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New percolation crossing formulas and second-order
modular forms

Nikolaos Diamantis and Peter Kleban

We consider the three crossing probability densities for percolation
recently found via conformal field theory [23]. We prove that all
three of them (i) may be simply expressed in terms of Cardy’s [4]
and Watts’ [24] crossing probabilities, (ii) are (weakly holomor-
phic) second-order modular forms of weight 0 (and a single par-
ticular type) on the congruence group Γ(2), and (iii) under some
technical assumptions (similar to those used in [19]) are completely
determined by their transformation laws.

The only physical input in (iii) is Cardy’s crossing formula,
which suggests an unknown connection between all crossing-type
formulas.

1. Introduction

Modular behavior appears in percolation theory on a rectangle, as is demon-
strated in [19]. There, formulas for the crossing probabilities at the per-
colation point obtained via conformal field theory (or more exactly, their
derivatives with respect to the aspect ratio r) are shown to have interesting
modular properties. Further, a modular characterization of these probabili-
ties is given via several theorems.

In that work, there are two main quantities of interest. The “horizontal”
crossing probability Πh(r) is the probability of finding at least one cluster
that connects the left and right (vertical) edges of the rectangle, with r
being the ratio of horizontal to vertical edge lengths. An explicit formula
for this quantity was originally calculated by Cardy [4] via conformal field
theory, and more recently proven rigorously, for the triangular lattice, by
Smirnov [22]. The “horizontal but not vertical” crossing probability Πhv̄(r)
is the probability of finding at least one cluster that connects the left and
right edges of the rectangle while the top and bottom (horizontal) edges are
not connected. A formula for this was first obtained with conformal field
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theory by Watts [24] and recently proven rigorously by Dubédat [9] using
Schramm–Loewner Evolution methods.

The behavior of the crossing probabilities under S : z → −1/z (with z =
i r) follows from physical symmetries of the problem, while the behavior
under T : z → z + 1 arises from the structure of the formulas themselves
(explicitly, the appearance of a single “conformal block”, see [19] for details),
but has no obvious physical origin.

Two surprises arise in [19]. First, there is no reason to expect modu-
lar behavior on a rectangle at all since it lacks the appropriate symmetry.
(By contrast, on a torus modular behavior of crossing probabilities is both
expected and observed ([20]).) Despite this, Π′

h(r) is a modular form (the
prime denotes differentiation), and is completely determined by a simple
modular argument that assumes its physical symmetry. Secondly, Π′

hv̄(r) is
observed to possess unusual modular behavior, which leads to the defini-
tion of a new kind of modular object, the nth − order modular form. Such
objects were also defined independently, in a different context ( [8]) and have
since been explored systematically (e.g., [7, 10,13,14,18]).

For percolation, the appearance of a second-order modular form may be
traced to the difference in sign of the behavior under S of Π′

h and Π′
hv, where

Πhv(r) = Πh(r) − Πhv̄(r) is the probability of finding a cluster that crosses
both horizontally and vertically.

Recently, three percolation crossing probability densities that can be
interpreted in the same setting as Πhv, Πhv̄ (see [19], Section 2) have been
calculated from conformal field theory, πb

h(α, β), πb̄
h(α, β) and νh(α, β) ( [23]).

These quantities (see below for the explicit formulas) are more precisely
probability densities for clusters that connect to two specified points on
opposite vertical edges of a rectangle, under certain specified conditions.
Specifically,

(i) πb
h(α, β) is the probability density of finding at least one cluster that

connects two points on the vertical sides of the rectangle, and also
connects to the bottom of the rectangle, with no horizontal crossing
below it,

(ii) πb̄
h(α, β) is the same except that it is conditioned to not connect to the

bottom of the rectangle, and

(iii) νh(α, β) the probability density of finding at least one cluster that
connects two points on the vertical sides of the rectangle conditioned
on their being at least one additional horizontal crossing cluster
below.
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Here the points on the sides of the rectangle are the images of α and β, which
themselves lie on the real axis. The integrals of these new quantities give
Πh, Πhv̄, and Nh, where the latter is the expected number of horizontally
crossing clusters (see (2.19–2.21) below). (Note that Nh was calculated first
via conformal field theory [5, 6] and later rigorously [17].)

In this work we examine the modular properties of πb
h, πb̄

h and νh under
the congruence group Γ(2). Unexpectedly, we find that all three of them
are second-order modular forms. This occurs even though they again are
on a rectangle, which does not possess the requisite symmetry under S, and
they specify crossings between points, rather than intervals. These functions
are also very interesting from a purely number-theoretic viewpoint, as they
illustrate the occurence of an extension of higher-order forms which involves
two group actions and whose study, though formally natural, would seem
otherwise unmotivated.

