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Hecke correspondences and Feynman graphs
Matt Szczesny

We consider natural representations of the Connes–Kreimer Lie
algebras on rooted trees/Feynman graphs arising from Hecke
correspondences in the categories LRF , Cφ3 constructed by
K. Kremnizer and the author. We thus obtain the insertion/ elim-
ination representations constructed by Connes–Kreimer as well as
an isomorphic pair that we term top-insertion/top-elimination. We
also construct graded finite-dimensional sub/quotient representa-
tions of these arising from “truncated” correspondences.

1. Introduction

The Connes–Kreimer Hopf algebras on rooted trees and Feynman graphs
HT,HFG, introduced in [2, 5], describe the algebraic structure of the BPHZ
algorithm in the renormalization of perturbative quantum field theories. If
we let T denote the set of (non-planar) rooted trees, and Q{T} the Q-vector
space spanned by these, then as an algebra, HT = Sym(Q{T}), and the
coalgebra structure is given by the coproduct

Δ(T ) =
∑

C admissible cut

PC(T ) ⊗ RC(T ),

where PC(T ) is the forest of branches resulting from the cut C, and RC(T )
is the root component remaining “above” the cut (see [2] for a more detailed
definition).

HFG is defined analogously, with Feynman graphs in place of rooted
trees. More precisely, given a perturbative QFT, and denoting by Q{Γ} the
vector space spanned by the one-particle irreducible graphs of the theory
(1 PI graphs), HFG = Sym(Q{Γ}) as an algebra. Its coalgebra structure is
given by

Δ(Γ) =
∑

γ∈Γ

γ ⊗ Γ/γ,

where the sum is over all (not necessarily connected) subgraphs of Γ, and Γ/γ
denotes the graph obtained from Γ by shrinking each connected component
of γ to a point.
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HT and HFG are graded connected commutative Hopf algebras, and so
by the Milnor–Moore theorem, their duals H∗

T
and H∗

FG
are isomorphic to

the universal enveloping algebras U(nT), U(nFG) of the Lie algebras nT, nFG

of their primitive elements. We refer to nT and nFG as the Connes–Kreimer
Lie algebras on rooted trees and Feynman graphs, respectively.

In [6], a categorification of the Hopf algebras U(nT), U(nFG) was
obtained, by showing that they arise naturally as the Ringel–Hall algebras of
certain categories LRF , Cφ3 of labeled rooted forests and Feynman graphs,
respectively. We briefly recall this notion. Let C be one of these categories. Its
Ringel–Hall algebra HC is the vector space of Q-valued functions on Iso(C)
(the set of isomorphism classes of C), with finite support. The algebra struc-
ture is given by the associative product

f × g(M) :=
∑

N⊂M

f(N)g(M/N), f, g ∈ HC , M ∈ Iso(C),

and the coalgebra structure by the co-commutative coproduct

Δ : HC → HC ⊗ HC

Δ(f)(M, N) := f(M ⊕ N),

where ⊕ denotes disjoint union of forests/graphs. HC is a graded connected
co-commutative Hopf algebra, and so the enveloping algebra of the Lie alge-
bra nC of its primitive elements. In this light, the main result of [6] is the
construction of categories LRF , Cφ3 such that nLRF � nT, and nCφ3 � nFG.

Ringel–Hall algebras provide a very useful perspective in the study of
the representations of nC . In particular, we may construct representations of
nC via Hecke correspondences. Let

HeckeC := {(A, B)|B ∈ Iso(C), A ⊂ B}

(i.e., the set of pairs consisting of an isomorphism class B in C, and a sub-
object A of B). HeckeC comes with three maps to Iso(C) : π1, π2 and πq,
where π1(A, B) = A, π2(A, B) = B and πq(A, B) = B/A. As HC is the space
of functions on Iso(C), we obtain the diagram
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where F(HeckeC) denotes the space of functions on HeckeC . We also have
maps π1∗, π2∗, πq∗ corresponding to integration along the fiber:

πr∗(f)(y) =
∑

xy∈π−1
r (y)

f(xy), r = 1, 2, q,

which are well defined on finitely supported functions. By taking r, s, t to be
some permutation of 1, 2, q, we now obtain convolutions:

πr,s,t : HC ⊗ HC → HC

f ⊗ g → πr∗(π∗
s(f)π∗

t (g))

πr,s,t can be viewed as a map

HC → Hom(HC , HC),

and provided that πr,s,t is compatible with the algebra structure on HC ,
this yields a representation of nC on HC . Representations constructed in this
manner are naturally graded by K0(C). One checks easily that among them
are the left and right actions of HC on itself as well as their graded duals.

