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The double Riemann zeta function
Hirotaka Akatsuka

In 1992 Deninger showed a version of explicit formulas for the
Riemann zeta function. In this paper, we establish a duplication
of Deninger’s explicit formula in the sense of the absolute ten-
sor product due to Kurokawa. As an application, we obtain an
Euler product expression for the double Riemann zeta function
constructed from the absolute tensor product of the Riemann zeta
function.

1. Introduction

The prime numbers are closely related to the zeros and the pole of the
Riemann zeta function ζ(s). This relation is described by explicit formulas,
which are equations between sums over the prime numbers and sums over the
zeros and the pole of the Riemann zeta function. At present, various explicit
formulas are known. We refer to Weil [20] as a famous explicit formula. In
1992 Deninger [7] showed the following explicit formula:

Deninger’s Theorem 1.1 [7, p. 148]. In Re(s) > 1 and Re(w) > 1, we have

∑

ρ

1
(s − ρ)w

− 1
(s − 1)w

+
∞∑

n=1

1
(s + 2n)w

= − 1
Γ(w)

∑

p

∞∑

m=1

p−ms(m log p)w−1 log p,

where ρ runs over the nontrivial zeros of the Riemann zeta function counted
with multiplicity, αw := exp(w log α), log α := log |α| + i arg α with arg α ∈
(−π/2, π/2) and p runs over the prime numbers.

Remark 1.1. Schröter and Soulé [18, Theorem, (i)] showed that
∑

ρ(s −
ρ)−w has a meromorphic continuation to (w, s) ∈ C × Ω, where Ω := C \
{ρ − λ : 0 < Re(ρ) < 1, ζ(ρ) = 0, λ ≥ 0} and | arg(s − ρ)| < π.
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In 1992 Kurokawa [11] predicted that for fixed r ∈ Z≥1 there would
be a relation between the r-ple prime numbers (p1, . . . , pr) and the sums
ρ1 + · · · + ρr of the zeros or the pole ρj of the Riemann zeta function. Under
this prediction, he defined the absolute tensor product. Roughly speak-
ing, for meromorphic functions Z1(s), . . . , Zr(s), their absolute tensor prod-
uct (Z1 ⊗ · · · ⊗ Zr)(s) is defined by the zeta-regularized product (explained
later) so as to have zeros or poles at s = ρ1 + · · · + ρr with Zj(ρj) = 0 or ∞
(j = 1, . . . , r) and Im(ρ1), . . . , Im(ρr) having the same signature. The above
prediction says that an r-ple Riemann zeta function ζ⊗r(s) might have a
generalization of the Euler product running over the r-ple prime numbers
(p1, . . . , pr) and that there might exist explicit formulas for ζ⊗r(s). See [12,
Section 1] for the precise definition of the absolute tensor product and its
expectations. We refer to an excellent survey [15] by Manin. See also Schröter
[17] for the study of the absolute tensor product in the name of the Kurokawa
tensor product. We also remark that Koyama and Kurokawa [13] obtained
an Euler product expression and a Weil’s-type explicit formula for ζ⊗2(s).
Concerning the absolute tensor product for Euler factors of the Riemann
zeta function, see [1–4], [11–14].

The purpose of this paper is to establish a duplication of Deninger’s
explicit formula in the sense of the absolute tensor product as follows:

Theorem 1.1. In Re(s) > 2 and Re(w) > 2 we have

−
∑

Im(ρ1)>0

∑

Im(ρ2)>0

1
(s − ρ1 − ρ2)w

+
∑

Im(ρ1)<0

∑

Im(ρ2)<0

1
(s − ρ1 − ρ2)w

+ 2
∑

Im(ρ)>0

1
(s − 1 − ρ)w

− 2
∑

Im(ρ)>0

∞∑

n=1

1
(s − ρ + 2n)w

− 1
(s − 2)w

−
∞∑

n1=1

∞∑

n2=1

1
(s + 2n1 + 2n2)w

+ 2
∞∑

n=1

1
(s + 2n − 1)w

=
1

Γ(w)

9∑

j=1

E(j)(w, s),

where ρ, ρ1, ρ2 run over the nontrivial zeros of the Riemann zeta function in
the given ranges counted with multiplicity, the argument lies in (−π/2, π/2)
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and

E(1)(w, s) := −s − 2
2πi

∑

p

∞∑

m=1

p−ms(m log p)w−1 log2 p

+
w + 1
2πi

∑

p

∞∑

m=1

p−ms(m log p)w−2 log2 p,

E(2)(w, s) :=
1
πi

∑

p

∞∑

m=1

∑

q

∞∑

n=1
qn �=pm

p−m(s−1)q−n(m log p)w log p

n(m log p − n log q)
,

E(3)(w, s) := − 1
πi

∑

p

∞∑

m=1

∑

q

∞∑

n=1

p−msq−n(m log p)w log p

n(m log p + n log q)
,

E(4)(w, s) :=
(

1
2

+
γ + log(2π)

πi

) (
∑

p

∞∑

m=1

p−ms(m log p)w−1 log p

+
∑

p

∞∑

m=1

p−ms(m log p)w−2 log p

)
,

E(5)(w, s) :=
1
πi

∑

p

∞∑

m=1

p−ms(m log p)w−1 log p × Γ′

Γ

(
m log p

πi

)
,

E(6)(w, s) := − 1
πi

∫ 1

0

(
∑

p

∞∑

m=1

p−m(s−u)(m log p)w log p

)
log |ζ(u)|du,

E(7)(w, s) := − 1
πi

∫ ∞

0

u

eu − 1

(
∑

p

∞∑

m=1

p−ms(m log p)w−2 log p

u + m log p

)
du,

E(8)(w, s) := −
∑

p

∞∑

m=1

p−m(s−1)(m log p)w−1 log p,

E(9)(w, s) := 2
∑

p

∞∑

m=1

∞∑

k=1

p−m(s+2k)(m log p)w−1 log p.

Here p and q run over the prime numbers and γ is the Euler constant.

Concerning the convergence of the sums and the integrals in E(j)(w, s),
the following assertions hold:

Theorem 1.2. (1) For any j ∈ {2, 6, 8} the sums and the integral in E(j)

(w, s) converge absolutely and uniformly on any compact subset of
{(w, s) ∈ C

2 : Re(s) > 2}.
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(2) For any j ∈ {1, 3, 4, 5, 7} the sums and the integral in E(j)(w, s) con-
verge absolutely and uniformly on any compact subset of {(w, s) ∈ C

2 :
Re(s) > 1}.

(3) The sum in E(9)(w, s) converges absolutely and uniformly on any com-
pact subset in {(w, s) ∈ C

2 : Re(s) > −1}.

Using Deninger’s Theorem 1.1, Deninger obtained a zeta-regularized
product expression for ζ(s). To explain this, we recall the zeta-regularized
product. For complex sequences a := {an}∞

n=1, the zeta-regularized product
is defined by

(1.1)
∞∏∐

n=1

(s − an) := exp
[
− Resw=0

Za(w, s)
w2

]
,

with Za(w, s) :=
∑∞

n=1(s − an)−w, provided that the Dirichlet series in
Za(w, s) converges absolutely for sufficiently large Re(w) and Za(w, s) has a
meromorphic continuation with respect to w to Re(w) > −ε for some ε > 0.
The important properties are that (1.1) has an analytic continuation to all
s ∈ C and that its zeros are located at s = an (n = 1, 2, . . .) and nowhere
else. Concerning the zeta-regularized product, see [9, 10]. From Deninger’s
Theorem 1.1, Deninger proved

Deninger’s Theorem 1.2. In Re(s) > 1 we have

ζ(s) =

∏∐
ρ
(s − ρ)

∏∐∞

n=1
(s + 2n)

s − 1
.

Remark 1.2. Strictly speaking, Deninger treated
∏∐

ρ(
s−ρ
2π ). See [7, (3.3)

Theorem].

Remark 1.3. From Remark 1.1, Deninger’s Theorem 1.2 is valid for any
s ∈ Ω. See [18, Theorem, (ii)].

