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Joyce invariants for K3 surfaces and mock
theta functions

Anton Mellit and So Okada

For stability conditions on K3 surfaces, we study moduli stacks of
semistable objects with Donaldson–Thomas type invariants, intro-
duced by Joyce, and mock theta functions, introduced by Ramanu-
jan. In particular, we will show invariance of moduli stacks on
faithful stability conditions and motivic invariants, and in terms
of mock theta functions, study generating functions obtained by
moduli-stack counting and differential equations.

1. Introduction

1.1. Stability conditions for K3 surfaces and Joyce invariants

On triangulated categories, Bridgeland [4] introduced the notion of stability
conditions, which extends standard stabilities such as Gieseker stabilities on
the abelian category of coherent sheaves of a variety X, denoted by CohX,
to the bounded derived category of CohX, denoted by D(X).

One way to think of the notion is that it is a tool to study interesting
invariants on moduli stacks as we have seen in the fundamental work [14], in
which the notion of Harder–Narasimhan filtrations was given birth to discuss
Tamagawa numbers that are certain volumes of moduli spaces on curves.

As a background, let us recall that Douglas’ work [11] on Π-stabilities in
superstring theory motivated the notion of stability conditions. In a Calabi-
Yau variety X, boundaries of open strings restrict to subvarieties called
B-branes. With Kontsevich’s framework [21], in D(X), the notion of Π-
stabilities discusses configuration of B-branes and its deformation, which
is locally parametrized by central charges of B-branes. People have stud-
ied modular forms coming from physics such as conformal field theories.
We count Bogomol’nyi-Prasad-Sommerfield (BPS) B-branes whose central
charges align in the complex plane, and construct something close to mod-
ular forms (see [12, Section 6]).

We begin to be specific for this paper, leaving formality a bit out for later
sections. For stability conditions of triangulated categories, Joyce started
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to extend Donaldson–Thomas invariants so that wall-crossings of stability
conditions give differential equations over his invariants, which we call Joyce
invariants.

An essential notion to define Joyce invariants is motivic invariants [16],
which is explained as follows. Let us recall an algebraic group G is called
special [10] if G is a group embedded in some GL(n, C) with GL(n, C) →
GL(n, C)/G being locally trivial. Then, from Artin stacks of finite type with
affine geometric stabilizers, which, by Kresch [22], can be reduced to have
stratification locally of type [U/G] for quasiprojective varieties U and special
algebraic groups G, to a commutative Q-algebra Λ containing a variable l,
each motivic invariant I satisfies the following. For I(C) = l, I(GL(n, C)) =
ln

2
(1 − l−1) . . . (1 − l−n) is invertible in Λ, for quasiprojective varieties U

and V , I(U × V ) = I(U)I(V ), for a closed quasiprojective variety V in
U , I(U) = I(V ) + I(U \ V ) and for a quotient stack [U/G] with a special
algebraic group G, I([U/G]) = I(U)/I(G). For example, a motivic invariant
I can be taken to be virtual Hodge polynomials, generalized through the last
condition.

From now on, X denotes an algebraic K3 surface and, in the stabil-
ity manifold of X, Stab∗(X) denotes the connected component constructed
by Bridgeland [3]. In [15], on CohX, Joyce proved that his invariants exist
independently of the choice of Gieseker stabilities; then, on D(X), he con-
tinued to discuss his invariants, supposing that his invariants exist indepen-
dently of the choice of stability conditions in Stab∗(X), which was proved
by Toda [31]. For a stability σ of Gieseker on CohX or of Bridgeland on
D(X) and Mukai vectors α in the Mukai lattice of X [23], let Mα(σ) be
moduli stacks of semistable objects; Joyce invariants Jα(σ) are defined with
motivic invariants on these moduli stacks (see Section 2.2).

With the notion of numerically faithfulness (faithful for short), which
was introduced by Okada [26] (see Section 2.1), for each moduli stack, the
independence of the choice of stability conditions in Stab∗(X) on Joyce
invariants manifests itself as follows.

Theorem 1.1. For each algebraic K3 surface X, Mukai vector α of X,
motivic invariant I, faithful stability conditions σ, σ′ in Stab∗(X), we have
I(Mα(σ)) = I(Mα(σ′)).

By [26], faithful stability conditions exist as a dense subset in Stab∗(X).
By wall structures examined in [3], for each Mukai vector α, polarization of
X and some faithful stability condition σ in Stab∗(X), Mα(σ) consists of
Gieseker semistable coherent sheaves.
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For other Calabi-Yau surfaces such as abelian surfaces and minimal res-
olutions of surface singularities, one can check that Theorem 1.1 holds on
their stability manifolds that have been studied (see [5]). Also, for some
moduli stacks of stable objects and moduli stacks of μ-semistable coherent
sheaves on X, one can compare Theorem 1.1 with a sequence of flops in [1]
and dimension counting in [32].

