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Evidence for tadpole cancelation in
the topological string

Johannes Walcher

We study the topological string on compact Calabi–Yau threefolds
in the presence of orientifolds and D-branes. In examples, we find
that the total topological string amplitude admits a Bogomol’nyi-
Prasad-Sommerfield (BPS) expansion only if the topological charge
of the D-brane configuration is equal to that of the orientifold
plane. We interpret this as a manifestation of a general tadpole
cancellation condition in the topological string that is necessary for
decoupling A- and B-model in loop amplitudes. Our calculations
in the A-model involve an adapted version of existing localization
techniques, and give predictions for the real enumerative geometry
of higher genus curves in Calabi–Yau manifolds. In the B-model,
we introduce an extension of the holomorphic anomaly equation to
unoriented strings.
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1. Introduction

In this paper we continue, and in a sense complete, the program of extend-
ing the BCOV [1, 2] computation of perturbative topological string ampli-
tudes on compact Calabi–Yau manifolds to the open string sector. The
main novelty is the realization that the inclusion of non-orientable world-
sheets appears unavoidable for a satisfactory physical interpretation of the
open topological string (at least beyond tree level) on compact Calabi–Yau
manifolds.

There is of course no consistency condition that would be more familiar
to string theorists than the cancelation of anomalies in the 10-dimensional
superstring [3]. As is well known [4], the potential anomalies can be seen
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to originate from tadpoles of unphysical, BRST trivial states from the
Ramond–Ramond sector. These anomalies and the associated infinities can
only be removed by ensuring that the Ramond–Ramond tadpoles are can-
celed at tree level. This is in distinction to NS–NS sector tadpoles, which
can in principle be adjusted by a Fischler–Susskind mechanism. The general
principle, outlined in [5], is that anomalies in string theory can always be
thought of as arising from boundary (surface) terms on the moduli space
in the verification of decoupling of BRST trivial states from loop amplitude
computations.

Similar comments apply to modern constructions using the type I/II
superstring, whenever the space transverse to the D-branes and orientifold
planes is compact [6]. In supersymmetric situations, orientifold planes are the
only known sinks of Ramond–Ramond charge, which the D-brane configura-
tion has to be adjusted to match. In this way, tadpole/anomaly cancelation
remains at the center of the idea that a consistent coupling to a fundamental
theory of quantum gravity restricts the possible gauge and matter content
to a finite set of possibilities, uniquely realized in string theory.

Given its central importance in the superstring, it has always seemed
natural to ask whether tadpole cancelation has an analogue in the topologi-
cal phase of string theory [7]. The topological string otherwise shares many
features with its more physical counterparts and is moreover related to them
by many more or less direct links. That tadpole cancelation indeed plays a
role in the topological string was anticipated in the previous paper [8], in
the sense that loop amplitudes involving open strings are only well defined
in sectors in which the total topological D-brane charge vanishes.1 In this
paper, we will find further corroboration of this statement. Moreover, we will
analyze the possibility of canceling the tadpoles using orientifolds, which was
also mentioned in [8]. The precise statement and implications will be clear
by the end of the introduction.

At this point, we do not have a microscopic understanding of the tadpole
cancelation condition, although we can give a rough sketch of its possible
worldsheet origin. Recall that the gauge algebra of the topological string
coincides with that of the bosonic string, and originates from the topo-
logical twist of an underlying unitary N = 2 superconformal field theory.
The identification between BRST operators, anti-ghosts and ghost number

1Warning: In the context of the Fukaya category, the obstruction to defining Floer
homology is also sometimes referred to as a “tadpole”. This phenomenon, however,
can be dealt with by a shift of the open string background, and is similar to the
NS–NS tadpoles mentioned above. The tadpoles of concern in the present paper
are more fundamental, and cannot be removed by a shift of background.
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current on the one hand and the N = 2 superconformal generators on the
other hand is as follows:

(Q, Q̄) ←→ (G+, Ḡ+),
(b0, b̄0) ←→ (G−, Ḡ−),(1.1)
(bc, b̄c̄) ←→ (J, J̄).

More precisely, the identification we have given in (1.1) is usually labeled as
“type B”, the associated topological string called the B-model. The A-model
arises from the identification in which Ḡ+ and Ḡ− are exchanged on the
RHS and J̄ → −J̄ . A peculiarity of the topological string that distinguishes
it from more conventional bosonic string backgrounds is the absence of a
ghost field as adjoint of the anti-ghost. In the underlying N = 2 SCFT,
worldsheet CPT conjugation relates (G+, Ḡ+) with (G−, Ḡ−). Using the
dictionary (1.1), this leads to the statement that the anti-ghost (i.e., (b0, b̄0))
cohomology is isomorphic to the BRST cohomology, and in particular non-
trivial, in clear distinction to the 26-dimensional bosonic string. The model
obtained from the identification (Q, Q̄) ↔ (G−, Ḡ−) is referred to as the
anti-topological B-model.

It was realized by Bershadsky et al. [1,2] that the non-trivial states of the
anti-ghost cohomology do not decouple from the topological amplitudes. The
failure originates from the boundary of moduli space and can be viewed as an
anomaly in accord with the above-mentioned general principle. In distinction
to gauge anomalies in the superstring, this so-called holomorphic anomaly is
not fatal for the model. Instead, it can be expressed as a recursive derivative
constraint on the perturbative topological string amplitudes. In this way, it
has become a central ingredient in the successful computation of topological
string amplitudes in various situations over the years, as well as having
various other interesting connections.

The BCOV holomorphic anomaly equation was recently extended to the
open string in [8]. Similar equations, which can in fact be understood as a
special case of the equations of [8], were obtained in [9, 10] from the study
of matrix models. Earlier work on the holomorphic anomaly in the open
string appears in [2, 11]; more recent work includes [12–15]. For the wave-
function interpretation of the open topological string along the lines of [16],
see [17–19].

Another feature of the origin of the topological string in twisted N = 2
SCFTs is that the mixed BRST-anti-ghost cohomology is non-trivial. Indeed,
changing the identification of (1.1) to (Q, Q̄) ↔ (G+, Ḡ−) simply leads to the
A-model on the same Calabi–Yau manifold, which is generically non-trivial.



Evidence for tadpole cancelation 115

It was shown in [2] that the A-model deformations decouple from the topo-
logical B-model amplitudes. This argument was tailored to closed string
topological amplitudes, and must be re-examined in the presence of bound-
aries, for the following reason.

It is a fundamental observation [20] that the topological charges of
D-branes from the B-model are carried by the A-model, and vice versa. For
instance, A-branes on a Calabi–Yau manifold are supported on Lagrangian
submanifolds, and the associated middle-dimensional cycles are naturally
observables in the topological B-model. By combining this observation with
the statements from the previous paragraphs, it is natural to view the
(G+, Ḡ−)-cohomology as the topological string analogue of the compact RR
gauge potentials in the superstring. And by further analogy, it is natural
to expect that the decoupling of the A- and B-model, which is presum-
ably violated in the presence of D-branes, will in fact be restored precisely
when the tadpoles are canceled, i.e., the total topological D-brane charge
vanishes.

The evidence for tadpole cancelation that we will present in this paper
involves the relation of the topological string to Bogomol’nyi-Prasad-
Sommerfield (BPS) state counting in M-theory [21, 22]. In more detail, we
will proceed as follows. We will begin in Section 2 with a brief review of
orientifold backgrounds of topological string. This will be useful later on
when we cancel the tadpoles using orientifolds, and will also establish some
notation. We then turn to some explicit A-model calculations in Section 3.
The examples we study include the quintic in P

4, the bicubic in P
5 and the

total space of OP2(−3), where in each case the Lagrangian brane is the real
locus (with respect to the natural complex conjugation on projective space).
The method we will use is essentially Kontsevich’s localization calculus on
the space of stable maps [23], appropriately adapted to open and unori-
ented string computations. This is similar to refs. [24–30], with certain new
ingredients, and will lead to a computation of higher genus open/unoriented
Gromov–Witten invariants on the three spaces mentioned above (the method
can certainly be extended to many other examples). Strictly speaking, the
requisite definitions in Gromov–Witten theory have not been given yet, so
our results depend on certain assumptions during the localization proce-
dure, and our confidence that these assumptions are correct depends on the
overall consistency of the results, and on the agreement with the B-model.

The surprise occurs when we plug these higher-genus open Gromov–
Witten invariants into the general multi-cover formula of [21,22,31]. Namely,
when these formulas are applied naively, the resulting expansion coefficients
are not integer, and hence cannot be interpreted in terms of the spectrum of
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BPS states of an M-theory compactification on the Calabi–Yau manifold. It
turns out, however, that when we add the contributions from orientable and
non-orientable worldsheets, at fixed order in string perturbation theory, and
then judiciously apply the multi-cover formulas of [22, 31], then the result-
ing expansion coefficients are integers. The relative coefficient between ori-
entable and non-orientable worldsheets is consistent with the identification
of the D-brane charge of the orientifold plane in [32]. The BPS interpretation
of topological string amplitudes on orientifolds was also studied in [33, 34]
for freely acting orientifolds on non-compact manifolds, where the effects
that we discuss here play no role.

Thus girt with some explicit A-model results as benchmark, we turn in
Section 4 to formal developments to reproduce and complete these compu-
tations in the B-model. In particular, we write down an extension of the
holomorphic anomaly equation of [2, 8] to unoriented strings. We will also
see that the holomorphic anomaly equation for the total topological string
amplitudes, cf., Equation (2.11), simplifies, and is in fact very simply related
to the extended holomorphic anomaly equation of [8].

In Section 5, we will then solve these generalized holomorphic anomaly
equations for the examples at hand. We will be able to fix the holomorphic
ambiguities to match the A-model computations of Section 3, thus com-
pleting the mirror symmetric picture. The ability to fix the holomorphic
ambiguity is a non-trivial check if we have more A-model data than free
parameters in the B-model. In fact, there is a certain class of worldsheets
for which we can extract the general form of the holomorphic ambiguity to
all orders, in a way reminiscent of the results in [10,35,36].

The results for the holomorphic ambiguities in Section 5 differ from those
in [8], which were obtained by a more naive application of the multi-cover
formulas, and imposing integrality and low-degree vanishing of the putative
BPS invariants.

Finally, we summarize and discuss other open issues in Section 6.

2. Orientifold of topological string

An orientifold background in string theory is the result of gauging [37–40]
a closed string background, say M , by the combined action of worldsheet
parity Ω with an involutive target space symmetry σ : M → M . We will
denote the combined symmetry by P ,

(2.1) P = σ ◦ Ω,
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as well as various other incarnations of P such as the corresponding operator
acting on the space of string states. As mentioned in the Introduction, simply
modding out by P will in general lead to inconsistencies due to massless
tadpoles and anomalies. Tadpole cancelation requires the inclusion of some
D-brane configuration in the background, with a certain fixed total charge
determined by the parity P .

One can equivalently think of an orientifold as a more conventional the-
ory of strings propagating on the space M/σ, together with dynamics of
unoriented strings localized around the geometrical fixed point loci of σ
(orientifold planes), as well as open string dynamics localized around the
locations of the D-branes.

2.1. Orientifolds of Calabi–Yau manifolds

Compactifying the type IIA or type IIB string on a Calabi–Yau threefold
leads to an N = 2 supersymmetric theory in four dimensions. When orien-
tifolding this theory, the desire to preserve some (N = 1) supersymmetry
imposes restrictions on the allowed involutions σ by which to dress world-
sheet parity. For example, if we consider the type IIA string on a Calabi–Yau
X, and we let the action on non-compact space–time be trivial, then σ act-
ing on X should be an anti-holomorphic involution that reverses the Kähler
form and maps the holomorphic three-form to its conjugate. The fixed point
locus (O6-plane) wraps a special Lagrangian submanifold of X. In contrast
to D-branes, orientifold planes do not carry any gauge degrees of freedom, so
we do not need to specify any bundle on top of the special Lagrangian. Such
an involution is known as A-type orientifold. In the mirror dual Calabi–Yau
manifold Y , the corresponding B-type involution should be a holomorphic
involution of Y . The fixed point locus is a holomorphic submanifold or, more
generally, a collection thereof, possibly of different dimensions.

From the worldsheet point of view, A- and B-type involution are of course
distinguished by the action on the N = 2 supercharges, i.e., G± → Ḡ∓ or
G± → Ḡ± for A- and B-type orientifold, respectively. As a consequence,
when we consider twisting of the N = 2 worldsheet theory to the topological
string, the A-type parity is consistent with A-twist and B-type parity is
consistent with B-twist. For the rest of this discussion, let us fix the B-model
on Calabi–Yau Y for definiteness.