As an application of Theorem 1.1, we show an Euler product expression
for ζ⊗2(s). By the definition of the absolute tensor product ζ⊗2(s) is given
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as follows:

ζ⊗2(s)

:=

∏∐

Im(ρj)>0

(s − ρ1 − ρ2)

(
∏∐

Im(ρ)>0,
n≥1

(s − ρ + 2n)

)2

(s − 2)
∏∐

nj≥1

(s + 2n1 + 2n2)

∏∐

Im(ρj)<0

(s − ρ1 − ρ2)

(
∏∐

Im(ρ)>0

(s − 1 − ρ)

)2( ∏∐

n≥1

(s + 2n − 1)

)2 .

We remark that ζ⊗2(s) is given by determining locations and orders of zeros
and poles, and that existence and a form of an Euler product expression for
ζ⊗2(s) are not trivial. From Theorem 1.1 it is given by the following:

Theorem 1.3. In Re(s) > 2 we have

ζ⊗2(s) = exp

⎡

⎣
9∑

j=1

E(j)(s)

⎤

⎦ ,

where E(j)(s) := E(j)(0, s), that is,

E(1)(s) := −s − 2
2πi

∑

p

∞∑

m=1

p−ms log p

m
+

1
2πi

∑

p

∞∑

m=1

p−ms

m2 ,

E(2)(s) :=
1
πi

∑

p

∞∑

m=1

∑

q

∞∑

n=1
qn �=pm

p−m(s−1)q−n log p

n(m log p − n log q)
,

E(3)(s) := − 1
πi

∑

p

∞∑

m=1

∑

q

∞∑

n=1

p−msq−n log p

n(m log p + n log q)
,

E(4)(s) :=
(

1
2

+
γ + log(2π)

πi

) (
∑

p

∞∑

m=1

p−ms

m
+

∑

p

∞∑

m=1

p−ms

m2 log p

)
,

E(5)(s) :=
1
πi

∑

p

∞∑

m=1

p−ms

m
× Γ′

Γ

(
m log p

πi

)
,

E(6)(s) :=
1
πi

∫ 1

0

ζ ′

ζ
(s − u) log |ζ(u)|du,

E(7)(s) := − 1
πi

∫ ∞

0

u

eu − 1

(∑

p

∞∑

m=1

p−ms log p

(m log p)2(u + m log p)

)
du,
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E(8)(s) := −
∑

p

∞∑

m=1

p−m(s−1)

m
,

E(9)(s) := 2
∑

p

∞∑

m=1

∞∑

k=1

p−m(s+2k)

m
.

Remark 1.4. Though Koyama–Kurokawa obtained an Euler product
expression for ζ⊗2(s), our result is more explicit than theirs. See [13, Theo-
rems 5–7] for their results.

We mention an underlying idea of the proof of Theorem 1.1. In [7]
Deninger used an improvement of Weil’s explicit formula due to Barner
[5] to obtain Deninger’s Theorem 1.1. But, at present, we cannot use a
Weil’s-type explicit formula [13, Theorem 4] for our purpose. Instead, we
adopt the contour integral method, which was used for appropriate sums of
multiple Hurwitz zeta functions or for multiple sine functions in [4, 16]. See
also [19, Section 2.4] for this method. Roughly speaking, we give an analytic
continuation with respect to w for

(1.2)
∑

Im(ρ1)>0

∑

Im(ρ2)>0

(s − ρ1 − ρ2)−w

via the contour integral expression and cut off the contour to relate (1.2)
with prime numbers. Then the theory of Cramér [6] and Guinand [8], which
will be explained in Section 2, plays important roles. More technical ideas
will be explained in Section 3. We emphasize that Theorem 3.1 in Section 3
is fundamental to derive Theorem 1.1. We remark that for concretely given
r ∈ Z≥1 Deninger’s-type explicit formulas for ζ⊗r(s) can be calculated from
Theorem 3.1 in principle.

This paper is organized as follows: In Section 2 we recall the theory of
Cramér [6] and Guinand [8], arrange it and give needed estimations. In Sec-
tion 3 we show a fundamental equation (Theorem 3.1) to obtain Theorem
1.1 and we also explain a sketch of the proof of Theorem 1.1. In Section 4
we reprove Deninger’s Theorems 1.1 and 1.2 from Theorem 3.1 to explain
calculations for Theorems 1.1 and 1.3. We remark that our method is com-
pletely different from that of Deninger. In Section 5 we prove Theorem 1.1
from Theorem 3.1 and we also prove Theorem 1.2. In Section 6 we prove



The double Riemann zeta function 625

Theorem 1.3. Lastly, in Section 7 we discuss an obstacle to applying our
results to the nontrivial zeros of the Riemann zeta function.

Convention and notation. For convenience we collect convention and
notation which will be used in this paper.

• p and q denote the prime numbers.

• ρ, ρ1 and ρ2 denote the nontrivial zeros of the Riemann zeta function
counted with multiplicity.

• τ denotes the complex number satisfying ρ = 1
2 + iτ .

• τ (1) := min{Re(τ) > 0 : ζ(1
2 + iτ) = 0}(= 14.13 . . .). See [19, Chapter

XV].

• γ is the Euler constant, that is,

γ := lim
N→∞

(
N∑

n=1

1
n

− log N

)
.

2. Cramér–Guinand theory

In this section, we recall the theory of Cramér [6] and Guinand [8] and
further develop it. Let

(2.1) θ(t) :=
∑

Re(τ)>0

e−τt, U(t) := θ(t) +
log t

4π sin(t/2)
,

which are originally defined in | arg(t)| < π/2. Then, Cramér and Guinand
proved the following assertions:

Lemma 2.1. (1) [6, p. 114, (13)] θ(t) has the following expression in
Re(t) > 0:

θ(t) =
t

2πi
e

it
2

∑

p

∞∑

m=1

p−m

m(t + im log p)
− t

2πi
e− it

2

∑

p

∞∑

m=1

p−m

m(t − im log p)

+ e− it
2

(
1
4

+
γ + log(2π)

2πi

) (
1 +

1
it

)
+

e− it
2

2πi
Γ′

Γ

(
t

π

)
+

e
it
2

2

− t

2π
e− it

2

∫ 1

0
eitu log |ζ(u)|du +

e− it
2

2πt

∫ ∞

0

u

eu − 1
du

u + it
.
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(2) [8, Theorem 3] U(t) has a single valued meromorphic continuation for
which

U(t) + U(−t) = 2 cos
(

t

2

)
− 1

4 cos(t/2)
.

(3) [6, p. 117, 2; 8, Theorem 1(ii)] U(t) has the following Laurent expan-
sion at t = 0 :

U(t) = −γ + log(2π)
2πt

+ O(1).

Remark 2.1. The sums over p and m in Lemma 2.1(1) converge absolutely
and uniformly on any compact subset of C since

(2.2)
∑

p

∞∑

m=1

p−m

m2 log p
< ∞.

For the proof of (2.2), we separate m = 1 and m ≥ 2 and apply the prime
number theorem to the former and estimate the latter trivially.

From the meromorphy of log t/(4π sin(t/2)) in arg(t) ∈ (−π/2, (3π)/2)
and Lemma 2.1(2), θ(t) has a meromorphic continuation to t ∈ C \ iR≤0.
We rewrite it by the same notation θ(t).1 We put

θ∗(t) := θ(t) − e− it
2 (t ∈ C \ iR≤0).

