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A systematic analysis of the genus two vacuum amplitudes of chiral
self-dual conformal field theories is performed. It is explained that
the existence of a modular invariant genus two partition function
implies infinitely many relations among the structure constants of
the theory. All of these relations are shown to be a consequence of
the associativity of the operator product expansion, as well as the
modular covariance properties of the torus one-point functions.
Using these techniques we prove that for the proposed extremal
conformal field theories at c = 24k a consistent genus two vacuum
amplitude exists for all k, but that this does not actually check
the consistency of these theories beyond what is already testable
at genus one.

1. Introduction

Usually, a 2d conformal field theory is defined by specifying the spectrum
of the theory (typically in terms of representations of some chiral algebra),
as well as the operator product expansions (OPEs) of the corresponding
fields. The consistency conditions require, in particular, that the OPE is
associative, and that the theory is modular covariant at genus g = 1. Given
these assumptions (or more precisely, assuming that the polynomial relations
of Moore and Seiberg [1] are satisfied) the theory is then also well defined
on higher genus Riemann surfaces.

There are, however, situations where a conformal field theory is charac-
terized in a different manner. In particular, in the context of the AdS3/CFT2
correspondence, the gravity approach does not give access to the algebraic
properties of the theory such as its OPEs. Instead, we can only determine the
vacuum amplitudes (at arbitrary genus) from the gravity point of view [2–6].
It is an old idea of Friedan and Shenker [7] that a conformal field theory is
also uniquely characterized in terms of these partition functions (as func-
tions of their modular parameters). Unlike the usual approach to conformal
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field theory, this avenue has been much less explored. In particular, there
are two fundamental questions that are, to our knowledge, still unanswered:

(1) Given the partition functions for all genera, is the conformal field the-
ory defined uniquely?

(2) What are the consistency conditions a family of higher genus partition
functions has to satisfy in order to define a consistent conformal field
theory?

A little while ago, two of us [8] showed that knowing all genus partition
functions determines the current symmetry of the underlying conformal field
theory uniquely. Assuming a natural Lie algebraic conjecture, we could also
show that these amplitudes fix the representation content with respect to
this current algebra up to an overall automorphism of the Lie algebra. While
this does not prove (1) — for example, these statements are vacuous for
theories that do not have any currents — it gives very strong credence to it.

In this paper we shall begin to address the second question (2). Given the
complexity of higher genus amplitudes, we shall only be able to explore the
situation at genus g = 2, and only for chiral (self-dual) theories at c = 24k.
However, some of the salient features are already visible there. In particular,
we shall show that the existence of a modular invariant genus g = 2 partition
function implies infinitely many relations among the structure constants of
the underlying conformal field theory; this follows directly from the fact
that the vector space of such partition functions is finite dimensional. As we
shall prove, all of those relations are a consequence of the associativity of the
OPEs (Jacobi identities of the W-algebra), as well as modular covariance
at genus g = 1, in nice agreement with the analysis of Moore and Seiberg.
However, we can also identify at least one additional consistency condition
(beyond modular invariance) that the vacuum amplitudes have to satisfy
in order to define a conformal field theory. This is the condition that the
expansion coefficients of the partition functions can actually be written in
terms of polynomials of individual structure constants. As we shall show with
two examples in Section 5, this is a non-trivial consistency condition which
seems to go beyond modular invariance. On the other hand, our analysis
also suggests that this is the only additional consistency condition.

One of the main motivations for this work comes from the proposal
of Witten [2] regarding extremal conformal field theories. Witten proposed
that the dual of pure gravity in AdS3 should be an extremal self-dual chi-
ral conformal field theory with central charge c = 24k, k ∈ Z, where k is
proportional to the AdS radius. Here “extremal” means that the theory
contains, apart from the Virasoro descendants of the vacuum, only fields
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with conformal weight h ≥ k + 1. Self-duality implies, in particular, that
the character of the vacuum representation must be modular invariant by
itself, and these two conditions then fix the vacuum character (and hence
the total partition function) completely. For k = 1 the extremal theory is
the famous Monster theory, but the question of whether the theories with
k ≥ 2 exist remains an open problem. Indeed, while the spectrum is modu-
lar invariant (by construction), it is far from obvious whether one can define
an associative OPE on the corresponding set of fields. Using modular dif-
ferential equations, two of us [9, 10] have argued that the theories should
be inconsistent for large k (k ≥ 42), but unfortunately there is still a small
loophole in the argument.

For the extremal ansatz at k = 2 and k = 3, it was shown in [2] (for
k = 2) and [4] that one can define a consistent genus g = 2 partition function.
Given that the existence of a modular invariant genus g = 2 vacuum ampli-
tude implies infinitely many relations among the structure constants of the
theory (see above), this would appear to represent a highly non-trivial consis-
tency check for these theories. However, as we shall also explain in this paper,
this is somewhat misleading. Indeed, many of the relations involve in fact
coefficients that are not otherwise known (and thus do not lead to any real
“constraints”), while the remaining “testable” relations (of which there are
still infinitely many!) turn out to be a consequence of the associativity of the
Virasoro algebra and the modular covariance of certain simple 1-point func-
tions at genus g = 1. In fact, we can prove rather generally (see Theorem 4.1
in Section 4) that a “consistent” genus g = 2 partition function exists for
a large class of putative theories, that include, in particular, the extremal
ansatz at arbitrary k. Furthermore, it is clear from the assumptions of this
theorem that the existence of a genus g = 2 amplitude does not impose any
constraints beyond those that can already be analysed at genus one.

The paper is organized as follows. In Section 2 we explain that the space
of modular invariant genus two vacuum amplitudes is finite dimensional
for fixed c = 24k. We also identify different sets of expansion coefficients
that determine the genus two partition function uniquely. In Section 3 the
various different expansion coefficients are interpreted from a conformal field
theory point of view. We identify the linear relations between the different
expansion coefficients that arise as a consequence of modular invariance at
genus two, and show that they are a consequence of the associativity of
the OPE and modular covariance at genus one. Some explicit examples are
worked out in Section 3.3. In Section 4 we apply these techniques to prove
that a consistent genus two vacuum amplitude exists for the extremal ansatz
at arbitrary k. We also show that this property is quite generic, and that
it does not actually test any consistency conditions beyond what is already



298 Matthias R. Gaberdiel, Christoph A. Keller and Roberto Volpato

testable at genus one — see Theorem 4.1. Finally, in Section 5 we identify
the additional consistency condition that has to be satisfied in order for the
vacuum amplitudes to define a consistent conformal field theory. We also
estimate the behaviour of this constraint at large genus, and suggest that
it will eventually (i.e., for sufficiently large genus) become very constraining
for the extremal ansatz. Section 6 contains our conclusions, and there are a
number of appendices where some of the more technical material has been
collected.

2. Genus two modular forms

As was, for example, explained in [8], the genus two partition function of a
meromorphic conformal field theory at central charge c = 24k is of the form

(2.1) Z2 =
W

F 12k
,

where W is a modular form of weight 12k, while F 12k serves as a refer-
ence partition function — it describes the chiral contribution of 24k uncom-
pactified free bosons to the genus two partition function. At genus g = 2
the modular form W may be taken to be a Siegel modular form W (Ω),
where Ω is the Riemann period matrix of the corresponding Riemann sur-
face. The period matrices provide a parametrization of the moduli space of
Riemann surfaces with respect to which modular transformations assume a
particularly simple form; for a more detailed explanation of all of these see
Appendices A and B.

In order to analyse the factorization properties of partition functions
under degeneration limits, however, other parametrizations are more appro-
priate. The most basic one, which we will call the “sewn-tori coordinates”,
comes from the so-called plumbing fixture construction where one joins two
tori (of modular parameters q1 and q2) by a cylinder whose modular parame-
ter is described by a third variable ε, see figure 1. This is the parametrization
that was used in the work of Mason and Tuite [11–13].

Alternatively, we may use that any modular form W (Ω) may be lifted to
an automorphic form Ŵ on the Schottky space S2 (that forms a finite cover-
ing of the moduli space of genus two surfaces, see Appendix A.3). The Schot-
tky space S2 can be identified with the open subset of C

3

defined by
(2.2)

S2 := {(p1, p2, x) ∈ C
3 | x �= 0, 1, 0 < |pi| < min{|x|, 1/|x|} , i = 1, 2},
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Figure 1: To the left, the geometric interpretation of the Schottky coordi-
nates p1 and p2; the third coordinate x is given by the cross-section of the
insertion points. To the right, the geometric interpretation of the sewn tori
coordinates q1, q2, ε.

where the relation to the usual Riemann period matrix Ω is
(2.3)
e2πiΩ11 = p1(1 + O(p2)), e2πiΩ22 = p2(1 + O(p1)), e2πiΩ12 = x + O(p1p2).

This parametrization is appropriate to describe the degeneration where the
genus two surface becomes a sphere with two thin handles connecting 0 and
∞, and x and 1, respectively, see figure 1 and Appendix A. The Schottky
parametrization has also been applied to the analysis of higher loop string
amplitudes, see for example [14–19].

In the following we shall analyse the structure of Z2 as in (2.1), using
just modularity and regularity properties. In particular, we shall take W to
be any Siegel modular form of weight 12k (and Ŵ its lift to the Schottky
space), and we shall assume that Z2 has smooth limits at the boundary of
moduli space. However, we shall not assume that the function W (or Z2)
arises from a consistent conformal field theory.

2.1. Siegel modular forms of degree g = 2

At genus two, the space of Siegel modular forms of degree g = 2 and even
weight is freely generated by

(2.4) ψ4, ψ6, χ10, χ12,

where the subscript denotes the modular weight (see Appendix A.2). Since
we are only interested in forms of weight 12k, it is useful to introduce a set
of generators for the corresponding subring

(2.5) ψ3
4, ψ12, χ12, χ

(d)
12wd

.
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Here we have defined ψ12 = ψ3
4−ψ2

6
1728 , and χ

(d)
12wd

is the modular form of smallest
weight w = 12wd with wd ∈ N, that contains as a factor χd

10. More explicitly,
we have χ

(0)
0 = 1 as well as

χ
(1)
24 = χ10ψ

2
4ψ6, χ

(2)
24 = χ2

10ψ4,

χ
(3)
36 = χ3

10ψ6, χ
(4)
48 = χ4

10ψ
2
4,(2.6)

χ
(5)
60 = χ5

10ψ4ψ6, χ
(6)
60 = χ6

10,

and for arbitrary d > 6 we define recursively

(2.7) χ
(d)
12wd

= χ6
10 χ

(d−6)
12(wd−5), d > 6.

Note that wd is given by the formula

(2.8) wd = d −
⌊d
6

⌋
+ δ1,d mod 6.

The space of modular forms of w = 12k is then spanned by the modular
forms

(2.9) φa,b,c,d = ψ3a
4 ψb

12 χc
12 χ

(d)
12wd

,

where a, b, c, d are non-negative integers in the set

(2.10) Pk = {(a, b, c, d) : a + b + c + wd = k}.

The function Z2 in (2.1) thus takes the form

Z2 =
∑

(a,b,c,d)∈Pk

fabcd
φ̂a,b,c,d

F 12k

=
∑

(a,b,c,d)∈Pk

fabcd

(
ψ̂3

4
F 12

)a (
ψ̂12

F 12

)b (
χ̂12

F 12

)c χ̂
(d)
12wd

F 12wd
,(2.11)
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where fabcd are some constants, and ψ̂ and χ̂ are the lifts of ψ and χ, respec-
tively, to the Schottky space. The various factors have an expansion as

ψ̂3
4

F 12 = 1 + 744(p1 + p2) + · · ·,(2.12)

ψ̂12

F 12 = p1 + p2 + · · ·,(2.13)

χ̂12

F 12 = p1p2

(
1 +

1
12

(x − 1)2

x

)
+ · · ·,(2.14)

χ̂
(d)
12wd

F 12wd
=

(x − 1)2d

xd

(
−1

4
p1p2 + · · ·

)d

,(2.15)

where the ellipses denote higher powers in p1 or p2. The contribution of the
term proportional to fabcd is thus

(2.16)
φ̂a,b,c,d

F 12k
=
(
pb+c+d
1 pc+d

2 + pc+d
1 pb+c+d

2

)((
−1

4

)d

f(x) + · · ·
)

,

where f(x) is explicitly given as

(2.17) f(x) =
(x − 1)2d

xd

c∑
l=0

(
c

l

)(
1
12

)l (x − 1)2l

xl
.

2.2. Expansion coefficients

The above argument shows that the space of g = 2 modular forms of weight
12k is finite dimensional; indeed, the set Pk has

(2.18) |Pk| =
k3

5
+ O(k2)

elements. In particular, this implies that the genus two partition function Z2
must be uniquely determined in terms of a finite set of coefficients in some
suitable coordinate expansion. As we have mentioned above, there are two
different classes of coordinates that one may naturally use.

2.2.1. Schottky expansion. In the Schottky parametrization the lift of
Z2 to the Schottky space has the power series expansion

(2.19) Ẑ2 =
Ŵ

F 12k
=

∞∑
h2,h1=0

Ch1,h2(x) ph1
1 ph2

2 ,
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where Ch1,h2(x) is a rational function of x whose only poles are at 0, 1,∞;
the order of the poles are bounded by

(2.20)
Ch1,h2(x) x→0∼ O(x−h1−h2), Ch1,h2(x) x→1∼ O(1), Ch1,h2(x) x→∞∼ O(xh1+h2).

For example, the first of these properties can be proven by restricting Ẑ2 to
the curve (p1(t), p2(t), x(t)) ⊂ S2, with

(2.21) x(t) = t, p1(t) = t/2, p2(t) = t/2,

where t ∈ C and 0 < |t| < 1/2. The requirement that Ẑ2 has a finite limit as
|t| → 0 (i.e., at the boundary of moduli space) then leads to the first bound
in (2.20); the other bounds can be proven similarly.

By construction Ẑ2 is also modular invariant, and this implies that the
functions Ch1,h2(x) must satisfy

Ch1,h2(x) = Ch2,h1(x),(2.22a)
Ch1,h2(x) = Ch1,h2(1/x).(2.22b)

Indeed, the first identity comes from considering the modular transforma-
tion that acts on the usual fundamental cycles {α1, α2, β1, β2} as (α1, α2, β1,
β2) 	→ (α2, α1, β2, β1), while the second one comes from the transformation
(α1, α2, β1, β2) 	→ (α1, α

−1
2 , β1, β

−1
2 ). Because of the first equation in (2.22)

we may, from now on, consider only the functions Ch1,h2(x) with h2 ≤ h1.
For the following it will be useful to expand Ch1,h2(x) in a power series.

