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Quantum periods: A census of φ4-transcendentals
Oliver Schnetz

Perturbative quantum field theories frequently feature rational lin-
ear combinations of multiple zeta values (periods). In massless φ4-
theory we show that the periods originate from certain “primitive”
vacuum graphs. Graphs with vertex connectivity 3 are reducible in
the sense that they lead to products of periods with lower loop
order. A new “twist” identity among periods is proved and a list
of graphs (the census) with their periods, if available, is given up
to loop order 8.
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1. Introduction

The last decade has seen a renewed interest in perturbative quantum field
theory (pQFT). On the one hand, progress has been achieved on amplitudes
with many legs and a low number of loops (zero or one) [3, 8, 45] (and the
references therein). From an experimentalist point of view, these results,
will be vital in the analysis of upcoming LHC-data. On the other hand,
the study of many loops with a low number of external legs is important
for the understanding of high precision experiments like the measurement of
the anomalous magnetic moment of the electron [23,26,35]. Huge theoretical
efforts on the numerical [1, 2] as well as on the analytical side [31, 36] (see
below) are accompanied by new insights from conjectured relations between
pQFT, number theory and knot theory [10–12,30], Hopf algebras [18,19,22]
and algebraic geometry [4, 5, 14,20].

This article focuses on the second aspect of pQFT. Since the basic con-
cepts are motivated by physical examples let us look at the magnetic moment
of the electron, which is a benchmark problem of perturbative quantum
electrodynamics (pQED). Fifty years of computations provide us with three
orders of radiative corrections to the “classical” value g = 2. The coefficient
of the first order was derived in 1948 [42], the second order in 1957 [37,43].
The calculation of the third order was finished in 1996 [31]. We give the
result in a slightly unconventional way by introducing Euler sums

Un =
∞∑

k=1

(−1)k

kn
= (21−n − 1)ζ(n) (if n ≥ 2),

U3,1 =
∑

k>l≥1

(−1)k

k3
(−1)l

l
= −0.117 875 999 650 . . . .(1.1)

Now, we can give the result for g − 2 in terms of Euler sums and rational
numbers (the coupling α is measured to α/π = 0.002 322 819 455 . . .),

g − 2
2

=
1
2

α

π
+

(
− U3 − 6U2U1 − U2 +

197
2432

)(α

π

)2



A census of φ4-transcendentals 3

+
(

86
32 U5+

166
32 U3U2− 50

3
U3,1− 13

5
U2

2 − 278
33 U3− 1192

3
U2U1

− 34202
335

U2 +
28259
2634

)(α

π

)3
.(1.2)

This result stands out from other multi-loop calculations because it is very
likely correct: The above number can actually be measured to a precision
that controls the calculation.

We see that the first order is given by a rational number, whereas the
second order is provided by a sum of four terms: a rational number plus
three transcendentals. (We do not distinguish between transcendentals and
very-likely transcendentals here.) We may consider the sum as an element
in a four-dimensional vector space over Q. This picture, however, may be
premature: If we give the Euler sums a grading (a weight) by adding the
indices in a product (rational numbers have weight 0) we see that the first
two transcendentals are of weight 3. Maybe we should combine the two
numbers to provide a sole transcendental (written as U3 + 6U2U1) resulting
in a three-dimensional vector space over Q for the second order. How can
we tell? We have to look at all other sorts of QED-experiments and check
if we can write the second order in terms of U2 and U3 + 6U2U1. The Lamb
shift, e.g., is of this type. The second-order coefficient reads (U3 + 6U2U1) +
49/(2232)U2 − 4819/(2634) [32]. Moreover, we see that we actually need (a
minimum of) two transcendentals at two loops because the ratio between
the weight 2 and the weight 3 transcendentals differs from Equation (1.2). It
seems to be a general fact that transcendentals of different weight cannot be
combined. On the other hand, the full photon propagator features a U3 not
paired by a U2U1 [38]. However, the photon propagator is gauge-dependent
and hence not an observable quantity.

Looking at the third-order contribution in Equation (1.2) we see tran-
scendentals up to weight 5. The grade grows in steps of 2 with every loop
order. Moreover, the third-order coefficient features all lower order transcen-
dentals and some of their products. (It cannot contain U2

3 because this has
weight 6, but U2

2 U1 is absent for some unknown reason.) Both are generic
features: The coefficients lie in a graded Q-algebra and the grade grows in
steps of 2 with the loop order. The new numbers at order 3 are one (at
least) weight 5 transcendental U5, one weight 4 transcendental U3,1, and —
in the case that a sole weight 3 transcendental suffices at second order —
one weight 3 transcendental to account for the new ratio between U3 and
U2U1.
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In this paper we focus on perturbative massless φ4-theory, which is tech-
nically less intricate than pQED but still shows the structure we are inter-
ested in. It is known (up to six loops) that the φ4 beta-function expands
into a power series in the coupling g with coefficients that are rational
linear combinations of multiple zeta values (MZVs). The transcendentals
are periods in the sense of [29]. Such periods were found to be generic for
pQFTs [7]. In [10] the φ4-theory periods were reported up to loop order
7 (all rational linear combinations of MZVs with three numbers missing).
Here, we want to extend this list to loop order 8 (the “census”). Another
objective of the paper is to simplify the graph theoretical side of the prob-
lem by lifting it to primitive 4-regular (vacuum) graphs. This lift uses a
well-known “conformal” symmetry of primitive graphs in massless renor-
malizable QFTs [10]. Primitive vacuum graphs are relatively sparse at low
loop order (e.g., 2 at 5 loops or 14 at 7 loops); however, they become
quite abundant at higher loops (7,635,677 at 14 loops, see table 1,
Section 3).

As a side effect of the approach we recognize that primitive vacuum
graphs with vertex connectivity 3 evaluate to products of lower order periods
(Theorem 2.1). Graphically the product is described as gluing along triangles
(see Figure 4). Among the 73 primitive vacuum graphs up to loop order 8
we have 13 products.

In the following we concentrate on irreducible (non-product, vertex con-
nectivity ≥ 4) primitive graphs and implement another two reductions: The
new twist identity which is quite ubiquitous at high loop order (Theorem 2.2)
and the well known but rather sparse Fourier identity [9,10] (Theorem 2.3)
which is slightly extended in Remark 2.2. Both identities together reduce
the number of irreducible periods up to loop order 8 from 60 to 48.

We use “exact numerical methods” [10] in Section 3 to identify 31 of the
remaining 48 irreducible periods. All of these periods are found to be integer
linear combinations of MZVs (as suggested for some periods in [14]). The
missing 17 periods (2 at loop order 7 and 15 at loop order 8) are inaccessible
by the method available today.

From a physical point of view one may doubt the value of these con-
siderations because the periods considered here are not directly linked to
observables. They are rather a kind of QFT-concentrate originating from
the most complicated Feynman graphs of a given order. They hence may
serve as a test for calculational techniques. If one is able to calculate all
periods of a certain order one has a good method to calculate all amplitudes
in this order. Regretfully the today’s analytical methods last only for the
first few loop orders (five, maybe six, in massless φ4-theory).
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From a mathematical point of view the appearance of MZV periods hints
towards (algebraic) geometries of mixed Tate type [4,5,14]. Every period in
φ4-theory, that is a rational linear combinations of MZVs, reveals a con-
nection between quantum field theory and mixed Tate motives. However, it
cannot be conjectured (by what we know today) that the entire φ4-theory
(all periods to all orders) stays in the realm of MZVs [14,41]. Moreover, it is
unclear if φ4-periods (in the sense of this article) exhaust the number con-
tents of φ4-theory (as suggested by the spirit of the Hopf-algebra approach
to renormalization [18,19]).

Although much of the material spawned from a conjectured connection
to knot theory [10, 11, 30] this link stayed somewhat vague such that the
author decided not to include it into this paper. However, it may well be
possible that this connection will reappear as the knowledge on QFT-periods
develops.

2. φ4-periods

2.1. Background

We consider massless euclidean φ4-theory (see, e.g., [27]) in four (space-time)
dimensions with interaction term normalized to

(2.1) Lint = −16π2g

4!

∫

R4

d4x φ(x)4.

