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Explicit evaluation of certain Jacquet integrals
on SU(2, 2)

Gombodorj Bayarmagnai

We give explicit formulas for certain Jacquet integrals on some
standard principal series representations of the group SU(2, 2).

0. Introduction

The main object of this paper is to obtain explicit integral expressions of
some Whittaker functions on G = SU(2, 2). More specifically we evaluate the
Jacquet integrals with certain K-types belonging to a principal series rep-
resentation, parabolically induced by the minimal parabolic subgroup of G.

The Whittaker models are one of the main ingredients in the theory
of Fourier expansions of automorphic forms at some cusps. In this sense,
explicit knowledge of Whittaker functions is very important for deeper stud-
ies of automorphic forms.

Jacquet [7] introduced a functional on the space of differentiable vec-
tors in a given representation π of G, which defines an intertwiner from
its representation space to the space of smooth functions f on G satisfy-
ing f(ng) = η(n)f(g) for all (n, g) ∈ N × G, where η is a unitary charac-
ter of the standard maximal unipotent subgroup N of G. The image of
this intertwiner is a Whittaker model of π. The local multiplicity one the-
orem of Shalika [13] at the archimedean place implies the uniqueness of
such kind of functionals when the representation π is irreducibly admissi-
ble. Note also that Wallach [16, §8] reformulated this result in a slightly
different but useful manner, i.e., in terms of “moderate growth condition”.
When π is given by a standard model on L2(K), the unique functional is
realized by the Jacquet integral. We want to compute for special vectors in
L2(K).

Our method of evaluation of Jacquet integral is based on that of
Proskurin [12], similarly as in Ishii [6]. Main results of the paper, described in
Theorems 3.2, 3.3 and 4.2, show that the Whittaker function corresponding
to certain K-type of π is expressed in terms of the modified Bessel func-
tion and hence we obtain its Mellin–Barnes integral representation. Since
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the restricted root system of SU(2, 2) is the same type as that of Sp(2, R)
except for multiplicities, our results resemble to those of [6]. But because
our group is non-split, it is much more involved from technical viewpoints.

In this paper we discuss only “very small” K-types in some standard
principal series representations of G. But combined with results of the other
paper [3], we can expect to handle other K-types in the same representation.

We want to refer to the meaning in physics of the group SU(2, 2), which
is locally isomorphic to the conformal group SO(4, 2): this group was the
group of symmetry of massless free particles [17]; also the Lie algebra su(2, 2)
was the spectrum generating algebra of the hydrogen atom. Related to these
topics, there is a very general result on the minimal representation of O(p, q)
by Kobayashi–Ørsted [8].

However the group SO(4, 2) now becomes fundamental in the conjecture
of AdS/CFT correspondence [2]. Though the situation is not clear, our
result is very rare on special functions in “two variables” related to spherical
functions on SO(4, 2) in the literature. So this might bring some new aspects
that were not found in the case of the minimal representations.

For other Lie groups, there are related works by Bump [4] on GL(3),
Stade [14] on GL(n) and Vinogradov and Tahtajan [15] on SL(3).

1. Basic notions

1.1. The group SU(2, 2)

Let G denote the special unitary group of signature (+2,−2) and K be
the maximal compact subgroup of G associated to the Cartan involution
θ(g) =t ḡ−1, g ∈ G :

K = S(U(2) × U(2)) =
{(

k1 0
0 k2

)
: k1, k2 ∈ U(2), det(k1k2) = 1

}
.

The associated Lie algebras are

g = su(2, 2) = {X ∈ M4(C) | I2,2X +t X̄I2,2 = 0, T r(X) = 0}

and

k =
{(

X1 0
0 X2

)
∈ g : −tX̄i = Xi ∈ M2(C), i = 1, 2

}
.
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Denoting by p the (−1)-eigenspace of the differential of θ, we have a Cartan
(symmetric) decomposition

g = k ⊕ p.

Let Hi = Ei,2+i + E2+i,i(i = 1, 2), where Ei,j is the matrix unit with 1 in the
(i, j)-entry and zero elsewhere. A subalgebra a of p spanned by H1, H2 over
R is maximally abelian and any element a of its Lie group A = exp(a) can
be expressed by a = a(t1, t2) = exp(t1H1 + t2H2) for some t1, t2 ∈ R. Thus,

a(t1, t2) =
2∑

i=1

{
cosh(ti)(Ei,i + Ei+2,i+2) + sinh(ti)(Ei,i+2 + Ei+2,i)

}
.

Let {λ1, λ2} be a basis of the dual space a∗ such that λi(Hj) = δij (the
Kronecker symbol). Then the restricted root system Φ(g, a) is of type C2:

Φ(g, a) = {±λ1 ± λ2,±2λ1,±2λ2}.

Choose λ1 − λ2 and 2λ2 as simple roots of Φ(g, a). Put

E0 = κ−1(E12 − E43)κ, E1 = iκ−1(E12 + E43)κ, E2 = κ−1E24κ,

F0 = κ−1(E14 + E23)κ, F1 = iκ−1(E14 − E23)κ, F2 = κ−1E13κ,

by setting

κ =
1√
2

⎛
⎜⎜⎝

1 0 1 0
0 1 0 1
−i 0 i 0
0 −i 0 i

⎞
⎟⎟⎠

with i =
√

−1. Then the corresponding root spaces of positive roots in Φ(g, a)
are given by

gλ1−λ2 = E0 · R ⊕ E1 · R, g2λ2 = E2 · R,

gλ1+λ2 = F0 · R ⊕ F1 · R, g2λ1 = F2 · R.

Let n be a subalgebra defined by n =
∑

α∈Φ+
gα. We now describe elements

of a maximal unipotent subgroup N of G given by N = exp(n).

Lemma 1.1. Let Ei, Fi be as above and set X = x0E0 + y0E1 and Y =
x2F0 + y2F1 + x1F2 + x3E2 for xi, yj ∈ R (i = 0, 1, 2, 3, j = 0, 2). Then

exp(X + Y ) = exp(X) exp(Y − 1
2
[X, Y ] − 1

3
XY X).
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Proof. To see this, it suffices to verify relations X2 = Y 2 = Y XY = 0. �
The Killing form B(X, Y ) = tr(adX · adY ), (X, Y ∈ g) and Cartan involu-
tion θ of g induce an inner product 〈, 〉 of g via

〈X, Y 〉 = −B(X, Y θ), (X, Y ∈ g).

Then one has that 〈gα, gβ〉 = 0 if α �= β, because of the involution θ.

Lemma 1.2. The vectors Ei, Fi (i = 0, 1, 2) of the subspace n of g defined
above are an orthogonal basis of n with respect to the inner product 〈, 〉.