The utility of this perspective extends far beyond recovering the action
of nC on its enveloping algebra. We may consider various subcorrepondences
of HeckeC . For example, we may choose an isomorphism class M ∈ Iso(C),
and consider

Hecke≤M := {(A, B)|A ⊂ B ⊂ M}
Convolution now yields an action of HC on the finite-dimensional space H≤M

of functions supported on isomorphism classes of sub-objects of M . One may
similarly obtain representations in Hquot(M)-functions supported on isomor-
phism classes of quotient objects of M .

These techniques are well known in the case when C is a finitary abelian
category, such as the category of modules over a finite-dimensional algebra.
In this paper, we apply them in the case when C is one of the categories
LRF , Cφ3 , to study the representation theory of the Connes–Kreimer Lie
algebras nT, nFG. These categories are not abelian, but share many proper-
ties of finitary abelian categories. We show that the insertion/elimination
actions of nC introduced in [3] arise in this way, as do two ”new” (but
isomorphic to the previous two) representations of nC , which we call “top
insertion” and “top elimination.” While the elimination and top-elimination
(resp. insertion and top-insertion) representations are isomorphic, they have
non-isomorphic finite-dimensional sub/quotient representations arising from
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correspondences of the form Hecke≤M ,Heckequot(M) as above, and have a
combinatorially distinct flavor. One of the advantages of this approach is
that it allows us to treat both the cases of rooted trees and Feynman graphs
in one language.

This paper is structured as follows. In sections 2, 3 and 4 we recall the
construction of categories LRF , Cφ3 and their general properties. Section 5
introduces the notion of Ringel–Hall algebra. Section 6 gives explicit com-
binatorial formulas for the left/right actions of nC on HC � U(nC) and its
graded dual. Sections 7.1 and 7.2 examine finite-dimensional graded rep-
resentations derived from these. In Section 8 we study Hecke correspon-
dences in LRF , Cφ3 , and show that we recover the representations from 6.
We also show how to use “truncated” correspondences to construct the finite-
dimensional representations from 7.1 and 7.2.

2. The category LRF

In this section, we briefly recall the construction of the category LRF of
labeled rooted forests from [6]. We begin by reviewing some notions related
to rooted trees. Let S be an infinite set. For a tree T , denote by V (T ), E(T )
the vertex and edge sets of T , respectively.

Definition 2.1. (1) A rooted tree labeled by S is a tree T , with a distin-
guished vertex r(T ) ∈ V (T ), and an injection l : V (T ) ↪→ S. Denote
by RT (S) the set of all such.

(2) A rooted forest labeled by S is a set F of rooted trees labeled by S,
whose labels are disjoint, i.e.,

F = {T1, T2, . . . , Tk}, Ti ∈ RT (S), im(li) ∩ im(lj) = ∅ if i 
= j.

(3) An admissible cut of a labeled tree T is a subset C(T ) ⊂ E(T ) such
that at most one member of C(T ) is encountered along any path joining
a leaf to the root. Removing the edges in an admissible cut divides T
into a labeled rooted forest PC(T ) and a labeled rooted tree RC(T ),
where the latter is the component containing the root. The empty and
full cuts Cnull, Cfull, where

(PCnull(T ), RCnull(T )) = (∅, T ) and (PCfull(T ), RCfull(T )) = (T, ∅)

respectively, are considered admissible.



Hecke correspondences and Feynman graphs 165

(4) An admissible cut on a labeled forest F = {T1, . . . , Tk} is a collection
of cuts C = {C1, . . . , Ck}, with Ci an admissible cut on Ti. Let

RC(F ) := {RC1(T1), . . . , RCk
(Tk)},

PC(F ) := PC1(T1) ∪ PC2(T2) ∪ · · · ∪ PCk
(Tk).

(5) The maximum of two admissible cuts C, D on a rooted tree T , denoted
by max(C, D), is the admissible cut obtained by taking the cut edge
closer to the root along any path from leaf to root. Similarly, we define
min(C, D) by taking the cut edge further from the root along any path
from leaf to root.

(6) Two labeled rooted forests F1 = {T1, . . . , Tk} and F2 = {T ′
1, . . . , T

′
m}

are isomorphic if k = m, and there is a permutation σ ∈ Sk and bijec-
tions

fi : V (Ti) → V (T ′
σ(i)), i = 1, . . . , k,

which preserve roots and all other incidences.

Example 2.1. Consider the labeled rooted forest consisting of a single tree
T , with root drawn at the top.

and the cut edges are indicated with “=”, then

We are now ready to define the category LRF .
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Definition 2.2. The category LRF is defined as follows:

Ob(LRF) := { labeled rooted forests } ∪ {∅}

where ∅ denotes the empty forest, which plays the role of zero object.

Hom(F1, F2) := {(C1, C2, f)|Ci is an admissible cut of Fi,

f : RC1(F1) ∼= PC2(F2), Fi ∈ Ob(LRF)}.

For F ∈ Cφ3 , (Cnull, Cfull, id) : F → F is the identity morphism
in Hom(F, F ).

Example: if

then a morphism is given by the triple (C1, C2, f), where:

• C1 is indicated by “−”, and C2 is indicated by “=”.