A particularly simple expansion is

(2.23) Ch1,h2(x) =
h1+h2∑

l=0

C
(∗)
h1,h2;l

(x − 1)2l

xl
,

since (2.20) and (2.22b) imply that the sum on the right-hand side is finite.
Since W is a modular form of weight 12k, it is clear that these coefficients
can be expressed in terms of linear combinations of the fabcd that appear in
(2.11), i.e.,

(2.24) C
(∗)
h1,h2;l =

∑
(a,b,c,d)∈Pk

Mabcd
(h1,h2;l) fabcd,

where M is a matrix that depends on k. We should furthermore expect
that we can invert this relation. However, since there are infinitely many
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coefficients of the form C
(∗)
h1,h2;l — for each fixed h1 and h2, l only takes

the finitely many values l = 0, . . . , h1 + h2, but there are infinitely many
values for h1 and h2 — we need to understand more precisely which of these
coefficients are in fact independent. By comparing (2.23) with (2.16) it is
easy to see that we may take the independent coefficients to be labelled by

(2.25)
P(∗)

k = {(h1 = b + c + d, h2 = c + d; l = d) : b, c, d ∈ N, b + c + wd ≤ k}.

In particular, this then implies that we can express the fabcd as

(2.26) fabcd =
∑

(h1,h2;l)∈P(∗)
k

M̂
(h1,h2;l)
abcd C

(∗)
h1,h2;l.

Note that the set P(∗)
k consists of all triplets (h1, h2, l) of integers for which

(2.27) 0 ≤ l ≤ h2 ≤ h1 ≤ k + l − wl, h1, h2, l ∈ Z.

Obviously the inequalities (2.27) only have a solution provided that wl ≤ k.
Because of (2.8), we have the bounds

(2.28)
5
6

l ≤ wl ≤ l + 1,

and thus a necessary condition for (h1, h2, l) ∈ P(∗)
k is

(2.29) (h1, h2, l) ∈ P(∗)
k =⇒ 0 ≤ l ≤ h2 ≤ h1 ≤ k +

l

6
≤ 6

5
k,

where in the last inequality we have used that l ≤ k + l
6 implies l ≤ 6

5k. On
the other hand, using the upper bound from (2.28) implies that a sufficient
condition for (h1, h2, l) to be in P(∗)

k is

(2.30) 0 ≤ l ≤ h2 ≤ h1 ≤ k − 1 =⇒ (h1, h2, l) ∈ P(∗)
k .

The structure of P(∗)
k is sketched in figure 2.
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Figure 2: A graphical representation of the set P(∗)
k for k = 13. Each (either

white or black) circle in the diagram denotes a pair (h1, l) for which we can
find a h2 ≤ h1 with 0 ≤ l ≤ h1 + h2. Black circles denote pairs (h1, l) for
which at least one such choice of h2 corresponds to an element in P(∗)

k .

2.2.2. Expansion in sewn tori coordinates. Later on we shall also
need the description of the genus two partition function in terms of the sewn
tori coordinates q1, q2 and ε, see figure 1. With respect to these coordinates
we have an expansion as

(2.31) Z2 =
∞∑

h1,h2,l=0

Dh1,h2;l qh1
1 qh2

2 ε2l.

The coefficients Dh1,h2;l are symmetric under the exchange of h1 ↔ h2, and
we may therefore restrict ourselves to considering the terms with h1 ≥ h2.
The explicit relation between the sewn tori and the Schottky coordinates is
given by

q1 = p1(1 + O(p1, p2)), q2 = p2(1 + O(p1, p2)),

ε = (x − 1)(1 + O(x − 1)2 + O(p1, p2)).(2.32)

Obviously, again only finitely many of these coefficients are independent,
and we may take them to be Dh1,h2;l, with (h1, h2; l) in

(2.33) P(D)
k = {(h1, h2; l) : 0 ≤ l ≤ h2 ≤ h1 ≤ k + l − wl}.
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3. The conformal field theory perspective

Up to now we have analysed the modular properties of the partition func-
tions Z2, but we have not assumed that they arise from an underlying con-
formal field theory. As we have explained in the previous section, there
are infinitely many relations between the expansion coefficients of Ch1,h2(x)
and the coefficients Dh1,h2;l (since all of them are determined in terms of the
finitely many coefficients labelled by Pk). These relations encode constraints
the underlying conformal field theory has to satisfy in order to define a con-
sistent genus two partition function. In the following, we want to exhibit
these constraints more explicitly.

3.1. Invariants of the conformal field theory

To start with we need to explain the conformal field theory interpretation
of the different expansion coefficients.

3.1.1. The Schottky expansion. In the Schottky parametrization it is
clear from the geometrical definition (see Appendix C) that the coefficient
functions Ch1,h2(x) have the interpretation

Ch1,h2(x) =
∑

φ1,ψ1∈Hh1
φ2,ψ2∈Hh2

G−1
φ1ψ1

G−1
φ2ψ2

〈V out(φ1,∞)

V out(φ2, x)V in(ψ2, 1)V in(ψ1, 0)〉.(3.1)

Here Gφψ is the metric on the space of states (with G−1
φψ the inverse metric),

and the sums over φj , ψj run over a basis of states at conformal weight hj .
Finally, V in and V out are defined as in (C.25) and (C.26), and the 4-point
correlator is evaluated on the sphere. Note that the crossing symmetry of
these correlation functions implies directly (2.22), see Equations (C.32) and
(C.33). Furthermore, the regularity conditions (2.20) are a consequence of
the property of the L0-spectrum of the conformal field theory to be bounded
from below by zero.

It is convenient to restrict the sum over the states at conformal dimension
h2 to the quasiprimary states Hqp

h2
, leading to the “quasiprimary functions”

(3.2) Ch1,h2(x) = (x − 1)2h2
∑

φ,ψ∈Hqp
h2

G−1
φψ TrHh1

(
V (ψ, 1)V (φ, x)

)
.
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Because the contribution of the L−1-descendant states can be described in
terms of differential operators, the general case is then of the form

(3.3) Ch1,h2(x) =
∑

h′
2≤h2

Kh2,h′
2
(x) Ch1,h′

2
(x),

where Kh2,h′
2

are some differential operators (that are independent of the
theory in question). Any linear relations between the coefficient functions
Ch1,h2(x) must therefore come from linear relations between the quasipri-
mary functions Ch1,h2(x). In the following we shall therefore restrict our
attention to these quasiprimary correlation functions. Since Ch1,h2 still satisfy
(2.22b) and (2.20), we can expand them as in (2.23)

(3.4) Ch1,h2(x) =
h1+h2∑

l=0

C(∗)
h1,h2;l

(x − 1)2l

xl
.

However, from the point of view of conformal field theory, the expansion,

(3.5) Ch1,h2(x) =
∞∑
l=0

C(0)
h1,h2;l (x − 1)2h2xl−h1−h2 ,

which converges for |x| < 1, is more natural. Indeed, while the conformal
field theory interpretation of the coefficients C(∗)

h1,h2;l is not immediate, Equa-
tion (3.2) implies that

(3.6) C(0)
h1,h2;l =

∑
φ,ψ∈Hqp

h2

G−1
φψ TrHh1

(V−h1+l(ψ)Vh1−l(φ)).

It is clear that we can express the C(0)
h1,h2;l coefficients in terms of the C(∗)

h1,h2;l
coefficients, and vice versa. Indeed, we can rewrite (3.4) for any L ≥ 0 as

Ch1,h2(x) =
L∑

l=0

C(∗)
h1,h2;h1+h2−l (x − 1)2h2

(x − 1)2h1−2l

xh1+h2−l
+ O(xL−h1−h2+1)

=
L∑

l=0

C(0)
h1,h2;l (x − 1)2h2xl−h1−h2 + O(xL−h1−h2+1),(3.7)

from which we conclude that we can express the coefficients

{C(0)
h1,h2;l : l = 0, . . . , L} as linear combinations of

{C(∗)
h1,h2;h1+h2−l : l = 0, . . . , L}(3.8)
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and vice versa. In particular, given the definition of P(∗)
k , this implies that

the independent C(0)
h1,h2;l coefficients can be taken to be labelled by

(3.9) P(0)
k = {(h1, h2; h1 + h2 − l) : 0 ≤ l ≤ h2 ≤ h1 ≤ k + l − wl} .

The fact that only the invariants with l = 0, . . . , h1 + h2 can be indepen-
dent is actually directly a consequence of the crossing symmetry (2.22b).
Equation (3.8) holds for a general L if we define C(∗)

h1,h2;l = 0 for l < 0 or
l > h1 + h2.

3.1.2. The sewn tori coordinate expansion. The conformal field the-
ory interpretation of the coefficients Dh1,h2;l in (2.31) is more immediate. In
fact, it follows directly from the geometric interpretation of the sewn tori
coordinates (see figure 1) that the expansion coefficients have the
interpretation

(3.10) Dh1,h2;l =
∑

φ,ψ∈H[2l]

G−1
φψ TrHh1

(V0(φ)) TrHh2
(V0(ψ)).

This was taken to be the starting point in the analysis of Mason and Tuite
[11,12]. Here H[h] denotes the eigenspace (with eigenvalue h) of the operator
L[0], the scaling operator on the torus, defined by

(3.11) L[0] = L0 +
∞∑

n=1

(−1)n+1

n(n + 1)
Ln.

Physically, this modified scaling operator comes from the conformal trans-
formation to torus coordinates. Mathematically, its justification is that the
torus one point function Zφ defined by

(3.12) Zφ(q) = TrH(V0(φ)qL0−k), q = e2πiτ ,

with τ the modular parameter on the torus, is an elliptic modular function
of weight h, provided that φ has L[0] eigenvalue h [20]. Note that L0 = L[0]
on Virasoro primary states.

This concludes our discussion of the conformal field interpretation of
the expansion coefficients. For a consistent conformal field theory one also
usually requires that the theory has a unique SL(2,C)-invariant vacuum.
This condition puts some additional constraints on the above parameters.
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In particular, it implies that

(3.13) Dh1,h2;0 = Nh1 Nh2 ,

where Ni = dimHi. As we have seen in Section 2, the independent coef-
ficients Dh1,h2;l are labelled by P(D)

k defined in (2.33). For l = 0 the inde-
pendent coefficients are thus characterized by 0 ≤ h2 ≤ h1 ≤ k. Because of
(3.13) this implies that the dimensions Ni for i ≤ k are free parameters, while
the dimensions Nj with j > k cannot be independently chosen. This fits in
perfectly with the constraints obtained by imposing modular invariance of
the genus g = 1 torus partition function [2, 21] (see also the discussion in
the following section). In fact, the latter point of view also implies that the
invariants of the form Dh1,h2;0 with h1 > k depend only on the Dh1,h2;0 with
h2 ≤ h1 ≤ k.

3.2. Interpretation of the linear relations

As we have seen in Section 2, consistency of the conformal field theory at
genus g = 2 implies that the invariants (3.6) and (3.10) must satisfy a large
number of linear relations. On the other hand, the analysis of Moore and
Seiberg [1] shows that the consistency of a conformal field theory at higher
genus is a consequence of the associativity of the OPE on the sphere, as
well as the modular covariance of the torus one-point functions. Indeed, for
the self-dual theories we are discussing there, there is only one irreducible
representation, namely the vacuum representation itself, and the fusing and
braiding matrices are trivial. Thus, the polynomial relations of [1] are obvi-
ously satisfied provided that the chiral algebra is itself consistent, i.e., that
it has an associative OPE. In addition, one has to require that the one-point
functions on the torus are modular covariant of appropriate weight (so that
the associated S matrix is indeed unity). Under these conditions the analysis
of [1] implies consistency at arbitrary genus. Thus, the linear relations of the
invariants (3.6) and (3.10) must be a consequence of (1) associativity of the
OPE and (2) modular covariance at genus one.

In order to explain that this is indeed so, we shall proceed as follows.
We shall first identify (see Section 3.2.1) which relations follow from the
associativity of the OPE on the sphere, and which are a consequence of
the modular covariance of the torus one point functions (see Section 3.2.2).
Then we shall show (see Section 3.2.3) that taking these relations together
allows us to relate any invariant of the theory to a linear combination of
invariants associated to P(∗)

k , thus mirroring the relations that arise from
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modular invariance at genus g = 2. To prove that the two sets of relations
are actually the same, we note that the theta series of even self-dual lattices
span the space of modular forms of degree g = 2 and weight w = 0 mod 4
[22, 23]. The corresponding lattice conformal field theories are consistent
conformal field theories at arbitrary genus, and thus must satisfy both sets
of constraints. Since the constraints take the form of a system of linear
equations, it follows that the two sets are in fact equivalent.

3.2.1. Relations from the associativity of the OPE. Let us begin
with collecting the relations that follow from the associativity of the OPE on
the sphere. From the point of view of conformal field theory the expansions
(3.4) and (3.5) are different expansions of a certain four-point function on
the sphere, see Equation (3.2). The consistency of the chiral algebra implies,
in particular, that these functions are well-defined, irrespective of how one
expands them. In turn, this means that associativity of the OPE implies
the relations (3.8). By a similar argument one can also show, assuming the
associativity of the OPE, that we can express the invariants (3.10) in terms
of the invariants appearing in (3.4), i.e., that

{C(∗)
h1,h′

2;l
: l = 0, . . . , L, h′

2 ≤ h2} are linear comb. of

{Dh1,h′
2;l : l = 0, . . . , L, h′

2 ≤ h2},(3.14)

and vice versa; since this is slightly technical, the proof is given in Appen-
dix D.1. The associativity of the OPE finally implies that the traces appear-
ing in (3.6) are cyclic. In particular, we therefore have the identity

C(0)
h1,h2;l =

∑
φ,ψ∈Hqp

h2

G−1
φψ TrHh1

(V−h1+l(φ)Vh1−l(ψ))

=
∑

φ,ψ∈Hqp
h2

G−1
φψ TrHl

(Vh1−l(ψ)V−h1+l(φ)) = C(0)
l,h2;h1

.(3.15)

Altogether we therefore see that associativity of the OPE implies the rela-
tions (3.8), (3.14) and (3.15).

3.2.2. Relations from modular covariance of the torus one-point
function. Next we turn to the relations that follow from the modular
covariance of the torus one-point functions. As was mentioned before in
Section 3.1.2, for each φ ∈ H[h], i.e., each φ ∈ H with L[0]φ = hφ, the one-
point function on the torus Zφ has modular weight h and is holomorphic for
τ in the upper half plane, except for a pole of order at most k at q = 0 [20].
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We denote the space of such functions by Mh,k. It is not difficult to show
that Mh,k is isomorphic to the space M12k+h,0 of (holomorphic) modular
forms of weight 12k + h (without any poles): indeed, given an element in
Mh,k, the corresponding modular form is obtained by multiplication with
Δk, where Δ is the unique modular form of weight 12 and leading term
Δ(q) ∼ q + O(q2).

