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Feynman motives of banana graphs
Paolo Aluffi and Matilde Marcolli

We consider the infinite family of Feynman graphs known as the
“banana graphs” and compute explicitly the classes of the cor-
responding graph hypersurfaces in the Grothendieck ring of vari-
eties as well as their Chern–Schwartz–MacPherson classes, using
the classical Cremona transformation and the dual graph, and a
blowup formula for characteristic classes. We outline the interest-
ing similarities between these operations and we give formulae for
cones obtained by simple operations on graphs. We formulate a
positivity conjecture for characteristic classes of graph hypersur-
faces and discuss briefly the effect of passing to noncommutative
spacetime.

1. Introduction

Since the extensive study of [19] revealed the systematic appearance of mul-
tiple zeta values as the result of Feynman diagram computations in pertur-
bative quantum field theory, the question of finding a direct relation between
Feynman diagrams and periods of motives has become a rich field of inves-
tigation. The formulation of Feynman integrals that seems most suitable for
an algebro-geometric approach is the one involving Schwinger and Feynman
parameters, as in that form the integral acquires directly an interpretation
as a period of an algebraic variety, namely the complement of a hypersur-
face in a projective space constructed out of the combinatorial information
of a graph. These graph hypersurfaces and the corresponding periods have
been investigated in the algebro-geometric perspective in the recent work of
Bloch–Esnault–Kreimer [12,14] and more recently, from the point of view of
Hodge theory, in [15,30]. In particular, the question of whether only motives
of mixed Tate type would arise in the quantum field theory context is still
unsolved. Despite the general result of [9], which shows that the graph hyper-
surfaces are general enough from the motivic point of view to generate the
Grothendieck ring of varieties, the particular results of [14, 19] point to the
fact that, even though the varieties themselves are very general, the part of
the cohomology that supports the period of interest to quantum field theory
might still be of the mixed Tate form.
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One complication involved in the algebro-geometric computations with
graph hypersurfaces is the fact that these are typically singular, with a sin-
gular locus of small codimension. It becomes then an interesting question
in itself to estimate how singular the graph hypersurfaces are, across cer-
tain families of Feynman graphs (the half open ladder graphs, the wheels
with spokes, the banana graphs, etc.). Since the main goal is to describe
what happens at the motivic level, one wants to have invariants that detect
how singular the hypersurface is and that are also somehow adapted to its
decomposition in the Grothendieck ring of motives. In this paper we con-
centrate on a particular example and illustrate some general methods for
computing such invariants based on the theory of characteristic classes of
singular varieties.

It should be clear to the reader that the class of graphs considered in this
paper is very special and the techniques used to compute these invariants are
specifically adapted to the example and do not directly generalize to more
complicated types of graphs. Thus, while this is a good choice to illustrate
algebro-geometric methods in action in the quantum field theory context,
significant more work is needed to extend the present results to more general
cases.

Part of the purpose of the present paper is to familiarize physicists work-
ing in perturbative quantum field theory with some techniques of algebraic
geometry that are useful in the analysis of graph hypersurfaces. Thus, we try
as much as possible to spell out everything in detail and recall the necessary
background.

In Section 1, we begin by recalling the general form of the parametric
Feynman integrals for a scalar field theory and the construction of the asso-
ciated projective graph hypersurface. We recall the relation between the
graph hypersurface of a planar graph and that of the dual graph via the
standard Cremona transformation. We then present the specific example of
the infinite family of “banana graphs.” We formulate a positivity conjecture
for the characteristic classes of graph hypersurfaces.

For the convenience of the reader, we recall in Section 2 some general
facts and results, both about the Grothendieck ring of varieties and motives,
and about the theory of characteristic classes of singular algebraic varieties.
We outline the similarities and differences between these constructions.

In Section 3 we give the explicit computation of the classes in the
Grothendieck ring of the hypersurfaces of the banana graphs. We conclude
with a general remark on the relation between the class of the hypersurface
of a planar graph and that of a dual graph.

In Section 4 we obtain an explicit formula for the Chern–Schwartz–
MacPherson (CSM) classes of the hypersurfaces of the banana graphs.
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We first prove a general pullback formula for these classes, which is nec-
essary in order to compute the contribution to the CSM class of the com-
plement of the algebraic simplex in the graph hypersurface. The formula is
then obtained by assembling the contribution of the intersection with the
algebraic simplex and of its complement via inclusion–exclusion, as in the
case of the classes in the Grothendieck ring.

We give then, in Section 5, a formula for the CSM classes of cones
on hypersurfaces and use them to obtain formulae for graph hypersurfaces
obtained from a known one by simple operations on the graphs, such as
doubling or splitting an edge, and attaching single-edge loops or trees to
vertices.

Finally, in Section 6, we look at the deformations of ordinary φ4 the-
ory to a noncommutative spacetime given by a Moyal space. We look at
the ribbon graphs that correspond to the original banana graphs in this
noncommutative quantum field theory. We explain the relation between the
graph hypersurfaces of the noncommutative theory and of the original com-
mutative one. We show by an explicit computation of CSM classes that
in noncommutative quantum field theory the positivity conjecture fails for
nonplanar ribbon graphs.

1.1. Parametric Feynman integrals

We briefly recall some well-known facts (cf. Section 6-2-3 of [27], Section
18 of [11], and Section 6 of [31]) about the parametric form of Feynman
integrals.

Given a scalar field theory with Lagrangian written in Euclidean signa-
ture as

(1.1) L(φ) =
1
2
(∂φ)2 +

m2

2
φ2 + Lint(φ),

where the interaction part is a polynomial function of φ, a one-particle-
irreducible (1PI) Feynman graph of the theory is a connected graph Γ which
cannot be disconnected by removing a single edge, and with the following
properties. All vertices in V (Γ) have valence equal to the degree of one of
the monomials in the Lagrangian. The set of edges E(Γ) = Eint(Γ) ∪ Eext(Γ)
consists of internal edges having two end vertices and external ones having
only one vertex. A Feynman graph without external edges is called a vacuum
bubble.

In perturbative quantum field theory, the Feynman integrals associated
to the loop number expansion of the effective action for a scalar field theory
are labeled by the 1PI Feynman graphs of the theory, each contributing a
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corresponding integral of the form

(1.2) U(Γ, p) =
Γ(n − D�/2)

(4π)�D/2

∫
[0,1]n

δ(1 −
∑

i ti)
ΨΓ(t)D/2VΓ(t, p)n−D�/2 dt1 · · · dtn.

Here n = #Eint(Γ) is the number of internal edges of the graph Γ, D ∈ N is
the spacetime dimension in which the scalar field theory is considered, and
� = b1(Γ) is the number of loops in the graph, i.e., the rank of H1(Γ, Z). The
function ΨΓ is a polynomial of degree � = b1(Γ). It is given by the Kirchhoff
polynomial

(1.3) ΨΓ(t) =
∑
T⊂Γ

∏
e/∈E(T )

te,

where the sum is over all the spanning trees T of Γ. In the massless case,
the function VΓ(t, p) is a rational function of the form

(1.4) VΓ(t, p) =
PΓ(t, p)
ΨΓ(t)

,

where PΓ is a homogeneous polynomial of degree � + 1 = b1(Γ) + 1 of the
form

(1.5) PΓ(p, t) =
∑
C⊂Γ

sC

∏
e∈C

te.

Here the sum is over the cut-sets C ⊂ Γ, i.e., the collections of b1(Γ) + 1
edges that divide the graph Γ into exactly two connected components Γ1 ∪
Γ2. The coefficient sC is a function of the external momenta attached to the
vertices in either one of the two components

(1.6) sC =

⎛
⎝ ∑

v∈V (Γ1)

Pv

⎞
⎠

2

=

⎛
⎝ ∑

v∈V (Γ2)

Pv

⎞
⎠

2

,

where the Pv are defined as

(1.7) Pv =
∑

e∈Eext(Γ),t(e)=v

pe,
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where the pe are incoming external momenta attached to the external edges
of Γ and satisfying the conservation law

(1.8)
∑

e∈Eext(Γ)

pe = 0.

The divergence properties of the integral (1.2) can be estimated in terms
of the “superficial degree of divergence,” which is measured by the quan-
tity n − D�/2. The integral (1.2) is called logarithmically divergent when
n − D�/2 = 0. The example of the banana graphs we concentrate on below
has n = � + 1, so that we find n − D�/2 = (1 − D/2)� + 1 < 0 for D > 2 and
� ≥ 2. In this case, we write the integral (1.2) in the form

(1.9) U(Γ, p) =
Γ(n − D(n − 1)/2)

(4π)(n−1)D/2

∫
σn

PΓ(p, t)−n+D(n−1)/2 ωn

ΨΓ(t)n(−1+D/2) ,

where ωn is the volume form and the domain of integration is the topological
simplex

(1.10) σn = {(t1, . . . , tn) ∈ R
n
+ |

∑
i

ti = 1}.

The 1PI condition on Feynman graphs comes from the fact of considering
the perturbative expansion of the effective action in quantum field theory,
which reduces the combinatorics of graphs to just those that are connected
and 1PI. In terms of the expression of the Feynman integral, the 1PI con-
dition is reflected in the fact that only the propagators for internal edges
appear. The parametric form we described above therefore depends on this
assumption. However, for the algebro-geometric arguments that constitute
the main content of this paper, the 1PI condition is not strictly necessary.

1.2. Feynman graphs, varieties and periods

The graph polynomial ΨΓ(t) of (1.3) also admits a description as determi-
nant

(1.11) ΨΓ(t) = detMΓ(t)

of an � × �-matrix MΓ(t) associated to the graph [11, Section 18, 31, Sec-
tion 3], of the form

(1.12) (MΓ)kr(t) =
n∑

i=1

tiηikηir,
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where the n × �-matrix ηik is defined in terms of the edges ei ∈ E(Γ) and
a choice of a basis for the first homology group, lk ∈ H1(Γ, Z), with k =
1, . . . , � = b1(Γ), by setting

(1.13) ηik =

⎧⎪⎪⎨
⎪⎪⎩

+1 edge ei ∈ loop lk, same orientation,

−1 edge ei ∈ loop lk, reverse orientation,

0 otherwise,

after choosing an orientation of the edges.
Notice how the result is independent of the choice of the orientation

of the edges and of the choice of the basis of H1(Γ, Z). In fact, a change
of orientation in a given edge results in a change of sign to one of the
columns of the matrix ηki, which is compensated by the change of sign in
the corresponding row of the matrix ηir, so that the determinant detMΓ(t)
is unaffected. Similarly, a change in the choice of the basis of H1(Γ, Z) has
the effect of changing MΓ(t) �→ AMΓ(t)A−1 for some A ∈ GL(�, Z) and the
determinant is again unchanged.

The graph hypersurface XΓ is by definition the zero locus of the Kirchhoff
polynomial,

(1.14) XΓ = {t = (t1 : . . . : tn) ∈ P
n−1 | ΨΓ(t) = 0}.

Since ΨΓ is homogeneous, it defines a hypersurface in projective space.
The domain of integration σn defines a cycle in the relative homology

Hn−1(Pn−1, Σn), where Σn is the algebraic simplex (the union of the coor-
dinate hyperplanes, see (1.16) below). The Feynman integral (1.2), (1.9)
then can be viewed [12, 14] as the evaluation of an algebraic cohomology
class in Hn−1(Pn−1

� XΓ, Σ � Σ ∩ XΓ) on the cycle defined by σn. In this
sense, it can be viewed as the evaluation of a period of the algebraic variety
given by the complement of the graph hypersurface, at least in the con-
vergent case where the domain of integration σn does not meet the hyper-
surface XΓ. In general, this condition need not be satisfied and the locus
XΓ ∩ σn 	= ∅ contributes divergences to the integral. Thus, to understand
the nature of this period, one is faced with two main problems. One is
eliminating divergences via the regularization and renormalization of Feyn-
man integrals, and the other is understanding what kind of motives arise in
the part of the hypersurface complement P

n−1
� XΓ that is involved in the

evaluation of the period, hence what kind of transcendental numbers one
expects to find in the evaluation of the corresponding Feynman integrals.
The problem of removing divergences can be approached in different ways,
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involving performing blowups of the loci that contribute divergences to the
integral (see [14]), and/or using dimensional regularization to still interpret
the integral computation as periods, this time coming from the coefficients
of a local Igusa zeta function as in [10] (see also [16] for the non-log-divergent
case). A detailed analysis of some of these problems was carried out in [14].
The examples we concentrate on in this paper are not especially interesting
from the motivic point of view, since they are expressible in terms of pure
Tate motives (cf. [12]), but they provide us with an infinite family of graphs
for which all computations are completely explicit.

