, e) for any e ∈ Z≥0 The
wallcrossing formula (1.4) at δc = 0 reads

(4.2) Ã+∞(1, e) − Ã+∞(1,−e+ 2(g − 1)) = [e− g + 1]yH̃(1, e).

Expanding the right-hand side of Equation (3.19) in powers of λ yields

Ã+∞(1, e) = y1−g
∑

0≤k≤2g

m,l≥0, k+l+m=e

(2g, k)(−1)kyl−m

for any e ≥ 0, where (2g, k) = (2g)!
k!(2g−k)! are binomial coefficients. A series of

elementary manipulations further yield

Ã+∞(1, e) = y1−g
∑

0≤k≤2g

l≥0, l+k≤e

(2g, k)(−1)ky2l+k−e

= y1−g
∑

0≤k≤2g

l≥0, l+k≤e

(2g, k)(−1)kyk−e 1 − y2e−2k+2

1 − y2

=
y1−g

1 − y2

∑

0≤k≤2g

k≤e

(2g, k)(−1)k
(
yk−e − ye−k+2

)

for any e ≥ 0. In order to compute the left-hand side of Equation (4.2), it is
convenient to consider three cases.

(a) 0 ≤ e ≤ 2g − 2. Then

Ã+∞(1, e) − Ã+∞(1,−e+ 2(g − 1))

=
y1−g

1 − y2

[ e∑

k=0

(2g, k)(−1)kyk−e +
2g−2−e∑

k=0

(2g, k)(−1)ky2g−2−e−k

]

− y1−g

1 − y2

[ e∑

k=0

(2g, k)(−1)kye−k+2 +
2g−2−e∑

k=0

(2g, k)(−1)kyk+e−2g+2

]
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=
y1−g

1 − y2
y−e

[ e∑

k=0

(2g, k)(−1)kyk +
2g−2∑

k=e+2

(2g, k)(−1)kyk

]

− y1−g

1 − y2
ye+2

[ e∑

k=0

(2g, k)(−1)ky−k +
2g−2∑

k=e+2

(2g, k)(−1)ky−k

]

= − y1−g

1 − y2

[
ye+2(1 − y−1)2g − y−e(1 − y)2g

]

=
ye−g+1 − y−e+g−1

y − y−1

(1 − y)2g

y2g−1
.

(b) e = 2g − 1. Then Ã+∞(−e+ 2g − 2) = 0 and

Ã+∞(1, 2g − 1) =
y1−g

1 − y2

2g−1∑

k=0

(2g, k)(−1)k
(
yk−2g+1 − y2g−k+1

)

=
y1−g

1 − y2

[
y1−2g(1 − y)2g − y2g+1(1 − y−1)2g

]

=
yg − y−g

y − y−1

(1 − y)2g

y2g−1
.

(c) e ≥ 2g. Then Ã+∞(−e+ 2g − 2) = 0 and a similar computation yields

Ã+∞(1, e) =
ye−g+1 − y−e+g−1

y − y−1

(1 − y)2g

y2g−1
.

In conclusion,

(4.3) H̃(1, e)(y) =
(1 − y)2g

y2g−1

for all e ≥ 0, hence also for all e ∈ Z.
The moduli space of rank one semistable Hitchin pairs of any degree

e ∈ Z is isomorphic to

H0(X,M−1
1 ) ×H0(X,M−1

2 ) × Je(X)

where Je(X) is the degree e Jacobian of X. Obviously formula (4.3) can be
rewritten as

H̃(1, e)(y) = y1−2gPy(Je(X))

for any e ∈ Z.
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4.2. Rank r = 2

According to property (B.2) in Section 2.1, all invariants Aδ(1, e)(y) are zero
for e < 0. It will be convenient to distinguish two cases, depending on the
parity of e. By convention, any sum in the following formulas is zero if the
lower summation bound exceeds the upper summation bound.

(a) e = 2n, n ∈ Z. Then Equation (4.1) reduces to

[2n− 2g + 2]yH̃(2, 2n)(y) = Ã+∞(2, 2n) − Ã+∞(2,−2n+ 4g − 4)(4.4)

−
n−1∑

e1=0

Ã+∞(1, e1)(y)[2n− e1 − g + 1]yH̃(1, 2n− e1)(y)

+
2g−2−n∑

e1=0

Ã+∞(1, e1)(y)[3g − 3 − 2n− e1]yH̃(1, 4g − 4 − 2n)(y)

− 1
2
[n− g + 1]2yH̃(1, n)(y)2.

(b) e = 2n+ 1, n ∈ Z. Then Equation (1.8) reduces to
(4.5)

[2n− 2g + 3]yH̃(2, 2n+ 1)(y) = Ã+∞(2, 2n+ 1) − Ã+∞(2, 4g − 5 − 2n)

−
n∑

e1=0

Ã+∞(1, e1)(y)[2n− e1 − g + 2]yH̃(1, 2n+ 1 − e1)(y)

+
2g−3−n∑

e1=0

Ã+∞(1, e1)(y)[3g − 4 − 2n− e1]yH(1, 4g − 4 − 2n− e1)(y).