• f : RC1(F1) ∼= PC2(F2) is defined by f(2) = 4, f(5) = 9, f(6) = 6,
f(8) = 2.

We recall the definition of the the composition of morphisms

Hom(F1, F2) × Hom(F2, F3) → Hom(F1, F3).

Suppose that (C1, C2, f) ∈ Hom(F1, F2) and (D2, D3, g) ∈ Hom(F2, F3). The
cut min(C2, D2) induces a cut E1 on F1 lying above C1, and max(C2, D2) a
cut E3 on F3 lying below D3. The restriction of g ◦ f gives an isomorphism
RE1(F1) ∼= PE3(F3). We define the composition above to be (E1, E3, g ◦ f).
The associativity of composition follows from the associativity of max and
min.

2.1. The Connes–Kreimer Lie algebra on rooted trees

In this section, we recall the definition of the Connes–Kreimer Lie algebra
on rooted trees nT (see [3]). Let T denote the collection of unlabeled rooted
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trees. As a vector space,
nT = Q{T},

i.e., the span of unlabeled rooted trees. On nT, we have a pre-Lie product
“∗”, given, for T1, T2 ∈ T by

T1 ∗ T2 =
∑

T∈T

a(T1, T2; T )T,

where

a(T1, T2; T ) := |{e ∈ E(T )|PCe
(T ) = T1, RCe

(T ) = T2}|

and Ce denotes the cut severing the edge e. The Lie bracket on nT is given
by

(2.1) [T1, T2] := T1 ∗ T2 − T2 ∗ T1.

Thus, for example if

then

3. The category Cφ3

In this section we review the construction of the category of Feynman graphs
following [6], with the small modification that here we consider unlabeled
graphs. Our treatment of the combinatorics of graphs is taken from [8]. In
order to not get bogged down in notation, we focus on the special case of φ3

theory (the case of trivalent graphs with only one edge-type). The results
of this section extend to the general case in a completely straightforward
manner.

Definition 3.1. A graph Γ consists of a set H = H(Γ) of half-edges, a set
V = V (Γ) of vertices, a set of vertex-half edge adjacency relations
(⊂ V × H), and a set of half edge–half edge adjacency relations (⊂ H × H),
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with the requirements that each half edge is adjacent to at most one other
half edge and to exactly one vertex. Note that graphs may not be connected.

Half edges which are not adjacent to another half edge are called exter-
nal edges, and denoted Ex(Γ) ⊂ H = H(Γ). Pairs of adjacent half edges are
called internal edges, and denoted Int(Γ).

An isomorphism between graphs Γ1 and Γ2 is a pair of bijections

fH :H(Γ1) → H(Γ2),
fV :V (Γ1) → V (Γ2),

which preserve all adjacency relations. We write f : Γ1 � Γ2 for short. The
isomorphisms from a graph Γ to itself form a group, which we denote Aut(Γ).

Definition 3.2. (1) A Feynman graph is either the empty graph, or one
where each vertex is incident to exactly three half-edges, and each
connected component has two or three external edges and at least one
loop. We denote the set of Feynman graphs by FG.

(2) A graph is 1-particle irreducible (1 PI) if it is connected, and remains
connected under the removal of an arbitrary internal edge.

Example: The graph Γeg

is a three-loop 1 PI Feynman graph with two external edges. V (Γeg) are
indicated by •.

Definition 3.3. Given a Feynman graph Γ, a subgraph γ is a Feynman
graph such that V (γ) ⊂ V (Γ), H(γ) ⊂ H(Γ), and such that if v ∈ V (γ),
and (v, e) ∈ V (Γ) × H(Γ), then e ∈ H(γ) (i.e., the subgraph has to contain
all half-edges incident to its vertices). This definition implies that dimQ(H1
(γ, Q)) > 0 (i.e., that a subgraph contain at least one loop). We write γ ⊂ Γ.
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Example:

is a subgraph of Γeg above.
We proceed to define the contraction of subgraphs of Feynman graphs.

Definition 3.4. Let Γ be a Feynman graph, and γ ⊂ Γ a connected sub-
graph. The quotient graph Γ/γ is defined as follows. If γ has three external
edges, then Γ/γ is the Feynman graph with

(1) V (Γ/γ) set the vertex set of Γ with all vertices of γ removed, and a
new trivalent vertex v added.

(2) H(Γ/γ) the half edge set of Γ, with all half edges corresponding to
internal half edges of γ removed.

(3) All adjacencies inherited from Γ, and the external half edges of γ joined
to v.

If γ has two external edges, then Γ/γ is the Feynman graph with

(1) V (Γ/γ) is V (Γ) with all the vertices of γ removed.

(2) H(Γ/γ) is H(Γ) with all half edges of γ removed.

(3) All adjacencies inherited from Γ, as well as the adjacency of the half-
edges incident to the external half-edges of γ.