It is convenient to “irrationalize” the coupling by a factor of 16π2 to elimi-
nate unwanted factors of π. We focus on the 4-point-function and obtain for
the amplitude of a Feynman-graph Γ (for examples see figure 1):

AΓ = (2π)4δ4(q1 + q2 + q3 + q4)
16π2g

|q1|2 · · · |q4|2
·
( g

π2

)h1

×
∫

R4h1

d4p1 · · ·d4ph1

1∏n
i=1 Qi(p, q)

,(2.2)

where we introduced the following notation: The momentum-conserving
four-dimensional δ-function δ4 with “external” momenta q1, . . . , q4, the “loop
order” h1 giving the number of independent cycles in Γ. The graphs we
consider are “one-particle irreducible” meaning that (except for the four
external edges) the graph has edge-connectivity ≥ 2. The n “propagators”
1/Qi (associated to “interior” edges) are inverted rank 4 quadrics in the
coordinates of momentum vectors. Each quadric is the square | • |2 of a
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Figure 1: A primitive graph with one loop (a) and one with three loops (b).

four-dimensional euclidean vector, which is a (signed) sum of (some of) the
external momenta q1, . . . , q4 and internal momenta p1, . . . , ph1 .

The first half of the right-hand side (up to the ·) is the amplitude of
the tree graph (with four edges), whereas the second half (for h1 > 0) is a
divergent integral: Graphs that contribute to the φ4 4-point function have
n = 2h1. Thus, the differential form on the right-hand side of Equation (2.2)
has total degree 0. The integral diverges logarithmically (like

∫ ∞
1 dp/p) for

large pi. Since for large pi the value of the external momenta becomes irrele-
vant we may nullify the qi to characterize the divergence by a mere number
(if it exists) given by the projective integral

(2.3) PΓ = π−2h1

∫

PR4h1−1

Ω(p)∏n
i=1 Qi(p, 0)

.

Here we have introduced the projective volume measure which is defined in
Pm with coordinates x0, . . . , xm as

(2.4) Ω(x) =
m∑

i=0

(−1)idx0 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxm.

We assume an orientation on PR4h1−1 (which is an orientable space) is chosen
such that PΓ > 0. Readers not familiar with projective integrals may prefer
to set one of the coordinates of one of the internal momenta to 1 and interpret
the integral in Equation (2.3) as volume integral over the remaining 4h1 − 1
coordinates.

In the following we consider the differential form Ω(p)/
∏

Qi(p, 0) in
Equation (2.3) as degree 0 meromorphic 4h1 − 1 form in complex projective
space PC4h1−1. It is of top degree as meromorphic form and hence closed
in the complement of

∏
Qi(p, 0) = 0. As odd dimensional real projective

space the domain of integration is orientable and compact without boundary
and thus a cycle in PC4h1−1. However, the cycle of integration meets the
singularities of the differential form which in general leads to an ill-defined
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integral. To ensure that the integral converges we need an extra condition
on the graph Γ.

Definition and Theorem 2.1. A graph Γ is primitive if it has n(Γ) =
2h1(Γ) edges and every proper subgraph γ < Γ has n(γ) > 2h1(γ). The period
PΓ, Equation (2.3), is well-defined if and only if Γ is primitive.

Proof. This is Proposition 5.2 in [5]. �
Algebraically, primitive means primitive for the coproduct in the Connes–
Kreimer Hopf-algebra of renormalization [18]. Geometrically, the subgraph
condition in Definition 2.1 means that every sub-cycle of PR4h1−1 meets the
polar divisor of the differential form with a codimension (in PC4h1−1) that
is strictly larger than in the case of a transversal intersection. This suggests
that the integration cycle only “touches” the singularities of the differen-
tial form and that it is hence possible to deform the cycle in a way that it
entirely lies in the complement

∏
Qi(p, 0) �= 0 without altering the value of

the integral (although it is not obvious how to do this). In this sense π2h1PΓ
becomes a period in {p ∈ PC4h1−1 :

∏
Qi(p, 0) �= 0}. In any case, the para-

metric representation, Equation (2.22), makes PΓ an algebraic period in the
sense of Kontsevich and Zagier [29]. We call it a φ4-(quantum)-period. One
finds these quantum periods in all sorts of perturbative calculations (like the
beta-function or the anomalous dimension) within the quantum field theory
considered. In fact, the role that quantum periods play in the Hopf-algebra
of renormalization suggests that there might exist a clever renormalization
scheme such that they form a complete Q-base for the coefficients of the
perturbative expansion of scalar functions. This gives quantum periods a
prominent role within quantum field theory.

We postpone formal definitions and close this subsection with the first
calculation of a φ4-period.

Example 2.1. Consider the graph plotted in figure 1(a). For the period
we find

P1 = π−2
∫

PR3

Ω(p)
|p|2 · |p|2

= π−2
∫

R3

d3p
(p2 + 1)2

= π−24π

∫ ∞

0

p2dp

(p2 + 1)2

= 1.
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In the second line we used p = (1,p) to make the integral affine and in the
third line we introduced polar coordinates to transform the integral to a
standard one-dimensional integral. Notice, that graph 1(a) is the only φ4-
period known to evaluate to a rational number. Most likely, it is the only
rational φ4-period.

2.2. Feynman rules

Feynman rules are prescriptions how to translate a Feynman-graph Γ into
an analytical expression, the amplitude AΓ. In our setup — primitive 4-
point functions without external momenta in massless four-dimensional φ4-
theory — these expressions evaluate to positive numbers.

We have four different ways to use Feynman rules: Position and momen-
tum space where integrands are products of inverted quadrics and the
variables are four-dimensional vectors assigned to vertices and cycles,
respectively. Alternatively, we may use Feynman’s parametric space either
in its original form or in a dual version with variables attached to edges
of the graph. Although the transition from position or momentum space
to parametric space is due to Feynman, it is known in the mathematical
literature as “Schwinger-trick.” To avoid confusion we stick to this name
in the following diagram that summarizes the interconnection between the
different approaches.

(2.5)

dual
position Schwinger parametric
space ←→ space

(vertices) trick (edges)

↑ ↑
Fourier Cremona

transformation transformation
↓ ↓

momentum Schwinger parametric
space ←→ space

(cycles) trick (edges)

In position space every edge joining vertices with variables x, y ∈ R4

contributes by a factor 1/|x − y|2 to the Feynman integrand (see figure 2).
In momentum space every edge contributes by a factor 1/|

∑
±pi|2 with

variables pi ∈ R4 associated to cycles Pi (choose a basis) that run through
the edge in one (+ sign) or opposite (− sign) direction. The integration
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Figure 2: Propagators for a massless bosonic quantum field theory.

ranges over the whole real space. The similarity between the propagator
in position and in momentum space is due to the Fourier-symmetry (see
Subsection 2.7)

(2.6)
∫

d4x

(2π)2
eipx

x2 =
1
p2 ,

∫
d4p

(2π)2
e−ipx

p2 =
1
x2 .

In (dual) parametric space, the integrand is the inverse square of the (dual
Ψ̄Γ) graph polynomial ΨΓ defined by a sum over all spanning trees of Γ.

ΨΓ(α) =
∑

T span. tree

∏

e�∈T

αe,

Ψ̄Γ(α) =
∑

T span. tree

∏

e∈T

αe = ΨΓ(α−1)
∏

e

αe.(2.7)

The integration ranges over positive values of αe. Feynman parameters
roughly halve the dimension of the integral (at the expense of having a
boundary). They are particularly useful for calculations at low loop order
(for which they were invented) and for studying the algebraic geometry of
the periods [4, 5, 14,21].

Formal definitions of momentum space and parametric space Feynman
rules can be found in [5] and [4]. Here, let us explain the rules by way of
example.

Example 2.2. Consider the graph plotted in figure 1(b). We delete the
external edges and find for the amplitude in the four possible settings,

(1) Momentum space. We attach variables p1, p2, p3 ∈ R4 to the cycles
(123), (243), (341), resp., and obtain (edges (12) · (23) · (24) · (34) ·
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(14) · (13))

(2.8) Amom
(1) b =

∫

PR11

Ω(p)
|p1|2|p1 − p2|2|p2|2|p2 − p3|2|p3|2|p3 − p1|2

.

(2) Position space. We attach the variable xi ∈ R4 to vertex i and set x4 =
0 (to “break” translational invariance, see Theorem 2.2) and obtain
(using a projective setup)

(2.9) Apos
(1) b =

∫

PR11

Ω(x)
|x1|2|x1 − x2|2|x2|2|x2 − x3|2|x3|2|x3 − x1|2

.

This integral trivially evaluates to the same number as Amom
(1) b .