Some concrete results are recorded below. H̃(p)(r, e) denotes the refined
Higgs invariant of type (r, e) with coefficient bundles (M1,M2) of
degrees (p, 2 − 2g − p), p ≥ 0. Under the current assumptions, M1 �
OX if p = 0.

g = 2

H̃(0)(2, 1)(y) =
(1 − y)4(1 + y2)(1 − 4y3 + 2y4)

y9

H̃(0)(2, 0)(y) =
(1 − y)4(2 + 4y2 − 8y3 + 7y4 − 12y5 + 14y6 − 4y7 + 5y8)

2y9(1 + y2)

H̃(1)(2, 1)(y) =
(1 − y)4

(
2y8 − 4y7 + 8y6 − 4y5 + 2y4 − 4y3 + y2 + 1

)

y11
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H̃(1)(2, 0)(y) =

(1 − y)4(3y10 − 12y9 + 14y8 − 20y7 + 19y6 − 16y5

+6y4 − 8y3 + 4y2 + 2)
2y11 (y2 + 1)

H̃(2)(2, 1)(y) =
(1 − y)4

(
y2 + 1

) (
2y8 − 8y7 + 6y6 + 2y4 − 4y3 + 1

)

y13

H̃(2)(2, 0)(y) =

(1 − y)4(5y12 − 12y11 + 26y10 − 28y9 + 33y8 − 24y7

+20y6 − 16y5 + 6y4 − 8y3 + 4y2 + 2)
2y13 (1 + y2)

.

g = 3

H̃(0)(2, 1)(y) =
(1−y)6
y17

(1+y2−6y3+2y4−6y5+17y6−12y7+18y8

−32y9+18y10−12y11+3y12)

H̃(0)(2, 0)(y) =
(1−y)6

2y17(1+y2)
(2+4y2−12y3+6y4−24y5+38y6−36y7

+71y8−82y9+87y10−68y11+57y12−18y13+7y14)

H̃(1)(2, 1)(y) =

(1−y)6(y2+1)(3y12−12y11+30y10

−20y9+3y8−12y7+15y6+2y4−6y3+1)
y19

H̃(1)(2, 0)(y) =
(1−y)6

2y19(1+y2)
(5y16−30y15+57y14−108y13+117y12−134y11

+101y10−88y9+70y8−36y7+38y6−24y5

+6y4−12y3+4y2+2)

H̃(2)(2, 1)(y) =
(1−y)6
y21

(3y16−18y15+33y14−52y13+48y12−38y11+33y10

−32y9+18y8−12y7+17y6−6y5+2y4−6y3+y2+1)

H̃(2)(2, 0)(y) =
(1−y)6

2y21(1+y2)
(7y18−30y17+87y16−120y15+177y14−174y13

+163y12−140y11+102y10−88y9+70y8−36y7

+38y6−24y5+6y4−12y3+4y2+2).

g = 4

H̃(0)(2, 1)(y) =
(1 − y)8

y25
(1 + y2)(1 − 8y3 + 2y4 + 28y6 − 16y7 + 3y8 − 56y9

+ 56y10 − 24y11 + 74y12 − 112y13 + 56y14 − 24y15 + 4y16)
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H̃(0)(2, 0)(y) =
(1 − y)8

2y25(1 + y2)
(2 + 4y2 − 16y3 + 6y4 − 32y5 + 64y6 − 48y7

+ 122y8−176y9+180y10−304y11+379y12−424y13+548y14

− 488y15 + 450y16 − 264y17 + 156y18 − 40y19 + 9y20).

g = 5

H̃(0)(2, 1)(y) =
(1 − y)10

y33
(1 + y2 − 10y3 + 2y4 − 10y5 + 47y6 − 20y7 + 48y8

− 140y9 + 93y10 − 150y11 + 304y12 − 270y13 + 349y14

− 532y15 + 560y16 − 652y17 + 770y18 − 784y19

+ 560y20 − 400y21 + 140y22 − 40y23 + 5y24).

In all the above cases, similar computations also show that the invariants
H̃(2, e) depend only on the parity of e ∈ Z. Note also that for even e the
rank two refined Higgs invariants are rational functions of y rather than
polynomials in y−1, y. By analogy with the theory of generalized Donaldson–
Thomas invariants [38], this reflects the fact that in this case the moduli
stack Higgsss(X , 2, e) contains strictly semistable C-valued points.

4.3. Rank r = 3

According to property (B.2) in Section 2.1, all invariants Aδ(2, e)(y) are
zero for e < 2 − 2g − p. Suppose e = 3n+ 1, n ∈ Z. Then Equation (4.1)
reduces to

[3n−3g+4]yH̃(3, 3n+1)= Ã+∞(3, 3n+1)(y)−Ã+∞(3,−3n+6g−7)(y)

(4.6)

−
2n∑

e1=2−2g−p

Ã+∞(2, e1)[3n+ 2 − g − e1]yH̃(1, 3n+ 1 − e1)(y)

−
n∑

e1=0

Ã+∞(1, e1)[3n+ 3 − 2g − e1]yH̃(2, 3n+ 1 − e1)(y)

+
1
2

n−1∑

e1=0

2n−e1∑

e2=n+1

Ã+∞(1, e1)[e2 − g + 1]y[3n+ 2 − g − e1 − e2]y

× H̃(1, 3n+ 1 − e1 − e2)(y)2 +
4g−2n−5∑

e1=2−2g−p

Ã+∞(2, e1)[5g − 6 − 3n− e1]y
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× H̃(1, 6g − 7 − 3n− e1)(y) +
2g−n−3∑

e1=0

Ã+∞(1, e1)[4g − 5 − 3n− e1]y

× H̃(2, 6g− 7− 3n− e1)(y)− 1
2

2g−3−n∑

e1=0

4g−2n−5−e1∑

e2=2g−2−n

Ã+∞(1, e1)[e2 − g+ 1]y

× [5g − 6 − 3n− e1 − e2]yH̃(1, 6g − 7 − 3n− e1 − e2)(y)2.