Finally, if γ ⊂ Γ is an arbitrary (not necessarily connected) Feynman sub-
graph, then Γ/γ is defined to be the Feynman graph obtained by performing
successive quotients by each connected component. Note that the order of
collapsing does not matter.

Example: With Γeg, γeg as above, Γeg/γeg is
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The set of Feynman subgraphs of a Feynman graph Γ forms a poset
under graph inclusion. This poset is a distributive lattice, with Γ1 ∨ Γ2 the
smallest subgraph containing Γ1 and Γ2, and Γ1 ∧ Γ2 the largest subgraph
contained in Γ1 ∩ Γ2.

Remark 3.1. If γ ⊂ Γ is a subgraph of a Feynman graph, then there is
a bijection between subgraphs of Γ/γ, and subgraphs γ′ of Γ such that
γ ⊂ γ′ ⊂ Γ. This bijection is compatible with shrinking subgraphs, in the
sense that if γ′ ∈ Γ corresponds to γ̄′ ∈ Γ/γ, then Γ/γ′ � (Γ/γ)/(γ̄′).

3.1. The category Cφ3 of Feynman graphs in φ3-theory

We proceed to define a category Cφ3 of Feynman graphs following [6]. Let

Ob(Cφ3) := {Γ ∈ FG}
Hom(Γ1, Γ2) := {(γ1, γ2, f)|γi is a subgraph of Γi, f : Γ1/γ1 ∼= γ2}

For Γ ∈ Cφ3 , (∅, Γ, id) is the identity map in Hom(Γ, Γ).
The composition of morphisms in Cφ3

Hom(Γ1, Γ2) × Hom(Γ2, Γ3) → Hom(Γ1, Γ3)

is defined as follows. Suppose that (γ1, γ2, f) ∈ Hom(Γ1, Γ2), and (τ2, τ3, g) ∈
Hom(Γ2, Γ3). By Remark 3.1, the subgraph γ2 ∧ τ2 corresponds to a sub-
graph ξ of Γ1 containing γ1, and γ2 ∨ τ2 corresponds to a subgraph ρ ⊂ τ3 ⊂
Γ3. We define the composition (τ2, τ3, g) ◦ (γ1, γ2, f) to be (ξ, ρ, g ◦ f). It is
straightforward to see that the composition thus defined is associative.

3.2. The Connes–Kreimer Lie algebra on Feynman graphs

In order to define the Connes–Kreimer Lie algebra structure on Feynman
graphs, we must first introduce the notion of inserting a graph into another
graph. Let

Q{FG}

denote the Q-vector space spanned by Feynman graphs.
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Definition 3.5. Let Γ1, Γ2 ∈ FG. If Γ1 has three external edges, v ∈ V (Γ2),
and f : Ex(Γ1) → H(v) is a bijection (where H(v) are the half-edges incident
to the vertex v), then let Γ2 ◦v,f Γ1 be the Feynman graph such that

• V (Γ2 ◦v,f Γ1) = V (Γ2) ∪ V (Γ1)\v.

• H(Γ2 ◦v,f Γ1) = H(Γ1) ∪f H(Γ2) — i.e., the unions of the half-edges
of each graph, with the identifications induced by f .

• The adjacencies induced from those of Γ1 and Γ2.

If Γ1 has two external edges, {e1, e2} ∈ Int(Γ2) ⊂ H × H, and f is a bijection
between Ex(Γ1) and {e1, e2} (there are two of these), then Γ2 ◦e,f Γ1 is the
Feynman graph such that

• V (Γ2 ◦e,f Γ1) = V (Γ1) ∪ V (Γ2).

• H(Γ2 ◦e,f Γ1) = H(Γ1) ∪ H(Γ2).

• The adjacency induced by f as well as those induced from Γ1 and Γ2.

Let nFG denote the Q-vector space spanned by connected Feynman
graphs. We equip nFG with the pre-Lie product “
”, defined by

Γ1 
 Γ2 :=
∑

v∈V (Γ2),f :Ex(Γ1)→H(v)

Γ2 ◦v,f Γ1

if Γ1 has three external edges, and

Γ1 
 Γ2 :=
∑

e∈Int(Γ2),f :Ex(Γ1)→{e1,e2}
Γ2 ◦v,f Γ1

if Γ1 has two external edges, and extended linearly. Finally, we can define
the Lie bracket on nFG by

(3.1) [Γ1, Γ2] := Γ1 
 Γ2 − Γ2 
 Γ1.

Example: Suppose

(3.2)
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then

4. Properties of the categories LRF , Cφ3

In this section, we summarize some of the properties of LRF , Cφ3 that will
allow us to define the Ringel–Hall algebras of these categories in the next
section. For more details, please consult [6].

Let C denote either of the categories LRF , Cφ3 . Then C has the following
properties:

(1) The empty forest/graph {∅} is an null object.

