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A modern fareytail

JAN MANSCHOT AND GREGORY W. MOORE

We revisit the “fareytail expansions” of elliptic genera which have
been used in discussions of the AdSs/CFTs correspondence and the
OSV conjecture. We show how to write such expansions without
the use of the problematic “fareytail transform.” In particular, we
show how to write a general vector-valued modular form of non-
positive weight as a convergent sum over cosets of SL(2,Z). This
sum suggests a new regularization of the gravity path integral in
AdSs, resolves the puzzles associated with the “fareytail trans-
form,” and leads to several new insights. We discuss constraints
on the polar coefficients of negative weight modular forms arising
from modular invariance, showing how these are related to Fourier
coefficients of positive weight cusp forms. In addition, we discuss
the appearance of holomorphic anomalies in the context of the
fareytail.
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1. Introduction

The AdS/CFT correspondence [1-4] plays a central role in string theory.
While it has yet to be given a concise and precise mathematical definition,
it seems clear that part of the formulation involves an equality of partition
functions

(1'1) ZString = ZCFTa

where Zgiying is the partition function of a string theory (or M-theory) on a
spacetime (or sum over spacetimes) with asymptotics of the form AdS,, x K,
for a compact space K, and Zcpr is the partition function of a “holograph-
ically dual” conformal field theory defined on the conformal boundary of
AdS,,. The present paper discusses partition functions in the context of
AdS3/CFTy, in which case Equation (1.1) can be investigated with a high
degree of precision.
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We consider Euclidean AdSs; geometries whose conformal boundary
geometry is a torus. Thus, the partition functions depend on the complex
structure parameter 7 of the torus. The Fourier expansion of the partition
function, given by

(1.2) Z= Zc(n)qn_A
n=0

with ¢ = ™7, contains a pole when Im(7) — oo, corresponding to the light

states with n — A < 0. The partition function is uniquely specified by the
polar degeneracies using holomorphy and modular invariance. The main
result of this paper is the description of a sum which completes the polar
terms to the full partition function Z. The sum is roughly a sum of the
polar terms over a coset of the modular group SL(2,Z),! which is known
as a Poincaré series. One of the important novel insights of [5] is the con-
nection between Poincaré series and sums over different AdS3 geometries
with fixed asymptotic boundary conditions. This led to the proposal that
ZcpT, written as a Poincaré series, has the interpretation as a sum over
partition functions of string theory on different spacetimes with fixed con-
formal boundary conditions. Such an expansion of Zcpr has acquired the
name “fareytail expansion” in the physics literature.?

A closer inspection shows that the naive Poincaré series for the relevant
partition functions are divergent and must be regularized. Dijkgraaf et al.
[5] proposed a certain regularization which unfortunately does not equal
ZorT, but rather equals a related function. This function, Zopr, the so-
called “fareytail transform” of Zcpr, is of the form 2CFT = OZcpr where
O is a certain pseudo-differential operator. Therefore, the Poincaré series
could not be directly interpreted as a confirmation of Equation (1.1).

An important achievement of this paper is a regularized version of the
naive Poincaré series which is equal to Zcpr and not ZNCFT. Since we no
longer need to transform Zcpr, we have obtained an interpretation of Zcpr
as a sum over partition functions with fixed conformal boundary conditions.
This new version is therefore much more appealing from the point of view
of the AdS/CFT correspondence.

Tn the following we will abbreviate SL(2,Z) to T.

2The name refers to the fact that the sum over I', \ I' may be identified with
a sum over fractions d/c in lowest terms. These define Farey series. In the context
of black hole state counting the terms with ¢ > 1 are exponentially small and thus
represent the tail of the micro-canonical distribution of states associated with the
black hole geometry.
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This new regularization is an application of a beautiful paper by Niebur
[6], following up on earlier work of Knopp [7]. Niebur’s regularization reduces
to the one proposed by Denef and Moore [8] in the context of the OSV
conjecture [9] for Calabi-Yau manifolds with b2(X) even, and to the one
used in [10] for the partition function of pure AdSs gravity. Historically,
these methods go back to Rademacher’s expression for the partition function
p(n) of integers as an infinite sum of Bessel functions (see [11] for a modern
account) and to his work [12] expressing the modular invariant j-function
as a sum over I's \ I.

The new regularization is not only justified by stating that it is more
appealing from the point of view of AdS/CFT. It also solves some funda-
mental problems related to the fareytail transform. These problems recently
came to light in the course of some discussions initiated by Hirosi Ooguri,
during which Don Zagier pointed out that in fact Zcpr is not modular in
general. We give a simple explanation of this in Section 5.1 below. Thus,
the reliance on the mathematical properties of the fareytail transform in [5]
was a mistake and is erroneous.? Section 5.1 explains the problems of the
fareytail transform in more detail.

The fareytail transform has no strong support from physics either. In
particular, other studies of Equation (1.1) did not confirm the need for a
modification to Zcpr. For example, the first terms of the Fourier expan-
sions in Equation (1.1) match in the case of the D1-D5 system without
the need for the fareytail transform [13,14]. The fareytail expansions used
in attempts [8,15,16] to put the OSV conjecture on a firm footing require
Equation (1.1) without application of the fareytail transform. More recently,
the study of pure gravity in AdSs did not indicate any need for a fareytail
transform [17,18]. Finally, tests in four dimensions involving the singleton
modes in AdS5/CFT4 supported Equation (1.1) without the need for mod-
ification [19,20].

Once we have regularized the naive Poincaré series, we have to re-
examine modular invariance. We find that, in general, the regularized
Poincaré series do not transform covariantly under modular transforma-
tions. The partition functions still transform in a controlled way, which can
be made precise using the so-called period functions and Eichler cohomology.
Thus the choice of polar degeneracies is not arbitrary, as discussed in depth

3In the case of negative half-integer weight Jacobi forms, or negative integer
weight vectors of modular forms the fareytail transform does preserve modularity.
In the application to the OSV conjecture used in [8] this is the reason the authors
restricted attention to Calabi-Yau manifolds X with even bo(X).
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in Section 4. Alternatively, one can obtain modular invariance by addition
of a suitable non-holomorphic term, as discussed in Section 6.

The regularization does not spoil the semi-classical interpretation of
the Poincaré series. The modern fareytail is therefore well suited for use
in the original applications, in particular AdS/CFT and phase transitions.
In the context of the tests of the OSV conjecture the modern fareytail does
not invalidate the previous arguments in the regime of strong topological
string coupling, although it does lead to further corrections in the problem-
atic regime of weak topological string coupling. In Section 5.4 we comment
on the “entropy enigma” of [8], showing, in the context of a toy model for
the polar degeneracies, how in the Rademacher expansion the extreme polar
states give the dominant contribution to degeneracies close to the cosmic
censorship bound.

In the remaining part of the introduction we will review briefly the
connection between Poincaré series and sums over asymptotically AdSs
geometries. Also the new regularization will be motivated heuristically. The
connection between elements in I and AdS3 geometries was suggested in [21]
and refined somewhat in [5]. It is reviewed for example in [15,22,23] from
a supergravity perspective. Three-dimensional gravity has no local degrees
of freedom, so different geometries arise from different global identifications.
Euclidean AdSs is topologically equal to a solid (filled-in) torus. The asymp-
totic metric is given by

(1.3) ds* ~r2|d¢—|—idt/l|2+d—r2
. >

for 1 — 0o, where ¢ and t are, respectively, a spatial angular coordinate and
periodic time, [ is related to the cosmological constant. ¢ and ¢ satisfy the
periodicities ¢ +it/l ~ ¢ + it/l + n + m7. A homology basis of the torus is
given by two primitive cycles A and B with unit intersection AN B = 1.
We choose the A-cycle to be contractible in case of the solid torus. A choice
of A determines the filling of the torus and therefore the AdSs geometry.
The choice determines B up to multiples of A since AN A = 0. The choice
of A is made with respect to a distinguished homology basis « and 3, with
a N B =1. The periods of a holomorphic one form w over « and 3 are given
by fa w=1and [ gw="T. A and B are integer linear combinations of « and
0 preserving the intersection number. This determines that the two oriented
bases are related by an element of I'. The complex structure parameter of
the torus is then defined by

' [o o+d cd)h
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Since a choice of A determines B only up to a multiple of A we find that
AdS3 geometries are related to elements of I'oo \ I'. T's is the parabolic
subgroup of I' of elements

1 n

0 1

for n € Z. Note that the 7"’s correspond to equivalent asymptotic tori, but
that they represent different fillings of the tori. We can see what different
choices of A correspond to in gravity. For example when the primitive con-
tractible cycle is A(¢ + it) ~ 1, the spatial circle is contractible and we have
periodic time, this is thermal AdSs. In case we take A(¢ + it) ~ 7, the spa-
tial circle is non-contractible and thus we have a black hole geometry, this
is the BTZ black hole [24]. The Einstein-Hilbert action can be renormalized
to obtain a finite answer [25,26]. We find for the action of both geometries

271'1 2mi CI, CR
(15) Sthermal 24 (CLT — CRT) SBTZ = —ﬂ (_7 + ?)7
where cf, = cr = 5~. These actions naturally generalize to actions of other

geometries represented by I'so \ I'. Eventually, we are interested in the descrip-
tion of supersymmetric geometries, where the right moving part of the
boundary SCFT is in the ground state. States are therefore weighted by the
exponent of the holomorphic part of the action in the path integral. Such a
holomorphic action can be realized by adding an appropriate gravitational
Chern—Simons term. Our heuristic Ansatz for the gravity path integral is

(1.6) Zyran (T Z o m (),

This sum is already similar to one of the main results of this paper, (3.4). The
partition function is not convergent, so a suitable regularization is necessary.
We will determine the divergence and subtract that from the path integral.
We can rewrite the exponent for ¢ # 0 as

°L

cL l
—27mi 24 er a [e%¢) 2 )
(1.7) o 2mi (24 c C(chrd)) — e(—27r1§;) Z (c(lc'T—Hal)

=0

Convergence of the sum over (¢, d) can be shown for all but the term with
Il =0. We thus have to subtract the term with { =0 from the sum. We
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arrive at
(1.8)
e g
grav Z e 2 ) — ’I"(CL, C)a T(aa C) = B ’
X 0, c=0.

This is the regularization suggested in [10] for the partition function of
pure gravity in AdSs. In case of negative integer weight more terms need
to be subtracted. This was proposed earlier in [8]. Equations (4.8) to (4.10)
explain a very natural generalization of this idea to non-integer weight. We
propose that this is the proper way to regularize the gravity path integral in
AdS3 because in contrast to the fareytail transform the degeneracies are not
changed with respect to the CFT partition function and it holds for general
weights depending on the matter content of the theory.

As indicated earlier, our main interest lies in the study of supergravity in
AdS3 with a supersymmetric boundary theory. Dijkgraaf et al. [5] considered
the case of type II string theories on AdSs x K whose holographic dual is
an N = (4,4) superconformal field theory. A second application is to the
AdS3 supergravities with (0,4) supersymmetry. These arise in the context
of M-theory black holes. The relevant partition function of the SCFT is the
so-called elliptic genus. This is an index? and therefore one might hope to
find an exact semi-classical expansion of these functions. This gives some
motivation for expecting a fareytail expansion.

We denote the elliptic genus by x(7, z), where z is a vector in a complex
vector space. Standard properties of superconformal field theory show that
X(7, z) transforms as a (generalized) Jacobi form. In the case of the N' =
(2,2) elliptic genus, z is one dimensional. The dependence on z arises from
the presence of gauge fields in the bulk of AdS3. Applying the reasoning as
before, we expect an expansion of the form

_(ar+b z
i Kra~ 2 (Fdorra)

X~ (7, z) is a truncation of the Fourier expansion of x(7, z). This truncation
corresponds to states that are not sufficiently massive to form black holes.
The partition function x(7, z), written as in Equation (1.9), is a sum of the
light excitations over all the geometries given by I's \ I'. Section 3 presents
the mathematically rigorous fareytail for the elliptic genera. We refer to

41t is the character-valued index of the right-moving Dirac-Ramond operator.