Then we rewrite Lemma 2.1 in terms of θ∗(t) as follows:

Lemma 2.2. (1) θ∗(t) has the following expression in t ∈ C \ iR≤0 :

θ∗(t) =
8∑

j=1

Aj(t),

where

A1(t) := − t

2πi
e− it

2

∑

p

∞∑

m=1

p−m

m(t − im log p)
,

1Throughout this paper θ is a function in C \ iR≤0 and we do not use other
branches.
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A2(t) :=
t

2πi
e

it
2

∑

p

∞∑

m=1

p−m

m(t + im log p)
,

A3(t) := −e
it
2

(
1
4

+
γ + log(2π)

2πi

) (
1 − 1

it

)
,

A4(t) := − e
it
2

2πi
Γ′

Γ

(
− t

π

)
,

A5(t) := − t

2π
e

it
2

∫ 1

0
e−itu log |ζ(u)|du,

A6(t) :=
e

it
2

2πt

∫ ∞

0

u

eu − 1
du

u − it
,

A7(t) := −1
2
e− it

2 , A8(t) :=
e

3it
2

eit − e−it .

(2) We have

θ∗(t) + θ∗(−t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− e
it
2

2i sin t
if Re(t) > 0,

e− it
2

2i sin t
if Re(t) < 0.

(3) θ∗(t) has the following asymptotic behavior at t = 0:

θ∗(t) = − log t

2πt
− γ + log(2π)

2πt
+ O(1),

where the argument lies in (−π/2, (3π)/2).

Remark 2.2. For the proof of (1) we cannot use Lemma 2.1(1) directly
because the last term in Lemma 2.1(1) is not valid on t ∈ iR≥0.

Proof of Lemma 2.2. (2) First we consider the case Re(t) > 0. We recall
that the argument was taken in (−π/2, (3π)/2) to obtain the meromor-
phic continuation of θ(t). Hence log(−t) = log t + πi in its context. Therefore
Lemma 2.1(2) says

θ(t) + θ(−t) +
1

4i sin(t/2)
= 2 cos

(
t

2

)
− 1

4 cos(t/2)
.
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Hence we have

θ∗(t) + θ∗(−t) = θ(t) + θ(−t) − 2 cos
(

t

2

)

= − 1
4 cos(t/2)

− 1
4i sin(t/2)

= − e
it
2

2i sin t
,

which gives (2) with Re(t) > 0. (2) with Re(t) < 0 is immediately obtained
by replacing t with −t in (2) with Re(t) > 0.

(1) We restrict t to Re(t) < 0 first. Then from (2) we have

θ∗(t) = −θ(−t) + e
it
2 +

e− it
2

2i sin t
= −θ(−t) +

e
3it
2

eit − e−it .

Applying Lemma 2.1(1) to θ(−t), we obtain (1) in Re(t) < 0. Since both
sides are meromorphic in t ∈ C \ iR≤0, (1) holds in t ∈ C \ iR≤0.

(3) Applying sin(t/2) = t/2 + O(t3) to Lemma 2.1(3), we immediately
obtain the desired result. �

Next, we give information about poles of θ∗(t). From definition (2.1) of
θ(t) and Lemma 2.2 (1) we have

Lemma 2.3 [8, Theorem 1(ii)]. θ∗(t) has poles at the following points and
nowhere else in t ∈ C \ iR≤0 :

(i) t = im log p (p : prime numbers; m = 1, 2, . . .),

(ii) t = −πm (m = 1, 2, . . .).

Later we need the following bounds for θ∗(t):

Lemma 2.4. (1) On Re(t) ≥ 1 we have

θ∗(t) =
∑

0<τ≤100

e−τt − e− it
2 + O(e−100 Re(t)+ 1

2
| Im(t)|).

(2) On Re(t) ≤ −1 we have

θ∗(t) = −
∑

0<τ≤100

eτt +
e

3it
2

eit − e−it + O(e100 Re(t)+ 1
2
| Im(t)|).
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(3) Let t = x + iT with T ≥ 2 and −T ≤ x ≤ T . Then we have

θ∗(t) = − t

2πi
e− it

2

∑

p,m
pm<e2T

p−m

m(t − im log p)
+ O(T eT/2),

where the implied constant is absolute.

Proof. (1) First we remark that if 0 < Re(τ) ≤ 100 and ζ(1
2 + iτ) = 0, then

τ ∈ R (see [19, Chapter XV]). Hence we have

θ∗(t) =
∑

0<τ≤100

e−τt +
∑

Re(τ)>100

e−τt − e− it
2 .

From | Im(τ)| < 1
2 we have

∣∣∣∣∣
∑

Re(τ)>100

e−τt

∣∣∣∣∣ ≤
∑

Re(τ)>100

|e−τt| =
∑

Re(τ)>100

e− Re(τ) Re(t)+Im(τ) Im(t)

≤ e
1
2
| Im(t)|

∑

Re(τ)>100

e− Re(τ) Re(t)

= e−100 Re(t)+ 1
2
| Im(t)|

∑

Re(τ)>100

e−(Re(τ)−100) Re(t)

≤ e−100 Re(t)+ 1
2
| Im(t)|

∑

Re(τ)>100

e−(Re(τ)−100),

which completes the proof.
(2) Applying (1) to θ∗(−t) in Lemma 2.2(2), we easily obtain the desired

result.
(3) Estimating Aj(t) in Lemma 2.2(1) for j = 2, 3, . . . , 8 trivially, we

have

θ∗(t) = A1(t) + O(T eT/2).

We treat A1(t). Suppose that pm ≥ e2T . Then, since T ≤ (m log p)/2, we
have m log p − T ≥ (m log p)/2. Hence we get

∣∣∣∣∣
∑

p,m
pm≥e2T

p−m

m(t − im log p)

∣∣∣∣∣ ≤
∑

p,m
pm≥e2T

p−m

m(m log p − T )
≤ 2

∑

p,m
pm≥e2T

p−m

m2 log p
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≤ 2
∑

p

∞∑

m=1

p−m

m2 log p
.

Together with (2.2), this completes the proof. �

Corollary 2.1. (1) On u ≥ 10 we have

θ∗(ue− πi
4 ) = O

(
exp

(
− u

23/2

))
, θ∗(ue

3πi
4 ) = O

(
exp

(
− 5u

23/2

))
.

(2) Let R ≥ 10 and −R ≤ y ≤ R. Then we have

θ∗(R + iy) = O(ey/2),

where the implied constant is absolute.

(3) Let t = x + iT with T = log(N + 1
2) (N ∈ Z≥100) and x ∈ R. Then we

have

θ∗(t) =

⎧
⎪⎨

⎪⎩

O(eT/2) if x ≥ 1,
O(T 2eT/2) if −1 ≤ x ≤ 1,
O(eτ (1)x + e− 5

2
T + e100x+ T

2 ) if x ≤ −1,

where the implied constant is absolute.

For the proof we need the following:

Lemma 2.5. For any 0 < X < Y we have

log Y − log X ≥ Y − X

Y
.

Proof. This immediately follows from the mean value theorem. �

Proof of Corollary 2.1. Applying Lemma 2.4(1) or (2) and estimating the
first and second terms trivially, we easily obtain (1) to (3) with |x| ≥ 1. We



The double Riemann zeta function 631

consider (3) with |x| ≤ 1. We estimate the sum in Lemma 2.4(3):

∣∣∣
∑

p,m
pm<e2T

p−m

m(t − im log p)

∣∣∣ ≤
∑

p,m
pm<e2T

p−m

|T − m log p|

=
∑

p,m
pm<N+ 1

2

p−m

T − m log p
+

∑

p,m
N+ 1

2
≤pm<(N+ 1

2
)2

p−m

m log p − T

=: I + II.

We first treat I. From Lemma 2.5 we have

I ≤
(

N +
1
2

) ∑

p,m
pm<N+ 1

2

p−m

N + 1
2 − pm

≤
(

N +
1
2

) N∑

n=2

1
n(N + 1

2 − n)

=
N∑

n=2

1
n

+
N∑

n=2

1
N + 1

2 − n
� log N � T.(2.3)

In the same manner, II is estimated as follows:

II ≤
∑

p,m
N+ 1

2
≤pm<(N+ 1

2
)2

1
pm − (N + 1

2)
≤

N2∑

n=1

1
(n + N) − (N + 1

2)
� T.(2.4)

Applying (2.3) and (2.4) to Lemma 2.4(3), we get the desired result. �

3. The fundamental equation between zeros and primes

In this section, we prove a fundamental equation between the zeros of the
Riemann zeta function and the prime numbers. We also explain how to
obtain Deninger’s Theorem 1.1 and Theorem 1.1 from the fundamental equa-
tion. Needed calculations will be done in Sections 4 and 5.