The ring of modular forms is freely generated by the Eisenstein series
G4 and G6, and thus there are only modular forms of even weight. The
dimension of Mh,k, for even h, equals

(3.16) dh,k = dim(Mh,k) = dim(M12k+h) = k +
⌊ h

12

⌋
+ 1 − δ2,h mod 12.

For h = 2l this can be rewritten, using the definition of wl in (2.8), as

(3.17) d2l,k = k + l − wl + 1.

It is convenient to choose a basis ξh,k
l (q), l = 0, . . . , dh,k − 1, of Mh,k such

that

(3.18) ξh,k
l (q) = q−k(ql + O(qdh,k)).

Then for any φ ∈ H[h], we can write the torus one-point function as

(3.19) Zφ(q) =
∞∑

n=0

qn−k TrHn
(V0(φ)) =

dh,k−1∑
l=0

ξh,k
l (q) TrHl

(V0(φ)).

In particular, this therefore implies that the first dh,k coefficients of the
q-expansion of (3.19) determine all remaining power series coefficients.

Given the definition of the invariants Dh1,h2;l (3.10), and by the obvi-
ous identity Dh1,h2;l = Dh2,h1;l, it is therefore clear that the invariants with
0 ≤ h2 ≤ h1 ≤ d2l,k − 1 determine all other Dh1,h2;l invariants. Since d2l,k −
1 = k + l − wl this means that we can always express

(3.20)
Dh1,h2;l as a linear combination of {Dh′

1,h
′
2;l : h′

2 ≤ h′
1 ≤ k + l − wl}.

3.2.3. Completeness of these relations. Finally, it remains to show
that the conformal field theory relations explained in Sections 3.2.1 and
3.2.2 allow us to relate any invariant in terms of the invariants C(∗)

h1,h2;l with

(h1, h2; l) ∈ P(∗)
k . The precise statement is given by the following theorem.
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Theorem 3.1. The relations (3.8), (3.14), (3.15) and (3.20) are sufficient
to express all invariants C(0)

h1,h2;l and Dh1,h2;l, defined in (3.6) and (3.10), as

linear combinations of C(∗)
h1,h2;l with (h1, h2; l) ∈ P(∗)

k .

The proof of this theorem is given in Appendix D.2.
Given the existence of the consistent lattice theories (see the beginning

of Section 3.2) this demonstrates that associativity of the OPE on the sphere
and modular covariance of the torus one-point functions is sufficient to guar-
antee the consistency of the genus g = 2 partition function, in agreement
with the argument of Moore and Seiberg [1].

3.3. Examples and the contracted Jacobi identities

In the previous section, we have shown that the linear relations that are
required for the consistency of the genus g = 2 amplitudes follow from the
associativity of the OPE on the sphere, as well as from the modular covari-
ance of the torus one-point functions. However, it should be clear that the
consistency at genus g = 2 only checks some partial aspects of these require-
ments. To see this explicitly, it is useful to consider some simple examples.

3.3.1. Self-dual theories at c = 24. For the case of c = 24 we have
k = 1, and the set of free parameters labelled by (2.27) are

(3.21) C
(∗)
0,0;0, C

(∗)
1,0;0, C

(∗)
1,1;0.

At h = 1 all states are Virasoro (quasi-)primary, and thus we need not distin-
guish between the quasiprimary functions Ch1,h2(x) and the actual four-point
functions Ch1,h2(x).

In terms of the sewn tori coordinate expansion, the free parameters are
labelled by (2.33), and are thus given by

(3.22) D0,0;0, D1,0;0, D1,1;0.

If we assume that our conformal field theory has a unique vacuum, it follows
from (3.13) that we have

(3.23) D0,0;0 = 1, D1,0;0 = N1, D1,1;0 = N2
1 ,

where N1 is the number of currents. This reproduces the result of [8], where
it was shown that for c = 24 the genus g = 2 amplitude is only a function
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of N1, namely

(3.24) W = ψ3
4 + (N1 − 744) ψ12 + (N1 − 744)(N1 + 984) χ12 .

In particular, all the above invariants for a consistent self-dual conformal
field theory at c = 24 must satisfy a polynomial relation of degree two in the
number of currents N1. To see how this works explicitly, we note from (2.19)
that the genus g = 2 amplitude corresponding to W has the expansion

Ẑ2 = 1 + N1(p1 + p2) + 196884(p2
1 + p2

2) + p1p2[
6N1 +

5N2
1

6
+
(

−4N1 +
N2

1
12

)(
x +

1
x

)
+ N1

(
x2 +

1
x2

)]
+ · · · .(3.25)

To obtain the invariants C
(0)
1,1;l we expand the coefficient of p1p2 as

(x − 1)−2C1,1(x) =
N1

x2 +
−2N1 + N2

1
12

x
+ (N1 + N2

1 )

+ 2N2
1 x + 3N2

1 x2 + · · ·,(3.26)

thus leading to

C(0)
1,1;0 = N1, C(0)

1,1;1 = −2N1 +
N2

1
12

,

C(0)
1,1;2 = N1 + N2

1 , C(0)
1,1;s = (s − 1)N2

1 , s ≥ 3.(3.27)

On the other hand, it follows from the general structure of a conformal field
theory that the currents satisfy the commutation relations

(3.28) [Ja
m, Jb

n] = ifabcJ
c
m+n + m δab δm,−n,

where fabc are the structure constants, and we have normalized the currents
(so that the central extension term is proportional to m, rather than km.)
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In terms of these structure constants one then finds

C(0)
1,1;0 =

∑
a

TrH1(J
a
−1J

a
1 ) = N1,

C(0)
1,1;1 =

∑
a

TrH1(J
a
0 Ja

0 ) = −
∑
abc

fabcfacb,

C(0)
1,1;2 =

∑
a

TrH1(J
a
1 Ja

−1)

=
∑

a

TrH1(J
a
−1J

a
1 ) +

∑
a

TrH1([J
a
1 , Ja

−1]) = N1 + N2
1 ,

C(0)
1,1;s =

∑
a

TrH1(J
a
s−1J

a
−s+1)

=
∑

a

TrH1([J
a
s−1, J

a
−s+1]) = (s − 1)N2

1 , (s ≥ 3).(3.29)

Thus we obtain the non-trivial identity

(3.30)
∑
abc

fabcfabc =
N2

1
12

− 2N1,

where we have used the total anti-symmetry of the structure constants
(which follows from the associativity of the OPE).

The analysis of the previous section implies that this identity must follow
from the associativity of the OPE, as well as the modular covariance of the
one-point functions. To see how this goes we observe that modular covariance
of the one-point functions implies that

(3.31) Zφ = 0 for φ =
∑

a

Ja
−1J

a
−1Ω − N1

12
L−2Ω,

since φ is a Virasoro primary state with h = 2. Indeed, since V0(φ)Ω = 0 it
follows that Zφ must be holomorphic, but there are no holomorphic modular
forms of weight two. In particular, this therefore implies that

(3.32) 0 = TrH1(V0(φ)) = −N2
1

12
+
∑

a

TrH1(J
a
0 Ja

0 ) + 2
∑

a

TrH1(J
a
−1J

a
1 ),

which is just (3.30).
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3.3.2. Self-dual theories at c = 48 and Jacobi identities. For c =
48, i.e., k = 2, the free parameters can, for example, be taken to be

(3.33)
D0,0;0, D1,0;0, D1,1;0, D2,0;0, D2,1;0, D2,2;0, D1,1;1, D2,2;2

or

(3.34) C(0)
0,0;0, C(0)

1,0;1, C(0)
1,1;2, C(0)

2,0;2, C(0)
2,1;3, C(0)

2,2;4, C(0)
1,1;1, C(0)

2,2;2.

For simplicity let us assume that the theory does not have any currents,
N1 = 0, and that the vacuum is unique. Then most of the above coefficients
are zero, and the only non-trivial parameters are

D0,0;0 = 1, D1,0;0 = 0, D1,1;0 = 0, D2,0;0 = N2,(3.35)

D2,1;0 = 0, D2,2;0 = N2
2 , D1,1;1 = 0, D2,2;2 = d,(3.36)

as follows from (3.13). Thus, there are only two independent parameters,
namely N2 and d. In terms of the C(0) parameters, the only non-trivial
invariants are

C(0)
0,0;0 = TrH0(1) = 1, C(0)

2,0;2 = TrH2(1) = N2,(3.37)

C(0)
2,2;4 =

∑
j

TrH2(Ŵ
j
2 Ŵ j

−2) = b1, C(0)
2,2;2 =

∑
j

TrH2(Ŵ
j
0 Ŵ j

0 ) = b2 ≡ b,

where N2 = dim(H2), and the Ŵ j are an orthonormal basis for the states
at h = 2. It follows that both b1 and b2 must be a function of N2 and d; we
can then take the independent parameters also to be N2 and b.

For a theory without currents we know that the commutation relations
of the W i

m modes take the form (see, for example, [24])

(3.38)
[W i

m, W j
n] =

c

12
δijm(m2 − 1)δm,−n + (m − n)hijkW

k
m+n + igij

α V α
m+n,

where hijk and gij
α are structure constants, and V α

n denotes a basis for the
space of states at h = 3. (The modes W j

m and Ŵ j
m differ only by the normal-

ization factor
√

2/c.) With these definitions we can then calculate directly
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the four-point functions

∑
n,j

x−n−2 TrH2(Ŵ
j
−nŴ j

n) =
2
c

∑
n,j

x−n−2 TrH2(W
j
−nW j

n)

=
N2

x4 +
8H1

cx2 +
8H2

cx
+ N2 + N2

2 +
16H2

c
· · ·,(3.39)

as well as

∑
n,j

x−n−2 TrH3(Ŵ
j
−nŴ j

n) =
2
c

∑
n,j

x−n−2 TrH3(W
j
−nW j

n)

=
4N2

x5 +
8
cH1 + 4

c2 G

x3 + · · ·,(3.40)

where we have defined

(3.41) H1 =
∑
ijk

hijkhijk, H2 =
∑
ijk

hiijhjkk, G =
∑
ijα

gij
α gij

α .

As an aside we should note that some of these coefficients can obviously
be calculated in different ways which agree, however, if the Jacobi identity
is satisfied. For example, the coefficient proportional to x−1 in (3.39) was
calculated as

(3.42)
∑

j

TrH2(Ŵ
j
1 Ŵ j

−1) =
2
c

∑
j

TrH2([W
j
1 , W j

−1]) =
8
c

∑
ijk

hjjihkki.

However, we could have also evaluated it directly, by first applying W j
−1 to

the states W k
−2Ω using

(3.43) W j
−1 W k

−2Ω = hjkmWm
−3Ω + igjk

α V α
−3Ω,

and then evaluating W j
1 on the resulting state and taking the trace. This

would have led to a different expression for the coefficient of x−1. Requiring
the two results to agree is precisely the identity (3.48) below, which is a
consequence of the Jacobi identity.

On the other hand, we know from (3.37) that

(3.44)

(x − 1)−4C2,2(x) =
N2

x4 +
b

x2 +
N2

2
6x

+ N2 +
4N2

2
3

+
9N2

2
2

x +
32N2

2
3

x2 + · · ·,
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as well as

(x − 1)−4C3,2(x) =
4N2

x5 +
N2

2
6x3 +

15750720 + 240b + 369560N2

x2

+
10746880N2 + N2

2
6

x
+ · · · .(3.45)

By comparing coefficients we can then obtain H1, H2 and G as a function
of N2 and b; in particular, we have from the comparison of (3.39) and (3.44)

(3.46) H1 =
cb

8
, H2 =

c

48
N2

2 ,

while the comparison of (3.40) and (3.45) leads to

(3.47) G =
c2

24
N2

2 − c2

4
b.

For c = 48 we then obtain the non-trivial relation

(3.48) G = 96 (H2 − H1).

As pointed out above, this relation is actually a consequence of the Jacobi
identity of (3.38). Indeed, by considering the identity [W i

n, [W j
m, W k

l ]] +
cycl. = 0, we find the constraint

(3.49)
1
2c

gjt
α gki

α − hjkshist + hijshkst = 0.

Contracting with δjkδit we get

(3.50)
1
2c

(gji
α )2 − hjjshiis + hijshijs =

1
2c

G + H1 − H2 = 0.

Thus the consistency at genus g = 2 tests the aspects of the Jacobi identity.
It is clear, however, that we only get identities between fully contracted
expressions, i.e., only between the specialized expressions (3.50). Thus, the
genus g = 2 amplitudes give us only partial access to the full Jacobi identity
(3.49). This remark will be further explored in Section 5.

4. Application to the extremal ansatz

Up to now we have studied the constraints a conformal field theory has to
satisfy in order to lead to a consistent genus two amplitude. In particu-
lar, we have seen that consistency at genus two is guaranteed if the OPE
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on the sphere is associative and the torus one-point functions are modu-
lar covariant. However, as is apparent from the arguments of Section 3.2.2,
these conditions are sufficient, but certainly not necessary. Indeed, it is clear
from the last example above that only certain aspects of the associativity
constraints are actually relevant for the genus two consistency analysis.

It is therefore an interesting question to ask the converse question: how
much information do we need about a conformal field theory (be it ultimately
consistent or not) in order to construct a (seemingly) consistent genus two
amplitude. This question is of particular relevance in the context of the
extremal theories originally proposed in [2] as the dual conformal field theory
of pure gravity on AdS3 [2, 3]. This proposal was subsequently modified for
chiral massive gravity in [25], but there have been arguments to suggest
that chiral gravity is actually logarithmic [26–30], in which case the dual
conformal field theory would not be extremal in the above sense. There is
also a conformal field theory argument that suggests that such extremal
theories cannot exist for large values of the central charge [9, 10,31].

The proposed extremal conformal field theories are self-dual meromor-
phic conformal field theories at c = 24k. Up to conformal weight h = k their
spectrum only consists of Virasoro descendants of the vacuum. In order
for the torus partition function to be modular invariant, the theory has to
have additional primary states. These appear only at conformal dimension
h > k, and their number (and conformal dimension) is uniquely fixed by the
requirement that the torus partition function is modular invariant.