(2) Disjoint union of forests/graphs equips C with a symmetric monoidal
structure, which we denote by ⊕. We will refer to objects of the form
A ⊕ B, with neither A nor B the null object ∅ as decomposable, and
those not admitting such a splitting as indecomposable.

(3) Every morphism in C possesses a kernel. If C = LRF , and

Ψ = (C1, C2, f) : F1 → F2,

then

Ker(Ψ) = (Cnull, C1, id) : PC1(F1) → F1.

If C = Cφ3 , and

Φ = (γ1, γ2, f) : Γ1 → Γ2,

then

Ker(Φ) = (∅, γ1, id) : γ1 → Γ1.
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(4) Every morphism in C possesses a cokernel. If C = LRF , and Ψ is the
above morphism, then

Coker(Ψ) = (C2, Cfull, id) : F2 → RC2(F2).

If C = Cφ3 , and Φ is as above, then

Coker(Φ) = (γ2, Γ2/γ2, id) : Γ2 → Γ2/γ2.

(5) By the previous two remarks, every morphism in C has a mono-epi
factorization and, moreover, the notion of exactness makes sense.

(6) For a pair of objects A, B ∈ C such that A ⊂ B, there is an inclusion-
preserving bijection between subobjects of B containing A and sub-
objects of B/A such that if S ⊂ B/A corresponds to S ⊂ B, we have
(B/A)/S ∼= B/S.

(7) The Grothendieck group K0(C) may be defined as usual (as the quo-
tient of the free abelian group of objects by the subgroup of relations
coming from short exact sequences). We have K0(LRF) = Z, while
K0(Cφ3) is spanned over Z by primitive graphs.

Definition 4.1. Let C denote one of the categories LRF , Cφ3 and M ∈ C.
We define the length of M to be length of the longest ascending chain of
subobjects of M . It is easy to see that for LRF , this coincides with the
number of vertices in the forest.

5. Ringel–Hall algebras

In this section, we define the Ringel–Hall algebra of the categories LRF , Cφ3 .
For an introduction to Ringel–Hall algebras of abelian categories, please
see [1,7]. Let C denote one of the categories LRF , Cφ3 and denote by Iso(C)
the set of isomorphism classes of objects in C.

Definition 5.1. The Ringel–Hall algebra of C, denoted HC , is the vector
space of finitely supported Q-valued functions on Iso(C). I.e.,

HC := {f : Iso(C) → Q||supp(f)| < ∞}.
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HC is equipped with an associative convolution product given by

f × g(M) :=
∑

N⊂M

f(N)g(M/N) f, g ∈ HC , M ∈ Iso(C),

and a co-commutative coproduct

Δ : HC → HC ⊗ HC ,

Δ(f)(M, N) := f(M ⊕ N).

The two structures are easily seen to be compatible, and HC is a
co-commutative Hopf algebra graded by K0(C) (via the natural map Iso(C) →
K0(C)), and connected. By the Milnor–Moore theorem, it is the enveloping
algebra of the Lie algebra nC of its primitive elements, called the Ringel–Hall
Lie algebra of C. The following theorem is proved in [6].

Theorem 5.1. The Ringel–Hall Lie algebras of the categories LRF , Cφ3 are
isomorphic to the Connes-Kreimer Lie algebras on rooted trees and Feynman
graphs respectively. i.e.,

HLRF = U(nT) and HCφ3 = U(nFG).

The Ringel–Hall algebra HC has a natural basis {δA|A ∈ Iso(C)} consist-
ing of delta functions supported on isomorphism classes of C. More precisely,
for B ∈ Iso(C),

δA(B) :=

{
1 if B = A,

0 otherwise.

We may equip HC with a symmetric bilinear form κ:

(5.1) κ(f, g) :=
∑

A∈Iso(C)

f(A)g(A)

We will use κ to identify HC with its graded dual below. The dual of δA with
respect to κ is denoted φA.
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6. Four natural representations of nC

Let g be a complex Lie algebra, and let gop denote the opposite Lie algebra,
with bracket [X, Y ]op := [Y, X] = −[X, Y ]. The map

t : g → g
op

X → Xt := −X

Is a Lie algebra isomorphism of g with gop. The map t extends to an iso-
morphism

(6.1) t : U(g) → U(gop) � U(g)op.

Recall that the structure of a g-module is equivalent to the structure of a
left module over the enveloping algebra U(g). The isomorphism 6.1 implies
that a right U(g)-module structure on M is equivalent to a left U(g) (and
hence g)-module structure on M via the twisted action X · m := m · Xt. To
rephrase, the map t : v → vt yields an isomorphism of g–modules between
U(g) and U(g)op, after identifying g with gop using t.

For the rest of the paper, C will denote one of LRF , Cφ3 . As proven in [6],
we have HC � U(nC). We may now consider the left and right actions of HC
on itself. We will write XA for the elment δA viewed as an element of U(nC).
We have:

Left action:

(6.2) XA · δB := δA × δB =
∑

{C∈Iso(C),E⊂C|
E�A,C/E�B}

δC .