To make explicit computation of motivic invariants, we first want to
know our moduli stacks as moduli spaces and compute stabilizer groups of
objects. For example, for primitive Mukai vectors of positive ranks, by [32],
moduli spaces of Gieseker stable coherent sheaves are deformation equivalent
to Hilbert schemes with C

∗ stabilizer group for each point.
Going beyond above primitive cases is challenging; in general, moduli

spaces can be singular and computing stabilizer groups is demanding. On
the other hand, let us recall that for Mukai vectors [E], [F ] of objects E, F ,
Mukai parings are defined as [E].[F ] =

∑
i(−1)i dim Exti(E, F ); then, for

Mukai vectors v with v.v > 0, Theorem 1.1 boils down to Corollary 1.1.
Let us recall that Mukai vectors α with α.α = 2 are called spherical ;

namely, α correspond to spherical objects, which give rise to autoequivalences
of D(X) [30], such as structure sheaves supported over rational curves on X
and the structure sheaf of X. Notice that a Mukai vector v with v.v > 0 is
a multiple of spherical Mukai vector.

Corollary 1.1. For each spherical Mukai vector α, faithful stability condi-
tion σ in Stab∗(X) and positive integer n, we have Mnα(σ) ∼=

[
1

GL(n,C)

]
.

Once we know moduli stacks in this detail of Corollary 1.1, we can
compute various invariants. Indeed, after Okada discussed some part of this
paper such as Corollary 1.2 (in the original form of Joyce invariants for
some α) in [25] and while the authors were preparing this paper, they got
notified that, in [24], for standard stabilities of coherent sheaves of rational
elliptic surfaces, Nakajima–Yoshioka computed their invariants. Also, for
stability conditions of Calabi-Yau categories of dimension three, Kontsevich–
Soibelman discussed their invariants [20].

We will stick to Joyce invariants for K3 surfaces. For the convenience
of our formulas, we will use q = l−1, switching between Tate motive and
Lefschetz motive. Then, for cases in Corollary 1.1, we have the following.

Corollary 1.2. Jnα(σ) = qn2

n(1−qn) .

We would like to mention that we are slightly modifying the original
formulation of Joyce invariants for K3 surfaces, as suggested to the authors
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by Zagier. Namely, in order to obtain more natural expressions, we omit the
factor (q−1 − 1) = (l − 1) in [15]; recall that the factor was involved so that
we get numbers on moduli stacks of stable objects by replacing q by one.
Instead, we take residues at q = 1 to extend Euler characteristics to moduli
stacks, which are not necessarily only of stable objects. In particular, for
cases in Corollary 1.2, we obtain 1

n2 , which appear in the multiple cover
formula of the disc [19], as pointed out to the authors by Diaconescu.

1.2. Joyce invariants and mock theta functions

Invariants on the moduli stacks have been studied in Bridgeland–Toledano-
Laredo [2] and Kontsevich–Soibelman [20]. Central charges of stability condi-
tions in Stab∗(X) factor through Mukai lattices. For k ∈ Z, we would like to
study the following generating functions of Joyce invariants in Corollary 1.2:

Jk =
∑

n>0

nkJnα(σ) =
∑

n>0

nk−1qn2

1 − qn
.

Let us point out that taking residues termwise at q = 1 gives −ζ(2 − k).
These Jk appear in the following sum suggested by Joyce [17]; namely,

on stability manifolds, for Mukai vectors v such that we have semistable
objects E with [E] = v, we can consider the sum

∑
v Z(v)kJv(σ), which is

invariant under autoequivalences. For spherical Mukai vectors α,
∑

α,n>0
Z(nα)kJnα(σ) is again invariant under autoequivalences and we study its
building piece.

Let us start from the following observation. Now, Jk are already some
quantum polylogarithms, as they are q-deformations of polylogarithms. How-
ever, the presence of qn2

in the numerator does not make, in particular, J0
the well-known quantum dilogarithm (see [34]), but instead Jk look similar to
some of mock theta functions, which were introduced by Ramanujan [27,28].

The theory of mock theta functions based on Zwegers’ celebrated thesis
[35], is now widely accepted in number theory [6–9, 33]. In short, Zwegers
provided a way to add correction terms to make mock theta functions into
certain real analytic modular forms [33]. Let us briefly recall some notions
as follows.