110 Jan Manschot and Gregory W. Moore

Section 5 for more details on the physical interpretation and the special role
played by the constant term in the Fourier expansion.

We conclude the introduction by giving the outline of the paper. In
Section 2 we review relevant aspects of partition functions in CFT’s. Section
3 presents the modern fareytail, including the expressions for elliptic genera,
relevant for the D1-D5 systems and A/ = 2 black holes. The derivations are
relegated to the Appendix. Section 4 discusses possible modular anomalies
arising from the regularization, together with the constraints imposed on the
polar terms. We discuss applications of the fareytail expansion in Section
5 and indicate novel aspects of the modern fareytail. Section 6 discusses
potential holomorphic anomalies in the partition functions. We finish with
some concluding remarks in Section 7.

2. Modular invariance and elliptic genera

We review very briefly invariance under I' of conformal field theory par-
tition functions on a torus, and point out aspects that are important for
our discussion. A torus is conveniently represented as the quotient of the
complex plane by a lattice A, spanned by generators @ and 5 . A conformal
field theory on a torus does not depend on the size of the torus nor on any
absolute direction of the lattice vectors, so it naturally depends only on 7 =
(62 B+ilax g ]) /|@|?. The theory should furthermore be invariant under
large orientation preserving reparametrizations which leave the lattice invari-

ant. This is the famous group I' = @ b ta,byc,d €7, ad — bc = 1}.

d
The partition function of a bosonic conformal field theory on a torus is

defined by

‘R

(2.1) Z(r)=Tr (qLo—%q—io—g)-

A factor of (—1)¥ must be included depending on the boundary conditions
(Neveu-Schwarz or Ramond) when a partition function with fermions is con-
sidered. Z(7) must be regular in the upper half plane H : Im(7) > 0. Possible
poles occur only at ico U Q. Modular invariance has important consequences
for the content of holomorphic and anti-holomorphic sectors.

Elliptic genera are distinguished partition functions of supersymmetric
CF'Ts because they contain important topological information. We briefly
review now elliptic genera in N' = (4,4) and (0,4) SCFTs. Both appear
as boundary conformal field theory of certain supergravities in AdS3. N' =
(4,4) SCFTs arise in the context of D1-D5 systems, the SCFT is a sigma
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model with target space Sym™ (X) at the orbifold point in moduli space [27].
X is a two complex dimensional Ricci flat manifold. N' = (0,4) SCFTs arise
in the study of four dimensional A/ = 2 black holes, which can be described
by wrapped M5 branes with fluxes after an uplift to M-theory [28].

We use N = (2,2) notation to calculate the elliptic genus of N' = (4,4)
SCFT. The elliptic genus of an N’ = (2,2) SCFT is defined as a trace over
the Ramond—Ramond sector by

(2.2) X(1,2)x = Trrr(—) Ty gl glo 3t

F is the fermion number and given by 3(Jo — Jo). x(7,2)x is independent
of g, because the insertion of (—)f" projects to right moving ground states.
When the SCFT is a sigma model, the elliptic genus can be shown to equal
an integral of a Chern character times the Todd class over X. This point of
view leads to the following explicit expression for the elliptic genus [30,31]:

01 ( i) e
(2.3) /H lejj—;g 2mi&;,

where the &; are defined by

d/2

(2.4) o(Tx) =1+ c1(Tx) + - + capp(Tx) = [ [ (1 + 27i&y).
=1

X (7, 2) x reduces for different values of the parameter z to the Euler number,
Hirzebruch signature or A genus. 6; (1,2) is the odd Jacobi theta function.
For the definition see the appendix of [30].

The elliptic genus for a two complex dimensional Kéhler manifold X
with Euler number x and Hirzebruch signature o can straightforwardly be
calculated:

2
(25) X(T7 Z)X - _%X(T Z)KS + 832 <0 + ?)X) Wa
with
(2.6) X(7,2) K3 = 2493(7’ 2)° _ 294(7')4 — 0o(1)* 01 (7, 2)2.

03(7)? n(r)* n(t)?

Dijkgraaf et al. [32] explains how to write a generating function for the
elliptic genera of Sym™ (X), starting from the elliptic genus of X.
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Transformation properties of the elliptic genus under I' can be deduced
from the CFT and as well from Equation (2.3) [30]. Most important is the
case when ¢ (Tx) = 0. The elliptic genus transforms in this case as a weak
Jacobi form of weight £ = 0 and index m = ¢,/6 = d/4. Jacobi forms with
weight k and index m transform in the following way:®

(2.7) 2

z i YR [ TCZ - _(a b
¢<”(T)’j<v,r>) s <j(w>>¢(’ b <c d ) b
O(Tyz+ AT+ p) = (—I)Qm(’\+“)e (—m()\27' + 2)\,2)) o(T, 2), (A, ) € 72,

The transformation property in the second line follows from the invariance
of the SCFT under spectral flow. Spectral flow is a symmetry of the algebra;
the bosonic generators transform as

(2.8) Lo — L+ My + gwn,o, Jn — Jn + %A&mo.

Integer spectral flow maps Ramond states to Ramond states and Neveu—
Schwartz to Neveu—Schwartz states, whereas half-integer spectral flow
exchanges the states in the two sectors. The elliptic genus does not transform
as a Jacobi form when ¢;(Tx) # 0, but instead transforms with a shift.

We describe now some important properties of Jacobi forms. Proofs can
be found in [33]. We expand a weak Jacobi form as a Fourier series

(2.9) (1, 2) = Z c(n, g™y

n>0,l€Z

The transformation property that is based on spectral flow determines ¢(n, [)
to be a function only of 4mn —[? and | mod 2m. A Jacobi form is called
a “weak” Jacobi form when c(n, ) is only non-zero when 4mn — 2 > —m?.
Furthermore, we can deduce that ¢(7,z) can be decomposed into a vector-

valued modular form and theta functions

(2.10) G(r2) = Y (1)l 2),

p mod 2m

5Throughout the paper we use the convention common in the math literature that
e(z) := ™. We will also frequently use the notation v(7) = 25 and j(v,7) =
ct + d where a, b, ¢, d are the familiar elements of v when written as a 2 x 2 matrix.
Warning: the use of j(7,7) in the mathematics literature is not consistent, it is also

sometimes used to denote (c1 + d)% multiplied with the appropriate unitary factor.
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where (1 is a coset representative Z/2mZ. h,, (7, z) and 0, ,(T, z) are given by

(2.11)
hM(T) — Z cu(n)qn/4m7 em,u(Tv Z) — Z q12/4m l7

n=—p? mod 4m Lez
I=p mod 2m

with c,(n) = (—1)2mlc(”4inl:, ), I = mod 2m. All the information concer-
ning the Fourier coefficients of ¢(7,2) is thus captured in h, (7). The theta
functions transform as a modular vector under modular transformations.
The generators S and T of I' transform 6, ,(7) to

-1 z T mz? I
e (53) Ve (7)) X, e (o) oustrd

v mod 2m
2

(212)  Opu(r+1,2)=e <Zn> O (7, 2).

For an unambiguous value of the square root, we define log z to be given by
log z := log |z| + iarg(z) with —7 < arg(z) < w. For general transformations
under T', we define a matrix M ()} by

z v me2? 1
= 2 - K
213) O (200 ) =it (25 ) M)l 2.

Such that we have for h,(y(7)) by Equation (2.7)

(2.14) hu(y(1)) = G (7, 7Y M () ho (7).

The introduction of M(7)}, is convenient for a generalization to similar par-
tition functions, as for example elliptic genera of N’ = (0,4) SCFTs.

We will very briefly review the elliptic genera of N' = (0,4) SCFT arising
in the study of N'=2 M-theory black holes. We refer to [15, 23, 28, 29,
34] for the precise details. Denef and Moore [8] perform a similar analysis
which results in the same partition function from the point of view of ITA
string theory. Elliptic genera in an N' = (0,4) SCFT are defined in a similar
manner to those in N' = (2,2) SCFT. However, we need to insert a factor
of F? in order to obtain a non-zero answer, because of the cancellation
between bosonic and fermionic degrees of freedom on the supersymmetric
side of the N/ = (0,4) SCFT. This sum projects on half-BPS states on the
supersymmetric side. The CFT arises after reducing the degrees of freedom
from an M5-brane with world volume ¥ x T2 to T? where ¥ is an ample
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divisor Poincaré dual to P € H2(X,Z) in a Calabi—Yau three-fold X [28,29].
We will often write P in place of 3 for quantities that only depend on the
homology class of X. The N = (0,4) elliptic genus of this SCFT is given
by [15,34]

X(7:2)p = T | 3P (P Q/2)

(2.15) ><e(T(Lo—gz>—7_'(L0—;i>+z~Q>:|,

where Q € H*(X;Z) are M2 brane charges of the black hole (generated by
fluxes on the M5 brane) and z € H?(X;C).

A spectral flow exists in this SCFT similar to the spectral flow in N' =
(2,2) SCFT allowing one to give an analogous “singleton” decomposition
in terms of theta functions. In order to write this out we need to introduce
some notation. The lattice Ly := t5(H?*(X;7Z)) C H*(P;Z) has signature
(+1, =b271) where by = dim Hy(X). The integral quadratic form on Lx can
be written in terms of the intersection numbers dg. of X by introducing an
integral basis D, for Hy(X,Z) and writing v? = dp.P*v%v°. The sublattice
Lx @ LJX C H?(P,7) is of index det Dy, where Dy := dgp.P¢. We choose
a set of glue vectors, p, i.e., a rule for lifting elements of the discriminant
group [u] € D= H*(P,Z)/(Lx ® L) to u € H?(P,Z) so that any vector
v € H%(P,Z) can be written v = vl + p + v+, with vl € Lx, vt € L{. Now
H?(P;Z) ® Q has a projection to the negative and positive definite sub-
spaces and we denote this projection by v — v, @ v_. If X, Y € H?>(P;Z) ®
Q and f is holomorphic introduce the notation

(2.16)
E[f(1)X - Y] = e 2/ XYom2miJB) Xe¥e - pA + B] = E[A] E[B].

We now introduce the Siegel-Narain theta function for the lattice Lx:

(2.17)
% <J;+u”+v)2+ <J;+u”+v> : (z—l—];)

Ou(T,2) = Z E
vELx
where z € Lx ® C and the projection to (z4,z_) is extended C-linearly.
Note that ©,, is non-holomorphic in 7. In terms of these theta functions we
have the decomposition:

(2.18) Xx(7,2)p = Zh“(T)QH(T, z),

9
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Here the functions h,(7) are holomorphic in 7 and have no singularities in
the upper half plane.

Modular transformations act on the argument of the theta function
according to

(2.19) v (T 2y, 2 ) = (GTH’ e )

ctr+d cr+d er+d

We will abbreviate (2.19) as - (7,2). Now, for generic SU(3) holonomy
Calabi—Yau, duality symmetries in string theory imply

Cc 22

(2.20) x(y-(1,2)) = M(y) (et +d)™*(c7 + d)'/* E [M2

} x(7,2),

where M is a multiplier system given in [8]. From this one deduces that
the vector of modular forms h,(7) transforms with weight —sz — 1. These
functions have a Fourier expansion

(2.21) ha(r) = 3 Hy(m)e((n — A7),

n>0
where

crL 1
(2:22) Ap= By + Max,ery 5(” +pt)?,

and cp, = x(P) = P3 + c3(X) - P is the Euler character of a generic smooth
divisor in the linear system |P|. (In taking the maximum note that the
quadratic form on L% is negative definite.) For g = 0 the leading coefficient
H,—o(0) = (=1)!7=1Ip where Ip = %3 + % is the Euler character of
the linear system |P|.