Again, some concrete results are recorded below.
g = 2

H̃(0)(3, 1)(y) =
(1−y)4
y19

(1+y2−4y3+3y4−8y5+10y6−16y7+29y8

−32y9+48y10−64y11+67y12−68y13

+48y14−24y15+6y16)

H̃(1)(3, 1)(y) =
(1−y)4
y25

(6y22−36y21+96y20−168y19+207y18−216y17

+210y16−184y15+149y14−120y13+92y12−72y11+49y10

−32y9+29y8−16y7+10y6−8y5+3y4−4y3+y2+1)

H̃(2)(3, 1)(y) =
(1−y)4
y31

(10y28−64y27+184y26−344y25+477y24−560y23

+583y22−560y21+522y20−464y19+386y18−320y17

+267y16−208y15+158y14−124y13+93y12−72y11+49y10

−32y9+29y8−16y7+10y6−8y5+3y4−4y3+y2+1).

g = 3

H̃(0)(3, 1)(y) =
(1 − y)6

y37
(15y32 − 120y31 + 480y30 − 1260y29 + 2355y28

− 3486y27 + 4189y26 − 4416y25 + 4315y24 − 3922y23

+ 3399y22 + 2309y20 − 1872y19 + 1433y18 − 1072y17

+ 861y16 − 604y15 − 2860y21 + 446y14 − 336y13 + 212y12

− 176y11 + 105y10 − 62y9 + 58y8 − 24y7 + 19y6

− 12y5 + 3y4 − 6y3 + y2 + 1)

H̃(1)(3, 1)(y) =
(1 − y)6

y43
(15y38 − 150y37 + 690y36 − 2010y35 + 4110y34

− 6542y33 + 8598y32 − 9930y31 + 10427y30 − 10254y29
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+ 9672y28 − 8800y27 + 7705y26 − 6600y25 + 5598y24

− 4600y23 + 3723y22 − 3006y21 + 2363y20 − 1884y19

+ 1434y18 − 1072y17 + 861y16 − 604y15 + 446y14 − 336y13

+ 212y12 − 176y11 + 105y10 − 62y9 + 58y8

− 24y7 + 19y6 − 12y5 + 3y4 − 6y3 + y2 + 1)

H̃(2)(3, 1)(y) =
(1 − y)6

y49
(21y44 − 216y43 + 1026y42 − 3090y41 + 6621y40

− 11094y39 + 15375y38 − 18672y37 + 20712y36 − 21584y35

+ 21450y34 − 20552y33 + 19178y32 − 17460y31 + 15503y30

− 13546y29 + 11706y28 − 9952y27 + 8316y26 − 6912y25

+ 5736y24 − 4650y23 + 3741y22 − 3012y21 + 2364y20

− 1884y19 + 1434y18 − 1072y17 + 861y16 − 604y15 + 446y14

− 336y13 + 212y12 − 176y11 + 105y10 − 62y9 + 58y8

− 24y7 + 19y6 − 12y5 + 3y4 − 6y3 + y2 + 1).

g = 4

H̃(0)(3, 1)(y) =
(1 − y)8

y55
(28y48 − 336y47 + 2016y46 − 7896y45 + 22218y44

− 48328y43 + 84084y42 − 122616y41 + 155235y40

−176912y39+186320y38−185408y37+176976y36−163656y35

+146930y34−128936y33+111544y32−94416y31+78918y30

− 65392y29 + 53178y28 − 43392y27 + 34620y26 − 27288y25

+ 21936y24 − 16728y23 + 13005y22 − 10064y21 + 7290y20

− 5760y19 + 4077y18 − 2880y17 + 2278y16 − 1416y15

+ 1071y14 − 744y13 + 416y12 − 368y11 + 185y10 − 112y9

+ 99y8 − 32y7 + 32y6 − 16y5 + 3y4 − 8y3 + y2 + 1).

In addition similar computations show that H̃(p)(3, 2)(y) = H̃(p)(3, 1)(y)
in all above examples.
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Appendix A. Existing results

This section is a summary of existing results and conjectures on the coho-
mology of moduli spaces of Hitchin pairs. The localization computations
of Hitchin [29] and Gothen [24] as well as the conjectures of Hausel and
Rodriguez-Villegas [27, 28] will be briefly reviewed. In the first two cases,
the localization computations will be generalized to moduli spaces of Hitchin
pairs with coefficient line bundle L of degree d(L) = 2g − 2 + p, p ≥ 0. As
in Section 2.2, L = KX if p = 0.

For (r, e) ∈ Z≥1 × Z coprime there is a smooth quasi-projective mod-
uli space H(X,L, r, e) parameterizing isomorphism classes of stable pairs
(E,Φ), E is a locally free sheaf on X of rank r and degree e and Φ : E →
E ⊗X L is a morphism of sheaves.