In the context of the AdS3/CFT2 duality, the gravity calculation gives
in principle also access to the higher genus partition functions, and one may
ask whether their existence will be evidence in favour of the consistency of
these theories. In fact, for k = 2 and k = 3, the explicit genus g = 2 partition
function was constructed in [2] and [4–6]. As we have seen in Section 3,
the consistency of the genus two amplitudes checks certain aspects of the
associativity of the OPE, as well as the modular covariance of the torus
one-point functions. One may therefore expect that the existence of these
g = 2 amplitudes provides a non-trivial consistency check on the existence
of these proposed theories. Unfortunately, as we shall see in the following,
this is not the case.

In order to explain more precisely what we mean by this statement, it
is instructive to consider a slightly more general situation. Suppose that the
spectrum of the putative self-dual chiral conformal field theory is of the form

(4.1) H = H(0) ⊕ R, R ⊂
⊕
n≥B

Hn,
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where H(0) is the vacuum representation of some consistent chiral algebra A,
and R is a (reducible) representation of A. Here Hn is the finite dimensional
eigenspace of H with L0-eigenvalue n, and we assume that the L0 spectrum
of H is bounded from below by zero, with a unique state, the vacuum, at
conformal weight h = 0. Furthermore, we assume that the chiral algebra A
contains the Virasoro algebra at c = 24k. On the other hand, the states in R
all have conformal weight h ≥ B, and we do not (a priori) assume that we
know anything about the OPE involving two fields from R. In the example
of the extremal theories, A would be the Virasoro algebra, and the states in
R describe the additional states whose conformal dimensions are bigger or
equal than B = k + 1.

By assumption, the full space H is a representation of the chiral algebra
A, and thus the torus one-point functions

(4.2) Zφ = TrH
(
V0(φ)qL0−k

)

with φ ∈ H(0), are determined by our ansatz (4.1). If φ has L[0] eigenvalue
h, then we know on general grounds that Zφ must be an element of Mh,k,
see the discussion in Section 3.1.2. Thus consistency at genus one already
requires that these torus one-point functions are modular invariant. Provided
that this is the case (as we shall from now on assume), the relations that
come from the modular covariance of the torus one-point functions (see
Section 3.2.2) are therefore automatically satisfied.

In order to understand what constraints the genus two analysis implies
we therefore consider the other invariants we introduced above, namely
C(0)

h1,h2;l and Dh1,h2;l. Since we do not know anything about the OPEs involv-
ing general states in H, we shall only consider the invariants that can be
defined and computed given the ansatz (4.1). These include, in particular,

(4.3) C(0)
h1,h2;l =

∑
φ,ψ∈Hqp

h2

G−1
φψ TrHh1

(
Vl−h1(φ)Vh1−l(ψ)

)
, h2 < B,

since for h2 < B the relevant states φ and ψ are part of the chiral algebra,
and we know, by assumption, how they act on the full space H. Similarly,
regarding the invariants Dh1,h2;l, we can calculate those for which h2 < B or
2l < B. Indeed, in either case we can restrict the sum over H[2l] in

(4.4)
Dh1,h2,l =

∑
φ,ψ∈H[2l]

G−1
φψ TrHh1

(
V0(φ)

)
TrHh2

(
V0(ψ)

)
, h2 < B or 2l < B,
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to states in H(0). This is obvious for the case that 2l < B. For h2 < B note
that if ψ is not an A descendant of the vacuum, TrHh2

V0(ψ) vanishes since
Hh2 contains only vacuum descendants. Thus in either case only A descen-
dants contribute, whose contributions we can compute. Thus, we may take
(4.4), with the sum restricted to H[2l] ∩ H(0), as the definition of Dh1,h2;l for
h2 < B or 2l < B.

We conclude that there are infinitely many invariants, namely (4.3) and
(4.4) for arbitrary h1, that we can calculate from our ansatz. On the other
hand, we know from the analysis of Section 2 that consistency at genus two
implies that there are only finitely many free parameters, and thus that
these invariants must satisfy infinitely many linear relations. It would thus
seem that we get strong constraints from the consistency of the genus two
amplitudes!

Unfortunately, this impression is somewhat deceptive. As we have seen
in Section 3 the constraints that arise in this way test effectively aspects
of the associativity of the OPE. However, since we only have access to the
invariants of the form (4.3) with h2 < B, we will only be able to test the
associativity of the OPE of the fields up to conformal weight B. But since we
assumed that, up to conformal weight B, the conformal field theory consists
just of elements in the chiral algebra A (for which associativity is assumed)
all of these constraints will be automatically satisfied. More precisely we can
prove the following:

Theorem 4.1. Suppose H is of the form (4.1) and all torus one-point
functions Zφ with φ ∈ H(0) are modular covariant. Then there exists a (not
necessarily unique) modular form of degree g = 2 and weight 12k, whose coef-
ficients in the expansions (2.23) agree with (4.3) for h2 < B, and whose coef-
ficients in the expansion (2.31) with either h2 < B or 2l < B agree with (4.4).

Proof. The proof is analogous to Theorem 3.1, but this time we are not
allowed to assume that H is a vertex operator algebra. This means that we
cannot assume that all identities (3.8), (3.14), (3.15) and (3.20) hold. How-
ever, we can still follow the same strategy as before: using those identities
that still follow from the associativity of A and the modular covariance of
the one-point functions (4.2), we can demonstrate that all invariants (4.3)
and (4.4) can be expressed in terms of linear combinations of some C(∗)

h1,h2;l

with (h1, h2; l) ∈ P(∗)
k . Given our previous analysis we know, on the other

hand, that these relations are the same as those that arise from the modular
covariance at g = 2, and hence the result follows.
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To see this in more detail we first note that the limits (2.20) still hold
since the L0 spectrum is bounded by assumption. Next, using that all oper-
ators in A are local, we write

(x−1 − 1)2h2 TrHh1
(V (ψ, 1)V (φ, x−1))

= x−2h2(x − 1)2h2 TrHh1
(V (φ, x−1)V (ψ, 1))

= x−2h2(x − 1)2h2
∑

n

xn+h2 TrHh1
(φnψ−n)

= (x − 1)2h2 TrHh1
(V (φ, 1)V (ψ, x)),(4.5)

from which (2.22b) follows after summing over all states in Hh2 . We can thus
again define invariants C(∗)

h1,h2;l, h2 < B, which are related to the C(0)
h1,h2;l as in

(3.8). Equation (3.15) is still valid for h2 < B because it only makes use of
the cyclicity of the trace. Furthermore, as shown in Appendix D.1, (3.14) is
valid for h2 < B. Using the same arguments as in the proof of Lemma 1 (see
Appendix D.2) it then follows that the invariants (4.3) and the invariants
(4.4) for h2 < B can be correctly reproduced by a suitable choice of the free
parameters in

(4.6) S = {(h1, h2; l) ∈ P(∗)
k : h2 < B}.

It remains to prove that the modular form can be consistently cho-
sen in such a way that also the invariants Dh1,h2;l with 2l < B ≤ h2 are
correctly reproduced. This works because the only consistency checks of
those invariants come essentially from the modular covariance of the one-
point functions. More precisely, since by assumption the one-point functions
are modular covariant, we can use (3.20) to express all such invariants by
Dh′

1,h
′
2;l with h′

2 ≤ h′
1 ≤ k + l − wl. If all h′

2 < B, we know from the argu-
ments given above that the invariants are consistent with all other invariants
in (4.3) and (4.4). If on the other hand, some h′

2 appears with h′
2 ≥ B, then

2l < B implies (h′
1, h

′
2; l) ∈ P(∗)

k , and thus we can simply fix the correspond-
ing C(∗)

h′
1,h

′
2;l

. Thus the only effect of the invariants (4.4) with 2l < B ≤ h2 is
to fix the free parameters

(4.7) S′ = {(h1, h2; l) ∈ P(∗)
k : 2l < B ≤ h2}.

This completes the proof. �

Note that in general S ∪ S′ is a proper subset of P(∗)
k , in which case, the

genus g = 2 amplitude is not uniquely fixed by the information on H, i.e., by
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(4.3) and (4.4). (An example of this is described below.) Finally, we observe
that the assumptions of the theorem can be weakened, because modular
covariance of Zφ is only needed for all φ ∈ H(0) with conformal weight less
than 2B.

4.1. The extremal ansatz

The above proposition can be directly applied to the proposed extremal theo-
ries. As was already mentioned before, in this context A is the
Virasoro algebra, and B = k + 1. The proposition then implies that a con-
sistent genus two amplitude can be constructed provided that the torus
one-point functions Zφ are modular invariant (with the appropriate modu-
lar weight).

For the case at hand, this latter condition is actually straightforward to
check. Because the chiral algebra A is just the Virasoro algebra, the only
states φ that appear are Virasoro descendants of the vacuum. Using the
recursion relations of Zhu [20] (see also [10]) it is clear that each such one-
point function can be written as a modular covariant differential operator
D

(φ)
q acting on the vacuum torus amplitude,

(4.8) Zφ(q) ≡ TrH(V0(φ)qL0−k) = D(φ)
q TrH(qL0−k), φ = Ln2

[−2]L
n3

[−3] · · ·Ω.

For example, for φ = L[−2]Ω, we have

(4.9) ZL[−2]Ω(q) ≡ (2πi)2 TrH
(
(L0 − k)qL0−k

)
= (2πi)2q

d

dq
TrH

(
qL0−k

)
,

so that

(4.10) D
(L[−2]Ω)
q = (2πi)2q

d

dq
.

If φ has L[0] eigenvalue h with h even — for h odd, the torus one-point
function, and thus the differential operator, vanishes identically — the dif-
ferential operator is of order h

2 and of modular weight h. Thus the modu-
lar covariance of the one-point functions Zφ is a direct consequence of the
modular invariance of the torus vacuum amplitude (which is satisfied by
construction).

This argument therefore demonstrates that a consistent genus g = 2
amplitude, satisfying all relations (4.3) with h2 ≤ k, exists for all k. This
conclusion is obviously in agreement with the results for k = 2 and k = 3



322 Matthias R. Gaberdiel, Christoph A. Keller and Roberto Volpato

in [2, 4]. However, it also shows that one is not actually testing any non-
trivial consistency conditions of the extremal ansatz in this way. In fact, the
theorem shows that the same would have been true for any ansatz satisfying
the above conditions.

4.1.1. Explicit examples: the extremal ansatz for low values of k.
It is maybe instructive to see how the general machinery works out for these
examples. Let us first consider the case with k = 2 (c = 48). The extremal
ansatz is a special case of the example studied in Section 3.2.2. Indeed, if
at h = 2 we only have the Virasoro field, the parameters N2 and B take
the form

(4.11) N2 = 1, B =
2
c

TrH2(L
2
0) =

8
c

=
1
6
.

Thus it follows from (3.46) that H1 = 1 = H2 = 1, which is indeed in agree-
ment with the definition in (3.41).

For k = 3 (c = 72) the analysis is similar. In this case the free parameters
may be taken to be N1, N2, N3, as well as

(4.12) C(0)
1,1;1, C(0)

2,1;2, C(0)
2,2;3, C(0)

2,2;2, C(0)
3,2;3, C(0)

3,3;4, C(0)
3,3;3.

All of these invariants can be computed from the extremal ansatz, so that
the genus 2 partition function is uniquely determined. We have also checked
explicitly that the low-lying invariants in (4.3) and (4.4) are indeed correctly
reproduced (as our general argument predicts). We have also done the same
analysis at k = 4.

Something new happens at k = 5 since there is a modular form χ6
10 of

weight 12k = 60 whose leading term is of order p6
1p

6
2 in the expansion (2.16).

Its coefficient is associated with the invariant

(4.13) C(0)
6,6;6 =

∑
φ,ψ∈Hqp

6

G−1
φψ TrH6

(
V0(φ)V0(ψ)

)

that cannot be determined directly from the extremal ansatz. Thus for k ≥ 5
the extremal ansatz does not specify the genus g = 2 partition function
uniquely,1 and there is a whole vector space of genus g = 2 partition func-
tions that reproduce correctly all computable invariants.

1This corrects a statement in [4].
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5. Remarks about higher genus

Let us close this paper by coming back to the question that was raised
in the Introduction. Recall that according to an old idea of Friedan and
Shenker [7], the higher genus partition functions determine a conformal
field theory uniquely. Assuming that this idea is correct, then construct-
ing all higher genus vacuum amplitudes would be a way of defining, say, the
dual conformal field theory of some gravity theory on AdS3. The interesting
question would then be: what consistency conditions apart from modular
invariance do the higher genus vacuum amplitudes have to satisfy in order
to define a consistent conformal field theory?

Obviously, it is in practice quite hard to calculate these higher genus
amplitudes explicitly (see however [6]), but one could attempt to construct
the higher genus amplitudes by symmetry principles. For example, one could
specify the algebra of low-lying states of the conformal field theory, and
simply attempt to find modular invariant higher genus amplitudes that sat-
isfy all appropriate factorization conditions with respect to these low-lying
states. At genus g = 2, Theorem 4.1 shows that this will be possible provided
that one chooses A and R appropriately (where the required conditions are
rather weak). While we have not done any detailed analysis at higher genus
(see however Section 5.2), it seems plausible that a similar statement to
Theorem 4.1 could also hold at higher genus.

Suppose then that we have found such a family of higher genus ampli-
tudes, say for the extremal ansatz. Would this prove that the extremal
theories exist? As we have seen in Section 3, modular invariance at genus
g = 2 implies a large number of relations between different expansion coeffi-
cients which, in terms of the conformal field theory, translate into the state-
ment that certain quadratic expressions in the structure constants have to
be equal. These in turn are a consequence of the Jacobi identity of the
W-algebra, i.e., of the associativity of the OPE, see Section 4.1. One would
similarly expect that higher genus constraints will give rise to relations that,
from the point of view of the underlying conformal field theory, involve
higher powers of these structure constants (which again should be implied
by the associativity of the OPE). Consistency at arbitrary genus would thus
probably imply that all possible contractions of the Jacobi identities will
be satisfied. Would this be sufficient to reconstruct the Jacobi identities
themselves, i.e., to prove associativity of the OPEs?

The answer to this question is no — for a rather simple reason. To
explain this, let us briefly return to the example of Section 3.3.2. The higher
genus vacuum amplitudes give us access to fully contracted polynomials
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of the structure constants, such as H1, H2 and G in (3.41). However, it
is not guaranteed that we can find individual structure constants hijk and
gij
α (that must be N2 × N2 × N2 tensors and N2 × N2 × N3 tensors, respec-

tively), whose contractions reproduce the given values of H1, H2 and G.
(Here Nh denotes the number of states at conformal weight h, which can be
read off from the torus amplitude.) We shall demonstrate in the following
that this is a non-trivial consistency condition which does not seem to be
implied by the modular invariance of the higher genus amplitudes. Thus a
family of modular invariant higher genus vacuum amplitudes can only define
a consistent conformal field theory if this consistency condition is satisfied.
It is natural to speculate that this will be the only additional consistency
condition beyond modular invariance.