There is also a supergravity viewpoint on the decomposition
Equation (2.18). It can be regarded as the singleton decomposition of the
M5-brane partition function. The general singleton decomposition of the
Mb5-brane partition function was given in [35], where it was explained that
the discriminant group D is the group of Page charges in the presence of
G-flux.

Summarizing, we have seen the relevance of vector-valued modular forms
in the study of partition functions; the weight and multiplier system are
determined by the content and symmetries of the theory.
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3. The modern fareytail

The previous section introduced elliptic genera and some of their properties.
It motivated the study of vector-valued modular forms f,(7) of non-positive
weight w. This section describes a fareytail expansion for vector-valued mod-
ular forms and subsequently for elliptic genera. The novel aspect of our
discussion is the absence of the “fareytail transform.” A summary of the
derivation of the result is given in Appendix A. Section 4 examines how the
regularization preserves the modular properties.

3.1. Vector-valued modular forms

This section states the fareytail expansion of vector-valued modular forms
in detail. Let us, then, consider a vector-valued modular form f,(7) trans-
forming under I'; as

(3.1) fu(y(7) =37, 7)) M (7). fu(T).

We will be concerned with forms of weight w < 0, where w is not neces-
sarily integral. For example, for the elliptic genus w = —1/2. For the OSV
conjecture w = —1 — by /2. We therefore must choose a branch of the log to
define j(v,7)" and we take log z := log |z| + iarg(z) with —7 < arg(z) < .
For the (2,2) and (0,4) elliptic genus the multiplier system M (y) will turn
out to be unitary matrices. See Appendix C.

We assume M (T') is diagonalizable, and hence f,, has a Fourier expansion

(3.2) fum) = 3 Fulm)g™ 2,

where F),(0) # 0.5 Poles of f,(7) occur only at the cusps, i.e., y(ioco), v € I.
The pole at 7 = ico arises from the polar part f~(7) of the partition function

(3.3) fu(m) = Z F,(m)gm 2.

m—A,<0

The Fourier coefficients F,(m) can be calculated by the Rademacher circle
method [5,11,36]. Sufficient information to calculate them are the Fourier

In general, we follow the notation of [5]. However, we have changed the sign of
A, relative to this reference. Also, following [33] we denote the index of a Jacobi
form by m, whereas k is used in [5]. In this paper, we use w for the weight of a
vector-valued modular form; k is the weight of a Jacobi form.
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coefficients F),(m) for m — A, <0, the weight w and the multiplier sys-
tem. Starting from the Fourier coefficients for general m, we can derive the
fareytail expansion of the partition function as a sum over the limit coset:

th%oo(Foo \ F)K = limg 00 Z\C\SK Z ldI<K .

(eyd)=1
Some details are given in Appendix A. The result is a sum over the

polar part

fulr) = §Fu(A#> +5 Z Hm Z
n—A, <0 (Too\I) ke
(3.4) X J (3, )T M () F (n)e((n - A”)V(T))R<W>'

Here R(z) is the function

(3.5) R(x).:1—m_w)/x ez dz_m_w)/o dz.

The expression F),(A,) vanishes except when A, € N, in which case it is
given by Equation (A.7). We stress that Equation (3.4) is derived for general
non-positive weight w, including integer and half-integer cases. The exclusion
of positive weight is a consequence of the bound p > 1 in (B.1). Of course,
the well-known technique of Poincaré series is applicable for w > 2, since the
sum is convergent in that case. Naive application of this technique for the
reconstruction of a modular form with w < 0 from its polar part would not
have the first term in (3.4) and would not have the regularizing factor R(z).
Note that the first integral expression in (3.5) shows that R(x) approaches
1 exponentially fast for Re(z) — oo, while the second shows that R(x) ~
% for x — 0. Using these simple estimates, convergence of the sum for
w < 0 is established in Appendix A.
Equation (3.4) can be rewritten in the following form:

fulr) = EuA) -5 Y dm Y

1—w

n—A, <0 (Poc\D)
o [l = A
6oy xarpnm { TSRO s

For integer weight r(,7,n — A,) can be simplified to

e((n=0,)2) Sl 4 (zinzsel)’
>0 rnmn = A) = j(w)w< ) , c#0,
0, c=0.
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This is the subtraction used in [8,10] to write a non-positive weight par-
tition function directly as a fareytail. The same regularization had been
previously used in the math literature in [7]. The generalization R(z) is due
to Niebur [6].

It is natural to ask if one can turn things around, that is: starting with
a projective representation M (), and a non-positive weight w, can one
choose arbitrary coefficients F),(n) with n — A, < 0 and use Equation (3.4)
to construct a corresponding modular form with specified polar part? In
general, this is not possible. We discuss this in detail in Section 4, drawing
on the technical results of Appendix A.

3.2. Application to elliptic genera

As explained in Section 2 elliptic genera may be expressed as sums of theta
functions with coefficients h,(7) forming a vector of modular forms. The
theta functions used in case of N' = (2,2) elliptic genera, transform as

(38)  Ouulr2) = M(vwWem,y (00 g

We will insert Equations (3.4) and (3.8) in Equation (2.10). The coefficients
F,(n) are in this case the Fourier coefficients of the elliptic genus, c¢(n,{) =
cu(4mn — %) with £ = 1 mod 2m. Note that in this case A, is given by -
mod Z and F),(A,) is only non-zero when A, € N.

Thus we find for the elliptic genus of a Ricci flat manifold

pmod 2m
]. . 2
tyo Y, gm0 c(mn— 1)
n—4l72n<0 (Poc\I) &
z cz? omiln — L
3.9 —— - R dm= )
(39) Xe(TW(TH_ et +d mc¢—|—d> ( cler +d)

Note that we cannot write ¢,(0)0,,,(7) as a sum of simple exponential
factors over I'so \ I' but it could, in principle, be written as such a sum
over I'ox \ I'/T'sc by Equation (A.7). Since the weight of the vector-valued
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modular forms is —% in this case, R(z) can be expressed as

(3.10) R(z) = erf(y/x) — 2\/56_:0,

s

where erf(z) = % Iy e~**dt, which is the error function.
Analogously, the (0,4) elliptic genus can be written, using the notation
introduced below Equation (2.15):

X7 p = 3 SHAAOu(r2) 45 3 T ()i, )3, 7) B

i (T \I)

X[_CTidZ;] > HM(n)R<W>

n,pun—~A, <0

BI)  xem-anm) X Blpmdte ()|

ct+d
q€Lx +ul +P/2

The exponentials of v(7) are weighted by the quantity

1
(3.12) n—A, - §q3
In the type ITA setting discussed in [8] this quantity is the denoted —gp and

it can be written in terms of DO- and D2-charges (qo, Q4) using

) 1
(3.13) do =0 — 5 D" QuQs,

where D% is the matrix inverse of Dgp = dgpeP¢. In this form, the polar-
ity condition §o > 0 is analogous to the condition n —12/4m < 0 in the
(2,2) case.

4. Anomalies and period functions

Let us now return to the question asked at the end of Section 3.1. We
have seen that the physical considerations motivate the following problem
in mathematics:

Suppose we are given a weight w < 0 and a rank r multiplier system
M () on I'. We wish to construct a vector-valued modular form, transform-
ing with weight w and multiplier system M with a prescribed polar part.
That is, the coefficients F},(m) in Equation (3.2) with m — A, < 0 are pre-
scribed. Note that consistency of this data requires M (TZ)Z = e(—0,L)d;,.
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In general, there is an obstruction to finding such a vector-valued form.
We will show that the obstruction is measured by the non-vanishing of a cer-
tain vector-valued cusp form of weight 2 — w and multiplier system M (y)*.

Let us begin by choosing a vector  with components d,, p=1,...,r,
some of whose components are positive. We will attempt to construct a
vector-valued modular form which behaves like

(4.1) f(1) = e(—0T) + regular,

as ¢ — 0. Here e(—07) is a vector with components

(4.2) e(—07) = (=07, 0w >0,
0, 8, <0

and “regular” means there is a g-expansion with non-negative (possibly frac-
tional) powers of g.

At first, it would appear to be straightforward to construct f(7) by the
method of images. Introduce the vector of functions

s/ () o= (1) M () e(=d(7)).

Then it is elementary to check that

(4.3) (1) = j(7,7) 7" MF) O (3r),

(9) (1) = s

and hence Sv5 5 (1) for v € I'x. Accordingly, we attempt to average:

(4.4 SOnLy S s,

~YEL L\

Formally, from Equation (4.3) we find S (37) = j(5,7)*M(y)S® (7).
Moreover, the cosets [+1] lead to the prescribed polar term and the remain-
ing terms in the sum are regular for 7 — ico. It would thus appear that we
have succeeded, but in fact we have not.

The problem with the naive attempt (4.4) is that for ¢ — oo we have
]39) ()] ~ |eT|™™ and since we must have weight w < 0, the series does not
converge. We therefore must regularize the series.
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To motivate our regularization let us suppose for the moment that —w €
N. We use the identity

a 1

(4.5) v(7) = c m7

which is valid for ¢ # 0. This allows us to write
(4.6) e(~07(r)) = eIt
An evident regularization would be to subtract the first |w| terms from the

. . omi—2— .
Taylor series expansion of e <«r+& around zero. Thus we introduce the
regularized sum:

5 1
(4.7) Stes(T) =5 2 (@) +9 (7)),
€T\

with

) el IR

0 e —wpsr—1 - i85\ o270
(4.8)  ty)(1) = =4y, 7)) M (v )jz:oj' ( o d)> (2mid) e .
Here and in what follows, we understand expressions like (27id)7 e_2”.i‘$% to
be vectors whose pth component is zero if §, < 0 and is (27id, )’ e 2m0u T if

9, > 0, as in Equation (4.2). Note that t(f) (7) is a polynomial in 7. Moreover,
the sum in Equation (4.7) is convergent.”

Now, the regularization has been carried out for w integral. Remarkably,
it may be generalized to non-integral w as follows. Returning to the
expression for t(f) (1) we recognize a truncated exponential series. The lat-
ter can be written in terms of the incomplete Gamma function using the
identity (see Equation (A.16) below):

1o ST il e,

k=0

"The convergence is actually a little delicate. One must group together terms
with positive and negative values of d to avoid a logarithmic divergence in the sum
over d. Once this is done, convergence can be shown for w < 0. See Appendix A for
more details.
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Using this we may write tﬁf) (1) = 0 for ¢ = 0, while for ¢ # 0,

(410) 80() = 50,7 M el gy [ e
Y,

where the factor multiplying M ~!(y) on the right is the vector whose uth
component is zero for §, < 0 and

1 oo
e “z7%dz,

(4.11) e(—5u7(7))m -

c(cr+d)
for 6,, > 0. In this form the regularization (4.10) still makes sense for w non-
integral, and the regularized sum is again convergent. This follows from the
x — 0 asymptotics of R(x).

Of course, now our regularization has spoiled the formal covariance under
modular transformations! However, it turns out that it has spoiled it in a
controlled way because tg(s)(r) is related to certain period integrals. For any
function h(7) on H decaying sufficiently rapidly at Im(7) — oo, we can define
its period function

(4.12) p(r. 5, B) = F(ll—w) /y " RSz — )z,
Then we claim that

(4.13) 19 () = p(r,y " (~ioo), o),

where

(414)  gD() = jly, )" () (~2mi0) e (5y(2)).

