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On the space of elliptic genera
Jan Manschot

Invariance under modular transformations and spectral flow
restrict the possible spectra of superconformal field theories
(SCFTs). This paper presents a technique to calculate the number
of constraints on the polar spectra of N = (2, 2) and N = (4, 0)
SCFTs by analyzing their elliptic genera. The polar spectrum
corresponds to the principal part of a Laurent expansion derived
from the elliptic genus. From the point of view of the AdS3/CFT2
correspondence, these are the states which lie below the cosmic
censorship bound in classical gravity. The dimension of the space
of elliptic genera is obtained as the number of coefficients of the
principal part minus the number of constraints. As an additional
illustration of the technique, the constraints on the spectrum of
N = 4 topologically twisted Yang–Mills on CP

2 are discussed.
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1. Introduction

Because two-dimensional conformal field theories (CFTs) are diffeomor-
phism invariant, partition functions of CFTs are modular invariant [1]. This
invariance has major implications for the spectrum of the CFT. An example
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is the asymptotic growth of degeneracies which is given by the celebrated
Cardy formula. Modular invariance also imposes constraints on the part of
the spectrum with a small number of degeneracies (compared to the regime
of validity of the Cardy formula). Examples of such constraints are charge
sum rules in superconformal field theories (SCFT) [2], and constraints on
topological quantities of the target manifold when a sigma model is con-
sidered [3–5]. In these cases, the constraints are derived by an analysis of
the elliptic genus, which counts states with an alternating sign dependent
on the fermion number. The elliptic genus, being a supersymmetric index,
enumerates BPS states and is well-protected against continuous changes of
parameters which preserve supersymmetry. This makes the elliptic genus
an important tool for the microscopic account of, for example, the entropy
of D1–D5 brane systems [6] and M-theory black holes [7].

The present paper continues the study of implications on SCFT spectra
by an analysis of the N = (2, 2) and N = (4, 0) elliptic genus. The sym-
metries of the elliptic genus can be derived from modular invariance and
the spectral flow symmetry of the SCFT. It is shown that these symmetries
impose constraints on the polar spectrum,1 whose degeneracies are gener-
ically small. Section 2 explains the notion of “polar spectrum.” In the
context of the AdS3/CFT2 correspondence [8], the polar spectrum is that
part of the spectrum which classically lies below the cosmic censorship bound
of AdS3 -gravity [9]. This part of the spectrum is of particular importance
in [10], where a gravity interpretation is given to the partition function of
the boundary SCFT using the method of images. Manschot and Moore [11]
show that not every set of polar degeneracies can be completed to a full
partition function by this method. Certain spectra are thus easily excluded
as CFT spectra, based on their inconsistency with the required symmetries.
Gaberdiel et al. apply [13] the presence of constraints on N = (2, 2) polar
spectra to analyze the consistency of “pure” N = 2 supergravity with the
SCFT symmetries. Of course, the existence of a partition function with the
right properties does not imply the existence of a CFT. In case a CFT does
exist and constraints are present, only a subset of the polar degeneracies
need to be specified to determine the complete partition function. For large
central charges of N = (2, 2) and N = (4, 0) SCFTs, the ratio of the num-
ber of polar degeneracies and the number of constraints is shown to grow
linearly with the central charge.

1When the words “degeneracy” or “spectrum” are used in the following, counting
of the states with (−1)F is implicitly assumed.
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Consistency of a given polar spectrum with the symmetries can be tested
by the construction of a function (a vector-valued cusp form2), which is
determined by the polar degeneracies. When this function is non-vanishing,
no partition function with the right properties exists. This is explained
in [11], which relied on methods described in [12]. The number of constraints
on the polar spectrum is equal to the dimension of the space of appropriate
vector-valued cusp forms. The present paper describes a technique, following
the original work of Skoruppa [15], to calculate the dimension of the space
of such cusp forms. By a more straightforward approach, simpler expres-
sions for the dimension formulas for vector-valued cusp forms are derived
compared to the formulas presented in [15].

As explained in Section 2, an N = (2, 2) elliptic genus is an element of
the space of weak Jacobi forms J̃0,m with an integral Fourier expansion. We
will often refer to the space J̃0,m as the space of elliptic genera, although
not even all functions with an integral expansion in J̃0,m appear as SCFT
elliptic genera. Having obtained the dimension of the space of vector-valued
cusp forms, one can calculate the dimension of the space of elliptic gen-
era straightforwardly. The final expression for dim J̃0,m (Equation (3.22))
equals the dimension formula given in [14]. However, the derivation here is
qualitatively different. The technique described here has the advantage that
it is more generally valid than the technique of [14], in physical applications
where modular forms appear. Section 4 applies the technique to elliptic
genera of N = (4, 0) SCFTs, which are relevant for the microscopic expla-
nation of the entropy of M-theory black holes [7, 17–19]. As an additional
illustration, the dimension of the space of weakly holomorphic functions
is calculated, which satisfy the expected transformation properties of the
partition functions of topologically twisted N = 4 supersymmetric SU(N)
Yang–Mills. The constraints are more restrictive in this case than for the
N = (4, 0) SCFTs arising in M-theory. Another application is the calcula-
tion of the dimension of spaces of characters in rational CFTs, which is not
attempted here.

Section 2 starts with a review of the N = (2, 2) elliptic genus and its
connection with weak Jacobi forms. The number of independent constraints
is shown to equal the dimension of a certain space of vector-valued cusp
forms in Section 3. The dimension of the space of cusp forms is calculated.
The number of polar degeneracies minus this dimension gives the dimension

2Cusp forms are holomorphic modular forms which vanish at the cusps, which
are the points i∞ ∪ Q.
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of the space of elliptic genera. The application to N = (4, 0) elliptic genera
and N = 4 Yang–Mills theory is discussed in Section 4.

2. N = (2, 2) elliptic genera and Jacobi forms

The elliptic genus is defined as the trace over the Ramond–Ramond sector
of an SCFT,

(2.1) Z(τ, z) = TrRR(−)F yJ0qL0−cL/24q̄L̄0−cR/24,

where q = e(τ),3 τ ∈ H, where H is the upper-half plane, and y = e(z), z ∈
C. The insertion of (−)F (with F = 1

2(J0 − J̄0) being the fermion number)
projects the trace on states which preserve the supersymmetries in the right-
moving sector. Since these are the right-moving ground states, the trace is
independent of τ̄ .

Modular invariance of the CFT implies that Z(τ, z) transforms under a
modular transformation as [20]
(2.2)

Z

(
γ(τ),

z

j(γ, τ)

)
= e

(
mcz2

j(γ, τ)

)
Z(τ, z), γ =

(
a b
c d

)
∈ Γ, m =

cL

6
,

where j(γ, τ) = cτ + d, and Γ is an abbreviation for SL(2, Z). When the
SCFT is a sigma model with d-dimensional target space, then m = d

4 . Rest-
ricting to specific values of z in this case gives several topological quantities
of the target manifold [4].