For τ in q = e2πiτ , let D = 1
2πi

d
dτ and D = 1

2πi
d
dτ , Mk the space of mero-

morphic modular forms of weight k for k ∈ 1
2Z with poles only at cusps,

and τ = x + iy. Applying D on mock theta functions, we receive the notion
called shadows [33], which lie in Mk′⊗M2−k

yk for k′, k ∈ 1
2Z. For holomorphic
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functions a(τ) and b(τ), a canonical solution to D
(
R

(
a(τ)b(τ)

yk

))
= a(τ)b(τ)

yk

is the following (whenever it converges):

R

(
a(τ)b(τ)

yk
; τ

)

:= 2πia(τ)
∫ τ

i∞

b(z)dz

(− i
2(z − τ̄))k

.

For a mock theta function g(τ), g(τ) − R(D(g(τ)) is the holomorphic part
for the correction term R(D(g(τ))).1

Going back to Jk, with certain duality, we would like to compensate our
choices of k. This can be done in terms of differential equations, modular
forms and certain correction terms to Jk. Here, for Eisenstein series and
Bernoulli numbers Ek and Bk, we notice the following relation between
J2−k and Jk.

Dk−1J2−k =
Bk

2k
(1 − Ek) − Jk +

∑

n>0

qn2

n1−k
(k ≥ 2).

We would like to have a duality formula only with modular forms. Let us
recall that in the space of modular forms of a given degree, Eisenstein series
make distinguished basis of the subspace that is orthogonal to cusp forms.
Let us take the following.

Definition 1.1.

Jk = −Bk

2k
− 1

2

∑

n>0

nk−1qn2
+ Jk = −Bk

2k
+

1
2

∑

n�=0

nk−1qn2

1 − qn
.

This time, for positive even integers k, we have the following:2

Dk−1J2−k + Jk = −Bk

2k
Ek.

In this paper, we study J2, which reads

J2(τ) = − 1
24

− 1
2

∑

n>0

nqn2
+ J2 = − 1

24
+

1
2

∑

n�=0

nqn2

1 − qn
.

1Ordinary mock theta functions of weight k correspond to k′ = 0.
2Our study of this type of functions, which are not, but, nearly holomorphic,

may remind one of so-called BCOV equations, as remarked by Joyce to the authors
(see [17, Section 6.3]).
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Here,
∑

n>0 nqn2
is an example of half-theta functions (a.k.a. false-theta

functions), which were studied by Rogers [29]. For half-period Jacobi theta
functions (at z = 0) θ1(τ) =

∑
n∈Z

eπin2τ and θ3(τ) =
∑

n∈Z
eπi(n+ 1

2
)2τ , we

have the following.

Theorem 1.2. For SL(2, Z), there is a unique real analytic modular form
of weight two g̃(τ) with bounded growth at the cusp such that D(g̃(τ)) =

− θ1(2τ)θ1(2τ)+θ3(2τ)θ3(2τ)
64π2y

3
2

. The holomorphic part of g̃(τ) coincides with J2(τ).

Let us explain some properties of g̃(τ) in Theorem 1.2. The shadow of

g̃(τ) is in the space M
1
2 ⊗M

1
2

y
3
2

. The holomorphic part of g̃(τ) is a sum of

products of classical theta functions of weight 1
2 and ordinary mock theta

functions of weight 3
2 , which will be derived from the Lerch function [35]. We

are aware that we are leaving many questions open. For example, we would
want some understanding of moduli stacks of cases other than ones consid-
ered here and Jk for k �= 2, but it is our impression that they rather pose
fundamental questions on stabilizer groups of objects, algebras associated
to moduli-stack counting and mock theta functions.3

2. Definitions

2.1. Stability conditions

In this paper, our triangulated category T is assumed to be D(X) for some
K3 surface X. For this T , let us recall fundamental notions from [3].

For each object E ∈ T , let us recall [E] := ch(E)
√

Td(X) ∈ H∗(X, Z)
is the Mukai vector of E and the lattice H∗(X, Z) can be equipped with the
Mukai paring, which was given in the introduction. We denote the lattice
with the paring, called the Mukai lattice, as N(T ).

A stability condition σ = (Z,P) for this T consists of a central charge
Z ∈ Hom(N(T ), C) and a slicing P, which is a family of full subcategories
P(φ) of T indexed by real numbers φ with the following conditions.

3After appearance of this paper, Zagier suggested a different way to construct
g̃(τ), which suggests a way to show modularity properties of Jk for k > 2. They
appear to be more complicated than J2, but to understand them in terms of mock
theta functions, one should also apply certain differential operators (the Rankin-
Cohen brackets). This will be studied in a separate publication.
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• If for some φ ∈ R, E is a nonzero object in P(φ), then for some positive
real number m(E), called the mass of E, Z(E) = m(E) exp(iπφ).

• For each real number φ, P(φ + 1) = P(φ)[1].