5.1. Obstructions at c = 24

The simplest example where the above consistency condition is non-trivial
appears for the self-dual theories at c = 24. As was shown in [8], at c = 24
consistent g = 1, 2, 3, 4 vacuum amplitudes (that have the correct modular
and factorization properties) can be found for any number of currents N1.
However, it is believed that only 71 consistent conformal field theories exist
at c = 24. In particular, no theories exist for 0 < N1 < 24 [32]. Unless N1 is
one of the special values for which a consistent theory exists, there must be
an obstruction towards reconstructing the theory from the vacuum ampli-
tudes. Obviously, it is conceivable that this obstruction will manifest itself
in that one cannot find vacuum amplitudes (with the correct modular and
factorisation properties) for g ≥ 5, but this seems unlikely to us. Instead
we believe that the obstruction appears in that one cannot reproduce the
coefficients of the modular forms in terms of contracted structure constants.
In fact, we can see this obstruction very explicitly in some simple examples,
as we shall now show.

In the following the states at h = 1 will play an important role. One
knows on general grounds (see, e.g., [33]) that the modes of these fields
satisfy the commutation relations

(5.1) [Ja
m, Jb

n] = mκabδm,−n + ifab
c Jc

m+n,

where κab is non-singular with inverse κab. Furthermore, fab
c is anti-

symmetric in a ↔ b.
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As is explained in [8] the number of currents N1 fixes the genus g = 2, 3, 4
amplitudes uniquely. In turn, one can read off from this that (at c = 24)

(5.2) TrH1

(
(κabJ

a
0 Jb

0)
l
)

= N1

(
N1

24
− 1
)l

, for l = 1, 2, 3.

We shall use this relation in the following to show that the theories with
N1 = 1, 2 (that do not arise among the 71 theories of [32]) are in fact incon-
sistent.

5.1.1. The theory with N1 = 1. The simplest case is the theory with
N1 = 1. It is immediately clear that this theory is inconsistent since at
N1 = 1 the Lie algebra (5.1) is necessarily abelian (since fab

c is anti-
symmetric in a ↔ b and must hence vanish). As a consequence, the trace in
(5.2) vanishes for l = 1, 2, 3, which disagrees with the right-hand side.

5.1.2. The theory with N1 = 2. The situation with N1 = 2 is more
interesting. Since κab is symmetric, we may choose a basis of H1 that diag-
onalizes κab, and set

(5.3) κ11 = ε1, κ22 = ε2, if12
1 = α, if12

2 = β.

Then, J1
0 and J2

0 in the adjoint representation correspond to the matrices

(5.4) J1
0 =

(
0 α
0 β

)
and J2

0 =
(

−α 0
−β 0

)

and we find

(5.5) κabJ
a
0 Jb

0 =
(

ε2α
2 ε1αβ

ε2αβ ε1β
2

)
.

The eigenvalues of this matrix are 0 and ε2α
2 + ε1β

2, so that (5.2) becomes

(5.6) TrH1

(
(κabJ

a
0 Jb

0)
l
)

= (ε2α
2 + ε1β

2)l = 2(−11/12)l for l = 1, 2, 3.

It is easy to see that this does not have any solution.
One can similarly analyse the situation with N1 = 3, but there the con-

straints from l = 1, 2, 3 (i.e., from genus g ≤ 4) are not sufficient to lead to
a contradiction. This is not surprising: at N1 = 3 there are four free param-
eters, namely the three eigenvalues of κ, as well as the one totally anti-
symmetric structure constant f123 = f12

c κ3c. On the other hand, (5.2) only
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gives rise to three equations, and a solution can be found. Indeed, one can
take the currents to define an affine su(2) algebra at level k with k = −16

7
since then

(5.7) κabJ
a
0 Jb

0 = −7
8

13×3 on H1.

This then solves (5.2). However, one would expect that this ansatz will not
be compatible with the vacuum amplitudes at g ≥ 5.

5.2. Polynomial constraints from modular invariance

The analysis of the previous section shows that not every family of modu-
lar invariant genus g amplitudes defines a consistent conformal field theory.
Indeed, the main additional condition seems to be that there is a solution for
the individual structure constants such that the contracted powers repro-
duce the expansion coefficients of the corresponding modular amplitudes.
Obviously, this condition only becomes powerful at sufficiently high genus
when the number of equations for the contracted structure constants exceeds
the number of (unknown) structure constants.

To be more specific, let Zg be a modular form of genus g and weight
12k, and consider a series expansion of Zg in 3g − 3 suitable parameters
t1, . . . , t3g−3

(5.8) Zg =
∑

h1,...,h3g−3

Ch1,...,h3g−3t
h1
1 · · · th3g−3

3g−3 .

More precisely, let us consider a sphere with 2g punctures and decompose
it into a set of pair of pants, i.e., into 2g − 2 spheres with three punctures
each. We then connect the punctures to obtain the g handles of the surface,
and take the ti to parametrize the 3g − 3 different tubes. For example, the
possible decompositions of a genus 2 surface are shown in figure 3. As we shall
see below, the number of pant decompositions grows very quickly with g.

If Zg is the genus g partition function of a conformal field theory, then
for every pant decomposition, each of the coefficients Ch1,...,h3g−3 equals a
contracted combination of structure constants of the underlying conformal
field theory. (Different pant decompositions of a Riemann surface corre-
spond to different ways of contracting the indices.) Alternatively, instead of
working with structure constants, we can also consider directly the three-
point functions of the conformal field theory. In this language the coefficients
Ch1,...,h3g−3 must then equal contracted products of three-point functions
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Figure 3: The two possible pants decompositions of a genus 2 surface. They
correspond to the expansions in the coordinates q1, q2, ε (left) and p1, p2, x

(right), and the associated invariants are Dh1,h2;l (left) and C(0)
h1,h2;l (right).

where the relevant fields have conformal weights h1, . . . , h3g−3. For the fol-
lowing it is convenient to define, for each fixed L, the set

(5.9) IL(g) := {(h1, . . . , h3g−3) : 0 ≤ h1, . . . , h3g−3 < L}.

Then the coefficients Ch1,...,h3g−3 associated to IL(g) are polynomials in the
three-point functions of fields of weight less than L only. We will call the
number of such three-point functions KL; it depends on the dimensions of
the L0-eigenspaces (that can be read off from the torus partition function
Z1), but not on g nor on any other details of the theory. It is clear that there
is a non-trivial consistency condition of the above type if

(5.10) D(g)|IL(g))| > KL,

where D(g) is the number of inequivalent pant decompositions of a genus
g surface. Obviously, the left-hand side grows to infinity as g → ∞, while
the right-hand side is independent of g. Thus, for sufficiently large g, there
will be many such consistency conditions. However, if the relevant spaces of
states are large (as is, for example, the case for the extremal theories) one
has to go to rather large values of g before one obtains non-trivial constraints
in this manner.

If we are given a family of higher genus partition functions, then this is
all we can say. However, in the context of the extremal ansatz, the natural
question is slightly different. Suppose, as for Theorem 4.1, that our putative
conformal field theory is of the form (4.1). Can we then construct a family of
higher genus amplitudes that not only reproduce the computable coefficients
(as in Theorem 4.1), but also allow for a solution of all expansion coefficients
in terms of individual structure constants?
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From this point of view, the unknown parameters are the free parameters
Pk(g) labelling a genus g modular form of weight 12k, as well as the three-
point functions involving three fields from R. The problem is now that the
set of coefficients Pk(g) also grows with g and, a priori, these free parameters
could allow one to adjust the vacuum amplitudes so that one can always solve
for the individual three-point functions (involving fields from R). However,
this is not the case. As is shown in Appendix D.3, for every g, Pk(g) does
not contain any element (h1, . . . , h3g−3) with

(5.11) h1, . . . , h3g−3 > L(g) ≡ k

5
(g + 4).

[This is the generalization to arbitrary genus of the inequality (2.29).] Let
us define, for given M > 0, the set

(5.12) IL(g),M (g) := {(h1, . . . , h3g−3) : L(g) < h1, . . . , h3g−3 < L(g) + M}.

We want to consider the subsystem of equations that require that the coef-
ficients labelled by IL(g),M (g) in all pant decompositions can be expressed
in terms of the three-point functions. Because of (5.11), these equations are
unaffected by our ambiguity in the definition of the vacuum amplitudes, i.e.,
they are independent of the parameters in Pk(g). Furthermore, for large g,
L(g) > B, and all the relevant three-point functions involve mostly fields
from R.

With these preparations we can now estimate the number of equations,
and the number of unknowns. To leading order in g, the number of equations
for each pant decomposition goes as

(5.13)
∣∣IL(g),M (g)

∣∣ ∼ M3g−3.

A rough estimate of the number of different pant decomposition is2

(5.14)

D(g) ∼ (6g − 6)!
23g−3(3g − 3)! (3!)2g−2(2g − 2)!

g→∞∼ (2π(g − 1))−1/2
(3g − 3

2e

)g−1
,

where the right-hand side is a lower bound on the number of double cosets in
the space (S3g−3

2 × S3g−3)\S6g−6/(S2g−2
3 × S2g−2), with Sn the group of per-

mutations of n elements. In fact, each coset corresponds to a decomposition

2See [34–36] for related asymptotic formulae in graph enumeration problems.
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of either a connected or a disconnected surface, but it is easy to see that
the contribution of the disconnected surfaces is of order D(g)/g and hence
can be ignored in our leading order approximation. Thus, the number of
equations in the subsystem relative to IL(g),M (g) is

(5.15) # equations ∼ g−1/2
(

M3(3g − 3)
2e

)g−1

.

The number of unknowns is roughly speaking the number of structure con-
stants up to weight L(g) + M , so that3

(5.16) # unknowns ∼
( ∑

h≤L(g)+M

dim Hh

)3
=
( ∑

h≤L(g)+M

nh

)3
.

Here, nh are the coefficients in the q-expansion of the modular invariant
torus partition function

(5.17)
Z1(q)
Δk

=
∞∑

h=0

nhqh−k, q = e2πiτ ,

where Δ = q + O(q2) has modular weight 12. For large h the Cardy formula

(5.18) nl+k ∼ k1/4
√

2
l−3/4 e4π

√
kl, l � 0

applies (see Appendix D for details). Note that, at leading order in h → ∞,
nh only depends on the modular weight 12k of Z1 and on the normalization
n0 = 1. Thus, taking just the leading contribution h = L(g) + M in the sum
(5.16), the requirement that the system of equations is over-determined is

(5.19) g−1/2
(M3(3g − 3)

2e

)g−1
�
(
L(g) + M − k

)−9/4e12π
√

k(L(g)+M−k),

up to some factor independent of g and M . Now, if we take M > 0 fixed and
g large enough so that L(g) ∼ kg/5 � M − k, Equation (5.19) becomes

(5.20) g−1/2
(M3(3g − 3)

2e

)g−1
� g−9/4(e 12πk√

5
)√g

,

3Actually, we are overestimating the number of unknowns, because we are also
including the structure constants of A, but this does not affect the following
reasoning.
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which is satisfied for sufficiently large g. Thus there will be many obstruc-
tions to the construction of a family of modular invariant genus g partition
functions if we demand that their coefficients can be expressed in terms of
contracted structure constants.

To see how this estimate works in practice, let us consider the example of
the extremal ansatz at k = 2. The estimate (5.20) indicates that, for M < 5,
the first constraints on the structure constants should arise for 20 � g � 40.
A more precise computation, using (5.14) and (5.16) with the correct values
for nh, shows that consistency of the partition function at genus g = 23 puts
non-trivial constraints on the structure constants up to conformal weight
h = L(g) + M = 17. In practice, however, amplitudes of such a high genus
are unfortunately not accessible.

6. Conclusions

In this paper we have analysed the structure of the genus g = 2 vacuum
amplitudes of chiral self-dual conformal field theories. In particular, we have
shown that the existence of a modular invariant g = 2 partition function
implies infinitely many relations among the structure constants of the the-
ory. All of these relations are a consequence of the associativity of the OPE,
as well as the modular covariance of the torus one-point amplitudes (Theo-
rem 3.1). This was to be expected from the point of view of the Moore and
Seiberg analysis [1].

We have applied these techniques to the extremal ansatz, and we have
shown that a (seemingly) consistent genus g = 2 vacuum amplitude exists
for the extremal theories at c = 24k for all k (Theorem 4.1). However, we
have also shown that this does not check any consistency conditions of the
extremal ansatz beyond what can already be tested by analysing the modular
covariance properties of the ansatz at genus one.

Finally, we have shown that a family of modular invariant genus g par-
tition functions can only define a consistent conformal field theory if one
can actually reconstruct the individual structure constants whose contracted
expressions reproduce the expansion coefficients of the vacuum amplitudes.
As we have demonstrated with two examples (see Section 5.1), this is a non-
trivial consistency condition that does not seem to be implied by modular
invariance. The rough counting argument of Section 5.2 suggests that it will
also lead to a stringent constraint for the extremal ansatz. However, as is
also clear from that analysis, this constraint will only become interesting
at rather large genera — and hence is unfortunately, technically fairly out
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of reach. Thus to prove or disprove the existence of the extremal ansatz
by studying higher genus partition functions seems to be as difficult as the
brute force approach of analysing the Jacobi identities of the fields at large
conformal weight.
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Appendix A. Riemann surfaces, Schottky groups and
modular forms

A.1. Riemann period matrices and modular forms

In order to analyse the modular properties of partition functions, it is useful
to define the period matrix of a Riemann surface. Let Σ be a compact
Riemann surface of genus g > 0. Let us define a basis of the first homology
group H1(Σ, Z) {α1, . . . , αg, β1, . . . , βg}, with symplectic intersection matrix

(A.1) #(αi, αj) = 0 = #(βi, βj), #(αi, βj) = δij , i, j = 1, . . . , g.

This condition determines the basis up to a symplectic transformation

(A.2)

(
α
β

)
	−→

(
α̃

β̃

)
:=

(
D C
B A

)(
α
β

)
,

(
A B
C D

)
∈ Sp(2g, Z),

where α and β are g-dimensional vectors, and A, B, C, D are g × g matri-
ces. The choice of such a basis uniquely determines a basis {ω1, . . . , ωg} of
holomorphic 1-differentials normalized with respect to the α-cycles

(A.3)
∮

αi

ωj = δij , i, j = 1, . . . , g.