Spectral flow is a symmetry of the superconformal algebra, which relates
states with different periodicities of the fermions. States in the Ramond
sector can for example be mapped to states in the Neveu–Schwarz sector.
The requirement that the spectrum satisfies this symmetry implies that
Z(τ, z) is quasi-periodic as a function of z [20]. The quasi-periodicity is
given by
(2.3)

Z(τ, z + λτ + μ) = (−1)2m(λ+μ)e(−m(λ2τ + 2λz))Z(τ, z), (λ, μ) ∈ Z
2.

This paper considers elliptic genera with integer m; the results are easily
generalized to the case of non-integer m. The symmetries (2.2) and (2.3)
determine that the elliptic genus is a (weak) Jacobi form of weight 0 and
index m [14]. The adjective “weak” will be explained below. The space of
weak Jacobi forms of weight 0 and index m is denoted by J̃0,m.

3We use the convention e(x) = e2πix.
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Many aspects of Jacobi forms can be understood via the connection
between Jacobi forms and vector-valued modular forms of half-integer
weight. This connection is briefly outlined here; additional details and proofs
can be found in [14]. A weak Jacobi form φ(τ, z) has a Fourier expansion in
terms of the integer coefficients c(n, l)

(2.4) φ(τ, z) =
∑

n≥0,l∈Z

c(n, l)qnyl.

Spectral flow (2.3) determines c(n, l) to be a function of only 4mn − l2 and
the residue l mod 2m. The adjective “weak” in “weak Jacobi form” is used
when c(n, l) is non-zero for 4mn − l2 ≥ −m2, as opposed to ≥ 0 for a Jacobi
form. From spectral flow symmetry, or equivalently quasi-periodicity, one
can deduce that φ(τ, z) admits a decomposition into a set of functions hμ(τ)
and theta functions θm,μ(τ, z) with μ ∈ Z/2mZ. In terms of these functions,
φ(τ, z) is given by

(2.5) φ(τ, z) =
∑

μ mod 2m

hμ(τ)θm,μ(τ, z).

The functions hμ(τ) and θm,μ(τ, z) are given explicitly by

(2.6) hμ(τ) =
∑

n=−μ2 mod 4m

cμ(n)qn/4m, θm,μ(τ, z) =
∑
l∈Z

l=μ mod 2m

ql2/4myl,

where cμ(n) = (−1)2mlc(n+l2

4m , l), and l = μ mod 2m. The domain of μ in
Equation (2.5) is taken to be [−m + 1, m].

All the information concerning the Fourier coefficients of φ(τ, z) is thus
captured in hμ(τ). The space J̃0,m is therefore isomorphic to the space
of appropriate vector-valued modular forms. The precise transformation
properties of the vector hμ(τ) are described later in this section. The
adjective “weak” implies that the Laurent expansion of hμ(τ) may admit
a principal part, which corresponds to the terms with negative exponents,
−m/4 ≤ n/4m < 0. The negative exponents lead to a pole of hμ(τ) in the
limit τ → i∞. By Γ-transformations, the limit τ → i∞ of the vector hμ(τ)
is equivalent to τ → Q. Modular forms which are only meromorphic for
τ → i∞ ∪ Q are called “weakly holomorphic”. The poles of the hμ(τ) are
weak enough to be canceled by the theta functions, such that φ(τ, z) is an
analytic function. The coefficients cμ(n), n < 0, are referred to as “polar
coefficients.” We denote the space of polar coefficients for a given index m
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by P (m); the dimension of P (m) is p(m). These coefficients correspond to
the terms with 4mn − l2 < 0 in expansion (2.4).

The polar spectrum is defined as the set of states which is counted by the
principal part of hμ(τ). From the point of view of the SCFT, the condition
4mn − l2 < 0 corresponds to states, with eigenvalues 2

3cL(L0 − cL

24 ) − J2
0 <

0. The notion of “polar spectrum” is more generally valid in CFT, for
example the polar spectrum of a bosonic CFT is the set of states with
L0 − cL

24 < 0. In AdS3, a black hole with such quantum numbers would
classically lead to a naked singularity. Therefore, the polar states lie below
the cosmic censorship bound from the viewpoint of AdS3 gravity [9, 10].
These states are interpreted as excitations of thermal AdS3, whereas the
non-polar states are mostly contributed to black hole geometries [10,23].

The functions hμ(τ) and θm,μ(τ, z) transform under Γ with half-integral
weight, which requires the appearance of non-trivial unitary factors in mod-
ular transformations [21]. Therefore, a double sheeted cover of Γ, the meta-
plectic group Γ̃, is first introduced. An element γ̃ ∈ Γ̃ is represented by

(2.7) γ̃ = (γ, ε
√

j(γ, τ)), γ ∈ Γ, ε = ±1.

The square root of j(γ, τ) is defined unambiguously by requiring that the
argument of a complex number z lies in the domain (−π, π]. The product
of two elements is defined by

(2.8) (γ, ε
√

j(γ, τ)) · (γ′, ε′√j(γ′, τ)) = (γγ′, εε′√j(γ, γ′(τ))
√

j(γ′, τ)).

We define the slash operator |wγ̃ on a modular form f(τ) of (possibly half-
integer) weight w, by

(2.9) f |wγ̃ = ε−2wj(γ, τ)−wf(γ(τ)),

and the slash operator |k,mγ̃ on Jacobi forms φ(τ, z) of weight k and index
m by

(2.10) φ|k,mγ̃ = ε−2kj(γ, τ)−ke

(
− mcz2

j(γ, τ)

)
φ

(
γ(τ),

z

j(γ, τ)

)
.
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The set of theta functions θm,μ transforms as a vector-valued Jacobi
form under transformations γ̃ ∈ Γ̃:

(2.11)

⎛
⎜⎜⎜⎜⎜⎝

θm,−m+1| 1
2
,mγ̃

θm,−m+2| 1
2
,mγ̃

. . .

. . .
θm,m| 1

2
,mγ̃

⎞
⎟⎟⎟⎟⎟⎠

= MT
2m(γ̃)

⎛
⎜⎜⎜⎜⎝

θm,−m+1
θm,−m+2

. . .

. . .
θm,m

⎞
⎟⎟⎟⎟⎠ ,

where M2m(γ̃) is a 2m × 2m matrix. The matrix M2m(γ̃) appears trans-
posed in (2.11) for notational clarity in the rest of the text.

Generators of Γ̃ are S =
((

0 −1
1 0

)
,
√

τ

)
and T =

((
1 1
0 1

)
, 1

)
. The

transformations of θm,μ(τ, z) under S and T are given by

θm,μ|1/2,m S =
1√
2mi

∑
ν mod 2m

e
(
− μν

2m

)
θm,ν(τ, z),(2.12)

θm,μ|1/2,m T = e

(
μ2

4m

)
θm,μ(τ, z).