Proposition 2.1 shows that all three crossing probability densities may be
written as expressions linear in the ratio φ, which is proportional to Π′

hv̄/Π′
h

(see (2.3), (2.6) and (2.13), the prime denotes a derivative), with coefficients
that are algebraic functions of the cross-ratio λ of the four points defining
the rectangle.

Theorem 3.1 proves that all three crossing probability densities are
weakly holomorphic second-order modular forms (definitions are given in
Section 3), and determines their leading Fourier terms at each cusp. Weak
holomorphicity has been studied and led to striking results including the res-
olution of classical number-theoretical problems on partitions of integers and
other results by D. Zagier, R. Borcherds, K. Ono, K. Bringmann ( [1–3,25],
see also [11] for further references). However, we did not expect it in this
context.

Theorem 4.2 is a uniqueness result for the weakly holomorphic higher-
order forms studied in this work. It proves that, under some technical
assumptions analogous to those used in [19], all three crossing probability
densities are determined by the transformation laws they satisfy. Since the
only physical input to the theorem is Π′

h, one finds that a single basic frame-
work of assumptions leads to all three probability functions. This points to
an unknown connection between the functions Πh, Πhv̄ and Nh.

This work is focused on the mathematical aspects of the new crossing
probability densities. We plan to explore its physical implications more fully
elsewhere. However, since the treatment here may also be of interest to
physicists, we have included some comments that are intended to make the
presentation more accessible to that audience.
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2. Crossing probabilities

Set T := ( 1 1
0 1 ) and S :=

(
0 −1
1 0

)
. We let Γ(2) denote the group of matrices

of SL2(Z) congruent to the identity mod(2). We use the set of generators of
Γ(2) consisting of g1 := T 2 and g2 := ST−2S−1 = ( 1 0

2 1 ) ( [21], p. 63).
Now set q := e2πiz. Let η be the Dedekind eta function

η(z) = q1/24
∞∏

n=1

(1 − qn).

Also, let λ denote the classical modular function for Γ(2). It is given by

(2.1) λ(z) := 16
η(z/2)8η(2z)16

η(z)24 = 1 − η(z/2)16η(2z)8

η(z)24 .

Neither the function λ nor its derivative with respect to z

(2.2) λ′(z) = 16πi
η(z/2)16η(2z)16

η(z)28

have any poles or zeros in H (cf. [21], Section 7.2, (7.2.17)).
λ(z) appears here because for z = ir it is the cross-ratio of the four

points to which the corners of a rectangle of aspect ratio r are mapped.
Since the natural variable in conformal field theory is the cross-ratio λ,

not r, we take the variable of the crossing probabilities to be λ. Indeed,
Cardy’s formula gives the horizontal crossing probability as

(2.3) Πh(r) = Ph(λ(ir)),

with Ph(x) := 2π
√

3
Γ(1/3)3 x

1/3
2F1(1/3, 2/3; 4/3; x). Let

(2.4) C :=
21/3π2

3 Γ(1/3)3
,

following the notation in [19]. Then Πh(r) = Ph(λ(ir)) satisfies

(2.5)
d

dr
(Ph(λ(ir))) = −4

√
3 C η(ir)4,

as proven in [26].
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The horizontal but not vertical crossing probability is similarly given by
Watt’s formula as

(2.6) Πhv̄(r) = Phv̄(λ(ir))

Phv̄(λ(ir)) is proven in [19] to satisfy

(2.7)
d

dr
(Phv̄(λ(ir))) = −8

√
3f2(ir),

where

f2(z) =
2πi

3
η(z)4

∫ z

∞
f3(w)dw, with(2.8)

f3(w) :=
η(w/2)8η(2w)8

η(w)12 .

The Dedekind eta function is a weight 1/2 cusp form on SL2(Z) with a
character. We denote the character of η(z)4 by χ. As shown in [19], f2(z) is
a second-order modular form, of a kind which we specify in the next section.

Now let

(2.9) g(z) := η(z/2)8η(2z)8/η(z)16.

This definition is useful for avoiding ambiguities from fractional powers of
λ(1 − λ). Because of (2.1) g satisfies

(2.10) g3 =
1
16

λ(1 − λ).

Then, combining (2.1) and (2.2) gives, for z ∈ H,

(2.11) η(z)4 =
1

16πi

λ′(z)
g(z)2

,

as well as

(2.12) f3(z) =
1

16πi

λ′(z)
g(z)

.