1.3. Dual graphs and Cremona transformation

In the case of planar graphs, there is an interesting relation between the
hypersurface of the graph and the one of the dual graph. This will be espe-
cially useful in the explicit calculation we perform below in the special case
of the banana graphs. We recall it here in the general case of arbitrary planar
graphs.

The standard Cremona transformation of P
n−1 is the map

(1.15) C : (t1 : · · · : tn) �→
(

1
t1

: · · · :
1
tn

)
.

This is a priori defined away from the algebraic simplex of coordinate axes

(1.16) Σn = {(t1 : · · · : tn) ∈ P
n−1 |

∏
i

ti = 0} ⊂ P
n−1,

though we see in Lemma 1.2 below that it is well defined also on the general
point of Σn, its locus of indeterminacies being only the singularity subscheme
of Σn.

Let G(C) denote the closure of the graph of C. Then G(C) is a subvariety
of P

n−1 × P
n−1 with projections

(1.17) G(C)
π1

����
��

��
�

π2

���
��

��
��

P
n−1 C ��������

P
n−1
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Lemma 1.1. Using coordinates (s1 : · · · : sn) for the target P
n−1, the graph

G(C) has equations

(1.18) t1s1 = t2s2 = · · · = tnsn.

In particular, this describes G(C) as a complete intersection of n − 1 hyper-
surfaces in P

n−1 × P
n−1 with equations tisi = tnsn, for i = 1, . . . , n − 1.

Proof. The Equations (1.18) clearly cut out G(C) over the open set U ⊂ P
n−1

where all t-coordinates are nonzero. Since every component of a scheme
defined by n − 1 equations has codimension ≤n − 1, it suffices to show that
equations (1.18) define a set of codimension >n − 1 over the complement of
U . Now assume that at least one of the t-coordinates equal 0. Without loss
of generality, suppose tn = 0. Intersecting with the locus defined by (1.18)
determines the set with equations

t1s1 = · · · = tn−1sn−1 = tn = 0,

which has codimension n > n − 1, as promised. �

It is not hard to see that the variety G(C) has singularities in codimen-
sion 3. It is nonsingular for n = 2, 3, but singular for n ≥ 4.

The open set U as above is the complement of the divisor Σn of (1.16).
The inverse image of Σn in G(C) can be described easily. It consists of the
points

((t1 : · · · : tn), (s1 : · · · : sn))

such that

{i | ti = 0} ∪ {j | sj = 0} = {1, . . . , n}.

This locus consists of 2N − 2 components of dimension n − 2: one compo-
nent for each nonempty proper subset I of {1, . . . , n}. The component cor-
responding to I is the set of points with ti = 0 for i ∈ I and sj = 0 for j 	∈ I.

The situation for n = 3 is well represented by the famous picture of
figure 1. The three zero-dimensional strata of Σ3 are blown up in G(C) as we
climb the diagram from the lower left to the top. The proper transforms of
the one-dimensional strata are blown down as we descend to the lower right.
The horizontal rational map is an isomorphism between the complements of
the triangles. The inverse image of Σ3 consists of 23 − 2 = 6 components, as
expected.
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Figure 1: The Cremona transformation in the case n = 3.

Of course, the situation is completely symmetric: the algebraic simplex
(1.16) may be embedded in the target P

n−1 as well (with equation
∏

i si = 0).
One has π−1

1 (Σn) = π−1
2 (Σn).

Let Sn ⊂ P
n−1 be the subscheme defined by the ideal

(1.19) ISn
= (t1 · · · tn−1, t1 · · · tn−2tn, . . . , t1t3 · · · tn, t2 · · · tn).

The scheme Sn is the singularity subscheme of the divisor with simple normal
crossings Σn of (1.16), given by the union of the coordinate hyperplanes.
We can place Sn in both the source and target P

n−1. Finally, let L be the
hyperplane defined by the equation

(1.20) L = {(t1 : · · · : tn) ∈ P
n−1 | t1 + · · · + tn = 0}.

We can then make the following observations.

Lemma 1.2. Let C, G(C), Sn and L be as above.

(1) Sn is the subscheme of indeterminacies of the Cremona transforma-
tion C.

(2) π1 : G(C) → P
n−1 is the blow-up along Sn.

(3) L intersects every component of Sn transversely.

(4) Σn cuts out a divisor with simple normal crossings on L.

Proof. (1) Notice that the definition (1.15) of the Cremona transformation,
which is a priori defined on the complement of Σn, still makes sense on
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the general point of Σn. Thus, the indeterminacies of the map (1.15) are
contained in the singularity locus Sn of Σn defined by (1.19). It consists in
fact of all of Sn since after “clearing denominators,” the components of the
map defining C given in (1.15) can be rewritten as

(1.21) (t1 : · · · : tn) �→ (t2 · · · tn : t1t3 · · · tn : · · · : t1 · · · tn−1),

so that one sees that the indeterminacies are precisely those defined by the
ideal (1.19).

(2) Using (1.21), the map π1 : G(C) → P
n may be identified with the

blow-up of P
n along the subscheme Sn defined by the ideal ISn

of (1.19).
The generators of this ideal are the partial derivatives of the equation of the
algebraic simplex. Thus, Sn is the singularity subscheme of Σn. It consists
of the union of the closure of the dimension n − 2 strata of Σn. Again, note
that the situation is entirely symmetrical: we can place Sn in the target P

n

as well, and view π2 as the blow-up along Sn.
(3) and (4) are immediate from the definitions. �

Given a connected planar graph Γ, one defines its dual graph Γ∨ by fixing
an embedding of Γ in R

2 ∪ {∞} = S2 and constructing a new graph in S2

that has a vertex in each component of S2
� Γ and one edge connecting

two such vertices for each edge of Γ that is in the common boundary of the
two regions containing the vertices. Thus, #E(Γ∨) = #E(Γ) and #V (Γ∨) =
b0(S2

� Γ). The dual graph is in general nonunique, since it depends on the
choice of the embedding of Γ in S2, see, e.g., figure 2.

We recall here a well-known result (see, e.g., [12, Proposition 8.3]), which
will be very useful in the following.

Figure 2: Dual graphs of different planar embeddings of the same graph.
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Lemma 1.3. Suppose given a planar graph Γ with #E(Γ) = n, with dual
graph Γ∨. Then the graph polynomials satisfy

(1.22) ΨΓ(t1, . . . , tn) =

⎛
⎝ ∏

e∈E(Γ)

te

⎞
⎠ ΨΓ∨(t−1

1 , . . . , t−1
n ),

hence the graph hypersurfaces are related by the Cremona transformation C
of (1.15),

(1.23) C(XΓ ∩ (Pn−1
� Σn)) = XΓ∨ ∩ (Pn−1

� Σn).

Proof. This follows from the combinatorial identity

ΨΓ(t1, . . . , tn) =
∑

T⊂Γ
∏

e/∈E(T ) te

= (
∏

e∈E(Γ) te)
∑

T⊂Γ
∏

e∈E(T ) t−1
e

= (
∏

e∈E(Γ) te)
∑

T ′⊂Γ∨

∏
e/∈E(T ′) t−1

e

= (
∏

e∈E(Γ) te)ΨΓ∨(t−1
1 , . . . , t−1

n ).

The third equality uses the fact that #E(Γ) = #E(Γ∨) and #V (Γ∨) =
b0(S2

� Γ), so that deg ΨΓ + deg ΨΓ∨ = #E(Γ), and the fact that there is a
bijection between complements of spanning tree T in Γ and spanning trees
T ′ in Γ∨ obtained by shrinking the edges of T in Γ and taking the dual graph
of the resulting connected graph.

Written in the coordinates (s1 : · · · : sn) of the target P
n−1 of the Cre-

mona transformation, the identity (1.22) gives

ΨΓ(t1, . . . , tn) =

⎛
⎝ ∏

e∈E(Γ∨)

s−1
e

⎞
⎠ ΨΓ∨(s1, . . . , sn)

from which (1.23) follows. �

We then have the following simple geometric observation, which follows
directly from Lemma 1.2 and Lemma 1.3 above.
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Corollary 1.4. The graph hypersurface of the dual graph is given by
XΓ∨ = π2(π−1

1 (XΓ)), with πi : G(C) → P
n−1, for i = 1, 2, as in (1.17). The

Cremona transformation C restricts to a (biregular) isomorphism

(1.24) C : XΓ � Σn → XΓ∨ � Σn.

The map π2 : G(C) → P
n−1 of (1.17) restricts to an isomorphism

(1.25) π2 : π−1
1 (XΓ � Σn) → XΓ∨ � Σn.

Notice that formula (1.22) can be used as a source of examples of com-
binatorially inequivalent graphs that have the same graph hypersurface. In
fact, the graph polynomial ΨΓ∨(s1, . . . , sn) is the same independently of the
choice of the embedding of the planar graph Γ in the plane, while the dual
graph Γ∨ depends on the choice of the embedding of Γ in the plane. Thus,
different embeddings that give rise to different graphs Γ∨ provide examples
of combinatorially inequivalent graphs with the same graph hypersurface.
This has direct consequences, for example, on the question of lifting the
Connes–Kreimer Hopf algebra of graphs [21] at the level of the graph hyper-
surfaces or their classes in the Grothendieck ring of motives. An explicit
example of combinatorially inequivalent graphs with the same graph hyper-
surface, obtained as dual graphs of different planar embeddings of the same
graph, is given in figure 2.

We see a direct application of this general result for planar graphs in
Section 3.1 below, where we derive a relation between the classes in the
Grothendieck ring. In general, this relation alone is too weak to give explicit
formulae, but the example we concentrate on in the next section shows a
family of graphs for which a complete description of both the class in the
Grothendieck ring and the CSM class follows from the special form that the
result of Corollary 1.4 takes.

1.4. An example: the banana graphs

In this paper we concentrate on a particular example, for which we can
carry out complete and explicit calculations. We consider an infinite family
of graphs called the “banana graphs.” The nth term Γn in this family is a
vacuum bubble Feynman graph for a scalar field theory with an interaction
term of the form Lint(φ) = φn. The graph Γn has two vertices and n parallel
edges between them, as in figure 3.
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Figure 3: Examples of banana graphs.

A direct computation using the Macaulay2 program [24] for characteris-
tic classes developed in [4] shows, for the first three examples in this series of
graphs depicted in figure 3, the following invariants (see Section 2 for precise
definitions):

n 3 4 5

ΨΓ t1t2 + t2t3 + t1t3 t1t2t3 + t1t2t4 t1t2t3t4 + t1t2t3t5
+t1t3t4 + t2t3t4 +t1t2t4t5 + t1t3t4t5 + t2t3t4t5

c(XΓ) 2H2 + 2H 5H3 + 3H2 + 3H 4H4 + 14H3 + 4H2 + 4H
Mil(XΓ) 0 −4H3 60H4 − 10H3

χ(XΓ) 2 5 4

Here H denotes the hyperplane class and c(XΓ) is the CSM class of the
hypersurface pushed forward to the ambient projective space. Note that we
write here the classes in cohomology, while in Section 2 we will work with
the customary definition of CSM classes in homology. The homological class
is obtained from the above by capping with the homology class [Pn−1]∗ of
the ambient projective space. We also show the Milnor class, which mea-
sures the discrepancy between the CSM class and the Fulton class, that is,
between the characteristic class of the singular hypersurface XΓ = {ΨΓ = 0}
and the class of a smooth deformation. We also display the value of the
Euler characteristic, which one can read off the CSM class. The reader can
pause momentarily to consider the CSM classes reported in the three exam-
ples above and notice that they suggest a general formula for this fam-
ily of graphs, where the coefficient of Hk in the CSM class for the nth
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hypersurface XΓn
is given by the formula

(1.26)

⎧⎪⎪⎨
⎪⎪⎩

(
n

k

)
−

(
n − 1

k

)
=

(
n − 1
k − 1

)
if k is even,

(
n

k

)
+

(
n − 1

k

)
if k is odd,

for 1 < k < n, and n − 1 for k = 1. Thus, for example, for n ≥ 3 the Euler
characteristic χ(XΓn

) of the nth banana hypersurface fits the pattern

(1.27) χ(XΓn
) = n + (−1)n.

This is indeed the correct formula for the CSM class that will be proved in
Section 4 below. The sample case reported here already exhibits an interest-
ing feature, which we encounter again in the general formula of Section 4 and
which seems confirmed by computations carried out algorithmically on other
sample graphs from different families of Feynman graphs, namely the unex-
pected positivity of the coefficients of the CSM classes. Notice that a similar
instance of positivity of the CSM classes arises in another case of varieties
with a strong combinatorial flavor, namely the case of the Schubert varieties
considered in [8]. At present we do not have a conceptual explanation for
this positivity phenomenon, but we can state the following tentative guess,
based on the sparse numerical and theoretical evidence gathered so far.