These transformations are in principle sufficient to deduce M2m(γ̃) for gen-
eral γ̃ ∈ Γ̃. Closed expressions are also known [15]. For elements γ̃ ∈ Γ̃
which lie in the congruence subgroup Γ(4m)∗ ∈ Γ̃, M2m(γ̃) is the identity
matrix. The group Γ(4m)∗ is defined by

(2.13) Γ(4m)∗ =
{

γ̃ =
(
γ,

( c

d

)
ε−1
d j(γ, τ)1/2

)∣∣∣ γ ∈ Γ(4m)
}

,

where Γ(N) ∈ Γ is the principal congruence subgroup

(2.14) Γ(N) =
{(

a b
c d

)
∈ Γ,

(
a b
c d

)
=

(
1 0
0 1

)
mod N

}
.

The groups Γ(4m)∗ and Γ(N) are normal subgroups of respectively Γ̃ and
Γ. In (2.13),

(
c
d

)
is the extended Legendre symbol [21] and εd =

√(−1
d

)
,

(2.15) εd =

{
1, d = 1 mod 4,

i, d = 3 mod 4.

Equation (2.13) gives an explicit expression for ε in Equation (2.7). This
expression is derived from the transformation properties of the theta func-
tion Θ(τ) =

∑
n∈Z

qn2
under Γ0(4), and is therefore consistent with the
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transformations of half-integer weight forms [21]. Since this expression for
ε takes values in (±1,±i), Θ(τ) actually transforms under a four-sheeted
cover of Γ. Using the transformations in Equation (2.12), θm,μ(τ, z) can be
shown to transform diagonally under Γ(4m)∗,4

(2.16) θm,μ| 1
2
,mγ = θm,μ(τ, z), γ ∈ Γ(4m)∗.

Note that θm,μ(τ, z) is not multiplied by an additional unitary pre-factor;
M2m(γ) is thus indeed the identity matrix for γ ∈ Γ(4m)∗. More general
transformations, acting diagonally on θm,μ(τ, z) but with non-trivial unitary
pre-factor, form a larger congruence subgroup.

From the above considerations, we deduce that the matrices M2m(γ)
form a 2m-dimensional representation of the finite group Γ̃/Γ(4m)∗. Since
the generators of Γ̃, S and T , are both represented by unitary matrices
M2m(S) and M2m(T ), the representation is unitary.

The transformations of the theta functions combined with those of φ(τ, z)
(given by (2.2) in terms of Z(τ, z)) determine that the functions hμ(τ) trans-
form as a vector-valued modular form with weight −1

2 , and conjugately to
the transformations of θm,μ,

(2.17)

⎛
⎜⎜⎜⎜⎜⎝

h−m+1|− 1
2
γ

h−m+2|− 1
2
γ

. . .

. . .
hm|− 1

2
γ

⎞
⎟⎟⎟⎟⎟⎠

= M−1
2m(γ)

⎛
⎜⎜⎜⎜⎝

h−m+1
h−m+2

. . .

. . .
hm

⎞
⎟⎟⎟⎟⎠ ,

for γ ∈ Γ̃. Since the representation is unitary, M−1
2m(γ) = M2m(γ).

The modular forms hμ(τ), μ ∈ Z/2mZ, are not all linearly independent
forms. This is a consequence of the fact that (−1, 1) acts non-trivially on
θm,μ(τ, z) but leaves hμ(τ) invariant. The equality φ|0,m(−1, 1) = φ, which
is equivalent to

(2.18) φ(τ, z) = φ(τ, −z),

requires then that h−μ(τ) = hμ(τ). The modular transformations of the
vector-valued modular form hμ(τ) are therefore adequately described by a
vector of length m + 1 and an (m + 1) × (m + 1) matrix M(γ). This gives
rise to an (m + 1)-dimensional representation of the finite group Γ̃/Γ(4m)∗.
The domain of μ in this representation is taken to be [0, m].

4In the following, the tilde is omitted from elements γ̃ ∈ Γ̃.
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3. Cusp forms as constraints on N = (2, 2) spectra

This section calculates the number of independent constraints on the polar
spectrum, which is the number of constraints on the polar coefficients cμ(n),
n < 0, of a Jacobi form. This result, given in (3.19), allows us to determine
the dimension J̃0,m or equivalently the space of elliptic genera in (3.22).

Before considering the constraints, it is first shown that the weakly holo-
morphic, negative weight modular form hμ(τ) in (2.5) and (2.6) is uniquely
determined by its polar coefficients. One would namely find a contradiction
when two or more such forms exist, having the same principal part but differ-
ent regular part. The difference of two such forms would be a holomorphic,
negative weight modular form of Γ(4m)∗. Since such holomorphic forms
with negative weight do not exist, the polar coefficients uniquely determine
the weakly holomorphic modular form. The upper bound on the dimension
of weakly holomorphic, negative weight modular forms, with a given maxi-
mum order of the pole at τ → i∞, is therefore given by the number of polar
terms p(m).

One encounters the presence of constraints when one attempts to find
a negative weight modular form with a prescribed set of polar coefficients
[11, 12]. Naively, a sum over Γ/Γ∞, which is known as a Poincaré series,
completes a function which is not modular covariant to a modular covariant
object. However, Manschot and Moore [11] and Niebur [12] explain that
a sum over Γ/Γ∞ does not complete every possible choice of polar terms to
a modular form or Jacobi form. Manschot and Moore [11] aim to construct a
Jacobi form by a Poincaré series on the principal part of hμ(τ). For a general
choice of cμ(n), n < 0, the constructed function φ(τ, z) does not transform
as a form in J̃0,m. Instead, φ(τ, z) transforms with an anomalous shift under
Γ-transformations

(3.1) φ|0,m γ − φ = − 1
Γ(3/2)

∑
μ mod 2m

θm,μ(τ, z)
∫ −i∞

γ−1(∞)
gμ(t)(t̄ − τ)1/2dt̄,

where Γ(x) is the Gamma-function. The vector gμ(τ) is a vector-valued cusp
form of weight 21

2 and it transforms conjugately to hμ(τ), thus with the (m +
1) × (m + 1) matrices M(γ). We refer to the space of these vector-valued
cusp forms as S2 1

2
,M(Γ(4m)∗); S2 1

2
,M(Γ(4m)∗) has the argument Γ(4m)∗

since the matrices M(γ) form a representation of Γ̃/Γ(4m)∗. The right-
hand side does not vanish unless gμ(τ) = 0 [12]. Moreover, independent
vector-valued forms gμ(τ) lead to independent vector-valued functions of
τ [22] after the integration over t̄ in (3.1).
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The cusp form gμ(τ) is a Poincaré series determined by the coefficients
cμ(n), n < 0 [11, 12]. Vanishing of gμ(τ) is established for a proper choice
of cμ(n), n < 0,5 namely a choice which corresponds to the coefficients of a
weak Jacobi form. To learn whether a given polar spectrum is consistent
with the space of potential elliptic genera, one can check whether the cor-
responding cusp form vanishes or not. Since the Poincaré series span the
space of cusp forms [24] and the integration leads to independent functions
of τ , the number of independent constraints is equal to the dimension of the
space of vector-valued cusp forms. More details can be found in [11]. In
the context of scalar modular forms, Niebur [12] established a space of cusp
forms as an obstruction to the construction of non-positive weight modular
forms with singularities.

