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Cohomology of graph hypersurfaces associated
to certain Feynman graphs

Dzmitry Doryn

To any Feynman graph (with 2n edges) we can associate a hyper-
surface X ⊂ P

2n−1. We study the cohomology of the middle degree
H2n−2(X) of such graph hypersurface. Bloch et al. (Commun.
Math. Phys. 267, 2006) have computed this cohomology for the
first series of examples, the wheel with spokes WSn, n ≥ 3. Using
the same technique, we introduce the generalized zigzag graphs
and prove that W5(H2n−2(X)) = Q(−2) for all of them (with W∗
the weight filtration). We also can compute #X(Fq) ≡ 1 + q +
2q2 mod q3 for the number of rational points of such hypersurface.
At the end, we study the behavior of graph hypersurfaces under
the gluing of graphs.

Introduction

In the last decades, the renormalization group functions, i.e. beta-function
and anomalous dimensions of field operations, were computed to high orders
in the perturbative expansion in terms of Feynman graphs. The greatest
computational challenge is provided by the renormalization-scheme inde-
pendent contributions to such computations. They are provided by Feynman
graphs without divergent subgraphs — primitively log divergent graphs —
which hence evaluate to a single period as a coefficient of their scaling
behavior.

In [1] Broadhurst and Kreimer have done these computations up to
graphs with Betti number seven (“7 loops,” in physics parlance) in the mid-
1990s.

A particular simple class of graphs are the wheel with n spokes graphs
WSn, which were considered as a warm-up in [1], and are proven to deliver
periods proportional to ζ(2n − 3) at n loops.

It is those graphs which were investigated by Bloch et al. in [2] and finally
showed that there is a Hodge-theoretic (or motivic, of one dares) rhyme and
reason for the appearance of this period. More precisely, let Xn ⊂ P

2n−1 be
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the graph hypersurface for the graph WSn; it was proved that (as a Hodge
structure)

H2n−1
c (P2n−1\X) ∼= Q(−2)

and that the de Rham cohomology H2n−1
DR (P2n−1\X) is generated by the

integrand of the graph period (2.9).
This paper is a natural continuation of this result. Our aim was to settle

more general classes of graphs that can be studied with similar methods.
Cranking the level of difficulty up one notch, the zigzag graphs are genuine
graphs appearing in Φ4 theory and were numerically computed by Broad-
hurst and Kreimer, who then conjectured a general formula for the period
of zigzag graph with the Betti number equals n, ZZn being of the form
q(n)ζ(2n − 3) with q(n) rational.

After the new numerical results on the periods of graphs in Φ4 theory
given by Schnetz in [3], we have no hope to control the rational coefficients
and configurations of MZV in the periods in general. But we believe that the
cohomological results can recognize the weight of MZV. So, if there appears
the weight drop (see [4] for definition and combinatorial explanation), we
can read this off from the associated mixed Hodge structure.

Here we obtain the same Hodge-theoretical result for the graph ZZ5
as in [2]. We define a big series (which contains ZZn) of graphs for which
the maximal nontrivial weight piece of the Hodge structure is of Tate type:
gr W

maxH
2n−1
c (P2n−1\X) ∼= Q(−2) (Theorem 4.2).

Using the same stratification of a graph hypersurface as in this proof
and the technique of counting rational points using �-adic cohomology, we
get the congruence #X(Fq) ≡ 1 + q + 2q2 mod q3. We study gluings (two
vertex joins) of primitively log divergent graphs and compute gr W

maxH
2n−1
c

(P2n−1\X) = Q(−3) for the case of gluing of two graphs WS3 and WSn.
This paper is organized as follows. Section 1 contains some theorems

on determinants, this is a key ingredient of our computation. The second
section is a remainder of the construction of graph polynomials and periods.
The cohomological tools are presented in Section 3.

We define the generalized zigzag graphs GZZ and prove that they are
primitively log divergent in Section 4. Then we present the main result that
the minimal nontrivial weight piece of the mixed Hodge structure associated
to the cohomology of such graph hypersurface is Tate (Theorem 4.2). We
get a more concrete result for the cohomology of the middle degree of the
graph ZZ5 (Theorem 4.3). Then we count the number of rational points of
GZZ (Theorem 4.4).
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In Section 5 it is proved that the integrand (2.9) is nonzero in the de
Rham cohomology H2n−2

DR (P2n−1\X) for the subset GZZ(n, 2) of GZZ, n ≥ 2,
and generates it in the case of ZZ5.

In Section 6 we define the gluing Γ × Γ′ of two graphs Γ and Γ and do
computation for the cohomology of the middle degree for WS3 × WSn.

1. Determinants

Theorem 1.1. Let R be a commutative ring with 1. Consider a free rang
n + 1 R-module V . Then there is a canonical isomorphism

2∧
(

n∧
V

)
=

n−1∧
V ⊗ det V.(1.1)

Proof. Using the perfect pairings
∧i V ⊗

∧n+1−i V −→
∧n+1 V =: detV for

i = 1 and i = 2 and denoting by V ∨ the dual module, we compute

2∧
(

n∧
V

)
=

2∧
(V ∨) ⊗ (det V )2 =

n−1∧
V ⊗ (det V )−1 ⊗ (det V )2

=
n−1∧

V ⊗ det V.(1.2)

�
Let M = (aij)0≤i,j≤n be an (n+1)×(n+1)-matrix with entries in R. The
numeration of rows and columns goes 0 through n. Let M(i0, . . . , ik; j0, . . . ,
jt) be the submatrix which we get from the matrix after removing rows i0 to
ik and columns j0 to jt. It is very convenient to denote the determinant of
M just by M . We assume that the determinant of zero-dimensional matrix
is 1. For example, M(0, n; 0, n) = 1 for the matix in the definition above
with t = k = n = 1.

Corollary 1.1. Let n ≥ 1. For any (n + 1) × (n + 1)-matrix M and any
integers 0 ≤ i, j, k, t ≤ n, satisfying i 	= k and j 	= t, we have

M(i; j)M(k; t) − M(k; j)M(i; t) = M · M(i, k; j, t).(1.3)

Proof. The action of M on V induces the action on both sides of (1.1).
For a basis e0, . . . , en of V , one considers the coefficients of the elements
corresponding to e∨

i , e∨
k for the first copy of

∧n V on the left, and e∨
j , e∨

t for
the second. The formula follows. �
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For a matrix M = (aij)0≤i,j≤n, we define the minors

Ii
k := M(0, 1, . . . , i − 1, i + k, i + k + 1, . . . , n;

0, 1, . . . , i − 1, i + k, i + k + 1, . . . , n),(1.4)

where 1 ≤ k ≤ n + 1 and 1 ≤ i ≤ n. We usually write In for I0
n. For example,

In+1 = M , I1
n = M(0; 0) and In = M(n; n).

Corollary 1.2. For a symmetric matrix M = (aij)0≤i,j≤n one has the fol-
lowing equality:

InI1
n − I1

n−1In+1 = (M(0; n))2.(1.5)

Take now an (n + 1) × (n + 1)-matrix M = (aij) with entries in R and sup-
pose that the transpose of the last row equals the last column with elements,
renumbered by single lower indices.

M =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a00 a01
... a0 n−2 a0 n−1 a0

a10 a11
... a1 n−2 a1 n−1 a1

· · · · · · . . . · · · · · · · · ·
an−2 0 an−2 1

... an−2 n−2 an−2 n−1 an−2

an−1 0 an−1 1
... an−1 n−2 an−1 n−1 an−1

a0 a1
... an−2 an−1 an

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(1.6)

The determinant of M is thought of as an element in R[a0, . . . , an]. It can
be written as M = In+1 = anIn − Gn. Then Gn is computed as

Gn :=
∑

0≤i,j≤n−1

(−1)i+jaiajIn(i; j).(1.7)

The entries ai play the role of variables while the other entries and minors
are coefficients. The polynomial Gn ∈ R[a0, . . . , an] is of degree 2. We claim

Theorem 1.2. Let In−1 	≡ 0 mod In. Then

In−1Gn ≡ LnL′
n mod In(1.8)

for some Ln and L′
n, linear as polynomials of the “variables.”
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Proof. By Corollory 1.1, we have

In(i; j)In(n − 1; n − 1) ≡ In(i; n − 1)In(n − 1; j) mod In(1.9)

for all 1 ≤ i, j ≤ n − 2. We multiply Gn by In−1 = In(n − 1, n − 1) and get

In−1Gn = a2
n−1(In−1)2 +

∑

0≤i,j≤n−2

(−1)i+jaiajIn−1In(i; j)

+ an−1
∑

0≤i≤n−2

(−1)i+n−1aiIn−1

(
In(i; n − 1) + In(n − 1; i)

)

≡
(

an−1In−1 +
∑

0≤i≤n−2

(−1)i+n−1aiIn(i; n − 1)
)

×
(

an−1In−1 +
∑

0≤j≤n−2

(−1)j+n−1ajIn(n − 1; j)
)

mod In.(1.10)

We set

Ln = an−1In−1 +
∑

0≤i≤n−2

(−1)i+n−1aiIn(i; n − 1)(1.11)

and

L′
n = an−1In−1 +

∑

0≤j≤n−2

(−1)j+n−1aiIn(n − 1; j).(1.12)

�

In the next sections we deal only with symmetric matrices, and thus we
make a

Corollary 1.3. Let M = (aij) be a symmetric (n + 1) × (n + 1)-matrix
with entries in a ring R (see (1.6)). If In−1 	≡ 0 mod In, the congruence

In−1Gn ≡ (Ln)2 mod In(1.13)

holds, where Gn and Ln are given by (1.7) and (1.11), respectively.

One more fact about Gn will be used frequently in the next sections.
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Theorem 1.3. Let M = (aij) be a symmetric (n + 1) × (n + 1)-matrix
with entries in a ring R and assume that the quotient ring R/(In) is a
domain. If In−1 ≡ 0 mod In, then

Gn ≡
∑

0≤i≤n−2

a2
i In(i; i) + 2

∑

0≤i<j≤n−2

(−1)i+jaiajIn(i; j) mod In.(1.14)

Proof. We prove that Gn forgets the “variable” an−1. Since M is symmetric,
we can rewrite Gn (see (1.7)) as

Gn = a2
n−1In−1 +

∑

0≤i≤n−2

(−1)i+n−1aian−1

(
In(i; n − 1) + In(n − 1; i)

)

+
∑

0≤i≤j≤n−2

(−1)i+jaiajIn(i; j)

= a2
n−1In−1 + 2

∑

0≤i≤n−2

(−1)i+n−1aian−1In(i; n − 1)

+
∑

0≤i≤n−2

a2
i In(i; i) + 2

∑

0≤i<j≤n−2

(−1)i+jaiajIn(i; j).(1.15)

Corollory 1.1 implies (In(i; n − 1))2 ≡ In(i; i)In(n − 1; n − 1) mod In for all
0 ≤ i ≤ n − 2. Since R/(In) is a domain and In−1 = In(n − 1; n − 1) ≡ 0
mod In, we get In(i; n − 1) ≡ 0 mod In. Hence, (1.15) implies the congruence

Gn ≡
∑

0≤i≤n−2

a2
i In(i; i) + 2

∑

0≤i<j≤n−2

(−1)i+jaiajIn(i; j) mod In.(1.16)

�

Remark 1.1. In our computations we will apply Corollary 1.3 and Theo-
rem 1.2 only for the case where R is a polynomial ring over an algebraically
closed field of characteristic zero. Moreover, entries of matrices will be only
linear polynomials in R.

2. Graph polynomials

Let Γ be a finite graph with edges E and vertices V . We choose an orientation
of edges. For a given vertex v and a given edge e, we define sign(e, v) to be
−1 if e enters v and +1 if e exits v. Denote by Z[E] (resp. Z[V ]) the free
Z-module generated by the elements of E (resp. V ). Consider the homology
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sequence

0 −→ H1(Γ, Z) ι−−→ Z[E] ∂−−→ Z[V ] −→ H0(Γ, Z) −→ 0,(2.1)

where the Z-linear map ∂ is defined by ∂(e) =
∑

v∈V sign(v, e). The elements
e∨ of a dual basis of Z[E] define linear forms e∨ ◦ ι on H = H1(Γ, Z). We
view the squares of these functions (e∨ ◦ ι)2 : H → Z as rank 1 quadratic
forms. For a fixed basis of H we can associate a rank 1 symmetric matrix
Me to each such form.

Definition 2.1. We define the graph polynomial of Γ

ΨΓ := det

(
∑

e∈E

AeMe

)
(2.2)

in some variables Ae.

The polynomial Ψ is homogeneous of degree rankH. A change of the
basis of H only changes ΨΓ by +1 or −1.

Definition 2.2. The Betti number of a graph Γ is defined to be h1(Γ) :=
rank H1(Γ, Z).

The definition of ΨΓ agrees with the other well-known definition (see [2,
Proposition 2.2]):

Proposition 2.1. One has

ΨΓ(A) =
∑

T span tr.

∏

e�∈T

Ae.(2.3)

Corollary 2.1. The coefficients of ΨΓ are all either 0 or +1.