(3) Parametric space. We attach variables αij ∈ R to the edges (ij) and
obtain the projective integral with boundary

(2.10) Apar
(1) b =

∫

Δ

Ω(α)
Ψ(1) b(α)2

,

where Δ is the five-dimensional projective simplex αij > 0 and

Ψ(1) b(α) = α24α34α12 + α24α34α13 + α34α23α24 + α13α24α12

+ α14α24α12 + α24α13α23 + α24α14α23 + α24α14α13

+ α34α12α13 + α23α34α12 + α14α34α12 + α34α14α13

+ α34α14α23 + α14α12α23 + α13α12α23 + α14α23α13.(2.11)

(4) Dual parametric space. Similarly we obtain in dual parametric space

(2.12) Adual par
(1) b =

∫

Δ

Ω(α)
Ψ̄(1) b(α)2

with

Ψ̄(1) b(α) = α14α23α13 + α14α12α23 + α14α12α13 + α34α14α23

+ α23α34α13 + α14α34α12 + α34α12α13 + α23α34α12

+ α24α14α23 + α24α14α13 + α24α13α23 + α23α24α12

+ α13α24α12 + α24α34α13 + α24α14α34 + α24α34α12.(2.13)

Algebraically, these projective integrals may be considered as residues.
We will show how to evaluate them in the case of the above example in
Example 2.3.
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For the purpose of this paper position space Feynman rules are best
suited. We will mainly use these in the following.

2.3. Vacuum graphs

Every 4-point graph in φ4-theory can be uniquely completed to a 4-regular
graph by attaching one extra vertex to the external edges (see figure 3).
However, the converse is obviously not true: By deleting a vertex from a 4-
regular graph one can in general obtain quite different 4-point graphs. The
power of the completion to 4-regular graphs lies in the fact that all these
4-point functions give the same φ4-period (if any, see Theorem 2.2). This
property is specific to massless renormalizable quantum field theories. It is a
consequence of conformal symmetry, which is broken on the quantum level
but retained in the residues of primitive graphs.

It is considerably more economical (and more symmetrical) to work with
completed graphs because they are (for high loop order) much less in num-
ber. In φ4-theory 4-regular graphs are vacuum graphs: they have no external
edges to be associated to incoming or outgoing particles. With no external
momenta it is natural to assign a pure number to them. However, we do
not give them a physical interpretation. In quantum field theory vacuum
amplitudes cancel by normalization. Here, we consider them as equivalence
classes of 4-point graphs that evaluate to the same period.

To obtain a well-defined period we need a criterion for a 4-regular graph
to provide primitive 4-point graphs after the removal of a vertex.

Figure 3: The completions of the graphs figure 1 (a) and figure 1 (b) give
P1 and P3 in the census table 4 of Section 3.
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Definition 2.1. A 4-regular graph Γ with ≥ 3 vertices is (completed) prim-
itive if and only if the only way to split Γ with four edge-cuts is to separate
off a vertex.

Completed primitive graphs may be considered as having “almost” edge-
connectivity 6. The completed graphs in figure 3 are primitive. We reserve
the letter � for the “loop order” of the completed graph which is the number
of independent cycles h1 of the graph minus any vertex,

(2.14) �(Γ) = h1(Γ − v) (for any vertex v in Γ).

The examples in figure 3 have loop order � = 1 and � = 3, respectively.
It is easy (using McKay’s nauty [34] and writing a little C++ program) to

list primitive 4-regular graphs. In table 1 (Section 3) we count the number
of completed primitive graphs up to � = 14. We find that up to � = 8 we
have a mere 73 graphs while at � = 14 they are more than seven million in
number.

We need the following elementary lemma:

Lemma 2.1. (1) For every subgraph γ of a 4-regular graph Γ with n(γ)
edges, N(γ) vertices, and “edge-deficiency” d(γ) =

∑
vertices v in γ [4 −

deg(v)] we have

(2.15) d(γ) = 4N(γ) − 2n(γ).

(2) If Γ is completed primitive with N vertices it has vertex-connectivity
≥ 3 and

(2.16) � = N − 2.

(3) The only non-simple completed primitive graph is P1 (see figure 3).

Proof. The number of half edges in γ is 2n and also
∑

deg(v) = 4N − d
yielding Equation (2.15).

By graph homology any connected graph with N vertices has

(2.17) n = h1 + N − 1

edges. Let γ = Γ − v be a 4-regular graph minus one vertex. We have d(γ) =
4 and from Equations (2.15), (2.17) � = h1(γ) = n(γ) − N(γ) + 1 = N(γ) −
3 = N(Γ) − 2 proving Equation (2.16).
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If Γ has vertex-connectivity 2 one may cut the two “right” edges of the
first cut-vertex and the two “left” edges of the second cut-vertex to obtain
a non-trivial 4-edge cut rendering Γ non-primitive. Hence primitive graphs
have vertex-connectivity ≥ 3.

Graphs with loops are never primitive. If Γ is non-simple and primitive
it has a double edge connecting vertices a and b (say). Cutting the other
four edges connected to a and b splits the graph. Because Γ is primitive
these four edges have to connect to a single vertex yielding the graph P1 of
figure 3. �

The following proposition assures that 4-regular graphs lead to well-
defined periods if and only if they are completed primitive.

Proposition 2.1. Let Γ be a 4-regular graph and v a vertex in Γ. Then
Γ − v is primitive if and only if Γ is completed primitive.

Proof. If Γ is completed primitive then Γ is connected and n(Γ − v) =
2h1(Γ − v). Assume Γ − v is not primitive. Then there exists a proper sub-
graph γ of Γ − v with n(γ) ≤ 2h1(γ). Because γ is a proper subgraph the
complement of γ in Γ has at least two vertices. Since d(γ) = 4N(γ) − 2n(γ)
[Equation (2.15)] = 2n(γ) − 4h1(γ) + 4 [Equation (2.17)] ≤ 4 the subgraph
γ connects to its complement by not more than four edges. This makes Γ
non-primitive.

If, on the other hand, Γ − v is primitive then Γ cannot have a non-trivial
split by four cuts because every part of the split would have n = 2h1. The
part of the split that does not contain v is a proper subgraph of Γ − v hence
rendering Γ − v non-primitive. �

2.4. The period

In this subsection we give six equivalent definitions for a φ4-period.

Definition and Theorem 2.2. Let Γ be a 4-regular graph with loop order
�. If Γ is completed primitive then the following equations define the same
number PΓ, otherwise all equations are ill-defined. In the first case PΓ is the
φ4-period of Γ.
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(1) Projective momentum space. Choose one vertex in Γ with label “∞”.
With projective momentum space Feynman rules for Γ − ∞ (see Equa-
tion (2.8) for an example) we have

(2.18) PΓ = π−2�Amom
Γ−∞ = π−2�

∫

PR4�−1

Ω(p)
∏2�

1 |
∑

±pi|2
.

(2) Affine momentum space. Choose one vertex in Γ with label “∞”. Use
standard momentum space Feynman rules for Γ − ∞ and set one
momentum vector (say p1) to any unit-vector in R4. Name this unit-
vector “1” to obtain

(2.19) PΓ = π−2(�−1)
∫

R4(�−1)

d4p2 · · ·d4p�
∏2�

1 |
∑

±pi|2
∣∣∣
p1→1

.

(3) Projective position space. Choose two vertices in Γ with labels “∞”
and “0.” With projective position space Feynman rules for Γ − ∞ (see
Equation (2.9) for an example) and x0 = 0 where x0 is the position
vector associated to the vertex “0”

(2.20) PΓ = π−2�Apos
Γ−∞ = π−2�

∫

PR4�−1

Ω(x)
∏2�

1 |xi − xj |2
∣∣∣
x0→0

.

(4) Affine position space. Choose three vertices in Γ with labels “∞”, “0”
and “1”. Use standard position space Feynman rules for Γ − ∞, set
x0 = 0, and set the position vector x1 to any unit-vector “1” in R4 to
obtain

(2.21) PΓ = π−2(�−1)
∫

R4(�−1)

d4x2 · · ·d4x�
∏2�

1 |xi − xj |2
∣∣∣
x0→0, x1→1

.

(5) Parametric space. Choose one vertex in Γ with label “∞”. Parametric
Feynman rules for Γ − ∞ (see Equation (2.10) for an example) give
(Δ = {αi > 0})

(2.22) PΓ = Apar
Γ−∞ =

∫

Δ

Ω(α)
ΨΓ−∞(α)2

.

(6) Dual parametric space. Choose one vertex in Γ with label “∞.” Dual
parametric Feynman rules for Γ − ∞ (see Equation (2.12) for an
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example) give

(2.23) PΓ = Adual par
Γ−∞ =

∫

Δ

Ω(α)
Ψ̄Γ−∞(α)2

.

Proof. It was proved in Theorem 2.1 and Proposition 2.1 that the existence
of the integral in Equation (2.18) is equivalent to Γ being primitive. The
validity and equivalence of the list of equations is proved in six steps.