The effects of the orientifold on the massless fields (moduli of the Calabi–
Yau) are discussed extensively in the literature. Without delving into details,
we shall here make a few points that will be important later, and come back
to others as we go along. A basic property of the parity is that it must, of
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course, be compatible with the chiral ring structure, in a sense that

(2.2) P (φaφb) = P (φa)P (φb),

where φa, φb are elements of the (c, c)-ring. Moreover, chiral fields of U(1)-
charge (q, q̄) = (1, 1) (the marginal fields) must have odd parity in order
to survive the orientifold projection [41]. This is because the superspace
measure for F-terms,

∫
dθ+dθ−, picks a minus sign under B-type parity

θ± → θ∓.
As a consequence of these two properties, we can work out the action

of parity on the ground states from the vacuum bundle of special geometry.
Let us fix the action of P on the unique RR ground state of U(1)-charge
(−3/2,−3/2) (related by spectral flow to the identity in the (c, c)-ring) to
be −1 (a priori, we have an overall sign ambiguity in the action of P ). Then
the parity of the ground states of U(1)-charge (−1/2,−1/2) that will form
the “orientifold vacuum bundle” is even, the parity of the ground states of
U(1)-charge (1/2, 1/2) is odd, etc. In particular, the topological metric is
odd under worldsheet parity. For example, for trivial action on the target
space, the representation of P on the vacuum bundle takes the form

(2.3) P = diag(−1, δj
i ,−δj̄

ī
, 1).

In the formal developments, it will be convenient to reserve a notation
for the action of the chiral ring combined with parity on the Ramond ground
states from the vacuum bundle:

(2.4) Bia
b|b〉 := P ◦ φi|a〉 = Cia

cP b
c |b〉,

where Ci =
(
Cia

b
)

is the representation of the chiral ring on the vacuum
bundle and P =

(
P b

c

)
the representation of the parity. We have

(2.5) Bi = PCi = −CiP,

where we used (2.2) and the condition P (φi) = −φi from the above discus-
sion.

2.2. Categorical digression

What do orientifolds look like from the categorical point of view? (Some
of the following comments are drawn from [42], to which we refer for fur-
ther details.) The category of B-branes is the derived category of coherent



Evidence for tadpole cancelation 119

sheaves of Calabi–Yau Y . A B-type orientifold is simply the data of an anti-
automorphism of Db(Y ), i.e., a functor P : Db(Y ) → Db(Y ), that reverses
the direction of morphisms and whose square is isomorphic to the identity
functor. The simplest such functor is just duality on Db(Y ), but more com-
plicated parities can be obtained by dressing with geometric involutions,
twists by line bundles or other non-trivial automorphisms.

From this point of view, an orientifold looks very elementary, except
maybe if we ask the question for a classification of possible parity symme-
tries. Things become more interesting if we ask for the categorical represen-
tation of the notion of orientifold plane. Index theorems (in the space of open
strings between a brane and its parity image) provide a realization of the
orientifold plane in the cohomology of Y , and thus allow at least the com-
putation of the D-brane charge of the O-plane (modulo torsion). However,
for purposes of the topological string, we require more information.

For example, if we combine the formulas for orientifold superpotentials
given in [33] with the general observations on D-brane superpotentials on
compact Calabi–Yau manifolds from [43], we learn that to get tree-level data
for the orientifolded topological string, it is in general necessary to at least
find a representation of the O-plane in algebraic K-theory (modulo torsion).
We will not need such a notion for our examples here, but in our formal
discussions, we will assume that the natural generalization of the results
of [33,43] hold. It would be interesting to analyze these questions further.

For another study of D-brane superpotentials in orientifolds from the
categorical point of view, see [44].

2.3. Organization of perturbation theory

The worldsheet of our string, Σ, is a real, two-dimensional manifold, which
can have boundaries, is unoriented and possibly non-orientable. (Usually
referred to as a Riemann surface, non-orientable ones are traditionally called
Klein surfaces.) String perturbation theory is defined by integrating over the
moduli space of conformal structures on Σ the appropriate correlators of the
two-dimensional worldsheet theory, and summing over all topological types
of Σ.

Smooth worldsheets are characterized topologically by the number of
handles (the genus) g ≥ 0, the number of holes (boundary components)
h ≥ 0 and the “number” of crosscaps c ≥ 0 that one attaches to the stan-
dard Riemann sphere. Such a worldsheet contributes to string perturbation
theory at the order determined by (the negative of) its Euler characteristic
χ = 2g + h + c − 2. Concerning c, one has to remember that three crosscaps
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can be traded (topologically) for one handle and one crosscap, as illustrated
in figure 1.

An alternative point of view on the various string worldsheets is obtained
by the so-called doubling construction. A Riemann surface Σ as described
above (with boundaries possibly non-orientable) can be viewed as the quo-
tient of an orientable Riemann surface without boundaries Σ̂ by an orienta-
tion reversing involution,

(2.6) Σ = Σ̂/Ω.

(Note that when Σ itself is orientable and without boundaries, then Σ̂ has
two connected components exchanged by Ω. The mathematical theory is
more uniform, and more familiar, if we temporarily disregard this case.)
Inequivalent choices of Ω lead to different topologies for Σ. The conformal
structure on Σ induces a complex structure on Σ̂ such that Ω becomes an
anti-holomorphic involution. The pair (Σ̂, Ω) where Ω is an anti-holomorphic
involution of Σ̂ is also known as a symmetric Riemann surface. We can think
of the moduli space of conformal structures on Σ as the moduli space of
symmetric Riemann surfaces for this class of Ω.

Let us consider a symmetric Riemann surface (Σ̂, Ω), and denote the
genus of Σ̂ by ĝ. The (negative) Euler character of Σ is then given by

(2.7) χ = ĝ − 1.

The number of boundary components of Σ is the number of components of
the fixed locus, ΣΩ, of Ω. Finally, we can identify the index of orientability
k = 0, 1 as 2−(number of connected components of Σ̂ \ ΣΩ). These invariants

Figure 1: Locally on a Riemann surface, two crosscaps are equivalent to a
Klein handle, namely two holes glued together with an orientation reversal.
In the presence of a third crosscap somewhere else on the Riemann surface,
this is equivalent to an ordinary handle by pulling one of the holes over the
auxiliary crosscap.
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are constrained by the following conditions:

1. 0 ≤ h ≤ ĝ + 1.

2. For k = 0(orientable case), h > 0 and h ≡ ĝ + 1 mod 2.(2.8)
3. For k = 1(non-orientable case), 0 ≤ h ≤ ĝ.

Thus, for fixed ĝ, there are 
 ĝ+2
2 � orientable worldsheets that can be con-

structed as quotients Σ̂/Ω and ĝ + 1 non-orientable ones [45] (a modern
reference is, e.g., [46]).

To make contact with string perturbation theory, we remember that
ĝ = χ + 1, and that for χ even, we also have the orientable worldsheet with-
out boundaries of genus gχ = χ

2 + 1 (which is not of the form Σ̂/Ω with Σ̂
connected). Then the total number of worldsheet topologies that appear at
order χ in perturbation theory is

(2.9)
⌊

3χ + 8
2

⌋

.

This count, of course, agrees with the one based on the description using
handles, boundaries and crosscaps. We have given the alternative discussion
here because it will be helpful further below to understand the various ways
in which the various Riemann surfaces can degenerate when we vary the
conformal structure.

To organize the following discussion, we find it useful to separate the
worldsheets into three classes, depending on whether c is 0, non-zero and
odd, or non-zero and even. We will indicate this by the notation Σ(g,h),
Σ(g,h)r and Σ(g,h)k , respectively. We shall denote the vacuum amplitudes on
oriented surfaces by F (g,h), those on non-orientable surfaces with an odd
number of crosscaps by R(g,h) and those on non-orientable surfaces with an
even number of crosscaps by K(g,h).2 The precise meaning of g and h in each
case will become clear momentarily.

The total free energy of our topological string is then given by

G =
∑

χ

λχG(χ),(2.10)

2F is for Felix and K for Klein. R could be for Riemann.
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where λ is the string coupling and χ is the Euler character of the Riemann
surface. G(χ) is given according to the discussion above by

G(χ) =
1

2
χ

2
+1

[
F (gχ) +

∑

2g+h−2=χ

F (g,h) +
∑

2g+h−1=χ

R(g,h) +
∑

2g+h−2=χ

K(g,h)
]
.

(2.11)

The first term in this sum is the purely closed string contribution and
appears for χ even, in which case gχ = χ

2 + 1.
Before leaving this discussion, we add a remark from [32] concerning

the normalization of the topological string amplitudes. General principles
of string theory dictate that when we mod out by a symmetry group G of
order |G|, the amplitude of closed (and orientable) Riemann surface at genus
g contributes with a factor of 1/|G|g compared to the original theory before
modding out. This is to ensure a consistent Hilbert space interpretation in
the factorization of loop amplitudes. In our case, |G| = 2 and gχ = χ

2 + 1.
This explains the prefactor in (2.11), and we will confirm in Section 4 that
this is indeed the correct normalization from the point of view of the holo-
morphic anomaly equation.

Note, however, that a prefactor of 2− χ

2 can be reabsorbed in (2.10) by
redefining

(2.12) G(χ) −→ 2
χ

2 G(χ)

and the string coupling λ → λ/
√

2. It was found in [32] that it is the nor-
malization (2.12) of topological string amplitudes on the resolved conifold
that allows for a natural comparison with results in the dual Chern–Simons
theory on the deformed conifold. We will confirm in this paper that this
normalization is also the correct one for the BPS expansion of topological
string amplitudes on compact Calabi–Yau manifolds. It would be interesting
to understand this shift of the string coupling more fundamentally.

2.4. Remarks on moduli

The topological amplitudes are functions (or rather, sections of an appro-
priate bundle) over the moduli space of the underlying conformal field the-
ory. When A- and B-model are decoupled (in the presence of D-branes,
we argue that this requires canceling the tadpoles from the respectively
“other” model), the amplitudes depend only on the Kähler moduli or com-
plex structure moduli of the underlying Calabi–Yau manifold, respectively.
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(This dependence is not holomorphic due to the holomorphic anomaly.) For
open strings, we also expect a dependence on open string moduli specifying
positions and Wilson line degrees of freedom of the D-branes. A funda-
mental distinction is that while infinitesimal closed string moduli are never
obstructed, open string moduli genuinely are, so it is a priori unclear how to
develop an analytic expansion as a function of these parameters. The open
string moduli space can be expressed as the critical locus of the superpo-
tential on some appropriate space of massive and massless (infinitesimal)
deformations, varying over the moduli space of closed string deformations.

We emphasize again that open string moduli are not generically absent
or physically irrelevant. (We do not want to argue against the important
fact that the moduli space of the D0-brane at a point is just the Calabi–Yau
manifold itself.) However, it was argued in [8] that, for generic values of the
closed string moduli, topological string amplitudes do not depend on any
continuous open string moduli, when such are present. We will naturally
assume that this statement is true, and that the amplitudes only depend
on the discrete moduli. Therefore, if we consider a D-brane configuration
with N branes, we will need N discrete labels v1, . . . , vN to specify it. (The
total number of branes is not naturally fixed, although it is restricted if we
impose tadpole cancelation with respect to some given orientifold plane.)
The topological amplitudes can then be expanded as

(2.13) F (g,h)(t; v1, . . . , vN ) =
∑

i1,...ih

F (g,h)
vi1 ,...,vih

(t),

where t denotes the closed string moduli. A similar expansion applies to the
non-orientable amplitudes, K(g,h) and R(g,h).

3. A-model computations

Localization on the moduli space of stable maps was originally introduced in
[23] for the computation of genus 0 Gromov–Witten invariants on the quin-
tic, and the verification of physicists’ mirror symmetry prediction [47]. Over
the years, the method has also been successfully applied for the computation
of all-genus (closed) Gromov–Witten invariants in local toric Calabi–Yau
manifolds. More recently, the BCOV prediction of genus 1 Gromov–Witten
invariants of hypersurfaces was verified rigorously in [48], with localization
as an important tool. In the case of local toric Calabi–Yau manifolds, with
toric branes, localization was first used for the computation of open Gromov–
Witten invariants in [24], checking the prediction of [22]. The computations
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were extended to higher genus and multiple boundary components in [25,26],
and to freely acting orientifolds in [27]. In [29], the method was adapted
to the computation of open Gromov–Witten invariants on the quintic, with
boundary conditions given by the real locus. In this situation, open Gromov–
Witten invariants were defined in [49], and the prediction of [29] was then
verified rigorously in [30].

We will here combine these various parts, adding a few new ingredients.
This will lead to a computation of open Gromov–Witten invariants on the
quintic in genus 0 with an arbitrary number of boundary components, and
unoriented Gromov–Witten invariants in genus 1, again with an arbitrary
number of boundary components. For local P

2, with a non-toric brane, we
are able to compute these invariants for arbitrary worldsheet topology.

We remark that none of these new invariants (except genus 0, with one
boundary component) has yet been defined rigorously. As a consequence,
we have to give some ad hoc prescriptions on how to deal with certain non-
isolated fixed loci that occur in the localization process, as well as how to fix
the signs related to the orientation of moduli spaces. The latter can probably
be determined along the lines of [49, 50], while the former problem should
be dealt with by methods similar to those used in [30]. We leave this for
future research.

Let us emphasize one aspect of our results that marks a significant depar-
ture from the previous works we have mentioned. In those cases, the local-
ization results actually depend on certain torus weights. This dependence
is due to the need of choosing certain boundary conditions in the space of
stable maps [50], and can be related to the framing ambiguity of knots in
Chern–Simons theory [51, 52]. As a consequence, the resulting numbers are
not truly invariants of the space with D-brane on top, although in all cases
they do satisfy the integrality predictions of [22,31]. In the cases of our inter-
est, we find actual invariant, weight-independent localization results, which,
however, do not satisfy integrality worldsheet by worldsheet. Integrality is
recovered once we sum over all worldsheet topologies at fixed order in string
perturbation theory. Summing over worldsheet topologies is related to elim-
inating the boundaries in moduli space, which explains why we obtain an
invariant result. We will return to this in Section 4.