For the graph Γ, we build the table Tab(Γ) with h(Γ) rows and |E(Γ)|
columns. Each row corresponds to a loop of Γ, and these loops form a basis
of H1(Γ, Z). For each such loop we choose some direction of loop tracing.
The entry Tab(Γ)ij equals 1 if the edge ej in the i’s loop is in the tracing
direction of the loop and equals −1 if this edge is in the opposite direction;
if the edge ej does not appear in the i’s loop, then Tab(Γ)ij = 0. We take
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N = |E(Γ)| variables T1, . . . , TN and build a matrix

MΓ(T ) =
N∑

k=1

TkMk,(2.4)

where Mk is a h1(Γ) × h1(Γ) matrix with entries

Md
ij = Tab(Γ)id · Tab(Γ)jd.(2.5)

By definition, the graph polynomial for Γ is

ΨΓ(T ) = detMΓ(T ).(2.6)

Consider the following example which will appear in Section 2.1.

Example 2.1. Let Γ be the graph ZZ5 (see the drawing). This graph has
10 edges and the Betti number equals 5.

We choose the orientation and the numbering of edges as on the drawing to
the left. Following the construction above, we build the table Tab(ZZ5) to
the right and get the following matrix:

MZZ5(T ) =

⎛

⎜⎜⎜⎜⎝

T1+T2+T3 T3 0 0 −T2

T3 T3+T4+T5 T5 0 0

0 T5 T5+T6+T7 T7 −T6

0 0 T7 T7+T8+T9 T9

−T2 0 −T6 T9 T2+T6+T9+T10

⎞

⎟⎟⎟⎟⎠
.

(2.7)

Definition 2.3. The graph hypersurface XΓ ⊂ P
N−1 is the hypersurface

cut out by ΨΓ = 0.
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Throughout the whole paper, we deal with such graph hypersurfaces.
Sometimes it is convenient to make a linear change of coordinate in P

N−1 to
simplify the matrix. Clearly, this new matrix M̃Γ will define a hypersurface
isomorphic to X, which we denote again by X. For the graph in Example
2.1, we note that T0, T4, T8 and T10 appear only in the diagonal of MZZ5(T ).
Changing the coordinates and defining new variables, we get the matrix

M = MZZ5(A, B) =

⎛

⎜⎜⎜⎜⎝

B0 A0 0 0 A5
A0 B1 A1 0 0
0 A1 C2 A2 A4
0 0 A2 B3 A3

A5 0 A4 A3 B4

⎞

⎟⎟⎟⎟⎠
,(2.8)

where C2 = A1 + A2 − A4.

Definition 2.4. The graph Γ is said to be convergent (resp. logarithmically
divergent ) if N > 2h1(Γ) (resp. N = 2h1(Γ)). The logarithmically divergent
graph Γ is primitively log divergent if any connected proper subgraph Γ′ ⊂ Γ
is convergent.

For a primitively log divergent graph the quantity of interest is the period
defined by

P (Γ) :=
∫

σ2n−1(R)
ηΓ with ηΓ =:

Ω2n−1(A)
Ψ2

Γ
,(2.9)

where σ2n−1(R) ⊂ P
2n−1(R) is a locus of points with non-negative coordi-

nates and

Ω2n−1(A) =
2n∑

i=1

(−1)iAidA1 ∧ . . . d̂Ai · · · ∧ dA2n.(2.10)

The integral converges (see [2, Proposition 5.2]).
In Section 7 of [2] a relative cohomology was constructed.

H := H2n−1(P\Y, B\B ∩ Y ),(2.11)

with period (i.e., the integration along a homology of H with a de Rham
cohomology of H) exactly (2.9). Here P is some blowing up of P

2n−1, Y is a
the strict transform of XΓ and B is the total transform of A1A2 . . . A2n = 0.
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There is a hope (see [2, 7.25]) that for all primitively log divergent graphs,
or for an identifiable subset of them, the maximal weight piece of the Betti
realization HB is Tate:

gr W
maxHB = Q(−p)⊕r.(2.12)

One would like to find a rank 1 sub-Hodge structure ι : Q(−p) ↪→ gr W
maxHB

such that the image of ηΓ in gr W
maxHDR spans ι(Q(−p))DR.

Unfortunately, we cannot compute this even in very simple cases, but
something can be done here. Note that by the construction of the blowing
up above, we have a natural inclusion P

2n−1\X ↪→ P\Y . This implies a
morphism

H2n−1(P\Y )
j−→ H2n−1(P2n−1\X).(2.13)

Furthermore, the relative cohomology in (2.11) fits into an exact sequence

−→ H2n−2(B\B ∩ Y ) −→ H −→ H2n−1(P\Y ) −→ .(2.14)

The idea (and the only thing we can do) is to compute H2n−1(P2n−1\X). We
hope that the map j in (2.13) is nonzero, otherwise our computations give no
information about H. In [2, Section 11], H2n−1(P2n−1\Xn) ∼= Q(−2n + 3)
was computed for Xn, the graph hypersurface of WSn, n ≥ 3 (for Betti
or l-adic cohomology). Moreover, motivated by discussion above about the
weights of realizations of H, for the de Rham cohomology it was proved
(see Section 12) that the class of ηΓ lies in the second level of the Hodge
filtration (and generates the whole cohomology because H2n−1

DR (P2n−1\Xn))
is one dimensional).

In the next sections we compute H2n−1(P2n−1\X) (or the maximal
graded piece of weight filtration) for new examples of primitively diver-
gent graphs. For ZZ5, we also managed to do the computation for H2n−1

DR
(P2n−1\X).

3. Cohomology

In this section, we explain the cohomological tools we will use. By Corollary
2.1, a graph hypersurface X is always defined over Z. We consider two
types of cohomology theories: the �-adic cohomology H i(X ⊗Z Q, Q�) and
the Betti cohomology H i(X ⊗Z C, Q). To unify the notation we simply write
H i(X) and everything below works for both theories.
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Let X be a proper scheme over some field K of char. 0 and Z ⊂ X a
closed subscheme, one has the following exact localization sequence:

−→ Hr
c (X\Z) −→ Hr(X) −→ Hr(Z) −→,(3.1)

where Hr
c is the cohomology with compact support. We assume K to be

algebraically closed. We will use the following standart fact.

Theorem 3.1. Denote by cd(X) the cohomological dimension of a variety
X. Then

• cd(X) ≤ 2 dim(X)

• cd(X) ≤ dim(X) if X is affine.

Applying the Poincaré duality in the case of a smooth affine X, we get
dually Hr

c (X) = 0 for r < dim(X).
Let now X ⊂ P

m be defined by the vanishing of one homogeneous poly-
nomial f ∈ K[x0, . . . , xm], m ≥ 2, we write X = V(f) in such situation.
Applying (3.1) to the inclusion X ↪→ P

m, we get

−→ Hr
c (Pm\X) −→ Hr(Pm) −→ Hr(X) −→ .(3.2)

But P
m\X is affine (and smooth) of dimension m, thus by the Artin van-

ishing Hr
c (Pm\X) = 0 for 0 ≤ r ≤ m − 1. This implies Hr(X) ∼= Hr(Pm) for

0 ≤ r ≤ m − 2 and Hm−1(Pm) ↪→ Hm−1(X). So, the first interesting coho-
mology of a hypersurface in P

m is in degree m − 1, we sometimes call it the
cohomology of the middle degree Hmid(X).

Definition 3.1. Define Hr
prim(X) := coker(Hr(Pm) −→ Hr(X)) for all r.

Theorem 3.2. Let X ⊂ P
n be a variety over algebraically closed field of

characteristic 0. Then the morphism

φr : Hr(Pn) −→ Hr(X)(3.3)

is injective for 0 ≤ r ≤ 2 dim X.

Let X be a proper scheme and Y ⊂ X be a closed subscheme. By the the-
orem above, the localization sequence for Y ⊂ X implies that the sequence

−→ H i
c(X\Y ) −→ H i

prim(X) −→ H i
prim(Y ) −→(3.4)
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is exact in all terms up to H i
prim(Y ) for i = 2 dimY . The Mayer–Vietoris

sequence for the closed covering X = X1 ∪ X2 yields the sequence

−→ H i
prim(X) −→ H i

prim(X1) ⊕ H i
prim(X2) −→ H i

prim(X1 ∩ X2) −→,(3.5)

which is exact in terms up to H i
prim(X1 ∩ X2) for i = 2 dimX1 ∩ X2.

The next two theorems are often referred to in the next sections.

Theorem 3.3 (Vanishing Theorem A). Let Y be a variety V(f1, f2, . . . ,
fk) ⊂ P

N (a0 : a1 : . . . : aN ) for some homogeneous polynomials f1, . . . , fk ∈
K[a0, . . . , aN ], and suppose that fi is independent of the first t variables
a0, . . . , at−1 for each i, 1 ≤ i ≤ k. Then

(1) Hr
prim(Y ) = 0 for r < N − k + t.

(2) Hr(Y ) ∼= Hr−2t(Y ′)(−t) for r ≥ 2t, where Y ′ ⊂ P
N−t is defined by the

same polynomials.

Theorem 3.4 (Vanishing Theorem B). For homogeneous polynomials
f1, . . . , fk, h ∈ K[a0, . . . , aN ], k ≥ 0, define a subscheme U ⊂ P

N by equa-
tions f1 = . . . = fk = 0 and inequality h 	= 0, i.e.,

U := V(f1, . . . , fk)\V(f1, . . . , fk, h).

Suppose that all the polynomials are independent of the first t variables
a0, . . . , at−1, and let U ′ ⊂ P

N−t be defined by the same polynomials but in
P

N−t(at : . . . : aN ). Then

(1) H i
c(U) = 0 for i < N − k + t.

(2) H i
c(U) ∼= H i−2t

c (U ′)(−t).

Remark 3.1. In the computation for GZZ (Theorem 4.2) we do not want
to apply the Artin vanishing. So we use only the homotopy invariance (from
now h.i. everywhere), this means, we use only the second parts of Theorem
A and Theorem B. This makes our proof more motivic, since one does not
have the Artin vanishing for motivic cohomology.

4. Generalized zigzag graphs

Definition 4.1. Fix some t ≥ 1 and consider a set V (Γ) of t + 2 vertexes
ui, 1 ≤ i ≤ t + 2. Define p(u1, . . . , ut+2) to be the set of t + 1 edges (ui, ui+1),
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1 ≤ i ≤ t + 1. Let E(Γ) := p(u1, . . . , ut+2). Now choose some positive inte-
gers li for 1 ≤ i ≤ t with l1 ≥ 2 and lt ≥ 2. For each i, 1 ≤ i ≤ t, we add li − 1
new vertexes vij , 1 ≤ j ≤ li − 1, and li new edges p(ui, vi1, . . . , vi li−1, ui+2),
and li − 1 edges (vij , ui+1), 1 ≤ j ≤ li − 1. Finally, we add an edge (u1, ut+2).
We call the constructed graph Γ = (V (Γ), E(Γ)) the generalized zigzag graph
GZZ(l1, . . . , lt).

For GZZ(l1, . . . , lt) we define n = 1 +
∑t

i=1 li. The graph GZZ(l1, . . . , lt)
has n + 1 vertexes, 2n edges and the Betti number equals n. Thus,
GZZ(l1, . . . , lt) is a logarithmically divergent graph.

Example 4.1. The graph GZZ(3, 2, 3, 4) looks like

Example 4.2. The wheel with spokes graph WSn is isomorphic to the
generalized zigzag graph GZZ(n − 1) , n ≥ 3.

Example 4.3. The zigzag graph ZZn is isomorphic to the GZZ(2, 1, . . . ,
1, 2) (with n − 5 1’s in the middle) for n ≥ 5.

Theorem 4.1. A generalized zigzag graph Γ = GZZ(l1, . . . , lt) is primi-
tively log divergent.

Proof. We need to prove that for any proper subgraph Γ′ ⊂ Γ the inequal-
ity |E(Γ′)| > 2h1(Γ′) holds, which means that Γ′ is convergent. We do not
distinguish between a graph and its set of edges. Because our graph Γ is
planar, it partitions the plain into exactly h1 + 1 pieces. This is a good way
to compute h1. We will call the loops of length 3 simple loops. We can order
the simple loops from the right bottom corner to the left top keeping in mind
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the drawing like in Example 4.1. Formally, let Δ1 = p(u1, u2, v11, u1) and for
each i we define the next simple loop Δi+1 to be a simple loop, which has
a common edge with Δi but not already labeled. Define Γ0 := Γ\(u1, ut+2).
The main point of the proof is the following. The graph Γ0 is a strip of
Δ’s, for each i, 1 ≤ i ≤ k, we can cut this strip along (ui, ui+1), turn over
one piece and glue again along the same edges. Denote this operation by φi.
This gives a map

φ := φt ◦ . . . ◦ φ2 : Γ0 −→ Γ̂0,(4.1)

where Γ̂0 is isomorphic to WSn without one boundary edge; this graph is
topologically the same as a half of WSn, we denote it by hWSn. Note that
the maps φi and φ are the isomorphisms between sets of edges of the graphs
in the described way. On some vertexes this map is not single-valued. For
the graph Γ in Example 4.1, we have the following Γ̂0 = hWS13:

The vertex ui under described operations goes to u′
i−1, or u′

i, or u′ depending
on the edge that we take. We can label the simple loops of hWSn from the
right to the left by Δ̂1, . . . , Δ̂n−1, these are the images of Δ’s

φ(Δi) = Δ̂i.(4.2)

Each φi preserves loops; this means that a subgraph γ ⊂ φi−1 . . . φ2(Γ) is a
loop if and only if φi(γ) is a loop of the same length. Thus, this condition
holds for φ. It follows that Γ0 and hWSn have the same Betti numbers.
Moreover, for each subgraph Γ′′

0 ⊂ Γ0 we have

h1(Γ′′
0) = h1(φ(Γ′′

0)).(4.3)
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To involve the “special” edge (u1, ut+2) into consideration, note that if the
graph Γ′′

0 is disconnected and we have no path p′(u1, . . . , ut+1) with end-
points u1 and ut+1, then the adding of (u1, ut+2) does not change the Betti
number; otherwise this increases the number by one.

h(Γ′′
0 ∪ (u1, ut+1)) =

{
h(Γ′′

0), p′(u1, . . . , ut+2) 	⊂ Γ′′
0,

h(Γ′′
0) + 1, otherwise.