Proof. For the orthogonality of the basis of n, it suffices to show that

〈E0, E1〉 = 〈F0, F1〉 = 0.

Recall that adE0 · adEθ
1 sends the subspace gλ (λ ∈ Φ(g, a)) into itself. By

setting A = −adE0 · adEθ
1 , we give the list of all non-zero restrictions of A

to the subspaces gλ of g :

A|gλ1+λ2
= A|g−λ1−λ2

=
1
23

(
0 1
0 0

)
, A|a+m =

1
24

⎛
⎝ 0 0 −1

0 0 −1
−1 1 0

⎞
⎠ .

Hence tr(adE0 · adEθ
1) = 0 which follows that E0 and E1 are orthogonal.

Similarly F0 is orthogonal to F1. �
We may regard n as the vector space R

6. Define a map φ : R
6 → R

6 by

φ(x) = (x1, x2, x3 − x1x4 + x2x5

2
+

(x2
1 + x2

2)x6

3
, x4 − x1x6, x5 − x2x6, x6)

for x = (x1, x2, x3, x4, x5, x6) ∈ R
6.

Then φ is a diffeomorphism and its Jacobian determinant is 1. We now
denote ith coordinate function of φ by φi for 1 ≤ i ≤ 6 and put

n0 = φ1(x) +
√

−1φ2(x), n1 = φ3(x),

n2 = φ4(x) +
√

−1φ5(x), n3 = φ6(x).

Then any element n in the maximal unipotent group N of G takes the form

κ−1

⎛
⎜⎜⎝

1 n0
1

1
−n̄0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 n1 n2
1 n̄2 n3

1
1

⎞
⎟⎟⎠ κ
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for some n1, n3 ∈ R and n0, n2 ∈ C, and denote it by n(n0, n1, n2, n3). Since

gλ1+λ2 = [gλ1−λ2 , g2λ2 ] and g2λ1 = [gλ1−λ2 , gλ1+λ2 ],

any character η of N is uniquely determined by the values of Ei(i = 0, 1, 2).
Put

c0 =
√

−1η(E0), c1 =
√

−1η(E1) and c2 =
√

−1η(E 2)

with c0, c1, c2 ∈ C. Then these numbers are real when η is unitary and there-
fore such η is given by

η(n) = exp(2
√

−1(Re(c̄n0) + c2n3)), n = n(n0, n1, n2, n3) ∈ N

for a real number c2 and c = c0 +
√

−1c1 ∈ C.

Conventions. We say that the character η of N is non-degenerate if both
c2
0 + c2

1 and c2 are non-zero. Throughout this paper, we shall fix a non-
degenerate character η of N .

1.2. Principal series representations

Let P be a minimal parabolic subgroup of G with Langlands decomposition
P = MAN with M = ZA(K). In particularly, the subgroup M of P is given
by

M = {[e
√

−1θ]γj | θ ∈ R, j ∈ {0, 1}},

where γ = diag(1,−1, 1,−1) ∈ G and

[e
√

−1θ] = diag(e
√

−1θ, e−
√

−1θ, e
√

−1θ, e−
√

−1θ).

For a pair n ∈ Z and a character ε of the group μ2 = {±1}, we define a
unitary character of M as

σn,ε([e
√

−1θ]γj) = ε(−1)je
√

−1nθ.

Denote by ρ the half sum of the positive restricted roots, i.e., ρ = 3λ1 + λ2,
and define a quasi-character eν+ρ of A:

eν+ρ(a) = e(ν+ρ)log(a) (ν = (ν1, ν2) ∈ (aC)∗).

We extend it to a character of AN so that the restriction to N is trivial.
Define an admissible character of P by tensoring these characters of M
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and AN . Then we get the induced representation called the principal series
representation of G

πν = indG
P (σn,ε ⊗ eν+ρ ⊗ 1N ).

In this paper we will be dealing with the principal series representations that
contain one-dimensional K-types. For an integer u, we define a K-module
structure τu on C by

τu(k)v = det(k2)uv, k =
(

k1 0
0 k2

)
∈ K, v ∈ C

and denote by Cu the underlying one-dimensional K-module. Let πν |K be
the subspace of all K-finite vectors in πν .

Lemma 1.3. Let πν = indG
P (σ0,ε ⊗ eν+ρ ⊗ 1N ) and τu be as above. Then

τu is a K-submodule of πν |K if and only if ε(−1) = (−1)u. In this case τu

occurs exactly once.

Proof. By Frobenius reciprocity we have that [πν |K : τu] = [τu |M : σ0,ε].
Hence the multiplicity is at most one. By considering the action of M on Cu

we get the assumption on u as required. �

Assumption. When we consider the principal series representation πν =
indG

P (σ0,ε ⊗ eν+ρ ⊗ 1N ), throughout this paper, we assume that

ν1 + 1 + e, ν2 + 1 + e and ν1 ± ν2 are not integers.

1.3. The Jacquet integral

Let σ = σn,ε. By definition the principal series representation πν of G can
be realized on the Hilbert space

L2
σ(K) = {f ∈ L2(K) | f(mk) = σ(m)f(k), m ∈ M, k ∈ K}

with G-action defined by

(πν(g)f)(x) = a(xg)ν+ρf(k(xg)), x ∈ K, g ∈ G,

where xg = n(xg)a(xg)k(xg) stands for the Iwasawa decomposition of the
element xg.
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In [7], Jacquet defined the continuous functional Jσ,ν on the space of
differentiable functions of L2

σ(K) satisfying Jσ,ν(πν(n)f) = η(n)Jσ,ν(f) by

Jσ,ν(f) =
∫

N
η(n)−1a(s∗n)ν+ρf(k(s∗n))dn

for a differentiable function f in L2
σ(K) and the longest element s ∈ W (A).

Here W (A) is the Weyl group defined as the quotient of M∗ = NK(a), the
normalizer of a in K, by M and s∗ is an element of M∗ mapping to the
longest element s ∈ W (A).

Multiplicity one theorem tells that there is at most one intertwiner (up to
constant) from the space of K-finite vectors of πν into the subspace Aη(N \
G) of moderate growth functions [16, 8.1] in C∞

η (N \ G). If exist, then the
construction is as follows: for each differentiable f ∈ L2

σ(K) it associates a
function Jf (g) in C∞

η (N \ G) defined by

Jf (g) = Jσ,ν(πν(g)f), (g ∈ G).

These Jf (g) functions are of moderate growth on G, and in particular so on
the subgroup A. We want to have an explicit formula for the A-radial part
of Jf (g) with f belongs to a special K-type τ in πν .