The fundamental equation is as follows:
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Theorem 3.1. Let r ∈ Z≥1. Suppose that (w, z) ∈ Dr satisfies Im(z) <
−r/2 and Re(w) > r, where

Dr :=
{

(w, z) ∈ C
2 : − r

23/2 < Re(ze− πi
4 ) <

5r

23/2

}

=
{

(w, z) ∈ C
2 : −r

2
< Re(z) + Im(z) <

5r

2

}
.

Then we have
L(1)

r (w, z) + L(2)
r (w, z) = Rr(w, z),

where

L(1)
r (w, z) :=

1
Γ(w)

∫ ∞e− πi
4

0
e−ztθ∗(t)rtw−1dt

L(2)
r (w, z) := (−1)r−1 eπiw

Γ(w)

∫ ∞e− πi
4

0
ezt

(
θ(t) +

∞∑

n=1

e−(2n+ 1
2
)it

)r

tw−1dt

Rr(w, z) :=
2πi

Γ(w)
lim

N→∞

∑

p,m
pm<N+ 1

2

Rest=im log p e−ztθ∗(t)rtw−1

and the argument lies in (−π/2, (3π)/2).

Before we start the proof, we explain how to get Deninger’s Theorem
1.1 and Theorem 1.1 from Theorem 3.1. Let r = 1 or r = 2. We calculate
the residue in Rr(w, z) explicitly by Lemma 2.2(1). On the other hand, we
calculate L

(1)
r (w, z) and L

(2)
r (w, z) by definition (2.1) of θ(t) and the following

formula for the gamma function:

Lemma 3.1. Let arg α ∈ (−π/4, (3π)/4) and Re(w) > 0. Then we have

Γ(w)
αw

=
∫ ∞e− πi

4

0
e−αttw−1dt.

Proof. First we restrict α to arg α = π/4. Then we have

Γ(w)
αw

=
∫ ∞

0
e−t

(
t

α

)w dt

t
=

∫ ∞α−1

0
e−αttw

dt

t
=

∫ ∞e− πi
4

0
e−αttw

dt

t
.

When w is fixed, both sides are holomorphic in {α ∈ C : Re(αe− πi
4 ) > 0} =

{α ∈ C : −π/4 < arg α < (3π)/4}. This completes the proof. �
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Finally replacing z = −i(s − r
2) and investigating holomorphy of both

sides with respect to s, we will obtain Deninger’s Theorem 1.1 and Theorem
1.1. (Here the assumptions of Theorem 3.1 concerning (w, z) is equivalent
to −2r < Re(s) − Im(s) < r, Re(s) > r and Re(w) > r.)

Proof of Theorem 3.1. For a fixed number 0 < ε < log 2 we consider

(3.1) Fr(w, z) = F (ε)
r (w, z) :=

1
Γ(w)

∫

Cε

e−ztθ∗(t)rtw−1dt,

where Cε is the union of ∞e
3π

4
i → εe

3π

4
i, εeiφ (φ : 3π

4 → −π
4 ), and εe− πi

4 →
∞e− πi

4 .2 Owing to Corollary 2.1(1), (3.1) converges absolutely and uniformly
on any compact subset of Dr. Let (w, z) ∈ Dr and 0 < δ < ε. Then from
Cauchy’s theorem and Lemma 2.3 we have

Fr(w, z) − F (δ)
r (w, z) =

1
Γ(w)

∫

Pδ,ε

e−ztθ∗(t)rtw−1dt = 0,

where Pδ,ε is the union of εeiφ (φ : 3π
4 → −π

4 ), εe− πi
4 → δe− πi

4 , δeiφ (φ : −π
4 →

3π
4 ) and δe

3π

4
i → εe

3π

4
i. We restrict w to Re(w) > r. Taking the limit δ ↓ 0,

from Lemma 2.2(3), we get

Fr(w, z) = lim
δ↓0

F (δ)
r (w, z)

=
1

Γ(w)

∫ 0

∞e
3π
4 i

e−ztθ∗(t)rtw−1dt +
1

Γ(w)

∫ ∞e− πi
4

0
e−ztθ∗(t)rtw−1dt.(3.2)

Replacing t with −t and applying Lemma 2.2(2), we calculate the first term
of (3.2) as follows:

1
Γ(w)

∫ 0

∞e
3π
4 i

e−ztθ∗(t)rtw−1dt

=
1

Γ(w)

∫ ∞e− πi
4

0
eztθ∗(−t)reπi(w−1)tw−1dt

= (−1)r−1 eπiw

Γ(w)

∫ ∞e− πi
4

0
ezt

(
θ∗(t) +

e
it
2

2i sin t

)r

tw−1dt.

2About the contour Cε we chose the angle −π/4 and (3π)/4 so as not to exist
poles of θ∗(t) on Cε. The choice of the angle is not essential.



634 Hirotaka Akatsuka

Together with −e− it
2 + e

it
2

2i sin t = −e− it
2 + e− it

2

1−e−2it =
∑∞

n=1 e−(2n+ 1
2
)it, (3.2)

turns to

(3.3) Fr(w, z) = L(1)
r (w, z) + L(2)

r (w, z) ((w, z) ∈ Dr, Re(w) > r).

We calculate Fr(w, z) by the residue theorem. Let (w, z) ∈ Dr satisfy Im(z) <
−r/2 and be fixed. Then from the residue theorem and Lemma 2.3 we have

(∫

C(1)

+
∫

C(2)

+
∫

C(3)

)
e−ztθ∗(t)rtw−1dt

= 2πi
∑

p,m
pm<N+ 1

2

Rest=im log p e−ztθ∗(t)rtw−1,

where

C(1) :=
{

−u + iu
∣∣∣∣u : T → ε√

2

}
∪

{
εeiφ

∣∣∣∣φ :
3π

4
→ −π

4

}

∪
{

u − iu
∣∣∣∣u :

ε√
2

→ R

}
,

C(2) := {R + iy|y : −R → T}, C(3) := {x + iT |x : R → −T},

T = TN := log(N + 1
2) with N ∈ Z≥100 and R ≥ T . We consider the limit

R → ∞. From Corollary 2.1(2) we have

∣∣∣∣
∫

C(2)

e−ztθ∗(t)rtw−1dt

∣∣∣∣ =
∣∣∣∣
∫ T

−R
e−z(R+iy)θ∗(R + iy)r(R + iy)w−1idy

∣∣∣∣

�r,w

∫ T

−R
e− Re(z)R+Im(z)ye

r

2
yRRe(w)−1dy

≤ 2RRe(w)e−(Re(z)+Im(z)+ r

2
)R.(3.4)

Here in the final inequality we used T ≤ R and Im(z) < −r/2. From Re(z) +
Im(z) + r

2 > 0, (3.4) tends to zero as R → ∞. Hence we get

(∫

C(4)

+
∫

C(5)

)
e−ztθ∗(t)rtw−1dt = 2πi

∑

p,m
pm<N+ 1

2

Rest=im log p e−ztθ∗(t)rtw−1,
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where

C(4) :=
{

−u + iu
∣∣∣∣u : T → ε√

2

}
∪

{
εeiφ

∣∣∣∣φ :
3π

4
→ −π

4

}

∪
{

u − iu
∣∣∣∣u :

ε√
2

→ ∞
}

,

C(5) := {x + iT |x : ∞ → −T}.

