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Rank two ADHM invariants and wallcrossing
W.-Y. Chuang, D.-E. Diaconescu and G. Pan

Generalized Donaldson–Thomas invariants corresponding to local
D6–D2–D0 configurations are defined applying the formalism of
Joyce and Song to ADHM sheaves on curves. A wallcrossing for-
mula for invariants of D6-rank two is proven and shown to agree
with the wallcrossing formula of Kontsevich and Soibelman. Using
this result, the asymptotic D6-rank two invariants of (−1,−1) and
(0,−2) local rational curves are computed in terms of the D6-rank
one invariants.
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1. Introduction

Motivated by string theory considerations, ADHM invariants of curves were
introduced in [6] as an alternative construction for the local stable pair
theory of curves of Pandharipande and Thomas [17]. They have been sub-
sequently generalized in [5] employing a natural variation of the stability
condition. An important feature of this construction resides in its com-
patibility with the Joyce–Song theory of generalized Donaldson–Thomas
invariants [14]. Explicit wallcrossing formulas for ADHM invariants have
been derived and proven in [2] using Joyce theory [9–11,13] and Joyce–Song
theory [14].

The purpose of the present paper is to study a further generalization
of ADHM invariants allowing higher rank framing sheaves. This generaliza-
tion is motivated in part by recent work of Toda [21] and Stoppa [20] on
rank two generalized Donaldson–Thomas invariants of Calabi–Yau three-
folds. In contrast to [20, 21], the invariants constructed here count local
objects with nontrivial D2-rank, in physics terminology. Similar rank two
Donaldson–Thomas invariants of Calabi–Yau three-folds are defined and
computed in [18, 19] using both wallcrossing and direct virtual localization
methods.

Local invariants with higher D6-rank are also interesting on physical
grounds. Explicit results for such invariants are required in order to test
the OSV conjecture [16] for magnetically charged black holes. In partic-
ular, such results would be needed in order to extend the work of [1] to
local D-brane configuration with nonzero D6-rank. According to [4], count-
ing invariants with higher D6-rank are also expected to determine certain
subleading corrections to the OSV formula [16]. Moreover, walls of marginal
stability for BPS states with nontrivial D6-charge in a local conifold model
have been studied from a supergravity point of view in [8]. The construction
presented below should be viewed as a rigorous mathematical framework
for the microscopic theory of such BPS states. A detailed comparison will
appear elsewhere.
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From the point of view of six-dimensional gauge theory dynamics, the
invariants constructed in this paper can be thought of as a higher rank
generalization of local Donaldson–Thomas invariants of curves. It should
be noted however that they are not the same as the higher rank local DT
invariants defined in [6], which, from a gauge theoretic point of view, are
Coulomb branch invariants (see also [3,8] for a noncommutative gauge theory
approach.) Instead, employing a different treatment of boundary conditions
in the six-dimensional gauge theory, the approach presented below yields
Higgs branch invariants.

The geometric setup of the present construction is specified by a triple
X = (X, M1, M2) where X is a smooth projective curve of X over C of genus
g, and M1, M2 are line bundles on X so that M = M1 ⊗X M2 is isomorphic
to the anticanonical bundle K−1

X . The data X determine an abelian category
CX of quiver sheaves on X constructed in [5, Section 3].

Section 2 consists of a step-by-step construction of counting invariants
for objects of CX following [14]. The required stability conditions, cham-
ber structure and moduli stacks are presented in Sections 2.1, 2.2 and
2.4, respectively. Some basic homological algebra results are provided in
Section 2.3. The construction is concluded in Section 2.5. Given a sta-
bility parameter δ ∈ R the geometric data X determines a function Aδ :
Z

×3 → Q, which assigns to any triple γ = (r, e, v) the virtual number of
δ-semistable ADHM sheaves on X of type γ. This function is supported
on Z≥1 × Z × Z≥0. In physics terms, the integers (r, e, v) correspond to
D2-, D0- and D6-brane charges, respectively. In the derivation of wallcross-
ing formulas, it is more convenient to use the alternative notation γ = (α, v),
α = (r, e) ∈ Z × Z. Moreover, the invariants Aδ(α, 0) are manifestly indepen-
dent of δ, and will be denoted by H(α) since they are counting invariants
for Higgs sheaves on X.

Note that for a fixed type γ there is a finite set Δ(γ) ⊂ R of criti-
cal stability parameters dividing the real axis in stability chambers (see
Lemma 2.6). The invariants Aδ(γ) are constant when δ varies within a sta-
bility chamber. The chamber δ > max Δ(γ) will be referred to as the asymp-
totic chamber, and the corresponding invariants will be also denoted by
A∞(γ). The main result of this paper is a wallcrossing formula for v = 2
ADHM invariants at a critical stability parameter δc > 0 of type (α, 2),
for arbitrary α = (r, e) ∈ Z≥1 × Z. Certain preliminary definitions will be
needed in the formulation of this result, as follows.

For any integer l ∈ Z≥1, and any v ∈ {1, 2} let HN −(α, v, δc, l, l − 1)
denote the set of ordered sequences ((αi))1≤i≤l, αi ∈ Z≥1 × Z satisfying the
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following conditions:

(1.1) α1 + · · · + αl = α

and

(1.2)
e1

r1
= · · · =

el−1

rl−1
=

el + vδc

rl
=

e + vδc

r
.

For any integer l ∈ Z≥2, let HN −(α, 2, δc, l, l − 2) denote the set of ordered
sequences ((αi))1≤i≤l, αi ∈ Z≥1 × Z satisfying condition (1.1),

(1.3)
e1

r1
= · · · =

el−2

rl−2
=

el−1 + δc

rl−1
=

el + δc

rl
=

e + 2δc

r

and

(1.4) 1/rl−1 < 1/rl.

Let 0 < δ− < δc < δ+ be stability parameters so that there are no critical
stability parameters of type (α, 2) in the intervals [δ−, δc), (δc, δ+]. For
any triple (β, v), β ∈ Z≥1 × Z, v ∈ {1, 2}, the invariants Aδ±(β, v) will be
denoted by A±(β, v). Then the following result holds for δ−, δ+ sufficiently
close to δc.

Theorem 1.1. The v = 2 ADHM invariants satisfy the following wallcross-
ing formula:

A−(α, 2) − A+(α, 2)

(1.5)

=
∑

l≥2

1
(l − 1)!

∑

(αi)∈HN −(α,2,δc,l,l−1)

A+(αl, 2)
l−1∏

i=1

f2(αi)H(αi)

− 1
2

∑

l≥1

1
(l − 1)!

∑

(αi)∈HN −(α,2,δc,l+1,l−1)

g(αl+1, αl)A+(αl, 1)A+(αl+1, 1)

×
l−1∏

i=1

f2(αi)H(αi) +
1
2

∑

(α1,α2)∈HN −(α,2,δc,2,0)

∑

l1≥1

∑

l2≥1

1
(l1 − 1)!

1
(l2 − 1)!
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×
∑

(α1,i)∈HN −(α1,1,δc,l1,l1−1)

∑

(α2,i)∈HN −(α2,1,δc,l2,l2−1)

× g(α1, α2)A+(α1,l1 , 1)A+(α2,l2 , 1)
l1−1∏

i=1

f1(α1,i)H(α1,i)

×
l2−1∏

i=1

f1(α2,i)H(α2,i)

where

fv(α) = (−1)v(e−r(g−1))v(e − r(g − 1)), v = 1, 2

g(α1, α2) = (−1)e1−e2−(r1−r2)(g−1)(e1 − e2 − (r1 − r2)(g − 1))

for any α = (r, e), respectively, αi = (ri, ei), i = 1, 2, and the sum on the
right-hand side of Equation (1.5) is finite.

Theorem 1.1 is proven in Section 3.2 using certain stack function iden-
tities established in Section 3.1. Formula (1.5) is shown to agree with the
wallcrossing formula of Kontsevich and Soibelman in Section 4.

An application of Theorem 1.1 to genus zero invariants is presented in
Section 5. Consider the following generating functions:

(1.6) ZX ,v(u, q) =
∑

r≥1

∑

n∈Z

urqnA∞(r, n − r, v)

where v = 1, 2. Using the wallcrossing formula (1.5) and the comparison
result of Section 4, the following closed formulas are proven in Section 5.

Corollary 1.1. Suppose X is a genus 0 curve and M1 � OX(d1),
M2 � OX(d2) where (d1, d2) = (1, 1) or (0, 2). Then

ZX ,1(u, q) =
∞∏

n=1

(1 − u(−q)n)(−1)d1−1n,

ZX ,2(u, q) =
1
4

∞∏

n=1

(1 − uqn)2(−1)d1−1n

− 1
2

∑

r1>r2≥1, n1,n2∈Z

or r1=r2≥1, n2>n1
or r1≥1, n1∈Z, r2=n2=0

(n1 − n2)(−1)(n1−n2)

× A∞(r1, n1 − r1, 1)A∞(r2, n2 − r2, 1)ur1+r2qn1+n2 .(1.7)
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Remark 1.1. The computations in Section 5 based on the Kontsevich–
Soibelman wallcrossing formula can be generalized to invariants of arbitrary
rank v ≥ 2. Then it follows that the rank v invariants of local (−1,−1)
and (0,−2) curves are recursively determined by the invariants of lower
rank 1 ≤ v′ ≤ v. The resulting formulas are quite complicated and will be
omitted.

2. Higher rank ADHM invariants

2.1. Definitions and basic properties

Let X be a smooth projective curve of genus g ∈ Z≥0 over an infinite field
K of characteristic 0 equipped with a very ample line bundle OX(1). Let
M1, M2 be fixed line bundles on X equipped with a fixed isomorphism
M1 ⊗X M2 � K−1

X . Set M = M1 ⊗X M2. For fixed data X = (X, M1, M2),
let QX denote the abelian category of (M1, M2)-twisted coherent ADHM
quiver sheaves. An object of QX is given by a collection
E = (E, E∞, Φ1, Φ2, φ, ψ) where

• E, E∞ are coherent OX -modules;

• Φi : E ⊗X Mi → E, i = 1, 2, φ : E ⊗X M1 ⊗X M2 → E∞, ψ : E∞ → E
are morphisms of OX -modules satisfying the ADHM relation

(2.1) Φ1 ◦ (Φ2 ⊗ 1M1) − Φ2 ◦ (Φ1 ⊗ 1M2) + ψ ◦ φ = 0.

The morphisms are natural morphisms of quiver sheaves i.e., collections
(ξ, ξ∞) : (E, E∞) → (E′, E′

∞) of morphisms of OX -modules satisfying the
obvious compatibility conditions with the ADHM data.

Let CX be the full abelian subcategory of QX consisting of objects with
E∞ = V ⊗ OX , where V is a finite-dimensional vector space over K (pos-
sibly trivial). Note that given any two objects E , E ′ of CX , the morphisms
ξ∞ : V ⊗ OX → V ′ ⊗ OX must be of the form ξ∞ = f ⊗ 1OX

, where f : V →
V ′ is a linear map.

An object E of CX will be called locally free if E is a coherent locally
free OX -module. Given a coherent OX -module E we will denote by r(E),
d(E), μ(E) the rank, degree slope of E, respectively, if r(E) 
= 0. Recall that
any coherent locally free sheaf E on X has a unique Harder–Narasimhan
filtration 0 ⊂ E1 ⊂ · · · ⊂ Eh = E, h ∈ Z≥1, with respect to slope stability.
In the following set μmax(E) = μ(E1).
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The numerical type of an object E of CX is the collection (r(E), d(E),
v(E)) = (r(E), d(E), dim(V )) ∈ Z≥0 × Z × Z≥0. An object of CX will be
called an ADHM sheaf in the following. Throughout this paper, the inte-
ger v(E) will be called the rank of E , as opposed to the terminology used
in [2,5,6], where the rank of E was defined to be r(E). Note that the objects
of CX with v(E) = 0 form a full abelian category which is naturally equiva-
lent to the abelian category of Higgs sheaves on X with coefficient bundles
(M1, M2) (see, e.g., [5, Appendix A] for a brief summary of the relevant
definitions).