2. Preliminaries

2.1. Classical formulas

In this section we collect some classical formulas and their combinations
that is used in our evaluation. Let Kμ(z) be the Bessel function defined for
μ, z ∈ C, by the integral

Kμ(z) =
1
2

∫ ∞

0
exp

(
−(t + t−1)

z

2

)
tμ

dt

t
.(2.1)

Our object is to evaluate the integral Jfu
(g), further denote it by Ju(g),

in terms of the modified Bessel functions of the second-order Kμ(z) when
u = 0,±1,±2.

We recall the Euler integral of the second kind in the form

Γ(ν) = cν

∫ ∞

0
exp(−ct)tν

dt

t
(2.2)

for c ∈ R>0 and Re(ν) > 0.



304 Gombodorj Bayarmagnai

For a, b, c,∈ R
∗ and α, β ∈ R such that α2 + β2 = 1 and n ∈ N, we set

F
(n)
(a,b) =

(a

π

) 1
2 exp

(
b2

a

) ∫
R

xn exp(−ax2 + 2
√

−1bx)dx

and

G
(n)
(a,b,c) =

∫
R

∫
R

exp(−c(x2 + y2) − a(αx + βy)2 + 2
√

−1b(αx + βy))
(αx + βy)−n

dxdy.

We need the following formulas.

Proposition 2.1. Let a, c ∈ R
∗
+ and b ∈ R. Then

F
(0)
(a,b) = 1, F

(1)
(a,b) =

b

a

√
−1, F

(2)
(a,b) =

a − 2b2

2a2 ,(2.3)

G
(0)
(a,b,c) =

π exp(−b2

a+c)

(c2 + ac)
1
2

,
G

(1)
(a,b,c)

G
(0)
(a,b,c)

=
b
√

−1
a + c

,
G

(2)
(a,b,c)

G
(0)
(a,b,c)

=
a + c − 2b2

2(a + c)2
.(2.4)

Proof. By formula (4.11) of [5], we have that

∫
R

exp(−ax2 + 2
√

−1bx)dx =
(π

a

) 1
2 exp

(
−b2

a

)
.

Then (2.3) can be verified by applying the operators ∂/∂a and ∂/∂b to both
sides of the above formula. The first formula in (2.4) follows from the first
one in (2.3) and using a similar argument as above, we can derive other
formulas. �

2.2. The first modification of the radial part of Jacquet integrals

For our purposes, it will be enough to consider the A-radial part of the
Jacquet integral because of the Iwasawa decomposition.

We put ai = exp(ti) for the element a = a(t1, t2) of the R-split torus A.
For a fixed pair ν = (ν1, ν2) ∈ C

2, by definition of the character eν+ρ, one
has

eν+ρ(a) =(cosh(t1) + sinh(t1))ν1+3(cosh(t2) + sinh(t2))ν2+1

=aν1+3
1 aν2+1

2 .
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In our case s∗ = I2,2 and hence by setting a(s−1n) = a(t′1, t
′
2), one can see

that

a′
1 = 1/

√
Δ1 and a′

2 =
√

Δ1/Δ2,

where a′
i = exp(t′i)(i = 1, 2). Here the Δ1, Δ2 are as follows:

Δ1 = 1 + n2
1 + n̄2n2 + (n̄0n2 + n0n̄2)(n1 + n3) + n̄0n0(1 + n̄2n2 + n2

3),

Δ2 = 1 + n2
1 + 2n2n̄2 + n2

3 + (n1n3 − n2n̄2)2

for n = n(n0, n1, n2, n3) ∈ N .
For convenience we shall rewrite Δ1 in terms of Δ2 and Δ3, where Δ3

denotes the sum 1 + n2n̄2 + n2
3.

Lemma 2.2. Put ni = xi +
√

−1yi with xi, yi ∈ R (i = 0, 2). Then we have
the following identities for Δ1 and Δ2:

Δ1Δ3 = (X2
0 + Y 2

0 )Δ2
3 + Δ2

with (X0, Y0) =
(
x0 +

n1 + n3

Δ3
x2, y0 +

n1 + n3

Δ3
y2

)
.

(1 + n2
3)Δ2 = (1 + N2

1 )Δ2
3, with N1 =

(1 + n2
3)n1 − n2n̄2n3

Δ3
.

Proof. (a) To prove this part, by direct computation, one can see that

Δ2 = (1 + n2
1 + n2n̄2)Δ3 − (n1 + n3)2n2n̄2

and hence (a) is immediate.
(b) It is straightforward to check that

√
Δ2 is the complex norm of

(1 − n1n3 + n2n̄2) +
√

−1(n1 + n3).

The lemma follows. �

For an integer u, define a function fu(k) on K by

fu(k) := det(k2)u, k =
(

k1 0
0 k2

)
∈ K.
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Lemma 2.3. The function fu(k) belongs to L2
σ(0,ε)

(K) if ε(−1) = (−1)u.
In particular, we have

fu(k(I2,2n)) =
(

1 − n1n3 + n2n̄2 +
√

−1(n1 + n3)
1 − n1n3 + n2n̄2 −

√
−1(n1 + n3)

)u

2

for n = (n0, n1, n2, n3) ∈ N .

Proof. For the factor k(I2,2n) of the Iwasawa decomposition of I2,2n with n ∈
N , there are k1, k2 ∈ U(2) such that k(I2,2n) =

(
k1 0
0 k2

)
∈ K. Put N1 =(

n1 n2
n̄2 n3

)
for n = n(n0, n1, n2, n3) ∈ N . One can see that

det(k1)
det(k2)

=
det(1 −

√
−1N1)

det(1 +
√

−1N1)
.

Since det(k1)det(k2) = 1, the function fu has the required expression. �
Note that the K-submodule in L2

σ(0,ε)
(K) generated by fu(k) is isomorphic

to Vu when u satisfying the condition in Lemma 1.3. By setting Ju := Jfu

for Jacquet function Jfu
, the function Ju(a) on A is given by the integral

expression

aρ−ν

∫
N

a(I2,2n)ν+ρ exp(−2
√

−1
(a1

a2
Re(c̄n0) + c2a

2
2n3

)
)fu(k(I2,2n))dn

for a character η depending on c ∈ C and c2 ∈ R. For future convenience,
we choose a new coordinate

y = (y1, y2) =
(a1

a2
, a2

2

)
.

Since f → Jf (g) is the Whittaker realization of πν , Jfu
(a) is the radial part

of a Whittaker function on G belonging to πν . Thus, in the new coordinate
system, we can summarize the following lemma.