(4.4)

This proves that we can extend the map φ to

φ̄ : Γ −→ Γ̂,(4.5)

which maps our graph to Γ̂, that is nothing but Γ̂0 ∼= hWSn compactified by
adding the missing boundary edge and is isomorphic to WSn. The map φ̄
satisfies the same condition as φ in (4.3). For the example of hWS13 above,
we add the edge (u1, u6) on the drawing and get WS13.

So, we reduced the statement to the case WSn. It is known that these
graphs are primitively log divergent. This concludes the proof. �

Let X ⊂ P
2n−1 be a graph hypersurface. We consider the Betti cohomology

of the middle degree Hmid(X) = H2n−2(X). By Deligne’s theory of MHS
[5, 6], there is a Q-mixed Hodge structure associated to Hmid(X). We can
try to study the graded pieces of weight filtration W : gr W

i (Hr(X)), 0 ≤ i ≤
2n − 2, r ≥ mid.

Theorem 4.2. For the hypersurface X associated to a generalized zigzag
graph GZZ, one has the isomorphisms

gr W
4 (Hmid

prim(X)) ∼= W4(Hmid
prim(X)) ∼= W5(Hmid

prim(X)) ∼= Q(−2),

W5(Hr
prim(X)) = 0, r > mid.

(4.6)

Proof. We consider the case when t is even and start with labeling of edges
and choosing orientations. For simplicity, let n0 := 0 and

ni :=
i∑

j=1

lj for 1 ≤ i ≤ t.(4.7)
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For each i, 1 ≤ i ≤ t, define eni−1+1 := (ui+1, ui) for odd i and eni−1+1 :=
(ui, ui+1) for even i,

eni−1+j :=

{
(ui+1, vi j−1) for 2 ≤ j ≤ li, i odd,

(vi j−1, ui+1) for 2 ≤ j ≤ li, i even.
(4.8)

Together with ent+1 := (ut+2, ut+1) for even t and ent+1 := (ut+1, ut+2) for
odd t, these are the first nt + 1 =: n edges. Now, for each i, 1 ≤ i ≤ t, define
en+ni−1+1 := (vi1, ui),

en+ni−1+j := (vij , vij−1) for 2 ≤ j ≤ li − 1(4.9)

and en+ni−1+li := (ui+2, vi li−1). Roughly speaking, all edges are oriented
from the left top corner to the right bottom and from the right top cor-
ner to the left bottom corner. Define e2n := (u1, ut+2).



Cohomology of certain graph hypersurfaces 381

For building the table, we take the small loops from the right bottom corner
of the drawing to the left top corner, and the last loop to be chosen is the
loop with the edge (u1, ut+2). Because of lack of space, we draw the table
for the graph in Example 4.1.

Now we take 2n variables T1, . . . , T2n and build a matrix M(T ) as the
sum of elementary matrices. After a change of the variables, we get the
matrix

MGZZ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B0 A0 0 0 0 0 0 0 0 0 0 0 A17

A0 B1 A1 0 0 0 0 0 0 0 0 0 0

0 A1 B2 A2 0 0 0 0 0 0 0 0 0

0 0 A2 C3 A3 0 0 0 0 0 0 0 A16

0 0 0 A3 C4 A4 0 0 0 0 0 0 A15

0 0 0 0 A4 B5 A5 0 0 0 0 0 0

0 0 0 0 0 A5 B6 A6 0 0 0 0 0

0 0 0 0 0 0 A6 B7 A7 0 0 0 0

0 0 0 0 0 0 0 A7 C8 A8 0 0 A14

0 0 0 0 0 0 0 0 A8 C9 A9 0 A13

0 0 0 0 0 0 0 0 0 A9 C10 A10 A12

0 0 0 0 0 0 0 0 0 0 A10 B11 A11

A17 0 0 A16 A15 0 0 0 A14 A13 A12 A11 B12

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(4.10)
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In the last row the A’s appear in the zero column and in the columns ni +
j − 1 for all i 	≡ t mod 2 , 1 ≤ i ≤ t, and all 1 ≤ j ≤ li. In the same columns
(but 0 and n − 2) we have C’s in the main diagonal. These C’s are defined
by

Ck :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Av + Ak−1 − Ak, k = ni, li+1 > 1, i 	= 0,

Av − Ak−1 − Ak, k = ni + j, 1 ≤ j ≤ li+1 − 2,

Av − Ak−1 + Ak, k = ni+1 − 1, li+1 > 1, i 	= t − 1,

Av + Ak−1 + Ak, k = ni, li+1 = 1,

(4.11)

where i 	≡ t mod 2, and Av is always in the last row in the same column as
Ck. Formally, if k = ni + j − 1, then

v = v(k) = n − 2 +
t−1∑

r=i+2
r �≡t mod 2

lr + li+1 − j.(4.12)

In the computations we think of Ck as just linear polynomials of A’s rather
than entries of the matrix. Sometimes we denote by Am the entry in the left
bottom corner of MGZZ.

For the case of odd t we can derive the tables and the matrices from
the even case. Indeed, consider some Γ′ = GZZ(l1, . . . , lt) with even t and
let Γ be the graph which we get from Γ′ after forgetting edges of simple
loops Δ1,. . . ,Δl1 (see Theorem 4.1 for definition), we assume that (u2, u3)
remains, and we take (ut+2, u2) instead of (ut+2, u1). So, Γ = GZZ(l2, . . . , lt).
Constructing everything similar, the table for Γ is that for Γ′ without first l1
rows. The matrix of Γ looks similar to that of Γ′ with the same assumptions
on A’s in the last row and on C’s.

Consider the projective space P
2n−1 with coordinates all the Ai’s and

Bj ’s appearing in the matrix and define X := V(det(MGZZ)) = V(In) ⊂
P

2n−1, where

MGZZ =

⎛

⎜⎜⎜⎝

. . .
...

...
...

. . . Cn−3 An−3 An−1

. . . An−3 Bn−2 An−2

. . . An−1 An−2 Bn−1

⎞

⎟⎟⎟⎠ .(4.13)

Since lt > 1, the entry an−3 n−3 is really not independent, and thus Cn−3.
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Step 1. Fix some r, 2n − 2 ≤ r ≤ 4n − 4. We are going to compute Hr(X).
For the closed subscheme V(In, In−1) ⊂ X, we have the localization sequence

→ Hr
c (X\V(In, In−1)) → Hr(X) →

Hr(V(In, In−1)) → Hr+1
c (X\V(In, In−1)) → .

(4.14)

We can write

In = Bn−1In−1 − Gn−1,(4.15)

where Gn−1 is independent of Bn−1. Projecting from the point where all the
variables but Bn−1 are zero, we get

X\V(In, In−1) ∼= P
2n−2\V(In−1).(4.16)

Since In−1 is independent of An−2 and Am, the h.i. for scheme on the right-
hand side of (4.16) implies

Hq
c (X\V(In, In−1)) ∼= Hq−4

c (P2n−4\V(In−1))(−2)(4.17)

for q = r and r + 1. Since In−1 is the determinant of the matrix without
the last row and the last column, we see that the variables of the form Av

appear in In−1 only inside the linear polynomial Ck (see definition (4.11)).
Taking a suitable change of variables (like Av �→ Av − Ak−1 + Ak in the first
case of (4.11)), we get that the polynomial Ck as an independent variable
instead of Av. We write usually Ck := Av in such situation. So, we define
by I ′

n−1 the image of In−1 under the change of the coordinates of P
2n−4(no

Bn−1, An−2, Am) Ci := Av(i) for all Ci. Using the localization sequence for
the closed embedding I ′

n−1 ⊂ P
2n−4, we get

Hq−4
c (P2n−4\V(I ′

n−1)) ∼= Hq−5
prim(V(I ′

n−1)).(4.18)

Consider T := V(I ′
n−1, I

′
n−2) ⊂ V(I ′

n−1). One has the localization sequence

→ Hq−5
c (V(I ′

n−1)\T ) → Hq−5
prim(V(I ′

n−1)) → Hq−5
prim(T ) → .(4.19)

We can rewrite T = V(I ′
n−2, An−3I

′
n−3). So, the defining polynomials of T

do not depend on Bn−2. Now, on V(I ′
n−1)\T we can express Bn−2 from

the equation and get V(I ′
n−1)\T ∼= P

2n−5\V(I ′
n−2). The polynomial I ′

n−2 is
independent of An−3. Thus, we can apply h.i. to T and V(I ′

n−1)\T , and then
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applying gr W
i to (4.19), we obtain

gr W
i Hq−5

prim(V(I ′
n−1)) = 0, i = 0, 1, any q.(4.20)

By (4.17), (4.18) and (4.20), the sequence (4.14) yields

gr W
i Hr(X) ∼= gr W

i Hr(V(In, In−1)), i = 0, . . . , 5.(4.21)

By (4.15), one has V(In, In−1) ∼= V(In−1, Gn−1)(2n−1). Both polynomials to
the right are independent of Bn−1. H.i. for V(In−1, Gn−1)(2n−1) and (4.21)
imply

gr W
i Hr(X) ∼= gr W

i−2H
r−2(V(In−1, Gn−1)), i = 0, . . . , 5.(4.22)

The variety to the right lives in P
2n−2 (no Bn−1). Define the closed sub-

scheme V̂ ⊂ V(In−1, Gn−1) by V̂ := V(In−1, In−2, Gn−1) ⊂ P
2n−2 (no Bn−1).

One has an exact sequence

→ Hr−2
c (V(In−1, Gn−1)\V̂ ) → Hr−2(V(In−1, Gn−1)) →

Hr−2(V̂ ) → Hr−1
c (V(In−1, Gn−1)\V̂ ) → .(4.23)

The polynomial In−1 is independent of An−2 and the coefficient of A2
n−2 in

Gn−1 is In−2. By Corollory 1.3, we have In−2Gn−1 = (Ln−1)2 on V(In−1),
so

{
In−1 = Gn−1 = 0,

In−2 	= 0,
⇔

{
In−1 = Ln−1 = 0,

In−2 	= 0.
(4.24)

Now,

Ln−1 = An−2In−2 +
∑

s

(−1)s+n−2Av(s)In−1(s; n − 2),(4.25)

where the sum goes over all s such that ass = Cs, and also s = 0 (assuming
v(0) = m), see (4.12), (1.11). Solving on An−2 and projecting from the point
where all the coordinates but An−2 are zero, we get

V(In−1, Gn−1)\V̂ ∼= V(In−1)\V(In−1, In−2).(4.26)

Expressing Bn−2 from In−1 = 0 and projecting further, we obtain an iso-
morphism V(In−1)\V(In−1, In−2) ∼= P

2n−4\V(In−2). The polynomial In−2 is
independent of Am and An−1 (after Cn−3 := An−3). Applying h.i., one gets
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gr W
i Hq

c (V(In−1, Gn−1)\V̂ ) ∼= gr W
i−4H

q−4
c (P2n−6\V(In−2)) = 0 for i = 0, . . . ,

3 and any q. The sequence (4.23) yields

gr W
i Hr−2(V(In−1, Gn−1)) ∼= gr W

i Hr−2(V̂ ), i = 0, . . . , 3.(4.27)

By Theorem 1.3, the polynomial Gn−1 is independent of An−2 on V̂ . Thus,
V̂ is defined by the vanishing of three polynomials which are independent
of An−2. Applying h.i., one gets

Hr−2(V̂ ) ∼= Hr−4(V )(−1),(4.28)

where V := V(In−1, In−2, G
′
n−1) ⊂ P

2n−3 (no Bn−1, An−1) and

G′
n−1 := Gn−1|An−2=0.(4.29)

Combining (4.22), (4.27) and (4.28), we get

gr W
i Hr(X) ∼= gr W

i−4H
r−4(V ), i = 0, . . . , 5.(4.30)

Step 2. Now we get rid of Bn−2. We can write

G′
n−1 = Bn−2Gn−2 − A2

n−3Gn−3,(4.31)

where Gn−2 and Gn−3 are considered to be polynomials of variables
An−1, . . . , Am and An, . . . , Am with “coefficients” from the Matrices of In−2
and of In−3, respectively. The decomposition follows from the fact that
each coefficient of G′

n−1 is a factor of some Ij
n−j−1 for 0 ≤ j ≤ n − 2, and

the 3-diagonal matrix of Ij
n−j−1 has the right bottom entry Bn−2. Define

the variety T̂n−2 := V ∩ V(Gn−2) = V(An−3In−3, In−2, Gn−2, An−3Gn−3)) ⊂
V . One has an exact sequence

Hr−5
prim(T̂ ) → Hr−4

c (V \T̂ ) → Hr−4
prim(V ) → Hr−4

prim(T̂ ) → .(4.32)

Since the defining polynomials of T̂ are independent of Bn−2, h.i. for T̂
implies

→ Hr−7
prim(T )(−1) → Hr−4

c (V \T̂ ) → Hr−4
prim(V ) → Hr−6

prim(T )(−1) →(4.33)

for T ⊂ P
2n−4 (no Bn−1, An−2, Bn−2) defined by the same equations as T̂ .