Now, gg(s)(z) transforms simply, and from this one can verify that

(4.15) tO(31) = j(5,7)“M () [ti‘? (1) = p(r, 7_1(—100)7E) :

Because of the second term in Equation (4.15) our regularized sum does not
transform covariantly. Rather we have

(16) S G) = i3, T M) () — () M)y

- . )
X Z p(7—77 1(_100)7g§'~y)>'
Lo \I'
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Now we would like to simplify the “anomalous” second term on the right-
hand side of Equation (4.16). To this end we would like to exchange the
summation with the integration in the definition of the period function.
Although the second term involves an absolutely convergent sum, we must
be very careful about exchanging the sum and integration as well as redefin-
ing the sum by v — v3~!. Using results of Niebur [6], which are further
explained in the appendix, we have

1 1,
52 p(T,'y 1(—100),g§?>
r

< \I'
(4.17) = p (7,757 (=i00), G7) + (3, 7) " M(5) 7 F(9) - F(6),
where
(4.18) GO (r) = 1 Z ggd)(T),
2 T\

and F'(9) is a vector of constants given by

2 5 l—w ©©
WZ T ch 2K,(0,,—6,), 0, €N,
6,>0
0, ou €N,

(419)  F(8), =

where 0, is the vector all of whose components are zero and K. is the
generalized Kloosterman sum of Equation (A.5).

The net result of all of this is that in our attempt to construct the
weight w modular vector with polar term (4.1) the method of images leads
us — more or less uniquely — to define a vector of functions S’ge)g(T) =

F(5) + Sggg(T). As 7 — ioo this vector indeed behaves as
(4.20) Sggg(T) = ¢(—07) + regular.

However, it satisfies the transformation law:

(4.21) St (37) = (7, 7) " M(F) | Sy (7) — 9O (7,7) |,
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where
(4.22)
1 —ioco
O)(7,3) = p(r, 5~ (00), GO) :/ GO (2)(z — 1) "dz
p(7,7) == p(T,7 " (c0), z2)(Z—T Z
(7.7 = plr7 00,6 = s |G -7
is a vector of functions defined by
(4.23)
1 . w— — v\ * : —w
fo)(Z)=§ D i)Y (M) (—2mi6,) T e(8,7(2)).
YET \I 6,>0

The vector of functions p(®) is an obstruction to the existence of f(r).

In contrast to Equation (4.4), the series (4.23) for G(®(z) is nicely con-
vergent. It therefore follows that G(¥)(7) is a vector-valued modular form of
weight 2 — w transforming according to

(4.24) GO (yr) = j(y,7)> "M ()G (7).

In fact, G is a vector-valued cusp form, that is, the components vanish
for 7 — ico UT'(ico). This follows since it is clear from the series expansion
that G vanishes for 7 — ico. We give an explicit formula for the Fourier
coefficients in Equation (4.33) below.

Lemma 3.2 of [6] shows that the period integral vanishes if and only
if G vanishes. Therefore, our cusp form G| if non-vanishing, forms an
obstruction to constructing the vector valued form with prescribed polar
term . The shift in Equation (4.21) by p® represents an anomaly under
modular transformations. This is a familiar situation in quantum field the-
ory: a divergent quantity is formally invariant, the regularized quantity
breaks the invariance, but in a controlled way. Thus the problem of con-
structing a true modular form with negative weight and specified polar part
is a kind of anomaly cancellation problem: one must form linear combina-
tions ) 5 Qgé’ge)g so that the associated cusp form cancels. The coefficients 25
are exactly the “polar degeneracies” that play a crucial role in the physical
discussions of the fareytail transform and the OSV conjecture.

In fact, the analogy goes deeper, since the anomaly is in fact related
to a cohomology theory known as Eichler cohomology. It follows from the
definition of the period vector that we have the transformation law given in
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Equation (A.20). Therefore

(4.25) PO (1, 7) = pO(r,93) + (3, 7) " MH) pO (57,7) = 0.

Defining the standard slash operator on functions f(7,):

(4.26) FEANA =37 MEF) T f(37,7),

we see that the obstruction to modularity lies in the space of functions
satisfying

(4.27) FCA) = FEA3) + FEI A =0.

If we interpret f(7,7) as a cochain on the group I" with values in functions of
7 then (4.27) is the statement that f is a one-cocycle. A one-coboundary is
a function of the form f(-,v) = b(-) — b(-)|M~ where b(7) is a single function
of 7. We would like to define a cohomology group as one-cocycles modulo
one-coboundaries. Of course, the transformation law (4.21) shows that S’ge)g
trivializes p(®, so to get an interesting theory we need to restrict the I'
module of functions in which we compute cohomology.

When the weight w is a negative integer, p(®) (1,7) is a vector of poly-
nomials of degree < |w|. In the scalar case the space of obstructions to con-
structing a modular form with prescribed polar part is H'(T, Viw|) Where
V}w| is the vector space of polynomials of degree < [w|. For [w| ¢ N, we are
forced to work in a larger space of functions, those with at most polynomial
growth at the cusps. We refer to [7,37,38] for more details.

We conclude by giving some more explicit conditions on the polar degen-
eracies Qg for anomaly cancellation. Note first that p(®) (7, T) = 0 so it suf-
fices to check

(4.28) ZQw (1,58) =0

since S,T generate I'. In the case of —w € N the coefficients of such a
period polynomial are calculated by f 10 G (8) (2)2°71dz, s € N. Such inte-
grals are known as Mellin transforms. When the Fourier expansion of G(9)(7)
is given by

(4.29) GOmu= Y uDn)ug"™,  au=06,— 6],

n+a, >0



126 Jan Manschot and Gregory W. Moore

then the Mellin transform M(G®), s) can be calculated to be

(4.30) MG ) = I'(s—1) i (u(é)(n) .

(—2mi)® pi, (n a)s

These quantities can be analytically continued to general values of s. Series
like > (w0 % are known as L-series. Thus, anomaly cancellation can
be expressed in terms of L-series.

In the case of w half-integral the period functions are much more com-
plicated than polynomial, but can be expressed in terms of error functions.

For example, for w = —1/2

(4.31) / .
— e/ uy (n v (3 . _
PO (1), = F(3/2)n+;>0 or(n +(a:))3/2e((n +a,)T)I <2, 27i(n + a”)7'>.

The upper incomplete Gamma function can be written as
(4.32) ['(3/2,z) = 2'/%e™% + \/;erfc(ﬁ),

where erfc is the complementary error function, erfc(z) = 1 — erf(z).
Returning to the case of general weight, for completeness we give the
Fourier decomposition of G(9):

(4.33)
GO (1) = (—2mid,) Ve (8,7)0(5, > 0)

+i(—2mi)*v Z e((€+5u)r){z % K.(0+6,,0,)

£46,>0

x (6,004 6,2 1, (4” L+, )5,,)}

with generalized Kloosterman sum
(4.34)

A —im(2—w)/2 A\ v e (s @
Kol +6,,6,) =e > e[0T ) ea)) e(af).

C
0<d<¢;(d,c)=1

This is a straightforward application of the Poisson summation formula.
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Besides calculation of the Fourier coefficients of G(9)(7) directly, a decom-
position of G(%) (1) in terms of a basis of cusp forms is instructive as well. This
is potentially useful since we have learned that the obstruction to forming
a good modular form with prescribed polar term lies in a space isomorphic
to the space of vector-valued cusp forms S(2 — w, M). Let us restrict atten-
tion to the scalar case for simplicity. We denote an orthonormal basis of
the appropriate cusp forms by H7(7), with j = 1...dim[S(2 — w, M)]. The
Fourier coefficients of H7(7) are defined by

H(r) = 3 W (g

n>0

with a = 0 — [§]. The Petersson inner product calculates the coefficients of
GO (1) with respect to this basis. By unfolding of the integration domain
we find

e )]

(4.35) GO () Hi(r)y
I'\H Y

where x and y are, respectively, the real and imaginary parts of 7. The
question whether a given set of polar terms gives rise to a vector-valued
modular form is now reduced to the finite set of conditions:

(4.36) Vi > Qshi([6]) =0.

>0

This is a difficult question to analyze in general, but is potentially tractable
for the cases when a concrete basis of S(2 — w, M) is known.®

In the case of (2,2) elliptic genera, we have to consider vector-valued
cusp forms. These vector-valued cusp forms can be mapped to scalar cusp
forms of congruence subgroups [33] with weight 2 — w. The dimension of the
spaces of these cusp forms is expected to grow linearly in m [39]. A more
precise study shows that the space of obstructions can be related to a proper
subspace of the space of cusp forms known as the Kohnen -+-space [40].

In the case of (0,4) elliptic genera as we scale P — AP a rough estimate
suggests the number of polar terms scales as A>3, whereas the dimension

8 As a measure of the difficulty involved suppose the weight w = —10. In this case
hi(|8]) = 7(8) are the famous Ramanujan functions. We are trying to construct
integral linear combinations of these coefficients which vanish.
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of the space of relevant cusp forms scales only as \”>. We refer to [41], were
a more precise calculation of these quantities is performed.

5. Applications of the fareytail expansion
5.1. The fareytail transform revisited

We now put into the present perspective the discussions of the fareytail
transform which have appeared previously in [5,22].

First, the transformation law (3.1) makes clear why the fareytail trans-
formation is flawed in general. In the present context, we would use the
operator O = (qd%)l_w which formally transforms modular forms of weight
w to modular forms of weight 2 —w. Being a (pseudo-)differential oper-
ator it cannot change the multiplier system M (). On the other hand,
substituting vy = —1 in Equation (3.1) we find f,(7) = e*i”“’M(—l)ny(T).

Since the f,(7) are independent functions of 7 we conclude that M(—1)% =

: I
e™ 4. Since the multiplier system does not change under the fareytail trans-
form we must have ™ = ¢™(2=%) jmplying 2™ = 1 implying that w is
integral.”?

On the other hand, the fareytail transform is valid in the case of non-
positive integer weight. We summarize the arguments from [5,22]. In this

w
case the operator (q%) really does map a modular form of weight w to
a modular form of weight 2 — w thanks to Bol’s identity

(5.1) L™ [(cr +d)~ (“Hbﬂ = (e +d)" (L) (‘” + b),

ct+d ct +d

where L := qd%. Bol’s identity is valid for any non-negative integer n and
any suitably differentiable function f(7). If f(7) is a modular form of weight
w and with a pole for ¢ — 0, we define f(7) := Of(7). Using a regularized
Petersson inner product one shows that f (1) is orthogonal to non-singular
modular forms and is hence uniquely determined by its polar part [22].
Therefore, the convergent Poincaré series of weight 2 — w obtained by aver-

aging the polar part of f must in fact be equal to f.

9The reason adduced by Don Zagier for the failure of the transform for w half-
integral was based on results concerning the field of definition of the Fourier coef-
ficients of modular forms.
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Consider for simplicity the case of a trivial multiplier system, such that
we have

w ..at+b
0 3 s +19) = 3 3050 (er + ) ey (~2ris )]

Too\I' 6>0 I \I' >0
(5.2) => D) 9 (oe(—5¢)> v,
oo \T 60 2-w

using Bol’s identity to write the second line. Note that in the first line we
can exchange summation and differentiation on the left-hand side, but not
on the right-hand side. The second line is indeed the claimed Poincaré series
expansion of the polar part of f. Thus, we have recovered the previous story.
Clearly, the operator O annihilates the constant term in the Poincaré series
as well as the regularizing term t@ (since the latter is a polynomial in 7
of order |w|). Also modular anomalies would be annihilated by O, thereby
removing the any constraints on the polar terms.

5.2. AdS/CFT interpretation

The introduction motivated the Poincaré series as a sum over classical
geometries. We have seen that this semi-classical expansion is remarkably
accurate for the partition functions of BPS states. The sums given by Equa-
tions (3.4), (3.9) and (3.11) are however more involved than the gravity
path integral described in the introduction. The elliptic genera contain a
theta function and the polar part can possibly consist of many terms. We
will briefly discuss these aspects here and point out a subtlety with respect
to the constant term of the partition function. This subtlety is new since
the fareytail transform, present in previous discussions, would annihilate the
constant term.

