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McKay correspondence for Landau–Ginzburg
models

Alexander Quintero Vélez

In this paper we prove an analogue of the McKay correspondence
for Landau–Ginzburg models. Our proof is based on the ideas intro-
duced by T. Bridgeland, A. King and M. Reid, which reformu-
late and generalize the McKay correspondence in the language
of derived categories, along with the techniques introduced by
J.-C. Chen.

1. Introduction

The goal of this paper is to describe an analogue of the McKay correspon-
dence for Landau–Ginzburg models. Before going into details, it is useful to
review some aspects of the McKay correspondence that are relevant for our
considerations.

In its original form, the McKay correspondence was observed as a nice
relation between the irreducible representations of a finite subgroup G of
SL(2, C) on the one hand, and the geometry of the exceptional divisor in
a minimal resolution of C

2/G on the other hand (cf. [24]). The first hint
of a McKay correspondence in higher dimensions came from the work of
L. Dixon, J. Harvey, C. Vafa and E. Witten. It was conjectured in [11] that
for a finite subgroup G ⊂ SL(n, C) acting on C

n, the Euler characteristic of
a crepant resolution Y of the quotient space C

n/G equals the number of
conjugacy classes, or equivalently the number of equivalence classes of irre-
ducible representations of G. If n = 2, the equality can be viewed as a version
of the McKay correspondence. As a result, this formula may be regarded as
a generalization of the McKay correspondence to an arbitrary dimension n.
The McKay correspondence recently became a subject of intense study in
both physics and mathematics. However, the term is now primarily used
to indicate a relationship between the various invariants of the actions of
finite automorphism groups on quasiprojective varieties and resolutions of
the corresponding quotients by such actions.
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The guiding principle behind the McKay correspondence was stated by
M. Reid along the following lines:

Principle 1.1. Let M be an algebraic variety, G a group of automor-
phisms of M and Y a crepant resolution of singularities of X = M/G.
Then the answer to any well-posed question about the geometry of Y is the
G-equivariant geometry of M .

Applied to the case of quotient singularities X = C
n/G arising from a

finite subgroup G ⊂ SL(n, C), the content of this slogan is that the
G-equivariant geometry of M = C

n already knows about the crepant reso-
lution Y . In particular, any two crepant resolutions of X should have equiv-
alent geometries.

Reid suggested that one manifestation of Principle 1.1 should be a
derived equivalence D(Y ) ∼= DG(M), where D(Y ) is the bounded derived
category of coherent sheaves on Y and DG(M) is the bounded derived cate-
gory of G-equivariant coherent sheaves on M . This has been worked out by
Kapranov and Vasserot [18] in dimension n = 2 and generalized to higher
dimensions including all cases of finite subgroups of SL(3, C) by Bridgeland
et al. [5]. In the latter case the quotient singularity X = C

3/G always has a
crepant resolution, a distinguished choice being given by the Hilbert scheme
of G-orbits G-Hilb(M). This scheme is perhaps best thought of as a moduli
space of representations of the skew group algebra A = C[x, y, z] ∗ G that
are stable with respect to a certain choice of stability condition. Indeed, this
is closely related to the physicist’s understanding of D-branes as objects in
the derived category.

In string theory, space–time X is represented by a two-dimensional
quantum field theory with N = 2 supersymmetry. A quite important class
of such theories are nonlinear sigma models on a Kähler manifold X. In
this case, E. Witten explained how to manufacture two-dimensional topo-
logical field theories. He showed that any nonlinear sigma model with a
Kähler target space X admits a topologically twisted version called the
A-model; if X is a Calabi–Yau manifold, there is another topologically
twisted theory, the B-model. A similar construction exists in the equiv-
ariant setting. Given an action of a finite group G on a space X satisfy-
ing certain properties, one can construct a two-dimensional topological field
theory that represents the G-equivariant physics of X. To be more precise,
one associates a G-gauged sigma model to a presentation of the quotient
stack [X/G]: the gauged sigma model can be interpreted as a sigma model
on [X/G].
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Open strings are associated to extended objects, different from strings,
which go under the name of D-branes. Loosely speaking, a D-brane is a
“nice” boundary condition for the two-dimensional quantum field theory.
To any topologically twisted sigma model one can associate a category of
D-branes. In the case of the topological B-model of a Calabi–Yau X, the
category of D-branes is believed to be equivalent to the bounded derived
category D(X) of coherent sheaves on X. In the equivariant setting this
should be replaced by the bounded derived category D([X/G]) ∼= DG(X) of
G-equivariant coherent sheaves on X.

From the previous consideration we see that the McKay correspondence
has a completely natural explanation in terms of nonlinear sigma models
with boundaries. Indeed, arguments from topological open string theory,
formalized in the “decoupling statement” of [7], suggest that there is an
equivalence D(Y ) ∼= D([M/G]) for any crepant resolution Y of the singular-
ities of X = M/G.

In this paper we study another class of topological field theories: topolog-
ical Landau–Ginzburg models. The general definition of a Landau–Ginzburg
model involves, besides a choice of a target space X, a choice of a holo-
morphic function W : X → C called a superpotential. In particular, non-
trivial Landau–Ginzburg models require a non-compact target space X. For
a smooth affine variety X = Spec A, a simple description of the category
of D-branes in Landau–Ginzburg models has been proposed by M. Kont-
sevich and derived from physical considerations in [19]. It turns out that
the category of D-branes is equivalent to the category MF(W ) of matrix
factorizations of W .

For non-affine X, the following construction was proposed [27]. Suppose
that we are given a Landau–Ginzburg superpotential W : X → C with a sin-
gle critical value at 0 ∈ C. Let X0 denote the fiber of W over 0. Consider
the bounded derived category of coherent sheaves on X0. A perfect com-
plex is an object of D(X0) which is quasi-isomorphic to a bounded complex
of locally free sheaves. One can define a triangulated category of singular-
ities DSg(X0) as the quotient of D(X0) by the full subcategory of perfect
complexes Perf(X0). If X0 were non-singular, the quotient would be trivial,
since in that case any object in D(X0) would have a finite locally free res-
olution. Therefore DSg(X0) depends only on the singular points of X0. The
main result of [27] is that the category of matrix factorizations MF(W ) for
a smooth affine X = Spec A is equivalent to DSg(X0). Thus for non-affine
X the category DSg(X0) can be considered as a definition of the category
of D-branes.

One may also consider Landau–Ginzburg models on orbifolds. Such mod-
els are particularly important because they provide an alternative
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description of certain Calabi–Yau sigma models. In the affine case D-branes
are described by the category MFG(W ) of G-equivariant matrix factoriza-
tions, cf. [1,2] and Section 6 of this paper. In general, one may consider a full
subcategory of perfect complexes Perf([X0/G]), which is formed by bounded
complexes of locally free sheaves in D([X0/G]) ∼= DG(X0), and also the quo-
tient category DG

Sg(X0) = DG(X0)/ Perf([X0/G]). In Section 7 we show that
the category of G-equivariant matrix factorizations MFG(W ) for a smooth
affine X = Spec A is equivalent to DG

Sg(X0).
Let us assert our version of the McKay correspondence for Landau–

Ginzburg models. Consider the Landau–Ginzburg model on the affine space
M = C

n with polynomial superpotential f : M → C and its orbifold with
respect to the action of some finite subgroup G of SL(n, C). Let τ : Y →
M/G be a crepant resolution and consider the Landau–Ginzburg model
(Y, g), where g is the pullback of f to Y . We expect the following to hold.

Assertion 1.2. The category of D-branes in the Landau–Ginzburg model
(Y, g) is equivalent to the category of D-branes in the Landau–Ginzburg
orbifold (M, f).

In this paper we prove a special case of this assertion. The main result
is the following. Consider the Landau–Ginzburg orbifold defined by (M, f),
where the superpotential f is a regular G-invariant function with an isolated
critical point at the origin and G is a finite subgroup of SL(n, C) which acts
on M = C

n freely outside the origin. Assuming favorable circumstances, a
crepant resolution is given by the irreducible component Y ⊂ G-Hilb(M)
dominating X = M/G. Then the category of singularities DSg(Y0) of the
fiber Y0 is equivalent to the G-equivariant category of singularities DG

Sg(M0)
of the fiber M0. Bearing in mind that the categories of singularities are
equivalent to the categories of D-branes, we obtain the connection between
D-branes mentioned above.