The Riemann period matrix of Σ is then defined by

(A.4) Ωij =
∮

βi

ωj ,
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and it has the properties

(A.5) Ωij = Ωji, Im Ω > 0.

Obviously, the basis {ω1, . . . , ωg}, and the Riemann period matrix depends
on the choice of the symplectic basis of H1(Σ, Z); under the action (A.2) of
the symplectic group, the holomorphic 1-differentials and the period matrix
transform as

(ω1, . . . , ωg) 	−→ (ω̃1, . . . , ω̃g) = (ω1, . . . , ωg)(CΩ + D)−1,(A.6a)

Ω 	−→ Ω̃ = (AΩ + B)(CΩ + D)−1.(A.6b)

Let us define the Siegel upper half-space as the space of g × g symmetric
complex matrices with positive-definite imaginary part,

(A.7) Hg = {Z ∈ Mg(C) | Zij = Zji, Im Z > 0}.

The locus Jg ⊆ Hg of all the period matrices of genus g Riemann surfaces is
dense in Hg for g ≤ 3, whereas for g > 3 it is a (3g − 3)-dimensional subspace
of Hg. The quotient Jg/Sp(2g, Z) is isomorphic to Mg; in particular, the
Riemann period matrices of two different Riemann surfaces lie in different
Sp(2g, Z)-orbits in Jg.

A.2. Modular forms of degree 1 and 2

A (Siegel) modular form f of degree g and weight k is a holomorphic function
on Hg such that

f
(
(AZ + B)(CZ + D)−1) = det(CZ + D)kf(Z),

M =

(
A B
C D

)
∈ Sp(2g, Z).(A.8)

For g = 1 we also require that f is holomorphic at the cusps; a cusp is a fix-
point p ∈ R ∪ {∞} under the action of some M ∈ Sp(2, Z) ∼= SL(2, Z) with
Tr(M) = ±2 (a parabolic element). An analogous condition is automatically
satisfied for g > 1.

The space of modular forms of degree 1 is generated by the Eisenstein
series G4 and G6 defined by

(A.9) Gk(q) = 1 +
2

ζ(1 − k)

∞∑
n=1

σk−1(n)qn,
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where ζ is the Riemann ζ-function, and

(A.10) σk(n) =
∑
d|n

dk.

All Siegel modular forms of degree 2 can be written in terms of Eisenstein
series

(A.11) Ek := Nk

∑
C,D

det(CΩ + D)−k,

where Nk is a normalization constant, and C and D are 2 × 2 integral matri-
ces such that

(
A B
C D

)
∈ Sp(4, Z). The sum is over all the inequivalent pairs

under left multiplication by elements of GL(2, Z) [37, 38]. The Eisenstein
series admits a Fourier expansion ([37, pp. 17–18])

(A.12) Ek =
∞∑

n,m=0

∑
r∈Z

r2≤4nm

ak(n, m, r) qn
11 qm

22 qr
12,

where

(A.13) qij := e2πiΩij ,

and

(A.14) ak(n, m, r) =
2

ζ(3 − 2k)ζ(1 − k)

∑
d|(n,m,r)

dk−1H
(
k − 1,

4nm − r2

d2

)
.

Here, H is Cohen’s function (see [39, pp. 21–22] for a definition) and the
normalization is chosen so that ak(0, 0, 0) = 1.

The ring of (even) Siegel modular forms of degree two is freely gen-
erated by

ψ4 = E4, χ10 =
43867

212 · 35 · 52 · 7 · 53
(E10 − E4E6),

ψ6 = E6, χ12 =
131 · 593

213 · 37 · 53 · 72 · 337
(212E3

4 + 250E2
6 − 691E12).(A.15)

A.3. Schottky parameters

The Schottky uniformization describes a general non-singular Riemann sur-
face as the quotient of the Riemann sphere Ĉ = C ∪ {∞} by a suitable sub-
group of PSL(2, C). Geometrically, a surface Σ of genus g > 0 is obtained
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by cutting 2g disks from Ĉ, bounded by non-intersecting circles C1, . . . , Cg,
C−1, . . . , C−g, and then by identifying each circle Ci with the circle C−i via
a suitable fractional linear transformation γi ∈ PSL(2, C) such that

(A.16) γiC−i = Ci,

for all i = 1, . . . , g (see Figure A.1). The discrete subgroup Γ with distinct
free generators γ1, . . . , γg is called a marked Schottky group. Each γ ∈ Γ
is characterized by two distinct points aγ , rγ ∈ Ĉ (called the attractive and
repelling fixed point, respectively) and a complex number pγ ∈ C (the mul-
tiplier), with 0 < |pγ | < 1, such that

(A.17)
γ(z) − aγ

γ(z) − rγ
= pγ

z − aγ

z − rγ
for all z ∈ Ĉ.

The Riemann surface Σ can be obtained as the quotient of Ĉ by Γ, and every
non-singular closed surface can be obtained in this way. By a PSL(2, C)
conjugation, one can fix

(A.18) a1 = 0, r1 = ∞, a2 = 1,

Figure A.1: A fundamental domain for a Schottky group. Each generator
γi, i = 1, . . . , g, with fixed points ai, ri, maps the circle C−i to the circle Ci.
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where we set

(A.19) ai := aγi
, ri := rγi

, pi := pγi
.

When (A.18) holds, the marked Schottky group is called normalized. The
space Sg of normalized marked Schottky groups of genus g is parametrized
by 3g − 3 coordinates

(A.20) {p1, . . . , pg, a3, . . . , ag, r2, . . . , rg},

so that Sg can be identified with a domain in C
g × Ĉ

2g−3. More precisely,
the condition that there are 2g non-intersecting circles C±i, i = 1, . . . , g,
satisfying (A.16) implies

|pi| < min
{∣∣∣(xj − xi)(xk − x−i)

(xk − xi)(xj − x−i)

∣∣∣ : j, k = ±1, . . . ,±g, j, k �= ±i
}

,(A.21)

i = 1, . . . , g,

where xi := ai, x−i := ri, i = 1, . . . , g. The space Sg is a finite covering of
the moduli space Mg of Riemann surfaces. Given a Riemann surface Σ
uniformized by the Schottky group Γ, we can take the homology classes of
C1, . . . , Cg as the generators α1, . . . , αg in the symplectic basis of H1(Σ, Z)
(see Appendix A.1). Thus, the choice of the group Γ uniformizing Σ also
gives a canonical choice for the basis ω1, . . . , ωg of holomorphic 1-differentials
satisfying (A.3). The Riemann period matrix Ω depends also on the choice
of the β-cycles. However, the multiplicative periods exp(2πiΩij) are well-
defined functions of the parameters (A.20). More precisely, one can prove
that

qii = e2πiΩii = pi

∏
γ∈〈γi〉\Γ/〈γi〉

(ai − γ(ai))(ri − γ(ri))
(ai − γ(ri))(ri − γ(ai))

(A.22)

qij = e2πiΩij =
∏

γ∈〈γi〉\Γ/〈γj〉

(ai − γ(aj))(ri − γ(rj))
(ai − γ(rj))(ri − γ(aj))

, i �= j,(A.23)

where 〈γi〉 is the group generated by γi, i = 1, . . . , g. Thus, for each element
in 〈γi〉\Γ/〈γj〉, we can choose a representative with reduced word γk1 · · · γkn

,
for k1 �= i and kn �= j.
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In the case of g = 2, the Schottky space S2 is parametrized by

(A.24) p1, p2, r2 ≡ x,

and the condition (A.21) gives the identification

S2 ≡
{

(p1, p2, x) ∈ C × C × Ĉ : x �= 0, 1,∞,

0 < |pi| < min
(
|x|, 1

|x|

)
, i = 1, 2

}
.(A.25)

The power series expansions of the multiplicative periods are

q11 = e2πiΩ11 = p1

∞∑
n,m=0

n+m∑
r=−n−m

c(n, m, |r|) pn
1pm

2 xr,(A.26)

q22 = e2πiΩ22 = p2

∞∑
n,m=0

n+m∑
r=−n−m

c(m, n, |r|) pn
1pm

2 xr,(A.27)

q12 = e2πiΩ12 = x + x

∞∑
n,m=1

n+m∑
r=−n−m

d(n, m, r) pn
1pm

2 xr.(A.28)

The coefficients c(m, n, r) for n ≤ 6 and m ≤ 7 are listed in tables 1 and 2,
while d(m, n, r) = d(n, m, r) for m, n ≤ 7 are listed in tables 3 and 4.

Table 1: Coefficients c(n, m, |r|) in the expansions (A.26) of q11 and (A.27)
of q22 up to p7

1p
7
2.

c(m, n, |r|) m, n

|r| 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7
0 1 −4 6 0 −8 0 10 0
1 0 2 −6 4 4 0 −10 0
2 0 0 3 −8 5 0 5 0
3 0 0 0 4 −10 6 0 0
4 0 0 0 0 5 −12 7 0
5 0 0 0 0 0 6 −14 8
6 0 0 0 0 0 0 7 −16
7 0 0 0 0 0 0 0 8

Continued
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Table 1: Continued

c(m, n, |r|) m, n

|r| 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7
0 0 0 8 −32 56 −96 224 −384
1 0 0 −2 20 −58 100 −186 332
2 0 0 −4 8 28 −96 132 −216
3 0 0 2 −20 38 20 −102 136
4 0 0 0 8 −56 104 −24 −96
5 0 0 0 0 20 −120 218 −104
6 0 0 0 0 0 40 −220 392
7 0 0 0 0 0 0 70 −364
8 0 0 0 0 0 0 0 112

c(m, n, |r|) m, n

|r| 2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7
0 0 0 64 −280 436 −936 3186 −5712
1 0 0 −50 240 −422 864 −2696 4868
2 0 0 28 −168 385 −704 1710 −3072
3 0 0 −14 122 −392 686 −1040 1568
4 0 0 4 −76 410 −996 1304 −1120
5 0 0 0 22 −274 1194 −2468 2608
6 0 0 0 0 75 −776 3002 −5648
7 0 0 0 0 0 200 −1860 6672
8 0 0 0 0 0 0 455 −3944
9 0 0 0 0 0 0 0 924

c(m, n, |r|) m, n

|r| 3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7
0 0 0 80 −464 2480 −8832 24,848 −66,544
1 0 0 −44 344 −1996 7828 −22,954 60,440
2 0 0 −16 −76 860 −5048 17,988 −47,496
3 0 0 38 −172 354 1220 −10,670 34,724
4 0 0 −24 264 −1256 2824 576 −19,848
5 0 0 6 −172 1442 −5876 11,846 −4988
6 0 0 0 44 −844 5944 −21,188 39,616
7 0 0 0 0 200 −3172 19,762 −64,060
8 0 0 0 0 0 696 −9800 55,904
9 0 0 0 0 0 0 2016 −26,116
10 0 0 0 0 0 0 0 5096
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Table 4: Coefficients d(n, m, r) in the expansions (A.28) of q12 up to p7
1p

7
2.

d(m, n, r) m, n

r 4,7 5,6 5,7 6,6 6,7 7,7
−14 0 0 0 0 0 −279,508
−13 0 0 0 0 −75,924 1,927,676
−12 0 0 −17,630 −24,228 481,740 −5,998,022
−11 −3330 −6694 100,956 142,216 −1,364,286 11,228,868
−10 16,836 35,728 −253,434 −368,166 2,304,584 −14,286,298
−9 −36,242 −82,456 373,560 563,140 −2,636,708 13,345,304
−8 43,556 110,530 −375,412 −581,504 2,209,596 −10,053,096
−7 −31,916 −102,420 303,168 424,564 −1,441,188 7,731,048
−6 13,316 77,064 −265,734 −156,462 840,784 −8,536,940
−5 −5756 −46,470 334,836 −162,908 −670,488 11,904,316
−4 25,424 16,218 −467,020 433,181 841,880 −14,909,588
−3 −53,870 3862 516,756 −506,252 −1,008,406 14,283,736
−2 34,092 −27,582 −410,996 240,120 785,932 −8,781,634
−1 32,538 48,822 184,292 293,204 −164,092 221,276
0 −62,216 −14,228 127,836 −707,758 −289,064 7,537,956
1 21,398 −63,242 −399,996 725,940 122,532 −10,976,964
2 30,028 94,466 436,396 −500,264 368,740 9,267,180
3 −45,058 −65,554 −247,420 288,796 −681,688 −4,644,648
4 35,136 41,606 31,570 −175,530 734,824 164,070
5 −18,408 −31,580 81,704 137,264 −692,102 2,588,888
6 −10,816 −25,534 −34,490 −23,790 468,580 −3,291,630
7 56,288 143,206 −232,388 −378,460 511,608 850,620
8 −89,580 −225,998 614,472 953,710 −2,611,364 6,910,004
9 77,454 187,450 −784,572 −1,191,972 4,740,264 −18,914,964
10 −35,776 −82,270 574,978 854,578 −4,995,180 27,421,428
11 6902 15,076 −230,896 −335,532 3,183,372 −24,917,120
12 0 0 39,464 56,113 −1,141,052 14,172,292
13 0 0 0 0 177,106 −4,628,036
14 0 0 0 0 0 663,786

Appendix B. Partition functions

The genus g partition function Zg of a chiral conformal field theory is defined,
in physics, as the vacuum expectation value of the theory on the Riemann
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surface of genus g. Due to the conformal anomaly, the partition function,
however, depends not only on the complex structure on the surface, but
also on the specific choice of coordinates on it. As a consequence, Zg cannot
be defined as a globally holomorphic function on Mg, but rather only as a
holomorphic section on a suitable line bundle on Mg. (Alternatively, we may
define Zg as a holomorphic function on some covering space of Mg, such as
the space of Riemann period matrices Jg ⊆ Hg or the Schottky space Sg.)
More precisely, the partition function of a chiral conformal field theory with
central charge c can be represented as a holomorphic section4 of L⊗c/2 [7,40],
where L is the Hodge bundle.