3.1. The examples

We consider three examples of Calabi–Yau manifolds, X: the quintic, the
bicubic and local P

2. In the first two cases, we fix a particular choice of
complex structure. Each of the three examples will be equipped with an
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anti-holomorphic involution σ : X → X. The fixed locus L of σ can either
be turned into an A-brane by specifying a flat line bundle on top of it, or
can arise as the O-plane in an orientifold model based on (X, σ). Later on,
we will be interested in giving L both roles simultaneously.

The A-model, of course, should not depend on the choice of complex
structure. In particular, once we equip L with a flat line bundle, we obtain an
object in the Fukaya category of X, which remains invariant as we vary the
complex structure of X. For example, the open Gromov–Witten invariants
on the disk defined in [49] do not depend on the complex structure, as
discussed in [30]. However, it should be noted that once we deform away
from the initial complex structure, L need not be the fixed point of an
anti-holomorphic involution any longer.

Once we orientifold, the complex structure is actually restricted to be
invariant under complex conjugation. Moreover, the topology and homol-
ogy class of the orientifold plane change along singular conifold loci in the
moduli space. (See [53, 54] for a study of this phenomenon.) By combining
this with the remarks from the previous paragraph, we learn that to main-
tain tadpole cancelation, new branes will have to be created when moving
through these singular loci, as discussed in the superstring context in [54].
It will be interesting to study the implications of this for Gromov–Witten
theory and BPS invariants.

More specifically, the examples are as follows. The quintic is the vanish-
ing locus of a degree 5 polynomial in P

4. Consider the Fermat case

(3.1) {x5
1 + x5

2 + x5
3 + x5

4 + x5
5 = 0} ⊂ P

4.

This is invariant under complex conjugation xi → x̄i on P
4. The fixed point

locus L = {xi = x̄i} is topologically equal to RP
3, and admits two choices of

flat line bundles. The corresponding discrete Wilson line will be denoted by
ε = ±1. For the localization computation, it is useful to change coordinates
such that complex conjugation acts in a non-standard way,

(3.2) σ : (x1, x2, x3, x4, x5) −→ (x̄2, x̄1, x̄4, x̄3, x̄5),

which is what we have in mind in the following.
The bicubic is the intersection of two cubic polynomials in P

5. For appro-
priate choice of complex structure, e.g.,

(3.3) {x3
1 + x3

2 + x3
3 = 0} ∩ {x3

4 + x3
5 + x3

6 = 0} ⊂ P
5,
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the real locus is also an RP
3. Again, we switch to coordinates such that

complex conjugation acts as

(3.4) σ : (x1, x2, x3, x4, x5, x6) −→ (x̄2, x̄1, x̄4, x̄3, x̄6, x̄5).

Finally, local P
2 is the total space of the canonical bundle over the pro-

jective plane,

(3.5) OP2(−3) −→ P
2.

We take complex conjugation to act as

(3.6) σ : (x1, x2, x3) −→ (x̄2, x̄1, x̄3)

on P
2 and by complex conjugation in the fiber. The real locus in this case is

the total space of the orientation bundle over RP
2. As before, H1(L; Z) ∼= Z2,

so we again have a choice of discrete Wilson line.
For comparison with previous work, we will also evaluate our localization

formulas for the conifold, the total space of O(−1) ⊕ O(−1) over P
1. The

brane is the real locus, which is isomorphic to the direct sum of two Möbius
strips over RP

1, in other words S1 × R
2. This is the brane originally stud-

ied in [22]. In distinction to the previous cases, H1(L; Z) ∼= Z. This entails
further dependence of the localization results on certain torus weights, as
in [24]. To eliminate boundaries of moduli space and obtain an invariant
result, we have to sum not only over worldsheet topologies but also over the
boundary degree modulo 2, as was done in [30]. This weight independence
of conifold results is similar to [27], although in that work the orientifold
involution was taken to be freely acting.

3.2. Localization

Each of the three examples presented in the previous subsection comes with
the natural action of a torus T

n on P
n−1, where n = 5, 6, 3 for quintic, bicu-

bic and local P
2, respectively. The complex conjugation is compatible with

a subtorus T
n′

with n′ = 2, 3, 1, respectively, which is most obvious when
complex conjugation is taken to act as in (3.2), (3.4), (3.6). In each case, we
have a canonical lift of the T

n action to the bundles OPn−1(k) compatible
with the real structure. The conifold is invariant under T

3, and its real brane
is compatible with a T

2 ⊂ T
3. In this way, the real brane of the conifold is

actually identical to one of the “toric” branes that have been much studied
in the literature, starting with [51].
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Following the cited literature, we consider moduli spaces of maps of
degree d from a worldsheet Σ of one of the topological types (g, h), (g, h)r

or (g, h)k discussed in Section 2 to the ambient target space P
n−1, with

some extra data, as follows.3 When Σ is orientable with non-empty bound-
ary, we require that the boundary be mapped to the real locus. Note that
any such map can be completed to an invariant map from the doubled sur-
face Σ̂ to P

n−1. So more uniformly, whether Σ is orientable or not, we can
think of a map from the doubled worldsheet Σ̂ → P

n−1 that is equivariant
with respect to the action of Ω (where Σ = Σ̂/Ω) on Σ̂ and complex con-
jugation σ on the target space. The fixed points of Ω are automatically
mapped to the Lagrangian brane. Since we have in mind a fixed boundary
condition and orientifold projection in all cases, we denote the moduli space
simply by

(3.7) MΣ(Pn−1, d)

and we reserve technicalities associated with the proper compactification of
these spaces for a later discussion.

We now come to an important point. As just mentioned, any boundary
of Σ is automatically mapped to the Lagrangian L, but so far its homology
class in H1(L) has not been specified, which is ∼=Z2 in all three cases of
interest.4 When that class is trivial, then under deformation of the map (or
under change of complex structure of the target space, for the quintic and
bicubic), it can happen that the boundary is collapsed to a point on L. This
is one of the real codimension-one boundaries in the moduli space that we
have been warned about. As we will see, it is the only dangerous one, at least
in the examples considered here. From the doubled perspective, Σ̂ develops
a node that lies right on top of the Lagrangian L. Reflection shows that such
a real nodal curve admits another smoothing to a curve that is equivariant,
but with respect to a different anti-holomorphic involution of Σ̂, that locally
looks like a crosscap.

3Recall that the subscript r indicates an odd number of crosscaps, while the
subscript k indicates an even number of crosscaps. h is the number of boundary
components, and g is such that the negative Euler characteristic is 2g + h − 2,
2g + h − 1 and 2g + h − 2 in the three cases, respectively.

4The degree of the map specifies the relative cohomology class in H2(X, L). This
determines the total class of the boundary in H1(L), but not of the individual
boundary components.



128 Johannes Walcher

The local model of this phenomenon is the map P
1 � (u, v) �→ (x, y, z) ∈

P
2 defined by

x = au2,

y = av2,

z = uv,

(3.8)

where a is a parameter. The image of the map is the conic

(3.9) xy − a2z2 = 0.

Whenever a2 ∈ R, the image curve is real under (x, y, z) �→ (ȳ, x̄, z̄), but for
the map (3.8) to be equivariant, we have to choose the involution to act on
P

1 as

(u, v) �→ (v̄, ū) a ∈ R,

(u, v) �→ (v̄,−ū) a ∈ iR.
(3.10)

In the first case we obtain a map from the disk to P
2 with boundary on

RP
2, and in the second case we obtain a map from the crosscap to the

orientifold. Thus, we see that as we vary the (target space) parameter a2, we
can have transitions where we lose holomorphic disks and gain holomorphic
crosscaps. Since this is a local phenomenon, happening in real codimension
1, the only way to account for this process is to count disks with collapsible
boundaries and crosscaps together. Deferring a more careful discussion to a
later stage, we are now ready to explain how we will do the computations.
We temporarily assume that any boundary component is mapped to a non-
trivial homology class in H1(L).

We intend to compute Gromov–Witten invariants, ñΣ
d , by integrating

over the moduli space MΣ(Pn−1, d) � f the top Chern class of an appropri-
ate bundle Ed. In the three cases, we have

(3.11) Ed =

⎧
⎪⎨

⎪⎩

H0(Σ, f∗O(5)) X = quintic,
H0(Σ, f∗O(3)⊕2) X = bicubic,
H1(Σ, f∗O(−3)) X = local P

2.

Namely, we assume that for each topological type of surface, we will have
an Euler class formula of the form

(3.12) ñΣ
d =

∫

MΣ(Pn−1,d)
e(Ed),
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which we will evaluate by using Atiyah–Bott localization following the cited
literature.

As explained in [23], the fixed loci of the action of T
n are nodal curves

in which any node or any component of non-zero genus is collapsed to one
of the fixed points in target space, and any non-contracted rational com-
ponent is mapped on one of the coordinate lines with a standard map of a
certain degree. The components of the fixed locus can be represented by a
decorated graph,

(3.13) Γ = {v1, . . . , vk; e1, . . . , el; p1, . . . , pk; g1, . . . , gk; d1, . . . , dl}.

The graph data consist of a set of vertices (vi)i=1,...,k and a set of edges
(ej)j=1,...,l. The decoration consists of the genus gi ≥ 0 of any contracted
component at the ith vertex, the target space fixed points 1 ≤ pi ≤ n to
which that component is mapped and the degree dj of the maps from the
edges to the corresponding coordinate line. We will conveniently omit the
decorations gi = 0 and dj = 1.

We are here interested in localization with respect to T
n′

on the space of
real maps, i.e., maps equivariant with respect to conjugation on target and
worldsheet:

(3.14) (Σ̂, Ω) −→ (X, σ).

Initially, we will fix the topological type of Σ = Σ̂/Ω as well as the homology
class of any boundary component of Σ. We will always fix the total degree of
the map, which in terms of the graph data is given by d =

∑
di, as well as the

total genus of Σ̂, which is determined by ĝ = 1 − k + l +
∑

gi. The target
space involution σ is determined by (3.2), (3.4), (3.6), respectively, and acts
only on the decoration {pi}. The involution on the domain is specified by a
map on vertices and edges that is compatible with the decoration by genus
and degree. Moreover, for any fixed edge, we have to specify whether the
involution acts by z → 1/z̄ or z → −1/z̄ on the inhomogeneous coordinate
of the corresponding rational curve [27]. The topological type of Σ and the
map can easily be recovered from these data.

Instead of thinking of the equivariant map (3.14), represented by a real
graph, we can also think of a “half-map” Σ → X/σ, and accordingly remem-
ber only half of the graph, as well as how it is reflected. This is algorithmi-
cally more economical; however, one has to be extra careful with identifying
automorphisms of the graph (see below).
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The localization formula then takes the form

ñΣ
d = (−1)p(Σ)

∑

Γ

1
| Aut Γ|

∫

MΓ

e(Ed)
e(NΓ)

,(3.15)

where the sum is over all real graphs (or half-graphs) of the appropriate
type. Here, MΓ is the component of the fixed locus that corresponds to
Γ, and NΓ is the corresponding normal bundle. Depending on one’s point
of view, the bundles in (3.15) are either the real bundles pulled back via
the equivariant map or the complex bundles pulled back via the half-maps.
The e’s in (3.15) are the equivariant Euler classes. We have reserved a
sign (−1)p(Σ) to be able to adjust the relative orientation between mod-
uli spaces of maps from different worldsheet topologies. This will become
important when we sum over the worldsheet topologies at fixed Euler
characteristic.

To proceed, we will borrow the formulas for the tangent and obstruc-
tion weights from the cited literature. The signs of the Euler classes coming
from disk components are documented in [30], but there will be additional
signs associated with crosscaps and unoriented loops that we will discuss
below [27]. An issue that will require renewed attention is the appearance
of zero weight components when the torus weights are specialized from T

n

to T
n′

. One of the results of this discussion will be that we will never per-
form integrals over moduli spaces of real curves (contracted to a σ- and
T

n′
-invariant point in target space). The remaining integrals over MΓ are

performed using Faber’s algorithm [55]. But before we get into all these
subtleties, and to get oriented about the notation, it will be helpful to first
discuss a few simple cases. Incidentally, this will immediately reveal the fun-
damental puzzle with the BPS interpretation of these invariants, as well as
suggest the possible resolution.

One last thing. In the complex case, the localization formula applies in
higher genus only for X = local P

2. For hypersurfaces, the formula is only
valid in genus 0, and the methods of [48] have to be invoked in higher genus.
In the real case, it turns out that because of the restriction on the degree
of the boundary components, and the generous treatment of real torus fixed
points, we can actually evaluate certain classes of higher-genus curves using
the naive expressions also on the quintic and bicubic.