Lemma 2.4. The radial part of the moderate growth Whittaker function
W(ν1,ν2)(y1, y2; u) = y3

1y
2
2W̃(ν1,ν2)(y1, y2; u) (up to constant) associated with

the K-type τu can be written in the form

W̃(ν1,ν2)(y1, y2; u) =y−ν1
1 y

− ν1+ν2
2

2

∫
N

Δ
− ν1−ν2

2
−1

1 Δ
− ν2+1

2
2

× exp(−2
√

−1
(
y1Re(c̄n0) + c2y2n3

)
fu(k(I2,2n))dn,

where dn is a multiplicative Haar measure on N .
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Note here that the results in [3] led us to the determination of the
Whittaker function associated to certain K-types in πν , because the inter-
twiner corresponding to the functional Jσ,ν is an intertwiner of g-equivariant.
The assumptions for ν = (ν1, ν2) in Subsection 1.2 imply that L2

σ(0,ε)
(K) is

infinitesimally irreducible. Hence, in fact, it suffices to consider the cases
u = 0 and 1 for our purpose.

3. Explicit formulas

In this section we consider the integral Ju when u = 0,±1,±2. Actually
the results corresponding to u = 0,±1 are quite similar to that integrals on
Sp(2, R) in [6], which could be explained by the coincidence of the restricted
root system of type C2. Throughout this paper we denote by I the interval
[0,∞).

Now we shall give a normalization of Haar measure of N . In Section 1,
the subalgebra n is regarded as R

6 with coordinates (φi)1≤i≤6. Let dφ be
the corresponding Lebesgue measure on n. Since the exponential map of n

onto N is an analytic isomorphism, there exists a unique Haar measure dn
on N that corresponds to dφ.

Set ni = xi +
√

−1yi (i = 0, 2). For μ1, μ2 ∈ C and non-degenerated uni-
tary character η such that c2

0 + c2
1 = 1 and c2 = ±1, let us evaluate

J =
∫

R6

Δμ1
1 Δμ2

2 exp(−2
√

−1(c0x0A1 + c1y0A1 − n3A2))dn

where dn = dx0dy0dn1dx2dy2dn3 and A1, A2 are positive real parameters.

Lemma 3.1. We have that the integral J defined above is equal to

π

Γ(−μ1)Γ(−μ2)

∫
R4

∫ ∞

0

∫ ∞

0

t−μ1−1
1 t−μ2

2
1 + n2

3
exp

(
−A2

1
t1

− Δ2

Δ2
3
(t1 + t2)

)

exp
(
2
√

−1{−n3A2 +
N1 + n3

1 + n2
3

(c0x2 + c1y2)A1}
)
Δμ1+2μ2+1

3 dn

with dn = dN1dx2dy2dn3
dt1
t1

dt2
t2

Proof. Firstly we change the system variable from

(x0, y0, x2, y2, n1, n3) to (X0, Y0, x2, y2, N1, n3).
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Here X0, Y0 and N1 are defined in Lemma 2.2. Then

dx0dy0dx2dy2dn1dn3 =
Δ3

1 + n2
3
dX0dY0dx2dy2dN1dn3.

Moreover,

(c0x0 + c1y0)A1 = (c0X0 + c1Y0)A1 − N1 + n3

1 + n2
3

(c0x2 + c1y2)A1.

We apply all these replacement for the integration of J together with the
insertion of

(Δ1/Δ3)μ1 =
1

Γ(−μ1)

∫ ∞

0
exp(−Δ1t1/Δ3)t

−μ1
1

dt1
t1

,

which is the Euler integral of the second kind (2.2). Then J is equal to

1
Γ(−μ1)

∫
I

∫
R6

exp
(

−(X2
0 + Y 2

0 )t1 − Δ2

Δ2
3
t1

)
Δμ2

2 Δμ1+1
3

tμ1
1 (1 + n2

3)
× exp(−2

√
−1(c0X0 + c1Y0)A1)

× exp
(

2
√

−1(±n3A2 +
N1 + n3

1 + n2
3

(c0x2 + c1y2)A1)
)

with respect to dX0dY0dx2dy2dN1dn3
dt1
t1

.

Note here that we use the equation

Δ1/Δ3 = X2
0 + Y 2

0 + Δ2/Δ2
3

in Lemma 2.2. Now we can execute the integrations with respect to the
variables X0, Y0 applying formula (2.3) with n = 0 to obtain

J =
π

Γ(−μ1)

∫
R4

∫
I
exp

(
2
√

−1{±n3A2 +
N1 + n3

1 + n2
3

(c0x2 + c1y2)A1}
)

exp
(

−A2
1

t1
− Δ2

Δ2
3
t1

)
Δμ2

2 Δμ1+1
3

t−μ1−1
1
1 + n2

3

dt1
t1

dN1dx2dy2dn3
dt1
t1

.

To complete the proof we remove the factor Δμ2
2 by applying formula (2.2)

again

Δμ2
2 =

Δ2μ2
3

Γ(−μ2)

∫ ∞

0
exp(−Δ2t2/Δ2

3)t
−μ2
2

dt2
t2

.

This completes the proof of our Lemma. �
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3.1. The standard cases | u |≤ 1

In this subsection we discuss the main results of this paper. These standard
cases seem to be very useful for the the Jacquet vectors corresponding to
the minimal K-types of other principal series representations. Let

Γ(s1, s2) =
Γ±(s1, ν1)Γ±(s1, ν2)Γ±(s2, (ν1 + ν2)/2)Γ±(s2, (ν1 − ν2)/2)

Γ±(s1 + s2, ν1 + ν2)Γ±(s1 + s2, ν1 − ν2)

with

Γ±(s, t) := Γ
(

s + t

2

)
Γ

(
s − t

2

)

for suitable si, νi ∈ C, (i = 1, 2).
Set ν = (ν1, ν2) ∈ C

2. Let us begin with the case u = 0, i.e., the class
one case.

Theorem 3.2. Let πν = IndG
P (1M ⊗ eν+ρ ⊗ 1N ) be an irreducible represen-

tation. For a non-degenerated unitary character η of N we have the fol-
lowing assertions on the A-radial part of the primary Whittaker function
W(ν1,ν2)(y1, y2; 0) = y3

1y
2
2W̃(ν1,ν2)(y1, y2; 0). The function W̃(ν1,ν2)(y1, y2; 0)

has the following integral expressions:
1. We have

W̃(ν1,ν2)(y1, y2; 0)

=
∫ ∞

0

∫ ∞

0
K ν1+ν2

2
(2

√
t2/t1)K ν2−ν1

2
(2

√
t1t2)

exp
(

−|c2|y2t1 − |c2|y2

t1
− t2

|c2|y2
− (c2

0 + c2
1)|c2|

y2
1y2

t2

)
dt1
t1

dt2
t2

.