Now let

(2.13) φ(z) :=
f2(z)
η(z)4

=
1
2
C

(Phv̄(λ(z)))′

(Ph(λ(z)))′

(with prime standing for differentiation in z).
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By an obvious extension of notation we have Phv = Ph − Phv̄. Since
Phv(λ(i/r)) = Phv(λ(ir)) by symmetry, Π′

hv(i) = 0 (note that r = 1 is a
square). Π′

h(i) = Π′
hv̄(i) then follows immediately. Thus

(2.14) φ(i) =
C

2
.

Using (2.8) to calculate φ′ and (2.12), one sees that φ is a function of λ only.
Integrating gives

(2.15) φ(z) =
1

28/3 λ(z)2/3
2F1(1/3, 2/3; 5/3; λ(z)).

In a more recent work ( [23]), the three new crossing probability densities
mentioned in the Introduction are introduced and computed. For 0 < α < 1,
and 1 < β, they are given by

πb
h(α, β) =

(β + α) 2F1(1, 4/3, 5/3, 1 − α/β) − 2β

4
√

3π β2(β − α)
,(2.16)

πb̄
h(α, β) =

(β + α) 2F1(1, 4/3, 5/3, α/β) + 2β

4
√

3 π β2(β − α)
and(2.17)

νh(α, β) =
β2 + 2αβ − (β2 − α2) 2F1(1, 4/3, 5/3, α/β)

4
√

3 π β2(β − α)2
.(2.18)

In [23] it is shown that a double integration of each of these quantities gives
the crossing probabilities studied in [19] as well as Nh. Specifically

1
2
Phv̄(λ) =

∫ λ

0

∫ ∞

1
πb̄

h(α, β) dβ dα,(2.19)

Ph(λ) − 1
2
Phv̄(λ) =

∫ λ

0

∫ ∞

1
πb

h(α, β) dβ dα and(2.20)

−1
2
Phv̄(λ) +

√
3

4π
log

(
1

1 − λ

)
=

∫ λ

0

∫ ∞

1
νh(α, β) dβ dα.(2.21)

(The lhs of (2.21) is equal to Nh(λ) − Ph(λ).)
For clarity, we now introduce the notation

pb̄(z) := πb̄
h(λ(z), 1),

pb(z) := πb
h(λ(z), 1) and

v(z) := νh(λ(z), 1),

(2.22)
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for the holomorphic functions of z ∈ H obtained from (2.16), (2.17) and
(2.18) after we replace α and β with λ(z) and 1, respectively.

We next prove

Theorem 2.1. For all z ∈ H,

λ′(z) pb̄(z) = 4
√

3 i

(
λ(z)f2(z)

λ′(z)

)′
,(2.23)

λ′(z) pb(z) = 4
√

3 C i

(
λ(z)
λ′(z)

η4
)′

− 4
√

3 i

(
λ(z)f2(z)

λ′(z)

)′
and(2.24)

λ′(z) v(z) =
√

3
4π

(
λ(z)

1 − λ(z)

)′
− 4

√
3 i

(
λ(z)f2(z)

λ′(z)

)′
.(2.25)

Proof. We first deduce from (2.17) that πb̄
h(α, β) = β−2 πb̄

h(α/β, 1). This and
the change of variables α/β → β imply that the rhs of (2.19) equals

∫ λ

0

∫ α

0
πb̄

h(x, 1) dx
dα

α

and hence a differentiation in terms of ir together with (2.7) (recalling that
the differentiation in (2.7) is in terms of r and not ir) and re-arranging
gives

4i
√

3
λ(ir)f2(ir)

λ′(ir)
=

∫ λ(ir)

0
πb̄

h(x, 1)dx.

One more differentiation in terms of ir and the definitions (2.22) imply
the result for z = ir. The analytic continuation of πb̄

h(·, 1) and the fact
that λ, λ′ do not have any poles or zeros in H imply that it holds for all
z ∈ H.

The assertions about the other two crossing probability densities are
proved in exactly the same way using (2.20) and (2.21). �

We next re-write pb̄, pb and v in a way that avoids derivatives of λ.
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Proposition 2.1. For every z ∈ H, we have

pb̄(z) =
1

4
√

3 π g(z)2
1 + λ(z)
1 − λ(z)

φ(z) +
1

2
√

3 π

1
1 − λ(z)

,

pb(z) =
1

4
√

3 π g(z)2
1 + λ(z)
1 − λ(z)

(2 φ(i) − φ(z)) − 1
2
√

3 π

1
1 − λ(z)

,

v(z) = − 1
4
√

3 π g(z)2
1 + λ(z)
1 − λ(z)

φ(z) +
1

4
√

3 π

1 + 2λ(z)
(1 − λ(z))2

.