So consider the degree 2 invariant of the annulus, with both boundary
components being non-trivial in H1(L). It is easy to see that (before decora-
tion) there is only one type of graph, shown in figure 2. It is straightforward
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Figure 2: Left: The only fixed graph contributing to the annulus invariant
ñ

(0,2)
2 in degree 2. Right: The doubled graph can also contribute to the Klein

bottle invariant ñ
(1,0)k

2 . In the latter case, the involution Ω exchanges the
two lines as indicated.

to evaluate the sum (3.15), and one finds

(3.16)
quintic bicubic local P

2

ñ
(0,2)
2 −45

8
−9

8
3
8

It is clear that this result is incompatible with the BPS interpretation
expected from [22, 31]. One of the features of these multi-cover formulas is
that the number of boundary components is fixed. In particular, no curves of
lower genus bubble onto annuli in degree 2. What is worse, the double of the
annulus of degree 2 would be an elliptic curve of degree 2. But projective
space has no such curves! So the (integral) invariant n

(1,real)
2 should actually

vanish.
The most conservative way to reconcile the situation is to realize that the

doubled graph corresponding to our annulus is also equivariant with respect
to a different involution on the worldsheet curve, yielding a Klein bottle in
the quotient (see the rightside of figure 2). The weights are equal to those
of the annulus, and we identify the signs such that the two contributions
exactly cancel. At the level of graphs, such a cancelation was first described
in [27], but because of a different involution in target space, was interpreted
there as a cancelation among Klein bottles.

3.3. Homologically trivial boundaries and local
tadpole cancelation

After this initial success, let us briefly return to the computations in [29,30,
49]. In these works, disk invariants ñ

(0,1)
d on the quintic were computed for all

odd degrees d ∈ 2Z + 1. It was also noted that disk invariants of even degree
are ill-defined because of mixing with non-orientable worldsheets (crosscaps)
or else vanish because the moduli space is odd-dimensional, and hence any
well-defined Euler class would be trivial.
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Graphically, one can understand this vanishing as follows. Consider a
localization graph with a fixed edge of even degree, equal to 2 in figure 3.
Following the localization prescription, the involution on Σ̂ can act on this
fixed edge either by z → 1/z̄ or by z → −1/z̄, resulting in a disk or cross-
cap component, respectively. We had decided earlier that to get an invari-
ant count of real curves, we should combine such contributions. The best
sign is such that they exactly cancel, in agreement with the previous
argument.

In the computations below, we have extended this prescription to any
Ω-fixed edge of even degree. The vanishing of the (homologically trivial disk)
+ crosscap contribution to the total invariant can be viewed as the micro-
scopic realization, graph by graph, of tadpole cancelation, which we will
discuss in more detail below. Note that our prescription also temporarily
addresses the problem that the contribution to the equivariant Euler for-
mula from such an even degree edge contains (for n odd) a factor 0

0 and is
hence a priori ambiguous. We will return to this below.

So let us assume that real graphs with any fixed edge of even degree
always cancel after summing over different worldsheet involutions. We will
also assume (and justify later) that graphs with an Ω-invariant vertex map-
ping to a σ- and T

n′
-invariant point in P

n−1 (those exist for n odd) do not
contribute. As a consequence of this, we compute non-vanishing invariants
ñ

(g,h)
d by summing over “orientable half-graphs” of genus g with h (h > 0)

boundary components of odd degree. These correspond to real graphs of
genus ĝ = 2g + h − 1 that are disconnected when cut along the h fixed
edges. We denote by ñ

(g,h)k

d invariants obtained from real graphs with ĝ =
2g + h − 1 that remain connected after cutting along h fixed edges of odd
degree. (In this case, h can be zero, cf., Equation (2.8).) The total degree

Figure 3: A localization graph with a fixed edge of even degree always con-
tributes equal amounts to a real Gromov–Witten invariant for a worldsheet,
where Ω acts on that edge with fixed points (a boundary) or without (a
crosscap). The signs in the localization calculus are such that those contri-
butions exactly cancel.
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is seen to satisfy d ≡ h mod 2. All other combinations of topological invari-
ants lead to a vanishing sum over graphs. For future reference we record the
selection rule

(3.17) d ≡ h ≡ χ mod 2,

where we recall that negative χ is the Euler characteristic of Σ, related to
the genus of the covering curve by χ = ĝ − 1.

To further clarify these rules, we consider in detail one more example,
the annulus/Klein bottle invariants in degree 4. There are in each case three
graphs, see figure 4. Note that there are even degree edges at the center
of the first Klein bottle graph. However, Ω acts by exchanging them, so
the above vanishing rule does not apply. (See the next subsection for more
details.) The annulus graphs sum up to

(3.18)
quintic bicubic local P

2

ñ
(0,2)
4 −15525

16
−585

16
−21

16

while the Klein bottles give

(3.19)
quintic bicubic local P

2

ñ
(1,0)k

4
582725

16
22761

16
117
16

Figure 4: Localization graphs contributing to annulus invariant ñ
(0,2)
4 (left)

and to the Klein bottle invariant ñ
(1,0)k

4 (right). In distinction to Figs. 2
and 3, the real graphs are not in one-to-one correspondence, and the sum
ñ

(0,2)
4 + ñ

(1,0)k

4 does not vanish. (In particular, the graphs on the third line
are not identical once the σ-symmetric decoration is taken into account.)
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Again, annuli and Klein bottles individually do not make sense from the
point of view of integrality, but their sums

(3.20) 2n
(1,real)
4 = ñ

(1,0)k

4 + ñ
(0,2)
4

are

(3.21)
quintic bicubic local P

2

2n
(1,real)
4 35450 1386 6

and integral as advertised.

3.4. Results

We will give the explicit localization formula in terms of the “half-graphs”
because they are more economical and the signs can be made more explicit.
We will give the weights of the normal bundle only when there are no col-
lapsed components of higher genus (although the total graph might still
have non-trivial topology), and the weights of Ed only for the quintic. The
formulas for the bicubic are essentially similar. For local P

2 (and the coni-
fold) it also makes sense to evaluate graphs with non-trivial genus at the
vertices. The corresponding formulas can be constructed from, e.g., [26, 27,
56,57].

A graph of requisite type can be thought of as an ordinary graph as
in say [23] to which is attached a certain number of “half-edges.” Some of
these edges represent disks, which requires the corresponding degree to be
odd. The other half-edges, which can be of even or odd degree, are iden-
tified pairwise, and represent “Klein edges.” This means that the doubled
graph is constructed by reflection on the disks and exchange of the pairwise
identified half-edges. We can count the Klein edges among ordinary edges
by remembering that if they arise from identification of half-edges attached
at vertices decorated by i and j, then the Klein edge is decorated with i and
σ(j) at its two ends. (This imposes a restriction on the decoration of the
half-graph.) A similar comment applies to collecting the flags associated to
the vertices. The contribution of such a graph to the sum (3.15) is then
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given by

∫

MΓ

e(Ed)
e(NΓ)

= (−1)#klein
∏

edges

5d∏

a=0

aλi + (5d − a)λj

d

(−1)d (d!)2

d2d
(λi −λj)2d

d∏

k �=i,j
a = 0

(a
d
λi +

d − a

d
λj −λk

)

×
∏

disks

(5d−1)/2∏

a=0

aλi + (5d − a)λσ(i)

d

(−1)(d−1)/2 d!
dd

(λi −λσ(i))d

(d−1)/2∏

k �=i,σ(i)
a = 0

(a
d
λi +

d − a

d
λσ(i) −λk

)

×
∏

vertices

1
(5λv)val(v)−1

∏

j �=v

(λv − λj)val(v)−1

×
(∏

flags

d

λv − λj

)(∑

flags

d

λv − λj

)val(v)−3

.(3.22)

The sign at the beginning of (3.22) measures the number of Klein edges,
which agrees with the rules given in [27]. The sign in (3.15) is given by

(3.23) (−1)p(Σ) = (−1)g+χ−1.

Before summing these results over all decorated graphs, we need to spe-
cialize the weights λi, i = 1, . . . , n to those invariant under target space
involution σ, cf., (3.2), (3.4), (3.6). For the quintic and local P

2, this special-
ization introduces zero weight components in the form of 0

0 , and we must
specify some rules to deal with this ambiguity. The origin of these unex-
pected torus-invariant directions is the existence of real torus fixed points
in P

n−1 for odd n. The fixed locus thereby acquires an additional dimen-
sion that connects graphs which locally differ as depicted in figure 5. (This
is the graphical representation of the one-parameter family of maps (3.8).)
When the edge in question is fixed under the involution, the moduli space is
real one-dimensional, and our rules on tadpole cancelation imply a vanish-
ing contribution. When the edge is not fixed under Ω, our rule is that the
complex one-dimensional moduli space gives a non-zero contribution that
can be taken from either the left or the right graph in the figure.
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Figure 5: Graphs that differ by a local replacement as indicated actually
belong to a one-dimensional fixed locus.

Using this algorithm, we have evaluated the sums (3.15) for a certain
number of worldsheet topologies and the first few non-trivial degrees in each
case. We summarize the results in tables 1–4. We also give results for the
conifold, which has been analyzed previously in [24–26]. In particular, ν is
the choice of torus weights in the fiber of O(−1) ⊕ O(−1). Our convention
is related to the standard framing ambiguity via

(3.24) ν = 2νframing − 1.

Table 1: Localization invariants at χ = 0.

d Quintic Bicubic Local P
2 Conifold

ñ
(0,2)
d 2 −45

8
−9

8
3
8

−1
8
(1 − ν2)

4 −15525
16

−585
16

−21
16

− 1
16

(1 − ν4)

6 −6387015
4

−123501
8

59
4

− 1
24

(1 − ν6)

8 −66757119525
32

−150570441
32

−5781
32

− 1
32

(1 − ν8)

ñ
(1,0)k

d 2
45
8

9
8

−3
8

1
8
(1 − ν2)

4
582725

16
22761

16
117
16

1
16

(1 − ν4)

6
295022375

4
6234093

8
−411

4
1
24

(1 − ν6)

8
4250971393125

32
10876810761

32
48981

32
1
32

(1 − ν8)
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Table 2: Localization invariants at χ = 1.

d Quintic Bicubic Local P
2 Conifold

ñ
(0,3)
d 3

45
16

3
16

− 3
16

1
48

(1 − 2ν2 + ν4)

5
5175

8
117
16

9
8

1
48

(1 − 3ν4 + 2ν6)

7
36429885

16
58851

8
−333

16
1
48

(1 − 4ν6 + 3ν8)

ñ
(1,1)
d 1

1
12

− 1
12

3 −3
8

− 1
24

(1 + 2ν2 − ν4)

5
3
4

− 1
24

(1 + 3ν4 − 2ν6)

7
839
24

− 1
24

(1 + 4ν6 − 3ν8)

ñ
(1,1)k

d 3 −135
16

− 9
16

9
16

− 1
16

(1 − 2ν2 + ν4)

5 −866325
8

−22527
16

−171
8

− 1
16

(1 − 3ν4 + 2ν6)

7 −5109042135
16

−9054153
8

7047
16

− 1
16

(1 − 4ν6 + 3ν8)

There is a symmetry under ν → −ν or νframing → 1 − νframing; hence the
results are polynomials in ν2.

All these results are compatible with integrality by using the appropriate
multi-cover formula, see Section 5. The feature of the conifold results is
that the sum over worldsheet topologies with fixed χ yields a ν-independent
answer that agrees with the multi-cover formula originally conjectured in
[22]. This weight independence is similar to that noticed for freely acting
orientifold in [27].
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Table 3: Localization invariants at χ = 2.

d Quintic Bicubic Local P
2 Conifold

ñ
(0,4)
d 4 −135

64
− 3

64
9
64

− 1
192

(1 − ν2)3

6 −46575
128

−117
128

−135
128

− 1
128

(1 − ν2)3(1 + 3ν2)

8 −105398415
32

−113931
32

945
32

− 1
96

(1 − ν2)3(1 + 3ν2 + 6ν4)

ñ
(1,2)
d 2 − 5

128
1

384
(1 − ν2)(9 − ν2)

4
41
64

1
192

(1 − ν2)(4 + 21ν2 − 9ν4)

6 − 81
128

1
384

(1 − ν2)

×(12 + 12ν2 + 119ν4 − 71ν6)

ñ
(1,2)k

d 4
405
32

9
64

−27
32

1
32

(1 − ν2)3

6
15454125

64
66879

64
2997
64

3
64

(1 − ν2)3(1 + 3ν2)

ñ
(2,0)k

d 2
5

128
− 1

384
(1 − ν2)(9 − ν2)

4
33
16

− 1
192

(1 − ν2)(9 + 11ν2 − 4ν4)

6 −10953
64

− 1
384

(1 − ν2)

×(27 + 27ν2 + 44ν4 − 26ν6)

4. Formal developments

The results of the localization computations of the previous section suggest
that we study the topological string in the presence of both D-branes and
orientifolds, and give an enumerative or BPS interpretation only to the total
topological string amplitude. In our examples, in the A-model, the D-brane
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Table 4: Localization invariants at χ = 3.

d Quintic Bicubic Local P
2 Conifold

ñ
(0,5)
d 5

2025
1024

15
1024

− 135
1024

5
3072

(1 − ν2)4

7 0 −1911
5120

1323
1280

49
15360

(1 − ν2)4(1 + 4ν2)

9
2510008965

512
2271807

1280
−10935

256
27

5120
(1 − ν2)4

×(1 + 4ν2 + 10ν4)

ñ
(1,3)
d 3

3
128

− 1
1152

(1 − ν2)2(11 − 2ν2)

5 −309
256

− 1
2304

(1 − ν2)2

×(25 + 218ν2 − 93ν4)

ñ
(2,1)
d 1 − 7

2880
7

2880

3
79

2880
8 + 120ν2 − 75ν4 + 10ν6

2880

5 − 59
128

15 − 48ν2 + 324ν4

− 284ν6 + 63ν8

1152

ñ
(1,3)k

d 5 −10125
512

− 75
512

675
512

− 25
1536

(1 − ν2)4

7 −7816725
16

−360297
512

−11907
128

− 49
1536

(1 − ν2)4(1 + 4ν2)

ñ
(2,1)k

d 3 − 9
128

1
384

(1 − ν2)2(11 − 2ν2)

5 −12723
1024

×

(1 − ν2)2

(225 + 622ν2 − 247ν4)
3072
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and the orientifold plane are wrapped on the same Lagrangian, given as the
fixed point set of an anti-holomorphic involution. If it makes sense however,
wrapping the same Lagrangian should not be a necessary restriction. For
example, we know already that disk instantons deform the (superpotential
on the) Lagrangian viewed as D-brane [29], whereas the vanishing result
for holomorphic crosscaps shows that the same Lagrangian viewed as ori-
entifold plane is not corrected. The natural invariant statement is that we
should have a similar interpretation of open + unoriented topological string
amplitudes whenever the D-brane is wrapped in the same homology class as
the orientifold plane.5

In this section, we will study consequences of this assumption. In par-
ticular, we will write down holomorphic anomaly equations for topologi-
cal string amplitudes on the general open and non-orientable worldsheet,
extending [2, 8]. In the next section, we will return to the example and use
these holomorphic anomaly equations to reproduce and extend the A-model
results in the B-model.