Conjecture 1.5. The coefficients of all the powers Hk in the CSM class
of an arbitrary graph hypersurface XΓ are non-negative.

For the general element Γn in the family of the banana graphs, the graph
hypersurface XΓn

in P
n−1 is defined by the vanishing of the graph polynomial

(1.28) ΨΓn
= t1 · · · tn

(
1
t1

+ · · · +
1
tn

)
.

This is easily seen, since in this case spanning trees consist of a single edge
connecting the two vertices. Equivalently, one can see this in terms of the
matrix MΓ(t).
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Lemma 1.6. For the nth banana graph Γn, the matrix MΓn
(t) is of the

form

(1.29) MΓn
(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

t1 + t2 −t2 0 0 · · · 0
−t2 t2 + t3 −t3 0 0
0 −t3 t3 + t4 −t4 0
0 0 −t4 t4 + t5 0
...

...
...

0 0 0 0 · · · tn−1 + tn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Proof. In fact, if we choose as a basis of the first cohomology of the graph
Γn the obvious one consisting of the � = n − 1 loops ei ∪ −ei+1, with i =
1, . . . , n − 1, we obtain that the n × (n − 1)-matrix ηik is of the form

ηik =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 · · ·
−1 1 0 0 0 · · ·

0 −1 1 0 0 · · ·
0 0 −1 1 0 · · ·
0 0 0 −1 1 · · ·
...

...
...

...
... · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus, the matrix (MΓ)rk(t) =
∑

i tiηriηik has the form (1.29). It is easy to
check that this indeed has determinant given by (1.28). In fact, from (1.29)
one sees that the determinant satisfies

det MΓn
(t) = (tn−1 + tn) det MΓn−1(t) − t2n−1 det MΓn−2(t).

It then follows by induction that the determinant satisfies the recursive
relation

(1.30) detMΓn
(t) = tn det MΓn−1(t) + t1 · · · tn−1.

In fact, assuming the above for n − 1 we obtain

det MΓn
(t) = tn det MΓn−1(t) + t2n−1 det MΓn−2(t) + t1 · · · tn−1

− t2n−1 det MΓn−2(t).

It is then clear that detMΓn
(t) = ΨΓn

(t), with the latter given by for-
mula (1.28), since this also clearly satisfies the same recursion (1.30). �

The dual graph Γ∨
n is just a polygon with n vertices and we can identify

the hypersurface XΓ∨
n

in P
n−1 with the hyperplane L defined in (1.20).
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We rephrase here the statement of Corollary 1.4 in the special case of
the banana graphs, since it will be very useful in our explicit computations
of Sections 3 and 4 below.

Lemma 1.7. The n-th banana graph hypersurface is XΓn
= π2(π−1

1 (L)),
with πi : G(C) → P

n−1, for i = 1, 2, as in (1.17). The Cremona transforma-
tion C restricts to a (biregular) isomorphism

(1.31) C : L � Σn → XΓn
� Σn.

The map π2 : G(C) → P
n−1 of (1.17) restricts to an isomorphism

(1.32) π2 : π−1
1 (L � Σn) → XΓn

� Σn.

In order to compute the Feynman integral (1.9), we view the banana
graphs Γn not as vacuum bubbles, but as endowed with a number of external
edges, as in figure 4. It does not matter how many external edges we attach.
This will depend on which scalar field theory the graph belongs to, but the
resulting integral is unaffected by this, as long as we have nonzero external
momenta flowing through the graph.

Lemma 1.8. The Feynman integral (1.9) for the banana graphs Γn is of
the form
(1.33)

U(Γ, p) =
Γ((1 − D/2)(n − 1) + 1)C(p)

(4π)(n−1)D/2

∫
σn

(t1 · · · tn)(
D

2
−1)(n−1)−1 ωn

ΨΓ(t)(
D

2
−1)n

,

with the function of the external momenta given by C(p) = (
∑

Pv)2, with v
being either one of the two vertices of the graph Γn and Pv =∑

e∈Eext(Γn),t(e)=v pe.

Figure 4: Banana graphs with external edges.



Banana motives 17

Proof. The result is immediate from (1.9), using n = � + 1 and the fact that
the only cut-set for the banana graph Γn consists of the union of all the
edges, so that

PΓ(t, p) = C(p) t1 · · · tn.

�
For example, in the case with n = 2 and D ∈ 2N, D ≥ 4, the integral

(up to a divergent Gamma factor Γ(2 − D/2)4π−D/2) reduces to the com-
putation of the convergent integral

∫
[0,1]

(t(1 − t))D/2−2dt =
((D

2 − 2)!)2

(D − 3)!
.

In general, apart from poles of the Gamma function, divergences may
arise from the intersections of the domain of integration σn with the graph
hypersurface XΓn

.

Lemma 1.9. The intersection of the domain of integration σn with the
graph hypersurface XΓn

happens along σn ∩ Sn in the algebraic simplex Σn.

Proof. The polynomial ΨΓ(t) ≥ 0 for t ∈ R
n
+ and by the explicit form (1.28)

of the polynomial, one can see that zeros will only occur when at least two
of the coordinates vanish, i.e., along the intersection of σn with the scheme
of singularities Sn of Σn (cf. Lemma 3.8 below). �

One procedure to deal with this source of divergences is to work on
blowups of P

n−1 along this singular locus (cf. [12,14]). In [30] another possi-
ble method of regularization for integrals of the form (1.33) which takes care
of the singularities of the integral on σn (the pole of the Gamma function
needs to be addressed separately) was proposed, based on replacing the inte-
gral along σn with an integral that goes around the singularities along the
fibers of a circle bundle. In general, this type of regularization procedures
requires a detailed knowledge of the singularities of the hypersurface XΓ to
be carried out, and that is one of the reasons for introducing invariants of
singular varieties in the study of graph hypersurfaces.

2. Characteristic classes and the Grothendieck ring

In order to understand the nature of the part of the cohomology of the graph
hypersurface complement that supports the period corresponding to the
Feynman integral (ignoring divergence issues momentarily), one would like
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to decompose P
n−1

� XΓ into simpler building blocks. As in Section 8 of [14],
this can be done by looking at the class [XΓ] of the graph hypersurface in the
Grothendieck ring of motives. One knows by the general result of Belkale–
Brosnam [9] that the graph hypersurfaces generate the Grothendieck ring,
hence they are quite arbitrarily complex as motives, but one still needs to
understand whether the part of the decomposition that is relevant to the
computation of the Feynman integral might in fact be of a very special
type, e.g., a mixed Tate motive as the evidence suggests. The family of
graphs we consider here is very simple in that respect. In fact, one can see
very explicitly that their classes in the Grothendieck ring are combinations
of Tate motives (cf. formula (3.13) below). One can see this also by looking
at the Hodge structure. For the graph hypersurfaces of the banana graphs
this is described in Section 8 of [12].

Here we describe two ways of analyzing the graph hypersurfaces through
an additive invariant, one as above using the class [XΓ] in the Grothendieck
ring, and the other using the push-forward of the CSM class of XΓ to the
Chow group (or homology) of the ambient projective space P

n−1. While
the first does not depend on an ambient space, the latter is sensitive to
the specific embedding of XΓ in the projective space P

n−1, hence it might
conceivably carry a little more information that is useful in relation to the
computation of the Feynman integral on P

n−1
� XΓ. We recall here below

a few basic facts about both constructions. The reader familiar with these
generalities can skip directly to the next section.

2.1. The Grothendieck ring

Let VK denote the category of algebraic varieties over a field K. The Gro-
thendieck ring K0(VK) is the abelian group generated by isomorphism classes
[X] of varieties, with the relation

(2.1) [X] = [Y ] + [X � Y ],

for Y ⊂ X closed. It is made into a ring by the product [X × Y ] = [X][Y ].
An additive invariant is a map χ : VK → R, with values in a commu-

tative ring R, satisfying χ(X) = χ(Y ) if X ∼= Y are isomorphic, χ(X) =
χ(Y ) + χ(X � Y ) for Y ⊂ X closed and χ(X × Y ) = χ(X)χ(Y ). The Euler
characteristic is the prototype example of such an invariant. Assigning an
additive invariant with values in R is equivalent to assigning a ring homo-
morphism χ : K0(VK) → R.
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Let MK be the pseudo-abelian category of (Chow) motives over K.
We write the objects of MK in the form (X, p, m), with X a smooth pro-
jective variety over K, p = p2 ∈ End(X) a projector and m ∈ Z account-
ing for the twist by powers of the Tate motive Q(1). Let K0(MK) denote
the Grothendieck ring of the category MK of motives. The results of [23]
show that, for K of characteristic zero, there exists an additive invariant
χmot : VK → K0(MK). This assigns to a smooth projective variety X the
class χmot(X) = [(X, id, 0)] ∈ K0(MK), while for X a general variety it
assigns a complex W (X) in the category of complexes over MK , which is
homotopy equivalent to a bounded complex whose class in K0(MK) defines
the value χmot(X). This defines a ring homomorphism

(2.2) χmot : K0(VK) → K0(MK).

If L denotes the class L = [A1] ∈ K0(VK) then its image in K0(MK) is
the Lefschetz motive L = Q(−1) = [(Spec(K), id,−1)]. Since the Lefschetz
motive is invertible in K0(MK), its inverse being the Tate motive Q(1), the
ring homomorphism (2.2) induces a ring homomorphism

(2.3) χmot : K0(VK)[L−1] → K0(MK).

Thus, in the following we can either regard the classes [XΓ] of the
graph hypersurfaces in the Grothendieck ring of varieties K0(VK) or, under
the homomorphism (2.2), as elements in the Grothendieck ring of motives
K0(MK). We will no longer make this distinction explicit in the following.

2.2. CSM classes as a measure of singularities

The Chern class of a nonsingular complete variety V is the “total homol-
ogy Chern class” of its tangent bundle. We write c(V ) := c(TV ) ∩ [V ]∗ to
indicate the result of applying the Chern class of the tangent bundle of V
to the fundamental class [V ]∗ of V . (We use the notation [V ]∗ rather than
the more common [V ] in order to avoid any confusion with the class of V in
the Grothendieck group.)

The class c(V ) resides naturally in the Chow group A∗V . For the purpose
of this paper, the reader will miss nothing by replacing A∗V with ordinary
homology.

The Chern class of a variety V is a class of evident geometric signifi-
cance: for example, the degree of its zero-dimensional component agrees with
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the topological Euler characteristic of V . This follows essentially from the
Poincaré–Hopf theorem:

∫
c(TV ) ∩ [V ]∗ = χ(V ).

It is natural to ask whether there are analogs of the Chern class defined
for possibly singular varieties, for which a tangent bundle is not necessarily
available.

Somewhat surprisingly, one finds that there are several possible defini-
tions, each “natural” for different reasons, and all agreeing with each other
in the nonsingular case. If X is a complete intersection in a nonsingular
variety V , it is reasonable to consider the Fulton class

cvir(X) :=
c(TV )

c(NXV )
∩ [X]∗,

where NXV denotes the normal bundle to X in V . Up to natural identi-
fications, this is the Chern class of a smoothing of X (when a smoothing
exists), and in particular it agrees with c(X) if X is nonsingular. It is an
interesting fact that this class is independent of the realization of X as a
complete intersection: that is, it is independent of the ambient nonsingular
variety V . In other words, c(TV )

c(NXV ) behaves as the class of a “virtual tangent
bundle” to X. Its definition can in fact be extended (and in more than one
way) to arbitrary varieties, see Section 4.2.6 in [22].

The class cvir(X) is in a sense unaffected by the singularities of X: for
a hypersurface X in a nonsingular variety V , it is determined by the class
of X as a divisor in V .

A much more refined invariant is the CSM class of X, which depends
more crucially on the singularities of X, and which we will use as a measure
of the singularities by comparison with cvir(X).

The name of the class retains some of its history. In the mid-60s,
M.-H. Schwartz [33, 34] introduced a class extending to singular varieties
Poincaré-Hopf–type results, by studying tangent frames emanating radially
from the singularities. Independently of Schwartz’ work, Grothendieck and
Deligne conjectured a theory of characteristic classes fitting a tight functo-
rial prescription, and in the early 70s R. MacPherson constructed a class
satisfying this requirement [29]. It was later proved by J.-P. Brasselet and
M.-H. Schwartz [18] that the classes agree.