To finish this introduction we make some remarks of a more philosoph-
ical nature. Non-commutative geometry, as propagated by M. Kontsevich
in [21], is based on the idea that to do geometry you really do not need
a space, all you need is a category of sheaves on this would-be space. A
non-commutative space X is a small triangulated C-linear category CX

which is Karoubi closed and enriched over complexes of C-vector spaces (this
notion is explained in detail in [8]). If X is a smooth scheme of finite type,
then X can be considered as a non-commutative space with CX = D(X).
Any Landau–Ginzburg model (X, W ) is also a non-commutative space with
C(X,W ) = DSg(X0). We see that the physical meaning of non-commutative
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space is to replace the space by the category of D-branes. If we return to the
McKay correspondence, then we deduce that the non-commutative space Y
is isomorphic to the non-commutative space A = C[x, y, z] ∗ G. This leads
naturally to a generalized notion of McKay correspondence as an isomor-
phism of non-commutative spaces. Note that this fits well with M. Reid’s
Principle 1.1, where the word “geometry” was left deliberately vague. We can
restate assertion 1.2 by saying that the Landau–Ginzburg model (Y, g) and
the Landau–Ginzburg orbifold (M, f) are isomorphic as non-commutative
spaces.

2. The physical argument

It is instructive to look at the physical argument involved in justifying Asser-
tion 1.2. The set-up is the so-called gauged linear sigma model.

The gauged linear sigma model is a very useful model, which in an
appropriate sense “interpolates” between nonlinear sigma models on Calabi–
Yau manifolds and Landau–Ginzburg orbifolds. Such a model is determined
by a “radial” parameter r.

Here are some of the basic ideas concerning gauged linear sigma models.
We will just indicate enough details to see the parameter r appearing. Let us
consider the U(1) gauge theory with n chiral matter superfields X1, . . . , Xn

of charge 1, and one chiral superfield P of charge −n. We also consider a
twisted chiral superfield Σ with values in the complexification of the adjoint
bundle over 2|4-superspace. Write each of these superfields in components

Xi = xi + θ(· · ·) + · · · ,

P = p + θ(· · ·) + · · · ,

Σ = σ + θ(· · ·) + · · · .

The bosonic potential is a function V = V (x, p, σ) of the bosonic components
of these superfields. It has the form

V =
1

2e2 D2 + |σ|2
(

n∑
i=1

|xi|2 + n2|p|2
)

.

The “D-term” is equal to

D =
n∑

i=1

|xi|2 − n|p|2 − r.
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This is actually a familiar function mathematically; it is the moment map
generating the U(1)-action on the flat Kähler manifold Z = C

n+1 with coor-
dinates x1, . . . , xn and p.

The moduli space of classical vacua — that is, the special field configu-
rations of minimal energy — for this theory is

Mvac = V −1(0)/ U(1).

The quotient by U(1) comes from the gauge symmetry. So we need to set
V = 0 and divide by U(1). Thanks to the form of the potential, this requires
that D = 0, and either σ = 0 or

∑
i |xi|2 + n2|p|2 = 0. Now, setting D = 0

and dividing by U(1) is the familiar mathematical operation of symplectic
reduction, in which D = 0 defines a level set for the moment map of the
U(1)-action (with the choice of r specifying the level). There is another
mathematical interpretation of this process, as a quotient in the sense of
GIT: we complexify the group U(1) to C

× and consider the action of C
× on

Z = C
n+1 with the same weights as before (the xi’s have weight 1 and p has

weight −n).
It turns out that there are two possible GIT quotients depending upon

the sign of r. For r > 0, D = 0 implies that not all xi can vanish and thus σ
must be zero. The variable p is free as long as the condition D = 0 is satisfied.
Owing to these, the quotient can be interpreted as the total space Y =
tot(OPn−1(−n)) of the line bundle OPn−1(−n) (p serves as a fiber coordinate).
For r < 0, vanishing of the D-term requires that p �= 0. We can therefore use
the C

×-action on (xi, p) to set p = 1. This leaves a residual invariance under
the subgroup G = Zn on U(1) (because p has charge −n). Thus, the quotient
is C

n/G. This will therefore be what is known as an orbifold theory.
Let us note that r determines the ‘size’ of the non-compact Calabi–Yau

manifold Y . In this sense, the variable r can be thought of as determining
the Kähler modulus of the theory. Geometrically, taking r → 0 corresponds
to blowing-down the P

n−1 at the base of the line bundle OPn−1(−n) and the
geometry becomes isomorphic to C

n/G.
The real Kähler modulus r is complexified by the θ-angle of the gauged

linear sigma model (which becomes the B-field in string theory) through
the combination θ

2π + i r, and the complexified Kähler moduli space has two
phases. When r � 0 the infrared fixed point of the gauged linear sigma
model is a nonlinear sigma model on the target space Y and this is called
the Calabi–Yau phase. The phase r 	 0 corresponds formally to an analytic
continuation to negative Kähler class. For OPn−1(−n) this means “negative
size” of the P

n−1, i.e., we pass to the blow-down phase where the P
n−1 has
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been collapsed to a point, and the target is C
n/G. The singularity at r = 0

can be avoided by turning on a non-zero θ-angle.
We are particularly interested in trying to understand D-branes (in par-

ticular, D-branes with B-type boundary conditions) in gauged linear sigma
models with boundary. In the Calabi–Yau phase the category of D-branes is
D(Y ), the derived category of coherent sheaves on Y . In the orbifold phase,
this should be replaced by the derived category DG(Cn) of G-equivariant
sheaves on C

n. We can try to use the boundary gauged linear sigma model
as a tool to “flow” the category DG(Cn) to the category D(Y ), thus real-
izing the equivalence of the two categories by means of a physical system.
Thus D-branes give a completely natural explanation of the McKay corre-
spondence in terms of the interpolation between small and large “volume”
phase of a gauged linear sigma model with boundary.

Now it is time to supplement the gauged linear sigma model by a super-
potential W : Z → C. It must be a holomorphic function on Z = C

n+1. We
are chiefly interested in superpotentials of the form W = pf(x1, . . . , xn),
where f is a general homogeneous polynomial of degree d. The potential
energy for this linear sigma model is

V =
1

2e2 D2 + |f |2 + |p|2| df |2 + |σ|2
(

n∑
i=1

|xi|2 + n2|p|2
)

.

Let us restrict attention to polynomials that are transverse, meaning that the
equations f = df = 0 have no simultaneous solutions except at the origin.
This implies that the hypersurface S of P

n−1 defined by f = 0 is a smooth
complex manifold. Moreover, if d = n then S is a Calabi–Yau manifold. We
will assume this in the sequel.

Let us analyze the spectrum of the classical theory. As before, the struc-
ture of the moduli space of classical vacua is different for r > 0 and r < 0,
and we will treat these two cases separately.

First, let us take r > 0. In this case, D = 0 requires at least one xi to be
non-zero, forcing σ to vanish. If we assume p �= 0, the equations f = df = 0
with the transversality condition imply that all xi must vanish. However,
this is inconsistent with D = 0. Thus p must be zero. Our equations for
classical vacua become p = 0,

∑
i |xi|2 = r and f = 0, and we must divide

by the action of the gauge group U(1). This gives the hypersurface S defined
by the equation f = 0 in P

n−1, with Kähler modulus r. Thus, classically our
theory can be described as a nonlinear sigma model whose target space is
this hypersurface S.
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Let us move to the case r < 0. The space of classical vacua satisfies xi =
0 and n|p|2 = −r. We can use a gauge transformation to fix p =

√
−r/n,

leaving a residual gauge invariance of G = Zn. The local description of the
theory is this: for r 	 0, the field P has a large mass and can be integrated
out, leaving an effective theory of n massless chiral superfields X1, . . . , Xn

with an effective interaction

Weff = const · f(x1, . . . , xn).

Such a theory of n massless fields with a polynomial interaction is called
a Landau–Ginzburg model. We should notice, however, that the Landau–
Ginzburg model is not an ordinary one, but a G-gauge theory. Physical
fields must be invariant under the G-action, and the configuration must be
single-valued only up to the G-action. Such a gauge theory is usually called
a Landau–Ginzburg orbifold.

In this way, the gauged linear sigma model interpolates between the
Landau–Ginzburg orbifold and the Calabi–Yau nonlinear sigma model.
These two regions can be considered as a sort of analytic continuation of
each other.

In both these theories we know how to describe topological D-branes. In
the Calabi–Yau phase the D-brane category is the derived category D(S) of
coherent sheaves on S. In the Landau–Ginzburg phase, D-branes are realized
as G-equivariant matrix factorizations of f . Using the gauged linear sigma
model realization, the previous discussion naturally leads to the statement
that there should be an equivalence of categories D(S) ∼= MFG(f), where
MFG(f) is the category of G-equivariant matrix factorizations of f .