2. The function W̃(ν1,ν2)(y1, y2; 0) is identified with

(y1

y2

) ν2
2

∫ ∞

0

∫ ∞

0
K ν1

2
(X)K ν2

2
(Y )

(
x(1 + x)
y(1 + y)

) ν1
4

(
x2y2

1 + x + y

) ν2
4 dx

x

dy

y

with X = 2|c2|y2

(
(1 + x)(1 + y)

xy

) 1
2

and Y = 2(c2
0 + c2

1)
1
2 y1(1 + x + y)

1
2 ,
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3. The Mellin–Barnes’s integral expression of W̃(ν1,ν2)(y1, y2; 0) is

W̃(ν1,ν2)(y1, y2; 0) =
1

(2
√

−1)2

∫
s1

∫
s2

V(ν1,ν2)(s1, s2)y−s1
1 y−s2

2 ds1ds2.

Here the paths of integrations are the vertical lines from αi −
√

−1∞ to
αi +

√
−1∞ with real number αi such that

α1 > |Re(ν1)|, |Re(ν1)|, α2 > |Re(ν1 + ν2)|/2, |Re(ν1 − ν2)|/2

and the integrand V(ν1,ν2)(s1, s2) is equal to

Γ(s1, s2) × 3F2

⎛
⎜⎝

s1

2
,

s2

2
+

ν2 − ν1

4
,

s2

2
− ν2 − ν2

4
s2 + s1

2
+

ν2 + ν1

4
,
s2 + s1

2
− ν1 + ν2

4

1

⎞
⎟⎠ .

Proof. In order to get the desired result we shall evaluate the integration J
in Lemma 3.1 with the assumption for η, because of f0 = 1 and Lemma 2.4.

Step 1. Integration for N1.
To integrate J in the statement of Lemma 3.1 with respect to N1, we use
the expression of Δ2 in Lemma 2.2 and apply (2.3) with

(n, a, b) =
(
0,

t1 + t2
1 + n2

3
,
c0x2 + c1y2

1 + n2
3

A1

)
.

Then we find that

J =
π

Γ(−μ1)Γ(−μ2)

∫
R4

∫
I2

exp
(
2
√

−1{−n3A2 +
n3

1 + n2
3
(c0x2 + c1y2)A1}

)

exp
(
−A2

1
t1

− P

1 + n2
3

− (c0x0 + c1x2)2

P (1 + n2
3)

A2
1

)( π

P (1 + n2
3)

) 1
2 Δμ1+2μ2+1

3

tμ1+1
1 tμ2

2

dn

with P = t1 + t2.

Step 2. Integration for n2.

We apply (2.2) with (c, ν) =
( A2

1Δ3

1 + n2
3
,−μ1 − 2μ2 − 1

)
to rewrite Δμ1+2μ2+1

3
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as

(A−2
1 (1 + n2

3))
μ1+2μ2+1

Γ(−μ1 − 2μ2 − 1)

∫ ∞

0
exp

(
−A2

1t3 − A2
1t3(x

2
2 + y2

2)
1 + n2

3

)
t−μ1−2μ2−1
3

dt3
t3

.

Substitute this into the last expression of J and using (2.4) for the variables
x2 and y2 by choosing

(c, a, b) =
( A2

1t3
1 + n2

3
,

A2
1

P (1 + n2
3)

,
n3A1

1 + n2
3

)
.

Thus we can rewrite J as

π
5
2 A−2μ1−4μ2−4

1
Γ(−μ1)Γ(−μ2)Γ(−μ1 − 2μ2 − 1)

∫
R

∫
I3

exp(−2
√

−1n3A2)
(1 + n2

3)
μ1+2μ2+ 3

2

(Pt3 + 1)
1
2

exp
(

−A2
1

t1
− P

1 + n2
3

− A2
1t3 − n2

3P

(1 + n2
3)(Pt3 + 1)

)

× t−μ1−1
1 t−μ2

2

t
μ1+2μ2+ 3

2
3

dt1
t1

dt2
t2

dt3
t3

dn3.

Changing the variables (u1, u2, u3) from (t1, t2, t3) defined through

u1 = t3 +
1
P

, u2 =
t3P

(1 + n2
3)

, u3 =
t2
t1

,

the integration J has the following expression:

J =
π

3
2 A−2μ1−4μ2−4

1
Γ(−μ1)Γ(−μ2)Γ(−μ1 − 2μ2 − 1)

∫
R

∫
I3

(1 + u3)μ1+μ2+1Qμ2

u
μ2+ 1

2
1 u

μ1+2μ2+ 3
2

2 uμ2
3

exp(−2
√

−1n3A2) exp
(
−u1A

2
1

(
1 +

u3

Q

)
−1 + u2

u1

)
dn3

du1

u1

du2

u2

du3

u3

with Q = 1 + (1 + n2
3)u2.

Step 3. Integration for n3.
Before performing this step, we again change the variables by the rule

u1 =
1 + x

A2
1A2

t2, u2 = x, u3 = y +
xy

1 + x
n2

3
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to get

J =
π

3
2 A−2μ1−2μ2−3

1 A
μ2+ 1

2
2

Γ(−μ1)Γ(−μ2)Γ(−μ1 − 2μ2 − 1)

∫
R

∫
I3

exp
(
−1 + x + y

A2
t2 − A2

1A2

t2

)

exp(−2
√

−1n3A2)
((1 + x)(1 + y) + xyn2

3)
μ1+μ2+1

(x(1 + x))μ1+μ2+ 3
2 (xy)μ2t

μ2+ 1
2

2

dn3
dx

x

dy

y

dt2
t2

.

By suitable substitution, from (2.3) one can derive that

∫
R

(ax2 + b)ν exp(2
√

−1cx)dx = sgn(c)

√
π/a

Γ(−ν)

∫ ∞

0
exp

(
−bt − c2

at

)
t−ν− 1

2
dt

t
.

(3.1)

for a, b ∈ R+ and c ∈ R. Apply this formula to the above expression of J by
choosing

(x, a, b, c, t) =
(
n3,

x

1 + x
,
1 + y

y
, A2, t1A2

)

and put

(μ1, μ2, A1, A2) =
(−ν1 + ν2 − 2

2
,
−ν2 − 1

2
, y1

√
c2
0 + c2

1, y2|c2|
)
.