Let δ ∈ R be a stability parameter. The δ-degree of an object E of CX is
defined by

(2.2) degδ(E) = d(E) + δv(E).

If r(E) 
= 0, the δ-slope of E is defined by

(2.3) μδ(E) =
degδ(E)

r(E)
.

Definition 2.1. Let δ ∈ R be a stability parameter. A nontrivial object E
of CX is δ-(semi)stable if

(2.4) r(E) degδ(E ′) (≤) r(E′) degδ(E)

for any proper nontrivial subobject 0 ⊂ E ′ ⊂ E .

The following lemmas summarize some basic properties of δ-semistable
ADHM sheaves. The proofs are either standard or very similar to those
of [5, Lemmas 2.4, 3.7] and will be omitted.

Lemma 2.1. Suppose E is a δ-semistable framed ADHM sheaf with
r(E) > 0 for some δ ∈ R. Then

(i) E is locally free;

(ii) if δ > 0, there is no nontrivial linear subspace 0 ⊂ V ′ ⊆ V so that
ψ|V ′⊗OX

is identically zero. Similarly, if δ < 0, there is no proper lin-
ear subspace 0 ⊆ V ′ ⊂ V so that Im(φ) ⊆ V ′ ⊗ OX ; and

(iii) if E is δ-stable any endomorphism of E in CX is either trivial or an
isomorphism. If the ground field K is algebraically closed, the endo-
morphism ring of E is canonically isomorphic to K.



424 W.-Y. Chuang, D.-E. Diaconescu and G. Pan

Lemma 2.2. For fixed (r, e, v) ∈ Z>0 × Z × Z≥0 there is a constant c ∈ R

(depending only on X and (r,e,v)) so that for any δ ∈ R, any δ-semistable
framed ADHM sheaf of type (r, e, v) satisfies

μmax(E) < c.

In particular, the set of isomorphism classes of framed ADHM sheaves of
fixed type (r, e, v) which are δ-semistable for some δ ∈ R is bounded.

Given a locally free ADHM sheaf E = (E, Φ1, Φ2, φ, ψ) on X of type
(r, e, v) ∈ Z≥1 × Z × Z≥0, the data

(2.5)

Ẽ = E∨ ⊗X M−1

Φ̃i = (Φ∨
i ⊗ 1Mi

) ⊗ 1M−1 : Ẽ ⊗ Mi → Ẽ

φ̃ = ψ∨ ⊗ 1M−1 : Ẽ ⊗X M → V ∨ ⊗ OX

ψ̃ = φ∨ : V ∨ ⊗ OX → Ẽ

with i = 1, 2, determine a locally free ADHM sheaf Ẽ of type (r, −e + 2r
(g − 1), v) where g is the genus of X. Ẽ will be called the dual of E in the
following. Then the following lemma is straightforward.

Lemma 2.3. Let δ ∈ R be a stability parameter and let E be a locally free
ADHM sheaf on X. Then E is δ-(semi)stable if and only if Ẽ is (−δ)-
(semi)stable.

2.2. Chamber structure

This subsection summarizes the main properties of δ-stability chambers.

Definition 2.2. An ADHM sheaf E of type (r, e, v) ∈ Z≥1 × Z × Z≥0 is
asymptotically (semi)stable if the following conditions hold:

(i) E is locally free, ψ : V ⊗ OX → E is not identically zero, and there
is no saturated proper nontrivial subobject 0 ⊂ E ′ ⊂ E in CX so that
v(E ′)/r(E ′) > v/r.

(ii) Any proper nontrivial subobject 0 ⊂ E ′ ⊂ E with v(E ′)/r(E ′) = v/r
satisfies the slope inequality μ(E′) (≤) μ(E).

Here a subobject E ′ ⊂ E is called saturated if the underlying coherent
sheaf E′ is saturated in E. Note that according to [5, Lemma 3.10], any
proper subobject 0 ⊂ E ′ ⊂ E admits a canonical saturation E ′ ⊂ E .
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Lemma 2.4. The set of isomorphism classes of asymptotically semistable
ADHM sheaves of fixed type (r, e, v) ∈ Z≥1 × Z × Z≥1 is bounded.

Proof. The proof is based on Maruyama’s boundedness theorem. Suppose
E is asymptotically semistable of type (r, e, v), and the underlying coherent
sheaf E is not semistable. Then there is a nontrivial Harder–Narasimhan
filtration

0 ⊂ E1 ⊂ · · · ⊂ Eh = E

with h ≥ 2 so that μ(Ej) > μ(E) and r(Ej) < r for all 1 ≤ j ≤ h − 1. Sup-
pose Ej is Φi-invariant, i = 1, 2, and Im(ψ) ⊆ Ej for some 1 ≤ j ≤ h − 1.
Then the data Ej = (Ej , Φi|Ej⊗XMi

, φ|Ej⊗XM , ψ) are subobject of E with

v(Ej)/r(Ej) =
v

r(Ej)
>

v

r
.

Since Ej ⊂ E is saturated, it follows that Ej violates condition (i) in Defi-
nition 2.2. Therefore, for any 1 ≤ j ≤ h, Ej is either not preserved by some
Φi, i = 1, 2, or it does not contain the image of ψ. From this point on the
proof is identical to the proof of [6, Proposition 2.7]. �

Definition 2.3. Let δ ∈ R>0. A δ-semistable ADHM sheaf E of type
(r, e, v) ∈ Z≥1 × Z × Z≥0 is generic if it is either δ-stable or any proper non-
trivial subobject 0 ⊂ E ′ ⊂ E of type (r′, e′, v′) ∈ Z≥1 × Z × Z≥0 satisfies

(2.6)
e′

r′ =
e

r
,

v′

r′ =
v

r
.

The stability parameter δ ∈ R>0 is called generic of type (r, e, v) if any
δ-semistable ADHM sheaf of type (r, e, v) is generic. The stability param-
eter δ ∈ R>0 is called critical of type (r, e, v) if there exists a nongeneric
δ-semistable ADHM sheaf of type (r, e, v).

Lemma 2.2 implies the following.

Lemma 2.5. For fixed (r, e, v) ∈ Z≥1 × Z × Z≥1 there exists δ∞ ∈ R>0 so
that for all δ ≥ δ∞ an ADHM sheaf E of type (r, e, v) is δ-(semi)stable if and
only if it is asymptotically (semi)stable.

Proof. The proof is similar to the proof of lemma [5, Lemma 4.7]. Some
details will be provided for convenience. It is straightforward to prove that
asymptotic stability implies δ-stability for sufficiently large δ using
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Lemma 2.2. The converse is slightly more involved. First note that given
any nontrivial locally free ADHM sheaf E , any linear subspace V ′ ⊂ V deter-
mines a canonical subobject EV ′ ⊂ E . EV ′ is the saturation of the subobject
of E generated by V ′ ⊗ OX by successive applications of the ADHM mor-
phisms ψ, Φi, φ. Since EV ′ is canonically determined by V ′ and E , Lemma 2.2
implies that the set of isomorphism classes of subobjects EV ′ , where E is a
δ-semistable ADHM sheaf of type (r, e, v) for some δ > 0 is bounded. More-
over, by construction, any subobject 0 ⊂ E ′ ⊂ E contains the canonical sub-
object EV ′ .

Now suppose that for any δ > 0 there exists a δ-semistable ADHM sheaf
E of type (r, e, v) which is not asymptotically stable. Let 0 ⊂ E ′ ⊂ E be a
saturated nontrivial proper saturated subobject violating the asymptotic
stability conditions. Note that E ′ cannot violate condition (ii) in Defini-
tion 2.2 since E is δ-semistable. Therefore, it must violate condition (i) i.e.,
v′/r′ > v/r where r′ = r(E ′). In particular v′ = v(E ′) > 0. Then the subob-
ject EV ′ also violates condition (i) since

v(EV ′)
r(EV ′)

=
v′

r(EV ′)
≥ v′

r′ > v/r.

Since E is δ-semistable μδ(EV ′) ≤ μδ(E). However, as noted above, the set
of isomorphism classes of all EV ′ is bounded, therefore the set of all types
(r(EV ′), d(EV ′), v(EV ′)) is finite. Taking δ sufficiently large, this leads to a
contradiction. �

By analogy with [5, Lemmas 4.4, 4.6], Lemmas 2.5 and 2.3 imply the
following.

Lemma 2.6. Let (r, e, v) ∈ Z≥1 × Z × Z≥1 be a fixed type. Then there is a
finite set Δ(r, e, v) ⊂ R of critical stability parameters of type (r, e, v). Given
any two stability parameters δ, δ′ ∈ R, δ < δ′ so that [δ, δ′] ∩ Δ(r, e, v) = ∅,
the set of δ-semistable ADHM sheaves of type (r, e, v) is identical to the set
of δ′-semistable ADHM sheaves of type (r, e, v).

Remark 2.1. It is straightforward to check that Δ(1, e, v) = {0} for any
v ≥ 1.

Lemma 2.7. Let (r, e, v) ∈ Z≥1 × Z × Z≥1 and let δc > 0 be a critical sta-
bility parameter of type (r, e, v). Let δ± > 0 be stability parameters so that
δ− < δc < δ+ and [δ−, δc) ∩ Δ(r, e, v) = ∅, (δc, δ+] ∩ Δ(r, e, v) = ∅. If E is
a δ±-semistable ADHM sheaf of type (r, e, v), then E is also δc-semistable.
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Definition 2.4. Let (r, v) ∈ Z≥1 × Z≥1.

(a) A positive admissible configuration of type (r, v) is an ordered
sequence of integral points: (ρi = (ri, vi) ∈ Z≥1 × Z≥0)1≤i≤h, h≥1 sat-
isfying the following conditions:
• ρ1 + · · · + ρh = (r, v).
• ri+1vi > rivi+1 for all i = 1, . . . , h − 1.

(b) A negative admissible configuration of type (r, v) is an ordered
sequence of integral points: (ρi = (ri, vi) ∈ Z≥1 × Z≥0)1≤i≤h, h≥1 sat-
isfying the following conditions:
• ρ1 + · · · + ρh = (r, v).
• ri+1vi < rivi+1 for all i = 1, . . . , h − 1.

Remark 2.2. (i) It is straightforward to prove that for fixed (r, v) ∈ Z≥1 ×
Z≥1 the set of positive, respectively negative, admissible configurations is
finite. These sets will be denoted by HN ±(r, v).

(ii) The only positive, respectively negative admissible configuration of
type (r, v) with h = 1 is (ρ = (r, v)).

Lemma 2.8. Let δc ∈ R>0 be a critical stability parameter of type (r, e, v) ∈
Z≥1 × Z × Z≥1. Then the following hold:

(i) There exists ε+ > 0, so that (δc, δc + ε+] ∩ Δ(r, e, v) = ∅ and the fol-
lowing holds for any δ+ ∈ (δc, δc + ε+). A locally free ADHM sheaf
E of type (r, e, v) on X is δc-semistable if and only if it is either δ+-
semistable or there exists a unique filtration of the form

(2.7) 0 = E0 ⊂ E1 ⊂ · · · ⊂ Eh = E

with h ≥ 2 satisfying the following conditions:
• The successive quotients Fi = Ei/Ei−1, i = 1, . . . , h of filtration

(2.7) are locally free ADHM sheaves with numerical types (ri, ei, vi)
∈ Z≥1 × Z × Z≥0. δ+ is noncritical of type (ri, ei, vi), Fi is
δ+-semistable and μδc(Fi) = μδc(E) for all i = 1, . . . , h.

• The sequence ρi = (ri, vi), i = 1, . . . , h is a positive admissible con-
figuration of type (r, e, v).

(ii) There exists ε− > 0, so that [δc − ε−, δc) ∩ Δ(r, e, v) = ∅ and the fol-
lowing holds for any δ− ∈ (δc − ε−, δc). A locally free ADHM sheaf
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E of type (r, e, v) on X is δc-semistable if and only if it is either δ−-
semistable or there exists a unique filtration of the form

(2.8) 0 = E0 ⊂ E1 ⊂ · · · ⊂ Eh = E

with h ≥ 2 satisfying the following conditions:
• The successive quotients Fi = Ei/Ei−1, i = 1, . . . , h of filtration

(2.8) are locally free ADHM sheaves with numerical types (ri, ei, vi)
∈ Z≥1 × Z × Z≥0. δ− is noncritical of type (ri, ei, vi), Fi is
δ−-semistable and μδc(Fi) = μδc(E) for all i = 1, . . . , h.