Now, we can consider Y = tot(OPn−1(−n)) as a Landau–Ginzburg model
with superpotential g given by the pullback of f to Y . As mentioned in the
introduction, in this case the category of D-branes is defined as the category
of singularities DSg(Y0), where Y0 is the fiber of g over 0.

On the other hand, we can describe Y as a GIT quotient of an affine
space Z = C

n+1 by the linear action of C
×. The underlying superpotential

W = pf(x1, . . . , xn) on Z = C
n+1 descends to a holomorphic function on Y

that coincides with g. In the presence of a C
×-action one can also consider

the category MFgr(W ) of graded matrix factorizations of W . We can think
of the latter as being the category of D-branes in the gauged linear sigma
model.

Now we reach the crucial step. One of the main outcomes of [15] is that
the categories of D-branes in the Calabi–Yau and Landau–Ginzburg phases
are both quotients of MFgr(W ). However, at r > 0 and at “intermediate
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energy scale” one could always choose the description as the Landau–
Ginzburg model with superpotential g over Y . This superpotential gives
masses to the field P and to the “transverse modes” to the hypersurface S.
At “lower energies”, it is more appropriate to integrate them out, and we
have the nonlinear sigma model on S.

In the light of all this we can expect that the categories of D-branes
DSg(Y0) and MFG(f) are also equivalent. Now, our Theorem 7.3 gives an
equivalence between the category of D-branes MFG(f) and the G-equivariant
category of singularities DG

Sg(M0), where M0 is the fiber of f over 0. So, we
arrive at the statement that the category DSg(Y0) should be equivalent to the
category DG

Sg(M0). This equivalence allows us to compare the category of D-
branes on the Landau–Ginzburg model (Y, g) with the category of D-branes
in the Landau–Ginzburg orbifold (M, f). Given this simple observation, it
is natural to think that the correspondence between D-branes in the two
theories is given by a McKay correspondence.

3. Localization in triangulated categories

In this section we will review the definition of localization of triangulated
categories. The reader is referred to [13], for example, for a more complete
discussion.

Recall that a triangulated category D is an additive category equipped
with the additional data:

(a) an additive autoequivalence T : D → D , which is called a translation
functor,

(b) a class of exact (or distinguished) triangles

X
u �� Y

v �� Z
w �� TX.

These data must satisfy a certain set of axioms (see [13] and also [14]).
An additive functor F : D → D ′ between two triangulated categories D

and D ′ is called exact if it commutes with the translation functors, i.e., there
is a natural isomorphism FT ∼= TF , and it sends exact triangles to exact
triangles, i.e., any exact triangle X → Y → Z → TX in D is mapped to an
exact triangle

FX �� FY �� FZ �� FTX

in D ′, where FTX is identified with TFX via the natural isomorphism of
FT and TF .
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A full additive subcategory N ⊂ D is said to be a full triangulated
subcategory, if the following condition holds: it is closed with respect to
the translation functor in D and if it contains any two objects of an exact
triangle in D then it contains the third object of this triangle as well.

With any pair N ⊂ D , where N is a full triangulated subcategory in a
triangulated category D , we can associate the quotient D/N . To construct
it denote by Σ the class of morphisms s in D fitting into an exact triangle

X
s �� Y �� N �� TX

with N ∈ N . It is not hard to see that Σ is a multiplicative system. We then
define the quotient D/N as the localization D [Σ−1] and observe that it is
a triangulated category. The translation functor on D/N is induced from
the translation functor in the category D , and the exact triangles in D/N
are triangles isomorphic to the images of exact triangles.

The category D/N has the following explicit description. The objects
of D/N are the objects of D . The morphisms from X to Y are equivalence
classes of diagrams (s, f) in D of the form

X Y ′ f ��s�� Y with s ∈ Σ,

where two diagrams (s, f) and (t, g) are equivalent if they fit into a commu-
tative diagram

Y ′

f

���
��

��
��

�
s

����
��

��
��

X Y ′′′ h ��r��

��

��

Y

Y ′′
t

���������� g

		��������

with r ∈ Σ.
The quotient functor Q : D → D/N annihilates N . Moreover, any exact

functor F : D → D ′ between triangulated categories, for which F (X) ∼= 0
when X ∈ N , factors uniquely through Q. This implies the following result
which will be useful later.

Lemma 3.1. Let N and N ′ be full triangulated subcategories of triangu-
lated categories D and D ′, respectively. Let F : D → D ′ and G : D ′ → D be
an adjoint pair of exact functors such that F (N ) ⊂ N ′ and G(N ′) ⊂ N .
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Then they induce functors

F : D/N −→ D ′/N ′ and G : D ′/N ′ −→ D/N ,

which are adjoint as well. Moreover, if the functor F : D → D ′ is fully faith-
ful, then the functor F : D/N → D ′/N ′ is also fully faithful.

4. Triangulated categories of singularities

In this section we give the definition and basic properties of triangulated
categories of singularities. We refer to Orlov’s papers [27] and [26] for all the
proofs of the assertions below.

We are mainly interested in triangulated categories and their quotient by
triangulated subcategories that are coming from algebraic geometry. Let X
be a separated Noetherian scheme of finite Krull dimension over C such that
the category of coherent sheaves Coh(X) has enough locally free sheaves.
For future reference we denote the category of quasi-coherent sheaves on X
by Qcoh(X).

Denote by D(X) the bounded derived category of coherent sheaves on
X. The objects of the category D(X) which are isomorphic to bounded
complexes of locally free sheaves on X form a full triangulated subcategory.
It is called the subcategory of perfect complexes and is denoted by Perf(X).1

Definition 4.1. Define the triangulated category of singularities DSg(X)
of X as the quotient category D(X)/ Perf(X).

It is known that if our scheme X is regular then the subcategory of per-
fect complexes Perf(X) coincides with the whole bounded derived category
of coherent sheaves. In this case the triangulated category of singularities
DSg(X) is trivial. Thus DSg(X) is only sensitive to singularities of X.

Let f : X → Y be a morphism of finite Tor-dimension (for example, a
flat morphism or a regular closed embedding). It defines the inverse image
functor Lf∗ : D(Y ) → D(X). It is clear that the functor Lf∗ sends perfect
complexes on Y to perfect complexes on X. Therefore, the functor Lf∗

induces an exact functor Lf
∗ : DSg(Y ) → DSg(X).

1Actually, a perfect complex is defined as a complex of OX -modules locally quasi-
isomorphic to a bounded complex of locally free sheaves of finite type. But under
our assumption on the scheme any such complex is quasi-isomorphic to a bounded
complex of locally free sheaves of finite type (see [34]).
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Suppose, in addition, that the morphism f : X → Y is proper and locally
of finite type. Then the direct image functor Rf∗ : D(X) → D(Y ) takes per-
fect complexes on X to perfect complexes on Y (see [34]). Hence it deter-
mines a functor Rf∗ : DSg(X) → DSg(Y ) which is right adjoint to Lf

∗. We
should remark, however, that all the specific morphisms we consider are
non-proper.

A fundamental property of triangulated categories of singularities is a
property of locality. Here is a precise statement.

Proposition 4.2. Let X be as above and let j : U → X be an embedding of
an open subscheme such that Sing(X) ⊂ U . Then the functor j

∗ : DSg(X) →
DSg(U) is an equivalence of triangulated categories.

Triangulated categories of singularities of X have additional good prop-
erties in case the scheme is Gorenstein. Recall that a local Noetherian ring
A is called Gorenstein if A as module over itself has a finite injective reso-
lution. It can be shown that if A is Gorenstein then A has finite injective
dimension and the natural map

M −→ RHom.
A(RHom.

A(M, A), A)

is an isomorphism for any finitely generated A-module M and, as a conse-
quence, for any object from D(Spec A). A scheme X is Gorenstein if all of
its local rings are Gorenstein local rings. If X is Gorenstein and has finite
dimension, then OX is a dualizing complex for X, i.e., it has finite injective
dimension as a quasi-coherent sheaf and the natural map

E −→ RH om
.
X(RH om

.
X(E ,OX),OX)

is an isomorphism for any coherent sheaf E . In particular, there is an integer
n0 such that E xtiX(E ,OX) = 0 for each quasi-coherent sheaf E and all i >
n0.

The following gives a useful description of the morphism spaces in tri-
angulated categories of singularities.