First, we show that Equation (2.18) is equivalent to Equation (2.19) for
an identical choice of “∞”. From Equation (2.18) we go to affine space by
setting the 1-component of p1 to 1, hence p1 = (1,p1) for p1 ∈ R3. Next
we rescale all pi, i ≥ 2 by pi �→ |p1|pi. Because deg(Ω) = 4� we obtain with
“1” = p1/|p1|

π−2�

∫

R3

d3p1

|p1|4
·
∫

R4(�−1)

d4p2 · · ·d4p�
∏2�

1 |
∑

±pi|2
∣∣∣
p1→1

.

The first factor evaluates to π2 by Example 2.1 whereas the second factor is
independent of the direction of p1/|p1| by rotational symmetry. We also see
that the period in Equation (2.19) does not depend on the choice of p1.

Second, we prove that Equation (2.18) is equivalent to Equation (2.22)
for an identical choice of “∞.” A series of elementary integrations leads to

1
Q1Q2 · · ·Q2�

= (2� − 1)!
∫ ∞

0
· · ·

∫ ∞

0

dα2 · · ·dα2�

(Q1 + α2Q2 + · · · + α2�Q2�)2�
.

(2.24)

Here Q = Q1 + α2Q2 + · · · + α2�Q2� is the “universal quadric” [4]. For αi >
0 it is given by a positive-definite 4� × 4� matrix M , which is block diago-
nal with four identical blocks of � × � matrices N , one for each space–time
dimension. By a real linear transformation S we bring M into its normal
form, which is a unit-matrix, ST MS = 1I. The projective volume form trans-
forms by the determinant of S. Note that det(S) = det(M)−1/2 = det(N)−2

and

(2.25) PΓ = π−2�(2� − 1)!
∫

PR4�−1

Ω(p)

(
∑2�

i=1 |pi|2)2�
·
∫ ∞

0
· · ·

∫ ∞

0

dα2 · · ·dα2�

det(N)2
.

We translate the first integral on the right-hand side into an affine
integral over the unit sphere S4�−1 = {

∑2�
i=1 |pi|2 = 1}. The projective

volume form induces the standard measure on S4�−1. Because the sphere is
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a double cover of the real projective space (and the integrand is 1) we obtain
vol(S4�−1)/2 = π2�/Γ(2�) for the first integral. After transition to projective
space in the second integral we finally have to show that det(N) = ΨΓ which
is the result of the Matrix-Tree Theorem Proposition 2.2 in [5].

Third, we prove that Equation (2.22) is equivalent to Equation (2.23)
for an identical choice of “∞.” This is obvious from a Cremona transfor-
mation which in affine space α1 = 1 amounts to a series of one-dimensional
inversions αi �→ 1/αi, i = 2, . . . , 2�.

Fourth, we show that Equation (2.20) is equivalent to Equation (2.23) for
an identical choice of “∞.” This is achieved by literally the same method
as in the second step. Starting from position space leads to a matrix N
that is the (“0”,“0”) minor of the “graph Laplacian.” Another Matrix-Tree
Theorem (see, e.g., §4 in [33]) assures that the determinant of any (i, i)-
minor of the graph Laplacian is given by the dual graph polynomial. As a
side-effect we see that the period in Equation (2.20) does not depend on the
choice of “0”.

Fifth, we show that Equation (2.20) is equivalent to Equation (2.21) for
an identical choice of “∞.” This is exactly the same proof as in the first
step showing the same equivalence in momentum space. As a consequence
the period in Equation (2.21) cannot depend on the choices of “0” and “1.”

Sixth, we have to prove that PΓ does not depend on the choice of
“∞.” This is done in affine position space using Equation (2.21). An inver-
sion xi �→ xi/|xi|2, i �= “0”, “1”, “∞” transforms propagators |xi − xj |−2

to |xi|2|xj |2|xi − xj |−2 and |xi|−2 to |xi|2. Together with the change in the
integration measures d4xi �→ d4xi|xi|−8 we observe that 3-valent vertices in
Γ − ∞ become connected to “0” whereas vertices connected to “0” in Γ − ∞
become 3-valent. Keeping in mind that 3-valent vertices are connected to
“∞” in Γ, inversion interchanges the choices for “0” and “∞.” Because the
choice of “0” is arbitrary before and after the inversion the period cannot
depend on the choice of “∞.” Going backwards the same has to be true for
any of the formulae we gave for the period. �

We close this subsection with the first calculation of a non-trivial
φ4-period.

Example 2.3. Consider the graph P3 plotted in figure 3. With any choice
for “0,” “1,” “∞” we obtain from Equation (2.21) (compare Equation (2.9))

P3 = π−4
∫

R8

d4x2d4x3

|1 − x2|2|x2|2|x2 − x3|2|x3|2|x3 − 1|2 .
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The best way to evaluate this integral is by using Gegenbauer-Techniques
[16]. Quite efficiently one may use

(2.26)
1

|x − y|2 =
1

|xy|

∫ ∞

−∞

dp

π

∞∑

n=1

Cn−1(cos θxy)
∣∣∣∣
x

y

∣∣∣∣
ip n

n2 + p2 ,

where θxy is the angle between x and y. Orthogonality of the Gegenbauer
polynomials (ŷ = y/|y|)

(2.27)
∫

S3

dŷ

2π2 Cn−1(cos θxy)Cm−1(cos θyz) =
δn,m

n
Cn−1(cos θxz)

and
∫ ∞
0 dx|x|ip−1 = 2πδ(p) leads to (Cn−1(1) = n)

P3 = 16π−1
∞∑

n=1

∫ ∞

−∞
dp

n2

(n2 + p2)3

= 16π−1ζ(3)
∫ ∞

−∞
dp

1
(1 + p2)3

= 6ζ(3).

The only other period that can be calculated that easily is P4 if one
chooses for “0” and “∞” opposite vertices of the octahedron graph. The
result is 20ζ(5), see table 4, Section 3. The periods P3 and P4 are the first
two members of the zig-zag family that conjecturally evaluates to a rational
multiples of ζ(2� − 3), see Subsection 2.10 and Equation (2.35).

A calculation of P3 using parametric space can be found in §7 of [13].

2.5. Vertex-connectivity 3: The product identity

The periods of primitive 3-vertex-connected graphs reduce to products of
periods of smaller graphs.

Definition 2.2. A completed primitive graph is reducible if it has vertex-
connectivity 3, otherwise it is irreducible.

With this definition we obtain the following theorem (see figure 4).

Theorem 2.1. A reducible completed primitive graph Γ is the gluing of
two completed primitive graphs Γ1 and Γ2 on triangle faces followed by the
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Figure 4: Vertex connectivity 3 leads to products of periods.

removal of the triangle edges. The period of Γ is the product of the periods
of Γ1 and Γ2,

(2.28) PΓ = PΓ1PΓ2 .

Proof. The gluing of 4-valent graphs Γ1, Γ2 along triangles with vertices v1,
v2, v3 leads to a graph with 6-valent v1, v2, v3 whereas all other vertices
remain 4-valent. After the removal of the triangle edges, we obtain a 4-
regular graph Γ. This graph has vertex-connectivity ≤ 3 because it splits
with the removal of v1, v2, v3. If Γ1 and Γ2 are primitive then they have
well-defined periods. By Equation (2.28) (independently proved below) Γ
has a well-defined period and it is primitive by Theorem 2.2. By Lemma 2.1
it has vertex-connectivity ≥ 3 (hence = 3) making Γ reducible.

If, on the other hand, a primitive graph Γ has vertex-connectivity 3 it
splits into γ1 and γ2 by the removal of v1, v2, v3. We attach v1, v2, v3 to γ1
and γ2 in the same way they were attached in Γ and define di,j as the degree
of vi in γj . We have (1) di,1 + di,2 = 4 because vi had degree 4 in Γ, (2) d1,j +
d2,j + d3,j is even by Equation (2.15), and (3) d1,j + d2,j + d3,j > 4 because
Γ is primitive. The only solution for (1), (2), (3) is all di,j = 2 making the
split graphs 4-regular after the addition of the triangles (v1, v2, v3). Again,
they are primitive by Equation (2.28).