There is a torus action C
× ×H(X,L, r, e) → H(X,L, r, e), t× (E,Φ) →

(E, tΦ). The fixed points of the torus action are stable pairs of the form

(A.1) E �
n⊕

i=0

Ei, Φ =
n−1⊕

i=0

ϕi

where ϕi : Ei → Ei+1 ⊗X L, i = 0, . . . , n− 1, all other components being
trivial. Note that the direct summand Ei, 0 ≤ i ≤ n, corresponds to the C

×

character t→ t−i. If n = 0, Φ = 0, and E = E0 must be stable bundle on X.
For (r, e) ∈ Z≥1 × Z coprime the torus fixed locus is smooth. Given any

connected component Ξ of the fixed locus, the normal bundle to Ξ is iso-
morphic to the moving part of the tangent bundle to H(X,L, r, e) restricted
to Ξ,

NΞ � Tm
H(X,L,r,e)|Ξ.

Moreover, NΞ decomposes in a direct sum of the form

NΞ � N+
Ξ ⊕N−

Ξ
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whereN±
Ξ is the direct sum of all C

× eigensheaves with positive, respectively,
negative eigenvalues. By definition, the index of the component Ξ is r−Ξ =
r(N−

Ξ ).
The deformation theory of a Hitchin pair (E,Φ) is determined by the

hypercohomology of the two term complex on X

(A.2) 0 → HomX(E,E) d−→HomX(E,E ⊗X L) → 0

where d(f) = Φ ◦ f − f ⊗ 1L ◦ Φ. If (E,Φ) is fixed by the torus action, the
equivariant version of (A.2) is

(A.3) 0 → HomX(E,E) d−→Q⊗ HomX(E,E ⊗X L) → 0

where E is of the form (A.1) and Q is the irreducible representation of C
×

with character t→ t. If (E,Φ) is a stable pair with (r, e) coprime, the 0th
hypercohomology group of (A.1) is isomorphic to C while the 2nd hyperco-
homology group vanishes. The 1st hypercohomology group is isomorphic to
the tangent space T[(E,Φ)]H(X,L, r, e).

The localization computations of the Hodge polynomial of the moduli
space of stable pairs of types (2, 1) and (3, 1) are reviewed below.

A.1. Rank r = 2

Let e = 1. Then a fixed pair is either of the form (E, 0), with E a stable
bundle of type (2, 1) on X or

E = E0 ⊕ E1, Φ =
[

0 0
ϕ0 0

]

with E0, E1 line bundles of degrees e0, e1, e0 + e1 = 1 and ϕ0 : E0 → E1 ⊗X

L a nonzero morphism. In the second case the stability condition is equiva-
lent to e1 ≤ e0, while ϕ = 0 implies e0 ≤ e1 + 2g − 2 + p. Therefore

1
2
≤ e0 ≤ g +

p− 1
2

.

In conclusion the fixed locus is a union of the form

H(X,L, 2, 1)C
× �M(2, 1) ∪

g+[(p−1)/2]⋃

e0=1

Je0(X) × S2g−1+p−2e0(X)
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where M(2, 1) denotes the moduli space of stable bundles of type (2, 1)
on X, a smooth projective variety. An elementary computation shows that
M(2, 1) has index 0 while each component Je0(X) × S2g−1+p−2e0(X) has
index 2e0 + g − 2, independent of p. Then the Hodge polynomial of the
moduli space of Hitchin pairs is

H(u,v)(H(X,L, 2, 1))(A.4)

= H(u,v)(M(2, 1)) +
g+[(p−1)/2]∑

e0=1

u2e0+g−2v2e0+g−2(1 + u)g

× (1 + v)gH(u,v)(S
2g−1+p−2e0(X)).

Moreover, according to [9, 18,48], the Hodge polynomial of M(2, 1) is

(A.5) H(u,v)(M(2, 1)) = (1 + u)g(1 + v)g

(1 + u2v)g(1 + uv2)g − (uv)g

(1 + u)g(1 + v)g

(1 − uv)(1 − u2v2)

while the generating function for the Hodge polynomial of symmetric prod-
ucts is

(A.6)
∞∑

n=0

xnH(u,v)(S
n(X)) =

(1 + xu)g(1 + xv)g

(1 − x)(1 − xuv)
.

Repeating the computations of [29] in the present context yields

H(u,v)(H(X,L, 2, 1))(A.7)

= (1 + u)g(1 + v)g

[
(1 + u2v)g(1 + uv2)g

(1 − uv)(1 − u2v2)
+

(−1)p+1

4
(uv)2g−2+p

× (1 − u)g(1 − v)g

1 + uv
+ (uv)2g−2+p (1 + u)g(1 + v)g

2(1 − uv)

×
(

g

1 + u
+

g

1 + v
− 1

1 − uv
− (2g − 2 + p) − 1

2

)]
.

A.2. Rank r = 3

In this case the computation of the Poincaré polynomial has been done
in [24]. Let e = 1 for concreteness; e = 2 is analogous. The classification of
fixed loci is more involved. There are four types of components.
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(I) (E,Φ) = (E, 0) with E a rank 3 bundle on X of degree e = 1. This
component is isomorphic to the moduli space M(3, 1) of stable rank 3 bun-
dles on X of degree e = 1, which is a smooth projective variety. Moreover,
it has index 0 and according to [18,46]
(A.8)

H(u,v)(M(3, 1)) =
(1 + u)g(1 + v)g

(1 − uv)(1 − u2v2)2(1 − u3v3)

×
[
(1 + u2v3)g(1 + u3v2)g(1 + uv2)g(1 + u2v)g

− (uv)2g−1(1 + uv)2(1 + u)g(1 + v)g(1 + uv2)g(1 + u2v)g

+ (uv)3g−1(1 + uv + u2v2)(1 + u)2g(1 + v)2g

]
.