4.1. The tadpole state as a normal function

We begin the discussion at tree level. Consider the compactification of the
type I string (or type IIB orientifold) on a Calabi–Yau manifold Y , and recall
from [58] the formula for the four-dimensional space–time superpotential

(4.1) W =
∫

Y
H ∧ Ω ,

where Ω is the holomorphic three-form and H the RR three-form field
strength. As emphasized in [33], this formula is best viewed as expressing
the fact that the superpotential W is “generated by D5-brane charge,” in
the following sense. When the background contains only D5-branes and O5-
planes wrapped on a collection of holomorphic curves C =

∑
i Ci, tadpole

cancelation requires that the total homology class vanishes, [C] =
∑

i[Ci] =
0 ∈ H2(Y ). There is then a three-chain Γ with boundary ∂Γ = C, and for-
mula (4.1) becomes

(4.2) W =
∫

Γ
Ω.

5One can give heuristic arguments as to why this is sufficient directly from the
point of view of Gromov–Witten theory in the A-model.
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In the presence of O9-planes and D9-branes wrapped on the Calabi–Yau with
some choice of gauge bundle, formula (4.1) includes a contribution from the
holomorphic Chern–Simons functional [59], evaluated at the critical point
(i.e., the gauge bundle is holomorphic). This can again be represented in
the form (4.2) for appropriate choice of C = ∂Γ. Integrals of the form (4.2)
are related [8, 43] to what are known mathematically as “Poincaré normal
functions.”

From the holomorphic point of view, formula (4.2) can be understood
as arising from a computation of the topological string amplitude on the
disk and crosscap (RP

2) [32,33]. This computation is well defined, and rep-
resentable geometrically by (4.2), whenever the total topological D-brane
charge vanishes. Note that in computing the topological charge of the ori-
entifold plane, one has to take into account that it fills d = 4-dimensional
space–time. This imparts an extra factor of 2d/2 = 4 to the O-plane charge.

To make this more tangible, it is convenient to temporarily switch to
the A-model on the mirror Calabi–Yau X. In this case, D-brane charges
are just homology classes in H3(X; Z). The corresponding type IIA setup
contains an O6-plane, which carries four units of D6-brane charge as viewed
from the covering space. (The gauge group on a tadpole canceling D6-brane
configuration on top of the O6-plane is SO(4).)

In the previous section, we have seen that to obtain a satisfactory integral
BPS expansion of the topological amplitudes, computed via localization in
the A-model, we should sum worldsheets of different topology, at fixed order
in string perturbation theory. In forming this sum, different numbers of
boundaries simply contribute with a unit weight, see, e.g., (3.20). This means
that the background contains just a single D-brane in the covering space. In
other words, for purposes of tadpole cancelation in the topological string,
the charge of the topological orientifold plane is simply equal to its homology
class. This value of the topological O-plane charge agrees with that identified
in [32] by duality with SO/Sp-Chern–Simons theory.

An elementary way to compute the topological O-plane charge is to use
the parity twisted Witten index of the underlying N = 2 worldsheet theory.
Recall that the Witten index in the open string sector between branes B and
B′ can be computed by an index theorem as an appropriate inner product
of the corresponding D-brane charges [60],

(4.3) TrHB,B′ (−1)F = 〈ch(B), ch(B′)〉.

Now given an orientifold defined by a parity P , the O-plane charge
ch(O-plane) is defined by requiring that the parity twisted Witten index
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in the open string sector between any brane B and its parity image P (B)
satisfy

(4.4) TrHB,P (B)P (−1)F = 〈ch(B), ch(O-plane)〉.

In the A-model, formulas (4.3) and (4.4) reduce simply to the geometric
intersection indices between the corresponding three-cycles, which justifies
the above value of the O-plane charge.

To embed this in the superstring, we should consider a situation in
which the charge of the orientifold plane is equal to that of the correspond-
ing D-brane. To achieve this, we need to switch from the O6/D6-setup of
a type I/II compactification discussed above to a situation in which we
have O4-planes/D4-branes wrapped on the three-cycle, and extended along
a two-dimensional subspace of Minkowski space. Remarkably enough, this
is exactly the situation in which we are expecting a BPS interpretation of
open and unoriented topological string amplitudes [22, 32]. We have thus
completed the circle of observations that began with the A-model results in
the previous section.

This connection of our findings on tadpole cancelation with the super-
string setup is quite satisfying, but also raises some intriguing questions.
First of all, it is not immediately clear why the physical setup with O4/D4
requires cancelation of RR-tadpoles, because the transverse space is still
non-compact. To address this, note that from the four-dimensional perspec-
tive, the O/D-string carries axionic charge under the appropriate fields from
the N = 2 hypermultiplets, while the BPS states on the string (that are
counted by the topological string amplitudes) are charged under the vec-
tormultiplets. Thus the need to cancel the tadpoles might indicate that the
long-range fields of the string do not decay fast enough (as there are only
two transverse directions) to guarantee decoupling of vector- and hyper-
multiplets in the corresponding space–time description.6 This is further in
agreement with the fact that the hypermultiplet couplings are related to the
B-model on X, and our claim that tadpole cancelation amounts to requiring
decoupling of the A- and B-model.

The reverse puzzle arises if we note that in the physical setup that actu-
ally requires cancelation of tadpoles (namely, with O6/D6), the normal-
ization of the crosscap is four times bigger than the one appropriate for
the topological string. For this, we note that we do not necessarily expect
integrality of the holomorphic amplitudes from this setup as there are no

6This possibility was realized in discussions with Juan Maldacena, Davide Gaiotto
and Andy Neitzke.
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appropriate “BPS states” (only domainwalls) that we could count. The fail-
ure of decoupling of vector- and hypermultiplets is also not a fundamental
problem in the context of four-dimensional, N = 1 supersymmetry.

In any case, both issues clearly deserve further clarification, which we
will leave for the future. Let us close by summarizing the tree-level data
from the discussion above and the results on normal functions from [8, 43].
When tadpoles are canceled in the O4/D4 setup, the two-dimensional super-
potential on the worldvolume of the string is computed by the sum of the
topological disk and crosscap amplitude

(4.5) W ≡ W2d ≡ G(−1) =
1√
2

(
F (0,1) + R(0,0)) ,

which is mathematically identified as a “truncated normal function”, and
is the basic holomorphic quantity at tree level. The normalization factor
1/

√
2 is from Equation (2.11) and will prove quite useful later on. The non-

holomorphic data that enter the extended holomorphic anomaly equation is
the Griffiths infinitesimal invariant Δij , which is identified physically as the
sum of two-point functions on the disk plus crosscap. The relation to (4.5) is

(4.6) Δij = DiDjW − CijkeKGkk̄Dk̄W̄,

where Cijk is the Yukawa coupling (three-point function on the sphere)
and Gij̄ = ∂i∂j̄K is the Zamolodchikov special Kähler metric on the moduli
space. The infinitesimal invariant satisfies the holomorphic anomaly equa-
tion [8]

(4.7) ∂īΔjk = −CjklΔl
ī,

where Δj
ī

= eKGjk̄Δīk̄. We are now ready for loop amplitudes.

4.2. Holomorphic anomaly at one-loop

Let us first recall the derivation of the holomorphic anomaly of the torus
amplitude F (1) ≡ F (1,0), see the appendix of [1]. This amplitude is given by
a generalized index:

(4.8) F (1) =
1
2

∫
d2τ

τ2
Trclosed

[
(−1)F FLFRe2πi(τL0−τ̄ L̄0)

]
,
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where the integral is over the fundamental domain of the action of SL(2, Z)
on the upper half-plane, and τ2 = Im τ , and the trace is over the Hilbert
space of closed string states.

The torus one-point function is obtained from (4.8) by taking a holomor-
phic derivative with respect to the closed string moduli, and can be written
as

(4.9) ∂jF (1) =
1
2

∫
Trclosed(−1)F

[∫
μG−

∫
μ̄Ḡ−φj(0)e2πi(τL0−τ̄ L̄0)

]
,

where μ, μ̄ are the Beltrami differentials, which are contracted with G−, Ḡ−

playing the role of the anti-ghosts. Acting with an anti-holomorphic deriva-
tive ∂ī brings down the BRST-trivial anti-chiral insertion {G+, [Ḡ+, φī(z)]}.
By moving the G+, Ḡ+ around the trace, this can be converted into the inte-
gral of a total derivative, which receives a contribution from the boundary
of moduli space at Imτ → ∞, as well as a contact term from the collision of
φj and φī. Taken together, the holomorphic anomaly of the torus partition
function is

(4.10) ∂ī∂jF (1) =
1
2
TrCīCj − 1

24
Trclosed(−1)F Gīj ,

where Cj , Cī is the representation of the chiral ring on the RR ground states
from the vacuum bundle, see Section 2.

Turning to open/unoriented strings, there are three additional Riemann
surfaces of Euler characteristic 0: the annulus, the Möbius and the Klein
bottle. All three surfaces have a one-dimensional moduli space of conformal
structures, parametrized by L > 0, and one real conformal Killing vector.
The three amplitudes are formally written as

A ≡ F (0,2) =
∫ ∞

0

dL

L
Tropen

[
(−1)F F e−LH

]
,

M ≡ R(0,1) =
∫ ∞

0

dL

L
Tropen

[
(−1)F FP e−LH

]
,

K ≡ K(1,0) =
∫ ∞

0

dL

L
Trclosed

[
(−1)F FP e−LH

]
.

(4.11)

(For our notation of open/unoriented surfaces, see Section 2.) In (4.11), P is
the representation of the parity operator on the space of open/closed string
states, and H = L0 + L̄0 is the corresponding Hamiltonian.

The holomorphic anomaly equation for these three surfaces can be
obtained by following the same principles as in [1, 2]. The moduli spaces
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now have two boundaries. The limit L → ∞ corresponds to factorization in
the “direct” channel, and L → 0 corresponds to factorization in the “trans-
verse” or “closed string” channel, where we are using standard textbook
terminology.

Factorization of the Klein bottle in the direct channel is essentially iden-
tical to the analysis on the torus, with an additional insertion of the parity
operator in the trace.

(4.12) ∂ī∂jK ⊃
direct

1
2
Trclosed

[
CīCjP

]
.

Direct channel factorization of the annulus was shown in [2] to reduce to
the curvature of the tt∗-metric in the space of open string ground states,
as a bundle over the closed string moduli space. Under the claim that only
charge 0 (and 3) open string ground states are relevant, it was argued in [8]
that this curvature is given by 1/2 times the closed string result, and hence

(4.13) ∂ī∂jA ⊃
direct

∂ī∂jTropen
[
(−1)F log gtt∗

]
=

N

2
Gīj ,

where N is the number of RR ground states of charge 0, i.e., the dimension
of the gauge group before orientifold. Similarly, direct channel factorization
of the Möbius strip takes the form

(4.14) ∂ī∂jM ⊃
direct

∂ī∂jTropen
[
(−1)F P log gtt∗

]
=

NP

2
Gīj ,

where NP = N+ − N−, and N± is the number of even/odd gauge bosons
under the orientifold. N+ is the dimension of the gauge group after orien-
tifold.

It is through the transverse channel that we see the appearance of the
potentially harmful tadpoles. In [8], this was addressed by restricting atten-
tion to the dependence on a discrete open string modulus, in other words
canceling the tadpoles using anti-branes. In practical terms, the normal func-
tion at tree level is given by the tension of the domainwall between two vacua
on the brane, instead of the raw superpotential itself. The key result is that
the contribution to the anomaly can be expressed in terms of the infinitesi-
mal invariant as

(4.15) ∂ī∂jF (0,2) ⊃
transverse

−ΔjkeKGkk̄Δ̄īk̄.