In this paper we denote the CSM class of a singular variety X simply
by c(X) (the notation cSM(X) is frequently used in the literature).
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The properties satisfied by CSM classes may be summarized as follows.
First of all, c(X) must agree with its namesake when X is a complete non-
singular variety: that is, c(X) = c(TX) ∩ [X]∗ in this case. Secondly, asso-
ciate with every variety X an abelian group F (X) of “constructible func-
tions”: elements of F (X) are finite integer linear combinations of functions
1Z (defined by 1Z(p) = 1 if p ∈ Z, 1Z(p) = 0 if p 	∈ Z), for subvarieties Z
of X. The assignment X �→ F (X) is covariantly functorial: for every proper
map Y → X there is a push-forward f∗ : F (Y ) → F (X), defined by taking
topological Euler characteristic of fibers. More precisely, for W ⊆ Y a closed
subvariety, one defines f∗(1W ) = χ(W ∩ f−1(p)), and extends this definition
to F (Y ) by linearity.

Grothendieck and Deligne conjectured the existence of a unique natural
transformation c∗ from the functor F to the homology functor such that
c∗(1X) = c(TX) ∩ [X]∗ if X is nonsingular. MacPherson constructed such a
transformation in [29]. The CSM class of X is then defined to be c(X) :=
c∗(1X). Resolution of singularities in characteristic zero implies that the
transformation is unique, and in fact determines c(X) for any X.

As an illustration of the fact that the CSM class assembles interesting
invariants of a variety, apply the property just reviewed to the constant
map f : X → {pt}. In this case, the naturality property reads f∗c∗(1X) =
c∗f∗(1X), that is,

f∗c(X) = c∗(χ(X)1pt)

(using the definition of push-forward of constructible function). Taking deg-
rees, this shows that ∫

c(X) = χ(X),

precisely as in the nonsingular case: the degree of the CSM class of a (pos-
sibly) singular variety equals its topological Euler characteristic.

It follows that, if X is a hypersurface with one isolated singularity, then
the degree of the class

Mil(X) := c(X) − cvir(X)

equals (up to a sign) the Milnor number of the singularity.
For hypersurfaces with arbitrary singularities, as the graph hypersurfaces

we consider in the present paper which typically have nonisolated singular-
ities, the degree of the CSM class equals Parusiński’s generalization of the
Milnor number [32]. The class Mil(X) is called “Milnor class,” and has been
studied rather carefully for X a complete intersection [17].
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For a hypersurface, the Milnor class carries essentially the same infor-
mation as the Segre class of the singularity subscheme of X (see [5]). In
this sense, it is a measure of the singularities of the hypersurface. For exam-
ple, the largest dimension of a nonzero term in the Milnor class equals the
dimension of the singular locus of X.

The graph hypersurfaces in this paper are hypersurfaces of projective
space, hence it is convenient to view the CSM class and the Milnor class of
X as classes in projective space. This push-forward is understood in the table
in Section 1.4, and will be often understood in the explicit computations of
Section 4. Notice that here the CSM class lives in homology and not in
cohomology.

2.3. CSM classes versus classes in the Grothendieck ring

CSM classes are defined in [29] by relating them to a different class, called
“Chern–Mather class,” by means of a local invariant of singularities known
as the “local Euler obstruction.” As noted above, once the existence of the
classes has been established, then their computation may be performed by
systematic use of resolution of singularities and computations of Euler char-
acteristics of fibers.

The following direct construction streamlines such computations, by
avoiding any computation of local invariants or of Euler characteristics. This
is observed in [1, 2], where it is used to provide an alternative proof of the
Grothendieck–Deligne conjecture, and as the basis of a generalization of the
functoriality of CSM classes to possibly nonproper morphisms.

Given a variety X, let Zi be a finite collection of locally closed, non-
singular subvarieties such that X = �iZi. For each i, let νi : Wi → Zi be a
resolution of singularities of the closure of Zi in X, such that the complement
Zi � Zi pulls back to a divisor with normal crossings Ei on Wi. Then

c(X) =
∑

i

νi∗c(TWi(− log Ei)) ∩ [Wi]∗.

Here the bundle TWi(− log Ei) is the dual of the bundle Ω1
Wi

(log Ei) of
differential forms on Wi with logarithmic poles along Ei. Each term

(2.4) νi∗c(TWi(− log Ei)) ∩ [Wi]∗

computes the contribution c(1Zi
) to the CSM class of X due to the (possibly)

noncompact subvariety Zi.
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We will use this formulation in terms of duals of sheaves of forms with
logarithmic poles to obtain the results of Section 4 below.

By abuse of notation, we denote by c(Z) ∈ A∗V the class so defined, for
any locally closed subset Z of an ambient variety V . With this notion in
hand, note that if Y ⊆ X are (closed) subvarieties of V , then

c(X) = c(Y ) + c(X � Y ),

where push-forwards are, as usual, understood. This relation is very remi-
niscent of the basic relation (2.1) that holds in the Grothendieck group of
varieties (see Section 2.1). At the same time, CSM classes satisfy a “prod-
uct formula” analogous to the definition of product in the Grothendieck
ring [1, 28].

Moreover, CSM classes satisfy an “embedded inclusion–exclusion” prin-
ciple. Namely, if X1 and X2 are subvarieties of a variety V , then

c(X1 ∪ X2) = c(X1) + c(X2) − c(X1 ∩ X2).

This is clear both from the construction presented above and from the basic
functoriality property.

In short, there is an intriguing parallel between operations in the Gro-
thendieck group of varieties and manipulations of CSM classes. This parallel
cannot be taken too far, since the “embedded” CSM treated here is not an
invariant of isomorphism classes.

Example 2.1. Let Z1 and Z2 be, respectively, a linearly embedded P
1 and

a nonsingular conic in P
2. Denoting by H the hyperplane class in P

2, we
find

c(Z1) = (H + 2H2) · [P2]∗ and c(Z2) = (2H + 2H2) · [P2]∗

while of course [Z1] = [Z2] as classes in the Grothendieck group.

Thus, in particular, the CSM class c(X) does not define an additive
invariant in the sense of Section 2.1 and does not factor through the Gro-
thendieck group, as the example above shows.

In certain situations it is, however, possible to establish a sharp corre-
spondence between CSM classes and classes in the Grothendieck group. For
the next result, we adopt the rather unorthodox notation H−r for the class
[Pr]∗ of a linear subspace of a given projective space. Thus, 1 stands for the
class of a point, [P0]∗, and the negative exponents are consistent with the
fact that if H denotes the hyperplane class then Hr · [Pr]∗ = [P0]∗.
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Proposition 2.2. Let X be a subset of projective space obtained by unions,
intersections, differences of linearly embedded subspaces. With notation as
above, assume

c(X) =
∑

aiH
−i .

Then the class of X in the Grothendieck group of varieties equals

[X] =
∑

aiT
i,

where T = [Gm] is the class of the multiplicative group, see Section 3.

Thus, adopting a variable T = H−1 in the CSM environment, and T = T

in the Grothendieck group environment, the classes corresponding to subsets
as specified in the statement would match precisely.

Proof. The formula holds for a linearly embedded X = P
r, since

c(Pr) = ((1 + H)r+1 − Hr+1) · [Pr]∗ = ((1 + H)r+1 − Hr+1) · H−r

=
(1 + H−1)r+1 − 1

H−1

and (see (3.1) below)

[Pr] =
(1 + T)r+1 − 1

T
.

Since embedded CSM classes and classes in the Grothendieck group both
satisfy inclusion–exclusion, this relation extend to all sets obtained by ordi-
nary set-theoretic operations performed on linearly embedded subspaces,
and the statement follows. �

Proposition 2.2 applies, for example, to the case of hyperplane arrange-
ments in P

N : for a hyperplane arrangement, the information carried by the
class in the Grothendieck group of varieties is precisely the same as the
information carried by the embedded CSM class. These classes reflect in a
subtle way the combinatorics of the arrangement.

In a more general setting, it is still possible to enhance the information
carried by the CSM class in such a way as to establish a tight connection
between the two environments. For example, CSM classes can be treated
within a framework with strong similarities with motivic integration [3].

In any case, one should expect that, in many examples, the work needed
to compute a CSM class should also lead to a computation of a class in the
Grothendieck group. The computations in Sections 3 and 4 in this paper
will confirm this expectation for the hypersurfaces corresponding to banana
graphs.
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2.4. Euler characteristic and the Hopf algebra

In particular, as a simple corollary of either the formula for the CSM class
or the one for the class in the Grothendieck ring, we will prove below the
explicit formula (1.27) for the Euler characteristic of the graph hypersur-
faces in the family of banana graphs that we consider here. We should
remark, however, that, while the Euler characteristic is certainly a very
useful invariant containing topological information on the hypersurfaces, if
one wants to think in terms of the Hopf algebra of Feynman graphs, then
one might prefer to look for a modified version of the Euler characteristic
which would be better behaved with respect to this structure. In particular,
if one had a modified version of Euler characteristic for the hypersurface
complements that would be multiplicative over disjoint unions of graphs,
one could use it to define a character of the Connes–Kreimer Hopf alge-
bra, which in turn could be thought of as a motivic version of the Feyn-
man rules. The ordinary Euler characteristic does not satisfy this prop-
erty, as one can see if one takes the case of the disjoint union Γ = Γ1 � Γ2.
Then the graph polynomial ΨΓ(t1, t2) = ΨΓ1(t1)ΨΓ2(t2), for t1 ∈ P

n1−1 and
t2 ∈ P

n2−1. Then the hypersurface complement P
n1+n2−1

� XΓ is a Gm-
bundle over the product (Pn1−1

� XΓ1) × (Pn2−1
� XΓ2), hence the Euler

characteristic χ(Pn1+n2−1
� XΓ) = 0.

A possible answer to this problem of constructing an appropriate modi-
fication of the Euler characteristic that will have the desired multiplicative
property

χnew(Pn1+n2−1
� XΓ) = χnew(Pn1−1

� XΓ1)χnew(Pn2−1
� XΓ2)

for Γ = Γ1 � Γ2, will be discussed in our forthcoming work [7].
Here we only point out that, in general, even though the Euler charac-

teristic of hypersurface complements vanishes for the case of a disconnected
graph, the full invariant given by either the CSM class or the class in the
Grothendieck ring is nontrivial. For instance, consider a very simple example
of extraction of a subgraphs that consists of more than one connected compo-
nent, such as the one illustrated in figure 5, where the subgraph Γ = Γ1 � Γ2
consists of two disjoint triangles and contributes to one of the terms in the
coproduct of the Connes–Kreimer Hopf algebra. Then we see that clearly
χ(Pn1+n2−1

� XΓ) = 0, by the observation above on the hypersurface com-
plement being a Gm-bundle over the product of the complements, although
we find

c(XΓ) = 6H5 + 14H4 + 16H3 + 9H2 + 2H,
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Figure 5: Extraction of a disconnected subgraph in the Hopf algebra.

so that with c(P5) = ((1 + H)6 − H6) we obtain

c(P5
� XΓ) = (1 + H)4.

The same happens for the class in the Grothendieck ring, which gives

[P5
� XΓ] = (L − 1)L4 = T(1 + T)4.

In fact, this expression can also be obtained directly from that of the CSM
class, using the observation made in Proposition 2.2 above, since we have

T(1 + T)4 = H−1(1 + H−1)4 = H−5(1 + H)4 = (1 + H4)[P5]∗.

Notice that this simple computation does not say anything about the hyper-
surface complement P

7
� XΓ̃ of the graph Γ̃ on the left-hand side of fig-

ure 5, i.e., the graph before the extraction of the subgraph Γ = Γ1 � Γ2 that
appears on the right-hand side of the same figure.

3. Banana graphs and their motives

In this section we give an explicit formula for the classes [XΓn
] of the banana

graph hypersurfaces XΓn
in the Grothendieck ring. The procedure we adopt

to carry out the computation is the following. We use the Cremona trans-
formation of (1.17). Consider the algebraic simplex Σn placed in the P

n−1

on the right-hand side of the diagram (1.17). The complement of this Σn in
the graph hypersurface XΓn

is isomorphic to the complement of the same
union Σn in the corresponding hyperplane L in the P

n−1 on the left-hand
side of (1.17), by Lemma 1.7 above. So this provides the easy part of the
computation, and one then has to give explicitly the classes of the intersec-
tions of the two hypersurfaces with the union of the coordinate hyperplanes.
The final formula for the class [XΓn

] has a simple expression in terms of the
classes of tori T

k, with T := [A1] − [A0] the class of the multiplicative group
Gm. Then T

n−1 is the class of the complement of Σn inside P
n−1.
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In the following we let 1 denote the class of a point [A0]. We use the
standard notation L for the class [A1] of the affine line (the Lefschetz motive).
We also denote, as above, by Σn the union of coordinate hyperplanes in P

n−1

and by Sn its singularity locus.
First notice the following simple identity in the Grothendieck ring:

(3.1) [Pr] =
r∑

i=0

L
r =

1 − L
r+1

1 − L
=

(1 + T)r+1 − 1
T

.