To prove Equation (2.28) we use Equation (2.21) and choose v1 = “0”,
v2 = “1”, v3 = “∞”. In this case the integral on the right-hand side becomes
a product of two integrals, according to the vertex sets of Γ1 and Γ2,
respectively. The triangle (v1, v2, v3) gives an extra propagator connecting
0 and 1. This propagator is |1|−2 = 1 by definition and does not change the
integrand. Hence we are free to add or remove the triangle. Because, by
Equation (2.16), �(Γ) − 1 = N(Γ) − 3 = N(Γ1) + N(Γ2) − 6 = �(Γ1) − 1 +
�(Γ2) − 1 the right-hand side of Equation (2.21) factors into PΓ1PΓ2 . We
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obtain Equation (2.28) if PΓ exists and going backwards we also have Equa-
tion (2.28) if PΓ1 and PΓ1 exist. �

Theorem 2.1 gives a “multiplication” on graphs. However, graphs with
no triangles (like P6,4 in table 4) do not “multiply.” Moreover, the “multipli-
cation” depends on the way the triangles are chosen. If Γ1 has n1 triangles
and Γ2 has n2 triangles there are 6n1n2 ways to glue (for small graphs many
of these will give isomorphic results). See table 2 for the number of non-
isomorphic gluings of irreducible graphs. In the special case that “∞” is one
of the split vertices Theorem 2.1 follows from Proposition 39 in [14].

In table 1, Section 3, we see that 13 of the 73 primitive graphs up to loop
order 8 are reducible. Because their periods can be derived from periods of
smaller graphs we did not include them in table 4. At 14 loops 93.7% of the
primitive graphs are irreducible.

Note that irreducible graphs have vertex-connectivity 4 because it is
always possible to separate off a vertex by removing its neighbors.

2.6. Vertex-connectivity 4: The twist identity

Vertex-connectivity 4 leads to an identity between periods of graphs depicted
in figure 5.

Theorem 2.2. Let Γ be a completed primitive graph with vertex-
connectivity 4 realized by the vertices a, b, c, d. Let γ1 and γ2 and be the
split graphs with the vertices a, b, c, d added in the way they were attached
in Γ. Connect vertices a, b ∈ γ1 to vertices b, a ∈ γ2 and vertices c, d ∈ γ1 to
vertices d, c ∈ γ2 (resp.) to obtain Γ0. If Γ0 is 4-regular then Γ̃ = Γ0. Oth-
erwise assume it is possible to swap edges ac ↔ bd or ad ↔ bc to (uniquely)

Figure 5: Twist transformation: Twist the “left” graph γ1 (or equivalently
the “right” graph γ2) to obtain Γ0. Try to move edges to opposite sides
of the dashed 4-cycle (if necessary) to obtain a 4-regular graph. If successful
the new graph is the twisted graph Γ̃ with PΓ = PΓ̃.
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obtain a 4-regular graph Γ̃. Then Γ̃ is primitive and

(2.29) PΓ = PΓ̃.

Proof. We start from Equation (2.20) with “0” = c and “∞” = d. For sim-
plicity we use a and b as variables associated to vertices a and b. The other
vertices of γ1 have the variables xi whereas the variables located at the
vertices of γ2 are yj . We use quaternions to define the following projective
degree 1 coordinate transformation:

(2.30) σ : xi �→ ax−1
i b, a �→ a, b �→ b, yj �→ yj .

The transformation σ is the identity on γ2 while the propagators in γ1 are
transformed as |xi − xj |−2 �→ |xixj/(ab)|2|xi − xj |−2, |xi − a|−2 �→ |xi/a|2
|b − xi|−2, |xi − b|−2 �→ |xi/b|2|a − xi|−2 (interchanging a and b), and
|xi|−2 �→ |xi/(ab)|2. The integration measure transforms under σ by a Jaco-
bian determinant which can be calculated by a sequence of inversions xi �→
x−1

i and rescalings xi �→ axi, xi �→ xib (choose one of the yj-components = 1
to make the measure affine). The inversions reproduce the propagators
|xi − xj |−2 and interchange 0 and ∞ (see step 6 in the proof of Theorem 2.2).

If γ1 − {a, b, 0,∞} (minus the edges attached to a, b, 0,∞) has N vertices
and n edges and da, db, d0, d∞ are the degrees of a, b, 0, ∞ in γ1 (respectively)
then σ generates a factor |a|4N−2n−2da−2d0 . Because γ1 − {a, b, 0,∞} has
edge-deficiency (see Lemma 2.1) da + db + d0 + d∞ we can rewrite the factor
using Equation (2.15) as |a|−da+db−d0+d∞ . On the other hand, in Γ0 the
vertices a, b, 0, ∞ have degrees Da = db + 4 − da, Db = da + 4 − db, D0 =
d∞ + 4 − d0, D∞ = d0 + 4 − d∞, respectively. Making the vertices 4-regular
by moving s-times edge a0 to edge b∞ (s = −1, 0, 1 with s = −1 meaning
moving edge b∞ to edge a0) and t-times edge a∞ to edge b0 amounts to a
factor |a|2s. Because after moving edges the vertices a and 0 have degree 4 we
obtain the conditions Da − s − t = 4 and D0 − s + t = 4. This determines s
to s = (Da + D0)/2 − 4 = (db − da + d∞ − d0)/2 and hence the factor from
moving the edges equals the factor from the transformation σ. By symmetry
the same holds for the powers of |b|. Thus σ transforms Equation (2.20) into
a period-integral for Γ̃. This proves Equation (2.29) and because PΓ̃ is finite
the graph Γ̃ is (completed) primitive by Theorem 2.2. �

Note that the twist is symmetric under exchanging γ1 and γ2, although
the proof is not. Moreover, a double twist with respect to the same vertices
is the identity. Although defined for all primitive graphs, the twist transfor-
mation operates on irreducible graphs.
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Remark 2.1. The twisted graph Γ̃ is irreducible if and only if Γ is irre-
ducible.

Proof. Assume Γ splits into Γ1 and Γ2 by removing the vertices a, b, c.
If a, b and c lie in γ2 (or in γ1) then Γ1 or Γ2 is a subgraph of γ2 (otherwise

Γ1 and Γ2 would be connected via γ1 and could not split with the removal
of a, b, c). Because the transformation σ in Equation (2.30) is the identity
on γ2 the twisted graph Γ̃ is reducible.

If a, b and c do not all lie in γ1 or γ2 then it is easy to see that there
exists another set of three vertices that splits Γ and fully lies in γ1 or in γ2.

Hence Γ is irreducible if Γ̃ is irreducible. The converse is true because a
twist of Γ̃ is isomorphic to Γ. �

Note that a 4-vertex cut of Γ does not necessarily lead to twist graphs.
If twist graphs exist for vertices (abcd), (acbd) and (adbc) (changing the
labeling) then the transformations form a Klein four-group C2 × C2 and
this is the largest set of transformations one can get from one split. There
may be more twist identities for other ways to split Γ by removing four
vertices.

In many cases the graphs Γ and Γ̃ are isomorphic. This is always the
case when the twist transformation is applied to the neighbors of a vertex.
But still non-trivial splits of primitive graphs are quite common. Among
the 60 irreducible graphs up to loop order 8, we have 10 non-trivial twist
identities. In particular at high loop order the twist-identity appears to be
quite frequent. By applying the twist in different ways to the same graph
one obtains larger equivalence classes of graphs. At loop order 11 the twist
identity reduces the number of potentially different periods from 8687 irre-
ducible graphs to 6300 by forming equivalence classes of up to 12 graphs.

2.7. Planar graphs: The Fourier identity

An identity that can already be found in [10] is the re-interpretation of
momentum vectors as position vectors (introduced in [9]). Because the
momentum space Feynman rules are derived from position space by a
Fourier-transform we call it a Fourier identity.

To allow for the re-interpretation of momentum vectors as position vec-
tors the Feynman graph has to have a planar embedding. When starting
from a completed graph Γ we first have to identify a vertex v = “∞” (if
possible) such that Γ − v has a planar embedding. Once we have a planar
embedding we may determine the dual graph and try to complete it to a
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Figure 6: Fourier transformation: remove one vertex, draw the dual (if pos-
sible), add one vertex and connect it to all 3-valent vertices. If the result is
4-regular then it is the Fourier transformed graph Γ̂ with PΓ = PΓ̂. In the
above example Fourier transformation leads back to the original graph. In
some (rare) cases it leads to new graphs.

4-regular graph by adding a vertex (see figure 6). If Γ was irreducible then
Γ − v has vertex-connectivity 3 and the dual graph is unique.

Theorem 2.3. Let Γ be a completed primitive graph. If Γ − v has a planar
embedding for some vertex v and if the dual graph can be completed to a
4-regular graph Γ̂ by adding one vertex v̂ then Γ̂ is primitive and

(2.31) PΓ = PΓ̂.