Proof. By (2.12),

(2.26) λ′(z) = 16πi g(z)2 η(z)4.

Using (2.10) and (2.26),

3g′g2 =
1
16

(1 − 2λ)λ′ = πi(1 − 2λ) g2 η4.

This and (2.26) imply that
(

λ

λ′ η
4
)′

=
(

λ

16πi g2

)′
=

1
16πi

λ′g − 2g′λ

g3 =
η4(1 + λ)
3(1 − λ)

.

Expanding (2.23) according to this formula, from (2.12) and the definition
of f2 we deduce

pb̄(z) =
1

4
√

3 πg(z)2
1 + λ(z)
1 − λ(z)

φ(z) +
1

2
√

3π

1
1 − λ(z)

.

The proof of the formula for pb is similar. The formula for v may be obtained
by comparing (2.17) with (2.18) and making use of the formula
for pb̄. �

Remark 2.1. Using (2.10) to write g in terms of λ, Proposition 2.1 gives
each of pb̄, pb and v as an expression linear in the ratio φ (see (2.13)), with
the coefficients being rational functions of λ1/3 and (1 − λ)1/3. Thus all
three probabilities are determined by the same physical quantity φ, which is
itself proportional to (Phv̄(λ(z)))′/(Ph(λ(z)))′. Note also that the constant
C = 2 φ(i) in pb is exactly the constant C in (39) of [19]. It follows that
2 φ(i) − φ(z) and φ(z) transform into each other under S.

Remark 2.2. Proposition 2.1 illustrates why it is natural to work with the
group Γ(2) rather than the theta group Γθ, as in [19]. The ratio φ is easily
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seen – use, e.g., (39) of [19] – to transform as a second-order modular form
(for the definition see [19] or the next section) under the generators of either
Γ(2) (e.g., {g1, g2}) or Γθ (e.g., {g1, S}). However, λ|0 S = 1 − λ; as a result
the rational functions of λ of Remark 2.1 do not transform simply under Γθ.

3. Higher-order forms

Let Γ be a congruence subgroup of SL2(Z) and k ∈ 2Z. As usual, for every
multiplicative character ψ on Γ we define an action of Γ on the space of
functions f : H → C given, for γ ∈ Γ, by

(f |k,χγ)(z) = f(γz) j(γ, z)−k ψ(γ).

Here, j(( ∗ ∗
c d )) := cz + d. When ψ is the trivial character 1 we write f |k γ.

To describe the condition on the “growth at the cusps”, which will be
included in the definition of higher-order forms we first note that a cusp is a
point x ∈ R ∪ {∞} such that γx = x for some ±1 �= γ ∈ Γ with |tr(γ)| = 2.
Cusps are important because they are the only points on the real line at
which modular forms have a regular behavior. Indeed, one of their special
features is that if a function is Γ-invariant under the action |k, then its com-
position by an appropriate map sending infinity to a cusp will be periodic
and hence it will possess a Fourier expansion. This fact is crucial in estab-
lishing the finite dimensionality of the space of modular forms. As a result
(as will be seen in the proof of Theorem 4.1) in order to uniquely deter-
mine functions, in addition to the transformation laws satisfied, detailed
knowledge of the growth at the cusps is essential.

Two cusps a, b are called equivalent if there is a γ ∈ Γ such that a = γb

and inequivalent otherwise.
For each cusp a there is a scaling matrix, i.e., a matrix σa such that

σa(∞) = a and σ−1
a Γa σa = Γ∞,

where Γa (resp. Γ∞) is the set of elements of Γ fixing a (resp. ∞) ([12],
Section 2). We say that a function f : H → C is of at most exponential growth
(resp. of moderate growth, vanishing) at a if there is an a ∈ Q (resp. a ∈
Q≤0, a ∈ Q<0) such that (f |k σa)(x + iy) = O(eay) as y → ∞, uniformly as
x ranges over a compact subset of R.

For a set {ψ1, . . . , ψn} of characters on Γ, we define a weakly holomorphic
nth-order modular form on Γ of weight k and type (ψ1, . . . , ψn) to be a
holomorphic function on H, which is of at most exponential growth at the
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cusps and such that, for every γi ∈ Γ,

f |k,ψ1(γ1 − 1)|k,ψ2(γ2 − 1) . . . |k,ψn
(γn − 1) = 0.