We then arrive at an evaluation of W̃(ν1,ν2)(y1, y2; 0), that is,

π3sgn(c2)(c2
0 + c2

1)
ν1
2 |c2|

ν1−ν2
2 y−ν2

2

Γ(ν1+1
2 )Γ(ν2+1

2 )Γ(ν1−ν2
2 + 1)Γ(ν1+ν2

2 + 1)

∫
I4

x
ν1+ν2

2 y
ν2−ν1

2 t
ν1
2

1 t
ν2
2

2

exp
(
−|c2|y2

(1 + x + y

c2
2y

2
2

t2 + (c2
0 + c2

1)
y2
1

t2
+

1 + y

y
t1 +

1 + x

xt1

))
dn.

with dn =
dx

x

dy

y

dt1
t1

dt2
t2

.

The integrand in the above integral expression of W̃(ν1,ν2)(y1, y2; 0) is
rapidly decreasing at both zero and infinity for each variable of x, y, t1 and
t2. Hence the integral converges and W̃(ν1,ν2)(y1, y2; 0) is well defined to the
whole plane C

2 if ν1+1
2 , ν2+1

2 , ν1−ν2+2
2 , ν1+ν2+2

2 are not negative integers simul-
taneously.
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By a simple substitution, (2.1) can be transformed in the form

Kν(2
√

ab) =
1
2
(a/b)

ν

2

∫ ∞

0
exp(−ax − b/x)xν dx

x
, a, b ∈ R>0.(3.2)

To get the first expression in our theorem we apply (3.2), for the variables
x and y, with

(a, b, ν) =
( t2

|c2|y2
,
|c2|y2

t1
,
ν1 + ν2

2

)
and

( t2
|c2|y2

, |c2|t1y2,
ν2 − ν1

2

)
.

2. In the above expression of W̃(ν1,ν2)(y1, y2; 0) we again utilize (3.2) for
the variables t1 and t2 by choosing (a, b, ν) as
(

|c2|y2
1 + y

y
, |c2|y2

1 + x

x
,
ν1

2

)
and

(
1 + x + y

|c2|y2
, (c2

0 + c2
1)|c2|y2

1y2,
ν2

2

)
,

respectively. Then we obtain the second expression.
3. For this one, the method of proof is similar to that of [6]. �
We now turn to the discussion of non-class one case i.e., u = ±1.

Theorem 3.3. Let πν = IndG
P (σ(0,−1) ⊗ eν+ρ ⊗ 1N ) be an irreducible repre-

sentation with ν = (ν1, ν2) ∈ C
2. For a normalized character η of N we have

the following assertions on the A-radial part of the primary Whittaker func-
tion W(ν1,ν2)(y1, y2; u) = y3

1y
2
2W̃(ν1,ν2)(y1, y2; u). The function W̃(ν1,ν2)

(y1, y2; u) has the following integral expressions:
1. For u = ±1, we have that W̃(ν1,ν2)(y1, y2; u) is equal to

y1y2

22

∫ ∞

0

∫ ∞

0
K ν1+ν2

2

(
2
√

t2
t1

)
K ν2−ν1

2
(2

√
t1t2)

(√
t1
t2

− u√
t1t2

)

× exp
(

−|c2|y2t1 − |c2|y2

t1
− t2

|c2|y2
− (c2

0 + c2
1)|c2|

y2
1y2

t2

)
dt1
t1

dt2
t2

.

2. The function W̃(ν1,ν2)(y1, y2; u) is identified with

y
ν2+1

2
1 y

− ν2−1
2

2

∫ ∞

0

∫ ∞

0
K ν2−1

2
(Y )

(
x(1 + x)
y(1 + y)

) ν1
4

(
x2y2

1 + x + y

) ν2−1
4

×
(

y
(x(1 + x)

y(1 + y)

)1/4
K ν1+1

2
(X) + ux

( y(1 + y)
x(1 + x)

)1/4
K ν1−1

2
(X)

)
dx

x

dy

y

with X = 2|c2|y2

(
(1 + x)(1 + y)

xy

) 1
2

and Y = 2(c2
0 + c2

1)
1
2 y1(1 + x + y)

1
2 ,
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3. The Mellin–Barnes’s integral expression of W̃(ν1,ν2)(y1, y2; u) is

1
(2

√
−1)2

∫
s1

∫
s2

(V 1
(ν1,ν2)(s1, s2) − uV 2

(ν1,ν2)(s1, s2))y−s1
1 y−s2

2 ds1ds2.

Here the paths of integrations are the vertical lines from αi −
√

−1∞ to
αi +

√
−1∞ with real number αi such that

α1 > |Re(ν1)|, |Re(ν1)|, α2 > |Re(ν1 + ν2)|/2, |Re(ν1 − ν2)|/2

and the integrand V 1
(ν1,ν2)(s1, s2) is equal to

( s1−1
2 )Γ±(s2 + 1, ν1−ν2

2 )
Γ±(s2,

ν1−ν2
2 )

times

Γ(s1, s2) × 3F2

⎛
⎜⎝

s1

2
,

s2 + 1
2

+
ν2 − ν1

4
,

s2 + 1
2

− ν2 − ν2

4
s1 + s2 + 1

2
+

ν2 + ν1

4
,
s1 + s2 + 1

2
− ν1 + ν2

4

1

⎞
⎟⎠

and V 2
(ν1,ν2)(s1, s2) is equal to Γ±(s2 + 1,

ν1 + ν2

2
)/Γ±(s2,

ν1 + ν2

2
) times

Γ(s1, s2) × 3F2

⎛
⎜⎝

s1 − 1
2

,
s2

2
+

ν2 − ν1

4
,

s2

2
− ν2 − ν2

4
s2 + s1

2
+

ν2 + ν1

4
,
s2 + s1

2
− ν1 + ν2

4

1

⎞
⎟⎠ .

Proof. 1. In this case, the integrand fu in Lemma 2.4 is

fu(n) = (1 + n2n̄2 − n1n3 + u
√

−1(n1 + n3))/Δ
1
2
2

= (1 − N1n3 + u
√

−1(N1 + n3))Δ3/((1 + n2
3)Δ

1
2
2 )

with u = ±1, and it does not depend on X0 and Y0. By Lemma 3.1, we
evaluate Ju to get the first part of this theorem. Here

Ju =
π

Γ(−μ1)Γ(−μ2)

∫
R4

∫
I2

t−μ1−1
1 t−μ2

2
1 + n2

3
exp

(
−A2

1
t1

− Δ2

Δ2
3
(t1 + t2)

)

exp
(
2
√

−1(−n3A2 +
N1 + n3

1 + n2
3

(c0x2 + c1y2)A1)
)
Δμ1+2μ2+2

3 fudn.