• The sequence ρi = (ri, vi), i = 1, . . . , h is a negative admissible con-
figuration of type (r, e, v).

Proof. The proof is similar to the proof of [5, Lemma 4.13]. Details are
included below for completeness. Note that it suffices to prove statement
(i) since the proof of (ii) is analogous.

Let δ+ > δc be an arbitrary noncritical stability parameter of type
(r, e, v) so that (δc, δ+] ∩ Δ(r, e, v) = ∅. Suppose E is a δc-semistable ADHM
sheaf on X. Then E is either δ+-stable or there is a Harder–Narasimhan
filtration of E with respect to δ+-semistability

(2.9) 0 ⊂ E1 ⊂ · · · ⊂ Eh = E

where h ≥ 2. It is straightforward to check that El, 1 ≤ l ≤ h must have
r(El) ≥ 1 and the successive quotients Fl, 0 ≤ l ≤ h − 1 must also have
rl ≥ 1. Then by the general properties of Harder–Narasimhan filtrations

(2.10) μδ+(E1) > μδ+(E2/E1) > · · · > μδ+(Eh/Eh−1)

and

(2.11) μδ+(El) > μδ+(E)

for all 1 ≤ l ≤ h − 1. Since E is δc-semistable by assumption, inequalities
(2.11) imply that

(2.12) v(El)/r(El) > v/r

for all l = 1, . . . , h. Note that v(El) = v1 + · · · + vl, r(El) = r1 + · · · + rl for
any l = 1, . . . , h.
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Moreover, using the δc-semistability condition and inequalities (2.11)
we have

(2.13) δ+

(
v

r
− v(El)

r(El)

)
< μ(El) − μ(E) ≤ δc

(
v

r
− v(El)

r(El)

)

for all l = 1, . . . , h.
Now let γ > δc be a fixed stability parameter so that (δc, γ] ∩

Δ(r, e, v) = ∅. Using Grothendieck’s lemma and Lemma 2.2, inequalities
(2.13) imply that the set of isomorphism classes of locally free ADHM
sheaves E ′ on X satisfying condition (�) below is bounded.

(�) There exists a δc-semistable ADHM sheaf E of type (r, e, v) and a sta-
bility parameter δ+ ∈ (δc γ] so that E ′ � El for some l ∈ {1, . . . , h},
where 0 ⊂ E1 ⊂ · · · ⊂ Eh = E , h ≥ 1, is the Harder–Narasimhan filtra-
tion of E with respect to δ+-semistability.

Then it follows that the set of numerical types (r′, e′, v′) of locally free
ADHM sheaves E ′ satisfying property (�) is finite. This implies that there
exists 0 < ε+ < γ − δc so that for any δ+ ∈ (δc, δc + ε+), and any
δc-semistable ADHM sheaf E of type (r, e, v) inequalities (2.13) can be sat-
isfied only if

(2.14) μδc(El) = μδc(E)

for all l = 1, . . . , h. Hence also

μδc(El/El−1) = μδc(E)

for all l = 2, . . . , h. Then inequalities (2.10) and (2.12) imply that the
sequence ρl = (rl, vl), l = 1, . . . , h is a positive admissible configuration.
Therefore, for all δ+ ∈ (δc, δc + ε+), any locally free δc-semistable ADHM
sheaf E of type (r, e, v) is either δ+-stable or has a Harder–Narasimhan fil-
tration with respect to δ+-semistability as in Lemma 2.8(i).

Next note that the set of numerical types

Sδc(r, e, v){(r′, e′, v′) ∈ Z≥1 × Z × Z≥0|0 < r′ ≤ r,

0 ≤ v′ ≤ v, r(e′ + δcv
′) = r′(e + δcv)}(2.15)

is finite. Therefore, 0 < ε+ < γ − δi above may be chosen so that there are no
critical stability parameters of type (r′, e′, v′) in the interval (δc, δc + ε+) for
any (r′, e′, v′) ∈ Sδc(r, e, v). In particular, δ+ is noncritical of type (ri, ei, vi),
i = 1, . . . , h for any Harder–Narasihan filtration as above.
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Conversely, suppose E is a locally free ADHM sheaf of type (r, e, v) on
X which has a filtration of the form (2.7) with E ′ δ+-stable and satisfying
the conditions of Lemma 2.8(i) for some δ+ ∈ (δc, δc + ε+). By the above
choice of ε+, there are no critical stability parameters of type (ri, ei, vi) in
the interval (δc, δc + ε+), for any i = 1, . . . , h. Since Fi are δ+-semistable,
Lemma 2.7 implies that Fi is also δc-semistable, for any i = 1, . . . , h. Hence,
E is also δc-semistable since the Fi have equal δc-slopes. �

2.3. Extension groups

Let E ′, E ′′ be nontrivial locally free objects in CX of types (r′, e′, v′),
(r′′, e′′, v′′) ∈ Z≥1 × Z × Z≥0. Let C(E ′′, E ′) be the three term complex

(2.16)

0 → HomX(E′′, E′) d1−→

HomX(E′′ ⊗X M1, E
′)

⊕
HomX(E′′ ⊗X M2, E

′)
⊕

HomX(E′′ ⊗X M, V ′ ⊗ OX)
⊕

HomX(V ′′ ⊗ OX , E′)

d2−→HomX(E′′ ⊗X M, E′) → 0

where

d1(α) = (−α ◦ Φ′′
1 + Φ′

1 ◦ (α ⊗ 1M1),−α ◦ Φ′′
2 + Φ′

2 ◦ (α ⊗ 1M2),
φ′ ◦ (α ⊗ 1M ),−α ◦ ψ′′)

for any local sections (α, α∞) of the first term and

d2(β1, β2, γ, δ) = β1 ◦ (Φ′′
2 ⊗ 1M1) − Φ′

2 ◦ (β1 ⊗ 1M2) − β2 ◦ (Φ′′
1 ⊗ 1M2)

+ Φ′
1 ◦ (β2 ⊗ 1M1) + ψ′ ◦ γ + δ ◦ φ′′

for any local sections (β1, β2, γ, δ) of the middle term. The degrees of the
three terms in (2.16) are 0,1 and 2, respectively.

Let C(C(E ′′, E ′)) be the double complex obtained from C(E ′′, E ′) by tak-
ing Čech resolutions and let D(E ′, E ′′) be the diagonal complex of
C(C(E ′′, E ′)). Note that there is a canonical linear map

Hom(V ′′, V ′) → D1(E ′, E ′′) = C0(C1(E ′′, E ′)) ⊕ C1(C0(E ′′, E ′))

f →
[

t(0, 0,−(f ⊗ 1OX
) ◦ φ′′, ψ′ ◦ (f ⊗ 1OX

))
0

]
.
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Given the above expressions for the differentials d1, d2 it is straightforward
to check that this map yields a morphism of complexes

� : Hom(V ′′, V ′)[−1] → D(E ′′, E ′).

Let D̃(E ′′, E ′) denote the cone of �. Then the lemma below follows either
by explicit Čech cochain computations as in [6, Section 4] or using the
methods of [7].

Lemma 2.9. The extension groups Extk
CX

(E ′′, E ′), k = 0, 1 are isomorphic
to the cohomology groups Hk(D̃(E ′′, E ′)), k = 0, 1. Moreover there is an exact
sequence

0 −→H
0(C(E ′′, E ′)) −→ Ext0CX

(E ′′, E ′) −→ Hom(V ′′, V ′)

−→Ext1CX
(E ′′, E ′) −→ H

1(C(E ′′, E ′)) −→ 0(2.17)

where H
k(C(E ′′, E ′)), k = 0, 1 are hypercohomology groups of the complex

C(E ′′, E ′).

Corollary 2.1. Given any two locally free objects E ′, E ′′

(2.18)
dim(Ext0CX

(E ′′, E ′)) − dim(Ext1CX
(E ′′, E ′)) − dim(Ext0CX

(E ′, E ′′))

+ dim(Ext1CX
(E ′, E ′′)) = v′e′′ − v′′e′ − (v′r′′ − v′′r′)(g − 1)

Proof. Follows from the exact sequence (2.17) and the fact that the hyper-
cohomology groups of the complex C(E ′′, E ′) satisfy the duality relation

H
k(C(E ′′, E ′)) � H

3−k(C(E ′, E ′′))∨

for k = 0, . . . , 3. �

2.4. Moduli stacks

In the following, let the ground field K be C. Let Ob(X ) denote the moduli
stack of all objects of the abelian category CX and let Ob(X , r, e, v) denote
the open and closed component of type (r, e, v) ∈ Z≥1 × Z × Z≥0. Standard
arguments analogous to [9, Sections 9, 10] prove that Ob(X ) is an algebraic
stack locally of finite type and it satisfies conditions [9, Assumptions 7.1,
8.1]. Given the boundedness result (2.2), the following is also standard.
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Proposition 2.1. For fixed type (r, e, v) ∈ Z≥1 × Z × Z≥0 and fixed δ
∈ R>0 there is an algebraic moduli stack of finite type Mss

δ (X , r, e, v) of
δ-semistable objects of type (r, e, v) of CX . If δ < δ′ are two stability param-
eters so that [δ, δ′] ∩ Δ(r, e, v) = ∅, the corresponding moduli stacks are
canonically isomorphic. Moreover, for any δ ∈ R there are canonical open
embeddings

(2.19) M
ss
δ (X , r, e, v) ↪→ Ob(X , r, e, v) ↪→ Ob(X ).

2.5. ADHM invariants

ADHM invariants will be defined applying the formalism of Joyce and Song
[14] to δ-semistable ADHM sheaves on X. Given Corollary 2.1, the required
results on Behrend constructible functions are a straightforward generaliza-
tion of the analogous statements proven in [5, Section 7] for ADHM sheaves
with v = 1. Therefore, the construction of generalized Donaldson–Thomas
invariants via Behrend’s constructible functions [14] applies to the present
case.

Recall that the central element in the construction of Joyce and Song
is the stack function algebra SF(Ob(X )), which is Grothendieck group gen-
erated over Q by isomorphism classes of pairs (X, ρ) where X is an alge-
braic stack of finite type over C and ρ : X → Ob(X ) is a representable mor-
phism of stacks. The associative algebra structure is naturally determined
by extensions in the abelian category CX . One then defines a Lie subalge-
bra SFind

alg(Ob(X )) imposing certain conditions on the stabilizers of closed
points x of the stacks X. Namely, the subscript alg stands for “algebra sta-
bilizers”, which requires each such stabilizer Stab(x) to be identified with
the group of invertible elements in a certain subring of the endomorphism
ring EndCX (ρ(x)). The upperscript ind stands for “virtually indecomposable”
stack functions, which requires the closed points x to have virtual rank one
stabilizers. The definition of virtual rank is very technical and will not be
reviewed here in detail (see [12]).

Next let L(X ) be the Lie algebra over Q spanned by {λ(γ) | γ ∈ Z
3} with

Lie bracket

[λ(γ′), λ(γ′′)] = (−1)χ(γ′,γ′′)χ(γ′, γ′′)λ(γ′ + γ′′)

where

χ(γ′, γ′′) = v′′e′ − v′e′′ − (v′′r′ − v′r′′)(g − 1)
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for any γ′ = (r′, e′, v′), γ′′ = (r′′, e′′, v′′). Then there is a Lie algebra
morphism

(2.20) Ψ : SFind
alg(Ob(X )) → L(X )

so that for any stack function of the form [(X, ρ)], with ρ : X ↪→ Ob(X , γ) ↪→
Ob(X ) an open embedding, and X a C

×-gerbe over an algebraic space X,

Ψ([(X, ρ)]) = −χB(X, ρ∗ν)λ(γ)

where ν is Behrend’s constructible function of the stack Ob(X ).
In order to define ADHM invariants note that for any δ ∈ R, the canoni-

cal open embedding stack Mss
δ (X , γ) ↪→ Ob(X ) determines a stack function

dδ(γ) ∈ SF(Ob(X )). For v = 0, the resulting stack functions are independent
of stability parameters and will be denoted by h(γ).