The space of order n weakly holomorphic forms of weight k and type
(ψ1, . . . , ψn) on Γ is denoted by M̃n

k (Γ; ψ1, . . . , ψn). The subspace of f ∈
M̃n

k (Γ; ψ1, . . . , ψn) of moderate growth (resp. vanishing) at all cusps is
denoted by Mn

k (Γ; ψ1, . . . , ψn) (resp. Sn
k (Γ; ψ1, . . . , ψn)).

Note that a Fourier expansion at the cusps is not guaranteed. By con-
trast, in the case of ordinary modular forms, the existence of a Fourier
expansion at each cusp is implied by the invariance under the group action
but this no longer necessarily holds for orders higher than 1.

We next prove that the three new crossing probability densities pb̄, pb

and v are second-order forms and determine their growth at the cusps.
The group Γ(2) has three inequivalent cusps at ∞, 0 and −1. Three

corresponding scaling matrices are I, U :=
(

0 −1
1 1

)
= ST and U2 =

( −1 −1
1 0

)
.

We can then prove

Theorem 3.1. As functions of z, pb̄(z), pb(z) and v(z) are weakly holomor-
phic second-order modular forms on Γ(2) of weight 0 and type (1, χ), where
χ is the character associated to η4. These functions have Fourier expansions
at the cusps. The first power of q appearing in the expansion of pb̄ at ∞
(resp. 0, −1) is 1 (resp. q−5/6, q2/3). The corresponding first powers for pb

and v are q−1/3, 1, q2/3 and q1/2, q−1, q2/3.

Proof. The function f2 is a holomorphic weight 2 second-order form of type
(1, χ) satisfying

(3.1) f2|2(γ − 1) = dγ η4 for all γ ∈ Γθ

for a constant dγ depending solely on γ ( [19], (38)). Since Γ(2) is a subgroup
of Γθ, (3.1) holds for Γ(2) too. It is easy to verify that dg1 = 0 and dg2 =
C (e−2πi/3 − 1), so the rhs of (3.1) is not zero for all γ ∈ Γ(2).

An easy computation (see also Theorem 2.2 of [7]) implies that, for
γ ∈ Γ(2),

(
λ

λ′ f2

)
|0 γ =

(
λ

λ′

)
|−2 γ f2|2 γ =

λ

λ′ f2 +
dγλη4

λ′ .

Therefore

(3.2)
(

λ

λ′ f2

)′
|2(γ − 1) =

(
dγλη4

λ′

)′
.
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which, by Theorem 2.1, implies

(3.3) pb̄|0 (γ − 1) = dγ G

where

G :=
1
λ′

(
λη4

λ′

)′
.

Since λη4/λ′ transforms as a modular form of weight 0 with character χ on
Γ(2), its derivative transforms as a weight 2 form and, therefore, G trans-
forms as a weight 0 form with character χ.

The behavior of pb under the action of Γ(2) follows from (2.24), which
implies that pb = −pb̄ + 4

√
3CiG. Since G|0(γ − 1) = (χ(γ) − 1)G, we con-

clude that pb|0(γ − 1) transforms as a weight 0 modular form with charac-
ter χ.

In the same way, since (λ/(1 − λ))′/λ′ transforms as a weight 0 modular
form with trivial character, we deduce that v|0(γ − 1) transforms as a weight
0 modular form with character χ.

To complete the proof that pb̄(z), pb(z) and v(z) are second-order weakly
holomorphic forms of weight 0 and type (1, χ) for Γ(2), it remains to show
that pb̄(z) and G are of at most exponential growth at the cusps. The argu-
ment also proves the last part of the theorem, specifying the first terms of
the Fourier expansions of the three probability functions.

We start by determining the first powers of q appearing in the Fourier
expansions of λ at the three inequivalent cusps ∞, 0 and −1. We shall be
making use of (2.11), (2.15), and the transformations of λ: λ|0 S = 1 − λ and
λ|0 T = λ/(λ − 1) ( [21], (7.2.2)). Thus

(3.4) λ|0 U = 1/(1 − λ) and λ|0 U2 = 1 − 1/λ.

Since the leading term in λ at ∞ is 16q1/2, it follows that the leading terms
at 0 and −1 are 1 + 16q1/2 and q−1/2, respectively. Therefore λ′ is a weight
2 first-order weakly holomorphic form on Γ(2) and the first powers in its
Fourier expansions at the cusps ∞, 0 and −1 are q1/2, q1/2 and q−1/2, respec-
tively. The corresponding powers for λ/λ′ are then 1, q−1/2 and 1.