The space of cusp forms forms thus an obstruction to the construction
of Jacobi forms and imposes restrictions on the choice of polar coefficients.
The space P (m) reduced by the constraints is denoted by Pc(m). Since
a specific choice of polar coefficients which lies in Pc(m) corresponds to a
unique form in J̃0,m, dimPc(m) is equal to dim J̃0,m. This dimension can
thus be calculated by

(3.2) dim J̃0,m = p(m) − dim S2 1
2
,M(Γ(4m)∗).

The different spaces and the described relations between them can be nicely
summarized as a short exact sequence

(3.3) 0 → J̃0,m → P (m) → S2 1
2
,M(Γ(4m)∗) → 0,

where the second arrow maps a given Jacobi form to the set of polar coef-
ficients cμ(n), n < 0, and the third arrow is the construction of the vector-
valued cusp form from the polar coefficients by a Poincaré series [11].

The obstructions can be viewed as a manifestation of the Mittag–Leffler
problem [25], which is the problem of finding a meromorphic section with
prescribed singularities of a line bundle L over a manifold X. The space of
obstructions to finding such a section is given by H1(X, O(L)), where O(L) is
the sheaf of holomorphic sections of L. Since the modular curve H/Γ is one-
dimensional, H1(X, O(L)) is by Serre duality related to H0(X, O(K × L∗)),
with K the canonical bundle. In the present discussion, sections of L have
weight −1

2 and therefore sections of L∗ have weight 1
2 . Since holomorphic

5In the case of bosonic pure gravity [23], the corresponding cusp form would be
a weight 2 cusp form of Γ. Since these do not exist, no constraints by modularity
are imposed on the polar spectrum, which is consistent with [23].
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sections of K are cusp forms of weight 2, this explains the appearance of
cusp forms of weight 21

2 as obstructions to the construction of elliptic genera.
Borcherds [26] generalizes these considerations to the vector-valued case and
proves that the obstruction space for vector-valued modular forms hμ(τ) is
given by the vector-valued cusp forms gμ(τ). Explicit calculations of the
dimensions of vector-valued modular forms are carried out in [15]. Such
dimension formulas are also mentioned in [26–28].

The basic ingredients for the calculation of dimS2 1
2
,M(Γ(4m)∗) are the

orthogonality relations for irreducible characters of finite groups and the
Selberg trace formula. The relevant finite group appeared in Section 2,
namely Γ̃/Γ(4m)∗. The transformation properties of gμ(τ) provide an (m +
1)-dimensional representation M in terms of the matrices M(γ). We define
a character of this representation in the usual way by

(3.4) χM(γ) = Tr(M(γ)).

We label the set of irreducible representations by Ri. The orthogonality
relations for characters of finite groups read in this case

(3.5)
1

|Γ̃/Γ(4m)∗|
∑

γ∈Γ̃/Γ(4m)∗

χRi
(γ)χRj

(γ) = δij .

The multiplicities mi of the irreducible representations Ri in M are given
by

(3.6) mi =
1

|Γ̃/Γ(4m)∗|
∑

γ∈Γ̃/Γ(4m)∗

χM(γ)χRj
(γ).

Since Γ(4m)∗ lies in the kernel of the representation M, the individual vector
elements gμ(τ) lie in the space of weight 21

2 cusp forms of Γ(4m)∗, which is
denoted by S2 1

2
(Γ(4m)∗). Since Γ(4m)∗ is a normal subgroup of Γ̃, the space

S2 1
2
(Γ(4m)∗) is closed under transformations of γ ∈ Γ̃; such transformations

rotate a chosen set of basis elements of S2 1
2
(Γ(4m)∗) among each other. As

a consequence, S2 1
2
(Γ(4m)∗) defines a dim S2 1

2
(Γ(4m)∗)-dimensional repre-

sentation of Γ̃/Γ(4m)∗, which can similarly be decomposed into the irre-
ducible representations. When the multiplicities of Ri in S2 1

2
(Γ(4m)∗) are

si, then dim S2 1
2
,M(Γ(4m)∗) =

∑
i misi. The character of the element γ in

the Γ̃/Γ(4m)∗-representation S2 1
2
(Γ(4m)∗) is denoted by

(3.7) Tr
[
γ, S2 1

2
(Γ(4m)∗)

]
.
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In terms of the characters, dim S2 1
2
,M(Γ(4m)∗) is now expressed by

(3.8)

dim S2 1
2
,M(Γ(4m)∗) =

1
|Γ̃/Γ(4m)∗|

∑
γ∈Γ̃/Γ(4m)∗

χM(γ)Tr
[
γ, S2 1

2
(Γ(4m)∗)

]
.

The Selberg trace formula provides a way to determine traces as in
Equation (3.7), for example, Tr [γ, Sw(Γ(4m)∗)] − Tr

[
γ−1, M2−w(Γ(4m)∗)

]
can be calculated. The space M2−w(Γ(4m)∗) is the space of holomorphic
modular forms of Γ(4m)∗ with weight 2 − w. This is applied by Theorem
5.1 of [15] to calculate the difference of the dimensions of Sw,M(Γ(4m)∗) and
M2−w,M̄(Γ(4m)∗), where M is a representation of Γ̃/Γ(4m)∗. It is a sum of
three (generically fractional) contributions

(3.9) dimSw,M(Γ(4m)∗) − dim M2−w,M̄(Γ(4m)∗) = As + Ae + Ap.

The subscripts “s,” “e” and “p” refer respectively to “scalar,” “elliptic” and
“parabolic.” This terminology appears naturally in the derivation of the
Selberg trace formula, see for example, [29]. The three contributions are
given in [15,27]

As =
w − 1

12
χM(1),

Ae =
1
4
Re

[
e
(w

4

)
χM (S)

]
+

2
3
√

3
Re

[
e

(
2w + 1

12

)
χM (ST )

]
,(3.10)

Ap = −1
2
S(M) −

d∑
j=1

((λj)),

where the trace of the identity matrix χM(1) is the dimension d of the
representation M. The numbers λj are the fractional numbers appearing
in χM(Tn) =

∑
j e(λjn). The symbol S(M) is defined as the number of λj

which take values in Z. The function ((x)) is defined by

(3.11) ((x)) = x − 	x
 + �x�
2

=

{
ξ − 1

2 , if x = ξ + Z, 0 < ξ < 1,

0, if x ∈ Z.

Equation (3.9) provides us dimS2 1
2
,M(Γ(4m)∗), since holomorphic mod-

ular forms with negative weight do not exist and hence dim M− 1
2
,M̄

(Γ(4m)∗) = 0. To calculate the dimension of S2 1
2
,M(Γ(4m)∗), one needs
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to evaluate χM(γ) for the relevant γ’s and substitute in Equation (3.10).
We proceed with a direct evaluation of χM(γ) from the matrices defined in
Section 2. From Equation (2.18) we deduced that the hμ(τ) are described
by an (m + 1)-dimensional vector, thus d = m + 1 and μ = 0, . . . , m. One
can express gμ|2 1

2
S and gμ|2 1

2
T in terms of gμ(τ) with μ = 0, . . . , m:

gμ|2 1
2
S =

1√
2mi

(
g0(τ) − e

(μ

2

)
gm(τ)(3.12)

+
m∑

ν=1

[
e
( μν

2m

)
+ e

(
− μν

2m

)]
gν(τ)

)
,

gμ|2 1
2
T = e

(
μ2

4m

)
gμ(τ).