Now we consider the limit N → ∞. We have

∣∣∣∣
∫

C(5)

∣∣∣∣ =
∣∣∣∣−

∫ ∞

−T
e−z(x+iT )θ∗(x + iT )r(x + iT )w−1dx

∣∣∣∣

�w

∫ ∞

−T
e− Re(z)x+Im(z)T |θ∗(x + iT )|r max{|x|, T}Re(w)−1dx

=
∫ −1

−T
+

∫ 1

−1
+

∫ ∞

1
.(3.5)

We deal with
∫ ∞
1 in (3.5). From Corollary 2.1(3) we have

∫ ∞

1
�r

∫ ∞

1
e− Re(z)x+Im(z)T e

r

2
T max{x, T}Re(w)−1dx

= e(Im(z)+ r

2
)T

(
TRe(w)−1

∫ T

1
e− Re(z)xdx +

∫ ∞

T
e− Re(z)xxRe(w)−1dx

)

�w,z e(Im(z)+ r

2
)T (TRe(w)−1 + 1).

Here in the final inequality we used Re(z) > −(Im(z) + r
2) > 0. From

Im(z) + r
2 < 0 we get

∫ ∞
1 → 0 as N → ∞. Next, we consider

∫ 1
−1 in (3.5).

From Corollary 2.1(3) we have

∫ 1

−1
�r

∫ 1

−1
e− Re(z)x+Im(z)T (T 2eT/2)rTRe(w)−1dx

�z TRe(w)+2r−1e(Im(z)+ r

2
)T → 0 as N → ∞.
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Finally we treat
∫ −1
−T in (3.5). From Corollary 2.1(3) we have

∫ −1

−T
�r

∫ −1

−T
e− Re(z)x+Im(z)T (eτ (1)rx + e− 5

2
rT + e100rx+ r

2
T )TRe(w)−1dx

= TRe(w)−1eIm(z)T
∫ −1

−T
e(τ (1)r−Re(z))xdx

+ TRe(w)−1e(Im(z)− 5
2
r)T

∫ −1

−T
e− Re(z)xdx

+ TRe(w)−1e(Im(z)+ r

2
)T

∫ −1

−T
e(− Re(z)+100r)xdx.

Since for any fixed A ∈ R it holds that

∫ −1

−T
eAxdx �A

⎧
⎪⎨

⎪⎩

1 if A > 0,

T if A = 0,

e−AT if A < 0

� T (1 + e−AT ),

we get

∫ −1

−T
�r,z TRe(w)eIm(z)T (1 + e(Re(z)−τ (1)r)T )

+ TRe(w)e(Im(z)− 5
2
r)T (1 + eRe(z)T )

+ TRe(w)e(Im(z)+ r

2
)T (1 + e(Re(z)−100r)T ).

From the choice of z, this tends to zero as N → ∞. Hence we get

Fr(w, z) = Rr(w, z) ((w, z) ∈ Dr, Im(z) < −r/2).(3.6)

Equations (3.3) and (3.6) complete the proof. �

4. Revisit to Deninger’s Theorems

In this section we reprove Deninger’s Theorem 1.1 from our method exp-
lained in Section 3. That is, we calculate both sides of Theorem 3.1 with
r = 1. We also reprove Deninger’s Theorem 1.2.
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4.1. L
(j)
1

Lemma 4.1. Let (w, z) ∈ D1 with Im(z) < −1/2 and Re(w) > 1. Then we
have

L
(1)
1 (w, z) =

∑

Re(τ)>0

1
(z + τ)w

− 1
(z + i

2)w
,

L
(2)
1 (w, z) = eπiw

∑

Re(τ)>0

1
(τ − z)w

+ eπiw
∞∑

n=1

1
((2n + 1

2)i − z)w
,

where the argument lies in (−π/4, (3π)/4).

Proof. We treat L
(1)
1 (w, z). From the definition of θ∗(t) and θ(t) and Lemma

3.1 we have

L
(1)
1 (w, z) =

1
Γ(w)

∑

Re(τ)>0

∫ ∞e− πi
4

0
e−(z+τ)ttw−1dt

− 1
Γ(w)

∫ ∞e− πi
4

0
e−(z+ i

2
)ttw−1dt

=
∑

Re(τ)>0

1
(z + τ)w

− 1
(z + i

2)w
.

Here to apply Lemma 3.1 we used Re(z + τ) + Im(z + τ) > 0 and Re(z +
i
2) + Im(z + i

2) > 0, which follow from Re(z) + Im(z) > −1/2, Im(τ) >

−1/2 and τ (1) > 14.
In the same manner as L

(1)
1 , we obtain the formula for L

(2)
1 . �

Lemma 4.2. Let −2 < Re(s) − Im(s) < 1, Re(s) > 1 and Re(w) > 1. Then
we have

L
(1)
1

(
w,−i

(
s − 1

2

))
= e

πiw
2

(
∑

Im(ρ)<0

1
(s − ρ)w

− 1
(s − 1)w

)
,(4.1)

L
(2)
1

(
w,−i

(
s − 1

2

))
= e

πiw
2

(
∑

Im(ρ)>0

1
(s − ρ)w

+
∞∑

n=1

1
(s + 2n)w

)
,(4.2)

where the argument lies in (−π/2, π/2). The sums in (4.1) and (4.2) converge
absolutely and uniformly on any compact subset of {(w, s) ∈ C

2 : Re(w) >
1, Re(s) > 1}.
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Proof. We put z = −i(s − 1
2) in Lemma 4.1. We rewrite Lemma 4.1 in terms

of s. We have

∑

Re(τ)>0

1
(z + τ)w

=
∑

Re(τ)>0

1
(−i(s − 1

2 + iτ))w

: arg
(

−i
(

s − 1
2

+ iτ
))

∈
(

−π

4
,
3π

4

)

= e
πiw
2

∑

Re(τ)>0

1
(s − 1

2 + iτ)w

: arg
(

s − 1
2

+ iτ
)

∈
(

π

4
,
5π

4

)

= e
πiw
2

∑

Im(ρ)<0

1
(s − ρ)w

.

Here from the assumption Re(s) > 1 it holds that Re(s − ρ) > 0, i.e., arg(s −
ρ) ∈ (π/4, π/2) ⊂ (−π/2, π/2).

In the same manner we get

1
(z + i

2)w
=

e
πiw
2

(s − 1)w
,

∑

Re(τ)>0

1
(τ − z)w

= e− πiw
2

∑

Im(ρ)>0

1
(s − ρ)w

,

∞∑

n=1

1
((2n + 1

2)i − z)w
= e− πiw

2

∞∑

n=1

1
(s + 2n)w

,

where the argument lies in (−π/2, π/2). Hence we obtain (4.1) and (4.2).
The absolute and locally uniform convergence easily follows from

#{ρ : Im(ρ) ∈ (T, T + 1], ζ(ρ) = 0} = O(log T ) [19, Theorem 9.2]. �

4.2. R1

Lemma 4.3. Let −2 < Re(s) − Im(s) < 1, Re(s) > 1 and Re(w) > 1. Then
we have

(4.3) R1

(
w,−i

(
s − 1

2

))
= − e

πiw
2

Γ(w)

∑

p

∞∑

m=1

p−ms(m log p)w−1 log p.

The sum converges absolutely and uniformly on any compact subset of
{(w, s) ∈ C

2 : Re(s) > 1}.
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Proof. We calculate the residue in R1(w,−i(s − 1
2)) explicitly. From Lemma

2.2(1) (see also Remark 2.1) we have

Rest=im log p ei(s− 1
2
)tθ∗(t)tw−1

= Rest=im log p ei(s− 1
2
)t

(
− t

2πi
e− it

2
p−m

m(t − im log p)

)
tw−1

= −e
πiw
2

2πi
p−ms(m log p)w−1 log p.