Next we verify that pb̄(z), pb(z) and v(z) have Fourier expansions at
∞, 0, −1. We first note that the Fourier expansion of λ and (3.4) imply
that λ maps the cusps ∞, 0 and −1 to 0, 1, and ∞, respectively. On the
other hand, each of the probabilities πb̄

h(λ(z), 1), πb
h(λ(z), 1) and νh(λ(z), 1)

is given (see (2.16), (2.17) and (2.18)) in terms of a hypergeometric function
of λ or 1 − λ and integral powers of λ only. It follows from the classical
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linear transformation formulas for hypergeometric functions that an expan-
sion around any of the cusps will involve integral powers of λ or λ1/3 only.
Thus any of these expansions is invariant under T 6, which establishes the
periodicity of g, g|0U , g|0U2, for g = πb̄

h(λ(z), 1), πb
h(λ(z), 1) and νh(λ(z), 1).

The leading term in each of πb̄
h(λ, 1), πb

h(λ, 1) and νh(λ, 1) and therefore
pb̄(z), pb(z) and v(z) at each cusp then follows immediately from (2.16),
(2.17) and (2.18) using the Taylor expansion of the hypergeometric function
and λ ∼ q1/2.

The first terms of the Fourier expansions of G follow in similar (but
simpler) way from the Fourier expansions of λ, λ′ and the observation that
the first power in the expansion of η4 is q1/6.

Finally, we must also verify that our functions have at most exponential
growth at all equivalent cusps. For G, this is automatically implied by its
invariance under the action of Γ(2). For the three probability functions,
it is no longer automatic because they are not Γ(2)-invariant. Let b = γ a

(γ ∈ Γ(2)) for a = ∞, 0 or −1. We have σb = γ σa, Γσb
= γ Γσa

γ−1 and that
if σb

′ is another scaling matrix for b then σb = σb
′ Tm, with m ∈ 2Z≥0 ( [12],

Section 2). Therefore, if σb
′ is any scaling matrix of b, we have (with (3.3))

pb̄|0 σb
′ = pb̄|0 σb Tm = pb̄|0 γ σa T

m = pb̄|0 σa T
m + cγ G|0 σa T

m

From the behaviour of pb̄ at ∞, 0, −1 we proved above as well as the behavior
of G at these cusps, we deduce that pb̄ has at most exponential growth at
all cusps b. The same argument applies to pb and v.

Table 1: First terms of Fourier expansions

∞ 0 −1

λ q1/2 1 + 16q1/2 q−1/2

λ
λ′ 1 q−1/2 1

λ′ q1/2 q1/2 q−1/2

1
λ′ q−1/2 q−1/2 q1/2

pb̄(z) 1 q−5/6 q2/3

pb(z) q−1/3 1 q2/3

v(z) q1/2 q−1 q2/3

(
λ
λ′ η4

)′
q1/6 q−1/3 q1/6

1
λ′

(
λ
λ′ η4

)′
q−1/3 q−5/6 q2/3
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For convenience, Table 1 lists the first terms of the Fourier expansions
for the functions discussed. �

Remark 3.1. Theorem 3.1, in combination with Proposition 2.1, shows
that φ is a weight 0 weakly holomorphic second-order modular form on Γ(2)
of type (1, χ̄). This result is already implied in [19], but here it is proved
explicitly.

4. Uniqueness theorems

We call conformal block of dimension α ∈ R a function of r > 0 expressible
in the form

(4.1)
∞∑

n=0

an e−π(n+α)r,

with a0 �= 0. As noted in [19], if Π(r) is a conformal block, then the conver-
gence of (4.1) implies that the function

(4.2) P (ir) := Π(r),

extends to a holomorphic function P (z) with z ∈ H (its power series expan-
sion is exactly as in (4.1), except that −r is replaced by iz). In [19], transfor-
mation properties under S, which maps the imaginary axis into itself, were
important. Here, the corresponding group element is g2 : z → z/(1 + 2z),
which does not have this property. Therefore we use a slightly different
approach, working exclusively with the analytic continuations of the confor-
mal blocks.

We start with a Lemma which will be needed in the proof of the next
theorem.

Lemma 4.1. A function f ∈ S4(Γ(2), χ) is uniquely determined by the coef-
ficients of eπiz/3 in its Fourier expansions at ∞ and 0.