Applying the exact functor gr W
∗ to the sequence above, we obtain

gr W
i Hr−4

prim(V ) ∼= gr W
i Hr−4

c (V \T̂ ), i = 0, 1.(4.34)
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The subscheme V \T̂ ⊂ V is defined by the system

⎧
⎪⎨

⎪⎩

In−2 = An−3In−3 = 0,

Bn−2Gn−2 − A2
n−3Gn−3 = 0,

Gn−2 	= 0.

(4.35)

Projecting from the point where all the variables but Bn−2 are zero and
solving the middle equation on Bn−2, we get an isomorphism

V \T̂ ∼= V(In−2, An−3In−3)\V(In−2, An−3In−3, Gn−2)

=: U1 ⊂ P
2n−4( no Bn−1, An−2, Bn−2).(4.36)

One has an exact sequence

Hr−5
prim(V(In−2, An−3In−3)) → Hr−5

prim(V(In−2, An−3In−3, Gn−2)) →
Hr−4

c (U1) → Hr−4
prim(V(In−2, An−3In−3)) → .(4.37)

The variety V(In−2, An−3In−3) ⊂ P
2n−4 is defined by the polynomials inde-

pendent of Am. After applying of h.i. and then gr W
∗ , the sequence yields

gr W
i Hr−4

c (U1) ∼= gr W
i Hr−5

prim(V(In−2, An−3In−3, Gn−2)), i = 0, 1.(4.38)

Define Ŝ := V(In−2, In−3, Gn−2) and U2 := V(In−2, An−3In−3, Gn−2)\Ŝ in
P

2n−4. One has an exact sequence

−→ Hr−6
prim(Ŝ) −→ Hr−5

c (U2) −→
Hr−5

prim(V(In−2, An−3In−3, Gn−2)) −→ Hr−5
prim(Ŝ) −→ .(4.39)

The only appearance of An−3 in the defining polynomials of S is in Gn−2,
namely in Cn−3. After a linear change of the variables we may assume
that Cn−3 := An−3 is independent. Furthermore, the same argument as
for V̂ at Step 1 (see (4.28)) gives us Hr−5(Ŝ) ∼= Hr−7(S)(−1) with S :=
V(In−2, In−3, G

′′
n−2) ⊂ P

2n−5(no Bn−1, An−2, Bn−2, An−1). The sequence
(4.39) simplifies to

−→ Hr−7
prim(S)(−1) −→ Hr−5

c (U2) −→
Hr−5

prim(V(In−2, An−3In−3, Gn−2)) −→ Hr−7
prim(S)(−1) −→ .(4.40)
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Applying the functors gr W
i to the sequence, by (4.34), (4.36), (4.38) and

(4.40), we get

gr W
i Hr−4

prim(V ) ∼= gr W
i Hr−5

c (U2) for i = 0, 1.(4.41)

Now, the scheme U2 is defined by the system

⎧
⎪⎨

⎪⎩

In−2 = Gn−2 = 0,

An−3In−3 = 0,

In−3 	= 0,

⇔

⎧
⎪⎨

⎪⎩

Gn−2 = In−2 = 0,

An−3 = 0,

In−3 	= 0.

(4.42)

Eliminating An−3, which is zero on U2, we get an isomorphism

U2 ∼= U ′
2,(4.43)

with U ′
2 := V(I ′

n−2, G
′
n−2)\V(I ′

n−2, G
′
n−2, In−3) ⊂ P

2n−5 (no Bn−1, An−2,
Bn−2, An−3), where primes mean that we set An−3 = 0 in the polynomi-
als, namely in Cn−3. Now we write

C ′
n−3 = An−1 ± An−4,(4.44)

with “+” only when an−4n−4 = Bn−4 in the matrix.
By Corollary 1.3, it follows that U ′

2 is defined by the system

⎧
⎪⎨

⎪⎩

C ′
n−3In−3 − A2

n−4In−4 = 0,

Ln−2 = 0,

In−3 	= 0,

(4.45)

with

Ln−2 := An−1In−3 +
∑

s

(−1)s+n−1Av(s)In−2(s, n − 3)

= An−1In−3 +
∑

s

(−1)s+n−1Av(s)Is

n−4∏

k=s

Ak.(4.46)

The sum goes over all s = ni + j − 1 < n − 3, i 	≡ t mod 2, 1 ≤ i ≤ t, 1 ≤
j ≤ li, so over all s < n − 3 such that ass = Cs. It is convenient to use the
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recurrence formula

Ls+1 =

{
Av(s)Is − As−1Ls, as+1s+1 = Cs+1,

−As−1Ls, as+1s+1 = Bs+1.
(4.47)

We can express An−1 from the second equation of the system (4.45) and C2
from the first one.

⎧
⎪⎨

⎪⎩

An−1 ± An−4 = C ′
n−3 = A2

n−4In−4/In−3,

An−1 = An−4Ln−3/In−3,

In−3 	= 0.

(4.48)

These two expressions for An−1 must be equal on U ′
2. We introduce the

polynomials Ns defined by As−1Ns = ±As−1Is + A2
s−1Is−1 − As−1Ls. Some-

times we write N−
s and N+

s to indicate the sign taken in the expression on
the right. The natural projection from the point where all the variables but
An−1 are zero induces an isomorphism

U ′
2

∼= U3 := V(An−4Nn−3)\V(An−4Nn−3, In−3),(4.49)

with U3 ⊂ P
2n−6(no Bn−1, An−2, Bn−2, An−3, An−1). By (4.41), and (4.43),

gr W
i Hr−4

prim(V ) ∼= gr W
i Hr−5

c (U3) for i = 0, 1.(4.50)

We have two possibilities : an−4 n−4 = Cn−4 or an−4 n−4 = Bn−4. When the
latter holds, go to Step 4 with Nn−3 = N−

n−3; do the next step with Nn−3 =
N+

n−3 otherwise.

Step 3. Suppose that the entry ass of MGZZ is Cs and as+1s+1 = Cs+1. In
other words, ni ≤ s ≤ ni + li − 2 for some i 	≡ t mod 2. This corresponds to
the case s = n − 4 if we had come from Step 2. One has

Cs = Av − As ± As−1,(4.51)

with “+” only when as−1 s−1 = Bs. We work in P
N (no DVs) for N = 2n −

1 − 2(n − 1 − s − 1) − 1 = 2s + 2, and the dropped variables (DVs) are all
the variables in Is+1

n−1−s but As. We are going to compute Hq
c (U) for q ≥ 2s + 1
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and U defined by

U := V(AsNs+1)\V(AsNs+1, Is+1),(4.52)

where Ns+1 = Is+1 + AsIs − Ls+1. Let T := V(AsNs+1), Y := V(AsNs+1,
Is+1) in P

2s+2(no DVs). One has an exact sequence

→ Hq−1
prim(T ) → Hq−1

prim(Y ) → Hq
c (U) → Hq

prim(T ) → .(4.53)

Using (4.51), we rewrite

Ns+1 = (Av − As ± As−1)Is − A2
s−1Is−1 + AsIs − AvIs + As−1Ls

= −As−1(±Is + As−1Is−1 − Ls) = −As−1Ns(4.54)

and see that Ns+1 is actually independent of Av and As. After applying of
h.i. and gr W

∗ , the sequence (4.53) yields the isomorphism

gr W
i Hq

c (U) ∼= gr W
i Hq−1

prim(Y ), i = 0, 1.(4.55)

Define Ŷ1 := Y ∩ V(Is) = V(AsNs+1, Is, As−1Is−1). The polynomial Ns+1 is
independent of Av by (4.54). Using h.i. for Ŷ1, we come to an exact sequence

Hq−4
prim(Y1)(−1) → Hq−1

c (Y \Ŷ1) →
Hq−1

prim(Y ) → Hq−3
prim(Y1)(−1) →(4.56)

with Y1 ⊂ P
2s+1(no DVs, Av) defined by the same polynomials. The scheme

Y \Ŷ1 is given by the system

⎧
⎪⎨

⎪⎩

AsAs−1Ns = 0,

CsIs − A2
s−1Is−1 = 0,

Is 	= 0.

(4.57)

By (4.51), we express Av from the second equation. Projecting from the
point where all the variables but Av are zero, we get isomorphisms

Y \Ŷ1 ∼= R and Hq−1
c (Y \Ŷ1) ∼= Hq−1

c (R),(4.58)

where R := V(AsAs−1Ns)\V(AsAs−1Ns, Is) ⊂ P
2s+1(no DVs, Av). Define

R1 := V(As−1Ns)\V(As−1Ns, Is) and R2 := V(As)\V(As, Is). One has the
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Mayer–Vietoris sequence

−→ Hq−2
c (R1) ⊕ Hq−2

c (R2) −→ H2s−1
c (R3) −→

Hq−1
c (R) −→ Hq−1

c (R1) ⊕ Hq−1
c (R2) −→,(4.59)

with R3 := R1 ∩ R2. The defining polynomials of R1 and R2 are independent
of As and Am, respectively. Applying h.i. to them, and applying functors
gr W

i to the sequence above, we get isomorphisms

gr W
i Hq−1

c (R) ∼= gr W
i Hq−2

c (R3), i = 0, 1.(4.60)

Now, R3 := V(As, As−1Ns)\V(As, As−1Ns, Is) ⊂ P
2s+1(no DVs, Av). Pro-

jecting from the point where all the variables but As are zero, we get iso-
morphisms

R3 ∼= U ′ and Hq−2
c (R3) ∼= Hq−2

c (U ′)(4.61)

for U ′ = V(As−1Ns)\V(As−1Ns, Is) ⊂ P
2s(no DVs, Av, As). Collecting

(4.55), (4.56), (4.58), (4.60) and (4.61) together, we obtain

gr W
i Hq

c (U) ∼= gr W
i Hq−2

c (U ′), i = 0, 1,(4.62)

where U is defined by (4.52) and q ≥ 2s + 1.

If s = 1, go to the last step.
When we come to Step 3 with some s, ni ≤ s ≤ ni + li − 2, i 	≡ t mod 2,

we must apply this step s − ni − 1 times with Ns = N+
s and then one more

time with Ns = N−
s . After this, we are in a new situation.

Step 4. Suppose that the entry ass of MGZZ is Bs and as+1 s+1 = Cs+1. This
means that s = ni − 1 for some i 	≡ t mod 2. Denote by DVs the dropped
variables that are all the variables appearing in Is+1

n−1−s but As. Again, we
want to compute Hq

c (U) for q ≥ 2s + 1 and U ⊂ P
2s+2 defined by

U := V(AsNs+1)\V(AsNs+1, Is+1),(4.63)

where Ns+1 = −Is+1 + AsIs − Ls+1. Define U1 := V(As)\V(As, Is+1), U2 :=
V(Ns+1)\V(Ns+1, Is+1). This covering gives us an exact sequence

−→ Hq−1
c (U1) ⊕ Hq−1

c (U1) −→ H2s
c (U3) −→

Hq
c (U) −→ Hq

c (U1) ⊕ Hq
c (U1) −→,(4.64)
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where U3 := U1 ∩ U2. The polynomials in the definition of U1 do not depend
on Am. Moreover, we can rewrite

Ns+1 = −Is+1 + AsIs − Ls+1 = −BsIs + A2
s−1Is−1 + AsIs

+ As−1Ls = (As − Bs)Is + A2
s−1Is−1 + As−1Ls

(4.65)

and see that Ns+1 depends neither on Bs nor on As but on the difference
As − Bs. After the change of variables Bs := As − Bs, the polynomial Ns+1
becomes independent of As. Applying h.i. to U1 and U2, and then applying
the functors gr W

i to the sequence (4.64), we get

gr W
i Hq

c (U) ∼= gr W
i Hq−1

c (U3), i = 0, 1.(4.66)

Now, U3 ⊂ P
2s+2(no DVs) is given by the system

⎧
⎪⎨

⎪⎩

As = 0,

Ns+1 = 0,

Is+1 	= 0,

⇔

⎧
⎪⎨

⎪⎩

As = 0,

Is+1 + Ls+1 = 0,

Is+1 	= 0.