This is the action of nC by insertions considered in [3]. We denote by Hins
the vector space HC with the nC-module structure given by (6.2).

Remark 6.1. Let Hdec
ins denote the subspace of Hins consisting of functions

supported on decomposable objects, i.e.,

Hdec
ins = span{δA|A ∈ IsoC , A = B ⊕ C, B 
= ∅, C 
= ∅}.

This is a left ideal of HC (i.e., a subrepresentation of Hins), and the quo-
tient Hins / Hdec

ins is spanned by delta functions supported on indecomposable
objects. This is the insertion representation considered in [3].
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Right action:

(6.3) δB · XA := δB × δA =
∑

{C∈Iso(C),E⊂C|
E�B,C/E�A}

δC

We call this the top insertion action. It is closely related to the operator
B+ considered in [3]. We denote by Htop-ins the vector space HC with the
nC-module structure given by (6.3).

Example 6.1. If C = LRF , we have:

By the observations at the beginning of this section,

Hins � Htop-ins

as nC modules. Note however, that at a combinatorial level, the isomorphism
t is non-trivial. For instance,

Example 6.2.

We may also consider the dual representations of (6.2) and (6.3). Let
H∗

C denote the restricted dual of HC with basis {φA|A ∈ Iso(C)} dual to
{δA|A ∈ Iso(C)} (equivalently, φA is the image of δA under κ).

• The representation dual to 6.2 is determined by

XA · φB(δC) = −φB(XA · δC)

= −φB

⎛

⎜⎜⎜⎝
∑

{D∈Iso(C),F⊂D|
F�A,D/F�C}

δD

⎞

⎟⎟⎟⎠

= −|{E ⊂ B|E � A, B/E � C}|,

which implies that

(6.4) XA · φB = −
∑

{E⊂B|E�A}
φB/E .
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This is the elimination action considered in [3] (up to a sign corre-
sponding to an isomorphism between nC and n

op
C ). We denote by H∗

elim
the vector space H∗

C equipped with the action (6.4).

• The representation dual to (6.3) is determined by

(φB · XA)(δC) = −φB(δC · XA)

= −φB

⎛

⎜⎜⎜⎝
∑

{D∈Iso(C),F⊂D|
F�C,D/F�A}

δD

⎞

⎟⎟⎟⎠

= −|{F ⊂ B|F � C, B/F � A}|,

which implies that

(6.5) φB · XA = −
∑

{E⊂B|
B/E�A}

φE .

We call this the top elimination action. We denote by H∗
top-elim the

vector space H∗
C equipped with the action (6.5).

Example 6.3. If C = LRF , we have,

Again, we have

H∗
elim � H∗

top-elim .

Remark 6.2. It is a feature of Ringel–Hall algebras that HC carries a
natural K0(C)-grading. The representations considered in this section are
therefore K0(C)-graded representations of nC . For B ∈ Iso(C), the grada-
tion is given by assigning degree [B] ∈ K0(C) to δB, φB. Given A ∈ IsoC ,
the corresponding element XA ∈ nC has degree [A] in the representations
Hins, Htop-ins, and degree −[A] in H∗

elim, H∗
top-elim.
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7. Finite-dimensional representations

In this section, we consider finite-dimensional sub/quotients of the four rep-
resentations Hins, Htop-ins, H∗

elim and H∗
top-elim considered in the previous sec-

tion.

7.1. Finite-dimensional representations from H∗
elim, Hins

Let us fix an isomorphism class M ∈ Iso(C), and let

Quot(M) := {E ∈ Iso(C)|E is a quotient of M}

(i.e., isomorphism classes of quotients of M). Let Hquot(M) denote the sub-
space of H∗

elim spanned by φA, A ∈ Quot(M). This is clearly a finite-
dimensional subspace of H∗

elim. We have the following:

Theorem 7.1.

(a) For every M ∈ Iso(C), the subspace Hquot(M) is a finite-dimensional
representation of nC with respect to the action (6.4).

(b) For every M ∈ Iso(C), Hquot(M) is indecomposable.

(c) If N is a quotient of M , then Hquot(N) is an nC submodule of Hquot(M).

Proof. (a) This follows from the fact that a quotient of a quotient of M is
another quotient of M .

(b) Suppose that v ∈ Hquot(M) is a non-zero vector. We claim that there
exists an X ∈ U(nC) � HC such that X · v = δ∅. We can write v =∑

A∈Iso(C) cAφA , cA ∈ Q. Let Z be an isomorphism class of maximal
length occurring in the sum with cZ 
= 0. We have XZ · v = −cZφ∅.
This implies that any subrepresentation of Hquot(M) contains φ∅, and
so Hquot(M) is indecomposable.