According to [11, Theorem 8.7] the associated log stack function

(2.21) eδ(γ) =
∑

l≥1

(−1)l−1

l

∑

γ1+···+γl=γ

μδ(γi)=μδ(γ), 1≤i≤l

dδ(γ1) ∗ · · · ∗ dδ(γl)

belongs to SFind
alg(Ob(X )) and is supported in Ob(X , γ). Note that for fixed

γ and δ the sum on the right-hand side is finite, and therefore there are no
convergence issues in the present case.

Then, for γ ∈ Z≥1 × Z × Z≥0, the δ-ADHM invariant Aδ(γ) is
defined by

(2.22) Ψ(eδ(γ)) = −Aδ(γ)λ(γ).

Note that eδ(γ) is independent of δ if v = 0. Then the corresponding invari-
ants will be denoted by H(γ).

By analogy with [14], define the invariants Aδ(r, e, v) by the multicover
formula

(2.23) Aδ(r, e, v) =
∑

m≥1
m|r, m|e, m|v

1
m2 Aδ(r/m, e/m, v/m).

Conjecturally, Aδ(r/m, e/m, v/m) are integral for noncritical δ. Obviously,
the alternative notation H(r, e) will be used for v = 0.
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3. Wallcrossing formulas

3.1. Stack function identities

Let γ = (r, e, v) ∈ Z≥1 × Z × Z≥1 and let δc > 0 be a critical stability param-
eter of type γ. Let δ− < δc, δ+ > δc be stability parameters as in
Lemma 2.8. Recall that HN ±(r, v) denote the set of positive, respectively,
negative admissible configurations of type (r, v) introduced in Definition 2.4.
For any h ∈ Z≥2 let HN ±(γ, δc, h) denote the set of ordered sequences of
triples (γi = (ri, ei, vi) ∈ Z≥1 × Z × Z≥0)1≤i≤h so that (ρi = (ri, vi))1≤i≤h ∈
HN ±(r, v),

e1 + · · · + eh = e and
ei + viδc

ri
=

e + vδc

r
for all 1 ≤ i ≤ h.

More generally, given h ∈ Z≥2, for any 0 ≤ k ≤ h − 1 let HN+(γ, δc, h, k)
denote the set of ordered sequences (γi = (ri, ei, vi) ∈ Z≥1 × Z × Z≥0)1≤i≤h

so that

• γ1 + · · · + γh = γ, vh−k+1 = · · · = vh = 0, vi > 0 for 1 ≤ i ≤ h − k, and

e1 + v1δc

r1
= · · · =

eh−k + vh−kδc

rh−k
=

eh−k+1

rh−k+1
= · · · =

eh

rh
=

e + vδc

r
.

• The sequence (ρj = (rj , vj))1≤j≤h−k belongs to HN+

(
r −
∑k

i=1 ri, v
)
.

Similarly, for any 0 ≤ k ≤ h − 1 let HN −(γ, δc, h, k) denote the set of ordered
sequences (γi = (ri, ei, vi) ∈ Z≥1 × Z × Z≥0)1≤i≤h so that

• γ1 + · · · + γh = γ, v1 = · · · = vk = 0, vi > 0 for k + 1 ≤ i ≤ h, and

e1

r1
= · · · =

ek

rk
=

ek+1 + vk+1δc

rk+1
= · · · =

eh + vhδc

rh
=

e + vδc

r
.

• The sequence (ρj = (rk+j , vk+j))1≤j≤h−k belongs to HN −(
r −
∑k

i=1 ri, v
)
.

Remark 3.1. (i) Obviously, in both cases vi > 0 for all 1 ≤ i ≤ h if
k = 0. Moreover,

HN ±(γ, δc, h) = HN ±(γ, δc, h, 0) ∪ HN ±(γ, δc, h, 1).
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If k = h − 1, the condition that the sequence (ρj)1≤j≤h−k belong to
HN ±(r −

∑k
i=1 ri, v) is empty.

(ii) For fixed γ and δc > 0 it straightforward to check whether the following
set is finite

⋃

h≥2

⋃

0≤k≤h−1

HN ±(γ, δc, h, k)

i.e., the set HN ±(γ, δc, h, k) is nonempty only for a finite set of pairs
(h, k).

For any triple γ′ = (r′, e′, v′) ∈ Z≥1 × Z × Z≥1 let d±(γ′), dc(γ′) be the
stack functions determined by the open embeddings Mss

δ±
(X , r′, e′, v′) ↪→

Ob(X ), respectively Mss
δc

(X , r′, e′, v′) ↪→ Ob(X ). The alternative notation
h(γ′) will be used if v′ = 0.

Lemma 3.1. The following relations hold in the stack function algebra
SF(Ob(X )):

(3.1) dc(γ) = d±(γ) +
∑

h≥2

∑

(γi)∈HN ±(γ,δc,h)

d±(γ1) ∗ · · · ∗ d±(γh)

(3.2)
d−(γ) +

∑

h≥2

∑

(γi)∈HN −(γ,δc,h,0)

d−(γ1) ∗ · · · ∗ d−(γh)

= dc(γ) +
∑

h≥2

(−1)h−1
∑

(γi)∈HN −(γ,δc,h,h−1)

h(γ1) ∗ · · · ∗ h(γh−1) ∗ dc(γh).

Proof. Equation (3.1) follows directly from Lemma 2.8. In order to prove
formula (3.2), it will be first proven by induction that the following formula
holds for any l ∈ Z≥1:
(3.3)
d−(γ) +

∑

h≥2

∑

(γi)∈HN −(γ,δc,h,0)

d−(γ1) ∗ · · · ∗ d−(γh)

= dc(γ) +
l∑

k=2

(−1)k−1
∑

(γi)∈HN −(γ,δc,k,k−1)

h(γ1) ∗ · · · ∗ h(γk−1) ∗ dc(γk)

+ (−1)l
∑

h≥l+1

∑

(γi)∈HN −(γ,δc,h,l)

h(γ1) ∗ · · · ∗ h(γl) ∗ d−(γl+1) ∗ · · · ∗ d−(γh).
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First note that Remark 3.1 (ii) implies that all sums in Equation (3.3) are
finite for any l ≥ 1.

Next, if l = 1, Equation (3.3) is equivalent to (3.1). Suppose it holds for
some l ≥ 1. Then note that Equation (3.1) is valid for any triple
γ = (r, e, v) and any stability parameter δc. If δc is not critical of type γ as
assumed above, it reduces to a trivial identity. In particular setting γ = γl+1
in Equation (3.1) yields

d−(γl+1) = dc(γl+1) −
∑

m≥2

∑

(ηi)∈HN −(γl+1,δc,m,1)

h(η1) ∗ d−(η2) ∗ · · · ∗ d−(ηm)

−
∑

m≥2

∑

(ηi)∈HN −(γl+1,δc,m,0)

d−(η1) ∗ d−(η2) ∗ · · · ∗ d−(ηm).

Using this expression, the third term on the right-hand side of Equation
(3.3) can be rewritten as follows:

(3.4)
(−1)l

∑

h≥l+1

∑

(γi)∈HN −(γ,δc,h,l)

h(γ1) ∗ · · · ∗ h(γl) ∗ d−(γl+1) ∗ · · · ∗ d−(γh)

= (−1)l
∑

(γi)∈HN −(γ,δc,l+1,l)

[
h(γ1) ∗ · · · ∗ h(γl) ∗ dc(γl+1)

×
∑

m≥2

∑

(ηi)∈HN −(γl+1,δc,m,1)

h(γ1) ∗ · · · ∗ h(γl) ∗ h(η1) ∗ d−(η2) ∗ · · · ∗ d−(ηm)

−
∑

m≥2

∑

(ηi)∈HN −(γl+1,δc,m,0)

× h(γ1) ∗ · · · ∗ h(γl) ∗ d−(η1) ∗ d−(η2) ∗ · · · ∗ d−(ηm)
]

+ (−1)l
∑

h≥l+2

∑

(γi)∈HN −(γ,δc,h,l)

h(γ1) ∗ · · · ∗ h(γl) ∗ d−(γl+1) ∗ · · · ∗ d−(γh).

By construction

⋃

(γi)∈HN −(γ,δc,l+1,l)

HN −(γl+1, δc, m, j) = HN −(γ, δc, l + m, l + j)



Rank two ADHM invariants and wallcrossing 437

for any m ∈ Z≥2, j ∈ {0, 1}. Therefore, the last two terms on the right-hand
side of Equation (3.4) cancel, and formula (3.4) reduces to

(3.5)
(−1)l

∑

h≥l+1

∑

(γi)∈HN −(γ,δc,h,l)

h(γ1) ∗ · · · ∗ h(γl) ∗ d−(γl+1) ∗ · · · ∗ d−(γh)

= (−1)l
∑

(γi)∈HN −(γ,δc,l+1,l)

h(γ1) ∗ · · · ∗ h(γl) ∗ dc(γl+1)

+ (−1)l+1
∑

h≥l+2

∑

(γi)∈HN −(γ,δc,h,l+1)

× h(γ1) ∗ · · · ∗ h(γl+1) ∗ d−(γl+2) ∗ · · · ∗ d−(γh).

Substituting (3.5) in (3.3) it follows that formula (3.3) also holds if l is
replaced by (l + 1). This concludes the inductive proof of formula (3.3).

In order to conclude the proof of Equation (3.2), it suffices to observe
that for sufficiently large l, Equation (3.3) stabilizes to Equation (3.2) using
Remark 3.1 (ii). �

Now note that Equations (3.1) and (3.2) yield a recursive algorithm
expressing d−(γ) in terms of d+(γi), 1 ≤ i ≤ h, h ≥ 1. This follows observing
that on the left-hand side of (3.2) 0 < vi < v for all stack functions d−(γi)
occurring in the sum

∑

h≥2

∑

(γi)∈HN −(γ,δc,h,0)

d−(γ1) ∗ · · · ∗ d−(γh).

Therefore, once a formula for the difference d−(γ) − d+(γ) has been derived
for triples of the form γ = (r, e, v), one can recursively derive an analogous
formula for triples of the form γ = (r, e, v + 1). For v = 1, Equations (3.1)
and (3.2) easily imply

(3.6)
d−(γ) = d+(γ) +

∑

l≥2

(−1)l
∑

(γi)∈HN −(γ,δc,l,l−1)

h(γ1) ∗ · · · ∗ [d+(γl), h(γl−1)].

Employing the above recursive algorithm, one can determine in principle
analogous formulas for v ≥ 2. Since the resulting expressions quickly become
cumbersome, explicit formulas will be given below only for v = 2.
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Corollary 3.1. Suppose γ = (r, e, 2) with (r, e) ∈ Z≥1 × Z. The following
relations hold in the stack function algebra SF(Ob(X )):

(3.7)
d−(γ) = d+(γ) +

∑

l≥2

(−1)l
∑

(γi)∈HN −(γ,δc,l,l−1)

h(γ1) ∗ · · · ∗ [d+(γl), h(γl−1)]

+
∑

(γ1,γ2)∈HN+(γ,δc,2,0)

d+(γ1) ∗ d+(γ2)

−
∑

(γ1,γ2)∈HN −(γ,δc,2,0)

d−(γ1) ∗ d−(γ2)

+
∑

l≥2

(−1)l
∑

(γi)∈HN −(γ,δc,l+1,l−1)

h(γ1) ∗ · · · ∗

× [d+(γl+1) ∗ d+(γl), h(γl−1)]

where d−(γ1), d−(γ2) are given by Equation (3.6).

3.2. Wallcrossing for v = 2 invariants

Let γ = (r, e, 2), (r, e) ∈ Z≥1 × Z, δc > 0 a critical stability parameter of type
γ, and δ± two noncritical stability parameters as in Lemma 2.8. The main
goal of this section is to convert the stack function relation (3.7) to a wall-
crossing formula for generalized Donaldson–Thomas invariants of ADHM
sheaves.