(4.67)

We eliminate the variable As and consider an open U4 ⊂ P
2s+1(no DVs, As)

defined by the last two conditions, then

Hq−1
c (U3) ∼= Hq−1

c (U4).(4.68)

Define T := V(Is+1 + Ls+1), Y := V(Is+1 + Ls+1, Is+1) in P
2s+1(no DVs,

As). We can write an exact sequence

−→ Hq−2
prim(T ) −→ Hq−2

prim(Y ) −→ Hq−1
c (U4) −→ Hq−1

prim(T ) −→ .(4.69)

Similar to (4.65), one has Is+1 + Ls+1 = BsIs − A2
s−1Is−1 − As−1Ls. Let

T1 := T ∩ V(Is) = V(Is, A
2
s−1Is−1 + As−1Ls) ⊂ P

2s+1(no DVs, As). For p =
q − 1 and p = q − 2 we write an exact sequence

−→ Hp
c (T\T1) −→ Hp

prim(T ) −→ Hp
prim(T1) −→ .(4.70)

On T\T1 we can express Bs and get an isomorphism T\T1 ∼= P
2s\V(Is) with

P
2s(no DVs, As, Bs). The polynomial Is does not depend on Am. Further-

more, the defining polynomials of T1 are independent of Bs. We apply h.i.
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to T\T1 and T1, and apply gr W
i to the sequence (4.70). We get

gr W
i Hp

prim(T ) = 0, i = 0, 1, p = q − 1, q − 2.(4.71)

We return to Y = V(Ls+1, Is+1) = V(As−1Ls, BsIs − A2
s−1Is−1). One can

write an exact sequence

→ Hq−3
prim(Y1) → Hq−2

c (Y \Y1) → Hq−2
prim(Y ) → Hq−2

prim(Y1) →,(4.72)

where Y1 := Y ∩ V(Is) = V(Is, As−1Ls−1, As−1Is−1) ⊂ P
2s+1(no DVs, As).

The last three polynomials are independent of Bs. After applying h.i. and
taking gr W

i , the sequence (4.72) implies

gr W
i Hq−2

prim(Y ) ∼= gr W
i Hq−2

c (Y \Y1), i = 0, 1.(4.73)

Now, Y \Y1 ⊂ P
2s+1(no DVs, As) is defined by the system

⎧
⎪⎨

⎪⎩

As−1Ls = 0,

BsIs − A2
s−1Is−1 = 0,

Is 	= 0.

(4.74)

We can express Bs from the second equation, and we get an isomorphism
Y \Ŷ1 ∼= U ′, where

U ′ := V(As−1Ls)\V(As−1Ls, Is) ⊂ P
2s (no DVs, As, Bs).(4.75)

Finally, combining (4.66), (4.68), (4.69), (4.71) and (4.73), we get

gr W
i Hq

c (U) ∼= gr W
i Hq−2(Y ) ∼= gr W

i Hq−2
c (U ′), i = 0, 1,(4.76)

for U and U ′ defined by (4.63) and (4.75), respectively, and q ≥ 2s + 1.
Now, if s = 1, go to the last step. If as−1 s−1 = Cs−1, we go to Step 6.

Otherwise do the next step.

Step 5. Consider an entry ass = Bs of MGZZ such that as+1s+1 = Bs+1. With
other words, s satisfies the condition ni ≤ s ≤ ni + li+1 − 2 for some i ≡
t mod 2. Let U ⊂ P

2s+2(no DVs) be defined by

U := V(AsLs+1)\V(AsLs+1, Is+1),(4.77)

and denote by DVs all the variables appearing in Is+1
n−1−s. As usual, we

try to compute Hq
c (U) for q ≥ 2s + 1. Define U1 := V(As)\V(As, Is+1),
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U2 := V(Ls+1)\V(Ls+1, Is+1) in P
2s+2. One can write an exact sequence

−→ Hq−1
c (U1) ⊕ Hq−1

c (U2) −→ Hq−1
c (U3) −→

Hq
c (U) −→ Hq

c (U1) ⊕ Hq
c (U2) −→,(4.78)

where U3 := U1 ∩ U2. The defining polynomials of U1 do not depend on
Am, thus Theorem B (N = 2s + 2, k = 1, t = 1) implies H i

c(U1) = 0 for i <
2s + 2. Since Ls+1 = −As−1Ls and Is+1 are independent of As, and Is+1 is
also independent of Am, we can apply h.i. to U1 and U2. After applying grW

i

to the sequence (4.78), one gets

gr W
i Hq

c (U) ∼= gr W
i Hq−1

c (U3), i = 0, 1.(4.79)

We eliminate As, which is zero along U3, and get an isomorphism

U3 ∼= U4 := V(Ls+1)\V(Ls+1, Is+1),(4.80)

with U4 ⊂ P
2s+1(no DVs, As). Defining T := V(Ls+1), Y := V(Ls+1, Is+1)

in P
2s+1, we get an exact sequence

→ Hq−2
prim(T ) → Hq−2

prim(Y ) → Hq−1
c (U4) → Hq−1

prim(T ) → .(4.81)

Since Ls+1 is independent of Bs, h.i. applied to T implies

gr W
i Hq−1

c (U4) ∼= gr W
i Hq−2

prim(Y ), i = 0, 1.(4.82)

Let Y1 := Y ∩ V(Is) = V(Ls, Is+1, Is). One has an exact sequence

→ Hq−3
prim(Y1) → Hq−2

c (Y \Y1) → Hq−2
prim(Y ) → Hq−2

prim(Y1) → .(4.83)

Since Y1 = V(Ls+1, BsIs − A2
s−1Is−1, Is) = V(As−1Ls, Is, As−1Is−1), the

defining polynomials forget Bs. Applying h.i. to Y1, and gr W
i to the sequence

(4.83), one gets

gr W
i Hq−2

prim(Y ) ∼= gr W
i Hq−2

c (Y \Y1), i = 0, 1.(4.84)

The open subscheme Y \Y1 ⊂ Y is given by the system
⎧
⎪⎨

⎪⎩

As−1Ls−1 = 0,

BsIs − A2
s−1Is−1 = 0,

Is 	= 0.

(4.85)
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Expressing Bs from the second equation and projecting from the point where
all the variables but Bs are zero, we get an isomorphism Y \Y1 ∼= U ′, where

U ′ := V(As−1Ls)\V(As−1Ls, Is) ⊂ P
2s.(4.86)

Collecting now (4.79),(4.80),(4.82) and (4.84) together, we obtain

gr W
i Hq

c (U) ∼= gr W
i Hq−2

c (U ′), i = 0, 1(4.87)

for U and U ′ defined by (4.77) and (4.86), respectively, and q ≥ 2s + 1.
If s = 1, go to the last step.
After repeating a suitable number of times Step 5, we come to the fol-

lowing situation.

Step 6. Suppose that the entry ass of the matrix MGZZ is Cs and
as+1s+1 = Bs+1. This happens when s = ni − 1 for some i ≡ t mod 2. For Cs,
we have

Cs = Av + As ± As−1,(4.88)

with “+” only when li = 1. Let U ⊂ P
2s+2(no DVs) be defined by

U := V(AsLs+1)\V(AsLs+1, Is+1),(4.89)

and denote by DVs all the variables appearing in Is+1
n−1−s. As in the previous

case, we define U1 := V(As)\V(As, Is+1), U2 := V(Ls+1)\V(Ls+1, Is+1) and
write an exact sequence

−→ Hq−1
c (U1) ⊕ Hq−1

c (U2) −→ Hq−1
c (U3) −→

Hq
c (U) −→ Hq

c (U1) ⊕ Hq
c (U2) −→,(4.90)

where U3 := U1 ∩ U2 and q ≥ 2s + 1. For this step, we have

Ls+1 = AvIs − As−1Ls,

Is+1 = CsIs − A2
s−1Is−1,

(4.91)

so the polynomials defining U1 and U2 are independent of Am and As, respec-
tively. We apply h.i. to U1 and U2, and the sequence (4.90) yields

gr W
i Hq

c (U) ∼= gr W
i Hq−1

c (U3), i = 0, 1.(4.92)
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Eliminating As, which is zero on U3, we get an isomorphism

U3 ∼= U4 := V(Ls+1)\V(Ls+1, Is+1),(4.93)

with U4 ⊂ P
2s+1(no DVs, As). Denoting by I ′

s+1 the polynomial Is+1 after
setting As = 0, we define T := V(Ls+1) and Y := V(Ls+1, I

′
s+1) in P

2s+1.
One gets an exact sequence

→ Hq−2
prim(T ) → Hq−2

prim(Y ) → Hq−1
c (U4) → Hq−1

prim(T ) → .(4.94)

Motivated by (4.91), we define T1 := T ∩ V(Is) = V(Is, As−1Ls). One can
write an exact sequence

−→ Hp
c (T\T1) −→ Hp

prim(T ) −→ Hp
prim(T1) −→,(4.95)

where p = q − 1 or p = q − 2. On T\T1 we can express Av from the equa-
tion Ls+1 = 0. Projecting from the point where all the variables but Av are
zero, we get an isomorphism T\T1 ∼= P

2s\V(Is). The polynomial Is does not
depend on Am. Furthermore, the polynomials defining T1 are independent
of Av. Applying h.i. to T1 and T\T1, and then applying the functors gr W

i

to the sequence (4.95), we obtain

gr W
0 Hp

prim(T ) = gr W
1 Hp

prim(T ) = 0, p = q − 1, q − 2.(4.96)

Let Y1 := V(Ls+1, I
′
s+1, Is) = V(As−1Ls, As−1Is−1, Is) ⊂ Y . One has an

exact sequence

→ Hq−3
prim(Y1) → Hq−2

c (Y \Y1) → Hq−2
prim(Y ) → Hq−2

prim(Y1) → .(4.97)

The defining polynomials of Y1 do not depend on Av. Using h.i. and gr W
i ,

we get

gr W
i Hq−2

prim(Y ) ∼= gr W
i Hq−2

c (Y \Y1), i = 0, 1.(4.98)

The open subscheme Y \Ŷ1 ⊂ Y is defined by the system
⎧
⎪⎨

⎪⎩

Ls+1 = 0,

I ′
s+1 = 0,

Is 	= 0,

⇔

⎧
⎪⎨

⎪⎩

AvIs − As−1Ls = 0,

(Av ± As−1)Is − A2
s−1Is−1 = 0,

Is 	= 0.

(4.99)

We can express Av from the first and second equations and there expressions
must be equal. So we define Ns := ±Is + As−1Is−1 − Ls with “−” only when
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li = 1. The expression for Av and the natural projection from the point where
all the variables but Av are zero yield an isomorphism Y \Ŷ1 ∼= U ′, where

U ′ := V(As−1Ns)\V(As−1Ns, Is) ⊂ P
2s.(4.100)

Collecting (4.92), (4.93), (4.96) and (4.98) together, one gets

gr W
i Hq

c (U) ∼= gr W
i Hq−2

c (U ′), i = 0, 1,(4.101)

with U and U ′ defined by (4.89) and (4.100), respectively.
If s = 1, go to the last step. If as−1 s−1 = Bs−1, return to Step 4 with

Ns = N−
s ; return to Step 3 with Ns = N+

s otherwise.
The last step. Recall that l1 > 1. In the case t ≡ 0 mod 2, we have come

from Step 4 or Step 5. The matrix looks like

MGZZ =

⎛

⎜⎜⎜⎜⎜⎝

B0 A0
... Am

A0 B1
... 0

. . . . . .
. . .

...

Am 0 . . .
. . .

⎞

⎟⎟⎟⎟⎟⎠
.(4.102)

We are interested in Hq(U) for q ≥ 1, where U := V(A0L1)\V(A0L1, I1) =
V(A0Am)\V(A0Am, B0) ⊂ P

2(A0 : Am : B0). One has an exact sequence

−→ H0
prim(V(A0Am)) −→ H0

prim(V(A0Am, B0)) −→ H1
c (U) −→

H1(V(A0Am)) −→ H1(V(A0Am, B0)) −→ H2
c (U) −→

H2(V(A0Am)) −→ H2(V(A0Am, B0)) −→ .(4.103)

The varieties V(A0Am) and V(A0Am, B0) are the union of two intersected
lines and a double point. The sequence implies H1

c (U) ∼= Q(0) and H2
c (U) =

Q(−1)⊕2. So, finishing our computation, we write

gr W
i Hq

c (U) =

⎧
⎪⎨

⎪⎩

Q(0), q = 1, i = 0,

0, q = 1, i = 1,

0, q > 1, i = 0, 1.

(4.104)
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In the opposite case, when t 	≡ 0 mod 2, the matrix looks like

MGZZ =

⎛

⎜⎜⎜⎜⎜⎝

B0 A0
... Am

A0 C1
... Am−1

. . . . . .
. . .

...

Am Am−1 . . .
. . .

⎞

⎟⎟⎟⎟⎟⎠
,(4.105)

and we had come from Step 3 or Step 6. We deal with U ⊂ P
2(A0 : Am : B0)

defined by

U := V(A0N1)\V(A0N1, I1)
= V(A0(B0 + A0 − Am))\V(A0(B0 + A0 − Am), B0).(4.106)

Changing the variables Am := B0 + A0 − Am, we come to the situation
above, and we again obtain the same result as (4.104).