Proof of Lemma: For each cusp a, let

Ea(z) := 2i lim
s→1

d

dz

⎛

⎝
∑

γ∈Γa\Γ

Im(σaγz)s

⎞

⎠ .
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Then

Ea(z) − E∞(z) = −1 − 4π2
∞∑

n=1

n (Za,∞(n, 0, 1) − Z∞,∞(n, 0, 1)) e2πinz,

where Za,b(m, n, s) is the Selberg–Kloosterman zeta function. (Its definition
is given in [15], but is rather lengthy. Since we do not use it further, we
refrain from quoting it here.) The set {E−1 − E∞, E0 − E∞} spans the direct
complement of the space of cusp forms within the space of all modular forms
of weight 2 for Γ(2) ( [15]). Further, the dimension of S4(Γ(2), χ) is 2 ( [16],
Section 4.). Therefore a basis is given by (E0 − E∞) η4 and (E−1 − E∞) η4.
As a result, any function f ∈ S4(Γ(2), χ) has coefficients of eπiz/3 in its
Fourier expansion at ∞ and 0, which we denote by a and b, respectively.

Thus

f = x1(E0 − E∞) η4 + x2(E−1 − E∞) η4,

for some x1, x2 ∈ C. Further (see [15]), for any cusps a, b, c,

j(σc, z)−2(Ea(σcz) − Eb(σcz)) = δac − δbc + O(e−2πy),

where z = x + iy, which gives

f = −(x1 + x2)eπiz/3 + O(e−7πy/3) f |4 U = x1e
πiz/3 + O(e−7πy/3).

Thus x1 = b and x2 = −a − b. �

We are now in a position to prove

Theorem 4.1. Let F (z) =
∑∞

n=0 bn eπi(n+ 1
3
)z be the analytic continuation

of a conformal block of dimension 1/3, with b0 = πi/3. Suppose that

(a)

(4.3) F |4 g2 = χ(g2)F,

along some curve in H,

(b) F (−1 + i/r) is bounded as r → ∞, and

(c)

(4.4) lim
r→∞

e
πr

3 r−4F

(
i

r

)
= −4

3
21/3π2.
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Then F (z) ∈ S4(Γ(2), χ) and

F (z) =
λ′(z)
λ(z)

(
λ(z) η(z)4

λ′(z)

)′
.

Proof. We first prove that F , if it exists, is a weight 4 cusp form for Γ(2)
with character χ.

Since F is analytic (4.3) holds on all of H. The Fourier expansion of F
and χ(T 2) = e2πi/3 then imply

F |4,χ T 2 = F.

Therefore, F |4,χ γ = F , for all γ ∈ Γ(2).
We next establish the vanishing at the cusps. First, by its Fourier expan-

sion, F vanishes at ∞. To verify that the Fourier expansion of F |4 U has
only positive powers (and thus that F vanishes at 0), it suffices to show
(F |4 U)(−1 + ir) → 0 as r → ∞. But (F |4 U)(−1 + ir) = F (i/r)r−4, which
must vanish as r → ∞ by (4.4). For the cusp at −1 consider (F |4 U2)(ir) =
F (−1 + i/r) r−4. By the assumed boundedness of F (−1 + i/r), this vanishes
as r → ∞.

By assumption, the coefficient of eπiz/3 in the expansion of F at ∞ is

b0 = lim
z→∞

e−πiz/3F (z) =
π i

3
.

The corresponding coefficient at 0 is limz→∞ e−πiz/3(F |4 U)(z). Taking the
limit over the line z = −1 + ir, as r → ∞, and using (4.4), one has

lim
r→∞

F (i/r)r−4eπr/3eπi/3 = −4
3

21/3eπi/3π2.

A computation confirms that these coincide with the corresponding coeffi-
cients for λ′

λ ( λ
λ′ η4)′. Lemma 4.1 then implies the result. �

Remark 4.1. Theorem 4.1 resembles Theorem 1 of [19]. In that case, the
assumption of modular transformation properties under S led to a proof
that an even conformal block (i.e. one with all a2n+1 = 0) has dimension
1/3 and is in fact equal to Cardy’s function Ph (equivalently Πh, see (2.3)).
Here we assume the block dimension and modular transformation property
under the generator g2 of Γ(2) and find that the function is a simple expres-
sion involving η4, which is proportional to the z-derivative of Ph(λ(z)). The
assumption of evenness is not necessary.
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Remark 4.2. Note that if we let z = ir/(1 + 2ir) with r > 0 be the curve
in (4.3), the assumption of transformation under g2, then the lhs of the
equation is in the physical regime, i.e., z = ir.