As mentioned in the introduction the alternative notation α = (r, e)
will be used for pairs (r, e) ∈ Z≥1 × Z. Using this notation, the sets
HN −(α, v, δc, h, k), v ∈ {1, 2}, k ∈ {0, h − 2, h − 1} can be identified with
sets of ordered sequences (αi)1≤i≤h satisfying the conditions listed above
Theorem 1.1. For convenience, recall that HN −(α, v, δc, l, l − 1), l ∈ Z≥1,
v ∈ {1, 2}, denotes the set of ordered sequences ((αi))1≤i≤l, αi ∈ Z≥1 × Z,
1 ≤ i ≤ l so that

(3.8) α1 + · · · + αl = α

and

(3.9)
e1

r1
= · · · =

el−1

rl−1
=

el + vδc

rl
=

e + vδc

r
.
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Similarly, HN −(α, v, δc, l, l − 2), l ∈ Z≥2, denotes the set of ordered
sequences ((αi))1≤i≤l, αi ∈ Z≥1 × Z, 1 ≤ i ≤ l satisfying condition (1.1),

(3.10)
e1

r1
= · · · =

el−2

rl−2
=

el−1 + δc

rl−1
=

el + δc

rl
=

e + 2δc

r

and 1/rl−1 < 1/rl.
Note that the sets HN −(α, 2, δc, h, 0) are nonempty if and only if h = 2,

in which case they consist of ordered pairs (α1, α2) so that α1 + α2 = α,
1/r1 < 1/r2, and

e1 + δc

r1
=

e2 + δc

r2
=

e + 2δc

r

Moreover, the set HN −(α, 2, δc, 1, 0) consists of only the element (α).
It is straightforward to check that for fixed α = (r, e) and δc, the union

(3.11)

⋃

l≥1

[HN −(α, 2, δc, l, l − 1) ∪ HN −(α, 2, δc, l + 1, l − 1)]

⋃

(α1,α2)∈HN −(α,2,δc,2,0)

⋃

l1≥1

⋃

l2≥1

[HN −(α1, 1, δc, l1, l1 − 1)

×HN −(α2, 1, δc, l2, l2 − 1)]

is a finite set.
Now let 0 < δ− < δc < δ+ be stability parameters so that there are no

critical stability parameters of type (α, 2) in the intervals [δ−, δc), (δc, δ+].
Since the set (3.11) is finite δ−, δ+ can be chosen so that the same holds
for all numerical types (αi, vi) in all ordered sequences in (3.11). Then the
following lemma holds.

Lemma 3.2. The following relations hold in the stack function algebra
SF(Ob(X )):

(3.12)
d−(α, 1)

=
∑

l≥1

(−1)l−1

(l − 1)!

∑

(αi)∈HN −(α,1,δc,l,l−1)

[g(α1), . . . , [g(αl−1), d+(αl, 1)] · · · ]
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d−(α, 2)

(3.13)

=
∑

l≥1

(−1)l−1

(l − 1)!

∑

(αi)∈HN −(α,2,δc,l,l−1)

[g(α1), . . . , [g(αl−1), d+(αl, 2)] · · · ]

+
∑

l≥1

(−1)l−1

(l − 1)!

∑

(αi)∈HN −(α,2,δc,l+1,l−1)

× [g(α1), . . . , [g(αl−1), d+(αl+1, 1) ∗ d+(αl, 1)] · · · ]

−
∑

(α1,α2)∈HN −(α,2,δc,2,0)

∑

l1≥1

∑

l2≥1

(−1)l1−1

(l1 − 1)!
(−1)l2−1

(l2 − 1)!

×
∑

(α1,i)∈HN −(α1,1,δc,l1,l1−1)

∑

(α2,i)∈HN −(α2,1,δc,l2,l2−1)

×
(
[g(α1,1), . . . , [g(α1,l1−1), d+(α1,l1 , 1)] · · · ]

∗ [g(α2,1), . . . , [g(α2,l2−1), d+(α2,l2 , 1)] · · · ]
)

where for any β ∈ Z≥1 × Z, g(β) denotes the log stack function eδ(β, 0)
defined in Equation (2.21) (which is independent of δ). For any k ≥ 1, and
any collection of stack functions (f1, . . . fk), [f1, . . . , [fk−1, fk] · · · ] stands for
the successive commutator [f1, . . . , [fk−1, fk ] · · · ]︸︷︷︸

k−1

.

Proof. Formulas (3.12) and (3.13) follow from Equations (3.7) and (3.6) by
repeating the computations in the proof of [2, Lemm. 2.6] in the present
context. �

Proof of Theorem 1.1. The proof consists of two steps. First the stack func-
tion identities (3.12) and (3.13) must be converted into similar identities for
log stack functions in the Lie stack function algebra SFind

alg(CX ). Then wall-
crossing formulas for generalized Donaldson–Thomas invariants are derived
applying the Lie algebra morphism (2.20) to the resulting log stack function
identities.
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It will be proved below that Equation (3.15) yields the following log
stack function relation:

e−(α, 2)

(3.14)

=
∑

l≥1

(−1)l−1

(l − 1)!

∑

(αi)∈HN −(α,2,δc,l,l−1)

[g(α1), . . . , [g(αl−1), e+(αl, 2)] · · · ]

+
1
2

∑

l≥1

(−1)l−1

(l − 1)!

∑

(αi)∈HN −(α,2,δc,l+1,l−1)

× [g(α1), . . . , [g(αl−1), [e+(αl+1, 1), e+(αl, 1)] · · · ]

− 1
2

∑

(α1,α2)∈HN −(α,2,δc,2,0)

∑

l1≥1

∑

l2≥1

(−1)l1−1

(l1 − 1)!
(−1)l2−1

(l2 − 1)!

×
∑

(α1,i)∈HN −(α1,1,δc,l1,l1−1)

∑

(α2,i)∈HN −(α2,1,δc,l2,l2−1)

×
[

[g(α1,1), . . . , [g(α1,l1−1), e+(α1,l1 , 1)] · · · ],

[g(α2,1), . . . , [g(α2,l2−1), e+(α2,l2 , 1)] · · · ]
]
.

Since the right-hand side of Equation (3.14) is written as a linear combina-
tion of successive commutators, the wallcrossing formula for the invariants
A±(α, l) follows by applying the Lie algebra morphism (2.20).
Given that

[λ((r1, e1, 0)), λ((r2, e2, v))] = (−1)v(e1−r1(g−1)vλ(r1 + r2, e1 + e2, v)
= fv(r1, e1)λ(r1 + r2, e1 + e2, v)

[λ((r1, e1, 1)), λ((r2, e2, 1))] = (−1)e1−e2−(r1−r2)(g−1)λ(r1 + r2, e1 + e2, 2)
= g((r1, e1), (r2, e2))λ(r1 + r2, e1 + e2, 2)

for any (r1, e1), (r2, e2) ∈ Z≥1 × Z, v = 1, 2, a straightforward computation
yields Equation (1.5).
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The proof of identity (3.14) is presented below. Using Equation (2.21),
formula (3.13) yields
(3.15)

e−(α, 2)

=
∑

l≥1

(−1)l−1

(l − 1)!

∑

(αi)∈HN −(α,2,δc,l,l−1)

[g(α1), . . . , [g(αl−1), e+(αl, 2)] · · · ]

+
∑

l≥1

(−1)l−1

(l − 1)!
(F (l, α) +

1
2
F ′(l, α))

where
(3.16)
F (l, α)

=
∑

(αi)∈HN −(α,2,δc,l+1,l−1)

[g(α1), . . . , [g(αl−1), e+(αl+1, 1) ∗ e+(αl, 1)] · · · ]

−
∑

(α1,α2)∈HN −(α,2,δc,2,0)

∑

l1,l2≥1
l1+l2=l+1

(l − 1, l1 − 1)
∑

(α1,i)∈HN −(α1,1,δc,l1,l1−1)

×
∑

(α2,i)∈HN −(α2,1,δc,l2,l2−1)

(
[g(α1,1), . . . , [g(α1,l1−1), e+(α1,l1 , 1)] · · · ]

∗ [g(α2,1), . . . , [g(α2,l2−1), e+(α2,l2 , 1)] · · · ]
)
.

(3.17)
F ′(l, α)

=
∑

(αi)∈HN −(α,2,δc,l,l−1)

[g(α1), . . . , [g(αl−1), e+(αl/2, 1) ∗ e+(αl/2, 1)] · · · ]

−
∑

l1,l2≥1
l1+l2=l+1

(l − 1, l1 − 1)
∑

(α1,i)∈HN −(α/2,1,δc,l1,l1−1)

×
∑

(α2,i)∈HN −(α/2,1,δc,l2,l2−1)

[g(α1,1), . . . , [g(α1,l1−1), e+(α1,l1 , 1)] · · · ]
∗ [g(α2,1), . . . , [g(α2,l2−1), e+(α2,l2 , 1)] · · · ]

where by convention ε+(β/2, 1) = 0 and HN −(β/2, 1, δc, k, k − 1) = ∅ if β ∈
Z≥1 × Z is not divisible by 2. In the above equations, (n, k) denotes the
binomial coefficient n!/(k!(n − k)!) for any n, k ∈ Z≥0, n ≥ k. In the follow-
ing, it will be convenient to formally define (n, k) for any n ∈ Z≥0, k ∈ Z

adopting the convention that (n, k) = 0 whenever k < 0 or k > n.
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Recall that HN −(α, 2, δc, l, l − 2), l ∈ Z≥2 is the set of all ordered seq-
uences (αi)1≤i≤l, αi ∈ Z≥1 × Z so that

α1 + · · · + αl = α(3.18)
e1

r1
= · · · =

el−2

rl−2
=

el−1 + δc

rl−1
=

el + δc

rl
=

e + 2δc

r
(3.19)

rl−1 > rl.(3.20)

Let HN ′
−(α, 2, δc, l, l − 2), HN ′′

−(α, 2, δc, l, l − 2) denote the set of all ordered
sequences (αi)1≤i≤l satisfying conditions (3.18) and (3.19), condition (3.20)
being replaced by rl−1 = rl, respectively, rl−1 < rl. Note that the union

(3.21)
S(α, δc, l) = HN −(α, 2, δc, l, l − 2) ∪ HN ′

−(α, 2, δc, l, l − 2)
∪ HN ′′

−(α, 2, δc, l, l − 2)

is the set of all ordered sequences (αi)1≤i≤l satisfying only conditions (3.18)
and (3.19). Moreover, condition rl−1 = rl imposed simultaneously with (3.18)
and (3.19) implies αl = αl+1. This shows that F ′(l, α) can be rewritten as

(3.22)
F ′(l, α)

=
∑

(αi)∈HN ′
−(α,2,δc,l+1,l−1)

[g(α1), . . . , [g(αl−1), e+(αl, 1) ∗ e+(αl+1, 1)] · · · ]

−
∑

l1,l2≥1
l1+l2=l+1

(l − 1, l1 − 1)
∑

(α1,i)∈HN −(α/2,1,δc,l1,l1−1)

×
∑

(α2,i)∈HN −(α/2,1,δc,l2,l2−1)

[g(α1,1), . . . , [g(α1,l1−1), e+(α1,l1 , 1)] · · · ]

∗ [g(α2,1), . . . , [g(α2,l2−1), e+(α2,l2 , 1)] · · · ].

Define also

F ′′(l, α)
(3.23)

=
∑

(αi)∈HN ′′
−(α,2,δc,l+1,l−1)

[g(α1), . . . , [g(αl−1), e+(αl+1, 1) ∗ e+(αl, 1)] · · · ]



444 W.-Y. Chuang, D.-E. Diaconescu and G. Pan

−
∑

(α1,α2)∈HN ′′
−(α,2,δc,2,0)

∑

l1,l2≥1
l1+l2=l+1

(l − 1, l1 − 1)
∑

(α1,i)∈HN −(α1,1,δc,l1,l1−1)

×
∑

(α2,i)∈HN −(α2,1,δc,l2,l2−1)

(
[g(α1,1), . . . , [g(α1,l1−1), e+(α1,l1 , 1)] · · · ]
∗ [g(α2,1), . . . , [g(α2,l2−1), e+(α2,l2 , 1)] · · · ]

)
.