The dependence on z in Equation (3.9) is a consequence of the fact
that we are not dealing with pure gravity but with a reduction of Type IIB
string theory to AdSs. The parameter z arises since the bulk contains SU(2)
gauge fields. It corresponds to a Wilson line from the three-dimensional
point of view [5]. States in the bulk are also well described in six-dimensional
supergravity on AdS; ® S3. The z variable couples then to the momentum
of spinning particles on the S3. In the (0, 4) elliptic genus the parameters y
arise similarly from the presence of a number of U(1) gauge fields in the bulk.
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Equation (3.9) contains a sum over n — % < 0. The contribution of
these states in thermal AdSs to the full elliptic genus, is given by

(5.3) X(12)" = Y culdmn — 1) i Oy (7, 2).

—m41<u<m
4mn—p2<0

This partition function counts only the “light” excitations of thermal AdSs.
These excitations are typically Kaluza—Klein modes or (charged) point par-
ticles. The charged point particles can be branes wrapping cycles in an
orthogonal compact manifold. The theta function arises from the singleton
modes. The cut-off on the contributing states appears to be equal to the cos-
mic censorship bound for black holes. This bound is given by 4mM — J3 > 0
with M = Lo — §5 [42]. The “light” excitations are thus exactly those states
which do not collapse to a black hole in thermal AdSs. This is the regime
where counting of the degeneracies in supergravity could be reliable. For a
meaningful comparison between supergravity and CFT, we apply spectral
flow to transform the trace over the R—R sector to the NS-NS sector. To
avoid confusion we will denote the eigenvalues of Ly — g4 in the NS sector
by nng. de Boer and Maldacena et al. [13,14] have shown that the supergra-
vity degeneracies indeed match with the CFT degeneracies for small values
of nng, in particular nys < 0. The computations on either side of the cor-
respondence do not match for states with a higher energy. This suggests
that gravitational degrees of freedom start contributing at this level. Since
nng = 0 is the smallest value of nyg which satisfies the cosmic censorship
bound this is not surprising [5]. The fareytail expansion of the elliptic genus
(3.9) is a sum of the light excitations in all the black hole geometries. The
excitations that would collapse into the black hole are excluded, since those

states are counted by another classical black hole geometry in the sum.
12

The exponent of the classical action is multiplied by R (W) As
explained in depth in previous sections, this factor is indispensable for a
proper convergence of the gravity path integral. Moreover, it has the effect

of a smooth cut-off on the contributions of the light excitations in thermal

22
AdSs to the geometries with ¢ # 0, since R (%) is exponentially

close to 1 for |n — %| > 1, and is zero for |n — %\ = 0. The geometries
with complicated topologies (¢ and/or d > 1) are similarly cut-off.

We would like to draw attention now to the contribution to the elliptic
genus of states with 4mn — [2 = 0. Half of these states are counted by the
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term

Z %CH(O)QTH,H(’R Z),

pmod 2m

which appears separately in Equation (3.9). Comparison with the Fourier
series of the elliptic genus, (2.9) and (2.11), shows that the sum over I'oo \ T’
contains an equal term. This suggests that half of the states at n — % =
correspond to black holes, whereas the other half are stable states in thermal
AdSs. Since these stable states in thermal AdS3 do not contribute to the
black hole states, their interpretation is more subtle than the states with
4mn — [? < 0. The way the states at the threshold appear in the partition
function leads us to suggest that these excitations are so close to a collapse
in thermal AdSs, that they would collapse into the black hole when added to
a black hole geometry. A more quantitative description of this phenomenon
is highly desirable.

At a heuristic level the factor R

2mi nfi .
miin—p can be understood in a
c(et+d)

similar way as the “fraction” of light excitations with a given value of 4mn —
[ in thermal AdSs, which can exist as a stable excitation of the black hole
given by (¢, d). The other states are unstable and will collapse into the black
hole. Note that this quantity is in general complex so such an interpretation
is heuristic, at best.

Finally, we comment on another less understood aspect of the Poincaré
series and AdS/CFT correspondence. We have argued that the states counted
by the theta function are pure gauge in the bulk and only dynamical on the
boundary. Therefore, these states should not be summed over all differ-
ent bulk geometries. This interpretation implies that all non-polar states
are black hole states. This statement might be questioned for the following
reason. The singleton degrees of freedom are not just given by the theta
function, since these enumerate only the primaries. The descendants of the
primaries should also be included, since they are also excitations on the
boundary, and not to be summed over all geometries. In addition, Wit-
ten [17] explains that the descendants of primaries should not be considered
as black hole states. Since the descendants are not black hole states, one
should sum these descendants over all geometries. In other words, in the
Poincaré series for f,,(7) one would like to remove the condition n — A, < 0
and include also the descendants of the polar primaries.

Except for a special case, this does not seem to be allowed by the anal-
ysis of this paper, since the non-polar terms lead to non-vanishing obstruc-
tion forms with a polar part. However in the case of weight 0, and trivial
multiplier system, meromorphic obstruction forms can be written as the
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derivative of a meromorphic weight zero form, such that the integrand of
the period function is a total derivative. Since the boundary of the inte-
gration domain are two equivalent cusps under I', the modular anomaly
vanishes. Also non-polar terms can therefore be included in the Poincaré
series without affecting modularity. Unfortunately, we are not aware of a
generalization to the vector-valued case. A possible way out might be that
the non-polar terms should not be taken into account in the sum, since the
contributions of states with less energy is already cut-off, R(z) = 0.

The polar states in the case of the N' = (0, 4) elliptic genus have a similar
interpretation of states which are not massive enough to form black holes.
They include massless supergravity modes as well as M2-branes and anti-
M2-branes [16]. In addition there are other exotica such as M5-black rings,
Z, quotients of AdS3 x S? and even more complicated geometries. We expect
these are all dual to the multi-centered D6 anti-D6 configurations that played
a crucial role in [8].

5.3. Phase transitions

One attractive feature of the fareytail expansion is that it is well-suited
to deduce phase transitions between different AdSs geometries [5]. Such
phase transitions were first described in four dimensions by Hawking and
Page [43] and interpreted in the AdS/CFT context by Witten [44]. We can
understand the phase transformations by determining which term in the
sum (1.6) contributes most to the partition function. We have

2mcr, Im(7r)

(54) |Zgrav(7)| < Z e 24 Jertd|Z |
r

So the combination of (¢,d) which maximizes % determines the term

that contributes most to the path integral. This (¢, d) describes the dominant

classical geometry. Phase transitions occur between geometries by variation

27in—A, |
c(et+d)

To see this we estimate ‘R <%> — 1‘:

2’/’(’1‘77, — AI,‘ 1 271'%1 w1 gL Im(r)
55 R —_— — 1 < 24 |eT+d|2
59 ' < c(er +d) ) ’_F(l—w)<lc(w+d)! ‘ o

where we assumed that % > 1. We observe that the correction is

typically exponentially smaller than the exponent of the classical action,

of 7. The regularizing factor R ( does not change this conclusion.
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and we can conclude that the new fareytail predicts as well phase transitions
parametrized by I'no \ T".

5.4. The OSV conjecture

The fareytail expansion of (0,4) elliptic genera has been used in recent
attempts to prove a refined version of the OSV conjecture [8,9, 15]. The
regularization factor R(x) does not alter the discussion when the black hole
charges are such that the saddle point topological string coupling is strong.
In the notation of [8] we have

—Go
(5.6) 95~ 1\ pg > 1

The dominant term in the evaluation of Q(Q), where Q@ = P 4+ @Q + qodV is
the charge of a D4-D2-D0 brane system on a Calabi—Yau manifold X, is the
¢ ==41,d =0 term in the fareytail expansion of the (0,4) elliptic genus for
T 2244/ P3/|qo|. Therefore, for strong topological string coupling Re(x) — oo
in the argument of R(z). Thus the regularization factor introduces exponen-
tially small corrections in this regime. In this way the artificial restriction
to ba2(X) even, imposed in [8], may be removed.

On the other hand, in the more interesting regime of weak topological
string coupling, P2 >> |Go| the value of = goes to zero for the ¢ = +1,d =
0 terms in the fareytail expansion and the effects of our regularization
become significant, introducing further corrections to the OSV formula in
this regime.

An interesting phenomenon described in [8,45] is the “entropy enigma.”
This refers to the fact that for charges corresponding to weak topological
string coupling, semi-classical multicentered states exist which contribute to
the “large radius BPS degeneracies” £2(Q) with entropies which grow expo-
nentially in P3 for P — oo. In particular, they dominate the single centered
entropy, the latter growing like \/—goP3. A growth of log [2(Q)| ~ P3 for
P — oo would be a sharp counterexample to the OSV conjecture, and would
have other interesting implications. As discussed at length in [8,46], since
(Q) is an index it is conceivable that the exponentially large contribu-
tions might cancel, leaving asymptotics log |2(Q)| ~ \/—GoP3. Denef and
Moore [8] argued that such cancellations are unlikely, but left this central
question unanswered.

It is interesting to consider this central question in the light of the
present paper. One way to approach this problem is via the behavior of
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“barely polar degeneracies,” that is, the coefficients 25 for § of order 1 or
smaller (compared to P3). The entropy enigma suggests that these barely
polar degeneracies grow like exp[kP3] as P — oo for some constant k. We are
thus led to ask what constraints are imposed by modular invariance on polar
degeneracies, and whether the existence of terms with large poles ~ ¢~ °/24
implies, through anomaly cancellation, that the coefficients of terms with
small or order one poles ~ ¢~ /IPI . ¢71 ... ¢72,... are large. It is con-
venient to apply the anomaly cancellation condition in the form (4.36). The
Fourier coefficients h(n) of cusp forms (for I', with trivial multiplier system)
of weight k grow as n¥/2. Although modular invariance therefore bounds the
growth of the polar degeneracies, a lot of freedom remains for these degenera-
cies. From these heuristic arguments, it is clear that we must look elsewhere
for an explanation of exponentially large barely polar degeneracies.

In the following, we will refine a suggestion made in [8, p. 117]. We make
a toy model of the polar terms of the (0,4) elliptic genus by considering
a modular form for T' with trivial multiplier system (for symplicity) and
considering the polar terms of the negative weight form ®n~X where y =
P3 + ¢3(X) - P and @ is a non-singular modular form for T" of positive weight
we = 3x — 1 — $bs. As we remarked above, the leading coefficient H,,—(0)
is, up to a sign, Ip ~ P3/6 and therefore in our toy model ® will have a
non-zero Petersson inner product with the Eisenstein series.

To begin, let us sharpen the comments made in [8] about the barely polar
degeneracies of n~X for large x. For simplicity, we assume x is a positive
integer divisible by 24. Let us define Fourier coefficients by

(5.7) nXE) = S py ()
n=0

We are considering degeneracies for n = 27 4 ¢ with £ fixed as x — oo (and
of either sign) so the usual Hardy-Ramanujan analysis (“Cardy formula”)
is slightly altered. A naive saddle-point analysis proceeds by writing

(5.8)

To+1 ) 1 To+1 ) X R i
px(n) — / e—27r1(n—x/24)’rnixd7_ o / e—27r1(n—x/24)7+5 log(—ir)+ 75X dr.
To T

[¢]

In contrast to the usual estimate, it is now the second and third terms in
the exponential which dominate the saddle point. In this way, we estimate

_ T w2
(5.9) Px (% + 5) ~y—so0 CONSt. Y 172 exp <>2( (1 + log g) + 3€>-
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This agrees very well with a numerical analysis of log p, (x/24) in [8, p. 117].
Moreover, we see that although the degeneracies grow exponentially with £,
the proportionality between p, (ﬁ + E) and py, (2—1 + 0+ 1) is not exponen-
tial in x. This agrees with the earlier statement that the anomaly cancella-
tion bounds the growth of the polar degeneracies.