The Hodge bundle L can be described as follows. Consider the vector
bundle Λg of rank g on Mg, whose fibre at the point corresponding to
the Riemann surface Σ is the g-dimensional vector space of holomorphic
1-differentials on Σ. As shown in Appendix A.1, the choice of a symplectic
basis for the first homology group H1(Σ, Z) determines a basis {ω1, . . . , ωg}
of holomorphic 1-differentials on Σ, and hence a basis of local sections on
Λg, which we also denote by ω1, . . . , ωg. The line bundle L is then defined as
the gth exterior product of Λg, and given a choice of a basis for H1(Σ, Z),
ω1 ∧ . . . ∧ ωg defines a local holomorphic section in L. Under a symplectic
transformation (A.2) the corresponding local section of L transforms as

ω1 ∧ . . . ∧ ωg 	−→ det(CΩ + D)−1(ω1 ∧ . . . ∧ ωg),

where
(

A B
C D

)
∈ Sp(2g, Z).(B.1)

The partition function Zg of a meromorphic CFT is a global holomorphic
section of Lc/2, so that it can be written locally as

Zg = Wg(Ω) (ω1 ∧ . . . ∧ ωg)c/2 ,

where Wg is a holomorphic function on the space Jg ⊂ Hg of period matrices
of Riemann surfaces. Since the section cannot depend on the choice of the

4We observe that Lc/2 is a well-defined line bundle on Mg only if c is multiple
of 4, which is the case for meromorphic conformal field theories. In the other cases,
it can only be defined as a projective line bundle [7, 40].
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local trivialization, Wg must transform as a modular form of weight c/2

(B.2) Wg

(
(AΩ + B)(CΩ + D)−1

)
= det(CΩ + D)c/2 Wg(Ω),

under the action of
(

A B
C D

)
∈ Sp(2g, Z).

Property (B.2) implies, in particular, that W only depends on the mul-
tiplicative periods e2πiΩij and one can compose W with (A.22) and (A.23)
to define a function Ŵ on the Schottky space. The Schottky uniformization
describes each Riemann surface as a quotient of the Riemann sphere Ĉ by
a discrete group, so that the coordinates on Ĉ canonically define a system
of local complex coordinates on the Riemann surface. It is tempting to con-
jecture that Ŵ is exactly the partition function Ẑg with respect to such
coordinates. This is not true, and the more general relation holds

(B.3) Ẑg =
Ŵg

F
c/2
g

,

for a certain holomorphic function Fg on Sg. It is clear that the function
Fg does not depend on the theory in question, so that it may be computed
for some particular conformal field theory. For example, by considering the
conformal field theories associated to even unimodular lattices, it is natural
to conjecture that Fg is the function defined in [41], given by

(B.4) Fg =
∞∏

m=1

∏
γ 
=1

(1 − pm
γ ),

where pγ is the multiplier of γ and the product runs over all the primitive
classes in Γ, i.e., the PSL(2, C)-conjugacy classes such that γ is not conju-
gated to any power γ̃n, n > 1. This infinite product converges on a certain
open subset of Sg, and Fg can be analytically continued to the whole Sg as
a holomorphic function. Similarly to the case of multiplicative periods, the
function F2 can be written as a series in p1, p2. For our purposes, we need
the power F−12

2 , given by

(B.5) F−12
2 =

∞∑
m,n=0

m+n∑
r=−m−n

b(m, n, |r|) pm
1 pn

2xr,

where the coefficients b(m, n, r) = b(n, m, r) for m, n ≤ 7 are listed in
tables 5 and 6.
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Table 6: Coefficients b(n, m, |r|) of the function (B.5) up to p7
1p

7
2.

b(m, n, |r|) m, n

|r| 6,7 7,7
0 172,479,560,352 3,128,606,566,176
1 −310,507,917,168 −2,134,241,509,440
2 580,363,077,120 −86,143,852,200
3 −687,760,594,368 1,889,752,759,536
4 507,099,802,584 −2,172,090,239,616
5 −235,110,351,024 1,435,905,509,328
6 90,844,794,528 −861,256,923,216
7 −63,838,287,456 741,491,756,592
8 53,462,494,704 −656,667,020,112
9 −30,023,682,864 420,804,461,904
10 10,521,776,736 −181,869,137,376
11 −2,257,032,864 52,175,288,688
12 273,215,976 −9,563,257,536
13 −14,342,640 1,014,591,120
14 0 −47,275,560

Appendix C. Partition function coefficients ad 2g-point
functions on the sphere

A holomorphic function on the Schottky space Sg can be expanded in a
power series in the multipliers p1, . . . , pg

(C.1) Ẑg =
∑

h1,...,hg

ph1
1 · · · phg

g Ch1,...,hg
(a3, . . . , ag, r2, . . . , rg),

where we set a1 = 0, r1 = ∞, a2 = 1. If Ẑg is the genus g partition function
of a consistent conformal field theory, the functions Ch1,...,hg

have a natural
interpretation as 2g-point functions on the sphere. In this section, we will
give a heuristic justification of this relationship, following Segal’s approach
to conformal field theories [40].

In Segal’s approach we can define amplitudes for any Riemann surface
with parametrized boundary circles Ci. The degrees of freedom of each
boundary circle are labelled by the vector space H of states; thus any
such amplitude also depends on the states φi ∈ H that are associated to
the boundary circles Ci. (From a string theory perspective, the state φi

describes the external string state that is inserted at Ci.) Let us denote these
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amplitudes by

(C.2)
〈∏

i

φi[Ci]
〉

D
,

where D denotes a Riemann surface with boundary ∂D = ∪iCi.
In the following we shall usually think of D as a subset of the complex

plane. We shall furthermore characterize the parametrized boundary circle
Ci by the Möbius transformation γi that maps the standard circle

(C.3) C := {z ∈ C : |z| = 1}

to Ci, i.e., Ci = γi(C). Then we can identify the amplitude (C.2) with

(C.4)
〈∏

i

φi[Ci]
〉

D
=
〈∏

i

V (U(γi)φi, γi(0))
〉
,

where the amplitude on the right-hand side is the standard amplitude in
conformal field theory, and

(C.5) U(γ) = γ′(0)L0 eL1
γ′′(0)
2γ′(0) .

The advantage of Segal’s approach is that it allows one to glue Riemann
surfaces together along boundary circles. Suppose D(1) and D(2) are two
Riemann surfaces with boundary circles C

(1)
i and C

(2)
j , respectively. By the

usual plumbing fixture construction we can then define a Riemann surface D
by identifying a parametrized boundary circle of D(1), say C

(1)
1 = γ(1)C, with

a parametrized boundary circle of D(2), say C
(2)
1 = γ(2)C. This procedure is

well-defined provided that

(C.6) γ−1
(1)γ(2) : C → C̄

reverses the orientation of the standard circle. Here C̄ denotes the standard
circle with the opposite orientation, so that C̄ = γ̂(C) with

(C.7) γ̂(z) =
1
z
.

If this is the case, then we can identify the circles C
(1)
1 and C̄

(2)
1 = γ(2)γ̂C

via

(C.8) γ(1)γ̂γ−1
(2) : C̄

(2)
1 → C

(1)
1 ,
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and the maps γ(1)γ̂ and γ(2) define local analytic coordinates on a neigh-
bourhood of C

(1)
1 ≡ C̄

(2)
1 in D. The amplitude on the D is then simply

〈∏
i≥2

φi[C
(1)
i ]
∏
j≥2

φj [C
(2)
j ]
〉

D

=
∑

ψ1,ψ2

G−1
ψ1,ψ2

〈
ψ1[C

(1)
1 ]
∏
i≥2

φi[C
(1)
i ]
〉

D1

〈
ψ2[C

(2)
1 ]
∏
j≥2

φj [C
(2)
j ]
〉

D2

,(C.9)

where

(C.10) Gφψ = lim
z→∞

〈V (z2L0e−zL1φ, z)V (ψ, 0)〉

is the metric on the space of states (with G−1
φψ the inverse metric).

To illustrate this general construction, consider the annulus

(C.11) A := {z ∈ C : |q| < |z| < 1}

for some q ∈ C, 0 < |q| < 1. The boundary components are C̄ = γ̂(C) and
γq(C), where γq(z) = qz. The amplitudes on A are defined as

〈
φ[γ̂C] ψ[γqC]

〉
A = lim

z→∞

〈
V (z2L0e−zL1φ, z)V (qL0ψ, 0)

〉
.(C.12)

Using the prescription (C.9) to glue the boundary circles of the annulus to
form the torus with modular parameter q then leads to

∑
φ,ψ

G−1
φ,ψ

〈
φ[γqC]φ[γ̂C]

〉
A

=
∑
φ,ψ

G−1
φ,ψ lim

z→∞

〈
V
(
z2L0e−zL1φ, z

)
V
(
qL0ψ, 0

)〉
= TrH(qL0),(C.13)

which is indeed the expected result.
Let us now consider the case of a Riemann surface of genus g, uniformized

by a Schottky group Γ with generators γ1, . . . , γg, and let pi, ai and ri be the
multiplier, and the attractive and repelling fixed points of γi, respectively.
Let us define the Möbius transformations

(C.14) γai,ri
(z) =

riz + ai

z + 1
,

satisfying γai,ri
(0) = ai and γai,ri

(∞) = ri, so that the generators of Γ can
be written as

(C.15) γi = γai,ri
γpi

γ−1
ai,ri

, i = 1, . . . , g,
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where γpi
is defined as before by γp(z) = pz. A fundamental domain for

Γ is given by

(C.16) D := Ĉ \
g⋃

i=1

(Di ∪ D−i),

where

Di =
{

z ∈ C :
|z − ai|
|z − ri|

< |Ri|
}

= γairi
γRi

(D),(C.17)

D−i =
{

z ∈ C :
|z − ri|
|z − ai|

< |R−i|
}

= γairi
γ̂γR−i

(D),(C.18)

and D is the unit disc,

(C.19) D = {z ∈ C : |z| < 1}.

Here Ri, R−i ∈ C are chosen such that

(C.20) R−iRi = pi,

and all disks Di, D−i, i = 1, . . . , g are disjoint. (Such Ri, R−i exist only if
Equation (A.21) is satisfied). The boundary ∂D =

⋃
i Ci ∪ C̄−i has

components

(C.21) Ci = γai,ri
γRi

C, C̄−i = γai,ri
γ̂γR−i

C.

We note that

(C.22) C−i ≡ ¯̄C−i = γai,ri
γ̂γR−i

γ̂ C = γai,ri
γ−1

R−i
C,

since γ̂γR−i
γ̂ = γ1/R−i

= γ−1
R−i

. The Riemann surface can be obtained by glu-
ing each Ci ≡ C−i according to the general procedure described above. In
this case, because of (C.15) and (C.20), the identification map (C.8) is sim-
ply γi : C−i → Ci, in agreement with (A.16). Using the gluing prescription
(C.9), the partition function Ẑg is then

Ẑg =
∑

φiψi∈H

∏
i

G−1
φiψi

〈∏
i

φi[Ci]ψi[C̄−i]
〉

D

(C.23)

=
∑

φiψi∈H

∏
i

G−1
φiψi

〈∏
i

V
(
U(γai,ri

)RL0
i φi, ai

)
V
(
U(γai,ri

γ̂)RL0
−iψi, ri

)〉
.
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If we choose φi, ψi to be eigenvectors of L0 and use (C.20), we finally obtain
(C.1), with

(C.24) Ch1,...,hg
=

∑
φi,ψi∈Hhi

g∏
i=1

G−1
φiψi

〈 g∏
i=1

V in(φi, ai) V out(ψi, ri)
〉
,

where

V in(φ, ai) = V (U(γai,ri
)φ, ai) = V ((ri − ai)L0e−L1φ, ai),(C.25)

V out(ψ, ri) = V (U(γai,ri
γ̂)ψ, ri) = V ((ri − ai)L0eL1ψ, ri).(C.26)

Note that Ẑg is independent of the specific choice of Ri, R−i satisfying
(C.20). Equivalently, Ch1,...,hg

is not affected by any replacement γai,ri
→

γai,ri
γt with t ∈ C

∗, in the definition of V in and V out. When all states in
Hh1 , . . . ,Hhg

are quasiprimaries, (C.24) simplifies to

(C.27) Ch1,...,hg
=

g∏
i=1

(ri − ai)2hi

∑
φi,ψi∈Hhi

g∏
i=1

G−1
φiψi

〈 g∏
i=1

V (φi, ri)V (ψi, ai)
〉
.

At genus g = 2, Equation (C.24) can be written as

Ch1,h2(x) =
∑

φi,ψi∈Hhi

G−1
φ1ψ1

G−1
φ2ψ2

〈
V out(ψ1,∞) V out(ψ2, x) V in(φ2, 1) V in(φ1, 0)

〉
,(C.28)

where

V out(ψ1,∞) = V (U(γ̂)ψ1, γ̂(0)), V in(φ1, 0) = V (φ1, 0),(C.29)

V out(ψ2, x) = V (U(γ1,xγ̂)ψ2, x), V in(φ2, 1) = V (U(γ1,x)φ2, 1).(C.30)

As mentioned before, we can equivalently replace γ1,x by any γ1,xγt for
t ∈ C

∗. In particular, if we replace γ1,x by the involution

(C.31) γ̃1,x(z) =
z − 1

z/x − 1
= γ1,xγ−1/x,



352 Matthias R. Gaberdiel, Christoph A. Keller and Roberto Volpato

the symmetries of Ch1,h2(x) are immediate. Indeed, using the invariance of
the four-point amplitude under the Möbius transformation γ̃1,x, we have

Ch1,h2(x) =
∑

φi,ψi∈Hhi

G−1
φ1ψ1

G−1
φ2ψ2

〈
V (U(γ̃1,xγ̂)ψ1, x)V (U(γ̂)ψ2,∞)V (φ2, 0)V (U(γ̃1,x)φ1, 1)

〉

=
∑

φi,ψi∈Hhi

G−1
φ1ψ1

G−1
φ2ψ2

〈
V out(ψ1, x) V out(ψ2,∞) V in(φ2, 0) V in(φ1, 1)

〉

= Ch2,h1(x).(C.32)

Similarly, applying the Möbius transformation γ̂ and noting that
γ̂γ̃1,xγ̂ = γ̃1/x,1, we obtain

Ch1,h2(x) =
∑

φi,ψi∈Hhi

G−1
φ1ψ1

G−1
φ2ψ2

〈
V (ψ1, 0)V (U(γ̃1/x,1)ψ2, 1/x)V (U(γ̃1/x,1γ̂)φ2, 1)V (U(γ̂)φ1,∞)

〉

=
∑

φi,ψi∈Hhi

G−1
φ1ψ1

G−1
φ2ψ2

〈
V in(ψ1, 0) V in(ψ2, 1/x) V out(φ2, 1) V out(φ1,∞)

〉

= Ch1,h2(1/x).(C.33)

The same argument also applies to the quasiprimary functions, defined
in (3.2).