This expression can be thought of as taking place in a localization of the
Grothendieck ring, but in fact this is not really necessary if we take these
fractions as just short hand for their unambiguous expansions.

We introduce the following notation. Suppose given a class C in the
Grothendieck ring which can be written in the form

(3.2) C = a0[P0] + a1[P1] + a2[P2] + · · · .

To such a class we assign a polynomial

(3.3) f(P ) = a0 + a1P + a2P
2 + · · · .

Remark 3.1. Notice that the formal variable P does not define an element
in the Grothendieck ring, since one sees easily that P iP j 	= P i+j . In fact,
the variables P i satisfy a different multiplication rule, which we denote by
• and which is given by

(3.4) P i • P j = P i+j + P i+j−1 + · · · + P j − P i−1 − · · · − 1

and which recovers in this way the class [Pi × P
j ]. This follows from Lemma

3.2, by converting each of the two factors into the corresponding expres-
sions in T, multiplying these as classes in the Grothendieck ring, and then
converting the result back in terms of the variables P i.

Lemma 3.2. Let C be a class in the Grothendieck ring that can be written
in terms of classes of projective spaces in the form (3.2). One can convert
it into a function of the class T of the form

(3.5) C =
(1 + T)f(1 + T) − f(1)

T
,

where f is as in (3.3).



28 Paolo Aluffi and Matilde Marcolli

Proof. One obtains (3.5) from (3.2) using the expression (3.1) of [Pr] in
terms of T. In fact, (3.5) gives the expression of [Pr] as a function of T when
applied to f(P ) = P r. �

Conversely, we have a similar way to convert classes in the Grothendieck
ring that can be expressed as a function of the torus class into a function of
the classes of projective spaces.

Lemma 3.3. Suppose given a class C in the Grothendieck ring that can
be written as a function of the torus class T, by a polynomial expression
C = g(T). Then one obtains an expression of C in terms of the classes of
projective spaces [Pr] by first taking the function

(3.6)
(P − 1)g(P − 1) + g(−1)

P

and then replacing P r by the class [Pr] in the expansion of (3.6) as a poly-
nomial in the formal variable P .

Proof. The result is obtained by solving for f in (3.5), which yields for-
mula (3.6). �

Next we define an operation on classes of the form C = g(T), which
one can think of as “taking a hyperplane section.” Notice that literally tak-
ing a hyperplane section is not a well-defined operation at the level of the
Grothendieck ring, but it does make sense on classes that are constructed
from linearly embedded subspaces of a projective space, as is the case we
are considering.

Lemma 3.4. The transformation

(3.7) H : g(T) �→ g(T) − g(−1)
T + 1

gives an operation on the set of classes in the Grothendieck ring that are
polynomial functions of the torus class T. In terms of classes [Pr] it corre-
sponds to mapping [P0] to zero and [Pr] to [Pr−1] for r ≥ 1.
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Proof. One can see that, for g(T) = [Pr] = (1+T)r+1−1
T

, we have

g(T) − g(−1)
T + 1

=
(1+T)r+1−1

T
− 1

T + 1
=

(1 + T)r − 1
T

= [Pr−1],

or 0 if r = 0, so that operation (3.7) indeed corresponds to taking a hyper-
plane section. The operation is linear in g, viewed as a linear combination
of classes of projective spaces, so it works for arbitrary g. �

Notice that the operation (3.7) is a priori defined in K0(VK)[L−1] or in
K0(MK), but the expression (g(T) − g(−1))(T + 1)−1 is in fact a polynomial
in T, hence it lives in K0(VK).

We then have the following preliminary result.

Lemma 3.5. The class of Σr+1 ⊂ P
r in the Grothendieck ring is of the

form

(3.8) [Σr+1] =
(1 + T)r+1 − 1 − T

r+1

T
=

r∑
i=1

(
r + 1

i

)
T

r−i.

Intersecting with a transversal hyperplane L then gives

(3.9) [L ∩ Σr+1] =
(1 + T)r − 1

T
− T

r−1 + T
r−2 − T

r−3 + · · · ± 1.

Proof. The class of the complement of Σr+1 in P
r is the torus class T

r.
In fact, the complement of Σr+1 consists of all (r + 1)-tuples (1: ∗ : · · · :∗),
where each ∗ is a nonzero element of the ground field. It then follows directly
that the class of Σr+1 has the form (3.8), using expression (3.1) for the class
[Pr]. One then applies the transformation H of (3.7) to obtain

[L ∩ Σr+1] =
(

(1 + T)r+1 − 1 − T
r+1

T
− −1 − (−1)r+1

−1

)
/(T + 1)

=
(1 + T)r − 1

T
− T

r − (−1)r

T + 1

from which (3.9) follows. �

Definition 3.6. The trace Σ′
r+1 ⊂ P

r−1 of the algebraic simplex Σr+1 ⊂ P
r

is the intersection of Σr+1 with a general hyperplane. It is a union of r + 1
hyperplanes in P

r−1 meeting with normal crossings.
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Figure 6: The trace Σ′
4 ⊂ P

2 of the algebraic simplex Σ4 ⊂ P
3.

For instance, Σ′
4 consists of the transversal union of four lines as in

figure 6 and by (3.9) its class is

[Σ′
4] =

(1 + T)3 − 1
T

− T
2 + T − 1 = 4T + 2.

The first part of the computation of the class of the graph hypersurface
XΓn

for the banana graph Γn is then given by the following result.

Proposition 3.7. Let XΓn
⊂ P

n−1 be the hypersurface of the n-th banana
graph Γn. Then

(3.10) [XΓn
� Σn] = T

n−2 − T
n−3 + T

n−4 − · · · + (−1)n.

Proof. We know by Lemma 1.7 that XΓn
� Σn

∼= L � Σn via the Cremona
transformation, with L = P

n−2 the hyperplane (1.20). This hyperplane inter-
sects Σn transversely, so that (3.9) applies and gives

[L � Σn] = [L] − [L ∩ Σn] =
T

n−1 − (−1)n−1

T + 1
.

�

Next we examine how the graph hypersurface XΓn
intersects the alge-

braic simplex Σn.
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Lemma 3.8. The graph hypersurface XΓn
intersects the algebraic simplex

Σn ⊂ P
n−1 along the singularity subscheme Sn of Σn.

Proof. One can see this directly by comparing the defining equation (1.28) of
XΓn

with the ideal ISn
of (1.19) of the singularity subscheme Sn of Σn. �

The class in the Grothendieck ring of the singular locus Sn of Σn is given
by the following result.

Lemma 3.9. The class of Sr+1 ⊂ P
r is given by

(3.11) [Sr+1] = [Σr+1] − (r + 1)Tr−1 =
r∑

i=2

(
r + 1

i

)
T

r−i.

Proof. Each coordinate hyperplane P
r−1 in Σr+1 ⊂ P

r intersects the others
along its own algebraic simplex Σr. Thus, to obtain the class of Sr+1 from
the class of Σr+1 in the Grothendieck ring we just need to subtract the class
of the r + 1 complements of Σr in the r + 1 components of Σr+1. We then
have

[Sr+1] = [Σr+1] − (r + 1)Tr−1 =
(1 + T)r+1 − 1 − (r + 1)Tr − T

r+1

T
.

This gives the formula (3.11). �

We then have the following result.

Theorem 3.10. The class in the Grothendieck ring of the graph hypersur-
face XΓn

of the banana graph Γn is given by

(3.12) [XΓn
] =

(1 + T)n − 1
T

− T
n − (−1)n

T + 1
− n T

n−2.

Proof. We write the class [XΓn
] in the form

[XΓn
] = [XΓn

� Σn] + [Sn].

Using the results of Lemma 3.9 and Proposition 3.7 we write this as

=
T

n−1 − (−1)n−1

T + 1
+

(1 + T)n − 1 − nT
n−1 − T

n

T
,

from which (3.12) follows. �
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Formula (3.12) expresses the class [XΓn
] as

[XΓn
] = [Σ′

n] − nT
n−2,

i.e., as the class of the union Σ′
n of n hyperplanes meeting with normal

crossings (as in Definition 3.6), corrected by n times the class of an n − 2-
dimensional torus.

Example 3.11. In the case n = 3 of figure 3, (3.12) shows that the class of
the hypersurface XΓ3 ⊂ P

2 is equal to the class of the union of four transver-
sal lines, minus three times a one-dimensional torus, i.e., we have

[XΓ3 ] = 4T + 2 − 3T = T + 2 = [P1].

This can also be seen directly from the fact that the equation

ΨΓ3 = t1t2 + t2t3 + t1t3 = 0

defines a nonsingular conic in the plane.

Example 3.12. In the case n = 4 of figure 3, the hypersurface XΓ4 is a
cubic surface in P

3 with four singular points. The class in the Grothendieck
ring is

[XΓ4 ] = T
2 + 5T + 5.

In terms of the Lefschetz motive L, formula (3.12) reads equivalently as

(3.13) [XΓn
] =

L
n − 1

L − 1
− (L − 1)n − (−1)n

L
− n (L − 1)n−2.

In the context of parametric Feynman integrals, it is the complement
of the graph hypersurface in P

n−1 that supports the period computed by
the Feynman integral. Thus, in general, one is interested in the explicit
expression for the motive of the complement. It so happens that in the
particular case of the banana graphs the expression for the class of the
hypersurface complement is in fact simpler than that of the hypersurface
itself.
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Corollary 3.13. The class of the hypersurface complement P
n−1

� XΓn
is

given by

[Pn−1
� XΓn

] =
T

n − (−1)n

T + 1
+ n T

n−2

= T
n−1 + (n − 1)Tn−2 + T

n−3 − T
n−4 + T

n−5 + · · · ± 1.(3.14)

Proof. By (3.1) we see that the first term in (3.12) is in fact the class [Pn−1],
hence the class [Pn−1

� XΓn
] = [Pn−1] − [XΓn

] is given by (3.14) �

Corollary 3.14. The Euler characteristic of XΓn
is given by formula (1.27).

Proof. The Euler characteristic is an additive invariant, hence it determines
a ring homomorphism from the Grothendieck ring of varieties to the integers.
Moreover, tori have zero Euler characteristic, so that χ(Tr) = 0 for all r ≥ 1.
Then formula (3.14) for the class of the hypersurface complement shows that

χ(Pn−1
� XΓn

) = χ(Tn−1) + (n − 1)χ(Tn−2) + χ(Tn−3) − · · · ± 1 = (−1)n−1.

Since χ(Pn−1) = n we obtain

χ(XΓn
) = χ(Pn−1) − χ(Pn−1

� XΓn
) = n + (−1)n

as in (1.27). �

In Section 4 below, we derive the same Euler characteristic formula in a
different way, from the calculation of the CSM class of XΓn

.

Remark 3.15. Notice that, if we expand in (3.12) the first term in the
form [Pn−1] = T

n−1 + nT
n−2 + . . . , we see that the dominant term in [XΓn

]
is T

n−2. This is not surprising, since for the banana graphs the hypersurfaces
XΓn

are rational.

Remark 3.16. The previous remark explains the appearance of a term
nT

n−2 in the expression (3.14). The remaining terms are an alternating sum
of tori. This remaining term can be viewed as

(3.15)
T

n − (−1)n

T + 1
=

g(T) − g(−1)
T + 1

,

for g(T) = T
n. According to Lemma 3.4, this is the class of the hyperplane

section of the complement of the algebraic simplex Σn+1 in P
n. However, how
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geometrically one can associate a P
n to a graph hypersurface XΓn

⊂ P
n−1

is unclear, so that a satisfactory conceptual explanation of the occurrence
of (3.15) in (3.14) is still missing.

For completeness we also give the explicit formula of class (3.14) written
in terms of classes [Pr].

Corollary 3.17. In terms of classes of projective spaces the class [Pn−1
�

XΓn
] is given by

(3.16)

[Pn−1
� XΓn

] =
n−1∑
k=0

(
n + 1
k + 2

)
(−1)n−1−k [Pk] + n

n−2∑
k=0

(
n − 1
k + 1

)
(−1)n−2−k [Pk].