It is interesting to compare with the Rademacher formula for p, (x/24):

(5.10)
1+x/2 o
X\ _ (27|n — 551) —2-x/2 _X
Px (24) - %Oggxpx(”) T2+ y/2) ;C Ke <0’" 24) '
We can use a beautiful formula of Ramanujan:'®
> _ 0’1_5(77,)
(5.11) ¢ °K.(0,n) = ———
2 )
to simplify our formula to:
) X 1+X/2 L xX n
612 (L) =2n 3 gy il T Tl n)
24 I'(2+x/2) C(24+x/2)

0<n< X

Now, note for large x there is a very large denominator from the Gamma
function. The factor (27|n — 2"—4\)1+X/2 starts very large for n = 0 and falls
exponentially rapidly. Meanwhile, note that since the index on the divisor
sum is negative the factor o__, jo(g5 — n) is a slowly varying function of n,
and strictly smaller than 27 —n. Thus, the sum is dominated by the terms
n = 0. Using Stirling’s formula we find that the contribution of the n =0

term is

X —-1/2 X m
5.13 _1- (—) X const. X e (— <1 lo —))
(5.13) T-1-x/2 54 I, X Xp {5 +log 6
in agreement with the naive evaluation. Thus we learn that the contribution
of the extreme polar states in the Rademacher expansion gives the dominant
contribution to the constant term.

10To show this we first relate the relevant Kloosterman sum to the Mdbius func-
tion pu(n): > a=1 e(n%) = 2 m|(e;n) H(55)m [47, p. 160]. We substitute this identity

(a,c)=1
on the left-hand side of Equation (5.11). Application of ((s) > ", ”T(lf) =1 leads
then to the claimed identity.
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Now let us turn to the numerator ®. A similar discussion applies to the
contributions of ® to the barely polar degeneracies. If ® is a non-singular
modular form of weight w with ®(7) =5 . #(n)¢" then a naive saddle

point evaluation of the Fourier coefficients ¢(n) gives

1) G~ 2D et utrteren et (1 4 ofe-ie/e))

ﬂ‘ew
M —~~
RIS

(Although this is naive, numerical checks indicate it is valid.) To estimate
the biggest contribution of the Fourier coefficients of ® to the constant
term in = X® we apply this to w = we = %X — %bg — 1 and n = 3 yielding,
remarkably,

(5.15) const.x /% exp [g (1 + log %)}
having the same order of exponential growth as the barely polar terms of
1~ X. Thus, in our model for polar degeneracies the barely polar degeneracies
are indeed expected to grow exponentially in x.

It is conceivable that this kind of estimate could be rigorously applied
to estimate the coefficients near the cosmic censorship bound in the (0,4)
elliptic genus, and it would be very interesting to do so.

5.5. Enumerative geometry

As a final application of the fareytail expansion, we would like to point out its
potential relevance to problems in enumerative geometry. The Fourier coef-
ficients Q5 of the N = (0,4) elliptic genera are the degeneracies of bound
states of D4-, D2-, and DO-branes on a Calabi—Yau manifold X. From a
more mathematical perspective, these are (generalized) Donaldson—Thomas
invariants, which count the stable coherent sheaves on X with given Chern
classes. The BPS degeneracies (or equivalently Donaldson-Thomas invari-
ants) are subject to wall-crossing behavior, since the BPS-states are not
stable for all values of the (complexified) Kéahler moduli ¢ (specified at spa-
tial infinity in the black hole solution). The complexified Kahler moduli are
given by t = B 4+1iJ, where B is the anti-symmetric tensor field and J is
the Kahler class. The generating function of the BPS-degeneracies has only
an interpretation as an N' = (0,4) elliptic genus [8,28] in the large Kéahler
limit. de Boer et al. [48] argues more precisely that the (0,4) SCFT analysis
is only valid if the ¢® are chosen such that t* = d®gq, + iAp® with A — cc.
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The fact that a class of DT-invariants are enumerated by a modular
form has interesting consequences. For example, Section 4 discussed how
a modular anomaly arises if the polar coefficients do not satisfy certain
constraints. These constraints are such that a linear combination of cuspidal
Poincaré series vanishes. The constraints are given in the form

(5.16) Vi ) Qshi([8]) =0,
6>0

where the h’(n) are Fourier coefficients of an orthonormal basis of cusp
forms. Therefore, we see that interesting relations exist among the coeffi-
cients of cusp forms and DT-invariants in a specific chamber of the moduli
space. Generically, it is very difficult to find such relations among cusp forms.
A concrete example where this phenomenon occurs, is the case where the
M5-brane wraps the hyperplane section of the bicubic in CP°. Gaiotto and
Yin [49] compute explicitly the elliptic genus of this configuration (and sev-
eral others) by a determination of the polar degeneracies using algebraic
geometry and Gromov—Witten invariants. Interestingly, a relation among
the polar coefficients was found, which was explained in [41] as a conse-
quence of the existence of a (vector-valued) cusp form with the relevant
properties.

In some respects, the (0,4) elliptic genus can be seen as a generalization
of the partition function of bound states of D4-D2-D0 branes on K3. For
example, if the 11-dimensional geometry is chosen to be R? x T?xK3, and
a single M5-brane wraps 72 xK3, then the N = (0, 4) elliptic genus becomes

ers,w (7—7 T, Z)

(5.17) Mo = 2 o
Note that since this geometry preserves more supersymmetry a factor F*
needs to be inserted in the trace (2.15), instead of F2. T's g is the lattice
of the second cohomology of K3. We observe that 1(7) 24 provides us the
number of BPS-degeneracies of D0-branes as well as D2-branes on K3. The
DO-branes are the physical equivalent of the Hilbert scheme of points. This
partition function is earlier computed from this perspective in [50]. Recently,
the interpretation of n(7)~24 as a generating function for D2-branes wrap-
ping cycles in K3 has been put on a firmer mathematical basis [51]. It pro-
vides the (reduced) Gromov—Witten invariants of K3. The (0,4) elliptic genus
in the case of a proper Calabi—Yau three-fold X and possibly multiple Mb5-
branes, is a major generalization of (5.17). We expect that it can play an
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important role in problems of enumerative geometry related to Calabi—Yau
three-folds.

6. Non-holomorphic partition functions

This section explains how the anomalous transformation property of S’I(fe) g(7')
under I' in Equation (4.21), can be corrected by the addition of a non-
holomorphic term to produce a covariant object. Section 4 shows that a
proper choice of polar degeneracies can result in the vanishing of the shift in
Equations (4.21) or (A.30). However, physics might prescribe a set of polar
degeneracies that cannot be consistently extended to a holomorphic modular
form with the required transformation properties. Holomorphy is useful, but
diffeomorphism invariance is fundamental, hence in such a situation there is
necessarily a holomorphic anomaly. We now explore what can be said about
such holomorphic anomalies from the viewpoint of this paper.
Equation (A.20) shows that if we add a non-holomorphic term as in

(6.1) Sion (7, 7) = S (7) — p(7, 7, GO),

then the new function gggg(T, 7) transforms covariantly. In this way, we
can trade the modular anomaly for a holomorphic anomaly. To study its
properties more precisely, we rewrite p(t, 7, G(‘S)) as

1 —ioco ~ cw e
F(l—)/f GO (2)(z — ) "dz

1 w
(6.2) :(F(Q”Q/ GO (7 + 2uirs)u du.

From the first expression it is clear that Sl({sgg(ﬂ 7) satisfies the holomorphic
anomaly equation

(6:3) 580, = S G ),

Of course, such a non-holomorphic correction is far from being unique! The
above choice is dlstlngulshed by the fact that Sy §\0) (T 7) is annihilated by a
Laplacian given by A = 87 Ty a_ Note that it also reduces to a polynomial
in 7 for —w € N.

The holomorphic anomaly described here is similar to the one appearing
for the w = % modular forms discussed in [52,53]. In physics, such holomor-
phic anomalies arise in the partition function of N' = 4 topologically twisted
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Yang-Mills theory on CP? with gauge group SO(3) [54], and also in the
context of Donaldson invariants [55]. Now, as reviewed in Section 2, if we
consider an M5-brane partition function on ¥ x 72 then for small 72 we
would expect the partition function to be related to the four-dimensional
gauge theory computations of [54]. On the other hand in the limit when the
Kéhler class of the T? is much larger than those of ¥, and ¥ is embedded
in a Calabi—Yau manifold, a (0,4) conformal field theory analysis analo-
gous to that of [28] should be applicable. This suggests that there might be
holomorphic anomalies in the (0,4) elliptic genus.!!

As a possible example of this situation consider wrapping an M5-brane
on a rigid divisor equal to CP? in a suitable Calabi-Yau (e.g. the Calabi-
Yau elliptic fibration over CP?). Vafa and Witten [54] calculate the partition
function of the twisted gauge theory. The coefficients of this partition func-
tion are the Euler numbers of the moduli space of instantons. In the case
of CP? with gauge group SO(3), Vafa and Witten [54] give two partition
functions, Zy(7,7) and Z;(7,T), related to the two different possibilities for
the second Stiefel-Whitney class wo of SO(3) bundles on CP%. Zy(7,7) and
Z1(1,7T) transform as a modular vector under I'. The holomorphic anomaly
for Z,(7,7), given in [54], is

0 3 1 2 3 —_—
64) —Z,(1,T)=——-r—— 7" = — 93 2T
(64) S-Zu(r.7) 16?173/27,(7)6%%“ p— () W27,

where 03_,,(7) are the standard Jacobi theta functions. From this one can
derive the modular transformations of the purely holomorphic partition
function:

Zy(y(1)) = (v, m) "2 M ()Y,
3e(—1) PR
2\/%77? )6 (7’7 1(_100)’03‘”(2')>]’

where M () is the multiplier system generated from
~ fe(=1/4) 0 B 1 /1 1
(6.6) M(T)= ( 0 _1> , M(S) = e(—1/8)ﬁ L 1)

To compare these partition functions with a dual supergravity partition
function we must recall that the gauge theory dual to the string theory

(6.5) X | Zy(T) +

HExactly this suggestion has been made previously by D. Gaiotto in a seminar
at Princeton, October 13, 2006.
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will include singleton degrees of freedom leading to extra U(1) factors in
the gauge group. (See [56], Appendix B, or [20,57].) In the present case,
we should presumably compare to a theory with gauge group U(2). After
inclusion of the U(1) degrees of freedom, we obtain

(6.7) X(7,7,2) = Zo(7,7T)02(27,22) — Z1(7, T)03(27, 22).

X(7, 7, Z) transforms under I" with weight (—%, %) and multiplier system.
This clearly resembles an elliptic genus of a (0,4) SCFT as given in Equa-
tion (2.18).

Let us therefore contrast these formulae with what would be expected
from the viewpoint of this paper. We might expect to be able to construct
the partition function — in the AdSs regime — from a Poincaré series
based on its polar part. A priori, this partition function does not need to
equal (7,7, %) since we might not be able to rely on modular invariance
and/or holomorphy. Therefore, we distinguish the fareytail partition func-
tion and denote it by x¥T (7,7, Z). The theta functions in Equation (6.7) can
be derived from this point of view as a specialization of Equation (2.17).
Note that ul is 0 when the second Stiefel-Whitney class wy of the SO(3)
bundle is trivial, and equal to 1 when ws is non-trivial.