Proposition 4.3. Let X be as above and Gorenstein. Let E and F be
coherent sheaves such that E xtiX(E ,OX) = 0 for all i > 0. Fix n such that
E xtiX(S ,F ) = 0 for i > n and for any locally free sheaf S . Then

HomDSg(X)(E ,F [n]) ∼= Extn
X(E ,F )/R,



McKay correspondence for Landau–Ginzburg models 185

where R is the subspace of elements factoring through locally free, i.e., e ∈ R
if and only if e = αβ with α : E → S and β ∈ Extn

X(S ,F ), where S is
locally free.

5. Triangulated categories of matrix factorizations

In this section we introduce the category of matrix factorizations and give
some of its basic properties. The origin of this category goes back to the work
of D. Eisenbud [12] in the context of so-called maximal Cohen–Macaulay
modules over local rings of hypersurface singularities.

As proposed by M. Kontsevich (see also [19]) the category of D-branes
associated to a Landau–Ginzburg model can be characterized in terms of
matrix factorizations. For us, a Landau–Ginzburg model is simply a pair
(X, W ), where X is a smooth variety (or regular scheme), and W : X → C

is a regular function on X called the superpotential. To keep things simple,
we will assume throughout that W has a single critical value at the origin
0 ∈ C. To these data one can associate two categories: an exact category
Pair(W ) and a triangulated category MF(W ). We give the construction of
these categories under the condition that X is affine.

Let A be a commutative algebra over C. Then one can regard A as the
algebra of functions on an affine scheme X = Spec A. Denote by Mod-A the
category of all right modules over A. It is a well-known fact that the global
section functor

H0 : Qcoh(X) −→ Mod-A

is an equivalence with inverse denoted by (̃−). It is also well known that this
functor restricts to an equivalence

H0 : Coh(X) −→ mod-A,

where mod-A is the category of finitely generated right modules over A. Note
that under this equivalence locally free sheaves are the same as projective
modules.

For a non-zero element W ∈ A, a matrix factorization of W is an ordered
pair

P =
(

P0
p0 �� P1p1

��
)
,

where P0, P1 are finitely generated projective A-modules and p0, p1 are A-
homomorphisms such that p1p0 = W · idP0 and p0p1 = W · idP1 . Since p0p1
and p1p0 are W times the identities, where W is a non-zero element of A,
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the rank of P0 coincides with that of P1. We call the rank the size of the
matrix factorization.

The above construction can be reformulated in terms of Z2-graded A-
modules as follows. A Z2-graded A-module P = P0 ⊕ P1 can be thought of
as an ordinary A-module P equipped with a C-linear involution τ : P →
P , τ2 = id. The homogeneous parts P0 and P1 are the eigenspaces of τ
corresponding to the eigenvalues 1 and −1, respectively. A pair P can be
similarly thought of as a triple (P, τ, DP ), where DP : P → P is an odd A-
homomorphism satisfying D2

P = W · idP . Given two matrix factorizations
P = (P, τ, DP ) and Q = (Q, σ, DQ), the A-module Hom(P ,Q) forms a Z2-
graded complex

Hom(P ,Q) = Hom(P ,Q)0 ⊕ Hom(P ,Q)1,

where

Hom(P ,Q)0 = HomA(P0, Q0) ⊕ HomA(P1, Q1),

Hom(P ,Q)1 = HomA(P0, Q1) ⊕ HomA(P1, Q0),

and with differential D acting on homogeneous elements of degree k as

Dφ = DQ · φ − (−1)kφ · DP .

The set of objects of the categories Pair(W ) and MF(W ) is given by the
set of matrix factorizations of W . The space of morphisms HomPair(W )(P ,Q)
in the category Pair(W ) is the space of homogeneous morphisms of degree 0
which commute with the differential D. The space of morphisms in the cat-
egory MF(W ) is the space of morphisms in Pair(W ) modulo null-homotopic
morphisms, i.e.,

HomPair(W )(P ,Q) = Z0(Hom(P ,Q)),

HomMF(W )(P ,Q) = H0(Hom(P ,Q)).

Thus a morphism φ : P → Q in the category Pair(W ) is a pair of morphisms
φ0 : P0 → Q0 and φ1 : P1 → Q1 such that φ1p0 = q0φ0 and q1φ1 = φ0p1. The
morphism φ is null-homotopic if there are two morphisms t0 : P0 → Q1 and
t1 : P1 → Q0 such that φ1 = q0t1 + t0p1 and φ0 = t1p0 + q1t0.

It is clear that the category Pair(W ) is an exact category with respect
to componentwise monomorphisms and epimorphisms (see the definition
in [30]).
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The category MF(W ) can be endowed with a natural structure of a
triangulated category. To determine it we have to define a translation functor
[1] and a class of exact triangles.

The translation functor can be defined as a functor that takes P to the
object

(1) P [1] =
(

P1
−p1 �� P0−p0

��
)
,

i.e., it changes the order of the modules and signs of the morphisms, and
takes a morphism φ = (φ0, φ1) to the morphism φ[1] = (φ1, φ0). We see that
the functor [2] is the identity functor.

For any morphism φ : P → Q from the category Pair(W ) we define a
mapping cone C(φ) as an object

(2) C(φ) =
(

Q0 ⊕ P1
c0 �� Q1 ⊕ P0
c1

��
)

such that

c0 =
(

q0 φ1
0 −p1

)
, c1 =

(
q1 φ0
0 −p0

)
.

There are maps ψ : Q → C(φ), ψ = (id, 0) and ξ : C(φ) → P [1], ξ = (0, id).
Now we define a standard triangle in the category MF(W ) as a triangle

of the form

P
φ �� Q

ψ �� C(φ)
ξ �� P [1]

for some φ ∈ HomPair(W )(P ,Q). A triangle P → Q → R → P [1] in MF(W )
will be called an exact triangle if it is isomorphic to a standard one.

As a consequence we get the following.

Proposition 5.1. The category MF(W ) endowed with the translation func-
tor [1] and the above class of exact triangles becomes a triangulated category.

The proof is the same as the analogous result for a usual homotopic
category (see, for example, [13]).

Definition 5.2. The category MF(W ) constructed above is called the tri-
angulated category of matrix factorizations for the pair (X = Spec A, W ).
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Denote by X0 the fiber of W : X → C over the point 0. With any matrix
factorization P we can associate a short exact sequence

0 �� P1
p1 �� P0 �� coker p1 �� 0.

We can attach to an object P the sheaf coker p1. This is a sheaf on X.
But the multiplication by W annihilates it. Hence, we can consider coker p1
as a sheaf on X0. Any morphism φ : P → Q in Pair(W ) gives a morphism
between cokernels. In this way we get a functor Cok: Pair(W ) → Coh(X0).
We have the following result, see [27, Theorem 3.9].

Theorem 5.3. There is a functor F that completes the following commu-
tative diagram:

Pair(W ) Cok ��

��

Coh(X0)

��
MF(W )

F
�� DSg(X0).

Moreover, the functor F is an equivalence of triangulated categories.

6. Orbifold categories

As is well known, for the Calabi–Yau/Landau–Ginzburg correspondence,
one must consider orbifolds of D-branes in a Landau–Ginzburg theory. The
definition of triangulated categories of singularities and matrix factorizations
can be extended to this situation.

We start by recalling the definition and basic properties of equivariant
coherent sheaves. More details can be found in [28]. Let G be a finite group
acting on some scheme X. A G-equivariant coherent sheaf on X is a coherent
sheaf E on X together with isomorphisms λE

g : E
∼−→ g∗E for all g ∈ G subject

to λE
e = idE and λE

gh = h∗(λE
g )λE

h . Mumford calls this a G-linearization of E .
If E and F are two G-equivariant coherent sheaves, then the vector

space HomX(E ,F ) becomes a G-representation via g · θ = (λF
g )−1g∗θλE

g for
θ : E → F . Let CohG(X) be the category whose objects are G-equivariant
coherent sheaves and whose morphisms are the G-invariant sheaf morphisms:

G-HomX(E ,F ) ≡ HomX(E ,F )G.
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This category is abelian. It is not difficult to define the usual additive
functors ⊗, H om on this category. Furthermore, if f : X → Y is a G-
equivariant map between G-schemes, then one defines in an obvious way the
additive functors f∗ : CohG(X) → CohG(Y ), f∗ : CohG(Y ) → CohG(X).
For example, if E ∈ CohG(X), then f∗E is canonically a G-equivariant coher-
ent sheaf via f∗λE

g : f∗E
∼−→ f∗g∗E = g∗f∗E . One now also has the usual

adjunctions and relations among these functors.
We shall have to deal with the special case where G acts trivially on

X. Then a G-equivariant coherent sheaf E is merely given by a group
homomorphism λE : G → Aut(E ). As G is finite, this representation decom-
poses into a direct sum over the irreducible G-representations ρ0, ρ1, . . . , ρn,
where we take ρ0 to be the trivial one; i.e., E ∼=

⊕n
i=0 Ei ⊗OX

ρ̃i in CohG(X)
with ordinary sheaves Ei ∈ Coh(X). There exist no homomorphisms between
sumands corresponding to two different representations, and hence we obtain
two mutually adjoint and exact functors, the latter of which is ‘taking
G-invariants’:

− ⊗ ρ0 : Coh(X) −→ CohG(X),

[−]G : CohG(X) −→ Coh(X).