Next note that the right-hand side of Equation (3.14) can then be written as
(3.24)

∑

l≥1

(−1)l−1

(l − 1)!

(
∑

(αi)∈HN −(α,2,δc,l,l−1)

[g(α1), . . . , [g(αl−1), e+(αl, 2)] · · · ]

+
1
2
(F (l, α) − F ′′(l, α))

)

Comparing Equations (3.15) and (3.24) it follows that in order to prove
formula (3.14) it suffices to prove the identity

(3.25) F (l, α) + F ′(l, α) + F ′′(l, α) = 0

This will be done below by induction on l ∈ Z≥1. Let S(l, α) = F (l, α) +
F ′(l, α) + F ′′(l, α). Note that Equations (3.16), (3.22) and (3.23) imply

(3.26)
S(l, α) =

∑

(αi)∈S(α,2,δc,l+1,l−1)

[g(α1), . . . , [g(αl−1), e+(αl+1, 1) ∗ e+(αl, 1)] · · · ]

−
∑

(α1,α2)∈S(α,2,δc,2,0)

∑

l1,l2≥1
l1+l2=l+1

(l − 1, l1 − 1)
∑

(α1,i)∈HN −(α1,1,δc,l1,l1−1)

×
∑

(α2,i)∈HN −(α2,1,δc,l2,l2−1)

(
[g(α1,1), . . . , [g(α1,l1−1), e+(α1,l1 , 1)] · · · ]

∗ [g(α2,1), . . . , [g(α2,l2−1), e+(α2,l2 , 1)] · · · ]
)

where S(α, 2, δc, l + 1, l − 1) is the set union (3.21).
For l = 1 Equation (3.25) reduces trivially to 0 = 0 using formula (3.26).

Suppose Equation (3.25) holds for some l ∈ Z≥2, for all α ∈ Z≥1 × Z. Then,
using the identity

(l, l1 − 1) = (l − 1, l1 − 1) + (l − 1, l1 − 2),

it follows that
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(3.27)
S(l+1, α) =

∑

(αi)∈S(α,2,δc,l+2,l)

[g(α1), . . . , [g(αl), e+(αl+2, 1)∗ e+(αl+1, 1)] · · ·]

+ G(l + 1, α)

where

G(l + 1, α)

= −
∑

(α1,α2)∈S(α,2,δc,2,0)

∑

l1,l2≥1
l1+l2=l+2

(l − 1, l1 − 1)
∑

(α1,i)∈HN −(α1,1,δc,l1,l1−1)

×
∑

(α2,i)∈HN −(α2,1,δc,l2,l2−1)

[g(α1,1), . . . , [g(α1,l1−1), e+(α1,l1 , 1)] · · · ]

∗ [g(α2,1), . . . , [g(α2,l2−1), e+(α2,l2 , 1)] · · · ]
−

∑

(α1,α2)∈S(α,2,δc,2,0)

∑

l1,l2≥1
l1+l2=l+2

(l − 1, l1 − 2)
∑

(α1,i)∈HN −(α1,1,δc,l1,l1−1)

×
∑

(α2,i)∈HN −(α2,1,δc,l2,l2−1)

[g(α1,1), . . . , [g(α1,l1−1), e+(α1,l1 , 1)] · · · ]

∗ [g(α2,1), . . . , [g(α2,l2−1), e+(α2,l2 , 1)] · · · ].

In order to keep the formulas short, set

[α1, . . . , αk] = [g(α1), . . . , [g(αk−1), e+(αk, 1)] · · · ]

for any k ≥ 1, and any (αi), 1 ≤ i ≤ k. Then by changing the summation
variable l1 → l1 − 1 in the second multiple sum in the above expression,
G(l + 1, α) can be written as follows:

G(l + 1, α)

= −
∑

(α1,α2)∈S(α,2,δc,2,0)

l∑

l1=1

(l − 1, l1 − 1)
∑

(α1,i)∈HN −(α1,1,δc,l1,l1−1)

×
∑

(α2,i)∈HN −(α2,1,δc,l−l1+2,l−l1+1)

[α1,1, . . . , α1,l1 ] ∗ [α2,1, . . . , α2,l−l1+2]
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−
∑

(α1,α2)∈S(α,2,δc,2,0)

l∑

l1=1

(l − 1, l1 − 1)
∑

(α1,i)∈HN −(α1,1,δc,l1+1,l1)

×
∑

(α2,i)∈HN −(α2,1,δc,l−l1+1,l−l1)

[α1,1, . . . , α1,l1+1] ∗ [α2,1, . . . , α2,l−l1+1].

Next note that

[α1,1, . . . , α1,l1 ] ∗ [α2,1, . . . , α2,l−l1+2]
= [α1,1, . . . , α1,l1 ] ∗ g(α2,1) ∗ [α2,2, . . . , α2,l−l1+2]

− [α1,1, . . . , α1,l1 ] ∗ [α2,2, . . . , α2,l−l1+2] ∗ g(α2,1)
[α1,1, . . . , α1,l1+1] ∗ [α2,1, . . . , α2,l−l1+1]

= g(α1,1) ∗ [α1,2, . . . , α1,l1+1] ∗ [α2,1, . . . , α2,l−l1+1]
− [α1,2, . . . , α1,l1+1] ∗ g(α1,1) ∗ [α2,1, . . . , α2,l−l1+1].

The terms of the form [ ] ∗ g ∗ [ ] cancel pairwise when summing over all
ordered pairs (α1, α2) and all ordered sequences (α1,i), (α2,i) satisfying the
summation conditions:

α1 + α2 = α,
∑

i=1

α1,i = α1,
∑

i=1

α2,i = α2

e1,i

r1,i
=

e2,j

r2,j
=

e1 + δc

r1
=

e2 + δc

r2
=

e + 2δ − s

r

for all i, j in the appropriate range. For any β = (r, e) ∈ Z≥1 × Z, v ∈ Z≥1,
and δ ∈ R set μ(β) = e/r, μδ(β, v) = (e + vδ)/r. Then, by a simple change
of summation variables, the sum over the terms of the form [ ] ∗ [ ] ∗ g,
g ∗ [ ] ∗ [ ] reduces to

G(l + 1, α)

=
∑

α′,β∈Z≥1×Z

α′+β=α, μδc (α′,2)=μ(β)

∑

(α1,α2)∈S(α′,2,δc,2,0)

∑

l1,l2≥1
l1+l2=l+1

(l − 1, l1 − 1)

×
∑

(α1,i)∈HN −(α1,1,δc,l1,l1−1)

∑

(α2,i)∈HN −(α2,1,δc,l2,l2−1)

× [g(α1,1), . . . , [g(α1,l1−1), e+(α1,l1 , 1)] · · · ]
∗ [g(α2,1), . . . , [g(α2,l2−1), e+(α2,l2 , 1)] · · · ] ∗ g(β)
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−
∑

α′,β∈Z≥1×Z

α′+β=α, μδc (α′,2)=μ(β)

∑

(α1,α2)∈S(α′,2,δc,2,0)

∑

l1,l2≥1
l1+l2=l+1

(l − 1, l1 − 1)

×
∑

(α1,i)∈HN −(α1,1,δc,l1,l1−1)

∑

(α2,i)∈HN −(α2,1,δc,l2,l2−1)

× g(β) ∗ [g(α1,1), . . . , [g(α1,l1−1), e+(α1,l1 , 1)] · · · ]
∗ [g(α2,1), . . . , [g(α2,l2−1), e+(α2,l2 , 1)] · · · ].

A similar change of variables in the first sum on the right-hand side of
Equation (3.27) yields

∑

(αi)∈S(α,2,δc,l+2,l)

[g(α1), . . . , [g(αl), e+(αl+2, 1) ∗ e+(αl+1, 1)] · · · ]

=
∑

α′,β∈Z≥1×Z

α′+β=α, μδc (α′,2)=μ(β)

∑

(αi)∈S(α′,2,δc,l+1,l−1)

× [g(β), [g(α1), . . . , [g(αl), e+(αl+1, 1) ∗ e+(αl, 1)] · · · ].

Collecting the all terms, it follows that

S(l + 1, α) =
∑

α′,β∈Z≥1×Z

α′+β=α, μδc (α′,2)=μ(β)

[g(β), S(l, α)].

Obviously, the inductive hypothesis now implies that S(l + 1, α) = 0. �

4. Comparison with Kontsevich–Soibelman formula

The goal of this section is to prove that formula (1.5) is in agreement with
the wallcrossing formula of Kontsevich and Soibelman [15], which will be
referred to as the KS formula in the following.

As in Section 3.2, numerical types of ADHM sheaves will be denoted by
γ = (α, v), α = (r, e) ∈ Z≥1 × Z, v ∈ Z≥0. In order to streamline the compu-
tations, let L(X )≤2 denote the truncation of the Lie algebra L(X ) defined by

(4.1) [λ(α1, v1), λ(α2, v2)]≤2 =
{

[λ(α1, v1), λ(α2, v2)] if v1 + v2 ≤ 2
0 otherwise.

Furthermore, it will be more convenient to use the alternative notation eα =
λ(α, 0), fα = λ(α, 1), and gα = λ(α, 2).
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Given a critical stability parameter δc of type (r, e, 2), (r, e) ∈ Z≥1 × Z,
there exist two pairs α = (rα, eα) and β = (rβ, eβ) with

eα + δc

rα
=

eβ

rβ
= μδc(γ)

so that any η ∈ Z≥1 × Z × Z≥0 with μδc(η) = μδc(γ) can be uniquely written
as η = (qβ, 0), (α + qβ, 1), or (2α + qβ, 2), with q ∈ Z≥0.

For any q ∈ Z≥0 the following formal expressions will be needed in the
KS formula:

(4.2)

Uα+qβ = exp
(

fα+qβ +
1
4
g2α+2qβ

)
, U2α+qβ = exp(g2α+qβ),

Uqβ = exp

⎛

⎝
∑

m≥1

emqβ

m2

⎞

⎠ .

Moreover, let
H =

∑

q≥0

H(qβ)eqβ ,

where the invariants H(α) are defined in (2.22). Then the wallcrossing for-
mula of Kontsevich and Soibelman reads

(4.3)

exp(H)
∏

q≥0, q↓
U

A+(2α+qβ,2)
2α+qβ

∏

q≥0, q↓
U

A+(α+qβ,1)
α+qβ

=
∏

q≥0, q↑
U

A−(α+qβ,1)
α+qβ

∏

q≥0, q↑
U

A−(2α+qβ,2)
2α+qβ exp(H)

where an up, respectively, down, arrow means that the factors in the corre-
sponding product are taken in increasing, respectively, decreasing, order of
q. Note that A±(2α + qβ, 2) are the invariants defined in Section (2.5) by
the multicover formula (2.23). In this case Equation (2.23) reduces to

A±(2α + qβ, 2) = A±(2α + qβ, 2) +
1
4
A±(α + qβ/2, 1).

Expanding the right-hand side, Equation (4.3) yields

exp

⎛

⎝
∑

q≥0

A−(2α + qβ, 2)g2α+qβ

(4.4)

+
∑

q2>q1≥0

1
2
g(q1β, q2β)A−(α + q1β, 1)A−(α + q2β, 1)g2α+(q1+q2)β

⎞

⎠
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= exp(H) exp

⎛

⎝
∑

q≥0

A+(2α + qβ, 2)g2α+qβ

+
∑

q1>q2≥0

1
2
g(q1β, q2β)A+(α + q1β, 1)A+(α + q2β, 1)g2α+(q1+q2)β

⎞

⎠

× exp(−H)

modulo terms involving fγ . These terms are omitted since they enter v = 1
wallcrossing formula derived in [2]. The BCH formula

exp(A)exp(B)exp(−A) = exp

(
∑

n=0

1
n!