(II) E = E0 ⊕ E1, Φ =
[

0 0
ϕ0 0

]
, E0 a degree e0 line bundle, E1 a bundle

of type (2, e1) on X, and ϕ0 : E0 → E1 ⊗X L a nontrivial morphism. Obvi-
ously e0 + e1 = e. The stability condition is equivalent to the following two
conditions:

• e/3 ≤ e0 ≤ e/3 + g − 1 + p/2, which for e = 1 yields 1 ≤ e0 ≤ g +
p/2 − 2/3.

• The data (E1 ⊗ L⊗ E−1
0 , ϕ0 ⊗ 1E−1

0
) is a σ-stable Thaddeus pair of

type (2, e− 3e0 + 2(2g − 2 + p)) = (2, 1 − 3e0 + 2(2g − 2 + p)) (no
fixed determinant) where σ = e0/2 − e/6 = e0/2 − 1/6.

The index equals 3e0 − e+ 2g − 2 = 3e0 + 2g − 3, independent of p. There-
fore, repeating the computation in [60, Section 4], it follows that the contri-
bution of fixed loci of this type to the Hodge polynomial is

H(u,v)(Ξ
II(e0)) = (uv)3e0+2g−3 (1 + u)2g(1 + v)2g

1 − uv
(A.9)

Coeffxi

[(
(uv)e0+g

xu2v2 − 1
− (uv)2g−1−2e0+p

x− uv

)
(1 + xu)g(1 + xv)g

(1 − x)(1 − xuv)

]

where i = −2e0 + 2g − 2 + p.

(III) E = E0 ⊕ E1, Φ =
[

0 0
ϕ0 0

]
, E0 a bundle of type (2, e0) and E1 a

degree e1 line bundle on X, e0 + e1 = 1. In this case the dual pair (E∨,Φ∨ ⊗
1L) is a stable fixed pair of type (II) with numerical invariants (3,−e) =
(3,−1). Such fixed loci are labeled by an integer ē0, 0 ≤ ē0 ≤ g + p/2 − 4/3
and their index is 3ē0 + 2g − 1. Therefore their contribution to the Hodge
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polynomial is

(A.10)
H(u,v)(Ξ

III(ē0)) = (uv)3ē0+2g−1 (1 + u)2g(1 + v)2g

1 − uv

Coeffxi

[(
(uv)ē0+g

xu2v2 − 1
− (uv)2g−2−2e0+p

x− uv

)
(1 + xu)g(1 + xv)g

(1 − x)(1 − xuv)

]

where i = −2ē0 + 2g − 3 + p.

(IV) E = E0 ⊕ E1 ⊕ E2, Φ =

⎡

⎣
0 0 0
ϕ0 0 0
0 ϕ1 0

⎤

⎦, E0, E1, E2 line bundles of

degrees e0, e1, e2 on X, e0 + e1 + e2 = e = 1, and ϕ0 : E0 → E1 ⊗X L, ϕ1 :
E1 → E2 ⊗X L nontrivial morphisms. Let m1 = e1 − e0 + 2g − 2 + p, m2 =
e2 − e0 + 2g2 + p. Then the stability conditions are equivalent to

m1,m2 ≥ 0, m1 + 2m2 ≤ 3(2g − 2 + p), 2m1 +m2 ≤ 3(2g − 2 + p).

In addition, the following constraint holds by construction:

m1 + 2m2 ≡ −e (mod 3).

Fixed loci of this type are isomorphic to a direct product of the form
Je0(X) × Sm1(X) × Sm2(X). The index is 8g − 8 + 3p−m1 −m2. There-
fore their contribution to the Hodge polynomial is

(A.11)
H(u,v)(Ξ

IV
(m1,m2)

) = (uv)8g−8+3p−m1−m2(1 + u)g(1 + v)g

Coeffxm1

(
(1 + xu)g(1 + xv)g

(1 − x)(1 − xuv)

)
Coeffxm2

(
(1 + xu)g(1 + xv)g

(1 − x)(1 − xuv)

)
.

In conclusion

(A.12)

H(u,v)(H(X,L, 3, 1)) = H(u,v)(M(3, 1)) +
g+[p/2−2/3]∑

e0=1

H(u,v)(Ξ
II(e0))

+
g+[p/2−4/3]∑

ē0=0

H(u,v)(Ξ
III(ē0)) +

∑

m1,m2≥0

2m1+m2≤6g−6+3p

m1+2m2≤6g−6+3p

m1+2m2≡2 (3)

H(u,v)(Ξ
IV
(m1,m2)

).
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A.3. Hausel–Rodriguez-Villegas formula

This subsection is a brief summary of the formulas of Hausel and Rodriguez-
Villegas [27, 28] for the Poincaré, respectively, Hodge polynomial of the
moduli space H(X,KX , r, e) with (r, e) ∈ Z≥ × Z coprime. Construct the
following formal series:

Z(q, x, y, T ) = 1 +
∑

k≥1

T kAk(q, x, y) = 1 +
∑

k≥1

T k

⎛

⎝
∑

|Y |=k

AY (q, x, y)

⎞

⎠

where

AY (q, x, y)=
∏

z∈Y

(qxy)l(z)(2−2g)(1 + qh(z)yl(z)xl(z)+1)g(1 + qh(z)xl(z)yl(z)+1)g

(1 − qh(z)(xy)l(z)+1)(1 − qh(z)(xy)l(z))
.

where for z = (i, j) ∈ Y :

a(z) = Yi − j, l(z) = Y t
j − i, h(z) = a(z) + l(z) + 1.