Proof. The momentum space Feynman rules of Γ − v are identical to the
position space Feynman rules of Γ̂ − v̂ if one sets the outside-vertex to 0
and uses the other vertices of Γ̂ − v̂ as cycle base of Γ − v. Equation (2.31)
is thus a consequence of the equivalence of Equations (2.18) and (2.20). The
graph Γ̂ is primitive by Theorem 2.2 because it has a finite period. �

Similar to the twist identity the Fourier identity establishes an equiva-
lence relation between graphs with equivalence classes that can have more
than two elements (one may be able to choose different vertices v). However,
Fourier identities are rare. We have five identities up to loop order 8. Three
of these can also be obtained by the twist identity. The two new identi-
ties reduce the number of irreducible periods up to loop order 8 to 48 (see
table 1, Section 3, 31 of these periods have been identified as MZVs). The
first instance of a Fourier equivalence class with three elements is found at
loop order 11 where the number of independent identities is 43 (as compared
to 2387 independent twist identities).

It is possible to slightly extend the Fourier identity (see figure 7).

Remark 2.2. One can extend the Fourier identity to some graphs that
have a dual γ (after the removal of a vertex) which does not complete to a
4-regular graph. Assume γ fails to complete to a 4-regular graph because is
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Figure 7: Extended Fourier transformation: Go from γ to γ′ by adding one
vertex, connect it to all 3-valent vertices, and remove the vertex with degree
≥ 5 in γ.

has one vertex w with degree ≥ 5 whereas all other vertices have degree 3
or 4. Define a graph γ′ by adding a vertex connected to all 3-valent vertices
of γ followed by the removal of w. If γ′ is planar determine a dual γ̂′. If γ̂′

fails to complete to a 4-regular graph for the same reason as γ then continue
to perform the above transformation (if possible) until γ̂′···′ completes to a
4-regular graph Γ̂′···′ or γ̂′···′ has more than one vertex with degree ≥ 5. In
the first case one has

(2.32) PΓ = PΓ̂′···′ .

Proof. In position space (Equation (2.20) or Equation (2.21) with v = ∞
and w = 0) the transformation between γ and γ′ is an inversion, step 6 in
the proof of Theorem 2.2. �

As in the case of the twist identity a double Fourier transformation (not
changing the deleted vertex) is the identity. Moreover, the Fourier transfor-
mation operates on irreducible graphs.

Remark 2.3. The Fourier transformed graph Γ̂ is irreducible if and only
if Γ is irreducible.

Proof. Assume Γ splits into Γ1 and Γ2 by removing the vertices a, b, c. Then
a, b and c connects to both split graphs with two edges each (see figure 4).

If v is one of the vertices a, b or c then Γ − v has vertex-connectivity 2.
Its dual, too, has vertex-connectivity 2, hence Γ̂ is reducible.

If v is none of the vertices a, b or c then the dual graph has vertex-
connectivity 3 realized by vertices that lie “between” ab, bc, ca on the two-
sphere S2. In the same way as Γ each of these vertices connects to the split
graphs with two edges (draw the dual of Γ in figure 4). Let Γ1 and Γ2 be the
split graphs with reattached vertices a, b, c (the graphs Γ1 and Γ2 in figure 4
without the triangle (01∞)). If v lies in the “left” graph Γ1 (without restric-
tion) then Γ1 − v has edge-deficiency d1 = 10 (see Lemma 2.1) whereas Γ2
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has deficiency d2 = 6. By application of Equations (2.15) and (2.17) we can
calculate the deficiencies of the split graphs of Γ̂ − v̂ to d̂1 = 6 (the “left”
part) and d̂2 = 10. Because Γ̂ is 4-regular the extra vertex v̂ connects only
to the “right” part. Thus Γ̂ retains vertex-connectivity 3.

Hence Γ is irreducible if Γ̂ is irreducible. The converse is true because Γ̂
Fourier-transforms to Γ. �

The author did not find an extended Fourier symmetry that leads out
of the subset of irreducible graphs, although the above proof does not apply
to this case.

It is well possible that there exist more transformations that leave the
period invariant although up to date all identities found numerically are of
twist of Fourier type.

2.8. Weight and the double triangle reduction

In general, a period is an integral of an algebraic differential form over a
simplex bounded by algebraic inequalities [29]. Sums and products of periods
are periods which makes the set of periods a Q̄-algebra.

Special periods are MZVs (for data and a recent overview see [6]).

(2.33) ζ(n1, . . . , nr) =
∑

k1>...>kr≥1

1
kn1

1 · · · knr
r

n1 ≥ 2, ni ∈ N.

The sum over the exponents on the right-hand side n = n1 + · · · + nr is
the weight of the MZV. It is invariant under regularized shuffle and quasi
shuffle (stuffle) relations which are conjectured to generate all relations
between MZVs. Restricting oneself to these two sets of identities (defin-
ing formal MZVs) the weight of an MZV is a well-defined concept. When
one considers MZVs as real numbers it seems hopeless trying to prove that
there exist no weight-violating relations among them. We keep this in mind,
although we do not always stress the difference.

In this paper we encounter Q-linear combinations of MZVs. The vector
space Q[MZV ] of such numbers forms a Q-algebra (conjecturally) graded by
the weight. A number in Q[MZV ] has pure weight n if it has contributions
from the weight n sector only, otherwise it mixes weights. The dimensions
of the pure weight n subspaces are conjectured to follow a Fibonacci-type
sequence dn = dn−2 + dn−3 (see [11,46]). All MZVs are periods because there
exists a representation of ζ(n1, . . . , nr) as an integral of a rational n-form
over a simplex.
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In quantum field theory we do not have a standard representation for
periods: The integrals given in Equations (2.18) to (2.23) are much too
complicated for that purpose. In this case we do best to consider a period
as a real number and call it an element in Q[MZV ] if a rational linear
combination of MZVs evaluates it. In such a situation clean statements can
still be made on upper bounds of its maximum weight according to the
following definition (which is not in general consistent with the definition of
weight in Hodge theory).

Definition 2.3. The maximum weight of a period P is the smallest integer
n such that P is the integral of an algebraic n form over a simplex bounded
by algebraic inequalities.

The maximum weight of a number given by a rational linear combination
of (formal) MZVs is smaller or equal to the maximum of its weights. If,
e.g., a number evaluates to ζ(3) + 2ζ(2, 2) − ζ(3, 2)/2 its maximum weight
is ≤ 5. (A similar concept with sums replacing integrals leads to a “maximum
depth” in the case of MZVs.) For φ4-periods we have the following statement.

Lemma 2.2. The maximum weight of a φ4-period of loop order � is
≤ 2� − 3.

Proof. After three integrations starting from Equation (2.22) with α2� = 1
we are left with 2� − 4 integrals over rational linear combinations of loga-
rithms. For details see §10.3 in [14]. �

In table 4, section 3, we observe weights 2� − 3, 2� − 4, and in one case
(P8,16) the mixing of weights 2� − 5 and 2� − 6. We would like to have a
graph-theoretical criterion that predicts the maximum weight of a φ4-period.
Such a criterion is still missing (see [15] for recent results). What we have is
the partially proved conjecture that a “double triangle reduction” does not
alter the maximum weight of the period (see figure 8). The double triangle
reduction is the completed version of the construction in Theorem 130 of [14]
(see also [15]).

Definition 2.4. Assume a graph has an edge ab that is the common edge
of (exactly) two triangles (abc) and (abd), c �= d. In the (double triangle)
reduced graph one of the vertices of the edge ab is replaced by a crossing
with edge cd.
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Figure 8: Double triangle reduction: replace a joint vertex of two attached
triangles by a crossing.

It is obvious that the reduced graph does not depend on which vertex
of the common edge is replaced by the crossing. Moreover, we have the
following proposition.

Proposition 2.2. Any double triangle reduction of a completed primitive
graph is completed primitive.

Proof. First, we observe that P1 (see figure 3) does not have a double triangle
reduction. All other primitive graphs are simple by Lemma 2.1.

Second, we see that the reduction of a simple graph can only be non-
simple in cases (a) and (b) of figure 9. While figure 9(a) is ruled out by
definition (because three triangles meet in an edge) we find that figure 9(b)
can only be a subgraph of a primitive graph if all four “external” edges
connect to the same vertex (otherwise one obtains a non-trivial cut by these
four edges rendering the graph (completed) non-primitive). In this case we
obtain P3 (see figure 3), which does not have a double triangle reduction
because three triangles meet in every edge.

Third, assume the reduced graph of a simple primitive graph Γ has a
non-trivial split by cutting four edges a, b, c, d. The reduction of the double
triangle gives a single triangle. If none of its edges is in {a, b, c, d} then the
original graph Γ has the same non-trivial split. Otherwise two edges of the
triangle (say a and b) have to be in {a, b, c, d}. In this case the split cuts two
edges of a vertex. Cutting the other two edges of the vertex (say e and f)
together with c and d gives another split. This split is non-trivial because
otherwise e and f had to connect to the same vertex forming a double edge
(making Γ non-simple). Moreover, none of the edges of the reduced triangle
is in {c, d, e, f} providing Γ with a non-trivial split. �

Because of Proposition 2.2 it is possible to compare periods of graphs
with the periods of their reduced graphs.
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Figure 9: Double triangle reductions of completed primitive graphs com-
mute. Cases (a) and (b) are not allowed. In case (c) any application of two
double triangle reductions gives the same result.