Proof. Formula (3.16) is obtained easily using the transformation rules of
Lemma 3.3 to go from expressions in T to expressions in [Pr], so that

(Tn − (−1)n)/(T + 1) �→
(

(P − 1)
(P − 1)n − (−1)n

P
+ n(−1)n−1

)
/P

=
(
(P − 1)n+1 − (n + 1)(−1)nP − (−1)n+1) /P 2

=
n−1∑
k=0

(
n + 1
k + 2

)
(−1)n−1−k [Pk],

and for the second term

n T
n−2 �→ n

(
(P − 1)(P − 1)n−2 + (−1)n−2) /P

= n
(
(P − 1)n−1 − (−1)n−1) /P

= n

n−2∑
k=0

(
n − 1
k + 1

)
(−1)n−2−k [Pk].

�

3.1. Classes of dual graphs

In the result obtained above, we used essentially the relation between the
graph hypersurface XΓn

and the hypersurface of the dual graph, which is,
in this case, a hyperplane. More generally, although one cannot obtain an
explicit formula, one can observe that for any given planar graph the relation
between the hypersurface XΓ of the graph and that of the dual graph XΓ∨

gives a relation between the classes in the Grothendieck ring, which can be
expressed as follows.
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Proposition 3.18. Let Γ be a planar graph with n = #E(Γ) and let Γ∨ be
a dual graph. Then the classes in the Grothendieck ring satisfy

(3.17) [XΓ] − [XΓ∨ ] = [Σn ∩ XΓ] − [Σn ∩ XΓ∨ ].

Proof. The result is a direct consequence of Corollary 1.4. �
Spencer Bloch more recently showed [13] that one can, in fact, obtain

more information from the image of graph hypersurfaces under the Cremona
transformation, even for graphs that are not planar. It is shown in [13] that,
in the case where Γ is the (non-planar) complete graph on N + 1 vertices,
the dual hypersurface X∨

Γ has an explicit description as the projective space
of the space of symmetric N × N matrices of rank < N . Its class in the
Grothendieck group is then computed explicitly and it lies in the Tate part.
One can obtain graphs with a fixed number of vertices by removing edges
from the complete graph. The effect of removing edges is to intersect the
dual hypersurface with linear spaces, and this gives a description of the class
of the dual hypersurface of the complete graph in terms of those associated
to smaller graphs with the same number of vertices. The main result of [13]
is then that, although the individual [XΓ] need not be in the Tate part of
K0(VK), the sum

∑
Γ[XΓ] over graphs with a fixed number of vertices is

contained in Z[L]. In quantum field theory the contributions of individual
Feynman integrals is less significant than the sum of the contributions of all
Feynman integrals with a fixed number of loops, which naturally leads to
ask whether a result similar to the result of [13] may hold for fixed number
of loops instead of vertices.

4. CSM classes for banana graphs

We now give an explicit formula for the CSM class of the hypersurfaces of
the banana graphs, for an arbitrary number of edges.

The computation of the CSM class is substantially more involved than
the computation of the class in the Grothendieck ring we obtained in the pre-
vious section, although the two carry strong formal similarities, due to the
fact that both are based on a similar inclusion–exclusion principle. In fact,
the information carried by the CSM class is more refined than the decompo-
sition in the Grothendieck ring of varieties, as it captures more sophisticated
information on how the building blocks are embedded in the ambient space.
This will be illustrated rather clearly by our explicit computations. In par-
ticular, the explicit formula for the CSM class uses in an essential way a
special formula for pullbacks of differential forms with logarithmic poles.
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In order to avoid any possible confusion between homology classes and
classes in the Grothendieck ring (even though the context should suffice
to distinguish them), we use here as in Section 2.2 the notation [Pr]∗ for
homology classes or classes in the Chow group (in an ambient P

n−1), while
reserving the symbol [Pr] for the class in the Grothendieck ring, as already
used in Section 3 above. The homology class [Pr]∗ can be expressed in terms
of the hyperplane class H and the ambient P

n−1 as [Pr]∗ = Hn−1−r[Pn−1]∗.

4.1. Characteristic classes of blowups

Let D be a divisor with simple normal crossings and nonsingular components
Di, i = 1, . . . , r, in a nonsingular variety M . Then TM(− log(D)) denotes
the sheaf of vector fields with logarithmic zeros (i.e., the dual of the sheaf
Ω1

M (log D) of 1-forms with logarithmic poles). In terms of Chern classes one
has (cf. e.g., [3])

c(TM(− log D)) =
c(TM)

(1 + D1) · · · (1 + Dr)
.

This formula has useful applications in the calculation of CSM classes, espe-
cially because it behaves nicely under push-forwards as shown in [2,3]. What
we need here is a more surprising pullback formula, which can be stated as
follows.

Theorem 4.1. Let π : W → V be the blowup of a nonsingular variety V
along a nonsingular subvariety B, with exceptional divisor F . Let Ej, j ∈ J ,
be nonsingular irreducible hypersurfaces of V , meeting with normal cross-
ings. Assume that B is cut out by some of the Ej’s. Denote by Fj the proper
transform of Ej in W . Then the sheaf of 1-forms with logarithmic poles
along E is preserved by the pullback, namely

(4.1) Ω1
M (log(F +

∑
Fj)) = π∗Ω1

M (log(
∑

Ej)).

Proof. There is an inclusion π∗Ω1
M (log(

∑
Ej)) ⊂ Ω1

M (log(F +
∑

Fj)), and
it suffices to see that this is an equality locally analytically. To this purpose,
choose local coordinates x1, . . . , xn in V , so that Ej is given by (xj),
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j = 1, . . . , k. Assume B has ideal (x1, . . . , x�), and choose local parameters
y1, . . . , yn in W so that π is expressed by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = y1

x2 = y1y2

· · ·
x� = y1y�

x�+1 = y�+1

· · ·
xn = yn

Then local sections of π∗Ω1(log(
∑

Ej)) are spanned by

dy1

y1
,

dy1

y1
+

dy2

y2
, · · · ,

dy1

y1
+

dy�

y�
,

dy�+1

y�+1
, · · · ,

dyn

yn

These clearly span the whole of Ω1(log(F +
∑

Fj)), as claimed. Thus, we
obtain (4.1). �

One derives directly from this result the following formula for Chern
classes.

Corollary 4.2. Under the same hypothesis as Theorem 4.1, the Chern
classes satisfy

(4.2)
c(TW )

(1 + F )
∏

j∈J(1 + Fj)
∩ [W ]∗ = π∗

(
c(TV )∏

j∈J(1 + Ej)
∩ [V ]∗

)
.

In other words, if B is cut out by a selection of the components Ej ,
then the pullback of the total Chern class of the bundle of vector fields with
logarithmic zeros along E equals the one of the analogous bundle upstairs.

The main consequence of Theorem 4.1 and Corollary 4.2, which is rele-
vant to the case of graph hypersurfaces, is given by the following application.

Definition 4.3. Let V be a nonsingular variety, and let Ej, j ∈ J be non-
singular divisors meeting with normal crossings in V . A proper birational
map π : W → V is a blowup adapted to the divisor with normal crossings if
it is the blowup of V along a subvariety B ⊂ V cut out by some of the Ej’s.

Notice that W carries a natural divisor with normal crossings, that is,
the union of the exceptional divisor F and of the proper transforms Fj of
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the divisors Ej . The blowup maps the complement of W to this divisor
isomorphically to the complement in V of the divisor ∪Ej . It makes sense
then to talk about a sequence of adapted blowups, by which we mean that
each blowup in the sequence is adapted to the corresponding normal cross-
ing divisor. We then have the following consequence of Theorem 4.1 and
Corollary 4.2 above.

Corollary 4.4. Let V be a nonsingular variety, and Ej be nonsingular divi-
sors meeting with normal crossings in V . Let U denote the complement of the
union E = ∪j∈JEj. Let π : W → V be a proper birational map dominated by
a sequence of adapted blowups. In particular, π maps π−1(U) isomorphically
to U . Then

(4.3) c(1π−1(U)) = π∗c(1U ).

Proof. Let π̃ : Ṽ → V be a sequence of adapted morphisms dominating π:

Ṽ
α ��

π̃ ���
��

��
��

� W

π

��
V

The divisor Ẽ = π̃−1(∪Ej) is then a divisor with normal crossings, and
π̃−1(U) is its complement in Ṽ . By Corollary 4.2, we have the identity

c(T Ṽ (− log Ẽ)) ∩ [Ṽ ]∗ = π̃∗(c(TV (− log E)) ∩ [V ]∗)
= α∗π∗(c(TV (− log E)) ∩ [V ]∗).

As in (2.4) of Section 2.3, this is saying that

c(1π̃−1(U)) = α∗π∗(c(1U )).

The statement then follows by pushing forward through α (applying
MacPherson’s theorem), since α∗α∗ = 1 as α is proper and birational. �

The identity of CSM classes happens in the homology (or Chow group) of
W . Notice that we are not assuming here that W is nonsingular. One also has
π∗c(1π−1(U)) = c(U) in the homology (Chow group) of V , by MacPherson’s
theorem [29] on functoriality of CSM classes. What is surprising about (4.3)
is that for this class of morphisms one can do for pullbacks what functoriality
usually does for pushforward.
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4.2. Computing the characteristic classes

In this section we give the explicit formula for the CSM class of the graph
hypersurface XΓn

of the banana graph Γn. The procedure is somewhat sim-
ilar conceptually to the one we used in the computation of the class in
the Grothendieck ring, namely we will use the inclusion–exclusion property
of the Chern class and separate out the contributions of the part of XΓn

that lies in the complement of the algebraic simplex Σn ⊂ P
n−1 and of the

intersection XΓn
∩ Σn, using the Cremona transformation to compute the

contribution of the first and inclusion-exclusion again to compute the class
of the latter.

As above, let Sn be the singularity subscheme of Σn. We begin by the
following preliminary result.

Proposition 4.5. The CSM class of Sn is given by

(4.4) c(Sn) = ((1 + H)n − 1 − nH − Hn) · [Pn−1]∗.

Proof. Since Sn is defined by the ideal (1.19) of the codimension two inter-
sections of the coordinate planes of P

n−1, one can use the inclusion–exclusion
property to compute (4.4). Equivalently, one can use the result of [1], which
shows that, for a locus that is a union of toric orbits, the CSM class is a sum
of the homology classes of the orbit closures. Thus, one can write the CSM
class of P

n−1 as the sum of the CSM class of Sn, the homology classes of the
coordinate hyperplanes, and the homology class of the whole P

n−1, i.e.,

c(Pn−1) = (c(Sn) + nH + 1) · [Pn−1]∗,

where the two latter terms correspond to the classes of the closures of the
higher dimensional orbits. Since c(Pn−1) = ((1 + H)n − Hn) · [Pn−1]∗, this
gives (4.4). �

We now concentrate on the complement XΓn
� Σn. We again use Lemma

1.7 to describe this, via the Cremona transformation, in terms of L � Σn,
with L the hyperplane (1.20). We have the following result.

Lemma 4.6. Let π1 : G(C) → P
n−1 be as in (1.17). Then

(4.5) c(π−1
1 (L � Σn)) = π∗

1(c(L � Σn)).

Proof. By Corollary 4.4, it suffices to show that the restriction of π1 to
π−1(L) is adapted to L ∩ Σn. By (2) and (3) of Lemma 1.2, we know that
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π−1
1 (L) is the blowup of L along L ∩ Sn, that is, the singularity subscheme of

L ∩ Σn. The blowup of a variety along the singularity subscheme of a divisor
with simple normal crossings is dominated by the sequence of blowups along
the intersections of the components of the divisor, in increasing order of
dimension. This sequence is adapted, hence the claim follows. Equivalently,
notice that π1 : G(C) → P

n−1 is itself dominated by a sequence adapted to
Σn. Moreover, L and its proper transform intersect all centers of the blowups
in the sequence transversely. This also shows that the restriction of π1 to
π−1

1 (L) is adapted to L ∩ Σn. �

We have the following result for the CSM class of L � Σn in terms of
the homology (Chow group) classes [Pr]∗.

Lemma 4.7. The CSM class of L � Σn is given by

(4.6) c(L � Σn) = [Pn−2]∗ − [Pn−3]∗ + · · · + (−1)n[P0]∗.

Let h denote the cohomology class of the hyperplane section in the source
P

n−1 of diagram (1.17). Then (4.6) is written equivalently as

(4.7) c(L � Σn) = (1 + h)−1h · [Pn−1]∗.

Proof. The divisor Σn has n components with class h, hence so does L ∩ Σn.
Since the CSM class of a divisor with normal crossings is computed by the
Chern class of the bundle of vector fields with logarithmic zeros along the
components of the divisor, we find

c(L � Σn) =
c(TL) ∩ [L]∗

(1 + h)n
=

(1 + h)n−1

(1 + h)n
h · [Pn−1]∗.