(c) If N is a quotient of M , then any quotient of N is automatically
a quotient of M , which implies that Quot(N) ⊂ Quot(M). We thus
obtain an inclusion of nC-modules Hquot(N) ⊂ Hquot(M).

�

We can give an explicit description of the dual representation H∗
quot(M).

Since Hquot(M) ⊂ H∗
elim, we can identify H∗

quot(M) with a quotient of HC by
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the subspace spanned by {δE |E /∈ Quot(M)}. If B ∈ Quot(M), then

XA · δB := δA × δB =
∑

{C∈Quot(M),E⊂C|
E�A,C/E�B}

δC .

i.e., we insert A into B, but sum only over those isomorphism classes which
are quotients of M .

7.2. Finite-dimensional representations from H∗
top-elim, Htop-ins

Let us fix an isomorphism class M ∈ Iso(C), and let

≤ M := {E ∈ Iso C|E is a subobject of M}

(i.e., isomorphism classes of subobjects of M .) Let H≤M denote the subspace
of H∗

top-elim spanned by φA, A ∈≤ M . This is a finite-dimensional subspace
of H∗

top-elim. We have the following analogue of Theorem 7.1

Theorem 7.2.

(a) For every M ∈ Iso(C), the subspace H≤M is a finite-dimensional rep-
resentation of nC with respect to the action (6.5).

(b) For every M ∈ Iso(C), H≤M is indecomposable.

(c) If N ⊂ M , H≤N is an nC–submodule of H≤M .

Proof. (a) This follows from the fact that a subobject of a subobject of
M is another subobject of M .

(b) Suppose that v ∈ H≤M is a non-zero vector. We claim that there
exists an X ∈ U(nC) � HC such that v · X = φ∅. We can write v =∑

A∈Iso(C) cAφA. Let Z be an isomorphism class of maximal length
occurring in the sum with cZ 
= 0. We have v · XZ = −cZφ∅. This
implies that any subrepresentation of H≤M contains φ∅, and so H≤M

is indecomposable.

(c) If N ⊂ M , then ≤ N ⊂≤ M , and so we obtain an inclusion of
nC-modules H≤N ⊂ H≤M .

�

Since H≤M ⊂ H∗
top-elim, we can identify H∗

≤M with a quotient of HC by the
subspace spanned by {δE |E /∈≤ M}. The action of nC on H∗

≤M is explicitly
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given by
δB · XA := δB × δA =

∑

{C∈≤M,E⊂C|
E�B,C/E�A}

δC .

i.e., we top-insert A onto B, but take only those isomorphism classes which
are subobjects of M .

Remark 7.1. The finite-dimensional representations of nT were classified
in [4], and it would be interesting to determine how the representations
above fit into the classification.

Remark 7.2. Although H∗
elim � H∗

top-elim, the subrepresentations Hquot(M)
and H≤N do not correspond under this isomorphism. i.e., for a given M ∈
Iso(C), there is in general no N ∈ Iso(C) such that Hquot(M) � H≤N as
nC-modules.

8. Hecke correspondences and convolutions

In this section, we show that the representations considered above arise
through the actions of Hecke correspondences in the categories LRF , Cφ3 .
Let C denote either of these categories, and let

HeckeC := {(A, B)|B ∈ Iso(C), A ⊂ B}

(i.e., the set of pairs consisting of an isomorphism class B in C, and a sub-
object A of B). There are natural maps

πi : HeckeC → Iso(C), i = 1, 2,

where π1(A, B) = A and π2(A, B) = B. We also have a natural map

πq : HeckeC → Iso(C)

with πq(A, B) = B/A. This can be summarized in the following diagram:
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Let HC denote the Hall algebra of C, i.e., the set of finitely supported
Q-valued functions on isomorphism classes of C with its associative convo-
lution product, and F(HeckeC) denote the ring of Q-valued functions on
HeckeC , with the usual commutative multiplication.

Taking the spaces of Q-valued functions on the sets appearing in the
above diagram, we obtain the following dual diagram:

We also have maps πq∗, π1∗, π2∗ in the opposite direction, given by inte-
grating along the fiber. i.e.,

πr∗(f)(y) =
∑

xy∈π−1
r (y)

f(xy)

which are well defined on functions with finite support. We can now form
three different convolutions:

HC ⊗ HC → HC ,

f ⊗ g → πq∗(π∗
1(f)π∗

2(g)),

HC ⊗ HC → HC ,

f ⊗ g → π2∗(π∗
q (f)π∗

1(g)),

HC ⊗ HC → HC ,

f ⊗ g → π1∗(π∗
q (f)π∗

2(g)).