The comparison reduces now to a comparison of the holomorphic part
of Z,(r,7), Z,(7), with the vector-valued modular form constructed by the
Poincaré series. We label the constructed vector-valued modular form by
“FT7: ZET (7). The polar part of ZET(T) is equal to the polar part of Z,,(7),
if we assume that the polar part is not renormalized as we continue to the
AdS;3 regime. Zy(7) has a polar term equal to —iqfi while Z(7) does not
contain a polar term. Therefore, we attempt to construct with the fareytail a
modular form of weight —3/2, with multiplier system given by Equation (6.6)
and polar term given by § = i). The obstruction to the construction of
a holomorphic modular form with these properties is given by a space of
vector-valued cusp forms as discussed extensively in previous sections. The
space of these cusp forms turns out to be non-vanishing in this case. A
vector-valued cusp form of weight 7/2 and the appropriate multiplier system
is given by

05(27)

6 (U3

(6.8) n(7) <92(2T)> :

Using the dimension formulas for vector-valued modular forms, one can show
that this form is the unique cusp form with the required properties. See [41]
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for more details and illustrations of dimension formulas. Then we find the
following transformation law for ZET(T):

(6.9)
1

287 0(r) = 0. MO | 287 + g (i (i) -2 |

The factor % in front of the period function is a consequence of the coefficient
of the polar term.

A simple check whether the fareytail can reproduce the gauge theory
partition function is a comparison of the anomalies under modular trans-
formations. Even without a detailed analysis, we can observe qualitative
differences between the shifts. An important difference is the behavior for
Im(7) — oo. In this limit the shift in Equation (6.5) grows exponentially
whereas the period function in Equation (6.9) vanishes. This shows clearly
that the holomorphic fareytail does not equal the generating function of the
Euler numbers of instanton moduli spaces.

As a consequence of the different modular anomalies, the associated
holomorphic anomalies are different. The holomorphic anomaly given by
Equation (6.4) is not annihilated by the Laplacian A. Another difference is
that for Im(7) — oo, the right-hand side of Equation (6.4) grows exponen-
tially (for p=0).

This raises the question of what the elliptic genus of the N = (0,4)
SCFT on the boundary of AdSs really is. The results of this section are
clearly inconclusive. We are considering several possible resolutions and we
hope to address them in future work.

7. Conclusion

In this paper we have revisited the “fareytail expansion” of [5], and have
improved on the story in many ways. We have shown how to regularize
the relevant Poincaré series so that we have an expansion for the partition
function, and not its “fareytail transform.” The latter is problematic, and
now rendered irrelevant.

The modern fareytail is well-suited to the earlier applications of fareytail
expansions. It is relevant for the program of determining the black hole
entropy by study of the near horizon microstates. We have argued that the
new expansion is consistent with the OSV conjecture at strong topological
string coupling.
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In addition, the modern fareytail contains a number of interesting new
aspects. This includes new wrinkles on the interpretation of the expansion
in the AdS/CFT context, as well as new corrections to the OSV formula at
weak coupling. Moreover, we have given an extended discussion how the reg-
ularization can give rise to a modular or holomorphic anomaly. The modular
anomalies can be described in terms of period functions of positive weight
cusp forms. The holomorphic anomaly is compared with a similar anomaly
appearing in the partition function of N' = 4 Yang-Mills on CP?.

There are further implications of the new fareytail, not discussed in this
paper, which might prove fruitful for future study. One of these questions
concerns the spaces of obstructions to the construction of the modular forms.
We would like to sharpen our understanding by computing, for example, the
precise dimension of the space of obstructions. Another point which deserves
further study is the possibility of holomorphic anomalies in the elliptic genus.
A better understanding of the relation of the holomorphic anomalies to those
of topological N' = 4 Yang—Mills is desirable.

Finally, we mention a more speculative connection to arithmetic vari-
eties. Arithmetic varieties appeared earlier in the context of black holes
in [22,58,59]. It is possible to associate arithmetic varieties in two distinct
ways to a polar term. On the one hand, a polar term corresponds to several
split attractor flows [8]. The split attractor flows of Denef end on regular
attractor points. The conjectures in [22, 58, 59] state that the Calabi—Yau
at a regular attractor point is an arithmetic variety. On the other hand,
arithmetic varieties can also appear in an alternative way via the cusp form
which is associated to the polar term. The cusp form can be decomposed
into Hecke eigenforms. The Hecke eigenforms can be related to arithmetic
Calabi—Yau manifolds (usually with dimension larger than 3), generalizing
the celebrated case of the elliptic curve. For a review see, for example, [60].
Thus we have two different ways to relate a polar term to an arithmetic
manifold. It would be quite interesting if this correspondence turns out to
have any arithmetic significance.
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Appendix A. Technicalities of the modern fareytail
A.1. Derivation

This appendix derives Equation (3.4). The derivation is in some sense a
reversed version of the analysis in [6]. We start with a vector-valued mod-
ular, and derive Equation (3.4) based on its Fourier coefficients, which are
calculated by the Rademacher circle method. Whereas Niebur [6] basically
starts at the other end, and determines its Fourier coefficients together with
its transformation properties. We take the opportunity to generalize the
result to vector-valued modular forms.

To start, we state the transformation properties of a vector-valued mod-
ular form

(A1) fu((1)) = M () (em + d)* fu (7).

a b
ith v =
with (c d
for the argument of a complex variable z. The Fourier expansion of the
modular vector is given by

> e I'. We take w < 0 and use —7 < arg(z) < 7 as domain

(A.2) fu(T) = Z Fu(m)qn%A“v

where F,(0) # 0 is the lowest non-zero coefficient. The part of f,(7) with
m — A, <0 is denoted as its polar part f;(r), because of the divergence of
these terms when 7 — ico. The series with m — A, > 0 is correspondingly
called the non-polar part, f (7). Note that for transformations v, (7) =

T+mn, M(y)}, is given by é;e(—Ay,n). The Fourier coefficients (with m —
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A, > 0) are determined by the Rademacher circle method or Farey fractions
[36]. This method is beautifully applied to 1/n(7) in [11] and generalized to
vector-valued modular forms in [5]. The Fourier coefficients are given by the
infinite series

Fu,(m) =2m Z F,(n) Z %Kc(m —Ayn—Ay)

n—A,<0 c=1
In— A, [\ 072 dm fo N
(A3) ><<m_ 5 I (fn =8l - A

where [,,(z) is the modified Bessel function of the first kind. I,,(z) is given
as an infinite sum by

s (1)
(A-4) ()= (3) 2 W+ BT 1)

k=0

K.(m —Ay,n—A,)) is a generalized version of the Kloosterman sum

(A.5)
Kc(m—Ayn—A):=1i"" Z Mﬁl(y)Ze <(n — Ay)% + (m — Au)d> ,

C
—e<d<0

(c,d)=1

with v = (g 2) € I', thus ad =1 mod c¢. We have taken a specific domain
for d in the Kloosterman sum. This is necessary since A, is in general not
an integer. The dependence on a in the exponent and in M _l(y)z via
combine such that the product with the generalized Kloosterman sum is
independent of a. The factor of i™" in front of the sum is a consequence of
the definition of M(7)}, in Equation (A.1). Finally, if m — A, = 0 we should
take a limit as m — A, — 0.

Since M () is unitary, the generalized Kloosterman sum is bounded
above by the Euler totient function ¢(c) < c. For later use, we need an
estimate of the generalized Kloosterman sum. Weil has derived a particularly
strong bound for K.(m,n) when m,n € Z and a trivial multiplier system.
He estimated that K.(m,n) is bounded above by (’)(c%“). We do not need
such a strong bound. For our applications with w < 0, the upperbound of
the Kloosterman sum by c suffices. For the example in the introduction with
w = 0 and a trivial multiplier system (Equation (1.8)), an estimate ¢! ~¢ with
€ > 0 is necessary. Such a bound can be established in an elementary way,
see for example [61]. We do not attempt to establish a non-trivial bound for
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Kloosterman sums arising from modular forms with w = 0 and a non-trivial
multiplier system.

Our strategy to derive Equation (3.4) is fairly straightforward. We sub-
stitute the expression for the Fourier coefficients in the Fourier series for
the non-polar part of f,(7). Then we use the formulas given in Appen-
dices A.2 and B to rewrite f,(7) in the form of Equation (3.4). After the
substitution of the Fourier coefficients, Equation (A.3), and Kloosterman
sum Equation (A.5), we insert the series expansion of the Bessel function
Equation (A.4). We obtain

o= Y Fmd™

m—2A,>0

B Z Z Z ZZ—WM ()<2C7T>2k+2—w

n—A,<0c=1 *L§d<10k =0

|n _ |k+1 w

v a (m— Ay)F
8 F(k+2—w)e<(n_A”)E> ; i

ao xe(mosa(m+9))

where we interchanged the sum over m with the other four sums and grouped
the terms dependent on m. We apply the Lipschitz summation formula (B.1)
to the sum over m, the new summation variable will be denoted by [. The
error term E(7,k +1, N + %) vanishes in the limit N — oo, except when k =
0 and A, € N. When the error term does not vanish, we get an additional
constant. This constant is equal to %FH(AM) and is given by

27T|n — A
T F,, n
1 " ;@ ) " A €N
— — 12 9
(A7) QFM(AM) Z cwaKc(OM’ n— Ay),
c=1
0, Ay €N,

where 0, is a vector all of whose components are zero. The fact that the right-
hand side of Equation (A.7) is equal to 2 F,,(A,,) can be shown for example by
Equation (A.3) for F,(A,) and the limiting behavior of the Bessel function

for z — 0: lim,_, [, (2) = (%)V ﬁ We get after interchanging the sum
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over k and {

N
1) = Y Y Y dim, 3 MR )
n—A,<0 c=1 *(CC;;KIO =—N
a 1 >
”((”_A”)*) (cr +d+cl)v z(:)l“k+2 w)

2miln — A, | \ T
cler+d+cl) '

(A.8) X <

The exchange of the sum over k& and [ is allowed because the sums are
absolutely convergent for k > 0. In case k = 0, the sum over [ in the limit
N — o0 is as well convergent. This is shown using the weak bound on the
Kloosterman sum, to which we referred earlier.

The sums over ¢ and d can be such that they have an equal upperbound.
This is clear for k£ > 0, but to show it for k£ = 0 is slightly subtle. First, we
incorporate the sum over [ in the sum over d. Since the sum over [ and d is
convergent for finite ¢, we can choose for |d| an upperbound N for which we
take the limit N — co. We thus get a sum of the form

(A.9) Z hm Z M~ ﬂ

—=, Fel=w(er +d)’

(c,d)=1

where we used that e(A,l)6" = M~! ()" and Equation (C.1) to include
e(Ayl) in M~1(v)!. Rademacher [12] shows that

(A.10) lim Z hm Z M~ w =0,

K—o0 Hel=w(er +d)

K<|d\<N
(c,d)=1

in case M(y) =1 and (n — A,) = —1. We can show in a similar way that
the generalization holds as well. To this end define the matrix g(d);, (with
-0, =n—A»A))

(A.11) g(d)

RS

_ M~ (y)ke (—(L%) , for (¢,d) =1,
0, otherwise.

Using that M ()}, = d,e(=6,1) (where d;; should not be confused with 4
we observe that e( 5M%)g(d)z is periodic in d modulo ¢. Therefore, e(—d

8),
o)
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g(d)}, has a Fourier expansion, and we find for g(d);,

c

(A.12) o= 3 Biale (G +6)%)

C

j=1
with
, 1 c _ y a ) d
(1)@m= X e (<0t - G4 a)T).
(c,d’)=1

€

Bj . contains a Kloosterman sum, and with the bound ¢'=¢ on the vector-

valued Kloosterman sums (see the discussion below Equation (A.5)), we
obtain O(c™) as a bound for Bj.. The left-hand side of Equation (A.10)
can be written as

K—oo

K c 00 el (i d
(A.14) lim ZCIEMZ(B]-,C)Z 3 W

=1 |d|=K+1

Rademacher [12] gives estimates for the sum over d which continue to
hold for the generalization after minor modifications. We find that in case
(j+6y)/c € Z for some j, the sum over d has an upperbound given by

o CL}%K) )’ otherwise the upperbound is O (K ~!). The estimates for Equa-

tion (A.10) become, respectively, limg oo O(K" “log(K)) and limg_ o
O(K™~¢), which are indeed zero for (w < 0, ¢ =0) and (w =0, € > 0). We
therefore have shown that Equation (A.9) is equal to

4 e((n—A,)2)
Al li M1 v VT TVl
(19 RIS IDIRIRFE et
(c,d)=1

for the cases which are relevant to us.