(Ad(A))nB

)

= exp
(

B + [A, B] +
1
2
[A, [A, B]] + · · ·

)
(4.5)

yields
(4.6)

exp(H) exp(g2α+qβ) exp(−H)

= exp(g2α+qβ +
∑

q1>0

f2(q1β)H(q1β)g2α+(q+q1)β

+
1
2!

∑

q1>0,q2>0

f2(q1β)H(q1β)f2(q2β)H(q2β)g2α+(q+q1+q2)β + · · · )

= exp

⎛

⎝
∑

l≥0,qi>0

1
l!

(
l∏

i=1

f2(qiβ)H(qiβ)

)
g2α+(q+q1+···+ql)β

⎞

⎠.

Substituting (4.6) in (4.4) results in

exp

⎛

⎝
∑

q≥0

A−(2α + qβ, 2)g2α+qβ

(4.7)

+
∑

q2>q1≥0

1
2
g(q1β, q2β)A−(α + q1β, 1)A−(α + q2β, 1)g2α+(q1+q2)β

⎞

⎠

= exp

⎛

⎜⎜⎝
∑

q≥0,l≥0
qi>0

A+(2α + qβ, 2)
1
l!

(
l∏

i=1

f2(qiβ)H(qiβ)

)
g2α+(q+q1+···+ql)β
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+
∑

q′
1>q′

2≥0
l≥0,qi>0

1
2
g(q′

1β, q′
2β)A+(α + q′

1β, 1)A+(α + q′
2β, 1)

1
l!

×
(

l∏

i=1

f2(qiβ)H(qiβ)

)
g2α+(q′

1+q′
2+q1+···+ql)β

⎞

⎟⎟⎠.

In order to further simplify the notation, let

A±(vα + qβ, v) ≡ A±(q, v), g2α+qβ ≡ gq.

Comparing the coefficients of gQ in (4.4) yields

(4.8)

A−(Q, 2) =
∑

q′≥0, l≥0, qi>0
q′+q1+···+ql=Q

A+(q′, 2)
1
l!

(
l∏

i=1

f2(qiβ)H(qiβ)

)

+
1
2

∑

q′
1>q′

2≥0
l≥0, qi>0

q′
1+q′

2+q1+···+ql=Q

g(q′
1β, q′

2β)A+(q′
1, 1)A+(q′

2, 1)

× 1
l!

(
l∏

i=1

f2(qiβ)H(qiβ)

)

− 1
2

∑

q′
2>q′

1≥0, q′
1+q′

2=Q

g(q′
1β, q′

2β)A−(q′
1, 1)A−(q′

2, 1).

Using the v = 1 wallcrossing formula [2, Theorem 1.1], the last term in (4.8)
becomes

− 1
2

∑

q2>q1≥0, q1+q2=Q

g(q1β, q2β)A−(q1, 1)A−(q2, 1)

= −1
2

∑

q2>q1≥0
q1+q2=Q

l≥0, l̃≥0
q′
1≥0, q′

2≥0
ni>0, ñi>0

q′
1+n1+···+nl=q1

q′
2+ñ1+···+ñl̃=q2

g(q1β, q2β)A+(q′
1, 1)A+(q′

2, 1)
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× 1
l!

(
l∏

i=1

f1(niβ)H(niβ)

)
1
l̃!

⎛

⎝
l̃∏

i=1

f1(ñiβ)H(ñiβ)

⎞

⎠.(4.9)

Therefore, the final wallcrossing formula for v = 2 invariants is

(4.10)

A−(Q, 2) =
∑

q′≥0, l≥0, qi>0
q′+q1+···+ql=Q

A+(q′, 2)
1
l!

(
l∏

i=1

f2(qiβ)H(qiβ)

)

+
1
2

∑

q′
1>q′

2≥0
l≥0, qi>0

q′
1+q′

2+q1+···+ql=Q

1
2
g(q′

1β, q′
2β)A+(q′

1, 1)A+(q′
2, 1)

× 1
l!

(
l∏

i=1

f2(qiβ)H(qiβ)

)

− 1
2

∑

q2>q1≥0
q1+q2=Q

l≥0, l̃≥0
q′
1≥0, q′

2≥0
ni>0, ñi>0

q′
1+n1+···+nl=q1

q′
2+ñ1+···+ñl̃=q2

g(q1β, q2β)A+(q′
1, 1)A+(q′

2, 1)

× 1
l!

(
l∏

i=1

f1(niβ)H(niβ)

)
1
l̃!

⎛

⎝
l̃∏

i=1

f1(ñiβ)H(ñiβ)

⎞

⎠.

This formula agrees with (1.5), since the bilinear function g( , ) is anti-
symmetric.

5. Asymptotic invariants in the g = 0 theory

In this subsection, X will be a smooth genus 0 curve over a C-field K.
and M1 � OX(d1), M2 � OX(d2), with (d1, d2) = (1, 1) or (d1, d2) = (0, 2).
In this case, any coherent locally free sheaf E on X is isomorphic to a
direct sum of line bundles. Let E≥0 denote the direct sum of all summands
of nonnegative degree and E<0 denote the direct sum of all summands of
negative degree.

Lemma 5.1. Let E = (E, V, Φ1, Φ2, φ, ψ) be a nontrivial δ-semistable
ADHM sheaf of type (r, e, v) ∈ Z≥1 × Z × Z≥1, for some δ > 0. Then E<0 =
0 and φ is identically zero.
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Proof. Since δ > 0, Lemma 2.1(ii) implies that ψ is not identically zero. Then
obviously E≥0 must be nontrivial and Im(ψ) ⊆ E≥0. Since M � K−1

X �
OX(2), E≥0 ⊗X M ⊆ Ker(φ). Moreover, since deg(M1) ≥ 0, deg(M2) ≥ 0,
Φi(E≥0 ⊗X Mi) ⊆ E≥0. It follows that the data

E≥0 = (E≥0, V ⊗ OX , Φi|E≥0⊗XMi
, 0, ψ)

are nontrivial subobjects of E . If E<0 is not the zero sheaf, E≥0 is a proper
subobject of E . Then δ-semistability condition implies r(E≥0) < r(E), and
hence

(5.1)
d(E≥0) + v(E≥0) δ

r(E≥0)
≤ e + v δ

r
.

However e < d(E≥0) and 0 < r(E≥0) < r under the current assumptions.
Since also v(E≥0) = v and δ, d(E≥0) > 0, inequality (5.1) leads to a contra-
diction. Therefore, E<0 = 0 and φ must be identically zero. �

Now let the ground field K be C. Let C0
X be the full abelian subcategory

of CX consisting of ADHM sheaves E with φ = 0. For any δ ∈ R, an object
E of C0

X will be called δ-semistable if it is δ-semistable as an object of CX .
Note that given an object E of C0

X , any subobject E ′ ⊂ E must also belong
to C0

X . In particular, all test subobjects in Definition 2.1 also belong to C0
X ,

and one obtains a stability condition on the abelian category C0
X . Then the

properties of δ-stability and moduli stacks of semistable objects in C0
X are

analogous to those of CX . In particular, for fixed (r, e, v) ∈ Z≥1 × Z × Z≥1
there are finitely many critical stability parameters of type (r, e, v) dividing
the real axis into stability chambers. The main difference between C0

X and
CX is the presence of an empty chamber, as follows.

Lemma 5.2. For any (r, e, v) ∈ Z≥1 × Z × Z≥1 the moduli stack of
δ-semistable objects of C0

X of type (r, e, v) is empty if δ < 0.

Proof. Given an ADHM sheaf E = (E, V, Φi, ψ) of type (r, e, v), it is straight-
forward to check that for δ < 0 the proper nontrivial object (E, 0, Φi, 0) is
always destabilizing if δ < 0. �

Lemma 5.3. Let E be a δ-semistable object of C0
X of type (r, e, v) ∈ Z≥1 ×

Z × Z≥0 for some δ ≥ 0. If e ≥ 0, then E<0 = 0.

Proof. For δ > 0 and v > 0, this obviously follows from Lemma 5.1. If δ = 0
or v = 0 note that E≥0 cannot be the zero sheaf, since e ≥ 0. Then the proof
of Lemma 5.1 also applies to this case as well. �
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Lemma 5.4. Let E = (E, 0, Φi, 0, 0) be a semistable object of C0
X of type

(r, e, 0), (r, e) ∈ Z≥1 × Z. If (d1, d2) = (1, 1), E must be isomorphic to
OX(n)⊕r for some n ∈ Z and Φi = 0 for i = 1, 2. If (d1, d2) = (0, 2), E must
be isomorphic to OX(n)⊕r for some n ∈ Z, and Φ2 = 0.

Proof. In both cases, let E � ⊕r
s=1OX(ns) for some ns ∈ Z so that n1 ≤

n2 ≤ · · · ≤ nr. Since d1, d2 ≥ 0, any subsheaf of the form

⊕r
s=s0

OX(ns)

for some 1 ≤ s0 ≤ r must be Φi-invariant, i = 1, 2. Therefore, the semista-
bility condition implies

ns0 + · · · + nr

r − s0 + 1
≤ n1 + · · · + nr

r

for any 1 ≤ s0 ≤ r. Then it is straightforward to check that n1 = · · · = nr =
n. The rest is obvious. �

Corollary 5.1. Under the same conditions as in Lemma 5.4,

(5.2) H(r, e) =

⎧
⎨

⎩

(−1)d1−1

r2 if e = rn, n ∈ Z

0 otherwise.

Proof. If (d1, d2) = (1, 1), Lemma 5.4 implies that the moduli stack Mss

(X , r, e, 0) is isomorphic to the quotient stack [∗/GL(r)] if e = rn for some
n ∈ Z, and empty otherwise. Alternatively, if e = rn, the moduli stack Mss

(X , r, e, 0) can be identified with the moduli stack of trivially semistable
representations of dimension r of a quiver consisting of only one vertex and
no arrows. Recall that the trivial semistability condition for quiver repre-
sentations is King stability with all stability parameters associated to the
vertices set to zero [14, Example 7.3].

If (d1, d2) = (0, 2), Lemma 5.4 implies that the moduli stack Mss

(X , r, rn, 0), n ∈ Z, is isomorphic to the moduli stack of trivially semistable
representations of dimension r of a quiver consisting of one vertex and one
arrow joining the unique vertex with itself. If e is not a multiple of r, the
moduli stack Mss(X , r, e, 0) is empty.

Then Corollary 5.1 follows by a computation very similar to [14, Section
7.5.1]. �
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Remark 5.1. The same arguments as in the proof of Corollary 5.1 imply
that for any δ > 0,

(5.3) Aδ(0, 0, 1) = 1 Aδ(0, 0, 2) =
1
4
.

Extension groups in C0
X can be determined by analogy with those of CX .

Given two locally free objects E ′′, E ′ of C0
X , let C̃(E ′′, E ′) be the three term

complex of locally free OX -modules

(5.4)
0 →

HomX(E′′, E′)
⊕

HomX(V ′′ ⊗ OX , V ′ ⊗ OX)

d1−→

HomX(E′′ ⊗X M1, E
′)

⊕
HomX(E′′ ⊗X M2, E

′)
⊕

HomX(V ′′ ⊗ OX , E′)
d2−→ HomX(E′′ ⊗X M, E′) → 0

where

d1(α, f) = (−α ◦ Φ′′
1 + Φ′

1 ◦ (α ⊗ 1M1),−α ◦ Φ′′
2 + Φ′

2 ◦ (α ⊗ 1M2),
− α ◦ ψ′′ + ψ′ ◦ f)

for any local sections (α, f) of the first term and

d2(β1, β2, γ) = β1 ◦ (Φ′′
2 ⊗ 1M1) − Φ′

2 ◦ (β1 ⊗ 1M2) − β2 ◦ (Φ′′
1 ⊗ 1M2)

+ Φ′
1 ◦ (β2 ⊗ 1M1)

for any local sections (β1, β2, γ) of the middle term. The degrees of the three
terms in (2.16) are 0, 1, 2, respectively. By analogy with Lemma 2.9, the
following holds.