Appendix D. Technicalities

D.1. The relation between D and C

In this appendix we will prove, using the associativity of the OPE, that one
can always express C(∗)

h1,h2;l in terms of Dh′
1,h

′
2;l′ with h′

1 ≤ h1, h′
2 ≤ h2 and

l′ ≤ l and vice versa. In fact, we will prove that the linear spans of these
coefficients are related as

(D.1)
〈
C(∗)

h1,h′
2;l

〉
l=0,...,L
h′

2≤h2

=
〈
Dh1,h′

2;l
〉
l=0,...,L
h′

2≤h2

.
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To do this it is useful to introduce yet another set of invariants C(1)
h1,h2;l as

(D.2) Ch1,h2(x) =
∞∑
l=0

(x − 1)lC(1)
h1,h2;l.

Using the same arguments as in Section 3.1.1 it follows that these invariants
can be interpreted as

(D.3) C(1)
h1,h2;l :=

∑
φ2,ψ2∈Hqp

h2

G−1
φ2ψ2

TrHh1
(V0(Vh2−l(φ2)ψ2)).

In order to apply these results also to the case of Section 4, we will not
assume that H is a consistent self-dual conformal field theory, but just the
representation of a chiral algebra A, so that (4.1) holds for some B > 0 (that
is, all the fields up to weight B are in the vacuum representation H(0) of
a consistent chiral algebra). Notice that (D.3) still makes sense for h2 < B,
because Vh2−l(φ2)ψ2 ∈ H(0), so we will restrict ourselves to this case.

Using a similar argument as in (3.7) one shows that

(D.4) 〈C(∗)
h1,h2;l〉l=0,...,L = 〈C(1)

h1,h2;2l〉l=0,...,L.

Note the appearance of 2l for the C(1)
h1,h2;l, which comes from the fact that

the leading power in the term C(∗)
h1,h2;l is (x − 1)2l. We now want to show that

the invariants C(1)
h1,h2;2l can be written in terms of the invariants Dh1,h2;l. Let

φ2, ψ2 ∈ H(0)
h2

be quasiprimary states and consider

V0
(
Vh2−2l(φ2)ψ2

)
=

∑
φ,ψ∈H2l∩H(0)

G−1
φψ V0(φ)

〈
ψ|Vh2−2l(φ2)ψ2

〉
,(D.5)

where 〈φ|ψ〉 ≡ Gφψ. The sum on the right-hand side can be taken over
states of the form ψ = Ln

−1ψ
′ and φ = Lm

−1φ
′, with m, n ≥ 0 and φ′ and

ψ′ quasiprimary states of weight 2l − n and 2l − m. Note that

Gφψ =
〈
φ′|Lm

1 Ln
−1ψ

′〉 = δmnn!(4l − 2n) · · · (4l − n − 1)Gφ′ψ′ ,(D.6)
V0(φ) = V0(Lm

−1φ
′) = (−1)m(2l − 1)(2l − 2) · · · (2l − m)V0(φ′),(D.7)

and
〈
ψ|Vh2−2l(φ2)ψ2

〉
=
〈
ψ′|Ln

1Vh2−2l(φ2)ψ2
〉

= (2l − 1)(2l − 2) · · · (2l − n)
〈
ψ′|Vh2−(2l−n)(φ2)ψ2

〉
.(D.8)
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It thus follows that V0(Vh2−2l(φ2)ψ2) can be expressed as a linear combina-
tion of

∑
φ,ψ∈Hqp

l′ ∩H(0)

G−1
φψV0(φ)

〈
ψ|Vh2−l′(φ2)ψ2

〉

=
∑

φ,ψ∈Hqp

l′ ∩H(0)

G−1
φψV0(φ) lim

z→∞
z2l′〈ψ(z)φ2(1)ψ2(0)〉(D.9)

with l′ = 0, . . . , 2l. Applying a fractional linear transformation to the last
correlator, we can exchange 1 and ∞ while keeping 0 fixed. Because all the
states in this correlator are quasiprimary, we have simply

lim
z→∞

z2l′〈ψ(z)φ2(1)ψ2(0)〉

= (−1)l′ lim
ζ→∞

ζ2h2〈φ2(ζ)ψ(1)ψ2(0)〉 = (−1)l′
〈
φ2|V0(ψ)ψ2

〉
.(D.10)

Thus C(1)
h1,h2;2l, h2 < B is a linear combination of

∑
φ2,ψ2∈Hqp

h2

φ,ψ∈Hqp

2l′∩H(0)

G−1
φψG−1

φ2ψ2
TrHh1

V0(φ)
〈
φ2|V0(ψ)ψ2

〉

=
∑

φ,ψ∈Hqp

2l′∩H(0)

G−1
φψ TrHh1

V0(φ) TrHqp
h2

(
V0(ψ)

)
(D.11)

for l′ = 0, . . . , l, and therefore, by (D.7), it is also a linear combination of

(D.12)
∑

φ,ψ∈H2l′∩H(0)

G−1
φψ TrHh1

V0(φ) TrHqp
h2

(
V0(ψ)

)
, l′ = 0, . . . , 2l.

Next we observe that for any ψ ∈ H(0), we have
(D.13)

TrHh2
(V0(ψ)) =

h2∑
n=0

TrLn
−1H

qp
h2−n

(
V0(ψ)

)
=

h2∑
n=0

c(h2, n) TrHqp
h2−n

(
V0(ψ)

)
,

for some coefficients c(h2, n). These identities can be inverted to obtain
TrHqp

h2
(V0(ψ)) as a linear combination of TrHh′

2
(V0(ψ)) with h′

2 ≤ h2.
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Furthermore, by (3.11), for all N ≥ 0 we have

(D.14)
N⊕

n=0

Hn =
N⊕

n=0

H[n].

Thus, by (D.11), C(1)
h1,h2;2l is a linear combination of Dh1,h′

2;l′ with l′ ≤ l and
h′

2 ≤ h2. More precisely, for any h2 ≤ h1, h2 ≤ B and L ≥ 0, we have

(D.15)
〈
C(1)

h1,h′
2;2l

〉
l=0,...,L
h′

2≤h2

=
〈
Dh1,h′

2;l
〉
l=0,...,L
h′

2≤h2

.

Together with (D.4) this then immediately implies (D.1).

D.2. Completeness of the relations

In this appendix we prove Theorem 3.1. For what follows it will be use-
ful to introduce a lexicographical ordering on the space of coefficients. We
say that

(D.16) (h1, h2; l) ≺ (ĥ1, ĥ2; l̂)

if (1) h2 < ĥ2, or (2) h2 = ĥ2 and h1 < ĥ1, or (3) h2 = ĥ2, h1 = ĥ1 and l < l̂.
We define the relation � in the obvious way.

To prove Theorem 3.1, first note that by (3.8) and (3.14) we can express
all invariants C(0)

h1,h2;l and Dh1,h2;l as linear combinations of C(∗)
h1,h2;l with

l = 0, . . . , h1 + h2. We then want to prove the following lemma:

Lemma D.1. Let (h1, h2; l) /∈ P(∗)
k . It is then possible to express C(∗)

h1,h2;l in

terms of invariants C(∗)
h′

1,h
′
2;l′

with (h′
1, h

′
2; l

′) ≺ (h1, h2; l).

By repeatedly applying Lemma D.1 it is clear that we can express any C(∗)

invariant in terms of the invariants C(∗)
h1,h2;l with (h1, h2; l) ∈ P(∗)

k . From this
Theorem 3.1 follows.

Proof of Lemma 1. For (h1, h2; l) /∈ P(∗)
k it is enough to treat two different

cases:

1) l > h2: It follows from (3.8) that we can express C(∗)
h1,h2;l as a linear

combination of C(0)
h1,h2;l′ with l′ = 0, 1, . . . , L with L = h1 + h2 − l < h1.

We can then use (3.15) to rewrite C(0)
h1,h2;l′ = C(0)

l′,h2;h1
. Using (3.8) again,
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these can in turn be expressed in terms of C(∗)
l′,h2;l′′ , where (l′, h2; l′′) ≺

(h1, h2; l) because l′ < h1.

2) h1 > k + l − wl or h2 > h1: Using (3.14) we can express C(∗)
h1,h2;l in terms

of Dh′
1,h

′
2;l′ with (h′

1, h
′
2; l

′) � (h1, h2; l). Since we can use (3.14) to
rewrite the Dh′

1,h
′
2;l′ in terms of C(∗)

h′′
1 ,h′′

2 ;l′′ with (h′′
1, h

′′
2; l

′′) � (h′
1, h

′
2; l

′),
it is clear that we only need to worry about the terms with (h′

1, h
′
2; l

′) =
(h1, h2; l). In the case h2 > h1, we have the obvious relation Dh1,h2;l =
Dh2,h1;l and (h2, h1; l) ≺ (h1, h2; l). In the case h1 > k + l − wl, we can
use (3.20) to express Dh1,h2;l as a linear combination of Dh′

1,h
′
2;l with

h′
2 ≤ h′

1 ≤ k + l − wl and h′
2 ≤ h2. From this we see that h′

1 < h1, so
that after a reconversion to C(∗), using (3.14), the claim of the lemma
also follows in this case. �

D.3. Free parameters and the slope of effective divisors

Recall that for g = 2, the triples (h1, h2, l) ∈ P(∗)
k satisfy the bound

(see (2.29))

(D.17) h1, h2 ≤ 6
5
k.

In this section we will discuss a similar bound for Pk(g), for general g. Our
approach is similar to the procedure adopted in [42] in the framework of
string theory.

Recall from Appendix B that the genus g partition function of a chiral
conformal field theory of central charge c = 24k is a section of the tensor
power L⊗12k of the Hodge bundle on Mg, whose fiber at a certain point Σ is∧g H0(Σ, KΣ). This line bundle naturally extends to the Deligne–Mumford
compactification

(D.18) M̄g = Mg ∪
[g/2]⋃
i=0

Δi

of the moduli space. Here, a generic element in the boundary component Δi,
i > 0, is obtained by identifying a point on a curve of genus i with a point
on a curve of genus g − i; a generic element of Δ0 is obtained by identifying
two distinct points on a curve of genus g − 1.

Let Pic(M̄g) be the group of (isomorphism classes of) holomorphic line
bundles on M̄g, equipped with a tensor product and with the inverse given
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by the dual line bundle. The Picard group Pic(M̄g) is isomorphic5 to the
group of divisor classes on M̄g. Thus we shall from now on adopt an additive
notation for this group. Let us define by6

(D.19) δi = [Δi], i �= 1 , δ1 =
1
2
[Δ1]

the divisor classes of the boundary components. It can be shown that Pic(M̄g)
is generated by

(D.20) λ, δ0, . . . , δ[ g

2
],

where λ denotes the divisor class of the Hodge bundle L. (For g > 2 there are
no relations, whereas for g = 2 there is one relation, namely 10λ = δ0 + 2δ1.)

It is clear that the elements of the set Pk(g) correspond to a basis of
the space of holomorphic sections of L⊗12k. Let Z and Z ′ be two distinct
sections of L⊗12k. The divisor (Z − Z ′) of their difference can be written as

(D.21) (Z − Z ′) = D + b0 Δ0 +
1
2
b1 Δ1 +

[g/2]∑
i=2

bi Δi,

where D is (the closure of) an effective divisor in Mg, and bi ≥ 0. Since
Z − Z ′ is again a section of L⊗12k, Equation (D.21) implies

(D.22) [D] = 12kλ −
[g/2]∑
i=0

biδi,

in terms of divisor classes. Suppose that Z − Z ′ vanishes at order at least
L ≥ 0 in any degeneration limit, that is

(D.23) L = min
i

bi.

If we consider any expansion of Z and Z ′ of the form (5.8), this means that

(D.24) Ch1,...,h3g−3 = C ′
h1,...,h3g−3

,

5More precisely, Pic(M̄g) ⊗ Q is isomorphic to the group of rational divisor
classes on M̂g [43].

6All the singular curves in Δ1 have a non-trivial automorphism, acting as the
involution of the torus with one puncture. For this reason, it is convenient to include
a factor 1/2 in the definition of δ1.
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whenever hi < L for some i. Thus, two distinct Z and Z ′ satisfying (D.23)
exist if and only if there is at least one element in Pk(g) with hi ≥ L for
all i.

Following [44] we defined the slope sg as

sg = inf

⎧
⎨
⎩

a

mini bi
| a, bi > 0, ∃ effective divisor D such that

[D] = aλ −
[g/2]∑
i=0

biδi

⎫
⎬
⎭.(D.25)

Then Z �= Z ′ implies

(D.26) L ≤ 12k

sg
,

and hence there is no element in Pk(g) with hi > 12k
sg

for all hi.
For small values of g, the value of sg has been determined in [44–46].

A lower bound valid for all g (but in general not sharp) is [47]

(D.27) sg ≥ 60
g + 4

.

Together with (D.26) this then implies that Pk(g) does not contain any
elements with

(D.28) h1, . . . , h3g−3 >
k

5
(g + 4),

which is the desired inequality.

D.4. Proof of formula (5.18)

The function Z1(q) is a modular form of weight 12k, so that

(D.29)
Z1(q)
Δk

=
∞∑

h=0

nhqh−k

is modular invariant. This implies that it can be written as

(D.30)
Z1(q)
Δk

= nk +
k∑

t=1

nk−tT
′
tJ(τ),
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where

(D.31) J(τ) = j(τ) − 744 =
∞∑

m=−1

cmqm = q−1 + 196884q + · · ·

is the Klein invariant and T ′
t is the Hecke operator

(D.32) T ′
tF (τ) =

∑
d|t

d−1∑
b=0

F
( tτ + bd

d 2

)
.

If F is modular invariant, then so is T ′
tF . Furthermore,

T ′
tJ(τ) =

∑
d|t

∞∑
m=−1

cme2πim tτ

d2

d−1∑
b=0

e2πi mb

d

=
∞∑

m=−1

cm

∑
d|(t,|m|)

d e2πim tτ

d2

= q−t +
∞∑
l=1

ql
∑

d|(t,l)

t

d
ctl/d2 ,(D.33)

where (a, b) denotes the greatest common divisor. Equation (D.30) follows
immediately from these properties of Hecke operators. Using Rademacher’s
formula, one has the following asymptotic estimate for the coefficients
of J(τ)

(D.34) cm ∼ m−3/4
√

2
e4π

√
m, m � 0.

Thus, the coefficients nl+k of Z1/Δ12k for large l are given by

nl+k =
k∑

t=1

nk−t

∑
d|(t,l)

t

d
ctl/d2 ∼

k∑
t=1

nk−t

∑
d|(t,l)

t

d

d3/2
√

2(tl)3/4
e4π

√
tl

d ∼ n0
k1/4
√

2
l−3/4 e4π

√
kl,(D.35)

where in the last step we retained only the leading terms t = k and d = 1.
This then implies Equation (5.18) because n0 = 1 follows from the unique-
ness of the vacuum.
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