In the context of canceling tadpoles with orientifolds, the transverse channel
factorization of the three individual amplitudes might not make sense any



146 Johannes Walcher

longer. However, following standard considerations, one can see that for
the sum of the three amplitudes, A + M + K, factorization in the closed
string channel can again be expressed as in (4.15), where Δij is now the
infinitesimal invariant of the superpotential (4.6). Taking into account the
normalization convention, we have

(4.16) ∂ī∂j

(
A + M + K

)
⊃

transverse
−2ΔjkΔk

ī .

Finally, we record the holomorphic anomaly for the total one-loop amplitude
of open + closed + unoriented strings,

(4.17) G(0) =
1
2
[
F (1) + A + M + K

]
.

(Recall our conventions (2.10) that the total amplitudes G(χ) are indexed by
the Euler character of the Riemann surfaces.) We have

∂ī∂jG(0) =
1
4
Trclosed

[
CīCj(1 + P )

]
− 1

48
Trclosed(−1)F Gīj

+
1
4
∂ī∂jTropen

[
(−1)F (1 + P ) log gtt∗

]
− ΔjkΔk

ī .(4.18)

4.3. The general holomorphic anomaly equation

Recall that we denote by F (g,h) the topological string amplitude on ori-
entable surfaces with h boundary components and Euler character χ =
2g + h − 2, by R(g,h) the amplitude on non-orientable surfaces with an odd
number of crosscaps, h boundary components and Euler character χ =
2g + h − 1, and by K(g,h) the amplitude on non-orientable surfaces with
an even number of crosscaps, h boundary components and Euler character
χ = 2g + h − 2. We now consider χ > 0.

The holomorphic anomaly equation for F (g) ≡ F (g,0) is given by [2]

∂īF (g) =
1
2

∑

g1+g2=g

Cjk
ī

F (g1)
j F (g2)

k +
1
2
Cjk

ī
F (g−1)

jk .(4.19)

The first term originates from the closed string degeneration in which the
Riemann surface splits into two components, of genus g1 and g2 (gi > 0),
while the second comes from the pinching of a handle that reduces the
genus by 1.

This equation was extended in [8] to orientable Riemann surfaces with
h > 0, with tree-level data given by the tension of a domainwall between
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two brane vacua. The extension reads as

∂īF (g,h) =
1
2

∑

g1+g2=g
h1+h2=h
2gi+hi>1

Cjk
ī

F (g1,h1)
j F (g2,h2)

k +
1
2
Cjk

ī
F (g−1,h)

jk − Δj
ī
F (g,h−1)

j ,

(4.20)

Again, the first two terms come from closed string degenerations, while
the last comes from the shrinking of a boundary component to zero size.
Degenerations in the open string channel were argued in [8] to not contribute
generically.

It is not hard to see what must be the extension of these results to
the type of orientifold background that we discussed above, with tree-level
data given by (4.6). It suffices to understand how the various non-orientable
worldsheets or their symmetric covers can degenerate. Again, we neglect
degenerations in the open string channel.

Under a closed string degeneration (growth of an infinitely long tube)
a non-orientable Riemann surface with an odd number of crosscaps Σ(g,h)r

can split into two components, at least one of which must be non-orientable.
Or a handle can pinch, reducing the genus by 1. In the latter case, the
pinching handle can be straight or it can be a Klein handle (parity revers-
ing). The remaining Riemann surface is of type (g − 1, h)r in both cases.
Let us introduce the notation for the parity-twisted Yukawa coupling from
Equation (2.5),

Bijk = CijlP
l
k,(4.21)

as well as its cousins with raised indices. We can then write the corresponding
contribution to the holomorphic anomaly of the amplitude R(g,h) as

∂īR(g,h) ⊃
closed

∑

g1+g2=g
h1+h2=h

Cjk
ī

K(g1,h1)
j R(g2,h2)

k +
∑

g1+g2=g
h1+h2=h

Cjk
ī

F (g1,h1)
j R(g2,h2)

k

+
1
2
Cjk

ī
R(g−1,h)

jk +
1
2
Bjk

ī
R(g−1,h)

jk .

(4.22)
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Non-orientable Riemann surfaces with an even number of crosscaps, Σ(g,h)k ,
have several more possible types of closed string degenerations, and we obtain

∂īK(g,h) ⊃
closed

∑

g1+g2=g
h1+h2=h

Cjk
ī

K(g1,h1)
j F (g2,h2)

k +
1
2

∑

g1+g2=g−1
h1+h2=h

Cjk
ī

R(g1,h1)
j R(g2,h2)

k

+
1
2

∑

g1+g2=g
h1+h2=h

Cjk
ī

K(g1,h1)
j K(g2,h2)

k +
1
2
Cjk

ī
K(g−1,h)

jk +
1
2
Bjk

ī
K(g−1,h)

jk

+
1
2
Bjk

ī
F (g−1,h)

jk .

(4.23)

To clarify that the pinching of a Klein handle is a different limit than
the pinching of a straight handle, we show the corresponding degenerations
of the covering symmetric Riemann surface in the case ĝ = 3 in figure 6.

Note that unstable “tadpole” degenerations involving single disks or
crosscaps with just one closed string insertion are excluded from the above
formulas. To make sense of these degenerations, we note that the corre-
sponding singular Riemann surfaces always arise as the common limit of
two worldsheets of different topology. Namely, a real node of the covering
surface can be smoothed to yield either a disk or a crosscap in the quotient.

Figure 6: Three degenerations of a Klein surface Σ of type (2, 0)k, viewed
from the covering symmetric Riemann surface, of genus ĝ = 3. Upper left:
Σ degenerates to a Klein bottle via pinching of a handle. Lower left: Σ
degenerates to a torus via pinching of a Klein handle. Right: Σ degenerates
to a Klein bottle via pinching of a Klein handle.
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This is a principle that we have encountered in our A-model discussions in
Section 3. By adding the two contributions, we obtain the insertion of a
tadpole state on the limiting Riemann surface. Explicitly,

∂ī

(
F (g,h) + R(g,h−1)) ⊃

tadpole
−

√
2Δj

ī
F (g,h−1)

j ,

∂ī

(
K(g,h) + R(g,h−1)) ⊃

tadpole
−

√
2Δj

ī
K(g,h−1)

j ,

∂ī

(
K(g,h) + R(g−1,h+1)) ⊃

tadpole
−

√
2Δj

ī
R(g−1,h)

j ,

(4.24)

where the
√

2 again comes from the normalization of the superpotential (4.5).
Let us now assemble these various pieces and consider the holomorphic

anomaly for the total topological string amplitudes at order χ > 0 in string
perturbation theory. As discussed in Section 2, these are given by

G(χ) =
1

2
χ

2
+1

⎡

⎣F (gχ) +
∑

2g+h−2=χ

F (g,h) +
∑

2g+h−1=χ

R(g,h) +
∑

2g+h−2=χ

K(g,h)

⎤

⎦ .

(4.25)

By combining formulas (4.20), (4.22), (4.23) and (4.24), we obtain

∂īG(χ) =
1
2

∑

χ1+χ2=χ−2

Cjk
ī

G(χ1)
j G(χ2)

k +
1
4
(
Cjk

ī
+ Bjk

ī

)
G(χ−2)

jk − Δj
ī
G(χ−1)

j .

(4.26)

It is a pleasant surprise that this final form of the holomorphic anomaly
equation is very similar to the extended holomorphic anomaly of [8], see
(4.20). Note that the prefactor in the second term

CP jk
ī =

1
2
(
Cjk

ī
+ Bjk

ī

)
= Cjl

ī

δk
l + P k

l

2
(4.27)

is simply the projection of the Yukawa coupling onto the parity-invariant
states. Moreover, we note that we may also endow Cjk

ī
in the first term of

(4.26) with the same projector (4.27). This is because the one-point functions
G(χ)

j with insertion of a parity-odd field must vanish identically. (The two-
point function G(χ)

jk might not vanish when both fields are odd, so here
we must use that the projector comes out of the degeneration of Riemann
surfaces.) Finally, we can also insert a projector in front of the last term
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in (4.26),

ΔP j
ī = Δl

ī

δj
l + P j

l

2
,(4.28)

to obtain

∂īG(χ) =
1
2

∑

χ1+χ2=χ−2

CP jk
ī G(χ1)

j G(χ2)
k +

1
2
CP jk

ī G(χ−2)
jk − ΔP j

īG
(χ−1)
j .(4.29)

This holomorphic anomaly equation is even closer to (4.20), with the impor-
tant difference that fields that are projected out by the orientifold have
completely decoupled, as expected.

As is well known, parity defines a holomorphic involution

(4.30) P : M −→ M

of the moduli space of the topological string, and the invariant subspace,

(4.31) MP = {P (m) = m} ⊂ M,

is the moduli space of the orientifold.
As a consequence of these observations, all the results on solving the

holomorphic anomaly equation by Feynman diagrams [2, 8, 12, 19] and on
the polynomial structure of the solutions [14,15,61] will carry over with no
essential modification to the orientifold situation. In particular, since MP is
a special Kähler submanifold of the special Kähler manifold M , the special
geometry relation

(4.32) Rīj
k
l
= Cmk

ī Cjml − Gījδ
k
l − Gīlδ

k
j

will continue to hold on the orientifold moduli space and allow for the con-
struction of propagators, terminators, etc. In the examples below, we will,
however, only deal with one-parameter models, with MP = M , so we would
have little use for developing this general formalism explicitly.

A notable difference to the works [12, 19] is that (4.29) is an equation
only for the total topological amplitude (4.25), and not for the F (g,h), etc.,
individually. Namely, tadpole cancelation does not allow introducing a free ’t
Hooft parameter into (2.10), in addition to the string coupling. Nevertheless,
we can still compute individual amplitudes F (g,h) for fixed h if we restrict
ourselves to dependence on the discrete open string moduli, as was done
in [8]. This can be seen as a replacement for inserting continuous open
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string moduli on the worldsheet boundaries, which we have argued before
generically7 decouple from the topological amplitudes.

5. The examples in the B-model

The topological B-model is governed at closed string tree level by spe-
cial geometry, which coincides for Calabi–Yau threefolds with the mathe-
matical theory of variation of Hodge structure [62]. The workhorse [47] is
the Picard–Fuchs differential equation satisfied by the periods of the holo-
morphic three form. By extension, the open string tree-level information
(domainwall tensions) can also be obtained by solving an appropriate differ-
ential equation [63], which in the absence of open string moduli is simply an
inhomogeneous version of the Picard–Fuchs equation [29,43]. This might be
referred to as N = 1 special geometry, and is related to the mathematical
theory of Poincaré normal functions.

The extension to orientifold backgrounds is rather straightforward. As
explained in Section 4, the tree-level data now consist of the full superpoten-
tial and, when tadpoles are canceled, still fit into the framework of normal
functions.

Loop amplitudes can be computed by solving the holomorphic anomaly
equations, for which there are several well-known techniques. The holomor-
phic ambiguities can be fixed by imposing appropriate boundary conditions
at the various singular loci in moduli space. One of the outcomes of our com-
putations in this section is that the holomorphic ambiguities for open and
unoriented string amplitudes appear to be often simpler than their closed
string counterparts.

5.1. Tree-level data

Recall that our three examples were defined in the A-model as the quintic
in P

4 the bicubic in P
5 and the total bundle of the canonical bundle over

P
2 (local P

2). The involution defining the orientifold came in each case from
the standard complex conjugation of the corresponding projective space. The
D-branes are wrapped on the fixed locus of this involution, and to cancel the
tadpoles we need exactly one D-brane in the covering space. In each case,
there are two brane vacua, and the topological string amplitudes depend on
the discrete parameter ε = ±1 in addition to the bulk Kähler parameter t.

7Of course, when there are non-trivial open string moduli present, we can insert
those, too.
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The mirror of the quintic is the mirror quintic, which can be obtained
by blowing up singularities of an appropriate orbifold of a one-parameter
family of quintics. The Picard–Fuchs operator is

(5.1) L = θ4 − 5z(5θ + 1)(5θ + 2)(5θ + 3)(5θ + 4),

where θ = zd/dz and z is the complex structure parameter of the mirror
family, which is related to the Kähler parameter of the quintic by the mir-
ror map,

(5.2) t(z) =
�1(z)
�0(z)

.

Here �0(z) and �1(z) are the analytic and first logarithmic solutions, respec-
tively, of the Picard–Fuchs differential equation

(5.3) L�(z) = 0

around z = 0.
The mirror of the two brane vacua on the real quintic is a certain pair of

matrix factorizations of the Landau–Ginzburg superpotential [64]. The cor-
responding normal function is studied in detail in [43]. It can be represented
as the difference of curves [C+ − C−] ∈ CH2(Y ), where

C± = {x1 + x2 = 0, x3 + x4 = 0, x2
5 ±
√

5ψx1x3 = 0}
⊂ Y = {x5

1 + x5
2 + x5

3 + x5
4 + x5

5 − 5ψx1x2x3x4x5 = 0}(5.4)

(z = (5ψ)−5). The domainwall tension T =
∫
Γ Ω (with ∂Γ = C+ − C−) sat-

isfies the inhomogeneous Picard–Fuchs equation

(5.5) LT (z) = c
√

z,

where c = 15
16π2 .