As we have seen in the previous theorem, the integrations for N1 and n2 can
be done as well by applying formulas (2.3) and (2.4). For the integration for
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n3, we use

∫
R

x(ax2 + b)ν exp(2
√

−1cx)dx =
√

−1c(π/a)
1
2

aΓ(−ν)

∫
I
exp

(
−bt − c2

at

)
t−ν− 3

2
dt

t

for a, b ∈ R+ and c ∈ R. Then we get

W̃ν(y1, y2; u)

=
2−4(c2

0 + c2
1)

ν1 |c2|ν2y4
1y

−ν2+3
2

Γ(ν1
2 + 1)Γ(ν2

2 + 1)Γ(ν1−ν2
2 + 1)Γ(ν1+ν2

2 + 1)

∫
I4

x
ν1+ν2

2 y
ν2−ν1

2

exp
(

−|c2|y2

(
1 + y

y
t1 +

1 + x

xt1
+

1 + x + y

c2
2y

2
2

t2 + (c2
0 + c2

1)
y2
1

t2

))

t
ν1
2

1 t
ν2
2

2

(√
t1
t2

+
u√
t1t2

)
dt1
t1

dt2
t2

dx

x

dy

y
.

Note here that the above integral converges and therefore the function
W̃(ν1,ν2)(y1, y2; u) is well defined, because of the assumption for the pair
(ν1, ν2). Hence our theorem follows. �

Remark 3.4. In Theorem 3.3 above, we write the constants ci, (i = 0, 1, 2).
It looks like superfluous, because replacing |c2|y2 by y2 we can erase this
constant. However if one try to discuss other K-types that are not handled
in this paper, sometime the derivatives with respect to these parameters are
crucial.

4. Explicit formula, the case u = ±2

The feature of the case u = ±2 is that the K-types corresponding to u = ±2
and u = 0 belong to the same principal series representation πν =IndG

P (1M ⊗
eν+ρ ⊗ 1N ). These cases do not seem to appear in the literature. In this
subsection we handle this case. Note that one can do this by using (g, K)-
module structure of the principal series representation of SU(2, 2) computed
in [3]. We may normalize the non-degenerated unitary character η of N
so that c2

0 + c2
1 = c2 = 1 without loss of generality and call it normalized

character.

4.1. Evaluation of Jacquet integrals

First of all we consider an evaluation of integrals with a certain integrand
that is closely related to the case u = ±2.
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For ν1, ν2 ∈ C and normalized character η of N let us evaluate

Jλ = A−ν1
1 A

− ν1+ν2
2

2

∫
R6

exp
(
−2

√
−1(c0x0A1 + c1y0A1 ± n3A2)

)

Δ
− ν1−ν2

2
−1

1 Δ
ν2+1

2
2 Fλ(n)dx0dy0dn1dx2dy2dn3,

where A1, A2 are positive real parameters and the integrand Fλ(n) is

Fλ(n) =
1

Δ2

(
(1 + n2n̄2 − n1n3)2 + λ

√
−1(n1 + n3)(1 + n2n̄2 − n1n3)

)
,

where n2 = x2 +
√

−1y2 and λ = ±1.

Lemma 4.1. Let Jλ be as above. Then the function J̃λ = A−3
1 A−2

2 Jλ is
proportional to

A−ν2
2

∫
I4

exp
(

−1 + x + y

A2
t2 − 1 + y

y
A2t1 − A2

1 + x

xt1
− A2

1A2

t2

)

x
ν1+ν2

2 y
ν2−ν1

2

t
ν1
2

1 t
ν2
2

2

(
A2

1A
2
2
t1
t2

+
ν1 + 1

4
− 1 + y

2y
t1A2 − λ

(A2
1A

2
2

t2
− A2

2

))
dX

where dX = dx/xdy/ydt1/t1dt2/t2.

Proof. Recalling Lemma 3.1, we have

Jλ =
πA−ν1

1 A
− ν1+ν2

2
2

Γ(−μ1)Γ(−μ2)

∫
R4

∫ ∞

0

∫ ∞

0

t−μ1−1
1 t−μ2

2
1 + n2

3
exp

(
−A2

1
t1

− Δ2

Δ2
3
(t1 + t2)

)

exp
(
2
√

−1(n3A2 +
N1 + n3

1 + n2
3

(c0x2 + c1y2)A1)
)
Δμ1+2μ2+1

3 Fλ(n)dn,

because the function Fλ(n) does not depend on the variable n0.
In terms of variables N1, n3 and Δ3, the function Fλ(n) is expressed by

Fλ(n) =
Δ2

3

(1 + n2
3)2

(1 − n3N1)(1 − n3N1 +
√

−1λ(N1 + n3)).

Thus we are now in a position to perform the transformations with respect
to the variables N1, n2 and n3 as we have seen in the previous cases. In this
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manner, the integral Jλ can be identified with

π3A−ν2
2

Γ(ν1+1
2 + 1)Γ(ν2+1

2 + 1)Γ(ν1−ν2
2 + 1)Γ(ν1+ν2

2 + 1)

∫
I

∫
I

∫
I

∫
I
t

ν1
2

1 t
ν2
2

2

exp
(

−1 + x + y

A2
t2 − 1 + y

y
A2t1 − A2

1 + x

xt1
− A2

1A2

t2

)
x

ν1+ν2
2 y

ν2−ν1
2

(
t1
t2

A2
1A

2
2 +

ν1 + 1
4

− 1 + y

2y
t1A2 − λ

(
A2

1A
2
2

t2
− A2

2

))
dx

x

dy

y

dt1
t1

dt2
t2

.

�
Let us consider the following theorem to get the Mellin–Barnes integral
expression for the case u = ±2.

Theorem 4.2. For a normalized character η of the unipotent group N ,
ν = (ν1, ν2) ∈ C

2 and u = ±2, on the A-radial part of the primary Whittaker
function W(ν1,ν2)(y1, y2; u) = y3

1y
2
2W̃(ν1,ν2)(y1, y2; u)

(1) We have

W̃(ν1,ν2)(y1, y2; u)

= y
ν2
2

1 y
− ν2

2
2

∫ ∞

0

∫ ∞

0

(
x(1 + x)
y(1 + y)

) ν1
4

(
x2y2

1 + x + y

) ν2
4

×
{

K ν1
2
(X)

(
{2uy2 − (ν1 + 1)(ν2 − 1)}K ν2

2
(Y ) − 2uy2Y K ν2

2
−1(Y )

)

+
2y

1 + y
XY K ν1

2
+1(X)K ν2

2
−1(Y ) − 2XK ν1

2
+1(X)K ν2

2
(Y )

}dx

x

dy

y
,

with X = 2y2((1 + 1/x)(1 + 1/y))
1
2 and and Y = 2y1(1 + x + y)

1
2 .