Define Hr(q, x, y) in terms of the following recursive formula:

∑

r≥1

∑

k≥1

Hr(qk,−(−x)k,−(−y)k)Br(qk,−(−x)k,−(−y)k)
T kr

k

= logZ(q, x, y, T )

by comparing the coefficient of Tnk, where:

Br(q, x, y) =
(qxy)(1−g)r(r−1)(1 + qx)g(1 + qy)g

(1 − qxy)(1 − q)
.

Then

(A.13) Er(u, v) = Hr(1, u, v)

is conjectured in [27] to be Hodge polynomial of the moduli space
H(X,KX , r, e).

Appendix B. Recursion results for Hodge polynomials

This section is basically a list of results for the Hodge polynomials of the
moduli spaces of Hitchin pairs determined by the double refinement the
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recursion formula (1.8) and Conjecture (1.6). According to Conjecture (1.6)
the building blocks of asymptotic refined ADHM invariants are

Ω(p) = (−1)p(uv)(1−g)/2 (1 − λ(uv−1)1/2)g(1 − λ(u−1v)1/2)g

(1 − λ(uv)1/2)(1 − λ(uv)−1/2)

Ω(p)(λ, u, v) = (uv)1−g−p/2λ−p+2−2gG(λ2(uv)1/2, (uv)1/2, (uv−1)1/2)

×G(λ, (uv)1/2, (uv−1)1/2)

Ω(p)(λ, u, v) = (uv)−p/2λpG(λ2(uv)−1/2, (uv)1/2, (uv−1)1/2)

×G(λ, (uv)1/2, (uv−1)1/2)

Ω(p) (λ, u, v) = (−1)p(λ(uv)1/2)−3p+6(1−g)G(λ3uv, (uv)1/2, (uv−1)1/2)

×G(λ2(uv)1/2, (uv)1/2, (uv−1)1/2)G(λ, (uv)1/2, (uv−1)1/2)

Ω(p)(λ, u, v) = (−1)p(λ−1(uv)1/2)−3pG(λ3(uv)−1, (uv)1/2, (uv−1)1/2)

×G(λ2(uv)−1/2, (uv)1/2, (uv−1)1/2)G(λ, (uv)1/2, (uv−1)1/2)

Ω(p)(λ, u, v) = (−1)p(uv)−p(λ(uv)1/2)2−2gG(λ3, (uv)1/2, (uv−1)1/2)

×G(λ, (uv)1/2, (uv−1)1/2)2

where

G(q, z, w) = z(1−g) (1 − qw)g(1 − qw−1)g

(1 − qz)(1 − qz−1)
.

(1) g = 2

H̃(0)(2, 1)(u, v) =
(1 − u)2(1 − v)2

(
√
uv)9

(1 + uv)(1 − 2u2v − 2uv2 + 2u2v2)

H̃(0)(2, 0)(u, v) =
(1 − u)2(1 − v)2

2(
√
uv)9(1 + uv)

(2 + 4uv − 4u2v

− 4uv2 + 7u2v2 − 6u3v2 + u4v2 − 6u2v3 + 12u3v3

− 2u4v3 + u2v4 − 2u3v4 + 5u4v4)

H̃(0)(3, 1)(u, v) =
(1 − u)2(1 − v)2

(
√
uv)19

(1 + uv − 2u2v

− 2uv2 + 3u2v2 − 4u3v2 + u4v2 − 4u2v3 + 8u3v3

− 8u4v3 + 5u5v3 + u2v4 − 8u3v4 + 19u4v4 − 16u5v4

+ 8u6v4 − 2u7v4 + 5u3v5 − 16u4v5 + 32u5v5 − 30u6v5

+ 12u7v5 − 2u8v5 + 8u4v6 − 30u5v6 + 43u6v6 − 32u7v6



48 Wu-yen Chuang, Duiliu-Emanuel Diaconescu and Guang Pan

+ 8u8v6 − 2u4v7 + 12u5v7 − 32u6v7 + 32u7v7 − 12u8v7

− 2u5v8 + 8u6v8 − 12u7v8 + 6u8v8)

H̃(1)(2, 1)(u, v) =
(1 − u)2(1 − v)2

(
√
uv)11

(1 + uv − 2u2v − 2uv2

+ 2u2v2 − 2u3v2 + u4v2 − 2u2v3 + 6u3v3

− 2u4v3 + u2v4 − 2u3v4 + 2u4v4)

H̃(1)(2, 0)(u, v) =
(1 − u)2(1 − v)2

2(
√
uv)11(1 + uv)

(2 + 4uv − 4u2v − 4uv2

+ 6u2v2 − 8u3v2 + 2u4v2 − 8u2v3

+ 15u3v3 − 10u4v3 + u5v3 + 2u2v4 − 10u3v4 + 12u4v4

− 6u5v4 + u3v5 − 6u4v5 + 3u5v5)