• For real numbers φ1 > φ2 and objects Ai ∈ P(φi), HomT (A1, A2) = 0.

• For any nonzero object E ∈ T , there exist real numbers φ1 > · · · >
φn and objects Ai ∈ P(φi) such that there exists a sequence of exact
triangles Ei−1 → Ei → Ai with E0 ∼= 0 and En

∼= E.

The sequence above is called the Harder–Narasimhan filtration (HN-
filtration in short) of E. The HN-filtration of any nonzero object is unique
up to isomorphisms. For each φ ∈ R, nonzero objects in P(φ) are called
semistable with phase φ. If moreover a semistable object in P(φ) has
only the trivial Jordan–Hölder filtration in P(φ), then it is called
stable.

A stability condition is called numerically faithful [26, Definition 3.1]
(faithful in short), if for each real number r, we have a primitive Mukai
vector v such that for each semistable object E of the phase r, [E] is a
sum of v. Here, by [3, Proposition 8.3], Stab∗(X) satisfies the assumption
of [26, Lemma 3.1], and so faithful stability conditions exist as a dense subset
in Stab∗(X).

2.2. Joyce invariants

For each r ∈ R and Mukai vectors of semistable objects E and E′ with phase
r, let us recall the algebra Cr defined as v[E] ∗ v[E′] = q−[E].[E′]v[E⊕E′] [18,
Definition 6.3]; then, formally, we can put Joyce invariants Jv[E](σ) as follows
(see [15, Definition 6.22] and [31, Definition 5.9]):

∑

[E]∈Cr

Jv[E](σ)v[E] = log

⎛

⎝1 +
∑

[E]∈Cr

I(Mv[E](σ))v[E]

⎞

⎠ .

A few comments are in order. For certain moduli stacks indexed by multiples
of a primitive Mukai vector, we see that by taking I to be the extension
of virtual Hodge numbers and taking v[E] ∗ v[E′] = v[E⊕E′] on multiples of
a primitive Mukai vector, invariants in [24] are defined as above. On the
other hand, quantum corrections q−[E].[E′] give us quantum tori, which is an
important topic in [20].
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2.3. Modular forms

Let us recall the definition and properties of the Dedekind eta function (we
denote q = e2πiτ ), where τ belongs to the upper half-plane.

η(τ) = e
πiτ
12

∞∏

n=1

(1 − e2πinτ ) = q1/24(1 − q − q2 + q5 + q7 + · · · ).

The eta function transforms like a modular form of weight 1
2 :

η(τ + 1) = e
πi
12 η(τ), η

(
−1
τ

)

= e
πi
4
√

τη(τ).

Next, we recall the half-period Jacobi theta functions (at z = 0); note that
we slightly changed the indexing:

θ1(τ) = θ00(0; τ) =
∑

n∈Z

eπin2τ = 1 + 2q
1
2 + 2q2 + 2q

9
2 + 2q8 + · · · ,

θ2(τ) = θ01(0; τ) =
∑

n∈Z

(−1)neπin2τ = 1 − 2q
1
2 + 2q2 − 2q

9
2 + 2q8 + · · · ,

θ3(τ) = θ10(0; τ) =
∑

n∈Z

eπi(n+ 1
2
)2τ = 2q

1
8 + 2q

9
8 + 2q

25
8 + 2q

49
8 + · · · .

We list their transformation properties as follows:

θ1(τ + 1) = θ2(τ), θ1

(

−1
τ

)

= e− πi
4
√

τθ1(τ),

θ2(τ + 1) = θ1(τ), θ2

(

−1
τ

)

= e− πi
4
√

τθ3(τ),

θ3(τ + 1) = e
πi
4 θ3(τ), θ3

(

−1
τ

)

= e− πi
4
√

τθ2(τ).

In particular, they are modular forms for the group Γ(2).
We will also use the classical Eisenstein series of weight 2 for SL(2, Z):

E2(τ) = 24
η′(τ)
η(τ)

= 1 − 24
∞∑

k,n=1

kqnk = 1 − 24q − 72q2 − 96q3 − · · · .
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2.4. The Lerch function

Having introduced some classical modular forms, we turn to the thesis of
Zwegers [35]. In this thesis, we find the following definition of the Lerch
function:

μ(u, v; τ) =
eπiu

θ(v; τ)

∑

n∈Z

(−1)neπi(n2+n)τ+2πinv

1 − e2πinτ+2πiu (u, v ∈ C \ (Zτ + Z)).

The definition of the theta function he uses is the following one:

θ(z; τ) =
∑

ν∈ 1
2
+Z

eπiν2τ+2πiν(z+ 1
2
).