We have constructed a sequence of schemes U = U0, U1, . . . , Un−4 = U3
(see (4.49)) such that gr W

i Hq
c (U s) ∼= gr W

i Hq−2
c (U s−1), for 0 ≤ s ≤ n − 3,

i = 0, 1, U s ⊂ P
2s+2, and q = q(s) ≥ 2s + 1. By (4.50), we obtain

gr W
i Hr−4

prim(V ) ∼= gr W
i Hr−5

c (U3)
∼= gr W

i Hr−5
c (Un−4) ∼= . . . ∼= gr W

i Hq
c (U0), i = 0, 1,(4.107)

where q = r − 5 − 2(n − 4) = r − 2n + 3 ≥ 2n − 2 − 2n + 3 = 1. Hence,

gr W
i Hr−4

prim(V ) =

⎧
⎪⎨

⎪⎩

Q(0), r = 2n − 2, i = 0,

0, r = 2n − 2, i = 1,

0, r > 2n − 2, i = 0, 1.

(4.108)

Using the isomorphisms

gr W
i H2n−2(X) ∼= gr W

i−4H
2n−6(V )(−2), i = 0, . . . , 5(4.109)

(see (4.30)), we finally get

gr W
i Hr

prim(X) =

⎧
⎪⎨

⎪⎩

Q(−2), r = 2n − 2, i = 4
0, r = 2n − 2, i = 0, . . . , 3, 5
0, r > 2n − 2, i = 0, . . . , 5.

(4.110)

�
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Recall that ZZ5 is a primitively log divergent graph and the smallest graph
in the zigzag series (see, for example, [1, Section 1]) which is not isomorphic
to a WSn graph for some n.

Theorem 4.3. Let X ⊂ P
9 be the hypersurface associated to ZZ5 (see

Example 2.1 for the definition), then

H8
prim(ZZ5) ∼= Q(−2).(4.111)

Proof. We use the same stratification as for an arbitrary GZZ graph, but
now we need to apply the more strong vanishing Theorems A and B to
compute the whole cohomology of the middle degree rather than just the
graded pieces.

In the case ZZ5, we have n = 5 and r = 2n − 2 = mid = 8, and we start
with the same localization sequence as in (4.14). Applying Theorem B (N =
8, k = 0, t = 2) to P

8\V(I4) ∼= X\V(I5, I4) (I4 independent of A4 and A5),
we get H i(X\V(I5, I4)) = 0 for i < 10. Thus, the sequence (4.14) implies

H8(X) ∼= H8(V(I5, I4)) ∼= H6(V(I4, G4))(−1),(4.112)

where the variety on the right-hand side lives in P
8(no B4) (compare with

(4.22)). Since I3 is independent of A5 and A4 (after C2 := A2), Theorem B
(N = 6, k = 0, t = 2) implies H i(P6\V(I3)) = H i(V(I4, G4)\V̂ ) = 0 for i <
8, where V̂ := V(I4, I3, G4) ⊂ P

8 (see (4.26)). The sequence (4.23) yields an
isomorphism H6(V(I4, G4)) ∼= H6(V̂ ). Combining with (4.112) and (4.28),
we get

H8(X) ∼= H4(V )(−2),(4.113)

where V := V(I4, I3, G
′
4) ⊂ P

7(no B4, A4). Here

G′
4 := G4|A3=0 = A2

4B3I2 + A2
5I

1
3 − 2A4A5(B3A0A1).(4.114)

The same formula as (4.113) holds for the cohomology of the middle degree
of arbitrary GZZ.

Now we get rid of B3. We rewrite G′
4 = B3G3 − A2

2(A
2
5B1), where

G3 := A2
4I2 + A2

5I
1
2 − 2A4A5(A0A1).(4.115)

One has the localization sequence

→ H1(T )(−1) → H4
c (V \T̂ ) → H4

prim(V ) → H2
prim(T )(−1) →(4.116)
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for T = V ∩ V(G3) = V(I3, A2I2, G3, A2A5B1) ⊂ P
6(no B4, A4, B3). By The-

orem B, the cohomology to the left dies. Considering the localization
sequence for T ∩ V(A2) ⊂ T , one can see that

H2
prim(T ) ∼= H2

c (T\T ∩ V(A2)).(4.117)

The scheme T\T ∩ V(A2) is defined by

⎧
⎪⎨

⎪⎩

I3 = A2I2 = 0,

G3 = A2A5B1 = 0,

A2 	= 0,

⇔

⎧
⎪⎨

⎪⎩

I3 = I2 = 0,

G3 = A5B1 = 0,

A2 	= 0.

(4.118)

Define R := V(I3, I2, G3, A5B1) and R1 = R ∩ V(A2) in P
6(no B4, A3, B3).

We get an exact sequence

→ H1(R) → H1(R1) → H2
c (T\T ∩ V(A2)) → H2

prim(R) → .(4.119)

Applying Theorem 1.3 and using (4.115), one gets

R = V(I3, I2, G3, A5B1) = V(I3, I2, A
2
5(B1C2 − A2

1), A5B1)

= V(C2I2 − A2
1B0, I2, A5A1, A5B1) = V(A1B0, I2, A5A1, A5B1).(4.120)

The last polynomials are independent of A2 and A4, Theorem A (N = 6, k =
4, t = 2) implies H i

prim(R) = 0 for i < 4. Moreover, the defining polynomials
of R1 do not depend on A4, thus the cohomology H1(R1) also vanishes. By
(4.116), (4.117) and (4.119), we obtain

H4
prim(V ) ∼= H4

c (V \T̂ )(4.121)

(compare with (4.34)). The polynomials I3 and A2I2 are independent of A5,
by Theorem A (N = 6, k = 2, t = 1) for V(I3, A2I2), the sequence (4.37)
implies

H4
c (V \T̂ ) ∼= H4

c (U1) ∼= H3
prim(V(I3, A2I2, G3)).(4.122)

After the change of variables (C2 := A2), the defining polynomials of Ŝ :=
V(I3, I2, G3) ⊂ P

6 become independent of A4. By Theorem A (N = 6, k = 3,
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t = 1), the sequence (4.39) yields

H3(V(I3, A2I2, G3)) ∼= H3
c (U2).(4.123)

Solving the equations of U ′
2 (see (4.45)) on A4, one gets U ′

2
∼= W\Z, where

W := V(A1I2 + A5A0A1 − A2
1B0) = V(A1N2) and Z = W ∩ V(I2). Collect-

ing (4.113), (4.121), (4.122), (4.123) and (4.43), we obtain

H4
prim(V ) ∼= H4

c (V \T̂ ) ∼= H3
c (U2) ∼= H3

c (W\Z).(4.124)

Consider an exact sequence

→ H2
c (V(A1)\V(A1, I2)) ⊕ H2

c (W1\Z1) → H2
c (V(A1) ∩ W1\Z1) →

H3
c (W\Z) → H3

c (V(A1)\V(A1, I2)) ⊕ H3
c (W1\Z1) →,(4.125)

with W1 = V(N2) and Z1 = W1 ∩ V(I2) in P
4. Immediately, H2

c (W1\Z1) = 0.
Moreover, one has the localization sequence

→ H2
prim(W1) → H2

prim(Z1) → H3
c (W1\Z1) → H3(W1) → .(4.126)

The term on the left-hand side vanishes, and for the right-hand side we
consider the localization sequence for W1 ∩ V(A0) ⊂ W1. It is easy to see that
W1 ∩ V(A0) is a cone over double point while its complement is isomorphic
to A

3. Thus, the sequence implies H3(W1) = 0. By (4.126), H3
c (W1\Z1) ∼=

H2
prim(Z1). We can consider the localization sequence for Z1 ∩ V(B0) ⊂ Z1. It

turns out that Z1 ∩ V(B0) ∼= P
2 and Z1\Z1 ∩ V(B0) ∼= A

2. Hence, H3
c (W1\Z1)

∼= H2
prim(Z1) = 0. We return to the sequence (4.125). Theorem B (N = 4,

k = 1, t = 1) implies H i
c(V(A1)\V(A1, I2)) = 0 for i < 4. Thus, the sequence

yields

H3
c (W\Z) ∼= H2

c (V(A1) ∩ W1\Z1).(4.127)

Forgetting A1, we get V(A1) ∩ W1\Z1 ∼= W2\Z2 with the latter living in
P

3(A0 : A5 : B0 : B1). Stratification further gives us no result, so some geo-
metrical argument must be involved at this step.

The variety W2 ⊂ P
3(A0 : A5 : B0 : B1) is a smooth quadric. Up to a

change of variables W2 is the image of Segre imbedding. More precisely,
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W2 = Im(γ) for

γ : P
1 × P

1 ↪→ P
3 : (a : b), (c : d) �→ (ac : ac − bd : ad : bc).(4.128)

Now, Z2 ⊂ W2 ⊂ P
3 is defined by Z2 := V(A0A5, B0B1 − A2

0). So Z2 is a
union of three components �1 ∪ �2 ∪ �3, where �1 and �2 coincide with the
lines γ({∞} × P

1) and γ(P1 × {∞}), respectively, and �3 is a zero of a non-
trivial section of O(1, 1). If

S\(�1 ∪ �2) ∼= P
1 × P

1 \ (P1 × {∞} ∪ {∞} × P
1) = A

2(4.129)

has affine coordinates b, d, then �3 ∩ A
2 has defining ideal 〈1 − bd〉, so is

isomorphic to Gm. Thus, we get W2\Z2 ∼= A
2\Gm. Now it follows that

H2
c (W2\Z2) ∼= H2

c (A2\Gm) ∼= H1
c (Gm) ∼= Q(0).(4.130)

By (4.113), (4.124) and (4.127), we finally get

H8
prim(X) ∼= H3

c (W\Z)(−2) ∼= Q(−2).(4.131)

�

Theorem 4.4. Let X be the hypersurface associated to a GZZ and q = pk

some prime power. Then

#X(Fq) ≡ 1 + q + 2q2 mod q3.(4.132)

Proof. We use the same stratification as in the proof of Theorem 4.2 but
translate everything into another language. Now we need �-adic cohomol-
ogy. The h.i. for some Ŷ , Hq(Ŷ ) ∼= Hq−2(Y )(−1) will now mean “Eigen-
values (EV) of F k on Hq(Ŷ ) are that ones on Hq−2(Y ) multiplied by q,”
where F is the geometric Frobenius element (see [7, p. 26]). This is because
EV(F k|H2

c (A1)) = {q}. Eigenvalues are a priori living in Z̄ (see [8, 3.3.4]).
Assume now that we have an exact sequence like

−→ Hq−2
c (U)(−1) −→ Hq(Z) −→ Hq(T ) −→ Hq−1

c (U)(−1) −→,(4.133)

with T ⊂ Z ⊂ P
N and Z\T a cone over U. This is the example of a sequence

which we usually deal with in the proof above. Instead of applying the
gr W

i functors, we take the eigenvalues of the action F k. One sees that an
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eigenvalue of F k|Hq(Z) is that of F k|Hq(T ) or in EV (F k|Hq−2
c (U)(−1)) =

q · EV (F k|Hq−2
c (U)). For the sequence (4.133), we can write

EV (F k|Hq(Z)) = EV (F k|Hq(T )) mod q · Z̄.(4.134)

We play the same game in each situation where we use gr W
i functors in the

proof of Theorem 4.2. We get the following result: all EV of F k|Hmid
prim(X)

are in q3 · Z̄ but one is exactly q2; all EV of F k|Hr
prim(X) are in q3 · Z̄ if

r > mid. Finally, we use the Grothendick–Lefschetz trace formula and get

#X(Fq) =
4n−4∑

i=0

(−1)iTr(F k|H i(XΓ)) = 1 + q + · · · + q2n−2

+
4n−4∑

i=2n−2

(−1)iTr(F k|H i
prim(XΓ)) ≡ 1 + q + 2q2 mod q3.(4.135)

�

5. De Rham class for GZZ(n, 2)

Fix some n ≥ 2 and define Γ = Γn := GZZ(n, 2). This graph has 2n + 6 edges
and h1(Γ) = n + 3. Let Xn ⊂ P

2n+5 be the graph hypersurface associated to
Γn. By the results of the previous section, one has an inclusion

Q(−2) ↪→ H2n+4
prim (Xn) ∼= H2n+5

c (P2n+5\X).(5.1)

Hence, we get dim H2n+5
DR (P2n+5\Xn) 	= 0. We do not know that this coho-

mology group is one-dimensional in general. In this section we consider

η = ηn =
Ω2n+5

Ψ2
Γn

∈ Γ(P2n+5, ω(2Xn))(5.2)

(see (2.9)) and show that [ηn] 	= 0 in H2n+5(P2n+5\Xn). We strongly follow
[2, Section 12], where the computations for WSn were done.

Lemma 5.1. Let U = Spec R be a smooth, affine variety and 0 	= f, g ∈ R.
Define Z := V(f, g) ⊂ U . We have a map of complexes

(
Ω∗

R[1/f ]/Ω∗
R

)
⊕

(
Ω∗

R[1/g]/Ω∗
R

)
γ−−→

(
Ω∗

R[1/fg]/Ω∗
R

)
.(5.3)

Then the de Rham cohomology with supports H∗
Z,DR(U) can by computed by

the cone of γ shifted by −2.
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Remark 5.1. The direct computation shows that C∗ is quasi-isomorphic
to the cone of

(
Ω∗

R[1/f ]/Ω∗
R

)
Δ−−−→

(
Ω∗

R[1/fg]/Ω∗
R[1/g]

)
.(5.4)

For the application, we use U := P
2n+5\Xn. Recall that the matrix of Γn

looks like

MΓn
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B0 A0 0
... 0 0 0 An+3

A0 B1 A1

... 0 0 0 0

0 A1 B6

... 0 0 0 0

. . . . . . . . .
. . . . . . . . . . . . . . .