�

We then have the following result that gives the formula for c(XΓn
).

Theorem 4.8. The (push-forward to P
n−1 of the) CSM class of the banana

graph hypersurface XΓn
is given by

(4.8) c(XΓn
) = ((1 + H)n − (1 − H)n−1 − nH − Hn) · [Pn−1]∗.
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Proof. Using inclusion–exclusion for CSM classes we have

c(XΓn
) = c(XΓn

∩ Σn) + c(XΓn
� Σn).

By Lemma 3.8, we know that XΓn
∩ Σn = Sn, hence the first term is given

by (4.4). Thus, we are reduced to showing that

(4.9) c(XΓn
� Σn) = (1 − (1 − H)n−1) · [Pn−1]∗.

Combining Lemmata 4.6 and 4.7, we find

c(XΓn
� Σn) = π2∗π

∗
1

(
n−1∑
i=1

(−1)i−1hi · [Pn−1]∗

)

= π2∗

(
n−1∑
i=1

(−1)i−1hi · [G(C)]∗

)
,

where we view h as a divisor class on G(C), suppressing the pullback notation.
Let H denote the hyperplane class in the target P

n−1 of diagram (1.17), as
well as its pullback to G(C). Notice that, by (1.18), G(C) is a complete
intersection of n − 1 hypersurfaces of class h + H in P

n−1 × P
n−1. Thus, we

obtain

c(XΓn
� Σn) = π2∗

(
n−1∑
i=1

(−1)i−1hi(h + H)n−1 · [Pn−1 × P
n−1]∗

)
.

Finally, we have to evaluate the push-forward via π2. We can write

c(XΓn
� Σn) =

n−1∑
i=1

aiH
i · [Pn−1]∗,

where we need to evaluate the integers ai. Since

ai =
∫

Hn−1−i · c(XΓn
� Σn),
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by the projection formula we obtain

ai =
∫

Hn−1−i
n−1∑
i=1

(−1)i−1hi(h + H)n−1 · [Pn−1 × P
n−1]∗.

In P
n−1 × P

n−1, the only nonzero monomial in h, H of degree 2n − 2 is
hn−1Hn−1, which evaluates to 1. Therefore, we have

ai = (−1)i−1 · coefficient of hn−1−iH i in (h + H)n−1 = (−1)i−1
(

n − 1
i

)
.

We then obtain

c(XΓn
� Σn) =

n−1∑
i=1

aiH
i · [Pn−1]∗

=
n−1∑
i=1

(−1)i−1
(

n − 1
i

)
H i · [Pn−1]∗

= (1 − (1 − H)n−1) · [Pn−1]∗. �

This gives a different way of computing the topological Euler character-
istic of XΓn

, which we already derived from the class in the Grothendieck
ring in Corollary 3.14.

Corollary 4.9. The Euler characteristic of the banana graph hypersurface
XΓn

is given by formula (1.27).

Proof. The Euler characteristic can be read off the CSM class as the coef-
ficient of the term of dimension zero. Thus, from (4.8) we obtain χ(XΓn

) =
n + (−1)n. �

Remark 4.10. The coefficient of Hk in the CSM class is as prescribed
in (1.26). In particular, these coefficients are positive for all n ≥ 2 and 1 ≤
k ≤ n − 1. Thus, banana graphs provide an infinite family of graphs for
which Conjecture 1.5 holds.

Remark 4.11. As pointed out in Section 2.3, CSM classes are defined (as
classes in the Chow group or homology of an ambient variety) for locally
closed subsets. It follows from Theorem 4.8 that the CSM class of the com-
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plement of XΓn
in P

n−1 is

c(Pn−1
� XΓn

) = ((1 − H)n−1 + nH) ∩ [Pn−1]∗.

4.3. The CSM class and the class in the Grothendieck ring

We discuss here the formal similarity, as well as the discrepancy, between
the expression for the CSM class and the formula for the class in the
Grothendieck ring of the graph hypersurface XΓn

.
As noted in Proposition 2.2, the CSM class and the class in the

Grothendieck group carry the same information for subsets of projective
space consisting of unions of linear subspaces. The algebraic simplex, as
well as its trace on a transversal hyperplane, are subsets of this type. Thus,
some of the work performed in Sections 3 and 4 is redundant.

The class [XΓn
] of the graph hypersurface XΓn

of the banana graph Γn

can be separated into two parts, only one of which — the part that comes
from the simplex — is linearly embedded. These two parts are responsible,
respectively, for the formal similarity and for the discrepancy between the
expression for the class [XΓn

] and the one for c(XΓn
).

In fact, denoting the unorthodox H−1 of Proposition 2.2 by a variable T ,
the CSM class of XΓn

has the form

(4.10) c(XΓn
) =

(1 + T )n − 1
T

− (T − 1)n−1 − n Tn−2.

The central term is the one that differs from expression (3.12). Adopting
the same variable T for the class T of a torus, the discrepancy is measured
by the amount

Tn − (−1)n

T + 1
− (T − 1)n−1.

5. Classes of cones

We make here a general observation that may be useful in other computa-
tions of CSM classes and classes in the Grothendieck ring for graph hyper-
surfaces. One can observe that often the graph hypersurfaces XΓ happen to
be cones over hypersurfaces in smaller projective spaces.
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There are simple operations one can perform on a given graph, which
ensure that the resulting graph will correspond to a hypersurface that is a
cone. Here is a list:

• Subdividing an edge.

• Connecting two graphs by a pair of edges.

• Appending a tree to a vertex (in this case the resulting graph will
not be 1PI).

One can see easily that in each of these cases the resulting hypersurface is
a cone, since in the first two cases the resulting graph polynomial ΨΓ will
depend on two of the variables only through their linear combination ti + tj ,
while in the last case ΨΓ does not depend on the variables of the edges in
the tree.

It may then be useful to provide an explicit formula for computing the
CSM class and the class in the Grothendieck ring for cones. The result can
be seen as a generalization of the simple formula for the Euler characteristic.

Lemma 5.1. Let Ck(X) be a cone in P
m+k of a nonempty subvariety X ⊂

P
m. Then the Euler characteristic satisfies

χ(Ck(X)) = χ(X) + k.

Proof. Consider first the case of C(X) = C1(X). We have

C(X) = (X × P
1)/(X × {pt}) = (X × A

1) ∪ {pt},

from which, by the inclusion–exclusion property of the Euler characteristic
we immediately obtain χ(C(X)) = χ(X) + 1. The result then follows induc-
tively. �

The case of the CSM class is given by the following result.

Proposition 5.2. Let i : X ↪→ P
m be a non-empty subvariety, and let j :

C(X) ↪→ P
m+1 be the cone over X. Let H denote the hyperplane class and let

i∗c(X) = f(H) ∩ [Pm]∗
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be the CSM class of X expressed in the Chow group (homology) of the ambi-
ent P

m. Then the CSM class of the cone (in the ambient P
m+1) is given by

(5.1) j∗c(C(X)) = (1 + H)f(H) ∩ [Pm+1]∗ + [P0]∗.

Proof. Let j∗c(C(X)) = g(H) ∩ [Pm+1]∗. Notice that X may be viewed as a
general hyperplane section of C(X). Then, by Claim 1 of [6] we have

f(H) ∩ [Pm]∗ = i∗c(X) = H · (1 + H)−1 ∩ j∗c(C(X))

= H(1 + H)−1g(H) ∩ [Pm+1]∗.

This implies

(5.2) (1 + H)f(H) ∩ [Pm]∗ = g(H) ∩ [Pm]∗.

This determines all the coefficients in g(H) with the exception of the coef-
ficient of Hm+1. The latter equals the Euler characteristic of C(X), hence
by Lemma 5.1 this is χ(C(X)) = χ(X) + 1. Thus, we have

coefficient of Hm+1 in g(H) = 1 + coefficient of Hm in f(H).

Together with (5.2), this implies (5.1). �
This result applies to some of the operations on graphs described above.

Here, as in the rest of the paper, we suppress the explicit pushfoward nota-
tion i∗ and j∗ in writing CSM classes in the Chow group or homology of the
ambient projective space.

Corollary 5.3. Let Γ be a graph with n edges, and let Γ̂ be the graph
obtained by subdividing an edge or by attaching a tree consisting of a single
edge to one of the vertices. If the CSM class of the hypersurface XΓ is of the
form c(XΓ) = f(H) ∩ [Pn−1]∗, with f a polynomial of deg(f) ≤ n − 1 in the
hyperplane class, then the class of XΓ̂ is given by

c(XΓ̂) = ((1 + H)f(H) + Hn) ∩ [Pn]∗.

Proof. The result follows immediately from Proposition 5.2, since in the
first case the graph polynomial ΨΓ̂ depends on a pair of variables ti, tj only
through their sum ti + tj , hence XΓ̂ is a cone over XΓ inside P

n. In the
second case the graph polynomial ΨΓ̂ is independent of the variable of the
additional edge and the result follows by the same argument, since XΓ̂ is
then also a cone over XΓ. �
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The case of attaching an arbitrary tree to a vertex of the graph is
obtained by iterating the second case of Corollary 5.3.

There are further cases of simple operations on a graph which can be
analyzed as an easy consequence of the formulae for cones:

• Adjoining a loop made of a single edge connecting a vertex to itself.

• Doubling a disconnecting edge in a non-1PI graph.

In these cases the resulting graph hypersurface is obtained by first taking a
cone over the original hypersurface in one extra dimension and then taking
the union with a transversal hyperplane, respectively, given by the vanishing
of the coordinate corresponding to the loop edge or by the vanishing of the
sum ti + tj coming from the pair of parallel edges. We then have the following
result.

Corollary 5.4. Let Γ be a graph with n edges, and let Γ′ be the graph
obtained by attaching a looping edge to a vertex of Γ, or let Γ be a non-
1PI graph and let Γ′ be obtained from Γ by doubling a disconnecting edge.
Suppose that the CSM class of XΓ is of the form c(XΓ) = f(H) ∩ [Pn−1]∗,
for a polynomial of degree ≤ n − 1 in the hyperplane class. Then the CSM
class of XΓ′ is given by

(5.3) c(XΓ′) = (f(H) + ((1 + H)n − Hn)H + Hn) ∩ [Pn]∗.

Proof. In this case, XΓ′ is obtained by taking the union of the cone over XΓ
with a general hyperplane L. Since the intersection of a general hyperplane
and XΓ′ is nothing but XΓ itself, the inclusion–exclusion property for CSM
classes discussed in Section 2.3 gives

c(XΓ′) = c(XΓ̂) + c(L) − c(XΓ)
= ((1 + H)f(H) + Hn + ((1 + H)n − Hn)H − Hf(H)) ∩ [Pn]∗

(5.4)

as claimed. �
A general remark that may be worth making is the consequence of these

results for the positivity question of Conjecture 1.5.

Corollary 5.5. If XΓ has positive CSM class, and Γ is obtained from Γ by
any of the operations listed above (subdividing edges, doubling disconnecting
edges, attaching trees and single-edge loops), then XΓ also has positive CSM
class.
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The case of joining two graphs by a pair of edges operation mentioned
above generalizes the one of doubling a disconnecting edge but is more dif-
ficult to deal with explicitly. Given a pair of 1PI graphs Γ1 and Γ2 and two
additional edges joining them as in figure 7, the graph polynomial becomes
of the form

ΨΓ(t) = (t1 + t2)ΨΓ1(t3, . . . , tn1+2)ΨΓ2(tn1+3, . . . , tn1+n2+2)
+ ΨΓ1,Γ2(t3, . . . , tn1+n2+2),(5.5)

where n1 = #E(Γ1) and n2 = #E(Γ2). Here the first term corresponds to
the spanning trees of Γ that contain either the edge t1 or t2, while the second
term comes from the spanning trees that contain both of the additional edges
t1 and t2. The resulting hypersurface XΓ ⊂ P

n1+n2+1 is once again a cone
since it depends on the variables t1 and t2 only through their sum. However,
in this case one does not have a direct control on the form of the CSM class
in terms of those of XΓ1 ⊂ P

n1−1 and XΓ2 ⊂ P
n2−1. Thus, we do not treat

this case here.
We can proceed similarly to give the relation between classes in the

Grothendieck ring. This is in fact easier than the case of CSM classes.

Proposition 5.6. With notation as in Corollaries 5.3 and 5.4, we have

[XΓ̂] = (1 + T) · [XΓ] + [P0],

[XΓ′ ] = T · [XΓ] + [Pn−1] + [P0].
(5.6)

Proof. The class of a cone in the Grothendiek ring is just

[C(X)] = [(X × A
1) ∪ {pt}] = [X][A1] + [A0].