We come back now to the general case. Given two objects E and F in
CohG(X), we consider Exti

X(E ,F ) as a G-representation in the usual way.
Then it is easily seen that

G-Exti
X(E ,F ) = Exti

X(E ,F )G.

Denote the bounded derived category of CohG(X) by DG(X). We shall
refer to DG(X) as the derived category of G-equivariant coherent sheaves
on X. Using induction on the length of complexes, the above relation for
equivariant Ext groups translates to

Homi
DG(X)(E

.
,F .) = Homi

D(X)(E
.
,F .)G

for complexes of G-equivariant coherent sheaves E . and F . in DG(X). Note
that all facts about G-equivariant coherent sheaves also apply to complexes
of G-equivariant coherent sheaves.

It will be useful for us to look at DG(X) in another way. Consider the
quotient stack [X/G]. It is covered by one étale chart, given by the projection



190 Alexander Quintero Vélez

X → X/G, or more explicitly by the fiber diagram

G × X
p ��

σ

��

X

��
X �� X/G.

Now a sheaf on the stack [X/G] is just a sheaf E on the chart X with p∗E ∼=
σ∗E , and the descend condition translates into the linearization property.
Therefore, the abelian categories Coh([X/G]) and CohG(X) are equivalent,
and consequently they give rise to equivalent derived categories.

A perfect complex of G-equivariant coherent sheaves is an object of
D([X/G]) which is quasi-isomorphic to a bounded complex of locally free
sheaves on [X/G]. The perfect complexes of G-equivariant coherent sheaves
form a full triangulated subcategory Perf([X/G]) ⊂ D([X/G]) ∼= DG(X).

Definition 6.1. Define the G-equivariant category of singularities DG
Sg(X)

of X as the quotient category DG(X)/ Perf([X/G]).

One can show that the entire discussion we had in Section 4 goes through
in the case of G-equivariant coherent sheaves.

It also makes sense to define G-equivariant matrix factorizations. Sup-
pose X = Spec A is a G-scheme. It is natural to define the following abelian
category ModG–A. Its objects are A-modules M with the property that
for every g ∈ G, there is given an A-isomorphism λM

g : M → g∗M , such
that for every g, h ∈ G, we have λM

gh = h∗(λM
g )λM

h and λM
e = idM . Note

that in this expression g∗M = g−1
∗ M is just the abelian group M with its

A-module structure induced by g−1 : A → A. A morphism φ : M → N is just
an A-homomorphism, which should satisfy the property that for all g ∈ G
and m ∈ M , we have φ(λM

g (m)) = λN
g (φ(m)). This clearly gives rise to an

abelian category in a natural way. Likewise, it has an abelian subcategory
determined by the full subcategory of finitely generated A-modules, which
we will denote by modG–A. Note that if X happens to be a trivial G-scheme,
we have modG–A = CG–mod-A (just a category of bimodules). We can now
define in an obvious way a functor

H0 : QcohG(X) −→ ModG–A,

which is an equivalence with inverse (̃−). Moreover this functor restricts to
an equivalence

H0 : CohG(X) −→ modG–A.
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Note that these functors are just extensions of the previous ones.
Now assume that there is an action of the group G on the Landau–

Ginzburg model (X = Spec A, W ) such that the superpotential W is
G-equivariant. In this case, we can consider two categories: an exact cat-
egory PairG(W ) and a triangulated category MFG(W ). Objects of these
categories are ordered pairs

P =
(

P0
p0 �� P1p1

��
)
,

where P0, P1 are finitely generated projective G-A-modules and p0, p1
are G-equivariant maps such that the compositions p0p1 and p1p0 are the
multiplication by the element W ∈ A. A morphism φ : P → Q in the cat-
egory PairG(W ) is a pair of G-equivariant morphisms φ0 : P0 → Q0 and
φ1 : P1 → Q1 such that φ1p0 = q0φ0 and q1φ1 = φ0p1. Morphisms in the cat-
egory MFG(W ) are classes of G-equivariant morphisms in PairG(W ) modulo
null-homotopic morphisms. The shift functor and the distinguished triangles
can be constructed by imposing equivariance conditions on Equations (1)
and (2).

Definition 6.2. The category MFG(W ) constructed above is called the
triangulated category of G-equivariant matrix factorizations for the pair
(X = Spec A, W ).

7. Categories of matrix factorizations and categories
of singularities

Our aim now is to describe an equivalence of categories between MFG(W ),
the category of G-equivariant matrix factorizations, and DG

Sg(X0), the
G-equivariant category of singularities. In the non-equivariant setting, we
have seen in Section 5 that MF(W ) is equivalent to DSg(X0). The gener-
alization to the equivariant situation is straightforward. Our proofs in this
section are modeled on those in [27].

With any object P in PairG(W ) we associate the module coker p1 and
its free resolution

0 �� P1
p1 �� P0 �� coker p1 �� 0.

It can be easily checked that W annihilates coker p1. Hence the module
coker p1 is naturally a right G-A-module. For each object P in PairG(W )
we define CokG(P ) = coker p1; this is a G-equivariant coherent sheaf on X0.



192 Alexander Quintero Vélez

If φ : P → Q is a morphism in PairG(W ) then φ induces a morphism
CokG(φ) : coker p1 → coker q1. This construction defines a functor CokG :
PairG(W ) → CohG(X0).

Lemma 7.1. The functor CokG is full.

Proof. This is essentially Lemma 3.5 proved in [27]. We recall its proof for
the convenience of readers. Fix two objects P and Q in PairG(W ) and let
f : coker p1 → coker q1 be a morphism in CohG(X0). Since P0 and P1 are
projective f can be extended to a map of exact sequences

0 �� P1
p1 ��

φ1

��

P0 ��

φ0

��

coker p1

f
��

�� 0

0 �� Q1
q1 �� Q0 �� coker q1 �� 0.

We want to show that φ = (φ0, φ1) is a map of pairs. We have that

q1(φ1p0 − q0φ0) = φ0p1p0 − q1q0φ0 = φ0W − Wφ0 = 0.

Using that q1 is a monomorphism, we obtain that φ1p0 = q0φ0, which shows
that φ = (φ0, φ1) is a map of pairs, as required. �

Next we show that the functor CokG induces an exact functor between
triangulated categories.

Proposition 7.2. There is a functor FG which completes the following
commutative diagram:

PairG(W ) CokG
��

��

CohG(X0)

��

MFG(W ) F G
�� DG

Sg(X0).

Moreover, the functor FG is an exact functor between triangulated cate-
gories.

Proof. Most of the argument is identical to the non-equivariant case proved
in [27, Proposition 3.7]. We define a functor FG : PairG(W ) → DG

Sg(X0)
to be the composition of CokG and the natural functor from CohG(X0) to
DG

Sg(X0). To prove that FG induces a functor from MFG(W ) to DG
Sg(X0) we
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need to show that any morphism φ = (φ0, φ1) : P → Q in PairG(W ) which is
homotopic to 0 goes to 0-morphism in DG

Sg(X0). Fix a homotopy t = (t0, t1)
where t0 : P0 → Q1 and t1 : P1 → Q0. Consider the following decomposition
of φ:

P1
p1 ��

(t1,φ1)
��

P0p0
��

(t0,φ0)
��

�� coker p1

��
Q0 ⊕ Q1

c1 ��

pr
��

Q1 ⊕ Q0
c0

��

pr
��

�� Q0/W

��
Q1

q1 �� Q0
q0

�� �� coker q1,

where

c0 =
(

−q0 id
0 q1

)
, c1 =

(
−q1 id
0 q0

)
.