H̃(1)(3, 1)(u, v) =
(1−u)2(1−v)2

(
√
uv)25

(6v11u11−18v10u11 +18v9u11−8v8u11

+v7u11−18v11u10 +60v10u10−76v9u10 +42v8u10

−10v7u10 +v6u10 +18v11u9−76v10u9 +121v9u9

−98v8u9 +42v7u9−8v6u9−8v11u8 +42v10u8

−98v9u8 +124v8u8−84v7u8 +29v6u8−4v5u8 +v11u7

−10v10u7 +42v9u7−84v8u7 +91v7u7−56v6u7 +17v5u7

−2v4u7 +v10u6−8v9u6 +29v8u6−56v7u6 +58v6u6

−34v5u6 +8v4u6−4v8u5 +17v7u5−34v6u5 +33v5u5

−16v4u5 +5v3u5−2v7u4 +8v6u4−16v5u4 +19v4u4

−8v3u4 +v2u4 +5v5u3−8v4u3 +8v3u3−4v2u3 +v4u2

−4v3u2 +3v2u2−2vu2−2v2u+vu+1)

H̃(2)(2, 1)(u, v) =
(1 − u)2(1 − v)2

(
√
uv)13

(1 + uv)(1 − 2u2v − 2uv2 + 2u2v2 + u4v2

+ 4u3v3 − 4u4v3 + u2v4 − 4u3v4 + 2u4v4)

H̃(2)(2, 0)(u, v) =
(1 − u)2(1 − v)2

2(
√
uv)13(1 + uv)

(2 + 4uv − 4u2v − 4uv2 + 6u2v2

− 8u3v2 + 2u4v2 − 8u2v3 + 16u3v3 − 12u4v3 + 4u5v3

+ 2u2v4 − 12u3v4 + 25u4v4 − 14u5v4 + 3u6v4 + 4u3v5

− 14u4v5 + 20u5v5 − 6u6v5 + 3u4v6 − 6u5v6 + 5u6v6)

H̃(2)(3, 1)(u, v) =
(1 − u)2(1 − v)2

(
√
uv)31

(10v14u14 − 32v13u14 + 36v12u14

− 18v11u14 + 3v10u14 − 32v14u13 + 112v13u13
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− 154v12u13 + 101v11u13 − 32v10u13 + 4v9u13

+ 36v14u12 − 154v13u12 + 269v12u12 − 248v11u12

+ 123v10u12 − 30v9u12 + 3v8u12 − 18v14u11

+ 101v13u11 − 248v12u11 + 329v11u11 − 250v10u11

+ 109v9u11 − 24v8u11 + v7u11 + 3v14u10 − 32v13u10

+ 123v12u10 − 250v11u10 + 298v10u10 − 208v9u10

+ 79v8u10 − 14v7u10 + v6u10 + 4v13u9 − 30v12u9

+ 109v11u9 − 208v10u9 + 226v9u9 − 146v8u9

+ 53v7u9 − 8v6u9 + 3v12u8 − 24v11u8 + 79v10u8

− 146v9u8 + 159v8u8 − 96v7u8 + 30v6u8 − 4v5u8

+ v11u7 − 14v10u7 + 53v9u7 − 96v8u7 + 98v7u7

− 58v6u7 + 17v5u7 − 2v4u7 + v10u6 − 8v9u6

+ 30v8u6 − 58v7u6 + 59v6u6 − 34v5u6 + 8v4u6

− 4v8u5 + 17v7u5 − 34v6u5 + 33v5u5 − 16v4u5

+ 5v3u5 − 2v7u4 + 8v6u4 − 16v5u4 + 19v4u4

− 8v3u4 + v2u4 + 5v5u3 − 8v4u3 + 8v3u3

− 4v2u3 + v4u2 − 4v3u2 + 3v2u2 − 2vu2

− 2v2u+ vu+ 1).

(2) g = 3

H̃(0)(2, 1)(u, v) =
(1 − u)3(1 − v)3

(
√
uv)17

(1 + uv − 3u2v − 3uv2 + 2u2v2

− 3u3v2 + 3u4v2 − 3u2v3 + 11u3v3 − 6u4v3 + 3u5v3

− u6v3 + 3u2v4 − 6u3v4 + 12u4v4 − 15u5v4 + 3u6v4

+ 3u3v5 − 15u4v5 + 12u5v5 − 6u6v5 − u3v6 + 3u4v6

− 6u5v6 + 3u6v6)

H̃(0)(2, 0)(u, v) =
(1 − u)3(1 − v)3

2(
√
uv)17(1 + uv)

(2 + 4uv − 6u2v − 6uv2 + 6u2v2

− 12u3v2 + 6u4v2 − 12u2v3 + 26u3v3 − 18u4v3

+ 12u5v3 − 2u6v3 + 6u2v4 − 18u3v4 + 47u4v4

− 39u5v4 + 15u6v4 − u7v4 + 12u3v5 − 39u4v5

+ 57u5v5 − 33u6v5 + 9u7v5 − 2u3v6 + 15u4v6
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− 33u5v6 + 39u6v6 − 9u7v6 − u4v7

+ 9u5v7 − 9u6v7 + 7u7v7)