The sum over k in Equation (A.8) is equal to an exponent minus the first
terms of the Fourier expansion: » 7, % =e* — |kw:|0 2F /k!, when w

is a negative integer. We recognize the regularization of Equation (3.7).
However we want to obtain a closed form for general non-positive weight.
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This can be obtained using the equality

o k‘+1w 1 00 .
—et (1-— [ ettva
Zrk+2— e( F(lw)/z ¢ >

k=0

eZ z
A.16 = vt
(A.16) T(1—w) /0 ¢ :

which is valid for general w < 1. One can establish Equation (A.16) by devel-
oping the second integral expression in series using successive integration by
parts, or by considering the differential equation satisfied by h(z).

We define R(z) = e”?h(z). Inserting this and the equal upperbound for
c and d in Equation (A.8), we obtain

1 )y (n)
IEREUTNEED SR 3B Dl
anl,<0 c=1 (\dld<)K1
(A.17) x e((n—Ay)(7)) R(z),
where =z = %. The summand is invariant under v — —+ or equiva-

lently (¢,d) — (—c¢,—d). We can extend therefore the sum over ¢ to 0 <
le] < K, and divide by two. The polar part can be included by extending
the sum with ¢ = 0. Note that ged (0, d) = |d|, thus ¢ = 0 adds (¢, d) = (0,1)
and (c,d) = (0,—1) to the sum, which works out nicely with the overall
factor of % We obtain finally

(A.18)
B =5FA) Y dm S ) M )R )
n—A,<0 YE(T o\ x

< e ((n— A7) R),

where we have defined 3. <5 Z('Z‘f)fl = Y (D)
A.2. Period functions and their transformation properties

This subsection reviews relevant properties of period functions. These pro-
perties are necessary for the derivation of the transformation properties of
fu(7) in Section A.3. For simplicity of exposition we discuss the case of scalar
modular forms. Using the notation of Section 4, the discussion generalizes
easily to the vector-valued case.
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We start with the period function of a cusp form G(z) transforming
as G((z)) = M~(vy)(ez + d)>~“G(z) under v € T'. The period function of
G(2), p(1, 7, G) is defined by

(A.19)

p(77g7é) = F(]_l—U}) /y G(Z)(E— T)iwdz, Y € H U@UIOO

Note that in case —w € N, this expression is a polynomial in 7. Also note
that the expression p(7, ¥, G) makes sense for any function G(z) that decays
sufficiently rapidly at infinity, e.g., G(x +ip) ~p— 400 const.p e~ 4P for A>0
will suffice. The constituents of the integrand satisfy simple transformation
properties: y(z) — y(7) = m;ﬁ and dvy(z) = % Using these equa-
tions we obtain for p(y(7),v(9), G(z)) the transformation rule

(A20)  p(v(7),7(9),G) = j(7.7)"M () [p(r,5,G) = p(7,7 " (20), Q)] ,

where we have used the fact that M () is unitary.
If we choose a constant § > 0 we can try to construct a cusp form G (z)
of weight 2 — w by forming the Poincaré series

1 M (v)(—2mid) Ve (dv(2 1
(A21) GO =1 T (0)( j(%z))Q—w( (=) _ : S g0,
~EL L\ YEL L\

where we defined gA(,(S)(z) by the second equality. The prefactor is chosen
for later convenience. We will sometimes drop the superscript 6 when the
context is clear. For w < 0 the series is convergent, although it might vanish.

The period functions are relevant for our discussion of the fareytail
expansions as explained in Appendix A.3 and Section 4. In those discus-
sions we make use of the function ¢,(7) defined by

(A.22) ty (1) == p(T, A1 (i00), 7).

Using the above identities and Equation (C.3) one can check that ¢ (7)
satisfies the transformation rule with 4 € I"

(A.23) ty(3(7)) = 5(3,7)* M (3) [ty5(7) — p(r, 57" (ic0), 73)]
Note that t.(7) can be rewritten as
-1 00

(A24) () = g I ) M e(=r() [ e
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27id
cj(7,7)
are first a transformation of z to y~!(Z), then rewriting of the integrand

using its modular properties and at last another redefinition of Z.

with x = where ¢ is the 21 matrix element of . The steps involved

A.3. Transformation properties of the fareytail

We will deduce the transformation properties of f,(7) from the expression
given in Equation (A.18). Many intermediate steps are given without rigor-
ous proofs, these can be found in [6]. We discuss the case of scalar modu-
lar forms; at the end we simply state the straightforward generalization to
vector-valued modular forms. The discussion reverses the logic of Section 4.

We study first the transformation properties of a (scalar) modular form
with a single polar term ¢—° (6 > 0) for a clear exposition. Eventually, we
will deduce the transformation law for general f,, (7). We define the function
$4(1) = j(v, 7)Y ML (y)e(=6v(7)) and use t,(7) as in Equation (A.24).
Equation (A.18) is in this case given by

1 1
-5 o .
(A.25) FEUT) = GF@) +5 Jim Y 0 sy(7) + (7).
YE )i

s~(7) satisfies s, (Y(7)) = (&, 1) M () s5(7). We obtain with Equation (A.23)

FEGE) = SFE) + s MEEr +d)* Tim S sys(r) + ty5(r)
YE[T o\ x

(A.26) = p(7, 77 (=100),577)-

The invariance under T = 1 is obvious from the Fourier expansion and
Equation (A.8). We therefore only need to check the invariance under the
0 -1
1 0
under right multiplication of S. Therefore, 3 . . \ry, $vs(7) +tys(7) =
> ve M)y 5+(T) + t5(7) holds.

The anomalous terms compared to the usual transformation rule of
modular forms are the constant term %F () and the subtraction of period
integrals. A careful study of the limit K — oo and the period integrals is
needed. Lemma 4.4 of [6] shows that for y € H

other generator of T', S = . (T \ ')k is however left invariant

: = 0y _ 5 (0 _
(A.27) Jim Y0 p(r.9,97) =p(r.9,GO) — F(8),
YET o\ x
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thus the limit K — oo and the integral do not commute. This comes about
as follows. Calculation of the Fourier coefficients of G(9) gives an error term
by the Lipschitz summation formula. This error term tends to zero, however
the period integral over the error does not vanish and provides us with
the offset.

In Equation (A.26), we however have y ¢ H but y = 7 !(ico) € Q. In
this case we obtain with Corollary 4.5 of [6]

(A.28)

i ~5—1¢; () _ ~—1/- 3
Klinoo Z p(1,7 " (i00),97) = p(7, 7 (ic0), G)
’YG(FOO\F)K

+F(5) (M‘l(i)(ET rd)v - 1) .

Inserting this result in Equation (A.26) we find the transformation of f&9 ()
under ~y

(A29)  fO () = j (v, 7)" M(7) f("”(T)a—p(T,v’l(iOO%G(‘”)]-

Note that in special cases G is zero. This is for example the case for § € N and
w=0,-2,—4,—6,—8 and —12 [7]. A cusp form with weight 12 =2 — w of
I" exists, which explains that in case w = —10, we will find a transformation
with a non-zero shift.

Extending the above to the case of vector-valued modular forms with
multiple polar terms is straightforward. The period function should vanish
of course in this case. For a general choice of A, and polar F,(n), we obtain
the transformation

(A.30) Fu(r(7)) = (er + ) M ()}, [fo(T) = p(r,7~ (i00), G)] -

with
(A.31)

—(27i(n = A NYE,(n)e(ln — ALy (2
G =3 Y Y e A>>(czfd<)2>_ (I = Auly(2)

n—A, <0 yel N\
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Appendix B. Lipschitz summation formula

A crucial ingredient for the derivation in Appendix A is the Lipschitz sum-
mation formula for general p > 1 [6]. Let 7 € H, N € N, 0 < o < 1, then

(Bl) ivj 6(—l0£) _ (_27Ti)p i(m_'_a)p—lqm—O—a +E(T D Q)
2 G T T 2 7.Q)

where Q = N + % and E(1,p,Q) is an error term and given by
(B.2)

E(r,p,Q) = (iIQ)"" / ) h(lx +_ Si&zﬁ%i)d hle) = W

The error tends to 0 for Q — oo, except for the case p = 1, a = 0; then we
obtain limg_,oc £(7,1,Q) = mi. The case p =1, a =0 gives the two well-
known infinite sums for cot w7

) = = mwcot T = 7i — 27
T = T—1 T4I1 m:0q7

which can be proved by using sin7r = 77 [[°2, (1 — 72/n?).

The proof of Equation (B.1) uses the function f(z) = e((z + 7))/ (iz)?
(e(z 4+ 1) —1). This function has poles at z = —7 — [, | € Z with residue
(27i)~te(—la)/(—iT — il)P. The right-hand side is obtained by integrating
along the boundary of the rectangle —Re(7) + @ £ iM, which is slit along
the positive imaginary axis to avoid a branch cut of (iz)P. The main con-
tribution to the integral comes from this part of the contour. It can be
calculated using the Hankel contour integral ﬁ = Qim fc e't~Pdt, where C
is the contour which begins at —oo —i0T, circles the origin in the coun-
terclockwise direction and ends at —oo +i0". The horizontal sides do not
contribute when M — oo, the error is accordingly calculated by the integral
along the vertical segments.

Appendix C. Details on multiplier systems
We remark that consistency of Equation (3.1) requires M (7) to satisfy

(C.1) M(y1)pM(v2), = cw(v1,72) M (7172) 5
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where

J(my2, )
C.2 Ccw(v1, = - .
(©2) (n,72) J(v1, 21)¥5 (2, 7)Y

Using the identity

(C.3) (2, 7) = 3(v1,727)5 (V2 7),

we see that the right-hand side of Equation (C.2) is a phase. On the other
hand, it is locally analytic in 7, and hence it does not depend on 7. Indeed
cw(71,72) is a cocycle on I'. Then the cocycle is most easily evaluated by
taking 7 = iA, A — +o0o. Define €(y) = £1 by

(C.4) () = {sign(c), c#0,

Then we have with ¢; = €(7;)

im
(C.5) cw(V1,72) = exp [2w(616263 — € — €+ €3)],

where 3 = 7172. This expression takes values 1, et2miw,

Note that

1. ¢y is symmetric and ¢, (1,7) = cw(y,1) =1,

2. M(—y);, = ™ M(y)y,

3. Tt is perfectly possible to have (€1, €2,€3) = (—1, —1,+1). For example,

take
_(N+1 N (1 0
M= _N 1-N)/° Y2 = N 1)’
with N > 2, thus realizing ¢y, (71, 72) = e2mw .

In applications to the elliptic genus it is possible to describe the mul-
tiplier system explicitly. In the case of the (2,2) elliptic genus, in order
to have a basis of linearly independent functions we should make a unitary
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transformation to the even and odd level m theta functions and
correspondingly define f, by expanding with respect to the even level m
theta functions, defined by

HO,M(Tv Z)? p =0,
1
(06) Hﬁtm(Tv Z) = E(Qmm(ﬂ Z) + e—mm(T? Z)), 1<p<m-—1,
em,m(T) Z)) H=m
and defining ¢(7, z) := 370 ht ()0, (7, 2). Taking S = (Ol (1)> we find
C.7
o Soo = L S L [ L
" Vam YT m T e
_ 1 2 uv (=1)#
M im/4 =—— S, =4/= i =
(S)=e S0 — Sy, —cos (27r2m) Sy, i |
| (1) (1
Y Vam rm " Ve

12

v __ 1%
(C.8) M(T), =e (—) a
Together these generate the multiplier system.
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