This gives a decomposition of FG(φ) through a G-equivariant locally free
object Q0/W on X0. By Proposition 4.3 we have that FG(φ) = 0 in the
category DG

Sg(X0). It is not difficult to check that FG takes a standard
triangle in MFG(W ) to an exact triangle in DG

Sg(X0). Therefore FG is exact.
�

Notice that there is a natural forgetful functor U : MFG(W ) → MF(W ),
which simply forgets the G-action. We have the natural second forgetful
functor U : DG

Sg(X0) → DSg(X0). For each P in MFG(W ), the two objects
UFGP and FUP coincide. More precisely, there is a commutative diagram

MFG(W ) F G
��

U
��

DG
Sg(X0)

U
��

MF(W ) ∼
F

�� DSg(X0).

We can now prove the main result of this section.

Theorem 7.3. The functor FG : MFG(W ) → DG
Sg(X0) is an equivalence

of triangulated categories.

Proof. First we verify that the functor FG is fully faithful. This follows
from the arguments of [29, Lemma 5]. We repeat the proof in the current
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setting. Fix two objects P and Q in MFG(W ). By definition of morphisms
in MFG(W ) and DG

Sg(X0), we have a diagram

HomMF(W )(UP, UQ) ∼ �� HomDSg(X0)(FUP, FUQ)

HomMF(W )(UP, UQ)G
��

��

HomDSg(X0)(UFGP , UFGQ)G
��

��

HomMFG(W )(P ,Q) �� HomDG
Sg(X0)(F

GP , FGQ)

and the top morphism is a bijection. Thus the lower map of the diagram is
injective, and hence FG is faithful. To see that FG is full as well, consider
the following variation of the former diagram

HomMF(W )(UP, UQ) ∼ ��

π
����

HomDSg(X0)(FUP, FUQ)

ρ
����

HomMF(W )(UP, UQ)G HomDSg(X0)(UFGP , UFGQ)G

HomMFG(W )(P ,Q) �� HomDG
Sg(X0)(F

GP , FGQ)

using the averaging (or Reynolds) operators π and ρ. We obviously have
π(φ) = φ (respectively ρ(f) = f) if and only if φ (respectively f) is a
G-equivariant morphism. In particular, π and ρ are surjective. The fact
that the functor F is full then implies the same property for FG.

What remains to be proved is that every object A in DG
Sg(X0) is iso-

morphic to FGP for some P . A complete proof of this is given in [27,
Theorem 3.9]; it carries over without change. �

8. McKay correspondence for Landau–Ginzburg models

Here we use the results from the preceding sections to prove a version of the
McKay correspondence for Landau–Ginzburg models. We begin by review-
ing the basic setting.

Let M = C
n be the complex n-dimensional affine space, and let G be

a finite subgroup of SL(n, C). Put X = M/G and let π : M → X denote
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the natural projection. We assume that G acts on M freely outside the
origin, which means that X has an isolated singularity.2 Write G-Hilb(M)
for the Hilbert scheme parametrizing G-clusters in M , that is, the scheme
parametrizing G-invariant subschemes Z ⊂ M of dimension zero with global
sections H0(OZ) isomorphic as a CG-module to the regular representation
of G. Let Y be the irreducible component of G-Hilb(M), which contains the
G-clusters of free orbits. There is a Hilbert–Chow morphism τ : G-Hilb(M)→
X which, on closed points, sends a G-cluster to the orbit supporting it.
This morphism is always projective and the irreducible component Y ⊂
G-Hilb(M) is mapped birationally onto X. We use the same notation τ for
the restriction of the map to Y .

Now let Z ⊂ Y × M denote the universal closed subscheme, and con-
sider its structure sheaf OZ . We remark that OZ has finite homological
dimension, because OZ is flat over Y and M is non-singular. Let D(Y ) and
DG(M) denote the bounded derived categories of coherent sheaves on Y and
G-equivariant coherent sheaves on M , respectively. If πY and πM are the pro-
jections from Y × M to Y and M , we define a functor Φ: D(Y ) → DG(M)
by the formula

Φ(−) = RπM∗(O∨
Z [n] ⊗L π∗

Y (− ⊗ ρ0))

where O∨
Z denotes the derived dual RH om.

Y ×M (OZ ,OY ×M ). Our main
result will be shown under the following assumption.

Assumption 8.1. τ : Y → X is a crepant resolution and Φ is an equiva-
lence of triangulated categories.

The quasi-inverse Ψ: DG(M) → D(Y ) can be calculated using
Grothendieck duality as the right adjoint of Φ, given by the formula

Ψ(−) = [RπY ∗(OZ ⊗L π∗
M (−))]G.

Assumption 8.1 is known to hold if dim(Y ×X Y ) ≤ n + 1 due to the work
of Bridgeland et al. [5] together with the results of [6]. In the case of n ≤ 3,
this dimension condition is always fulfilled because the exceptional locus of
τ has dimension ≤ 2. However, for n ≥ 4 this condition rarely holds.

2This is for the purpose of simplicity — the method would seem to be applicable
to the general case with some modifications.
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We need to make a remark here. In [5], the definitions of Φ and Ψ differ
slightly from the ones we took. Bridgeland et al. define

Φ(−) = RπM∗(OZ ⊗L π∗
Y (− ⊗ ρ0)),

Ψ(−) = [RπY ∗(O∨
Z [n] ⊗L π∗

M (−))]G.

It is clear that this difference does not really change the proof of the main
result of [5]. The only difference is that everywhere OZ and O∨

Z become
interchanged.

Assume now that f : M → C is a regular function with an isolated crit-
ical point at the origin which is invariant with respect to the action of G on
M . We can regard M as a Landau–Ginzburg orbifold with superpotential
f . We denote by M0 the fiber of the map f over the point 0 ∈ C. Next, let
f : X → C be the unique morphism such that f = fπ. Another Landau–
Ginzburg model consists of the variety Y and superpotential g : Y → C

obtained by pullback of f to Y . We let Y0 be the fiber of g over the point
0. Note that Y0 contains the exceptional locus τ−1(π(0)) of the resolution.
Note also that the function g will, generally speaking, have non-isolated crit-
ical points. For future use, we let i0 : Y0 → Y and j0 : M0 → M denote the
corresponding closed immersions of fibers.

We now head towards proving the main result of this section, which
asserts that there is an equivalence between the category of singularities of
Y0 and the G-equivariant category of singularities of M0. First, however,
we must provide preliminary results. Let us denote by pY and pM the pro-
jections of the fiber product Y ×C M onto its factors so that we have the
following cartesian diagram:

Y ×C M
pM



���������
pY

�����������

Y

g


���������� M

f������������

C

The universal sheaf OZ on Y × M is actually supported on the closed sub-
scheme j : Y ×C M ↪→ Y × M . Thus there is a sheaf G on Y ×C M , flat over
Y , such that OZ = j∗G .

Let D(Y0) denote the bounded derived category of coherent sheaves on
Y0 and DG(M0) the bounded derived category of G-equivariant coherent
sheaves on M0. Write k0 for the natural immersion Y0 × M0 ↪→ Y ×C M .



McKay correspondence for Landau–Ginzburg models 197

Then G .
0 = Lk∗

0G has finite homological dimension and we may define a
functor Ψ0 : DG(M0) → D(Y0) by the formula

Ψ0(−) = [RπY0∗(G
.
0 ⊗L π∗

M0
(−))]G,

where πY0 and πM0 are the projections of Y0 × M0 to Y0 and M0. That
the functor RπY0∗(G

.
0 ⊗L −) takes DG(Y0 × M0) to DG(Y0) can easily be

seen from the argument of [9, Lemma 2.1] since the support of G .
0 is proper

over Y0.
We obtain a useful and probably well-known result, a version of which

can be found in [9, Lemma 6.1].

Lemma 8.2. There is a natural isomorphism of functors:

i0∗Ψ0(−) ∼= Ψj0∗(−).

Proof. We first note that there exists a natural isomorphism between the
functors

DG(Y0)
[−]G �� D(Y0)

i0∗ �� D(Y )

and

DG(Y0)
i0∗ �� DG(Y )

[−]G �� D(Y ) .

The cartesian diagram

Y0 × M0
k0 ��

πM0

��

Y ×C M

pM

��
M0 j0

�� M

shows that

k0∗π
∗
M0

(−) ∼= p∗
M j0∗(−) ∼= Lj∗π∗

M j0∗(−).