The mirror of the orientifold action on X is just the trivial involution
on Y [41], acting on D-branes by duality. In other words, the superstring
version would simply be the type I string compactified on Y . This means
that, topologically, the O-plane charge can be expressed in terms of the
tangent bundle of the mirror quintic

(5.6) ch(O-plane) ∝

√

L

(
1
4
TY

)

.
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As mentioned in Section 2, it is not clear in general how the orientifold
plane is represented holomorphically. However, in the context of type I on
the quintic, we have the more elementary expression (4.1) for the superpo-
tential [58], which can be reduced to the statement that (5.6) is also valid
holomorphically. Since by the adjunction formula, the Chern classes of the
quintic come from projective space, they are independent of the complex
structure parameter z. (Although we have not checked this explicitly, we
expect that the orbifold by (Z5)3 will not affect this conclusion, and at
most contribute an overall normalization factor, rather as in [43].) As a
consequence, the superpotential W, see Equation (4.5), satisfies the same
differential equation (5.5), with c → ic/2, where we have inserted a factor
of i for consistency with previous work, and we have removed the factor of√

2 from W because this is more convenient when working with the nor-
malization (2.12) for the topological string amplitudes. As normalization
benchmark, we give here the expansion of the normalized Yukawa coupling
and normalized infinitesimal invariant in terms of q = exp(2πit),

Cttt = 5 + 2875q + 4876875q2 + · · · ,

−iΔtt =
15
2

q1/2 + 3450q3/2 + 6801570q5/2 + · · · ,
(5.7)

and turn to the other examples.
The mirror of the bicubic was studied in [66]. The Picard–Fuchs operator

is

(5.8) L = θ4 − 9z(3θ + 1)2(3θ + 2)2.

The mirror of the real bicubic as orientifold and D-brane has not been stud-
ied in detail yet. It should not be hard to obtain the explicit representatives
of the normal function; however, we will not really need this for computa-
tional purposes in this section. It suffices to note that the inhomogeneous
Picard–Fuchs equation governing the tree-level data is

(5.9) LW(z) =
9i

32π2

√
z.

The normalization factor can be checked by computing the first term in the
Gromov–Witten expansion of the (normalized) superpotential

(5.10) −4π2i
W(z(q))
�0(z)

=
∑

d odd

ñ
(0,1)
d qd/2 = 2

∑

d odd
k odd

1
k2 n

(0,real)
d qdk/2
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in the A-model. In fact, it has been shown [65] that the theorems of [30]
also hold for the bicubic, i.e., (5.10) is valid rigorously to all orders. The sec-
ond step in (5.10) is the BPS expansion and the n

(0,real)
d are (conjecturally)

all integers.
The mirror of local P

2 is captured, see, e.g., [57], by the family of elliptic
curves with equation

(5.11) x3
1 + x3

2 + x3
3 − 3ψx1x2x3 = 0,

where the xi are viewed as C
∗-variables. The Picard–Fuchs operator is

(5.12) L = θ3 − 3zθ(3θ + 1)(3θ + 2)

(where, similarly to as before, z = (3ψ)−3 and θ = zd/dz). To obtain the
inhomogeneous version, we can take the same shortcut as for the bicubic.
The extension reads as

(5.13) LW(z) = − i
16π2

√
z.

In fact, it is not hard to check that the corresponding normal function can
be represented by the two points on the Riemann surface (5.11)

p± = {x1 + x2 = 0, x3 = ±
√

3ψx1} ⊂ {x3
1 + x3

2 + x3
3 − 3ψx1x2x3 = 0}.

(5.14)

Namely, we can write the domainwall tension between brane vacua as

(5.15) T =
∫ p−

p+

λ,

where λ ∝ log(x2/x3)dx1/x1 is the reduction of the holomorphic three-form
to the curve.

An alternative way to obtain the inhomogeneous term in the Picard–
Fuchs equation is to study carefully the monodromy properties of the
domainwall tension/superpotential as an analytic function over the entire
(thrice-punctured) z-plane. This was done for the quintic in [29]. The order-
two branch points at z = 0 and z = ∞ are easily identified, and the prefactor
c follows from requiring integrality of the monodromy matrices around the
conifold. This exercise could be repeated for the bicubic and local P

2, but
we will omit this here.
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Table 5: Genus 0 real BPS invariants n
(0,real)
d .

d Quintic Bicubic Local P
2

1 15 9 −1
3 765 90 1
5 544125 15759 −5
7 487998390 3297987 42
9 536543881350 841201389 −429
11 664513551962205 241496789706 4939

We conclude this subsection by giving the explicit results for the genus
0 real enumerative invariants for the three models discussed in Table 5.

5.2. One-loop

The general solution of the holomorphic anomaly of the torus partition func-
tion (4.10) is

(5.16) F (1) =
1
2

log
[
det G−1

īj
eK(3+n− 1

12
χ)|f |2

]
,

where Gīj is the special Kähler metric on moduli space with Kähler poten-
tial K. The holomorphic ambiguity f can be fixed by imposing the appro-
priate behavior at the boundaries of moduli space. Of relevance for the
one-parameter models are large volume, conifold and orbifold point. In the
holomorphic limit, and with the above conventions, one obtains

(5.17) F (1) −→
hol.

1
2

log
[(

q

z

dz

dq

)

(�0)
χ

12
−4z−c2/12diss−1/6

]

,

where c2 is the second Chern class of the model and diss = (1 − 55z), (1 −
36z) and (1 − 33z) for quintic, bicubic and local P

2, respectively.
We now turn to the open/unoriented amplitudes at one-loop. As adver-

tised before, only the total amplitude

(5.18) 2G(0) − F (1) = A + M + K

(annulus + Möbius + Klein bottle) will admit an integral expansion in the
sense conjectured in [22]. However, as we have also emphasized, there are
also certain individual parts of the amplitude that make sense and can be
computed separately. Specifically, by considering pairs of branes/antibranes
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with discrete Wilson lines ε1, ε2, it makes sense to isolate a term that depends
on these discrete parameters by

G(0)(ε1, ε2) − G(0)(−ε1, ε2) − G(0)(ε1,−ε2) + G(0)(−ε1,−ε2) = 4F (0,2)ε1ε2,

(5.19)

which is essentially how we define F (0,2) in our examples.
At the second stage, we compute the amplitude for the Klein bottle,

K ≡ K(1,0). (Or more precisely, the amplitude for the Klein bottle plus
the ε-independent part of the annulus and Möbius amplitude. Note that
the Möbius strip does not make any additional contribution in the trans-
verse channel because the tadpole state (or infinitesimal invariant) has no
ε-independent part.) Finally, we construct the total topological amplitude
of our orientifold with one background D-brane. This is of the form

(5.20) 2G(0)(ε) − F (1) = K + F (0,2)ε2 = K + F (0,2)

with no apparent ε-dependence.
The solution of the holomorphic anomaly equation of the annulus is for

the one-parameter models, and in the holomorphic limit,

(5.21) At = F (0,2)
t =

1
2
Δ2

ttC
−1
ttt + f

(0,2)
t ,

where f (0,2) is a holomorphic ambiguity. In [8], it was originally claimed
that there is an additional term on the RHS. With this additional term, and
with a naive ansatz for the BPS expansion of F (0,2), the holomorphic ambi-
guity f (0,2) could be fixed such that all expansion coefficients were integers.
However, the situation considered in [8] was that of (5.19), so the effective
dimension of the gauge group should actually have been zero. The same
statement holds in the orientifold setup with exactly one D-brane in the
covering space (i.e., N+ = 0 in (4.14)).

In all three examples that we study, we find that the low-degree Gromov–
Witten invariants ñ

(0,2)
d of table 1 are reproduced by (5.21) with f (0,2) ≡ 0.

This pattern persists for all genus 0 amplitudes with an arbitrary number of
boundaries, to which we will return below. The precise way is

(5.22) F (0,2) =
∑

d even

ñ
(0,2)
d qd/2.

The Klein bottle contribution (4.12) to the holomorphic anomaly of G(0)

can be integrated by the same procedure as that leading to (5.16). We first
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note that when the orientifold projection acts trivially on the moduli space,
we have

(5.23) ∂ī∂jK =
1
2
Tr
[
CīCjP

]
=

1
2
CjklC

kl
ī − Gīj .

This can be seen by using that with respect to the convenient tt∗-basis for
the Ramond–Ramond ground states, the chiral ring multiplication matrices
take the form

(5.24) Ci =

⎛

⎜
⎜
⎝

0 0 0 0
δl
i 0 0 0
0 C l̄

im 0 0
0 0 Gim̄ 0

⎞

⎟
⎟
⎠ , Cj̄ =

⎛

⎜
⎜
⎜
⎝

0 Gj̄m 0 0
0 0 C l

j̄m̄
0

0 0 0 δ l̄
j̄

0 0 0 0

⎞

⎟
⎟
⎟
⎠

and P is represented by (2.3). In turn, (5.23) can be integrated by using the
special geometry relation for the Ricci tensor, (4.32). This‘yields

(5.25) K =
1
2

log
(
det G−1

īj
eK(n−1)|f (1,0)k |2

)
.

We can fix the holomorphic ambiguity of the Klein bottle by expanding K
around q = 0 in the holomorphic limit and compare with the localization
results of Section 3.

(5.26) K −→
hol.

∑

d even

ñ
(1,0)k

d qd/2.

It turns out that in all three cases, the holomorphic limit can be written as

(5.27) K −→ −1
2

log
[(q

z

dz

dq

)
diss−1/4

]
,

where diss = 0 describes the conifold locus in moduli space (see above). We
see that as for the torus amplitude, the Klein bottle exhibits a universal sin-
gular behavior associated with the conifold. It will not be hard, but crucial
for future developments, to pinpoint the microscopic origin of this univer-
sality.

Finally, we sum annulus and Klein bottle and expand in the holomorphic
limit

(5.28) A + K = 2
∑

d even
k odd

1
k
n

(1,real)
d qdk/2
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to extract the real BPS invariants n
(1,real)
d . We have checked integrality up

to d ∼ 50, and list the first few in Table 6.

5.3. Next loop

At the next order in perturbation theory, χ = 1, there are three non-trivial
worldsheets contributing to the total amplitude. (In our examples, all ampli-
tudes R(g,h) with an odd number of crosscaps vanish. This follows from
the vanishing of the crosscap contribution to the superpotential, discussed
around Equation (5.6), together with the recursive nature of the holomorphic
anomaly equations. In the A-model, the vanishing of the R(g,h) is a conse-
quence of local tadpole cancelation, as discussed in Section 3.3.) Consider

(5.29) 2G(1) = F (0,3) + F (1,1) + K(1,1).

The solution of the holomorphic anomaly equation for F (0,3) is

F (0,3) = −F (0,2)
j Δj − 1

2
ΔjkΔjΔk − 1

6
CjklΔjΔkΔl + hol. amb.

= −F (0,2)
t Δt − 1

3
ΔttΔtΔt,

(5.30)

where in the second line we have specialized to the one-parameter models.
Again, it turns out that the localization results are reproduced exactly by
(5.30) with vanishing holomorphic ambiguity f (0,3) = 0.

The oriented one-loop amplitude with one boundary is given by

F (1,1) =
1
2
SjkΔjk − F (1,0)

j Δj +
1
2
CjklS

klΔj −
( χ

24
− 1
)
Δ + hol. amb.

= −F (1,0)
t Δt −

( χ

24
− 1
)
Δ + f (1,1).

(5.31)

Table 6: Genus 1 real BPS invariants n
(1,real)
d .

d Quintic Bicubic Local P
2

2 0 0 0
4 17725 693 3
6 36079420 381912 −44
8 65378348025 167597505 675
10 116755627418596 70912518192 −10596
12 209184366237053675 29843206833573 169815
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(As usual, the term with χ/24 is absent for local P
2 for an appropriate

choice of terminator.) For the quintic and bicubic, we have no localization
results to fix the holomorphic ambiguity. For local P

2, we obtain in the above
conventions

(5.32) f (1,1) =
i
24

(−z)1/2.

There is one non-orientable diagram that contributes to the amplitude
at χ = 1. Its holomorphic anomaly equation is solved by

∂īK(1,1) =
1
2
CP jk

ī Δjk − KjΔ
j
ī

= ∂ī

(1
2
SP jk

Δjk − KjΔj
)

+
1
2
SP jk

CjklΔl
ī +
(1

2
CjklC

P kl
ī − Gīj

)
Δj

= ∂ī

(1
2
SP jk

Δjk − KjΔj +
1
2
CjklS

P kl
Δj − Δ

)
,

(5.33)

where CP
ijk = CijlP

l
k, cf., (2.2). Specializing to our one-parameter models,

we obtain

(5.34) K(1,1) = −KtΔt − Δ + f (1,1)k .