As and Ap can straightforwardly be determined to be:

As =
m + 1

8
,(3.13)

Ap = −1
2
S(m) −

m∑
ν=0

((
ν2

4m

))
,(3.14)

where S(m) is equal to the number of times ν2

4m ∈ Z for ν ∈ [0, m], which
can be shown to be equal to

⌊
b+2
2

⌋
, with b the largest integer whose square

divides m and �·� the floor function. The sum over ν in Equation (3.14) can
be related to a sum over class numbers [14], which is more convenient when
one wants to evaluate the sum for large m.

We evaluate now As. By Equation (3.12), we get

χM(S) =
1√
2mi

⎛
⎝1 − e

(m

2

)
+

m∑
μ=1

e

(
μ2

2m

)
+ e

(
− μ2

2m

)⎞
⎠ ,(3.15)

χM(ST ) =
1√
2mi

⎛
⎝1 − e

(
3m

4

)
+

m∑
μ=1

e

(
3μ2

4m

)
+ e

(
− μ2

4m

)⎞
⎠ .
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These sums can be calculated using the analysis of quadratic Gauss sums
G(n, m) =

∑m
r=1 e

(
nr2

m

)
[30]. The relevant Gauss sums in this case are

G(1, 2m) =

{√
2m(1 + i), m = 0 mod 2,

0, m = 1 mod 2,
(3.16)

G(3, 4m) =

⎧⎪⎨
⎪⎩

2
√

3m(1 + i), m = 0 mod 3,

2
√

m(1 − i), m = 1 mod 3,

−2
√

m(1 − i), m = 2 mod 3.

Then we obtain for χM(S) and χM(ST )

χM(S) =

⎧⎨
⎩

e

(
−1

8

)
, m = 0 mod 2,

0, m = 1 mod 2,
(3.17)

χM(ST ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

e

(
− 1

12

)
, m = 0 mod 3,

e

(
−1

4

)
, m = 1 mod 3,

0, m = 2 mod 3.

Inserting this in Equation (3.10) with w = 21
2 , we find

(3.18) Ae =

⎧⎨
⎩

−1
4
, m = 0 mod 2,

0, m = 1 mod 2,
+

⎧⎨
⎩

−1
3
, m = 0 mod 3,

0, m = 1, 2 mod 3.

Thus, our final result for dimS2 1
2
,M(Γ(4m)∗) is

dim S2 1
2
,M(Γ(4m)∗) =

m + 1
8

− 1
2
S(m) −

m∑
ν=0

((
ν2

4m

))
(3.19)

+

⎧⎨
⎩

−1
4
, m = 0 mod 2,

0, m = 1 mod 2,
+

⎧⎨
⎩

−1
3
, m = 0 mod 3,

0, m = 1, 2 mod 3.

The right-hand side grows linearly with m for large m, it acquires its first
non-vanishing value for m = 5. The quantities As, Ae and Ap behave dif-
ferently when m is increased. Equation (3.13) shows that As grows linearly
with m and Ap as

√
m. The absolute value of Ae is always < 1 and completes

As + Ap, such that the total sum is an integer.
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Skoruppa [15] evaluates χM(γ) by a decomposition of the representation
M into irreducible representations, and an evaluation of the characters of
the irreducible representations. The final dimension formulas are rather
intricate and involve several sums over integers and arithmetic functions.
The values obtained for dimS2 1

2
,M(Γ(4m)∗), m = 1, . . . , 14, by these formu-

las are identical to those obtained by Equation (3.19). The equivalence is
however not proven for general m.

The dimension of the space of elliptic genera or weak Jacobi forms is
given by the number of polar coefficients p(m) minus the number of con-
straints (3.22). The number p(m) can be calculated as a function of m [14]

(3.20) p(m) =
m∑

ν=0

⌈
ν2

4m

⌉
.

The evaluation of p(m) is less elaborate when the sum over ν is rewritten
using the functions S(m) and ((x)) introduced in Equation (3.14). This
gives for p(m) [14]

p(m) =
m∑

ν=0

{
ν2

4m
+

1
2

−
((

ν2

4m

))}
− 1

2
S(m),(3.21)

=
m2

12
+

5m

8
+

13
24

− 1
2
S(m) −

m∑
ν=0

((
ν2

4m

))
.

A comparison with (3.19) shows that the ratio of p(m) and the number of
constraints grows linearly with the central charge.

The number of polar coefficients and the constraints on the polar spec-
trum are listed in Table 1. A general expression for dim J̃0,m is obtained by

Table 1: The number of polar coefficients p(m) and the number of con-
straints on these coefficients, dim S2 1

2
,M(Γ(4m)∗), for N = (2, 2) elliptic

genera as a function of m.

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14
p(m) 1 2 3 4 6 8 9 11 13 16 18 21 23 27
dim S2 1

2
,M(Γ(4m)∗) 0 0 0 0 1 1 1 1 1 2 2 2 2 3
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inserting Equations (3.19) and (3.21) in (3.2),

dim J̃0,m =
m2

12
+

m

2
+

5
12

+

⎧⎨
⎩

1
4
, m = 0 mod 2,

0, m = 1 mod 2,
(3.22)

+

⎧⎨
⎩

1
3
, m = 0 mod 3,

0, m = 1, 2 mod 3.

This result is identical to the dimension formula calculated in [14]. There,
the dimension formula is derived by a study of the Taylor expansion in z of
φ(τ, z). This approach determines that dim J̃0,m is equal to

(3.23) dim J̃0,m =
m∑

ν=0

dim M2ν(Γ),

where M2ν(Γ) is the space of modular forms of weight 2ν. The dimension
of M2ν(Γ) is given by [14]

(3.24) dimM2ν =
2ν + 5

12
− 1

3
χ3(2ν − 1) − 1

4
χ4(2ν − 1),

where χ3 and χ4 are the non-trivial Dirichlet characters modulo 3 and 4.
Substitution of this expression in Equation (3.23) and evaluation of the sum
over ν results precisely in Equation (3.22) [14].

The technique to calculate dim J̃0,m, described in the previous sections
can be easily generalized to other spaces of Jacobi forms. For example, one
can determine the dimensions of spaces of Jacobi (cusp) forms with weight
k ≥ 3, by requiring the vector hμ(τ) to be a holomorphic (cusp) form with
weight k − 1

2 . The described techniques let us calculate the dimension of the
appropriate spaces. Dimensions of such Jacobi forms can also be obtained by
a trace formula for Jacobi forms [31–33] or the Riemann–Roch theorem [34].