By the projection formula, we can then write

j∗k0∗(Lk∗
0G ⊗L π∗

M0
(−)) ∼= j∗(G ⊗L k0∗π

∗
M0

(−))
∼= j∗(G ⊗L Lj∗π∗

M j0∗(−))
∼= j∗G ⊗L π∗

M j0∗(−)
∼= OZ ⊗L π∗

M j0∗(−).
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Putting these observations together, we obtain the desired isomorphism:

i0∗Ψ0(−) = i0∗[RπY0∗(G
.
0 ⊗L π∗

M0
(−))]G

∼= [i0∗RπY0∗(G
.
0 ⊗L π∗

M0
(−))]G

∼= [RπY ∗(i0 × j0)∗(G
.
0 ⊗L π∗

M0
(−))]G

∼= [RπY ∗j∗k0∗(Lk∗
0G ⊗L π∗

M0
(−))]G

∼= [RπY ∗(OZ ⊗L π∗
M j0∗(−))]G

= Ψj0∗(−). �
We want now to consider a correspondence in the opposite direction. The
main problem is the right adjoint to RπY0∗ as πY0 is manifestly non-proper.
However, using Deligne’s construction of π!

Y0
in the context of general

Grothendieck duality theory (cf. [10, 22, 23, 32]) we can still obtain a right
adjoint to RπY0∗ for the full subcategory of DG(Y0 × M0) consisting of
objects whose support is proper over Y0. Let us see how this comes about.

Let M0 be the closure of M0 in the projective space P
n. Then the map πY0

factorizes as πY0 = πY0ι where ι : Y0 × M0 ↪→ Y0 × M0 is an open immersion
and πY0 : Y0 × M0 → Y0 is the projection. In this way we get an extension
of πY0 which is a proper map. Now define the functor π!

Y0
: D(Y0) → D(Y0 ×

M0) to be ι∗π!
Y0

. A reasoning as in [23, Lemma 4] shows that there is a
functorial isomorphism

HomD(Y0)(RπY0∗E
.
,F .) ∼= HomD(Y0×M0)(E

.
, π!

Y0
F .),

for every object E . in D(Y0 × M0) whose support is proper over Y0 and any
F . in D(Y0). Furthermore, since the map πY0 is of finite Tor-dimension and
of finite type, it follows from [22, Theorem 4.9.4] that there is a functorial
isomorphism

π!
Y0

F . ∼= π!
Y0

OY0 ⊗L π∗
Y0

F .

for any F . ∈ D(Y0). Let us remark that the above extends straightforwardly
to the corresponding G-equivariant categories.

Let Φ0 : D(Y0) → DG(M0) denote the functor in the other direction
defined as

Φ0(−) = RπM0∗RH om
.
Y0×M0

(G .
0 , π!

Y0
(− ⊗ ρ0)).

Observe that the fact that τ is proper implies that the support of G .
0 is proper

over M0. Arguing as before one can check that RπM0∗RH om.
Y0×M0

(G .
0 ,−)

sends DG(Y0 × M0) to DG(M0), so Φ0 is well defined.
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The following is an immediate consequence of the definition.

Lemma 8.3. Φ0 is right adjoint to Ψ0.

Proof. Indeed, for any E . ∈ D(Y0) and F . ∈ DG(M0) one has a sequence of
isomorphisms:

HomDG(M0)(F
.
, Φ0E

.)

= HomDG(M0)(F
.
,RπM0∗RH om

.
Y0×M0

(G .
0 , π!

Y0
(E . ⊗ ρ0)))

∼= HomDG(Y0×M0)(π
∗
M0

F .
,RH om

.
Y0×M0

(G .
0 , π!

Y0
(E . ⊗ ρ0)))

∼= HomDG(Y0×M0)(G
.
0 ⊗L π∗

M0
F .

, π!
Y0

(E . ⊗ ρ0))
∼= HomDG(Y0)(RπY0∗(G

.
0 ⊗L π∗

M0
F .),E . ⊗ ρ0)

∼= HomD(Y0)([RπY0∗(G
.
0 ⊗L π∗

M0
F .)]G,E .)

∼= HomD(Y0)(Ψ0F
.
,E .).

Here, the third isomorphism is the aforementioned duality for πY0 , which
can be applied since G .

0 has proper support over Y0. �

We now make an observation to be applied in the subsequent argument.

Lemma 8.4. There is an isomorphism

Lk∗
0RH om

.
Y ×CM (G , p!

Y OY ) ∼= RH om
.
Y0×M0

(G .
0 , π!

Y0
OY0).

Proof. We have to prove that the natural morphism

Lk∗
0RH om

.
Y ×CM (G , p!

Y OY ) −→ RH om
.
Y0×M0

(Lk∗
0G , π!

Y0
OY0)

is an isomorphism. Since k0 is a closed immersion, it is enough to prove that
the induced morphism

k0∗Lk∗
0RH om

.
Y ×CM (G , p!

Y OY ) −→ k0∗RH om
.
Y0×M0

(Lk∗
0G , π!

Y0
OY0)

is an isomorphism. Consider the cartesian diagram

Y0 × M0
k0 ��

πY0

��

Y ×C M

pY

��
Y0 i0

�� Y.
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We have k0∗π∗
Y0

(−) ∼= p∗
Y i0∗(−). By the projection formula, we deduce that

the first member is isomorphic to

RH om
.
Y ×CM (G , p!

Y OY ) ⊗L k0∗OY0×M0

∼= RH om
.
Y ×CM (G , p!

Y OY ) ⊗L k0∗π
∗
Y0

OY0

∼= RH om
.
Y ×CM (G , p!

Y OY ) ⊗L p∗
Y i0∗OY0

∼= RH om
.
Y ×CM (G , p!

Y i0∗OY0),

where the last step follows from the observation that G has finite homological
dimension. The second member is isomorphic to

RH om
.
Y ×CM (G , k0∗π

!
Y0

OY0)

by the adjoint property of Lk∗
0 and k0∗. Thus, we have to prove that the

natural morphism

RH om
.
Y ×CM (G , p!

Y i0∗OY0) −→ RH om
.
Y ×CM (G , k0∗π

!
Y0

OY0)

is an isomorphism. Then, it is enough to see that p!
Y i0∗OY0

∼= k0∗π!
Y0

OY0 .
This follows from the isomorphisms

HomD(Y ×CM)(E
.
, p!

Y i0∗OY0) ∼= HomD(Y )(RpY ∗E
.
, i0∗OY0)

∼= HomD(Y0)(Li∗0RpY ∗E
.
,OY0)

∼= HomD(Y0)(RπY0∗Lk∗
0E

.
,OY0)

∼= HomD(Y0×M0)(Lk∗
0E

.
, π!

Y0
OY0)

∼= HomD(Y ×CM)(E
.
, k0∗π

!
Y0

OY0),

which hold for any object E . in D(Y ×C M) whose support is proper over
Y (here we used the base change theorem for the above cartesian diagram;
see [16, Section 1]). �

Before stating our next result, it will be convenient to provide the fol-
lowing piece of information. As pointed out earlier, there exists a functorial
isomorphism π!

Y0
(−) ∼= π!

Y0
OY0 ⊗L π∗

Y0
(−). Using the fact that G .

0 has finite
homological dimension we obtain an isomorphism

RH om
.
Y0×M0

(G .
0 , π!

Y0
(−)) ∼= RH om

.
Y0×M0

(G .
0 , π!

Y0
OY0 ⊗L π∗

Y0
(−))

∼= RH om
.
Y0×M0

(G .
0 , π!

Y0
OY0) ⊗L π∗

Y0
(−).
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Thus, denoting K .
0 = RH om.

Y0×M0
(G .

0 , π!
Y0

OY0), we can rewrite Φ0 as

Φ0(−) ∼= RπM0∗(K
.

0 ⊗L π∗
Y0

(− ⊗ ρ0)).

Combining these remarks with Lemma 8.4 we have the following.

Lemma 8.5. There is a natural isomorphism of functors:

j0∗Φ0(−) ∼= Φi0∗(−).

Proof. The argument is very similar to that used in the proof of Lemma 8.2.
We give it for the sake of completeness. To begin with, we observe that there
is a natural isomorphism between the functors

D(Y0)
−⊗ρ0 �� DG(Y0)

i0∗ �� DG(Y )

and

D(Y0)
i0∗ �� D(Y )

−⊗ρ0 �� DG(Y ).

Invoking Lemma 8.4 and the projection formula, we obtain that

j∗k0∗(K
.

0 ⊗L π∗
Y0

(− ⊗ ρ0))
∼= j∗k0∗(Lk∗

0RH om
.
Y ×CM (G , p!

Y OY ) ⊗L π∗
Y0

(− ⊗ ρ0))
∼= j∗(RH om

.
Y ×CM (G , p!

Y OY ) ⊗L k0∗π
∗
Y0

(− ⊗ ρ0))
∼= j∗(RH om

.
Y ×CM (G , p!