The theta functions θ1, θ2 and θ3 are related to θ in the following way:

θ
(τ

2
; τ

)
= −ie− πiτ

4 θ2(τ),

θ

(
1 + τ

2
; τ

)

= −e− πiτ
4 θ1(τ),

θ

(
1
2
; τ

)

= −θ3(τ).

Zwegers found a way to add a correction term to μ so that the new function
μ̃ has good transformation properties. Namely, he defines

(2.1) μ̃(u, v; τ) = μ(u, v; τ) +
i
2
R(u − v; τ),

where

R(u; τ) =
∑

ν∈ 1
2
+Z

{

sign(ν) − E

((

ν +
	u

y

)
√

2y

)}

× (−1)ν− 1
2 e−πiν2τ−2πiνu.

Here y = 	τ and E is the function

E(z) = 2
∫ z

0
e−πt2dt = 1 − erfc(z

√
π).
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The result of Zwegers is the following transformation properties of μ̃:

Theorem 2.1 [35, Theorem 1.11]. The function μ̃ satisfies

μ̃(u, v; τ) = μ̃(v, u; τ) = μ̃(−u, −v; τ),

and

μ̃(u, v; τ + 1) = e− πi
4 μ̃(u, v; τ),

μ̃

(
u

τ
,
v

τ
; −1

τ

)

= −e− πi
4

− πi(u−v)2

τ

√
τ μ̃(u, v; τ),

μ̃(u + 1, v; τ) = −μ̃(u, v; τ),

μ̃(u + τ, v; τ) = −e2πi(u−v)+πiτ μ̃(u, v).

Here is a list of properties that the functions R and μ satisfy separately:

Proposition 2.1 [35, Propositions 1.4 and 1.9]. The functions μ and R
satisfy

μ(u, v; τ) = μ(v, u; τ) = μ(−u, −v; τ), R(−z; τ) = R(z; τ),

and we have

μ(u + 1, v; τ) = −μ(u, v; τ), R(z + 1; τ) = −R(z; τ).

We also mention one last property which we will use:

Proposition 2.2 [35, Proposition 1.4 and Theorem 1.11]. Both the func-
tions μ and μ̃ (if you plug it in place of μ) satisfy

μ(u + z, v + z; τ) − μ(u, v; τ) =
iη3(τ)θ(u + v + z; τ)θ(z; τ)

θ(u; τ)θ(v; τ)θ(u + z; τ)θ(v + z; τ)

for u, v, u + z, v + z /∈ Z + τZ.

3. Proofs

Let us prove Theorem 1.1.

Proof. For faithful stability conditions σ, in terms of Mukai vectors, Jα(σ)
admit unique expressions. Since by [31, Theorem 1.5], we have Jα(σ) =
Jα(σ′) for any α, especially for primitive ones, the statement follows. �
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We will prove Corollary 1.1. Let us recall that an object E ∈ T is called
spherical if Exti(E, E) = C for i = 0, 2 and Exti(E, E) = 0 for else; spherical
Mukai vectors are the ones of spherical objects.

Proof. By Theorem 1.1 and [26, Proposition 4.9], it is enough to show that
for each spherical Mukai vector α, we have a faithful stability condition with
a semistable object of α. For the case when α has a nonzero rank, by [32,
Theorem 0.1(1)] and [3, Proposition 14.2], for some faithful σ ∈ Stab∗(X),
we have a semistable spherical object of α. For other cases, by [13, Chapter
5, Lemma 25], the first Chern class of α is either effective or anti-effective.
So, by replacing α with −α, if necessarily, one recalls that some coherent
sheaf E supported over a rational curve with [E] = α is Gieseker semistable.
Then, by [31, Theorem 6.6], the statement follows. �

A consequence of Corollary 1.1 is that, as pointed out to the authors
by Bridgeland, the existence of a stable spherical object for each spherical
Mukai vector gives another way to prove that Stab∗(X) is locally a bundle
over the period domain of X, which consists of complexified Kähler classes
of X without ones that are orthogonal to spherical Mukai vectors. Let us
prove Corollary 1.2.

Proof. Since α.α = 2, by choosing a faithful σ, for positive integers ki, we
have

Jnα(σ) =
∞∑

m=1

∑

k1+···+km=n

q
∑

i>j 2kikj
(−1)n−1

n
Πn

i=1
1

I(GL(ki, C))
.

Since
∑

i>j 2kikj = (
∑

ki)2 −
∑

k2
i = n2 −

∑
k2

i , we have

Jnα(σ) = qn2
∞∑

m=1

∑

k1+···+km=n

(−1)n−1

n
Πn

i=1
q−k2

i

I(GL(ki, C))
.