Another generalization is the calculation of dimensions of spaces of weak
Jacobi forms with general weight, dim J̃k,m. This might be relevant for
physics, for example, in the context of modular differential equations for
superconformal characters [35]. Here we concentrate on k even. Gener-
ically, the polar coefficients might not determine the vector-valued form
hμ(τ) uniquely. When the weight is positive, k − 1

2 > 0, holomorphic forms
might exist and some non-polar terms must be specified as well to fix the
hμ(τ). The number of these coefficients is given by dim Mk− 1

2
,M̄(Γ(4m)∗).

Of course, a number of obstructions to finding hμ(τ) might still exist. This
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number is given by dimS2 1
2
−k,M(Γ(4m)∗). As a result, dim J̃k,m is still given

by the Selberg trace formula
(3.25)

dim J̃k,m = p(m) −
(
dim S2 1

2
−k,M(Γ(4m)∗) − dim Mk− 1

2
,M̄(Γ(4m)∗)

)
.

Using the equations in Section 3, one can readily evaluate the right-hand
side of (3.25). One finds

dim J̃k,m =
m2

12
+

5m

8
+

13
24

− 3 − 2k

24
(m + 1)

− 1
4

⎧⎪⎨
⎪⎩

−1, m = 0 mod 2, k = 0 mod 4,

1, m = 0 mod 2, k = 2 mod 4,

0, else,

(3.26)

− 1
3

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−1, m = 0 mod 3, k = 0 mod 6,

1, m = 0 mod 3, k = 2 mod 6,

1, m = 1 mod 3, k = 2 mod 6,

−1, m = 1 mod 3, k = 4 mod 6,

0, else.

This is in agreement with the formulas given in [14]. Note that in the case of
k = 2, both dimS2 1

2
−k,M(Γ(4m)∗) and dimMk− 1

2
,M̄(Γ(4m)∗) might be non-

zero. The dimension formula for dim J̃2,m does not provide us the number
of polar and non-polar coefficients which need to be fixed.

4. Constraints on N = (4, 0) spectra

This section considers the constraints on the polar spectrum of N = (4, 0)
SCFTs by the modular symmetries of the N = (4, 0) elliptic genus. The
physical properties of this SCFT determine that the elliptic genus is a mild
generalization of a Jacobi form. As in Section 2, a quasi-periodicity prop-
erty can be derived from a spectral flow symmetry, leading to a theta func-
tion decomposition. The theta functions involved are however sums over a
higher dimensional, non-definite, integral lattice Λ, which leads to a vector
za of elliptic variables. The representation of Γ̃/Γ(4m)∗ associated with the
vector-valued modular forms is also more intricate.

The constraints are determined by the technique outlined in the previ-
ous sections for weak Jacobi forms. The Taylor expansion, which is used
in [14] to determine the dimension formulas, is not useful in this context
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for several reasons. The main complications are that the theta functions
generically do not cancel the poles of the vector-valued modular forms, the
higher dimensional lattice Λ, and that the N = (4, 0) elliptic genus depends
on τ as well as τ̄ .

As a final example of the calculation of constraints, the application to the
partition functions of N = 4 topologically twisted Yang–Mills on 4-manifolds
is discussed [36]. The case of CP

2 is worked out in some detail. The mod-
ular properties of the vector-valued modular form, obtained from the (4, 0)
elliptic genus, closely resembles the properties of the set of gauge theory
partition functions for the groups SU(N)/ZN .

The following paragraphs explain the appearance and relevance of these
generalizations of Jacobi forms in physics. Readers who are only interested
in the mathematical side of the discussion might want to go directly to
Equation (4.7).

The main physical relevance of N = (4, 0) elliptic genera is the fact that
the degeneracies of M-theory black holes are enumerated by such partition
functions [7,16–19]. Knowledge of the constraints on the polar degeneracies
is useful when one wants to determine explicit expressions for such N =
(4, 0) elliptic genera, as is done in [17, 37]. Denef and Moore [38] derive an
identical partition function from the viewpoint of IIA string theory. The
N = (4, 0) SCFT arises as the boundary CFT in the near-horizon geometry
of an M-theory black hole. The near-horizon geometry is given by AdS3 ⊗
S2 ⊗ X, where X is a six-dimensional Calabi–Yau. The black hole is sourced
by an M5-brane with world-volume fluxes, which wraps an ample divisor in
X and the boundary torus T 2 of AdS3. The Poincaré dual of the divisor
is P = paαa; the αa’s form a basis of H2(X, Z) with a = 1, . . . , b2. The
SCFT is obtained as a reduction of the six-dimensional low-energy degrees
of freedom to T 2. To this end, the typical length scale of the torus is required
to be much larger than that of X, and the M5-branes must be scarce in X to
avoid gravitational effects. Due to the amount of supersymmetry, the trace
over the Ramond sector needs an insertion of F 2 to be non-vanishing [39].
The N = (4, 0) elliptic genus Z(τ, τ̄ , z) is defined as

(4.1) Z(τ, τ̄ , z) = TrR
1
2
F 2(−1)F+p·J0qL0−cL/24q̄L̄0−cR/24yJ0 ,

where yJ0 = e(z · J0). The operators J0,a are the generators of b2 U(1)-
charges. The charges are denoted by qa and represent the M2-brane charge of
the black hole. An electric charge vector q is valued in the shifted dual lattice
Λ∗ + p/2, where Λ∗ is the dual lattice of the magnetic charge lattice Λ. The
shift is a consequence of the Freed–Witten anomaly [40]. An element k ∈ Λ
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is an element of H2(X, Z). The pull back of the inclusion map i : P ↪→ X
provides a non-degenerate integral inner-product D on H2(X, Z)
(4.2)

D : H2(X, Z) ⊗ H2(X, Z) → C, D(ρ, σ) =
∫

P
i∗ρ ∧ i∗σ =

∫
X

ρ ∧ σ ∧ P.

The quadratic form written as a matrix is dab = dabcp
c, where dabc =

∫
X αa ∧

αb ∧ αc is the triple intersection number of four-cycles. The inner product
on the dual lattice is dab = (dab)−1. The dimension of this lattice is the
second Betti number b2 and the signature is (1, b2 − 1).

The central charges cL and cR of the SCFT are given by

(4.3) cL = p3 +
1
2
c2 · p, cR = p3 + c2 · p,

where c2 is the second Chern class of X. The zero-point energies and the
central charges determine that the momentum on the torus can take the
following values

(4.4) L0 − L̄0 − cL − cR

24
=

p3

8
+

cR

24
mod Z.

We denote the left-hand side of this equation by −q0̄, where q0̄ is the anti-
D0-brane charge in IIA string theory. The quantity q0̄ + 1

2q2 is positive for
black holes. The charges pa and qa correspond, respectively, to the D4-brane
and D2-brane charges in IIA string theory. The insertion of F 2 projects the
trace on 1

2 -BPS states. For these states, L0 − cL

24 satisfies

(4.5) L0 − cL

24
=

1
2
q2
+,

where the subscript + denotes projection to the positive definite sublattice.
This condition implies a “heat equation”

(4.6)
(
∂τ + i

4π∂2
z+

)
Z(τ, τ̄ , z) = 0.