Theorem 4.2. Let P (z) =
∑∞

n=0 an eπi(n+1)z be the analytic continuation
of a conformal block of dimension 1, and let F (z) be as in Theorem 4.1. Set

P1 := 4
√

3 C i F − P.

Further, for a fixed A ∈ C set

P̃ (z) := P (z) + A F (z).

Suppose that (a)

(4.5) P̃ |4 g2 = P̃ ,

along a curve in H and

(b) P (−1 + i/r) is bounded as r → ∞.

Then

(i) If A = −C and P (i/r) is bounded as r → ∞,

P (z) =
(λ′(z))2

λ(z)
pb̄(z),

(ii) Under the same assumptions,

P1(z) =
(λ′(z))2

λ(z)
pb(z).

(iii) If A = C and P (i/r)r−4 → −
√

3π/4 as r → ∞,

P (z) =
(λ′(z))2

λ(z)
v(z).

Proof. We consider the claims in order.
Proof of (i) We proceed exactly as in the proof of Theorem 4.1, except

replacing χ by 1. Since P̃ (and P ) are analytic, if they exist, (4.5) holds in
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all of H. Since g2 = ST−2S−1, (4.3) and χ(T 2) = e2πi/3 give

(4.6) P |4 (g2 − 1) = A(1 − e−2πi/3)F ∈ S4(Γ(2), χ).

Further, the Fourier expansion of P implies that P |4(T 2 − 1) = 0. Hence

(4.7) P |4(γ − 1) ∈ S4(Γ(2), χ).

As in the proof of Theorem 4.1, we have by assumption that P (ir), (P |4 U)
(−1 + ir) and (P |4 U2)(ir) → 0 as r → ∞, establishing that P (z) vanishes
at all three cusps. By (4.7), P |4 γ (γ ∈ Γ(2)) also vanishes at all three cusps.

Now let

L :=
(λ′)2

λ
pb̄.

Then

(P − L)|g1 = P |g1 − L|g1

= P − L,(4.8)

by the periodicity of both P and L. Further

(P − L)|4(g2 − 1) = A(1 − e−2πi/3)F − (λ′)2

λ
pb̄|4(g2 − 1),

by (4.6). By (3.3) and Theorem 4.1,

pb̄|4(g2 − 1) = dg2G = dg2

λ

(λ′)2
F.

Therefore, since (λ′)2/λ is invariant under g2,

(P − L)|4(g2 − 1) = A(1 − e−2πi/3)F − dg2F

= 0,(4.9)

using the formula for dg2 after (3.1). Thus P − L is invariant under both
generators of Γ(2). As noted when recalling the definition of cusps, this
Γ(2)-invariance in terms of the action |4 also implies that L has Fourier
expansions at each cusp of Γ(2). Theorem 3.1 (see Table 1) implies that it
vanishes at each cusp. Since P vanishes as well, so does P − L, and the latter
is a standard weight 4 cusp form with trivial character for Γ(2). Therefore
it vanishes ( [16]), establishing the uniqueness of P (and P̃ ). This completes
the proof of (i).
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Proof of (ii): This is immediate from (i), Theorem 4.1, and (2.24).
Proof of (iii): Analogous to the proof of (i), except that L is redefined

with v replacing pb̄. Here, neither P nor L vanishes at the cusp at 0, but
P − L does, which is sufficient. �

Remark 4.3. Theorem 4.2 resembles Theorem 3 of [19]. In that case, the
assumption of modular transformation properties under S for two conformal
blocks of arbitrary dimension led to a characterization of crossing probabil-
ities that generalize Πh and Πhv̄ (equivalently, Ph and Phv̄, see (2.3) and
(2.6)). Here, by assuming the block dimensions, modular transformation
properties under the generator g2 of Γ(2), and cusp properties, we repro-
duce all three new crossing probability densities.

Remark 4.4. It is interesting that the only input to Theorem 4.2 from the
physics of the problem is via F . The physical input to F comes from η4,
itself proportional to the z-derivative of Ph(λ(z)). Thus, under the assump-
tions of the theorem, all three crossing probability densities are determined
by Ph (or Πh).

Now F determines the inhomogeneous term in the behavior of the higher-
order modular form under g2. In [19], which first demonstrated the appear-
ance of higher-order forms in percolation, the appearance of a second-order
modular form, more particularly the corresponding inhomogeneous term, is
due to the difference in sign of the behavior under S of Π′

h and Π′
hv. The for-

mer arises from duality, and the latter from an obvious rotational symmetry.
Here the symmetry (or other feature) giving rise to higher-order behavior
is not clear. Finding a physical interpretation for it may therefore reveal
properties of interest.
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