(2) the function W̃(ν1,ν2)(y1, y2; u) is equal to

∫
I2

exp
(
−y2t1 − y2

t1
− t2

y2
− y2

1y2

t2

)
K ν1+ν2

2

(
2
√

t2
t1

){
−4t1y2K ν2−ν1−2

2
(2

√
t1t2)

+ K ν2−ν1
2

(2
√

t1t2)
(
(ν1 + 1)(1 − ν2) +

(2y2
1y

2
2

t2
− y2

)
(4t1 − u)

)}dt1
t1

dt2
t2

.

Proof. (1). By putting u = 2λ, one has that

fu(n) = 2Fλ(n) − 1.

Change Ai by yi in the expression of Jλ for i = 1, 2, then we may write

W̃(ν1,ν2)(y1, y2; u) = 2J̃λ(y1, y2) − W̃(ν1,ν2)(y1, y2; 0).
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By making a similar computation as in Theorem 3.2, we also assume that
the corresponding integral with respect to second in the above expression is
equal to (ν1 + 1)(ν2 + 1) times

y
ν2
2

+3
1 y

− ν2
2

+2
2

∫
I2

(x(1 + x)
y(1 + y)

) ν1
4
( x2y2

1 + x + y

) ν2
4
K ν1

2
(X)K ν2

2
(Y )

dx

x

dy

y
.

Thus the desired result follows from the evaluation of Lemma 4.1 and above
integral representation.
(2). Using (3.2) with

(a, b, ν) =
(1 + y

y
y2,

1 + x

x
y2,

ν1

2

)
and (a, b, ν) =

(1 + x + y

y2
, y2

1y2,
ν2

2

)
,

we obtain that W̃(ν1,ν2)(y1, y2; u)yν2
2 is equal to

1
4

∫
I4

x
ν1+ν2

2 y
ν2−ν1

2 exp
(
−y2(−

1 + y

y
t1 − 1 + x

xt1
− (1 + x + y)

t2
y2
2

− y2
1

t2
)
)

(
−(ν1 + 1)(ν2 − 1) + 8

y2
1y

2
2t1

t2
− 4t1y2

1 + y

y
+ uy2 − 2uy2

1y
2
2

t2

)
t

ν1
2

1 t
ν2
2

2

with respect to = dt1/t1dt2/t2dx/xdy/y. To complete the proof we again
apply (3.2) for the variables x and y. Then we get the desired result. �

4.2. Mellin–Barnes integral representation

Let us compute the double Mellin transformation

V (s1, s2) =
∫ ∞

0

∫ ∞

0
W̃(ν1,ν2)(y1, y2; ±2)ys1

1 ys2
2

dy1

y1

dy2

y2

of W̃(ν1,ν2)(y1, y2; ±2) from the previous theorem. Then, by applying Mellin
inversion to this, we get the desired result as in the following theorem. We
use the following notations:

b =
s2

2
+

ν1 − ν2

4
, c =

s2

2
+

ν2 − ν1

4
, d =

s2

2
+

ν1 + ν2

4
,

e =
s2

2
− ν1 + ν2

4
and a = s1/2.
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Lemma 4.3. We have
1.

y

1 + y
XY K ν1

2
+1(X)K ν2

2
−1(Y )

=
1

(2
√

−1)2

∫
s1

∫
s2

V 1
(ν1,ν2)(s1, s2)y−s1

1 y−s2
2 ds1ds2,

where

V 1
(ν1,ν2)(s1, s2) =

4abcΓ(s1, s2)
(a + d)(a + e)

× 3F2

(
a + 1, b + 1, c + 1

d + 1, e + 1
1
)

.

2.

−(ν1 + 1)(ν2 − 1)K ν1
2
(X)K ν2

2
(Y ) − 2XK ν1

2
+1(X)K ν2

2
(Y )

=
1

(2
√

−1)2

∫
s1

∫
s2

V 2
(ν1,ν2)(s1, s2)y−s1

1 y−s2
2 ds1ds2

where

V 2
(ν1,ν2)(s1, s2) = Γ(s1, s2)(−(ν1 + 1)(ν2 − 1) − 2e) · 3F2

(
a, b, c
d, e

1
)

.

3.

K ν1
2
(X)

(
K ν2

2
(Y ) − Y K ν2

2
−1(Y )

) 1
(2

√
−1)2

×
∫

s1

∫
s2

V 3
(ν1,ν2)(s1, s2)y−s1

1 y−s2
2 ds1ds2

where

V 3
(ν1,ν2)(s1, s2) = Γ(s1, s2 + 1) · (1 − a) · 3F2

(
a +

1
2
, b, c +

1
2

d, e + 1
2

1

)
.

Here paths s1, s2 are the same with those defined in Theorem 3.1.

Proof. 1. Utilizing the formulas
∫

I
Kν(ax)xs dx

x
= 2s−2a−sΓ±(s, ν), for a > 0, Re(s) >| Re(ν) |
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and
∫

I2

xayb(1 + x + y)−e

(1 + x)c(1 + y)d

dx

x

dy

y

=
Γ(a)Γ(b)Γ(c + e − a)Γ(d + e − b)

Γ(c + e)Γ(d + e) 3F2

(
a, b, e

c + e, d + e
1
)

for Re(c + e) > Re(a) > 0, Re(d + e) > Re(b) > 0 and Re(c + d + e − a − b)
> 0, which can be derived from formula (2.2.2) of [1], we get

V (s1, s2) = 2−4Γ(d)Γ(c + 1)Γ(e)Γ(b + 1)Γ(a +
ν2

2
)Γ(a + 1)Γ(a − ν1

2
)

Γ(a +
ν1

2
)[Γ(a + c)Γ(a + d + 1)]−1

3F2

(
d, c + 1, a +

ν2

2
a + c, a + d + 1

1

)
.

Apply it with this form to Thomae’s transformation for the hypergeomet-
ric series 3F2 (see formula (3.3.6) of [1]), then we get the first expression.
Similarly we obtain the other cases. �

By collecting the partial representations of W̃(ν1,ν2)(y1, y2; ±2) in the
above lemma, we have

Theorem 4.4. Let V i
(ν1,ν2)(s1, s2) be the function defined above for each

i ∈ {1, 2, 3}. Then we have that W̃(ν1,ν2)(y1, y2; ±2) is equal to 2−4 times

∫
s1

∫
s2

(
V 1

(ν1,ν2)(s1, s2) − V 2
(ν1,ν2)(s1, s2) ± 2y2V

3
(ν1,ν2)(s1, s2)

)
y−s1
1 y−s2

2 ds1ds2.
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