The weight of Z(τ, τ̄ , z) is (1
2 ,−3

2), which is a consequence of the space–
time momenta and the insertion of F 2. Since the quantity in Equation (4.4)
is in general not an integer, Γ-transformations are accompanied by phase
factors

Z|(1/2,−3/2)S =ε(S)e
(

z2
+

2τ
+

z2
−

2τ̄

)
Z(τ, τ̄ , z),(4.7)

Z|(1/2,−3/2)T =ε(T ) Z(τ, τ̄ , z).(4.8)
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Using (4.4) and that 1
6p3 + 1

12c2 · p ∈ Z by the index formula, we deduce that
ε(T ) = e

(
− c2·p

24

)
. Consistency of modular transformations requires that the

S-transformation is also accompanied by a unitary pre-factor ε(S). Since
both (ST )3 = −1 and S2 = −1 leave τ invariant, ε(S) = ε(T )−3. The phases
for general γ are denoted by ε(γ).

As in Section 2, this SCFT also contains a spectral flow symmetry which
implies a quasi-periodicity of the partition function as a function of za.
This symmetry relates a state with charge q to a state with charge q + k,
where k ∈ Λ. Spectral flow determines in this way equivalence classes for
the charges q ∈ p/2 + Λ∗. The collection of all coset representatives forms
the discriminant group Λ∗/Λ, which is finite and abelian. Its order |Λ∗/Λ|
divides D = det dab. The representatives μ are glue vectors and chosen such
that they have minimal absolute length |μ2|. Spectral flow as a symmetry of
the spectrum determines that the degeneracies c(q0̄, qa) depend only on the
equivalence class of qa in Λ∗/Λ + p/2 and q0̄ + 1

2q2. The part of the spectrum
with q0̄ + 1

2q2 < 0 is the polar spectrum in this case. The spectral flow or
quasi-periodicity combined with (4.5) allows us to perform a decomposition
of Z(τ, τ̄ , z) into a vector-valued modular form hμ(τ) and theta functions
Θμ(τ, τ̄ , z)

(4.9) Z(τ, τ̄ , z) =
∑

μ∈Λ∗/Λ

hμ(τ)Θμ(τ, τ̄ , z).

Note that this decomposition claims that hμ(τ) is a (weakly holomorphic)
function of τ . All the dependence on τ and z of Z(τ, τ̄ , z) is captured by
the Θμ(τ, τ̄ , z). The theta function corresponds to the U(1)b2-sector of the
theory, which are the so-called singleton degrees of freedom [43–45] from the
point of view of AdS3-supergravity. The expansions of hμ(τ) and Θμ(τ, τ̄ , z)
are

hμ(τ) =
∞∑

n=0

cμ(n)qn−Δμ ,(4.10)

Θμ(τ, τ̄ , z) =
∑

k∈Λ+p/2

(−1)p·(k+μ)e(τ(k + μ)2+/2 + τ̄(k + μ)2−/2 + (k + μ) · z),

(4.11)

where Δμ ∈ Q and generically positive. It is given by

(4.12) Δμ =
cR

24
−

(
μ2 + p · μ

2
−

⌊
μ2 + p · μ

2

⌋)
,
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such that n − Δμ takes values in c2·p
24 + 1

2(μ + p/2)2 mod Z.
The theta functions transform among each other under modular trans-

formations. If we define

Θμ|(b+
2 ,b−

2 )γ = j(γ, τ)−b+
2 /2j(γ, τ̄)−b−

2 /2e

(
− cz2

+

cτ + d
− cz2

−
cτ̄ + d

)
(4.13)

× Θμ

(
γ(τ), γ(τ̄),

z+

cτ + d
+

z−
cτ̄ + d

)
,

then the S- and T -transformation are given by

Θμ|(b+
2 ,b−

2 )S =
1√

|Λ∗/Λ|
(−i)(b

+
2 −b−

2 )/2e

(
−p2

4

) ∑
δ∈Λ∗/Λ

e(−δ · μ)Θδ(τ, τ̄ , z),

Θμ|(b+
2 ,b−

2 )T = e

(
(μ + p/2)2

2

)
Θμ(τ, τ̄ , z),

(4.14)

with b+
2 = 1 and b−

2 = b2 − 1, because the signature of the lattice is (1, b2 −
1). Note that p2 is actually p3, since the inner product is given by dabcp

c.
However, since we are working here with quadratic forms, we use the nota-
tion p2. The transformations of Θμ for generic elements γ ∈ Γ can be derived
using the special properties of these theta functions, following for exam-
ple [46].6 Since μ2 ∈ Q for every μ ∈ Λ∗/Λ, an integer m exists such that

Θμ|(b+
2 ,b−

2 )T
4m = Θμ(τ, τ̄ , z) for every μ ∈ Λ∗/Λ. If γ =

[
a b
c d

]
with a, d odd,

and c = 0 mod 4m, then

(4.15) Θμ|(b+
2 ,b−

2 )γ = ϕ(μ, γ)Θaμ(τ, τ̄ , z),

with
(4.16)

ϕ(μ, γ) = d−b2/2e

(
d − 1

4
p2 +

ab

2
(μ2 + μ · p)

) ∑
�∈Λ/dΛ

e

(
b

2d
(p/2 + �)2

)
.

The sum over � ∈ Λ/dΛ can be evaluated using Gauss sums, from which one
can derive that Θμ|(b+

2 ,b−
2 ) γ = Θμ(τ, τ̄ , z) with γ ∈ Γ(4m)∗ for some m.

The weight of the theta functions 1
2(1, b2 − 1) works out nicely with

the weakly holomorphicity of hμ(τ). They have weight (− b2
2 − 1, 0) and

6I am grateful to the referee for pointing out this reference to me.
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transform under S and T as

hμ|−1−b2/2S = − 1√
|Λ∗/Λ|

(−i)−b2/2−1ε(S)∗e

(
−p2

4

) ∑
δ∈Λ∗/Λ

e(−δ · μ)hδ(τ),

hμ|−1−b2/2 T = ε(T )∗e

(
(μ + p/2)2

2

)
hμ(τ).

(4.17)

The additional −-sign, appearing in the S-transformation, is a consequence
of the unitary factor in (4.14). The vector hμ(τ) has length |Λ∗/Λ|. Similarly
to the discussion around (2.18), some elements of the vector are required to
be identical. This is again deduced from the transformation of Z(τ, τ̄ , z)
under S2 = −1

(4.18) Z(τ, τ̄ , −z) = ε(S)2Z(τ, τ̄ , z).

Moreover, −1 acts on Θμ(τ, τ̄ , z) by

(4.19) Θμ(τ, τ̄ , −z) = (−1)p3
Θν(τ, τ̄ , z), ν = −μ mod Λ.

Since −1 acts trivially on hμ(τ), these equations determine that

(4.20) hμ(τ) = hν(τ), ν = −μ mod Λ.

Thus the dimension d of the vector hμ(τ) equals the number of orbits in Λ∗

by the group Λ ⊗ Z2. Here Λ acts additively and Z2 is multiplication by ±1.
These orbits do not naturally form a group. For a one-dimensional lattice
with inner-product �, d = 1

2� + 1 for � even and d = 1
2(� + 1) if � is odd.