0 0 0
... Bn−1 An−1 0 0

0 0 0
... An−1 Cn An An+2

0 0 0
... 0 An Bn+1 An+1

An+3 0 0
... 0 An+2 An+1 Bn+2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(5.5)

Define ai := Ai

An+3
, bi := Bi

An+3
and cn := Cn

An+3
= an+2 + an−1 − an. (We will

see that the forms we work with have no poles along An+3 = 0.) Let

ij =
Ij

Aj
n+3

, gn+2 =
Gn+2

An+3
n+3

.(5.6)

Set f = in+2, g = in+1. The equation bn+2in+2 − gn+2 = 0 defines Xn on
An+3 	= 0, then bn+2in+2 − gn+2 is invertible on U = P

2n+5\X. Thus, gn+2
is invertible on V(f). The element

β = −db0 ∧ . . . ∧ dbn−1 ∧ dbn+1∧

∧ da0 ∧ . . . ∧ dan+2
1

gn+2in+2

(
gn+2

bn+2in+2 − gn+2

)
(5.7)

is defined in Ω2n+4
R[1/f ]/Ω2n+4

R . It satisfies

dβ = η =
db0 ∧ . . . ∧ dbn−1 ∧ dbn+1 ∧ dbn+2 ∧ da0 ∧ . . . ∧ dan+2

(bn+2in+2 − gn+2)2
.(5.8)
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By Corollary 1.3, In+1Gn+2 ≡ (Ln+2)2 mod In+2, thus

in+1gn+2 ≡ (an+1in+1 − an+2anin

+ (−1)n−1anan−1 . . . a1a0)2 mod in+2.(5.9)

We also use

ik = bk−1ik−1 − a2
k−2ik−2(5.10)

for k = n + 2 or k < n + 1. We now compute in Ω∗
R[1/fg]/Ω∗

R[1/g] and get

β =
din+2

in+2
∧ dan+2

gn+2in+1
∧ db0 ∧ . . . ∧ dbn−1∧

∧ da0 ∧ . . . ∧ dan+1 ·
(
1 − bn+2in+2

bn+2in+2 − gn+2

)

= −d

(
1

an+1in+1 − an+2anin + (−1)n−1an . . . a0
· din+2

in+2
∧ ν

)
,(5.11)

where

ν :=
dan+2

in+1
∧ db0 ∧ . . . ∧ dbn−1 ∧ da0 ∧ . . . ∧ dan.(5.12)

Using the equality

in+1 = cnin − a2
n−1in−1 = (an+2 + an−1 − an)in − a2

n−1in−1(5.13)

and (5.10), we get

ν =
din+1

in+1
∧ dbn−1

in
∧ dbn−2 ∧ . . . ∧ db0 ∧ da0 ∧ . . . ∧ dan.

din+1

in+1
∧ din

in
∧ . . . ∧ di2

i2
∧ db0

b0
∧ da0 ∧ . . . ∧ dan.(5.14)

By (5.11) one has β = dθ with

θ := − 1
an+1in+1 − an+2anin + (−1)n−1an . . . a0

· din+2

in+2
∧ ν.(5.15)

Both β and θ have no poles along An+3 = 0. Thus the pair

(β, θ) ∈ H2n+5
Z,DR(U)(5.16)

(see Remark 5.1) represents a class mapping to [ηn] ∈ H2n+5
DR (P2n+5\Xn),

where Z := V(In+2, In+1).
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Lemma 5.2. The natural map

H2n+5
Z (P2n+5\Xn) −→ H2n+5(P2n+5\Xn)(5.17)

is injective.

Proof. The proof repeats that of Lemma 12.3. in [2] because the first two
reduction steps for all GZZ yield the same result (see 4.113). �

Theorem 5.1. Let Xn be the graph hypersurface for Γn = GZZ(n, 2) and
let [ηn] ∈ H2n+5

DR (P2n+5\X) be the de Rham class of (5.2). Then [ηn] 	= 0.

Proof. The proof is almost the same as that of Theorem 12.4 in [2]. We
have lifted the class [ηn] to a class (β, η) ∈ H2n+5(P2n+5\X), see (5.16). By
Lemma 5.2, it is enough to show that (β, η) 	= 0. We localize the generic
point of Z and compute further in the function field of Z. Consider the long
denominator of β in (5.11):

D := an+1in+1 − an+2anin + (−1)n−1an . . . a0.(5.18)

On V(in+2, in+1) we have
{

bn+1in+1 − a2
nin = 0,

in+1 = 0,
⇒

{
anin = 0,

in+1 = 0,
(5.19)

thus both the left and the middle summand of D vanish. Now it follows that
as the class in the function field of Z, the class (β, η) is represented by

±d log(in) ∧ . . . ∧ d log(i1) ∧ d log(a0) ∧ . . . ∧ d log(an).(5.20)

This is a nonzero multiple of

d log(bn−1) ∧ . . . ∧ d log(b0) ∧ d log(a0) ∧ . . . ∧ d log(an),(5.21)

so is nonzero as a form. The Deligne theory of MHS yields that the vector
space of logarithmic forms injects into de Rham cohomology of the open on
which those forms are smooth (see [5, (3.1.5.2)]). Thus the form above is
nonzero. �

Corollary 5.1. Let X be the graph hypersurface for Γ = ZZ5. Then the
class of η defined in (5.2) spans H9

DR(P9\X).
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6. Gluings

Analyzing the different possibilities for the adjacency matrix, one can easily
classify the primitively divergent graphs with small number of edges.

Theorem 6.1. Let Γ be a primitively divergent graph with E(Γ) = 2n and
n ≤ 5. Then for Γ we have one of the following possibilities:

• n = 3, then Γ ∼= WS3.

• n = 4, then Γ ∼= WS4.

• n = 5, then Γ is isomorphic to the one of the following graphs WS5,
ZZ5, XX5 or ST5.

The last two graphs look like

We cannot say anything important about the graph hypersurface of the
(strange) graph ST5 on the cohomological level, but the graph XX5 moti-
vates us to the following interesting construction.

Definition 6.1. Let Γ and Γ′ be two graphs, choose two edges (u, v) ∈ E(Γ)
and (u′, v′) ∈ E(Γ′). We define the graph Γ × Γ′ as follows. We drop the edges
(u, v) and (u′, v′), and identify vertices u with u′ and v with v′. We also say
that Γ × Γ′ is the gluing of Γ and Γ′ along edges (u, v) and (u′, v′).

Example 6.1. The graph XX appeared in Theorem 6.1 is isomorphic to
WS3 × WS3.

It is not easy to verify whether the graph is primitively log divergent or not.
Nevertheless, we can construct new primitively log divergent graphs from
the existing ones by the gluing operation.

Theorem 6.2. The gluing Γ × Γ′ of two primitively log divergent graphs Γ
and Γ′ (along edges (u, v) and (u′, v′)) is again primitively log divergent.
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Proof. Suppose that Γ and Γ′ have 2n and 2m edges, respectively, then h1(Γ)
and h1(Γ′) = m. We can choose a basis {γ1, . . . , γn} of H1(Γ, Z) such that
the edge (u, v) only appears in γn. Indeed, we take any basis {γ1, . . . , γn−1}
of H1(Γ\{(u, v)}, Z) and define γn to be any loop containing (u, v), then
{γ1, . . . , γn} form a basis of H1(Γ, Z). Similarly, we choose a basis δ1, . . . , δm

such that the only appearance of (u′, v′) is in δm. It follows that the loops
{γ1, . . . , γn−1, δ1, . . . , δm−1, γn × δm} form a basis of H1(Γ × Γ′, Z). Thus,
|E(Γ × Γ′)| = 2n + 2m − 2 = 2h1(Γ × Γ′) and Γ × Γ′ is logarithmically
divergent.

To prove that Γ × Γ′ is primitively log divergent, we consider a proper
subgraph Γ0 ⊂ Γ × Γ′ and define Γ1 (respectively Γ2) to be the graph Γ0 ∩
Γ ∪ {(u, v)} (respectively Γ0 ∩ Γ′ ∪ {(u′, v′)}). Because the graphs Γ and Γ′

are primitively log divergent, for the subgraphs Γ1 ⊂ Γ and Γ2 ⊂ Γ′ the
inequalities

|E(Γ1)| ≤ 2h1(Γ1) and |E(Γ2)| ≤ 2h1(Γ2)(6.1)

hold, and the inequalities become strict if subgraphs are proper. Since Γ0 is
the proper subgraph, at least one of the subgraphs Γ1, Γ2 is proper. Thus,
we get

|E(Γ1)| + |E(Γ2)| < 2(h1(Γ1) + h1(Γ2)).(6.2)

The number of edges of Γ0 equals |E(Γ0)| = |E(Γ1)| + |E(Γ2)| − 2 and one
has an inequality h1(Γ1) + h1(Γ2) − 1 ≤ h1(Γ0), which becomes an equality
if the operation of adding (u, v) to Γ0 ∩ Γ (or that of (u′, v′) to Γ0 ∩ Γ′)
increases the Betti number. The inequality (6.2) implies |E(Γ0)| < 2h1(Γ0).
Thus, every proper subgraph of Γ × Γ′ is convergent. �

Corollary 6.1. Every gluing Γ of finitely many GZZ graphs (along any
pair of edges) is primitively log divergent.

Our goal here is to analyze the middle dimensional (Betti) cohomology of
hypersurfaces associated to graphs WSn × WS3 for n ≥ 3. The gluing for
WSn × WS3 goes along some two boundary edges (not spokes).

Theorem 6.3. Let X be the graph hypersurface for the graph WSn × WS3,
n ≥ 3. For the cohomology of the middle degree Hmid(X), one has

grW
6 (Hmid

prim(X)) = Q(−3) and grW
8 (Hmid

prim(X)) = Q(−4)⊕d,(6.3)

where d = 0, 1 or 2, and all other gr W
i = 0. If n = 3, then d = 0.
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Proof. Fix n ≥ 3 and consider the graph WSn. We orient the spokes (v0, vi)
as exiting the center v0 and label them with e1 through en. The boundary
edges (vi, vi+1) (modulo n) are denoted by en+i and are oriented exiting
vi. Now we rename the last edge e2n =: e, play the same game with the
graph WS3, shifting the numeration of edges by 2n − 1, and glue WSn with
WS3 along e and e2n+5. Denote the resulting graph by Γ. To show the way
of constructing the tables and the matrices associated to this gluing, we
restrict to the case WS4 × WS3.

The matrix MΓ has two “blocks” coming from the matrices of WSn and
WS3 intersected by one element which becomes dependent.

MΓ(A, B) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B0 A0 0 ... 0 0 An+1 0 0

A0 B1 A1 ... 0 0 0 0 0

0 A1 B2 ... 0 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 ... Bn−3 An−3 0 0 0

0 0 0 ... An−3 Bn−2 An−2 0 0

An+1 0 0 ... 0 An−2 Cn−1 An−1 An+2

0 0 0 ... 0 0 An−1 Bn An

0 0 0 ... 0 0 An+2 An Bn+1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,(6.4)

where Cn−1 := An+1 + An−2 + An−1 + An+2. We work with the graph
hypersurface X := det MΓ ⊂ P

2n+3(A, B), and the cohomology to compute
is Hmid(X) = H2n+2(X). We write In+2 = Bn+1In+1 − Gn+1. One has the
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localization sequence

−→ H2n+2
c (U) −→ H2n+2(X) −→

H2n+2(V(In+2, In+1)) −→ H2n+3
c (U) −→,(6.5)

where U := X\V(In+2, In+1) ⊂ P
2n+3(A, B). For dimensional reasons, we

have the vanishing of the term on the right-hand side. For the rightmost
term, one easily gets

H2n+3
c (U) ∼= H2n+3

c (P2n+2\V(In+1))
∼= H2n+1

c (P2n+1\V(In+1))(−1) ∼= H2n(V(I ′
n+1))(−1).(6.6)

Prime indicates that we made the change of coordinates Cn−1 := An+2. We
consider an exact sequence

−→ H2n
c (T0) −→ H2n

prim(V(I ′
n+1)) −→ H2n

prim(T̂ ) −→,(6.7)

where T̂ := V(I ′
n+1, I

′
n) and T0 := V(I ′

n+1)\T̂ in P
2n+1 (no Bn+1, An). Since

I ′
n+1 = BnI ′

n − A2
n−1In−1, one gets T0 ∼= P

2n\V(I ′
n) and Theorem B(N = 2n,

k = 0, t = 1) implies H2n
c (T0) = 0. For T̂ , one gets H2n

prim(T̂ ) ∼= H2n−2
prim (T )(−1)

with T := V(I ′
n, An−1In−1) ⊂ P

2n(no Bn+1, An, Bn).
Consider T1 := T ∩ V(In−1), T00 = T\T1, and the localization sequence

−→ H2n−2
c (T00) −→ H2n−2

prim (T ) −→ H2n−2
prim (T1) −→ .(6.8)

The polynomials I ′
n and In−1 are independent of An−1. Thus, Theorem A

(N = 2n, k = 2, t = 1) implies H2n−2
prim (T1) = 0. Solving the equation I ′

n =
Cn−1In−1 − Gn−1 on Cn−1, one gets T00 ∼= P

2n−1\V(In−1). By Theorem B
(N = 2n − 1, k = 0, t = 2), one obtains H2n−2

c (T00) = 0.
The exact sequence (6.8) implies H2n+2

prim (T ) = 0. The sequence (6.7)
and isomorphisms in (6.6) yield H2n+3

c (U) ∼= H2n
prim(V(I ′

n+1))(−1) = 0. We
return to the sequence (6.5) and get an isomorphism

H2n+2(X) ∼= H2n+2(V(In+2, In+1)) ∼= H2n(V(In+1, Gn+1))(−1).(6.9)

We consider V̂ := V(In+1, Gn+1, In) ⊂ V(In+1, Gn+1) ⊂ P
2n+2 we write an

exact sequence

−→ H2n
c (U1) −→ H2n(V(In+1, Gn+1)) −→ H2n(V̂ ) −→ H2n+1

c (U1) −→,

(6.10)
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where U1 := V(In+1, Gn+1)\V̂ . Similar as in (4.26) and (4.27), we get Hq
c (U1)

∼= Hq−2
c (P2n−1\V(I ′

n))(−1) ∼= Hq−3
prim(V(I ′

n))(−1) for q = 2n, 2n + 1. Note
that V(I ′

n) is exactly the graph hypersurface for WSn. Thus the sequence
(6.10) simplifies to

0 −→ H2n(V(In+1, Gn+1)) −→ H2n(V̂ ) −→ Q(−3) −→ .(6.11)

As in (4.28), one has

H2n(V̂ ) ∼= H2n−2(V )(−1),(6.12)

where V := V(In, In+1, An+2BnIn−1) ⊂ P
2n+1 (no Bn+1, An).