H̃(0)(3, 1)(u, v) =
(1 − u)3(1 − v)3

(
√
uv)37

(15v16u16 − 60v15u16 + 102v14u16

− 93v13u16 + 45v12u16 − 12v11u16 + v10u16 − 60v16u15

+ 276v15u15 − 537v14u15 + 549v13u15 − 324v12u15

+ 102v11u15 − 15v10u15 + v9u15 + 102v16u14

− 537v15u14 + 1167v14u14 − 1407v13u14 + 990v12u14

− 417v11u14 + 102v10u14 − 12v9u14 − 93v16u13

+ 549v15u13 − 1407v14u13 + 2003v13u13 − 1776v12u13

+ 1020v11u13 − 362v10u13 + 72v9u13 − 6v8u13

+ 45v16u12 − 324v15u12 + 990v14u12 − 1776v13u12

+ 2069v12u12 − 1587v11u12 + 798v10u12 − 251v9u12

+ 42v8u12 − 3v7u12 − 12v16u11 + 102v15u11

− 417v14u11 + 1020v13u11 − 1587v12u11 + 1659v11u11

− 1173v10u11 + 537v9u11 − 156v8u11 + 21v7u11

+ v16u10 − 15v15u10 + 102v14u10 − 362v13u10

+ 798v12u10 − 1173v11u10 + 1151v10u10 − 777v9u10

+ 330v8u10 − 80v7u10 + 12v6u10 + v15u9 − 12v14u9

+ 72v13u9 − 251v12u9 + 537v11u9 − 777v10u9

+ 731v9u9 − 456v8u9 + 195v7u9 − 41v6u9 + 3v5u9

− 6v13u8 + 42v12u8 − 156v11u8 + 330v10u8

− 456v9u8 + 447v8u8 − 261v7u8 + 99v6u8 − 21v5u8

− 3v12u7 + 21v11u7 − 80v10u7 + 195v9u7 − 261v8u7

+ 242v7u7 − 147v6u7 + 45v5u7 − 10v4u7 + 12v10u6

− 41v9u6 + 99v8u6 − 147v7u6 + 122v6u6 − 78v5u6

+ 21v4u6 − v3u6 + 3v9u5 − 21v8u5 + 45v7u5

− 78v6u5 + 63v5u5 − 30v4u5 + 12v3u5 − 10v7u4

+ 21v6u4 − 30v5u4 + 34v4u4 − 12v3u4

+ 3v2u4 − v6u3 + 12v5u3 − 12v4u3 + 13v3u3

− 6v2u3 + 3v4u2 − 6v3u2 + 3v2u2

− 3vu2 − 3v2u+ vu+ 1)
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H̃(1)(2, 1)(u, v) =
(1 − u)3(1 − v)3

(
√
uv)19

(1 + uv)(1 − 3u2v − 3uv2

+ 2u2v2 + 3u4v2 + 9u3v3 − 6u4v3

− u6v3 + 3u2v4 − 6u3v4 + 3u4v4 − 9u5v4

+ 6u6v4 − 9u4v5 + 18u5v5

− 6u6v5 − u3v6 + 6u4v6 − 6u5v6 + 3u6v6)

H̃(1)(2, 0)(u, v) =
(1 − u)3(1 − v)3

2(
√
uv)19(1 + uv)

(2 + 4uv − 6u2v − 6uv2

+ 6u2v2 − 12u3v2 + 6u4v2 − 12u2v3

+ 26u3v3 − 18u4v3 + 12u5v3 − 2u6v3 + 6u2v4

− 18u3v4 + 46u4v4 − 42u5v4 + 18u6v4 − 4u7v4

+ 12u3v5 − 42u4v5 + 65u5v5 − 63u6v5 + 21u7v5

− 3u8v5 − 2u3v6 + 18u4v6 − 63u5v6 + 75u6v6

− 51u7v6 + 9u8v6 − 4u4v7 + 21u5v7

− 51u6v7 + 39u7v7 − 15u8v7 − 3u5v8

+ 9u6v8 − 15u7v8 + 5u8v8)

H̃(2)(2, 1)(u, v) =
(1 − u)3(1 − v)3

(
√
uv)21

(1 + uv − 3u2v − 3uv2

+ 2u2v2 − 3u3v2 + 3u4v2 − 3u2v3 + 11u3v3

− 6u4v3 + 3u5v3 − u6v3 + 3u2v4 − 6u3v4

+ 12u4v4 − 15u5v4 + 6u6v4 − u7v4 + 3u3v5

− 15u4v5 + 21u5v5 − 18u6v5 + 9u7v5 − 2u8v5

− u3v6 + 6u4v6 − 18u5v6 + 30u6v6 − 24u7v6

+ 6u8v6 − u4v7 + 9u5v7 − 24u6v7 + 21u7v7

− 9u8v7 − 2u5v8 + 6u6v8 − 9u7v8 + 3u8v8)

H̃(2)(2, 0)(u, v) =
(1 − u)3(1 − v)3

2(
√
uv)21(1 + uv)

(2 + 4uv − 6u2v − 6uv2

+ 6u2v2 − 12u3v2 + 6u4v2 − 12u2v3 + 26u3v3

− 18u4v3 + 12u5v3 − 2u6v3 + 6u2v4 − 18u3v4

+ 46u4v4 − 42u5v4 + 18u6v4 − 4u7v4 + 12u3v5

− 42u4v5 + 66u5v5 − 66u6v5 + 30u7v5 − 6u8v5
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− 2u3v6 + 18u4v6 − 66u5v6 + 103u6v6 − 81u7v6

+ 33u8v6 − 3u9v6 − 4u4v7 + 30u5v7 − 81u6v7

+ 111u7v7 − 57u8v7 + 15u9v7 − 6u5v8

+ 33u6v8 − 57u7v8 + 57u8v8 − 15u9v8

− 3u6v9 + 15u7v9 − 15u8v9 + 7u9v9).
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