Hence we obtain (4.3).
From the following estimate for any fixed ε > 0 and A ∈ R, we obtain

the absolute and locally uniform convergence of the sum in (4.3):
(4.4)
∑

p

∞∑

m=1

p−m(1+ε)(m log p)A log p =
∞∑

n=2

Λ(n)
n1+ε

(log n)A ≤
∞∑

n=2

(log n)A+1

n1+ε
< ∞,

where Λ is the von Mangoldt function. Hence we complete the proof. �

4.3. Reproof of Deninger’s Theorems

Proof of Deninger’s Theorem 1.1. Applying Lemmas 4.2 and 4.3 to Theo-
rem 3.1 with r = 1, we obtain Deninger’s Theorem 1.1 under the additional
assumption −2 < Re(s) − Im(s) < 1. Since both sides are holomorphic in
Re(s) > 1, we can remove it. This completes the proof of Deninger’s Theo-
rem 1.1. �
Proof of Deninger’s Theorem 1.2. We remark that each term on the left-
hand side of Deninger’s Theorem 1.1 has a meromorphic continuation to
w ∈ C (see [9]). We also notice that the following Laurent expansion at
w = 0 holds:

(4.5)
1

Γ(w)
= w + O(w2).

Hence, taking the linear term of the Laurent expansion at w = 0 in
Deninger’s Theorem 1.1, we obtain Deninger’s Theorem 1.2. �

5. The double explicit formula

In this section we prove Theorem 1.1 by calculating both sides of Theorem
3.1 with r = 2 and we also prove Theorem 1.2.
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5.1. L
(j)
2

Lemma 5.1. Let −4 < Re(s) − Im(s) < 2, Re(s) > 2 and Re(w) > 2. Then
we have

L
(1)
2 (w,−i(s − 1))

= e
πiw
2

(
∑

Im(ρ1)<0

∑

Im(ρ2)<0

1
(s− ρ1 − ρ2)w

− 2
∑

Im(ρ)<0

1
(s− 1 − ρ)w

+
1

(s−2)w

)
,

L
(2)
2 (w,−i(s − 1))

= −e
πiw
2

(
∑

Im(ρ1)>0

∑

Im(ρ2)>0

1
(s − ρ1 − ρ2)w

+ 2
∑

Im(ρ)>0

∞∑

n=1

1
(s − ρ + 2n)w

+
∞∑

n1=1

∞∑

n2=1

1
(s + 2n1 + 2n2)w

)
,

where the argument lies in (−π/2, π/2). The sums converge absolutely and
uniformly on any compact subset of {(w, s) ∈ C

2 : Re(s) > 2, Re(w) > 2}.

Proof. This is proved in the same manner as Section 4.1 without any diffi-
culties. �

5.2. R2

Lemma 5.2. Let −4 < Re(s) − Im(s) < 2, Re(s) > 2 and Re(w) > 2. Then
we have

R2(w,−i(s − 1)) =
e

πiw
2

Γ(w)

9∑

j=1

Ẽ(j)(w, s),

where Ẽ(j)(w, s) := E(j)(w, s) for j = 1, 2, . . . , 7, 9 and Ẽ(8)(w, s) :=
−E(8)(w, s). Here E(j)(w, s) are defined as Theorem 1.1.
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Proof. Let p be prime numbers and m ∈ Z≥1. Then, from Lemma 2.2(1) we
have

θ∗(t)2 =

(
− te− it

2 p−m

2πim(t − im log p)

)2

+ 2

(
− te− it

2 p−m

2πim(t − im log p)

)

×
(

− t

2πi
e− it

2

∑

q

∞∑

n=1
qn �=pm

q−n

n(t − in log q)
+

8∑

j=2

Aj(t)

)

+ (holomorphic function near t = im log p).

Hence we get

R2(w,−i(s − 1)) =
9∑

j=1

R
(j)
2 (w, s),

where

R
(1)
2 (w, s) :=

1
2πiΓ(w)

∑

p

∞∑

m=1

p−2m

m2 Rest=im log p
ei(s−2)ttw+1

(t − im log p)2
,

R
(2)
2 (w, s) :=

1
πiΓ(w)

∑

p

∞∑

m=1

p−m

m

× Rest=im log p
ei(s−2)ttw+1

t − im log p

(
∑

q

∞∑

n=1
qn �=pm

q−n

n(t − in log q)

)
,

R
(j+1)
2 (w, s) := − 2

Γ(w)

∑

p

∞∑

m=1

p−m

m
Rest=im log p

ei(s− 3
2
)ttw

t − im log p
Aj(t)

for j = 2, 3, . . . , 8. Calculating the residues, we obtain

R
(j)
2 (w, s) =

e
πiw
2

Γ(w)
Ẽ(j)(w, s)

for any j = 1, 2, . . . , 9. This completes the proof. �

5.3. Convergence of E(j)(w, s): proof of Theorem 1.2

In this subsection we prove Theorem 1.2, which is concerned with the abso-
lute convergence of the sums and the integrals in E(j)(w, s) and Ẽ(j)(w, s)
for j = 1, . . . , 9.
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Proof of Theorem 1.2. From (4.4) we immediately obtain the desired con-
vergence of the sums and the integrals in E(j)(w, s) except for j = 2, 3, 5.

We treat the sum in E(5)(w, s). Applying the well-known asymptotic
formula

Γ′

Γ
(z) = log z + Oε(|z|−1) as |z| → ∞, | arg(z)| ≤ π − ε

and using (4.4), we get the desired convergence.
We deal with the sum in E(3)(w, s). Let ε > 0 and A < B be any fixed

real numbers and suppose that Re(s) ≥ 1 + ε and A ≤ Re(w) ≤ B. Then for
any prime numbers p, q and m, n ∈ Z≥1 we have

∣∣∣∣
p−msq−n(m log p)w log p

n(m log p + n log q)

∣∣∣∣

≤

⎧
⎪⎪⎨

⎪⎪⎩

2−(1+ε)q−n(log 2)A+1

n2 log q
if p = 2 and m = 1,

p−m(1+ε)q−n(m log p)B log p

n2 log q
otherwise.

From (2.2) we have

∑

q

∞∑

n=1

2−(1+ε)q−n(log 2)A+1

n2 log q
< ∞.

From (2.2) and (4.4) we have

∑

p

∞∑

m=1
pm≥3

∑

q

∞∑

n=1

p−m(1+ε)q−n(m log p)B log p

n2 log q

≤
(

∑

p

∞∑

m=1

p−m(1+ε)(m log p)B log p

) (
∑

q

∞∑

n=1

q−n

n2 log q

)

< ∞.

Hence the sum in E(3)(w, s) converges absolutely and locally uniformly in
{(w, s) ∈ C

2 : Re(s) > 1}.
We treat the sum in E(2)(w, s). Let ε > 0 and A < B be any fixed real

numbers and suppose that Re(s) ≥ 2 + ε and A ≤ Re(w) ≤ B. Then, for any
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prime numbers p, q and m, n ∈ Z≥1 satisfying qn 
= pm, we have

∣∣∣∣∣
p−m(s−1)q−n(m log p)w log p

n(m log p − n log q)

∣∣∣∣∣

≤

⎧
⎪⎪⎨

⎪⎪⎩

2−(1+ε)q−n(log 2)A+1

n(n log q − log 2)
if p = 2 and m = 1,

p−m(1+ε)q−n(m log p)B log p

n|m log p − n log q| otherwise.

We treat the sum on p = 2 and m = 1. From log x − log 2 ≥ (1 − log 2
log 3)

log x for any x ≥ 3 and (2.2) we have

∑

q

∞∑

n=1
qn≥3

2−(1+ε)q−n(log 2)A+1

n(n log q − log 2)
≤ 2−(1+ε)(log 2)A+1

1 − log 2
log 3

∑

q

∞∑

n=1

q−n

n2 log q

< ∞.