We proceed to analyze the action of each of them. Since every function
on Iso(C) can be written as a linear combination of delta-functions supported
on a single isomorphism class, it suffices to analyze what happens under con-
volution of two such delta-functions. We denote by δA⊂B the delta-function
supported on the pair A ⊂ B in HeckeC .
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(1) First convolution: For A, B ∈ Iso(C), we have

πq∗(π∗
1(δA)π∗

2(δB)) = πq∗

⎛

⎝
∑

{C|A⊂C}
δA⊂C ×

∑

{D|D⊂B}
δD⊂B

⎞

⎠(8.1)

= πq∗

(
∑

A⊂B

δA⊂B

)

=
∑

{E⊂B|E�A}
δB/E .

Let us now define a right action (denoted •) of HC on itself by

(8.2) g • f := πq∗(π∗
1(f)π∗

2(g)).

It follows from (6.4) that after identifying HC with its restricted
dual H∗

C and switching from right to left actions, this coincides with
the elimination representation (6.4).

(2) Second convolution: For A, B ∈ Iso(C), we have

π2∗(π∗
q (δA)π∗

1(δB)) = π1∗

⎛

⎝
∑

{C⊂D|D/C�A}
δC⊂D ×

∑

{B⊂E}
δB⊂E

⎞

⎠(8.3)

= π2∗

⎛

⎝
∑

{B⊂E|E/B�A}
δB⊂E

⎞

⎠

=
∑

{B⊂E|E/B�A}
δE .

We define a right action (denoted �) of HC on itself by

(8.4) g�f := π2∗(π∗
q (f)π∗

1(g))

It follows from (6.3) that this coincides with the top insertion action.
If instead we view this as a left action of HC on itself (i.e., g acting on
f rather than vice versa), we recover the insertion action (6.2).
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(3) Third convolution: For A, B ∈ Iso(C), we have

π1∗(π∗
q (δA)π∗

2(δB)) = π1∗

⎛

⎝
∑

{C⊂D|D/C�A}
δC⊂D ×

∑

{E⊂B}
δE⊂B

⎞

⎠

= π1∗

⎛

⎝
∑

{E⊂B|B/E�A}

⎞

⎠

=
∑

{E⊂B|B/E�A}
δE .

We define a left action (denoted 
) of HC on itself by

(8.5) f 
 g := π1∗(π∗
q (f)π∗

2(g)).

It follows from (6.5) that after identifying HC with its restricted
dual H∗

C and switching from right to left actions, this coincides with
the top-elimination representation.

8.1. Finite-dimensional representations

The finite-dimensional truncations studied in Sections 7.1, 7.2 can also be
described in the setup of Hecke correspondences. We discuss here the
construction of H≤M — that of Hquot(M) is completely analogous. For
M ∈ Iso(C), let,

Hecke≤M := {(A, B)|B ∈ Iso(C), A ⊂ B ⊂ M}.

As in the previous section, we have a diagram
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and the dual diagram

where F(Hecke≤M ) denotes the space of Q-valued functions on Hecke≤M .
The left action of HC on H≤M given by

f 
 g := π1∗(π∗
q (f)π∗

2(g)), f ∈ HC , g ∈ H≤M

is the opposite of the top-elimination representation from Section 7.2 (i.e.,
coincides with it after the isomorphism t : nC � n

op
C ), whereas the right action

g�f := π2∗(π∗
q (f)π∗

1(g)), f ∈ HC , g ∈ H≤M

is opposite to its dual.

Acknowledgments

I thank Dirk Kreimer, Valerio Toledano-Laredo and Kobi Kremnizer for
many valuable conversations. I also thank Olivier Schiffmann for suggesting
the use of Hecke convolutions in the representation theory of nT, nFG. Finally,
I am very grateful to the referee for their comments.

References

[1] T. Bridgeland and V. Toledano-Laredo, Stability conditions and stokes
factors, Preprint arXiv:0801.3974.

[2] A. Connes and D. Kreimer, Hopf algebras, renormalization,
and noncommutative geometry, Comm. Math. Phys. 199 (1998),
203–242.

[3] A. Connes and D. Kreimer, Insertion and elimination: the doubly infi-
nite Lie algebra of Feynman graphs, Ann. Henri Poincar 3(3) (2002),
411–433.

[4] L. Foissy, Finite-dimensional comodules over the Hopf algebra of rooted
trees, J. Algebra 255 (2002), 89–120.



Hecke correspondences and Feynman graphs 185

[5] D. Kreimer, On the Hopf algebra structure of perturbative quantum field
theory. Adv. Theor. Math. Phys. 2 (1998), 303–334.

[6] K. Kremnizer and M. Szczesny, Feynman graphs, rooted trees, and
Ringel–Hall algebras, Comm. Math. Phys. 289(2) (2009), 561–577.

[7] O. Schiffmann, Lectures on Hall algebras, Preprint math.RT/0611617.

[8] K. Yeats, Growth estimates for Dyson–Schwinger equations, Ph.D.
thesis, Boston University, 2008.

Department of Mathematics

Boston University

Boston, MA, USA

E-mail address: szczesny@math.bu.edu

Received August 12, 2009