For local P
2, we find that we reproduce the localization results of table 2

for f (1,1)k = 0. For the quintic and the bicubic, we find that the localization
results are also reproduced, but in fact by the first term −KtΔt in (5.34)
alone. We interpret this to say that since there is no observable that would
distinguish between F (1,1) and K(1,1), only the sum F (1,1) + K(1,1) can have
a truly invariant meaning. (In the A-model, this mixing is possibly related to
our generous treatment of real torus fixed points.) Consequently, we attempt
to fix the holomorphic ambiguity only for the combination

(5.35) F (1,1) + K(1,1) = −F (1,0)
t Δt − KtΔt − χ

24
Δ + f (1,1),

by requiring vanishing of the integral invariants in low degree. We find for
the quintic

(5.36) f (1,1) =
85
8

i�0(z)
√

z

and for the bicubic

(5.37) f (1,1) =
27
8

i�0(z)
√

z.
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The expansion

(5.38) i(F (0,3) + F (1,1) + K(1,1)) = 2
∑

d odd
k odd

(
n

(2,real)
d − 1

24
n

(0,real)
d

)
qkd/2

with n
(0,real)
d taken from (5.10) then delivers the integers shown in table 7.

5.4. Further checks

Let us first digress a bit on the systematics of the BPS expansion that we
have been using. We recall that we are working in the normalization (2.12)
for the total topological amplitude,

(5.39) G(χ) =
1
2

[
F (gχ) +

∑
F (g,h) +

∑
K(g,h)

]

(where gχ ≡ χ
2 + 1). According to [21], the purely closed string contribution

to this sum admits a large volume expansion of the form

(5.40)
∑

g

λ̃2g−2F (g)(t) =
∑

g,d,k

n
(g)
d

1
k

(
2 sin

λ̃k

2

)2g−2
qkd,

in which all n
(g)
d (Gopakumar–Vafa invariants) are integers. Our computa-

tions in the previous subsections indicate that the rest of the amplitude
should be expanded as

(5.41)
∑

χ

λχiχ
(
G(χ) − 1

2
F (gχ)

)
=

∑

χ≡d mod 2
k odd

n
(ĝ,real)
d

1
k

(
2 sinh

λk

2

)χ
qkd/2

Table 7: Genus ĝ = 2 real BPS invariants n
(2,real)
d .

d Quintic Bicubic Local P
2

1 0 0 0
3 0 0 0
5 −55640 −693 −10
7 −159440655 −568557 229
9 −387012696805 −328426623 −4833
11 −878665820903170 −175272593346 96823



Evidence for tadpole cancelation 161

and that the n
(ĝ,real)
d (with ĝ = χ + 1) should again all be integers. These

integers should give an invariant “count” of the number of real curves of
genus ĝ and degree d. (This interpretation is tied to our putting the D-brane
on top of the orientifold plane.) Note that the expansions (5.40) and (5.41)
can in the future be related by identifying λ̃ = iλ, absorbing the i into the
definition of the topological amplitudes, and redefining the integral invari-
ants by a sign.

Let us now make a few steps in the direction of extending the com-
putations to higher order in perturbation theory. The integration of the
holomorphic anomaly equations is straightforward, although the resulting
expressions fairly quickly become too lengthy to write down explicitly. Most
powerful is the polynomial algorithm of [61], whose extended form is
described in [14,15]. This reduces the problem to finding the right boundary
conditions on the amplitudes in order to fix the holomorphic ambiguity. A
lot of progress has recently been made on this problem, including in the
compact case [67]. It seems likely that a more detailed analysis of the results
in the present paper will allow a better understanding of the boundary con-
ditions also in the extended case. For the time being, we will extract what
we can from our localization results in the A-model, and then present a few
checks of the enumerative aspects of the n

(ĝ,real)
d .

The amplitude at order χ = 2 receives contributions from four different
worldsheet topologies,

(5.42) 2G(2) − F (2) = F (0,4) + F (1,2) + K(1,2) + K(2,0)

For local P
2, we have enough A-model data to completely fix the holomorphic

ambiguity of the four individual amplitudes, but we will only present the
results for the total amplitude, which can be directly computed from the
total anomaly equation (4.29). The holomorphic ambiguity is given by

(5.43)
7
64

z +
7

288
1

(1 − 27z)
− 9

128
1

(1 − 27z)2

and the BPS expansion (5.41) then gives the integers in table 8.
We do not have enough data to fix the holomorphic ambiguity of G(2) for

either the quintic or the bicubic. For χ = 3, the localization data from table 4
are consistent with the present understanding, and for local P

2 determines
the following integer invariants:

(5.44) n
(4,real)
1 = 0, n

4,real)
3 = 0, n

(4,real)
5 = −6.
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Table 8: Genus ĝ = 3 real BPS invariants n
(3,real)
d .

d Local P
2

2 0
4 1
6 −63
8 2826
10 −91309
12 2548446

Let us now turn to the checks on the BPS invariants related to their
interpretation as enumerating real curves. Consider the complex curves of
degree d and genus ĝ, and let us pretend for simplicity that there is indeed
a finite number n

(ĝ)
d of them. Complex conjugation acts on this finite set,

and we are claiming that the appropriately counted number of fixed points
is given by n

(ĝ,real)
d . Since all other orbits have order two, we immediately

conclude that we must have

(5.45) n
(ĝ,real)
d ≡ n

(ĝ)
d mod 2.

We also have the implication

(5.46) n
(ĝ)
d = 0 ⇒ n

(ĝ,real)
d = 0.

One can easily check that these constraints are satisfied for all numbers that
we have listed in the tables above.

We can also verify a few of the numbers in the above tables directly.
In general, we expect that more checks can be done by taking a suitable
real section of the computational scheme for Gopakumar–Vafa invariants
initiated in [68] and developed in several subsequent works. We also expect
a connection with appropriately defined “real Donaldson–Thomas” [69] and
“real Pandharipande–Thomas” [70,71] invariants.

The simplest Gopakumar–Vafa invariants to check are those associated
to smooth curves. For local P

2, these are curves of genus ĝ = (d−1)(d−2)
2 ,

which are parametrized by a copy of CP
(d+1)(d+2)

2
−1. Their contribution to

Gopakumar–Vafa theory is up to a sign simply the Euler characteristic of
the projective space,

(5.47) n
((d−1)(d−2)/2)
d = (−1)

d2+3d

2
(d + 1)(d + 2)

2
.
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Clearly now, real curves of the same genus and degree are simply para-
metrized by the corresponding real projective space RP

d2+3d

2 , and it is natural
to assume that their contribution will (up to a sign) again be given by the
Euler character of the parameter space. The interesting case is when d2+3d

2
is even, when the Euler character is 1. Taking account of constraint (3.17),
we see that when d ≡ 0 or 1 mod 4, the real invariant should be

(5.48) n
((d−1)(d−2)/2,real)
d = ±1.

This leads to a check of n
(0,real)
1 = −1 in table 5 and n

(3,real)
4 = 1 in table 8.

We can also interpret n
(0,real)
3 along those lines. The corresponding com-

plex invariant is according to [68] given by the Euler character of the uni-
versal curve C over the parameter space CP

9 of plane cubic curves. C is
a CP

8 fibration over CP
2, and the Euler characteristic is n

(0)
3 = e(C) =

e(CP
2) · e(CP

8) = 27. In the real version, this simply yields

(5.49) n
(0,real)
3 = e(Creal) = e(RP

2) · e(RP
8) = 1

in agreement with table 5 (up to possibly a sign that we shall not attempt
to justify).

As a less elementary computation, we can verify the invariants n
(1,real)
4 =

−n
(2,real)
5 = 693 on the bicubic. The corresponding complex invariants also

coincide, n
(1)
4 = n

(2)
5 = 5520393, see ref. [67]. This coincidence is similar to

n
(0)
2 = n

(1)
3 = 609250 on the quintic, and can be understood as follows. Let

C4 be a smooth degree 4 genus 1 curve contained in the bicubic. Such a
curve spans a unique CP

3 ⊂ CP
5. This CP

3 meets the bicubic in a degree
9 curve C9, which must be reducible, with one component being C4. The
other component is a degree 5 curve C5 of genus 2. Conversely, we can start
from C5 to obtain C4.8 Thus, n

(1)
4 = n

(2)
5 on the bicubic. The coincidence of

the two invariants should be preserved over the reals (again, up to a sign),
which is exactly as predicted! But we can in fact do even better.

The BPS invariant n
(1)
4 = 3721431625 on the quintic was verified in [72].

There are two contributions. The first comes from smooth elliptic quartics
in all CP

3’s inside of CP
5, and can be computed by localization on the

corresponding relative Hilbert scheme. The second contribution comes from
plane binodal quartics, and is obtained by a more classical computation. On
the bicubic, we have a contribution only from the smooth quartics, because
the planes meet the bicubic in too low dimension. (We have used this fact

8I thank Sheldon Katz for clarifying this.



164 Johannes Walcher

in the previous paragraph.) Thus, n
(1)
4 = 5520393 on the bicubic is given

by a simple localization calculation, and taking a real section of it readily
confirms n

(1,real)
4 = 693. The invariants n

(0,real)
3 can be computed in the same

manner, as already noted for the quintic in [29].

6. Conclusions

In this paper, we have shown that the extended holomorphic anomaly equa-
tion of [8] can also be used to compute topological string amplitudes on
Calabi–Yau orientifolds. We have verified that the results match those
obtained in the A-model by a computational prescription that can be under-
stood as a real version of the localization formulas on the moduli space of
maps. The success of these computations indicates that there is a well-
defined underlying Gromov–Witten theory. We have found hints that the
correct moduli spaces to define this theory in fact contain domain curves of
varying topology, but fixed Euler character. The essential idea is to absorb
boundary components that are homologically trivial in the target Lagrangian
and shrink to zero size on the domain curve by smoothing the developing
real node into a crosscap. For this to make sense in general, the homol-
ogy class of the Lagrangian wrapped by the D-brane must be equal to that
of the fixed point set of the anti-holomorphic involution defining the orien-
tifold (O-plane). We argued that this phenomenon in Gromov–Witten theory
should be interpreted physically as a manifestation of a “tadpole cancelation
condition” in the topological string.

From the formal point of view, the most interesting result is that the
holomorphic anomaly equation for the total amplitude G(χ) of the orientifold
model simply coincides with the extended holomorphic anomaly equation
of [8]. In the A-model, we have obtained a satisfactory BPS interpretation
of the total amplitudes, and have verified several of these predictions from
the point of view of real enumerative geometry.

Our work leaves several questions unaddressed. Let us mention some of
them.

• From the practical point of view, the most immediate problem is to
understand the behavior of the orientifold amplitudes at the special
points in moduli space other than large volume. The behavior at the
conifold should be determined by a simple orientifold version of the
usual closed string story [73], and is hence probably also related to
orientifolds of ĉ = 1 string at self-dual radius. We expect new effects
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at the orbifold point due to the “tensionless domainwalls” that appear
on the worldvolume of the D-brane, as explained in [8, 29].

• In the physical string, there is an intimate relation between tadpole
cancelation and the cancelation of gauge and gravitational anoma-
lies [4]. It seems likely that there should be a similar connection also
in the topological string, and it would be interesting to understand
this better.

• As a hint in this direction, recall that the oriented one-loop topologi-
cal amplitudes are expressible in the B-model in terms of holomorphic
Ray–Singer torsions for the ∂̄-operator coupled to the appropriate vec-
tor bundle [2]. Consequently, the non-orientable one-loop amplitudes
(Möbius strip and Klein bottle) are certainly related to Ray–Singer
torsions twisted by duality, although we have not been able to locate
a convenient reference in which such objects are studied. As a conse-
quence of this connection, the one-loop amplitudes generally exhibit
a “gravitational anomaly”, i.e., an explicit dependence on the back-
ground Kähler metric [74, 75]. For the torus amplitude, this anomaly
reduces to a volume-dependent factor when one computes for the Ricci-
flat metric on the Calabi–Yau. More generally, the explicit metric
dependence can be eliminated by studying appropriate virtual bun-
dles with vanishing topological Chern classes [76], in a way analogous
to our tadpole cancelation using anti-branes.9

• Also related to the question of anomaly cancelation is the role played
by torsion charges, which do figure into tadpole and anomaly cancela-
tion in the physical string. It might be somewhat difficult to come up
with a workable example of this in the topological string.

• Perhaps the most intriguing speculation arises in connection with the
so-called wavefunction interpretation of the topological string parti-
tion function [16]. In [19], it was conjectured that the solutions of the
extended holomorphic anomaly equation as one varies the D-brane
background should furnish a basis of Witten’s Hilbert space HW that
arises upon quantization of the symplectic vector space H3(Y, R). In
the context of orientifolds, it seems very likely that there will only be a
finite number of allowed brane configurations satisfying tadpole cance-
lation. This is suggestive of a distinguished finite-dimensional Hilbert

9The cancelation of the metric dependence of the annulus amplitude for
brane/anti-brane configurations was pointed out to me by Cumrun Vafa in Novem-
ber 2006.
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space Hphys of physical states inside of HW , which would be a quite
remarkable lesson of the topological string on compact Calabi–Yau
manifolds.

• Finally, we can also envisage some applications in the context of string
phenomenology. It is well known that the topological string one-loop
amplitudes are related to threshold corrections for gauge and grav-
itational couplings of an associated superstring compactification on
the same Calabi–Yau manifold [2, 77]. The one-loop amplitudes also
enter the D-instanton-induced superpotentials in type I/II compactifi-
cations [78–81], see [82] for a recent review. The holomorphic anomaly
equation should now allow a principled computation of these couplings
for a general Calabi–Yau.
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odizitätsmodulen der zugehörigen Abelschen Normalintegrale erster
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