Next, we treat the sum satisfying (p, m) 
= (2, 1). We have

∑

p

∞∑

m=1
pm≥3

∑

q

∞∑

n=1
qn �=pm

p−m(1+ε)q−n(m log p)B log p

n|m log p − n log q|

≤
∑

p

∞∑

m=1

∑

q

∞∑

n=1
qn �=pm

p−m(1+ε)q−n(m log p)B log p

n|m log p − n log q|

=
∑

p

∞∑

m=1

∑

q

∞∑

n=1
qn<pm

+
∑

p

∞∑

m=1

∑

q

∞∑

n=1
pm<qn<p2m

+
∑

p

∞∑

m=1

∑

q

∞∑

n=1
qn≥p2m

.(5.1)

We treat the sum over qn ≥ p2m. Then, since 2m log p ≤ n log q, we have
n log q − m log p ≥ (n log q)/2. Hence together with (2.2) and (4.4) we get

∑

p

∞∑

m=1

∑

q

∞∑

n=1
qn≥p2m

≤ 2

(
∑

p

∞∑

m=1

p−m(1+ε)(m log p)B log p

)(
∑

q

∞∑

n=1

q−n

n2 log q

)

< ∞.(5.2)
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Next we deal with the sum over pm < qn < p2m. From Lemma 2.5 we have

∑

q

∞∑

n=1
pm<qn<p2m

q−n

n|m log p − n log q|

≤
∑

q

∞∑

n=1
pm<qn<p2m

q−n qn

qn − pm
≤

p2m−pm−1∑

l=1

1
(pm + l) − pm

� m log p.

Hence together with (4.4) we get

(5.3)
∑

p

∞∑

m=1

∑

q

∞∑

n=1
pm<qn<p2m

�
∑

p

∞∑

m=1

p−m(1+ε)(m log p)B+1 log p < ∞.

Next we treat the sum over qn < pm. From Lemma 2.5 we have

∑

q

∞∑

n=1
qn<pm

q−n

n|m log p − n log q|

≤
∑

q

∞∑

n=1
qn<pm

q−n pm

pm − qn
≤ pm

pm−1∑

l=1

1
l(pm − l)

=
pm−1∑

l=1

1
l

+
pm−1∑

l=1

1
pm − l

� m log p.

Hence together with (4.4) we get

(5.4)
∑

p

∞∑

m=1

∑

q

∞∑

n=1
qn<pm

�
∑

p

∞∑

m=1

p−m(1+ε)(m log p)B+1 log p < ∞.

From (5.2) to (5.4), (5.1) converges. This completes the proof. �

5.4. Proof of Theorem 1.1

Proof of Theorem 1.1. Assume that (w, s) satisfies the assumption of
Lemma 5.1. Applying Lemmas 5.1 and 5.2 to Theorem 3.1 with r = 2,
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we have

−
∑

Im(ρ1)>0

∑

Im(ρ2)>0

1
(s − ρ1 − ρ2)w

+
∑

Im(ρ1)<0

∑

Im(ρ2)<0

1
(s − ρ1 − ρ2)w

− 2
∑

Im(ρ)<0

1
(s − 1 − ρ)w

− 2
∑

Im(ρ)>0

∞∑

n=1

1
(s − ρ + 2n)w

+
1

(s − 2)w
−

∞∑

n1=1

∞∑

n2=1

1
(s + 2n1 + 2n2)w

=
1

Γ(w)

9∑

j=1

Ẽ(j)(w, s).(5.5)

From Deninger’s Theorem 1.1 we have

(5.6)
E(8)(w, s)

Γ(w)
=

∑

ρ

1
(s − 1 − ρ)w

− 1
(s − 2)w

+
∞∑

n=1

1
(s + 2n − 1)w

.

Doubling this and adding it to (5.5), we get the desired result under the extra
assumption −4 < Re(s) − Im(s) < 2. Since both sides are holomorphic with
respect to s in Re(s) > 2 owing to Theorem 1.2, we can remove it. This
completes the proof. �

6. Euler product expressions for ζ⊗2(s)

In this section we prove Theorem 1.3.

Proof of Theorem 1.3. We remark that each term on the left-hand side of
Theorem 1.1 has a meromorphic continuation to all w ∈ C. (See [9].) Hence,
taking the coefficient of the linear term of the Laurent expansion at w = 0
in Theorem 1.1 (see also (4.5)), we obtain the desired result. �

7. Discussion

In this section we raise a problem (Proposition 7.1) when we try to analyze
the nontrivial zeros of the Riemann zeta function via our results.

Since it is difficult to treat sums over the prime numbers, we rewrite the
right-hand side of Theorems 1.1 and 1.3 by sums over the zeros and the pole
of the Riemann zeta function as much as possible. From Deninger’s Theorem
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1.1 we have

E(9)(w, s)
Γ(w)

= −2
∑

ρ

∞∑

n=1

1
(s + 2n − ρ)w

+ 2
∞∑

n=1

1
(s − 1 + 2n)w

− 2
∞∑

n1=1

∞∑

n2=1

1
(s + 2n1 + 2n2)w

.

Applying this and (5.6) to Theorem 1.1, we have

Lemma 7.1. In Re(s) > 2 and Re(w) > 2 we have

−
∑

Im(ρ1)>0

∑

Im(ρ2)>0

1
(s − ρ1 − ρ2)w

+
∑

Im(ρ1)<0

∑

Im(ρ2)<0

1
(s − ρ1 − ρ2)w

+
∑

Im(ρ)>0

1
(s − 1 − ρ)w

−
∑

Im(ρ)<0

1
(s − 1 − ρ)w

−
∞∑

n=1

1
(s − 1 + 2n)w

+ 2
∑

Im(ρ)<0

∞∑

n=1

1
(s + 2n − ρ)w

+
∞∑

n1=1

∞∑

n2=1

1
(s + 2n1 + 2n2)w

=
1

Γ(w)

7∑

j=1

E(j)(w, s),

where E(j)(w, s) are defined as Theorem 1.1.

Differentiating Lemma 7.1 with respect to w at w = 0, we obtain

Lemma 7.2. In Re(s) > 2 we have

∏∐

Im(ρj)>0

(s − ρ1 − ρ2)
∏∐

Im(ρ)<0

(s − 1 − ρ)

∏∐

Im(ρj)<0

(s − ρ1 − ρ2)
∏∐

Im(ρ)>0

(s − 1 − ρ)

(
∏∐

Im(ρ)<0,
n≥1

(s + 2n − ρ)

)2

×

∏∞∐

n=1

(s + 2n − 1)

∏∐

nj≥1

(s + 2n1 + 2n2)
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= exp

⎡

⎣
7∑

j=1

E(j)(s)

⎤

⎦ ,(7.1)

where E(j)(s) are defined as Theorem 1.3.

We note that (7.1) has zeros or poles at s = ρ1 + ρ2 if ρ1 + ρ2 
= 1 + ρ′

for any nontrivial zeros ρ′ of ζ(s). In particular, s = 2ρ are zeros or poles
if 2ρ 
= 1 + ρ′ for any ρ′. Therefore, in view of the zero-free region of the
Riemann zeta function, it is interesting to improve the absolutely convergent
region (Theorem 1.2 with w = 0) for the right-hand side of (7.1). If there
would exist ϑ > 0 such that the sums and the integrals in E(j)(s) converge
absolutely for Re(s) > 2 − ϑ for any j = 1, . . . , 7, we might improve the zero-
free region of the Riemann zeta function. But when we consider E(j)(s)
separately, it is impossible because the holomorphy of E(2)(s) and E(6)(s)
is broken at s = 2 as follows:

Proposition 7.1.

(1)

(7.2) E(2)(s) − 1
2πi

(log(s − 2))2 +
1
πi

log((s − 2)ζ(s − 1)) log(s − 2)

has an analytic continuation as a holomorphic function to

D1 := {s ∈ C : Re(s) > 1}
\ ({ρ1 + ρ2 + λ : Im(ρ1) × Im(ρ2) > 0, ζ(ρj) = 0, λ ≤ 0}
∪ {ρ + λ : 0 < Re(ρ) < 1, ζ(ρ) = 0, λ ≤ 1}),

where in the initial domain Re(s) > 2, the above logarithms are taken
as log(s − 2), log((s − 2)ζ(s − 1)) ∈ R if s > 2 and extending them
analytically to Re(s) > 2.

(2)

(7.3) E(6)(s) +
1

2πi
(log(s − 2))2 − 1

πi
log((s − 2)ζ(s − 1)) log(s − 2)

has an analytic continuation as a holomorphic function to

D2 := C \ ({ρ + λ : 0 < Re(ρ) < 1, ζ(ρ) = 0, λ ≤ 1} ∪ {s ∈ R : s ≤ 1}) .