Conjecture 2.1. Double triangle reduction does not alter the maximum
weight of the period.

A closely related statement is proved as Theorem 36 in [15].
To conjecture the maximum weight of an unknown period one would

like to apply as many double-triangle reductions as possible. Afterwards,
with some luck, the period of the completely reduced graph is known and
one can read of (an upper bound for) the maximum weight. Because of the
following proposition the completely reduced graph is uniquely determined
by the original graph.

Proposition 2.3. Double triangle reductions commute.

Proof. The statement is obvious unless three triangles allow for different
reductions. All possible cases are given in figure 9. The situations (a) and
(b) are ruled out in the proof of Proposition 2.2. In figure 9(c) any application
of two reductions leads to the depicted result. �

Double triangle reductions may transform irreducible graphs to reducible
graphs. In this case we can use the product identity Equation (2.28) to
further simplify the graph. By the following proposition any sequence of
reductions and product splits (splitting the graph on vertex sets which lead
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to vertex-connectivity 3, Theorem 2.1 and figure 4) lead to the same result,
the “ancestor” of the graph.

Proposition 2.4. Double triangle reductions and product splits commute.

Proof. The product identity only applies if three vertices a, b, c connect two
sub-graphs in the way depicted in figure 4. Any double triangle has to be
contained in left or in the right sub-graph (including the edges connected
to a, b and c). It cannot be teared apart by the product split and it hence
does not matter if one splits before or after the reduction. �

Definition 2.5. Let Γ be a completed primitive graph. Any sequence of
reductions and product splits (Theorem 2.1) terminates at a product of
double-triangle free irreducible graphs, the ancestor of Γ. We call Γ a descen-
dant of its ancestor. The set of descendants of an ancestor is the family of
the ancestor.

Remark 2.4. Conjecture 2.1 is equivalent to the statement that all periods
of graphs in a family have the same maximum weight.

A family has either one member only, a triangle-free (girth ≥ 4) ancestor
(like P6,4 in table 4, Section 3), or it has infinite cardinality. In the latter case
the number of descendants is finite for every loop order � and it grows with
�. For finite loop order � the P3-family is the largest. At � = 11, out of 8687
irreducible graphs (see table 1, Section 3) 1286 are descendants of P3, 920
are descendants of P 2

3 , 132 are descendants of P 3
3 and six are descendants

of P 4
3 . The other graphs have different ancestors.
Note that families may be linked by twist identities (Theorem 2.2) or by

(extended, Remark 2.2) Fourier identities (Theorem 2.3). The first example
is the weight 10 ancestor P7,10 (see table 4, section 3), which is linked by
a Fourier identity to P7,5 with ancestor P 2

3 . Likewise weight 12 ancestors
P8,32 and P8,34 are linked by a twist. Thus twist and Fourier identities group
families to clusters of extended families (all conjectured to have the same
maximum weight). In general it is not easy to see if two families are linked
by identities because this link may occur at high loop order. For example
the P7,11-family is linked to the P8,36-family via a Fourier transformation
on descendants with loop order 9 (not included in table 4). The author is
grateful to K. Yeats for providing this example.

Another way to conjecture the weight of yet unknown periods is by
counting the number of zeros of the graph polynomial over finite fields and



A census of φ4-transcendentals 29

relies on étale cohomology combined with the Lefschetz fixed-point formula
(and on empirical data, see Remark 2.10 in [41]).

2.9. Integer multiple zeta values and the index

Multiple zeta values span a Z module Z[MZV ] (the integer MZVs) provided
with a ring structure. The set of integer MZVs is a lattice in the vector space
Q[MZV ]. All periods that have been identified up to date are found in this
lattice. For certain classes of graphs (“vertex-width ≤ 3” and all positive
sign “Dodgsons”) this is proved in [14].

For every x ∈ Z[MZV ] there exists a maximum number k such that x/k
is still an integer MZV.

Definition 2.6. For x ∈ Z[MZV ] let the index of x be the maximum k ∈ N

such that x ∈ kZ[MZV ].

For example, Open question 12.8 (10) in [14] asks for the index of ζ(n).
Thanks to the database [6] which provides a (conjecturally) complete set of
MZV-relations up to weight 22 we were able to answer this question for all
n ≤ 19 (sufficient to loop order � = 11).

n index [ζ(n)]
2 1
3 1
4 4 = 22

5 2 = 21

6 48 = 243
7 16 = 24

8 576 = 2632

9 144 = 2432(2.34)
10 3840 = 283 · 5
11 768 = 283
12 6368256 = 21032691
13 1536 = 293
14 3870720 = 212335 · 7
15 552960 = 212335
16 1600045056 = 214333617
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17 55296 = 21133

18 1164321423360 = 216345 · 43867
19 2949120 = 216325.

The index of the identified φ4-periods can be found in table 4, Section 3.

2.10. Symmetric graphs

We call a completed φ4-graph symmetric if all vertices are equal.

Definition 2.7. A completed φ4-graph is symmetric if its symmetry group
acts transitively on the vertices.

Among the symmetric graphs are the simplest as well as the most com-
plicated graphs (according to their numerical and analytical accessibility).

Up to loop order 8 there are two types of symmetric graphs: The “cyclic”
graphs and one cartesian product of cycles.

Definition 2.8. The cyclic graph CN
m,n with 1 ≤ m, n ≤ N − 1 has vertices

1, 2, . . . , N and edges connecting i with i + m mod N and with i + n mod N .

The graph P1 (figure 3) is C3
1,1 (or C3

1,2) while P3 (figure 3) is C5
1,2.

Lemma 2.3. The cyclic graphs have the following properties:

1) CN
m,n ∼ CN

n,m ∼ CN
−m,n ∼ CN

am,an for a ∈ Z ×
/NZ

are isomorphic.

2) CN
m,n is 4-regular if m, n �= N/2.

3) CN
m,n is simple if m �= ±n mod N .

4) CN
m,n is connected if gcd(m, n, N) = 1.

5) CN
m,n is completed primitive (with loop order � = N − 2) if N = 3 or

if it is 4-regular, simple and connected.

Proof. Straight forward. �
The series CN

1,2 is the completion of the zig-zag series introduced in [10].
They are descendants of P3 (see Definition 2.5). Their periods are known to
be integer MZVs [14]. In fact, there exists a strikingly simple conjecture for
their periods [10].
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Conjecture 2.2.

(2.35) PC�+2
1,2

=
4(2� − 2)!
�!(� − 1)!

∞∑

k=1

(−1)�(k−1)

k2�−3 ∈ Qζ(2� − 3) ∩ Z[MZV ].

The conjecture is proved for � = 3 in [16], � = 4 in [17], � = 5 in [28], and
� = 6 in [44].

A second series of symmetric primitive graphs arises from cartesian
products of cycles with the smallest member the K3 K3 graph P7,10 which
is linked by a Fourier transform to P7,5 (see table 4, Section 3) and was
determined by “exact numerical methods” in [10].

Conjecture 2.3.

(2.36) PK3 K3 = −189ζ(3)ζ(7) + 450ζ(5)2.

3. Tables

This section presents a collection of explicit results. In table 1 we list the
number of completed primitive graphs (see Definition 2.1) up to loop order
� = 14. Next, we list the number of irreducible graphs (see Definition 2.2)
(an upper bound for), the number of different periods (see Definition 2.2),
the number of periods that were successfully determined, followed by the
number of independent MZVs introduced by these periods (see table 3a).
The author used McKay’s powerful nauty [34] to generate the first column.

In table 2 we summarize the results for reducible graphs in terms of
Z-linear combination of products of irreducible graphs which are listed in
table 4. A term nPAPB means there exist n non-isomorphic reducible graphs
that factorize into PA times PB by the product identity (Theorem 2.1). The
sum of the coefficients equals the number of reducible graphs (column 3
minus column 2 in table 1). The table does not include symmetry factors
(see table 4) and hence it cannot be interpreted as a contribution to, for
example, a physical beta-function.