Lemma 5.5. Under the current assumptions, Extk
C0

X
(E ′′, E ′) �

H
k(C̃(E ′′, E ′)) for k = 0, 1.

Lemma 5.6. Let E ′, E ′′ be two nontrivial locally free objects of C0
X of types

(r′, e′, v′), (r′′, e′′, v′′) ∈ Z≥1 × Z × Z≥0. Suppose that E′
<0 = 0, E′′

<0 = 0 for
both underlying locally free sheaves E′, E′′. Then

dim(Ext0CX
(E ′′, E ′)) − dim(Ext1CX

(E ′′, E ′)) − dim(Ext0CX
(E ′, E ′′))

+ dim(Ext1CX
(E ′, E ′′)) = v′(e′′ + r′′) − v′′(e′ + r′).(5.5)
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Proof. Note that complex (5.4) can be written as the cone of a morphism
of locally free complexes on X

� : H[−1] −→ V

where H is the complex obtained from C̃(E ′′, E ′) by omitting all direct sum-
mands depending on V ′, V ′′ (as well as making some obvious changes of
signs), and V is the two term complex

HomX(V ′′ ⊗ OX , V ′ ⊗ OX) −→ HomX(V ′′ ⊗ OX , E′)
f −→ ψ′ ◦ f

with degrees 0, 1. The morphism � is determined by the map

HomX(E′′, E′) −→ HomX(V ′′ ⊗ OX , E′)
α −→ −α ◦ ψ′′.

Therefore, there is a long exact sequence of hypercohomology groups

(5.6) 0 �� H0(V) �� Ext0C0
X
(E ′′, E ′) �� H0(H(E ′′, E ′))

�� H1(V) �� Ext1C0
X
(E ′′, E ′) �� H1(H(E ′′, E ′))

�� H2(V) �� · · · .

Since E′
<0 = 0 and X is rational, H

2(V) = 0. Obviously, there is a similar
exact sequence with E ′, E ′′ interchanged. Then Equation (5.5) easily follows
observing that

H
k(H(E ′′, E ′)) � H

3−k(H(E ′, E ′′))∨

for all 0 ≤ k ≤ 3. �

Proof of Corollary 1.1. Lemma 5.1 implies that for any δ ∈ R>0, (r, e, v) ∈
Z≥1 × Z × Z≥0 there is a canonical isomorphism of moduli stacks of δ-
semistable objects of numerical invariants (r, e, v) in the abelian categories
CX , C0

X . Moreover, using Lemma 5.6, the construction of Joyce and Song
summarized in Section 2.5 applies to δ-semistable objects of C0

X as well. For
δ > 0, the resulting invariants are identical with the invariants Aδ(r, e, v)
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defined is Section 2.5. In particular, they satisfy identical wallcrossing for-
mulas for any positive critical stability parameter δc > 0.

In order to prove relations (1.7), a wallcrossing formula at δc = 0 will be
required for counting invariants of semistable objects in C0

X . The derivation
of this wallcrossing formula is analogous with the proof of Theorem 1.1,
provided the following facts are taken into account:

(a) Lemma 2.8 holds δ-semistable objects in C0
X at δc = 0 if Definition 2.4

is modified as follows. In the definition of positive admissible configu-
rations one must allow (r1, v1) = (0, v1) with v1 > 0. All other elements
(ri, vi), i > 1, are still required to satisfy ri ≥ 1. Similarly, in the defi-
nition of negative admissible configurations one must allow (rh, vh) =
(0, vh), ri ≥ 1 being still imposed on all other elements (ri, vi), i < h.

(b) Let d(0, 0, 1) be the stack function determined by the object O =
(0, C, 0, 0, 0, 0). Then Ψ(d(0, 0, 1)) = −λ(0, 0, 1), since the moduli stack
of δ-semistable objects with numerical invariants (0, 0, 1) is isomorphic
to the classifying stack of C

× for any δ ∈ R.

Taking into account (a) and (b) above, Lemmas 3.1 and 3.2 and the proof
of Theorem 1.1 carry over with obvious modifications. The resulting wall-
crossing formula for counting invariants of semistable objects in C0

X at δc = 0
is entirely analogous to (1.5) provided that the sets HN −(α, v, δc, l, l −
1), l ≥ 1, HN −(α, 2, δc, l, l − 2), l ≥ 2, α ∈ Z≥1 × Z, v = 1, 2 are replaced
by HN −(α, v, 0, l, l − 1), HN −(α, 2, 0, l, l − 2) defined below, and one sets
A+(0, 0, 1) = 1.

The set HN −(α, v, δc, l, l − 1), l ≥ 1, α ∈ Z≥1 × Z, v = 1, 2, consists of
ordered sequences (αi)1≤i≤l ∈ Z≥0 × Z so that ri ≥ 1 for i < l and

(5.7) α1 + · · · + αl = α, rei = rie, 1 ≤ i ≤ l.

The set HN −(α, 2, δc, l, l − 2), l ≥ 2, α ∈ Z≥1 × Z consists of ordered
sequences (αi)1≤i≤l ∈ Z≥0 × Z so that ri ≥ 1 for i < l, rl < rl−1, and (5.7)
holds.

Moreover, the resulting formula is again in agreement with the
Kontsevich–Soibelman wallcrossing formula by computations identical to
those presented in Section 4.

Then the proof of Corollary 1.1 will be based on the KS wallcross-
ing formula relating δ-invariants for δ < 0 to δ-invariants with δ >> 0. Let
(r, e) ∈ Z≥1 × Z≥0 and let δ+ ∈ R>0 \ Q an irrational stability parameter so
that δ+ is asymptotic of type (r′, e′) for all 1 ≤ r′ ≤ r, 0 ≤ e′ ≤ e, 1 ≤ v ≤ 2.
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Moreover, assume that re < δ+. Then the KS formula reads
∏

(r,n,v)∈Z≥1×Z≥0×{0,1,2}∪{0,0,1}
U

A0−(r,n,v)
λ(r,n,v)

=
∏

(r,n,v)∈Z≥1×Z≥0×{0,1,2}∪{0,0,1}
U

A0
+(r,n,v)

λ(r,n,v)(5.8)

where in each term the factors are ordered in increasing order of δ±-slopes
from left to right. The alternative notation introduced in Section 4 will be
used in the following. Then Corollary 5.1 and Equation 5.3 imply that the
left-hand side of (5.8) reads

(5.9) exp
(

f00 +
1
4
g00

) ∞∏

n=0

Ue1n

where

Uern
= exp

(
(−1)d1−1

∞∑

k=1

ekr,kn

k2

)
.

Moreover, given the above choice of δ+,

e <
δ+

r
< · · · e + δ+

r
<

δ+

r − 1
< · · · <

e + δ+

r − 1
< · · · <

δ+ + e <
2δ+

r
< · · · < 2δ+ + e.

Therefore, on the right-hand side of Equation (5.8), the factors of the form
U

A+(r′,e′,v)
λ(r′,e′,v) , with v ∈ {0, 1, 2}, and 1 ≤ r′ ≤ r, 1 ≤ e′ ≤ e occur in the follow-

ing order:

e∏

n=0

Ue1n

e∏

n=0

U
A+(r,n,1)
fr,n

e∏

n=0

U
A+(r−1,n,1)
fr−1,n

· · ·
e∏

n=0

U
A+(1,n,1)
f1,n

U
A+(0,0,1)
f0,0

e∏

n=0

U
A+(r,n,2)
gr,n

· · ·
e∏

n=0

U
A+(r−1,n,2)
gr−1,n

· · ·
e∏

n=0

U
A+(1,n,2)
g1,n

(5.10)

where
Ufrn

= exp(frn + 1
4g2r,2n), Ugrn

= exp(grn).

In addition, the right-hand side of (5.8) contains of course extra factors of the
form U

A+(r′,e′,v)
λ(r′,e′,v) , with v ∈ {0, 1, 2}, and either r′ > r or e′ > e. Some of these

extra factors may in fact occur between the factors listed in (5.10). However,
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they can be ignored for the purpose of this computation, since commutators
involving such factors are again expressed in terms of generators λ(r′, e′, v)
with either r′ > r or e′ > e. Therefore, using the BCH formula, (5.8) yields

(
e∏

n=0

Ue1n

)−1

exp
(

f00 +
1
4
g00

) ∞∏

n=0

Ue1n

(5.11)

= exp

⎛

⎜⎜⎝f00 +
1
4
g00 +

∑

1≤s≤r, 0≤n≤e

A+(s, n, 1) fsn

+
∑

1≤s≤r, 0≤n≤e

A+(s, n, 2) gsn

+
∑

r1>r2≥1, r1+r2≤r, n1, n2≥0, n1+n2≤e
or 1≤r1=r2≤r/2, 0≤n1<n2, n1+n2≤e

or 1≤r1≤r, 0≤n1≤e, r2=n2=0

1
2
(n1 − n2 + r1 − r2)

× (−1)(n1−n2+r1−r2)A+(r1, n1, 1)A+(r2, n2, 1) gr1+r2,n1+n2 + · · ·

⎞

⎟⎟⎠

where · · · are terms involving generators λ(r′, e′, v) with either r′ > r or
e′ > e. For fixed e ≥ 1, let He be defined by

(5.12) exp(He) ≡
e∏

n=0

Ue1,n
= exp

(
(−1)d1−1

∑

0≤n≤e, k≥1

ek,kn

k2

)
.

Using the BCH formula, the left-hand side of Equation (5.11) becomes

(5.13) exp
(

f00 +
1
4
g00 +

∞∑

j=1

1
j!

[−He, · · · [−He︸ ︷︷ ︸
j times

, f00 +
1
4
g00 ] · · · ]︸︷︷︸

j times

)

modulo terms involving generators λ(r′, e′, v) with either r′ > r or e′ > e.
Next, the Lie algebra commutators

[er1,n1 , fr2,n2 ] = (−1)n1+r1(n1 + r1) fr1+r2,n1+n2

[er1,n1 , gr2,n2 ] = 2(n1 + r1) gr1+r2,n1+n2
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yield

[−He, · · · [−He︸ ︷︷ ︸
j times

, f00 ] · · · ]︸︷︷︸
j times

=
e∑

n1,...,nj=0

∑

k1,...,kj≥1

(−1)j(d1−1)

j∏

i=1

ni + 1
ki

(−1)(ni+1)ki−1 fk1+···+kj ,k1n1+···+kjnj

and

[−He, · · · [−He︸ ︷︷ ︸
j times

, g00 ] · · · ]︸︷︷︸
j times

=
e∑

n1,...,nj=0

∑

k1,...,kj≥1

(−1)j(d1−1)

j∏

i=1

(−2)
ni + 1

ki
gk1+···+kj ,k1n1+···+kjnj

Therefore, identifying the coefficients of the generators frn in (5.11) it follows
that the invariant A+(r′, e′, 1) with 1 ≤ r′ ≤ r and 0 ≤ e′ ≤ e equals the
coefficient of the monomial ur′

qe′+r′
in the expression

∞∑

j=0

1
j!

(
ln

(
e∏

n=0

(1 − u(−q)n+1)(−1)d1−1(n+1)

))j

=
e+1∏

n=1

(1 − u(−q)n)(−1)d1−1n.

Similarly, identifying the coefficients of the generators grn in (5.11) proves
that the invariant A+(r′, e′, 2) with 1 ≤ r′ ≤ r and 0 ≤ e′ ≤ e equals the
coefficient of the monomial ur′

qe′+r′
in the expression

1
4

e+1∏

n=1

(1 − uqn)2(−1)d1−1n −
∑

r1>r2≥1, r1+r2≤r, n1, n2≥0, n1+n2≤e
or 1≤r1=r2≤r/2, 0≤n1<n2, n1+n2≤e

or 1≤r1≤r, 0≤n1≤e, r2=n2=0

1
2
(n1 + r1 − n2 − r2)(−1)(n1+r1−n2−r2)A+(r1, n1, 1)

× A+(r2, n2, 1)qr1+r2un1+n2 .

Since this holds for any (r, e) ∈ Z≥1 × Z≥0 (with a suitable choice of δ+),
Corollary 1.1 follows.

�
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