Let F (x) =
∑

m≥0
q−m2

I(GL(m,C))x
m. Then F (x) − F (qx) = xF (x) and

Jnα(σ) is the nth coefficient of qn2 ∑ (−1)n−1

n (F (x) − 1) = qn2
log F (x). Since

log F (x) + log(1 − x) = log F (qx), the nth coefficient of log F (x) is
1

n(1−qn) . So the statement follows. �

The rest of this section is devoted to the proof of Theorem 1.2. We
need to construct a function with good transformation properties whose
holomorphic part is J2. We are going to use μ̃ at “points of order two.” The
values at these points are not interesting because one can check that
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Proposition 3.1.

μ̃

(
1
2
,
τ

2
; τ

)

= μ̃

(
1
2
,
1 + τ

2
; τ

)

= μ̃

(
τ

2
,
1 + τ

2
; τ

)

= 0.

Therefore, we should look at the derivatives of μ̃ at the points of order 2.
Namely, we define

μ1(τ) =
d

2πids

∣
∣
∣
∣
s=0

μ̃

(
1
2
,
τ

2
+ s; τ

)

,

μ2(τ) =
d

2πids

∣
∣
∣
∣
s=0

μ̃

(
1
2
,
1 + τ

2
+ s; τ

)

,

μ3(τ) =
d

2πids

∣
∣
∣
∣
s=0

μ̃

(
τ

2
,
1 + τ

2
+ s; τ

)

.

Applying Theorem 2.1, we obtain the transformation properties of μk.

Proposition 3.2. We have

μ1(1 + τ) = e− πi
4 μ2(τ), μ2(1 + τ) = −e− πi

4 μ1(τ),

μ3(1 + τ) = e− πi
4

(
θ3(τ)3

4
+ μ3(τ)

)

,

μ1

(

−1
τ

)

= e
πi
4

−πi 1+τ2

4τ τ
3
2

(
e

πiτ
4 θ1(τ)3

4
+ μ1(τ)

)

,

μ2

(

−1
τ

)

= e− πi
4

− πi
4τ τ

3
2 μ3(τ), μ3

(

−1
τ

)

= −e− πi
4

− πiτ
4 τ

3
2 μ2(τ).

Thus, we modify the functions μk in order to obtain better transformation
properties as follows:

h̃1(τ) = e− πiτ
4 μ1(τ) +

θ1(τ)3

8
,

h̃2(τ) = −ie− πiτ
4 μ2(τ) +

θ2(τ)3

8
,

h̃3(τ) = −μ3(τ) − θ3(τ)3

8
.
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Then, we have

h̃1(τ + 1) = h̃2(τ), h̃1

(

−1
τ

)

= e
πi
4 τ

3
2 h̃1(τ),

h̃2(τ + 1) = h̃1(τ), h̃2

(

−1
τ

)

= e
πi
4 τ

3
2 h̃3(τ),

h̃3(τ + 1) = e− πi
4 h̃3(τ), h̃3

(

−1
τ

)

= e
πi
4 τ

3
2 h̃2(τ).

Now, we need to compute the decomposition h̃k = hk + Rk coming from the
corresponding decomposition (2.1) of μ̃. Differentiating R, we obtain

Proposition 3.3.

d

2πids

∣
∣
∣
∣
s=0

R

(
1 − τ

2
− s; τ

)

= −ie
πiτ
4

(
∑

n∈Z

|n|β(2yn2)e−πin2τ

+
1
2

− θ1(τ)
π
√

2y

)

,

d

2πids

∣
∣
∣
∣
s=0

R
(
−τ

2
− s; τ

)
= e

πiτ
4

(
∑

n∈Z

(−1)n|n|β(2yn2)e−πin2τ

+
1
2

− θ2(τ)
π
√

2y

)

,

d

2πids

∣
∣
∣
∣
s=0

R

(

−1
2

− s; τ
)

= i

⎛

⎝
∑

ν∈Z+ 1
2

|ν|β(2yν2)e−πiν2τ − θ3(τ)
π
√

2y

⎞

⎠ .

Here we use β instead of E,

β(x) =
∫ ∞

x
t−

1
2 e−πtdt = 1 − E(

√
x) = erfc (

√
πx).

It remains to differentiate the function μ.
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Proposition 3.4. The corresponding derivatives of μ are given by

d

2πids

∣
∣
∣
∣
s=0

μ

(
1
2
,
τ

2
+ s; τ

)

= − e
πiτ
4

24θ1(τ)

(

−2 + 6θ1(τ) + 3θ4
1(τ) − E2(τ)

+ 48
∞∑

n=1

eπi(n2+2n)τ

(1 − e2πinτ )2

)

,

d

2πids

∣
∣
∣
∣
s=0

μ

(
1
2
,
1 + τ

2
+ s; τ

)

= −i
e

πiτ
4

24θ2(τ)

(

−2 + 6θ2(τ) + 3θ4
2(τ) − E2(τ)

+ 48
∞∑

n=1

(−1)neπi(n2+2n)τ

(1 − e2πinτ )2

)

,

d

2πids

∣
∣
∣
∣
s=0

μ

(
τ

2
,
1 + τ

2
+ s; τ

)

=
1

24θ3(τ)

(

1 − 3θ3(τ)4 − E2(τ)

+ 24
∞∑

n=1

eπi(n2+n)τ 1 + e2πinτ

(1 − e2πinτ )2

)

.