Table 3a contains a list of φ4-transcendentals (except for Q0 = 1)
needed to read table 4. The appearance of the “knot numbers” (see table 3b
for their conversion into MZVs)

(3.1) Na,b =
∑

j>k≥1

(
(−1)j

jakb
− (−1)j

jbka

)
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Table 1: Completed primitive graphs and φ4-periods

� Graphs Irreducible Periods Results Indep. MZVs

1 1 1 1 1 1
2 0 0 0 0 0
3 1 1 1 1 1
4 1 1 1 1 1
5 2 1 1 1 1
6 5 4 4 4 2
7 14 11 9 7 2
8 49 41 ≤31 16 7
9 227 190 ≤136 1 1

10 1354 1182 ≤846 1 1
11 9722 8687 ≤6300 1 1
12 81,305 74,204 ? 1 1
13 755,643 700,242 ? 1 1
14 7,635,677 7,160,643 ? 1 1

Table 2: Results for reducible graphs using the product identity

� Sum of reducible graphs

5 P 2
3

6 P3P4

7 P 3
3 + P3P5 + P 2

4

8 3P 2
3 P4 + P3(P6,1 + 2P6,2 + P6,3) + P4P5

9 2P 4
3 + 4P 2

3 P5 + P3(3P 2
4 + P7,1 + 4P7,2 + 3P7,3 + 3P7,4 + P7,5 + 3P7,6

+ 2P7,7 +P7,8 +2P7,9 +P7,10 +P7,11)+P4(P6,1 +2P6,2 + P6,3) + 2P 2
5

10 6P 3
3 P4 + P 2

3 (5P6,1 + 10P6,2 + 3P6,3) + P3(7P4P5 + P8,1 + 5P8,2 + 2P8,3
+ 7P8,4 + 3P8,5 + 2P8,6 + 3P8,7 + 3P8,8 + 4P8,9 + 4P8,10 + 2P8,11
+ 3P8,12 + 6P8,13 + 6P8,14 + 4P8,15 + P8,16 + 2P8,17 + 4P8,18 + P8,19
+ 5P8,20 + 3P8,21 + 3P8,22 + 3P8,23 + P8,24 + 4P8,25 + 2P8,26 + 3P8,27
+ 2P8,28 + 4P8,29 + 2P8,30 + 3P8,31 + P8,32 + 2P8,33 + P8,34 + P8,35
+ P8,36 + 2P8,37 + P8,38 + P8,39) + 2P 3

4 + P4(P7,1 + 4P7,2 + 3P7,3
+ 3P7,4 + P7,5 + 3P7,6 + 2P7,7 + P7,8 + 2P7,9 + P7,10 + P7,11)
+ P5(2P6,1 + 5P6,2 + 2P6,3)

Note that P6,4 is absent because it has no triangle.
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Table 3a: (Possibly incomplete) list of φ4-transcendentals up to loop
order 8

� wt Number Value

1 0 Q0 = 1 1

3 3 Q3 = ζ(3) 1.202 056 903 159

4 5 Q5 = ζ(5) 1.036 927 755 143

5 7 Q7 = ζ(7) 1.008 349 277 381

6 8 Q8 = N3,5 0.070 183 206 556
9 Q9 = ζ(9) 1.002 008 392 826

7 10 Q10 = N3,7 0.090 897 338 299
11 Q11,1 = ζ(11) 1.000 494 188 604

Q11,2 = −ζ(3, 5, 3)+ζ(3)ζ(5, 3) 0.042 696 696 025

8 12 Q12,1 = N3,9 0.096 506 102 637
Q12,2 = N5,7 0.002 046 054 793
Q12,3 = π12/10! 0.254 703 808 841

13 Q13,1 = ζ(13) 1.000 122 713 347
Q13,2 = −ζ(5, 3, 5) + 11ζ(5)ζ(5, 3) + 5ζ(5)ζ(8) 5.635 097 688 692
Q13,3 = −ζ(3, 7, 3) + ζ(3)ζ(7, 3) 6.725 631 947 085

+ 12ζ(5)ζ(5, 3) + 6ζ(5)ζ(8)

introduced by Broadhurst in [11] indicates that there might be something
like a canonical base for φ4-periods. A link to Goncharov’s coproduct on
MZVs [25] seems possible. Except for using the Na,bs the author did not
make an attempt to find a more canonical choice than the shortest possible
presented in the table.

To obtain a complete Q-base of weight n one has to include all products
of φ4-transcendentals with total weight n. Note that the Q-dimension of the
base (including products) is much smaller than the number of Q-independent
MZVs. The sufficiency of the base has thus predictive power beyond the fact
that the known periods are (integer) MZVs.

Because of the absence of lower powers of π the appearance of π12/10!
as Q12,3 was not expected by the author. Notice that at weight 12 we also
have the first “push-down” (an MZV that reduces to lower depth Euler
sums) [6, 11] and the first “exceptional” relation between odd double sums
[between ζ(9, 3) and ζ(7, 5)] which was shown in [24] to be connected to the
existence of the weight 12 cusp modular form.



34 Oliver Schnetz

Table 3b: Conversion or the Na,bs (and π12/10!) into MZVs

� wt Base

6 8 N3,5 = 27
80ζ(5, 3) + 45

64ζ(5)ζ(3) − 261
320ζ(8)

7 10 N3,7 = 423
3584ζ(7, 3) + 189

256ζ(7)ζ(3) + 639
3584ζ(5)2 − 7137

7168ζ(10)

8 12 N3,9 = 27
512ζ(4, 4, 2, 2) + 55

1024ζ(9, 3) + 231
256ζ(9)ζ(3) + 447

256ζ(7)ζ(5)

− 9
512ζ(3)4 − 27

448ζ(7, 3)ζ(2) − 189
128ζ(7)ζ(3)ζ(2)

− 1269
1792ζ(5)2ζ(2) + 189

512ζ(5, 3)ζ(4) + 945
512ζ(5)ζ(3)ζ(4)

+ 9
64ζ(3)2ζ(6) − 7322453

5660672ζ(12)

N5,7 = − 81
512ζ(4, 4, 2, 2) + 19

1024ζ(9, 3) − 477
1024ζ(9)ζ(3) − 4449

1024ζ(7)ζ(5)

+ 27
512ζ(3)4 + 81

448ζ(7, 3)ζ(2) + 567
128ζ(7)ζ(3)ζ(2)

+ 3807
1792ζ(5)2ζ(2) − 567

512ζ(5, 3)ζ(4) − 2835
512 ζ(5)ζ(3)ζ(4)

− 27
64ζ(3)2ζ(6) + 3155095

5660672ζ(12)

π12/10! = 45045
176896ζ(12)

Table 4 is the census. We list all 60 irreducible completed primitive
graphs of φ4-theory up to loop order � = 8.

Each row in the table contains the name and a plot of the graph, the
first digits of its numerical value (if available), the size of its automorphism
group (due to McKay’s nauty [34]), its index (if available; see Definition 2.6)
and ancestor (see Definition 2.5), remarks, the (conjectured) weight and the
exact value (if available).

Except for loop order, the periods are not ordered in a particular way.
The name P�, # is indexed by the loop order and a number that represents
the order in which it was produced by the generating program.

Analytic results are available for P3 and P4 where simple Gegenbauer
techniques suffice [16], [17], see Ex. 2.3. Moreover, the zig-zag periods P5
and P6,1 have been calculated using the uniqueness relation in [28] and [44],
respectively. The only multiple zeta period that has been calculated is P6,4
in [39]. All other periods have been determined by a method developed
in [10]: Expand the propagators into Gegenbauer polynomials, evaluate the
integrals, simplify the result, convert the multiple sum into a sequence by
introducing some kind of “cutoff” Λ, accelerate convergence by fitting a
power series in negative exponents of Λ. It turned out to be very useful to
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include logarithmic terms in the series up to a certain power leading to terms
of the form aj,kΛ−j lnk(Λ). The desired approximation is then recovered as
a0,0 (see [11]). With a high precision result for the period we use PSLQ to
search for a Q-linear combination of MZVs that reproduces the number.

The method is quite efficient if the expansion into Gegenbauer polynomi-
als does not lead to “multi-j-symbols”. We used twist and (extended) Fourier
identities (see Theorems 2.2, 2.3, and Remark 2.2) trying to convert the
original graph into a (possibly non-φ4) graph that delivers a multi-j-symbol
free expansion. Whenever this was possible we found a highly trustworthy
MZV-fit for the period.

The remarks include the number of significant figures (sf) that are avail-
able. Note that we needed very high precision results only for some peri-
ods of a given weight to determine the sub-base of φ4-periods in Q[MZV ].
Further, we included bibliographic references [Lit], alternative names, and
known identities for the graph into the remarks.

A code for quick access to the graph together with a list of all 190
completed primitive irreducible graphs at loop order 9 is included in the
first version of this paper [40].

Most of the numerical calculations were performed on the Erlanger
RRZE cluster.
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