648 Hirotaka Akatsuka

In particular, (7.2) and (7.3) have an analytic continuation to a region
including Re(s) ≥ 2.

Proof. We show (2).3 We have

E(6)(s) =
1
πi

∫ 1

0

ζ ′

ζ
(s − u) log(−ζ(u))du

=
1
πi

∫ 1

0

(
ζ ′

ζ
(s − u) +

1
s − u − 1

)
log(−ζ(u))du

− 1
πi

∫ 1

0

log(−ζ(u))
s − u − 1

du

=: A(s) + B(s).

We first investigate an analyticity of A(s). Since ζ′

ζ (z) + 1
z−1 is holomorphic

in C \ ({ρ ∈ C : 0 < Re(ρ) < 1, ζ(ρ) = 0} ∪ {−2n : n ∈ Z≥1}), ζ(s − u) +
1

s−u−1 is uniformly bounded on (s, u) ∈ K × [0, 1] for any compact subset
K of

D3 := C \ ({ρ + λ : 0 < Re(ρ) < 1, ζ(ρ) = 0, 0 ≤ λ ≤ 1}
∪ {−2n + λ : n ∈ Z≥1, 0 ≤ λ ≤ 1}).

This, together with that log(−ζ(u)) is absolutely integrable in [0, 1], implies
that A(s) has an analytic continuation to D3.

We consider B(s). We divide B(s) as

B(s) = − 1
πi

∫ 1

0

log((u − 1)ζ(u))
s − u − 1

du +
1
πi

∫ 1

0

log(1 − u)
s − u − 1

du =: B1(s) + B2(s).

We treat B2(s). We temporally restrict s to |s − 2| > 1 in addition to Re(s) >
2. Then we have

B2(s) =
1
πi

∫ 1

0

log u

s − 2 + u
du =

1
πi(s − 2)

∫ 1

0

( ∞∑

n=0

(
u

2 − s

)n
)

log udu

=
1
πi

∞∑

n=0

1
(n + 1)2

(
1

2 − s

)n+1

=
1
πi

Li2

(
1

2 − s

)
,

where Li2(z) :=
∑∞

n=1
zn

n2 is the dilogarithm. It is well-known that Li2(z) is
originally defined in |z| < 1, has an analytic continuation to z ∈ C \ [1,∞)

3The method of the proof is originated in [6, pp. 116–117], which analyzed the
behavior of the final term in Lemma 2.1(1) near t = 0.
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and satisfies the transformation formula
(7.4)

Li2

(
1
z

)
= − Li2(z) − π2

6
− 1

2
(log(−z))2 (z ∈ C \ [0,∞), | arg(−z)| < π).

Putting z = 2 − s in (7.4), we get

B2(s) = − 1
2πi

(log(s − 2))2 − 1
πi

Li2(2 − s) +
πi
6

.

This implies that B2(s) + 1
2πi(log(s − 2))2 has an analytic continuation to

D4 := C \ (−∞, 1]. We deal with B1(s). We restrict s to |s − 2| < 1 in addi-
tion to Re(s) > 2. Since log((z − 1)ζ(z)) is holomorphic in |z − 1| < 3 and
[log((z − 1)ζ(z))]z=1 = 0, it has the Taylor expansion of the following form:

(7.5) log((z − 1)ζ(z)) =
∞∑

n=1

an(z − 1)n,

which converges absolutely and locally uniformly in |z − 1| < 3. Hence we
have

B1(s) = − 1
πi

∞∑

n=1

an

∫ 1

0

(u − 1)n

s − u − 1
du.

Applying the binomial theorem to (u − 1)n = ((u + 1 − s) + (s − 2))n, we
have

B1(s) = − 1
πi

∞∑

n=1

an

n∑

k=0

(
n

k

)
(−1)k(s − 2)n−k

∫ 1

0
(s − u − 1)k−1du

= − 1
πi

∞∑

n=1

an(s − 2)n

∫ 1

0

du

s − u − 1

− 1
πi

∞∑

n=1

an

n∑

k=1

(
n

k

)
(−1)k(s − 2)n−k

∫ 1

0
(s − u − 1)k−1du.(7.6)

By (7.5), the first term in (7.6) equals

− 1
πi

log((s − 2)ζ(s − 1))(− log(s − 2) + log(s − 1)),
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where | arg(s − 2)|, | arg(s − 1)| < π/2. Hence we get

B1(s) − 1
πi

log((s − 2)ζ(s − 1)) log(s − 2)

= − 1
πi

log((s − 2)ζ(s − 1)) log(s − 1)

− 1
πi

∞∑

n=1

an

n∑

k=1

(
n

k

)
(−1)k(s − 2)n−k

∫ 1

0
(s − u − 1)k−1du.(7.7)

We investigate the analyticity of (7.7). Clearly, the left-hand side of (7.7)
can be extended analytically to

D5 := C \ ({ρ + λ : 0 < Re(ρ) < 1, ζ(ρ) = 0, λ ≤ 1} ∪ {s ≤ 2}).

Next we observe (7.7) near s = 2. We easily see that the first term on the
right-hand side of (7.7) is holomorphic in |s − 2| < 1. To consider the second
term, we take any fixed ε ∈ (0, 1) and suppose |s − 2| ≤ 1 − ε. Then, for any
u ∈ [0, 1], n ∈ Z≥1 and k ∈ Z satisfying 1 ≤ k ≤ n, we have

∣∣∣∣an

(
n

k

)
(−1)k(s− 2)n−k(s−u − 1)k−1

∣∣∣∣ = |an|
(

n

k

)
|s− 2|n−k|s−2 + 1−u|k−1

≤ |an|
(

n

k

)
(1 − ε)n−k(2 − ε)k−1.(7.8)

Since the sum in (7.5) converges absolutely in |z − 1| < 3, we have

∞∑

n=1

n∑

k=1

∫ 1

0
|an|

(
n

k

)
(1 − ε)n−k(2 − ε)k−1du

≤
∞∑

n=1

|an|
n∑

k=0

(
n

k

)
(1 − ε)n−k(2 − ε)k−1

=
1

2 − ε

∞∑

n=1

|an|(3 − 2ε)n < ∞.(7.9)

Equations (7.8) and (7.9) imply that the sums and the integral in the second
term converge absolutely and locally uniformly in |s − 2| < 1. In particular,
the second term can be extended analytically in |s − 2| < 1. Hence B1(s) −
1
πi log((s − 2)ζ(s − 1)) log(s − 2) can be extended analytically to D6 := D5 ∪
{s∈ C : |s− 2|< 1} = C \ ({ρ + λ : 0 < Re(ρ) < 1, ζ(ρ) = 0, λ ≤ 1} ∪ {s≤ 1}).
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From the above observations,

E(6)(s) +
1

2πi
(log(s − 2))2 − 1

πi
log((s − 2)ζ(s − 1)) log(s − 2)

= A(s) +
(

B1(s) − 1
πi

log((s − 2)ζ(s − 1)) log(s − 2))
)

+
(

B2(s) +
1

2πi
(log(s − 2))2

)

has an analytic continuation to D3 ∩ D4 ∩ D6 = D2. This implies (2).
To show (1), we take a logarithm of (7.1). Since the left-hand side has

neither zeros nor poles in D1, log(the left-hand side of (7.1)) is holomorphic
in D1. On the other hand, from Theorem 1.2 with w = 0, E(j)(s) are holo-
morphic in D1 except for j = 2, 6. These imply that

E(2)(s) + E(6)(s)

=
(

E(2)(s) − 1
2πi

(log(s − 2))2 +
1
πi

log((s − 2)ζ(s − 1)) log(s − 2)
)

+
(

E(6)(s) +
1

2πi
(log(s − 2))2 − 1

πi
log((s − 2)ζ(s − 1)) log(s − 2)

)

is also holomorphic in D1. From Proposition 7.1(2), the second brace is
holomorphic in D1. This completes the proof. �
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