Y OY ) ⊗L p∗
Y i0∗(− ⊗ ρ0))

∼= j∗(RH om
.
Y ×CM (G , p!

Y OY ) ⊗L Lj∗π∗
Y i0∗(− ⊗ ρ0))

∼= j∗RH om
.
Y ×CM (G , p!

Y OY ) ⊗L π∗
Y i0∗(− ⊗ ρ0).

On the other hand, by relative Grothendieck duality, we obtain

j∗RH om
.
Y ×CM (G , p!

Y OY ) ∼= j∗RH om
.
Y ×CM (G , j!π!

Y OY )
∼= RH om

.
Y ×M (j∗G , π!

Y OY )
∼= RH om

.
Y ×M (OZ , π!

Y OY )
∼= O∨

Z [n],
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where we used the isomorphism π!
Y OY

∼= OY ×M [n] which follows from the
triviality of the canonical bundle ωM . Hence

j∗k0∗(K
.

0 ⊗L π∗
Y0

(− ⊗ ρ0)) ∼= O∨
Z [n] ⊗L π∗

Y i0∗(− ⊗ ρ0).

Wrapping things up, we conclude that

j0∗Φ0(−) = j0∗RπM0∗(K
.

0 ⊗L π∗
Y0

(− ⊗ ρ0))
∼= RπM∗(i0 × j0)∗(K

.
0 ⊗L π∗

Y0
(− ⊗ ρ0))

∼= RπM∗j∗k0∗(K
.

0 ⊗L π∗
Y0

(− ⊗ ρ0))
∼= RπM∗(O∨

Z [n] ⊗L π∗
Y (i0∗(−) ⊗ ρ0))

= Φi0∗(−),

as asserted. �
The following result is the goal we have been striving for throughout

this whole section.

Theorem 8.6. Under Assumption 8.1, the functors Φ0 and Ψ0 define
inverse equivalences between D(Y0) and DG(M0). These equivalences induce
equivalences Φ0 and Ψ0 between DSg(Y0) and DG

Sg(M0).

Proof. Let us prove that the composition Φ0Ψ0 is isomorphic to the identity
functor on DG(M0). The composition in the different order is computed sim-
ilarly. Consider an object E . ∈ DG(M0) and denote the cone of the adjunc-
tion morphism E . → Φ0Ψ0E

. by F .. Applying j0∗ yields an exact triangle

j0∗E
. �� j0∗Φ0Ψ0E

. �� j0∗F
. �� j0∗E

.[1] .

Combining Lemmas 8.5 and 8.2 we obtain

j0∗Φ0Ψ0(−) ∼= Φi0∗Ψ0(−) ∼= ΦΨj0∗(−).

Hence, j0∗F
. is isomorphic to the cone of the morphism j0∗E

. → ΦΨj0∗E
..

Since Φ is an equivalence and j0 is a closed immersion, one obtains F . ∼= 0.
The conclusion is that the adjunction morphism E . → Φ0Ψ0E

. is an isomor-
phism.

We next show that the functors Φ0 and Ψ0 induce equivalences between
DSg(Y0) and DG

Sg(M0). Let us first make an observation. Let E . be a perfect
complex on Y0 × M0 and let us consider the object RπM0∗(K

.
0 ⊗L E .) in the

derived category of coherent sheaves on M0. We claim that RπM0∗(K
.

0 ⊗L
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E .) is a perfect complex on M0. To substantiate this claim, it suffices to verify
that RπM0∗(K

.
0 ⊗L E .) ⊗L F . is an object of D(M0) for every F . in D(M0)

(see, e.g., [17, Lemma 1.2]). But this follows at once from the projection
formula for the morphism πM0 . Similarly, we check that RπY0∗(G

.
0 ⊗L E .)

is a perfect complex on Y0. The same situation prevails in the equivariant
setting.

Now, the functors π∗
Y0

(− ⊗ ρ0) and π∗
M0

are exact and take perfect com-
plexes to perfect complexes. By what we have just seen, the functors RπM0∗
(K .

0 ⊗L −) and [RπY0∗(G
.
0 ⊗L −)]G also preserve perfect complexes. Hence,

owing to Lemma 3.1, we obtain a functor Φ0 : DSg(Y0) → DG
Sg(M0) and this

functor has the left adjoint Ψ0 : DG
Sg(M0) → DSg(Y0). As the composition

Φ0Ψ0 is isomorphic to the identity functor, the composition Φ0Ψ0 is also
isomorphic to the identity functor on DG

Sg(M0). A similar argument shows
that the composition Ψ0Φ0 is isomorphic to the identity functor on DSg(Y0).
The result then follows immediately. �

It seems appropriate to conclude by examining the implications of this
result in the specific context of Section 2. Let G = Zn be a cyclic group
in SL(n, C) acting on M = C

n and let Y be the canonical crepant resolu-
tion of the quotient X = M/G. Explicitly we choose coordinates x1, . . . , xn

on M in terms of which the action of the generator in G is given by
(x1, . . . , xn) �→ (εx1, . . . , εxn) where ε = exp(2πi/n) is a fixed nth root of
unity. The space Y is the blow-up of the unique singular point of X. It
can be described explicitly as follows. Write P = P

n−1 for the projective
space with homogeneous coordinates x1, . . . , xn. Then Y = tot(OP (−n)) is
the total space of the line bundle OP (−n) and the natural map τ : Y → X is
simply contracting the zero section. Let Z ⊂ Y × M denote the fiber prod-
uct of Y and M over X. Then Z can be identified with the total space
Z = tot(OP (−1)) and the map q : Z → M is again the contraction of the
zero section, this time to a smooth point — the origin 0 ∈ M . All these data
can be conveniently organized in the commutative diagram

Z
ζ

�����
��

�

p

��

q �� M

π

��

P

Y
η



������

τ
�� X

where η : Y → P and ζ : Z → P denote the natural projections and p : Z →
Y is the map of taking a quotient by G. Note that the group G acts on Z
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by simply multiplying by ε along the fibers of OP (−1) → P and so the map
p : Z → Y can also be viewed as the map raising into nth power along the
fibers of the line bundle OP (−1). Conversely, we can view Z as the canonical
nth root cover of Y which is branched along the zero section Q ⊂ Y of η.

Now let f ∈ C[x1, . . . , xn] be a homogeneous polynomial of degree n.
Then f can be viewed as a regular function on M with a critical point
at the origin which is invariant with respect to the action of G on M . In
this way, we get a singular Landau–Ginzburg model (M, f) with an action
of G. Let S be the hypersurface of degree n in P = P

n−1 given by the
homogeneous equation f = 0. Consider the associated affine cone over S,
namely, the hypersurface M0 given in M = C

n by exactly the same equation
f = 0. It is evident that the singular fiber of the map f : M → C over the
point 0 ∈ C is precisely M0. Let g : Y → C be defined as before, and let Y0
denote the fiber of g over the point 0. Then Y0 is a normal crossing variety
with irreducible components Y ′

0 and Y ′′
0 . One component Y ′

0 is isomorphic to
the total space of the line bundle OP (−n)|S over S. The second component
Y ′′

0 is isomorphic to Q.
It is proved in [3, Proposition 2.40] that G-Hilb(M) is isomorphic to Y .

Moreover, the tautological bundles on G-Hilb(M) (see [31] for the definition)
are η∗OP , η∗OP (1), . . . , η∗OP (n − 1). It then follows from [4, Example 4.3]
that Φ is an equivalence of categories and we can apply Theorem 8.6 to
obtain DSg(Y0) ∼= DG

Sg(M0). We are now set to establish the claim made at
the end of Section 2.

Corollary 8.7. Let the context be as above. Then the category of D-branes
in the Landau–Ginzburg model (Y, g) is equivalent to the category of D-branes
in the Landau–Ginzburg orbifold (M, f).

Addendum. In a recent preprint P. Seidel [33] gave another example
illustrating the use of Theorem 8.6 in the context of Homological Mirror
Symmetry.

Note added. After this paper was posted on the arXiv, I have learned that
similar results were obtained by S. Mehrotra in his PhD dissertation [25]. In
the situation described above, he has shown that the G-equivariant category
of singularities DG

Sg(M0) embeds fully and faithfully into the category of
singularities DSg(Y0). However, Mehrotra’s approach is different to ours in
that it does not use the techniques of [9] in the context of the generalized
McKay correspondence. Our proof uses in an essential way these techniques.
It is a natural question to try and understand to what extent the result
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really depends on the derived McKay correspondence, but not a question
we explore in this paper.
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