Now we attack V . Rewriting V = V(In, An+2BnIn−1, An−1In−1), we
define V1 := V(In, Bn, An−1In−1) and V2 := V(In, An+2In−1, An−1In−1) in
P

2n+1(no Bn+1,An). Consider an exact sequence

−→ H2n−3(V1) ⊕ H2n−3(V2) −→ H2n−3(V3) −→
H2n−2

prim (V ) −→ H2n−2
prim (V1) ⊕ H2n−2

prim (V2) −→,(6.13)

with V3 := V1 ∩ V2 = V(In, Bn, An+2In−1, An−1In−1). The defining polyno-
mials of V2 are independent of Bn. Theorem A (N = 2n + 1, k = 3, t = 1)
implies H i

prim(V2) = 0 for i ≤ 2n − 2. Considering V11 := V(In, Bn, In−1) ⊂
V1 and the associated localization sequence, one can also prove H i

prim(V2) = 0
for i ≤ 2n − 2. Thus, (6.13) implies

H2n−2
prim (V ) ∼= H2n−3(V3).(6.14)

Define V31 := V3 ∩ V(In−1) = V(In, Bn, In−1) ⊂ V3 ⊂ P
2n+1 (no Bn+1, An).

By Theorem A (N = 2n + 1, k = 3, t = 0), H i
prim(V31) = 0 for i ≤ 2n − 3.

Thus, the localization implies

H2n−3(V3) ∼= H2n−3
c (V3\V31).(6.15)

The subscheme V3\V31 is defined by the system
⎧
⎪⎨

⎪⎩

An−1In−1 = In = 0,

Bn = An+2In−1 = 0,

In−1 	= 0,

⇔

⎧
⎪⎨

⎪⎩

An−1 = In = 0,

Bn = An+2 = 0,

In−1 	= 0.

(6.16)

Define Y := V(In), S := V(In, In−1) in P
2n−2(no DV5), where DV5 denotes

the set of the dropped variables {Bn+1, An, Bn, An+2, An−1}. This gives us
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an exact sequence

0 −→ H2n−4
prim (S) −→ H2n−3(V3\V31) −→ H2n−3(Y ) −→ .(6.17)

After rewriting S = V(In−1, Gn−1), we notice that S is exactly the variety
which appears in the first reduction step of the case of WSn, and we know
that

H2n−4(S) ∼= Q(−1).(6.18)

The computation of H2n−3(Y ) is less easy. The polynomial In is similar to
the polynomial associated to WSn with the only difference that Cn−1 is not
independent and is equal An+1 + An−2. We start from the upper left corner
of the matrix and write In = B0I

1
n−1 − G̃n−1. Consider Ŷ1 := V(In, I1

n−1) ⊂
Y ⊂ P

2n−2 (no DV5). One has

→ H2n−3
c (Y \Ŷ1) → H2n−3(Y ) → H2n−3(Ŷ1) → H2n−2

c (Y \Ŷ1) → .(6.19)

For Y \Ŷ1 one gets

Hq
c (Y \Ŷ1) ∼= Hq−2

c (P2n−4\V(I1
n−1)(−1) ∼= Hq−3

prim(V(I ′1
n−1))(−1)(6.20)

for q = 2n − 3, 2n − 2 (Cn−1 := An+1). We see that I1
n−1 is a determinant

of a three-diagonal matrix studied in [2, Lemma 11.12], and its cohomology
of middle degree is trivial. So, Hq

prim(V(I ′1
n−1)) = 0 and the sequence (6.19)

and h.i. yield

H2n−3(Y ) ∼= H2n−5(Y1)(−1),(6.21)

where Y1 := V(In−1, Gn−1) ⊂ P
2n−3(no DV5, B0). Consider an exact seq-

uence

→ H2n−5
c (Y1\Ŷ2) → H2n−5(Y1) → H2n−5(Ŷ2) → H2n−4

c (Y1\Ŷ2) →,(6.22)

where Ŷ2 := V(I1
n−1, G̃n−1, I

2
n−2). Similar to (4.26) (while interchanging rows

and columns), projecting further, and changing the coordinates (Cn−1 :=
An+1), one gets Y1\Ŷ2 ∼= V(I1

n−1)\V(I1
n−1, I

2
n−2) ∼= P

2n−5\V(I ′2
n−2). By the



412 Dzmitry Doryn

same argument as in (6.20), we obtain

Hq
c (Y1\Ŷ2) ∼= Hq−2

c (P2n−6\V(I ′2
n−2))(−1) ∼= Hq−3

prim(V(I ′2
n−2)) = 0,(6.23)

for q ≤ 2n − 4. After projecting further and using Theorem 1.3, we derive
the following isomorphism from the sequence (6.22):

H2n−5(Y1) ∼= H2n−7(Y2)(−1),(6.24)

where Y2 := V(I1
n−1, An+1I

1
n−2, I

2
n−2) ⊂ P

2n−4(no DV5, B0, A0). Now we see
that if n = 3, then we get the vanishing

H2n−7(Y2) = 0 when n = 3.(6.25)

From now on, we assume that n ≥ 4. Define Y21 := V(I1
n−1, I

1
n−2, I

2
n−2), Y22 :=

V(I1
n−1, An+1, I

2
n−2) = V(An+1, I

2
n−2, A1I

3
n−3) and Y3 := Y21 ∩ Y22. One has

an exact sequence

−→ H2n−8
prim (Y21) ⊕ H2n−8

prim (Y22) −→ H2n−8
prim (Y3) −→

H2n−7(Y2) −→ H2n−7(Y21) ⊕ H2n−7(Y22) −→ .(6.26)

By Theorem A (N = 2n − 4, k = 3, t = 1), we obtain Hq(Y22) = 0 for q =
2n − 8, 2n − 7. The variety Y21 (after Cn−1 := An+1) is exactly the variety
that appeared in the proof of the WSn case (was called Zn−1, see [2, Theorem
11.9]). Thus H2n−7(Y21) ∼= Q(0) and the sequence (6.26) simplifies to

0 −→ H2n−8
prim (Y3) −→ H2n−7(Y2) −→ Q(0) −→,(6.27)

where Y3 := V(An+1, I
1
n−1, I

1
n−2, I

2
n−2). We change the notation and consider

Z := V(I1
n−1, I

1
n−2, I

2
n−2) ⊂ P

2n−5(no DV8), where DV8 := DV5 ∪ {B0, A0,
An+1}. To abuse the notation, we write Ii

j for Ii
j after setting An+1 = 0 (so,

Cn−1 = An−2). We are interested in H2n−8
prim (Z), the computation now goes

in the same direction as in [2, Theorem 11.9]. Consider Z1 := V(I1
n−1, I

1
n−2)

and Z2 := V(I1
n−1, I

2
n−2) in P

2n−5(no DV8), then Z = Z1 ∩ Z2. We write an
exact sequence

−→ H2n−8
prim (Z1) ⊕ H2n−8

prim (Z2) −→ H2n−8
prim (Z) −→

H2n−7(Z̄) −→ H2n−7(Z1) ⊕ H2n−7(Z2) −→,(6.28)

where Z̄ := Z1 ∪ Z2. Again by [2, Lemma 11.12], Hq
prim(Z1) = 0 for q = 2n −

8, 2n − 7. Using induction, we can similarly prove Hq
prim(Z2) = 0. Thus, the
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sequence above gives us

H2n−8
prim (Z) ∼= H2n−7(Z̄).(6.29)

By Corollary 1.2, we get Z̄ := V(I1
n−1, I

1
n−2I

2
n−2) = V(I1

n−1, Sn−2) with Sn−2 :=
A1A2 . . . An−2. Define Z3 := V(I1

n−1, An−2), Z4 := V(I1
n−1, Sn−3), and Z5 :=

Z3 ∩ Z4 in P
2n−5. One has an exact sequence

−→ H2n−8(Z5) −→ H2n−7(Z̄) −→
H2n−7(Z3) ⊕ H2n−7(Z4) −→ H2n−7(Z5) −→ .(6.30)

Since I1
n−1 = Cn−1I

1
n−2 − An−2I

1
n−3 with Cn−1 = An−2, Z5 := Z3 ∩ Z4 =

V(I1
n−1, An−2, Sn−3) = V(An−2, Sn−3). The defining polynomials of Z5 are

independent of B1 and B2, Theorem A (N = 2n − 5, k = 2, t = 2) implies
H i

prim(Z5) = 0 for i ≤ 2n − 6. Moreover, H2n−7(Z3) ∼= H2n−7(V(An−2)) = 0,
and the sequence (6.30) yields

H2n−7(Z̄) ∼= H2n−7(Z4) ∼= H2n−7(V(Sn−3, I
1
n−1)).(6.31)

We consider the spectral sequence

Ep,q
1 =

⊕

i0<...<ip

Hq
(
V(Ai0 , . . . , Aip

, I1
n−1)

)
⇒ Hp+q

(
V(Sn−3, I

1
n−1)

)
.(6.32)

The only difference to the same situation in the proof of [2, Theorem 11.9]
is that we have Cn−1 = An−2 instead of Bn−1. Analyzing this sequence sim-
ilarly, we obtain

H2n−7(Z4) = Q(0).(6.33)

By (6.29) and (6.31), the sequence (6.27) simplifies to

0 −→ Q(0) −→ H2n−7(Y2) −→ Q(0) −→,(6.34)

Together with (6.21) and (6.24), this gives us the exact sequence

0 −→ Q(−2) −→ H2n−3(Y ) −→ Q(−2) −→ .(6.35)

Consequently, H2n−3(Y ) ∼= Q(−2)⊕i for i = 1 or i = 2. Collecting (6.14),
(6.15) and (6.18) together, we rewrite the sequence (6.17) like

0 −→ Q(−1) −→ H2n−2
prim (V ) −→ H2n−3

prim (Y ) −→ .(6.36)
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From this, one can describe H2n−2
prim (V ):

gr W
2 (H2n−2

prim (V )) = Q(−1), gr W
4 (H2n−2

prim (V )) = Q(−2)⊕j(6.37)

and all other gri
W are zero. Here 0 ≤ j ≤ i, thus j equals 0, 1 or 2. Using

(6.9), (6.12) and the sequence (6.11) we finally get

gr W
6 (H2n+2

prim (X)) = Q(−3) and gr W
8 (H2n+2

prim (X)) = Q(−4)⊕d,(6.38)

where d = 0, 1 or 2, all other grW
i = 0 and n ≥ 4. It remains to see what

happens when n = 3. By (6.25), H3
prim(Y ) = 0, thus H4

prim(V ) ∼= Q(−1). By
(6.9) and (6.11) we now get an exact sequence

0 −→ H8(X) −→ Q(−3) −→ Q(−4) −→ .(6.39)

Applying gr W
i , we see that H8(X) ∼= Q(−3). �

Remark 6.1. In physics it is known that the periods of WS3 × WS3 and
WS3 × WS4 are related to ζ(3)2 and ζ(3)ζ(5), respectively. For the first
case, by duality, we have H9(P9\XΓ) ∼= Q(−6), and the (minus) twist 6
coincides with the weight of ζ(3)2. For the latter, the weight of ζ(3)ζ(5) is
3 + 5 = 8, and our computation shows that H11(P11\XΓ) ∼= Q(−6) has the
only nontrivial pieces Q(−8) and Q(−7)⊕d. So, in example WS3 × WS4 we
see that exactly the minimal graded pieces of Hmid(XΓ) (or the maximal one
of the cohomology of the complement) control the weight of MZV. This is a
sort of motivation for studying the minimal graded piece of the cohomology
of middle degree for GZZ. And this is also the only piece we can compute.
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