Proof. In this case the computations are more complicated, so we give a
proof of the first identity. The remaining identities are proved in a similar
way. We use the following decomposition of μ:

μ(s, z; τ) =
eπis

θ(z; τ)(1 − e2πis)

+
1

θ(z; τ)

∞∑

n=1

(−1)neπi(n2+n)τ

×
(

e2πinz+πis

1 − e2πinτ+2πis − e−2πinz−πis

1 − e2πinτ−2πis

)

.

We compute the Taylor expansion with respect to 2πis around s = 0 of the
expression above for z = 1+τ

2 . We need only the coefficient at 2πis. This
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coefficient equals

− e
πiτ
4

θ1(τ)

(
1
24

+
∞∑

n=1

eπin2τ (1 + e2πinτ )2

2(1 − e2πinτ )2

)

= − e
πiτ
4

θ1(τ)

(

− 5
24

+
θ1(τ)

4
+ 2

∞∑

n=1

eπi(n2+2n)τ

(1 − e2πinτ )2

)

.

In order to apply Proposition 2.2, we also need to compute the coefficient
at 2πis of the following expression (we omit τ from the arguments of θ):

iη(τ)3θ(1
2 + s)θ( τ

2 )
θ(1−τ

2 )θ(1
2)θ(s)θ( τ

2 + s)
.

For this we need to compute the Taylor expansions of θ(s), θ(1
2 + s) and

θ( τ
2 + s) up to the second term with respect to 2πis. We have (denoting by

′ the operator d
2πidτ ):

θ(s) = (2πis)iη(τ)3
(

1 + (2πis)2
η′(τ)
η(τ)

)

+ · · · ,

θ(1
2 + s) = −θ3(τ)

(

1 + (2πis)2
θ′
3(τ)

θ3(τ)

)

+ · · · ,

θ( τ
2 + s) = −ie− πiτ

4 θ2(τ)
(

1 − 2πis
2

+ (2πis)2
(

1
8

+
θ′
2(τ)

θ2(τ)

))

+ · · · .

Thus, the coefficient at 2πis of the expression in question is given by

− e
πiτ
4

θ1(τ)

(
θ′
3(τ)

θ3(τ)
− η′(τ)

η(τ)
+

1
8

− θ′
2(τ)

θ2(τ)

)

.

Putting everything together

d

2πids

∣
∣
∣
∣
s=0

μ

(
1
2
,
τ

2
+ s; τ

)

=
d

2πids

∣
∣
∣
∣
s=0

(

μ

(
1 − τ

2
, s; τ

)

+
iη(τ)3θ(1

2 + s)θ( τ
2 )

θ(1−τ
2 )θ(1

2)θ(s)θ( τ
2 + s)

)

= − e
πiτ
4

θ1(τ)

(

− 1
12

+
θ1(τ)

4
+

θ′
3(τ)

θ3(τ)
− η′(τ)

η(τ)
− θ′

2(τ)
θ2(τ)

+ 2
∞∑

n=1

eπi(n2+2n)τ

(1 − e2πinτ )2

)

,
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and the following identity completes the proof

θ′
3(τ)

θ3(τ)
− η′(τ)

η(τ)
− θ′

2(τ)
θ2(τ)

=
θ4
1(τ)
8

− E2(τ)
24

. �

Propositions 3.3 and 3.4 together give the Fourier expansions of h̃k. Denote

h1(τ) =
1

24θ1(τ)

(

2 + E2(τ) − 48
∞∑

n=1

eπi(n2+2n)τ

(1 − e2πinτ )2

)

,

h2(τ) =
1

24θ2(τ)

(

2 + E2(τ) − 48
∞∑

n=1

(−1)neπi(n2+2n)τ

(1 − e2πinτ )2

)

,

h3(τ) =
1

24θ3(τ)

(

−1 + E2(τ) − 24
∞∑

n=1

eπi(n2+n)τ 1 + e2πinτ

(1 − e2πinτ )2

)

.