The result then follows immediately. �

Figure 7: Joining two 1PI graphs by a pair of edges.
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As we have already noticed in our computation of the class in the
Grothendieck ring and of the CSM class in the special case of the banana
graphs, the formulae look nicer when written in terms of the hypersurface
complement rather than of the hypersurface itself. The same happens here.
When we reformulate the above in terms of the complements of the hyper-
surfaces in projective space we find the following immediate consequence of
additivity and of the formulae obtained previously.

Corollary 5.7. With notation as in Corollaries 5.3 and 5.4, assume that
c(Pn−1

� XΓ) = g(H) ∩ [Pn−1]∗. Then

c(Pn
� XΓ̂) = (1 + H)g(H) ∩ [Pn]∗,

c(Pn
� XΓ′) = g(H) ∩ [Pn]∗.

(5.7)

Similarly, the classes in the Grothendieck group satisfy

[Pn
� XΓ̂] = (1 + T) · [Pn−1

� XΓ],

[Pn
� XΓ′ ] = T · [Pn−1

� XΓ].
(5.8)

We give two explicit examples obtained from the banana graphs by
applying the operations discussed above.

Example 5.8. Attach a looping edge to the banana graph Γ4 of figure 3
and then subdivide the new edge. This gives the graph in figure 8. The CSM
class of the hypersurface XΓ4 is

(3H + 3H2 + 5H3) ∩ [P3]∗

by Theorem 4.8. According to Corollary 5.4, adding a loop gives a graph
whose hypersurface has CSM class

((3H + 3H2 + 5H3) + ((1 + H)4 − H4)H + H4) ∩ [P4]∗
= (4H + 7H2 + 11H3 + 5H4) ∩ [P4]∗.

Subdividing the new edge (or any other edge) produces a hypersurface whose
CSM class is given by

((1 + H)(4H + 7H2 + 11H3 + 5H4) + H5) ∩ [P5]∗
= (4H + 11H2 + 18H3 + 16H4 + 6H5) ∩ [P5]∗.
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Figure 8: Graph obtained from Γ4 by adding loops and subdividing edges.

This is the CSM class corresponding to the graph in Figure 8. In the
Grothendieck group of varieties, the class of the complement of the hyper-
surface XΓ4 is

T
3 + 3T

2 + T − 1.

It follows immediately that the class of the complement of the hypersurface
of the graph in figure 8 is then

T(T + 1)(T3 + 3T
2 + T − 1) = T

5 + 4T
4 + 4T

3 − T.

Example 5.9. Splitting one edge in a banana graph (see figure 9) produces
a particularly simple class in the Grothendieck group for the complement of
the corresponding hypersurface. The class for the “banana split” graph is

T
n + nT

n−1 + nT
n−2 − (−1)n.

6. Banana graphs in noncommutative quantum field theory

Recently, there has been growing interest in investigating the renormal-
ization properties and the perturbative theory for certain quantum field
theories on noncommutative spacetimes. These arise, for instance, as effec-
tive limits of string theory [20,35]. In particular, in dimension D = 4, when
the underlying R

4 is made noncommutative by deformation to R
4
θ with the

Moyal product, it is known that the φ4 theory behaves in a very interesting
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Figure 9: Banana split graph.

way. In particular, the Grosse–Wulkenhaar model was proved to be renor-
malizable to all orders in perturbation theory (for an overview see [25]).
We do not recall here the main aspects of noncommutative field theory,
as they are beyond the main purpose of this paper, but we mention the
fact, which is very relevant to us, that a parametric representation for the
Feynman integrals exists also in the noncommutative setting (cf. [26, 36]).
When the underlying spacetime becomes noncommutative, the usual Feyn-
man graphs are replaced by ribbon graphs, which account for the fact that,
in this case, in the Feynman rules the contribution of each vertex depends
on the cyclic ordering of the edges, cf. [25]. For example, in the ordinary
commutative case, among the banana graphs Γn we consider that in this
paper the only ones that can appear as Feynman graphs of the φ4 theory
are the one-loop case (with two external edges at each vertex), the two-
loop case (with one external edge at each vertex) and the three-loop case
as a vacuum bubble. Excluding the vacuum bubble because of the presence
of the polynomial PΓ(t), we see that the effect of making the underlying
spacetime noncommutative turns the remaining two graphs into the graphs
of figure 10. Notice how the two-loop ribbon graph now has two distinct
versions, only one of which is a planar graph. The usual Kirchhoff polyno-
mial ΨΓ(t) of the Feynman graph, as well as the polynomial PΓ(t, p), are
replaced by new polynomials involving pairs of spanning trees, one in the
graph itself and one in another associated graph, which is a dual graph in
the planar case and is obtained from an embedding of the ribbon graph
on a Riemann surface in the more general case. Unlike the commutative
case, these polynomials are no longer homogeneous, hence the corresponding
graph hypersurface only makes sense as an affine hypersurface. The relation
of the hypersurface for the noncommutative case and the one of the original
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Figure 10: Banana graphs in noncommutative φ4-theory.

commutative case (also viewed as an affine hypersurface) is given by the
following statement.

Proposition 6.1. Let Γ̃ be a ribbon graph in the noncommutative φ4-theory
that corresponds in the ordinary φ4-theory to a graph Γ with n internal edges.
Then instead of a single graph hypersurface XΓ one has a one-parameter
family of affine hypersurfaces XΓ̃,s ⊂ A

n, where the parameter s ∈ R+

depends upon the deformation parameter θ of the noncommutative R
4
θ and on

the parameter Ω of the harmonic oscillator term in the Grosse–Wulkenhaar
model. The hypersurface corresponding to the value s = 0 has a singularity at
the origin 0 ∈ A

n whose tangent cone is the (affine) graph hypersurface XΓ.

Proof. This follows directly from the relation between the graph polynomial
for the ribbon graph Γ̃ given in [26] and the Kirchhoff polynomial ΨΓ. It
suffices to see that (a constant multiple of) the Kirchhoff polynomial is
contained in the polynomial for Γ̃ for all values of the parameter s, and that
it gives the part of lowest order in the variables ti when s = 0. �

In the specific examples of the banana graphs Γ̃2 and Γ̃3 of figure 10,
the polynomials have been computed explicitly in [26] and they are of the
form

(6.1) ΨΓ̃2
= (1 + 4s2)(t1 + t2 + t21t2 + t1t

2
2),

where the parameter s = (4θΩ)−1 is a function of the deformation parameter
θ ∈ R of the Moyal plane and of the parameter Ω in the harmonic oscillator
term in the Grosse–Wulkenhaar action functional (see [25]). One can see the
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polynomial ΨΓ2(t) = t1 + t2 appearing as lowest order term. Similarly for
the two graphs Γ̃3 that correspond to the banana graph Γ3 one has [26]

ΨΓ̃3
(t) = (1 + 8s2 + 16s4)(t1t2 + t2t3 + t1t3 + t21t2t3 + t1t

2
2t3 + t1t2t

2
3)

+ 16s2(t22 + t21t
2
3)

(6.2)

for the planar case, while for the nonplanar case one has

ΨΓ̃3
(t) = (1 + 8s2 + 16s4)(t1t2 + t2t3 + t1t3 + t21t2t3 + t1t

2
2t3 + t1t2t

2
3)

+ 4s2(t22 + t21t
2
3 + t21 + t22t

2
3 + t23 + t21t

2
2 + 1 + t21t

2
2t

2
3).

(6.3)

In both cases, one readily recognizes the polynomial ΨΓ3(t) = t1t2 + t2t3 +
t1t3 as the lowest order part at s = 0. Notice how, when s 	= 0 one finds other
terms of order less than or equal to that of the polynomial ΨΓ3(t), such as
t22 in (6.2) and 1 + t21 + t22 + t23 in (6.3). Notice also how, at the limit value
s = 0 of the parameter, the two polynomials for the two different ribbon
graphs corresponding to the third banana graph Γ3 agree.

For each value of the parameter s = (4θΩ)−1 one obtains in this way an
affine hypersurface, which is a curve in A

2 or a surface in A
3, and that has

the corresponding affine XΓn
as tangent cone at the origin in the case s = 0.

The latter is a line in the n = 2 case and a cone on a nonsingular conic in
the case n = 3.

As a further example of why it is useful to compute invariants such
as the CSM classes for the graph hypersurfaces, we show that the CSM
class of the hypersurface defined by the polynomial (6.2) detects the special
values of the deformation parameter s = (4θΩ)−1 where the hypersurface
XΓ̃3

becomes more singular and gives a quantitative estimate of the amount
by which the singularities change.

The CSM class is naturally defined for projective varieties. In the case
of an affine hypersurface defined by a nonhomogeneous equation, one can
choose to compactify it in projective space by adding an extra variable and
making the equation homogeneous and then computing the CSM class of the
corresponding projective hypersurface. However, in doing so one should be
aware of the fact that the CSM class of an affine variety, defined by choosing
an embedding in a larger compact ambient variety, depends on the choice of
the embedding. An intrinsic definition of CSM classes for noncompact vari-
eties which does not depend on the embedding was given in [1,2]. However,
for our purposes here it suffices to take the simpler viewpoint of making the
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equation homogeneous and then computing CSM classes. If we adopt this
procedure, then by numerical calculations performed with the Macaulay2
program of [4] we obtain the following result.

Proposition 6.2. Let XΓ̃3
⊂ P

3 denote the affine surface defined by Equa-
tion (6.2) and let X̄Γ̃3

⊂ P
3 be the hypersurface obtained by making Equa-

tion (6.2) homogeneous. For general values of the parameter s = (4θΩ)−1

the CSM class is given by

(6.4) c(X̄Γ̃3
) = 14H3 + 4H.

For the special value s = 1/2 of the parameter, the CSM class becomes of
the form

(6.5) c(X̄Γ̃3
)|s=1/2 = 5H3 + 5H2 + 4H,

while in the limit s → 0 one has

(6.6) c(X̄Γ̃3
)|s=0 = 11H3 + 4H.

It is also interesting to notice that, when we consider the second equa-
tion (6.3) for the nonplanar ribbon graph associated to the third banana
graph Γ3, we see an example where the graph hypersurfaces of the nonpla-
nar graphs of noncommutative field theory no longer satisfy the positivity
property of Conjecture 1.5 that appears to hold for the graph hypersurfaces
of the commutative field theories. In fact, as in the case of the equation for
the planar graph (6.2), we now find the following result.

Proposition 6.3. Let XΓ̃3
⊂ P

3 denote the affine surface defined by
Equation (6.3) and let X̄Γ̃3

⊂ P
3 be the hypersurface obtained by making

Equation (6.3) homogeneous. For general values of the parameter s =
(4θΩ)−1 the CSM class is given by

(6.7) c(X̄Γ̃3
) = 33H3 − 9H2 + 6H.

The special case s = 1/2 is given by

(6.8) c(X̄Γ̃3
)|s=1/2 = 9H3 − 3H2 + 6H.

Notice that, in the case of ordinary Feynman graphs of commutative
scalar field theories, all the examples where the CSM classes of the corre-
sponding hypersurfaces have been computed explicitly (either theoretically
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or numerically) are planar graphs. Although it seems unlikely that planarity
will play a role in the conjectured positivity of the coefficients of the CSM
classes in the ordinary case, the example above showing that CSM classes
of graph hypersurfaces of nonplanar ribbon graphs in noncommutative field
theories can have negative coefficients makes it more interesting to check the
case of nonplanar graphs in the ordinary case as well. It is well known that,
for an ordinary graph to be nonplanar, it has to contain a copy of either the
complete graph K5 on five vertices or the complete bipartite graph K3,3 on
six vertices. Either one of these graphs corresponds to a graph polynomial
that is currently beyond the reach of the available Macaulay2 routine and a
theoretical argument that provides a more direct approach to the computa-
tion of the corresponding CSM class does not seem to be easily available. It
remains an interesting question to compute these CSM classes, especially in
view of the fact that the original computations of [19] of Feynman integrals
of graphs appear to indicate that the nonplanarity of the graph is somehow
related to the presence of more interesting periods (e.g., multiple as opposed
to simple zeta values). It would be interesting to see whether it also has an
effect on invariants such as the CSM class.
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Chern–Schwartz–MacPherson et homologie d’intersection, C. R. Acad.
Sci. Paris Sér. I Math., 314(8) (1992), 625–628.

[29] R.D. MacPherson, Chern classes for singular algebraic varieties, Ann.
Math. 100(2) (1974), 423–432.

[30] M. Marcolli, Motivic renormalization and singularities, arXiv:
0804.4824.

[31] N. Nakanishi, Graph theory and Feynman integrals. Gordon and Breach,
London, 1971.
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