The series hk are holomorphic power series converging on the upper half-
plane. Denote

R1(τ) =
1
2

∑

n∈Z

|n|β(2yn2)e−πin2τ − θ1(τ)
2π

√
2y

,

R2(τ) =
1
2

∑

n∈Z

(−1)n|n|β(2yn2)e−πin2τ − θ2(τ)
2π

√
2y

,

R3(τ) =
1
2

∑

ν∈Z+ 1
2

|ν|β(2yν2)e−πiν2τ − θ3(τ)
2π

√
2y

.

Proposition 3.5. For k = 1, 2, 3, we have

h̃k(τ) = hk(τ) + Rk(τ).

In his thesis Zwegers also represents R as a certain integral involving a theta
function of weight 3

2 . In a similar way, we obtain such a representation for
Rk, but with theta functions of weight 1

2 .

Proposition 3.6. For k = 1, 2, 3

Rk(τ) =
1

4πi

∫ i∞

τ

θk(z)dz

(−i(z − τ))
3
2

.

We have slightly nicer expressions for the sums in the definitions of hk.
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Proposition 3.7.

2
∞∑

n=1

eπi(n2+2n)τ

(1 − e2πinτ )2
=

∑

m>n>0,
m−n even

meπimnτ −
∑

n>m>0,
m−n even

meπimnτ ,

2
∞∑

n=1

(−1)neπi(n2+2n)τ

(1 − e2πinτ )2
=

∑

m>n>0,
m−n even

m(−1)meπimnτ

−
∑

n>m>0,
m−n even

m(−1)meπimnτ ,

∞∑

n=1

eπi(n2+n)τ 1 + e2πinτ

(1 − e2πinτ )2
=

∑

m>n>0,
m−n odd

meπimnτ −
∑

n>m>0,
m−n odd

meπimnτ .

Now it is not hard to observe the following fact.

Proposition 3.8. We have

h1(τ)θ1(τ) + h2(τ)θ2(τ) − 4
(
h1(4τ)θ1(4τ) + h3(4τ)θ3(4τ)

)
= −θ1(2τ)4

4
.

Using the corresponding identities between the theta functions, namely

θ1(τ) + θ2(τ) = 2θ1(4τ), θ1(τ) + θ3(τ) = θ1( τ
4 ),

the integral representation of Rk from Proposition 3.6 and the change of
variables

4πiRk(4τ) =
∫ i∞

4τ

θk(z)dz

(−i(z − 4τ))
3
2

=
1
2

∫ i∞

τ

θk(4z)dz

(−i(z − τ))
3
2

,

we obtain

R1(τ)θ1(τ) + R2(τ)θ2(τ) − 4 (R1(4τ)θ1(4τ) + R3(4τ)θ3(4τ)) = 0.

Thus, we have

Proposition 3.9.

h̃1(τ)θ1(τ) + h̃2(τ)θ2(τ) − 4
(
h̃1(4τ)θ1(4τ) + h̃3(4τ)θ3(4τ)

)
= −θ1(2τ)4

4
.
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Therefore, we take

g̃(τ) = − h̃1(2τ)θ1(2τ) + h̃3(2τ)θ3(2τ)
2

+
θ1(τ)4 + θ2(τ)4

96
,

g(τ) = −h1(2τ)θ1(2τ) + h3(2τ)θ3(2τ)
2

+
θ1(τ)4 + θ2(τ)4

96

and

r(τ) = −R1(2τ)θ1(2τ) + R3(2τ)θ3(2τ)
2

.

It is clear that

g̃(τ) = g(τ) + r(τ).

Proposition 3.9 and the transformation properties of h̃k imply the following.

Proposition 3.10. The function g̃(τ) transforms like a modular form of
weight 2, i.e.,

g̃(τ + 1) = g̃(τ), g̃

(

−1
τ

)

= τ2g̃(τ).

Using manipulations with power series as in Proposition 3.7 and the identity
4E2(2τ) − 2E2(τ) = θ4

1(τ) + θ2(τ)4, we obtain the Fourier expansion of g.

Proposition 3.11. We have

g(τ) = −E2(τ)
24

− 1
2

∑

n∈Z\{0}

nqn2

1 − qn
= − 1

24
+

∞∑

n=1

σ′(n)qn,

where σ′(n) denotes the sum of positive divisors of n, which are greater than√
n, plus half

√
n in the case if n is a perfect square.

Now, we complete our proof of Theorem 1.2. By Proposition 3.6, r(τ) =
R(D(r(τ))) = R(D(g̃(τ))), where R is the operator from the introduction,
hence g is the holomorphic part of g̃. Proposition 3.11 gives the Fourier
expansion of g, which, as one can easily verify, coincides with J2. Having
the transformation properties of g̃ proved in Proposition 3.10, it remains
to check only the uniqueness statement. This is obvious since there are no
holomorphic modular forms of weight 2 for SL(2, Z).
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