Since the individual Θμ(τ, τ̄ , z) are forms of a congruence subgroup, and
ε(γ) is just the multiplier system of a power of η(τ), the functions hμ(τ) are
(weakly holomorphic) modular forms of a congruence subgroup Γ(4m)∗ for
some m.7 This shows that the formulas (3.9) and (3.10), which we used to
calculate the number of constraints in Section 3, are also applicable here.
The Δμ in the expansion (4.10) play the role of λj in (3.10). The form of
Δμ in (4.12) indicates that hμ(τ) is naturally written as fμ(τ)/η(τ)cR . The
dimension of the space of weakly holomorphic hμ(τ) can then be calculated
as the space of holomorphic fμ(τ) by (3.9), if cR ≥ b2 + 2. These fμ(τ)

7Note that the level arising for the Θμ(τ, τ̄ , z) might differ from the level of this
congruence subgroup, since the transformation properties are slightly different.
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might capture interesting data as in the case of SU(2) N = 4 Yang–Mills
theory on CP

2, see the last part of this section for more details.
It is interesting to compare the ratio between the number of polar coef-

ficients and constraints. The number of polar terms p(M, cR) is given by

(4.21)

p(M, cR) =
∑

μ∈Λ∗/Λ⊗Z2

	Δμ
 = −1
2
S(M) +

∑
μ∈Λ∗/Λ⊗Z2

{
Δμ − ((Δμ)) +

1
2

}
,

where S(M) is the number of terms Δμ which take their value in Z. Note
that p(M, cR) grows as cR

24 d for large cR, whereas the obstruction space grows
as 4+b2

24 d. Therefore, as in the case of N = (2, 2) elliptic genera, the ratio
between the number of polar terms and the obstructions is proportional to
the central charge. Another resemblance is the appearance of the quantity
Ap in the number of polar terms. The contribution of the triple intersection
number to cR leads to many polar coefficients, therefore, the constraints are
not very restrictive. A general analysis can be carried out, but instead only
some comments on specific examples are given here. For one M5-brane on
the hyperplane section of the quintic Calabi–Yau (considered in [17,37]), one
finds seven polar terms and no constraints; for two M5-branes, the number
of polar terms has already increased to 36 and then also one constraint is
present. Gaiotto and Yin [37] analyzes a number of other situations where
an M5-brane wraps a surface in a Calabi–Yau with b2 = 1. Interestingly,
for an M5-brane wrapping the hyperplane section of the bicubic in CP

5

is reported that six basis elements suffice to determine the elliptic genus,
whereas the number of polar coefficients is seven. Indeed, one can show
with the above described technique that one constraint is present for this
example. In agreement with [37], no constraints are found in the other
examples worked out there.

The constraints are stronger in the case of twisted N = 4 supersymmet-
ric Yang–Mills theory on a 4-manifold M . The coupling constant g and the
θ-angle of the theory are conveniently combined in the complex coupling
constant τ = θ

2π + 4πi
g2 . This theory is invariant under a strong-weak cou-

pling duality (S-duality) [41], except that the gauge group G of the theory
is exchanged with the dual magnetic group Ĝ [42]. For example, the dual
group of SU(N) is SU(N)/ZN . When certain conditions are satisfied, the
partition function is the generating function for the Euler numbers of instan-
ton moduli spaces [36]. The S-duality manifests itself as modular behavior
of the partition function of the twisted theory. Vafa and Witten [36] explain
that the partition functions for gauge group SU(N)/ZN , with different ’t



826 Jan Manschot

Hooft fluxes valued in Z/ZN , transform among each other as a vector-valued
modular form with weight −χ(M)/2. The partition function of SU(N) is
given by the one of SU(N)/ZN with trivial ’t Hooft flux, multiplied by
N−1+b1

(with b1 the first Betti number).
Remarkably, the transformation properties (4.17) closely resemble the

transformation properties of the SU(N)/ZN partition functions of twisted
N = 4 Yang–Mills theory. Both the S- and T -transformation are compat-
ible. This resemblance shows that the SU(N)/ZN partition functions can
be combined into a single partition function by adding U(1) degrees of free-
dom. This gives the partition function of the theory with gauge group
U(N), whose magnetic group is U(N) as well. The space of constraints
is more restrictive in this situation than for N = (4, 0) SCFTs, since the
number of polar degeneracies is much smaller now the contribution to the
central charge of the triple intersection number vanishes. In the following,
the number of polar terms and obstructions are calculated for the case of
CP

2, which gives the dimension of the space of weakly holomorphic modular
forms with the required transformation properties. A determination of the
polar coefficients, which might involve the so-called gap condition [36], is
not attempted.

Since b2 = 1 for CP
2, the lattice Λ is one-dimensional and the theta

function is holomorphic in τ . Consequently, hμ(τ) has weight −3
2 . The

second Chern class of CP
2 is 3J2, with J the hyperplane class. The cen-

tral charge cR from the SCFT reduces to the combination χ(CP
2)N = 3N .

The unitary factor ε(T ) is then given by ε(T ) = e(N
8 + cR

24 ) = e(N
4 ). Note

that the index formula cannot be used in this situation and that, therefore,
ε(T ) �= e(− c2·N

24 ). The theta functions ΘN,μ are given by

(4.22)

ΘN,μ(τ, z) =
∑
k∈Z

e

(
τ

2N

(
N

2
+ μ + kN

)2

+
(

N

2
+ μ + kN

)
(z + 1

2)

)
.

From the transformation properties of ΘN,μ follows that hμ(τ) transforms
as

hμ|−1−b2/2S = − 1√
N

(−iτ)−3/2e

(
N

2

) ∑
ν mod N

e
(
−μν

N

)
hν(τ),

hμ|−1−b2/2T = e

(
−N

4
+

1
2N

(
μ +

N

2

)2
)

hμ(τ).(4.23)



On the space of elliptic genera 827

The functions satisfy moreover ΘN,μ(τ, −z) = (−)NΘN,−μ(τ, z) and hμ(τ) =
h−μ(τ), such that hμ(τ) can be reduced to a vector of length N

2 + 1 if N is
even and N+1

2 if N is odd. The elements hμ(τ) are forms of Γ(2N) for N
even and otherwise Γ(8N). The number of polar terms p(N) is given by

(4.24) p(N) =
∑

μ

⌈
N

8
−

(
μ2

2N
+

μ

2
−

⌊
μ2

2N
+

μ

2

⌋)⌉
.

One can straightforwardly determine the properties of the obstruction forms
gμ(τ). They have weight 31

2 , we denote their representation again by M.
A closed expression can be given for the dimension of the space of forms
which satisfy the required properties for hμ(τ). Table 2 presents the number
of polar coefficients p(N) and constraints on the polar spectrum for N =
1, . . . , 10. For large N , p(N) grows as 1

16N2 and the number of constraints
as 5

48N .
A first observation is that dimS3 1

2
,M does grow more irregularly than

the dimension of the space of cusp forms presented in Table 1. Table 2 con-
firms earlier results for N = 1 and N = 2, which are derived using the Weil
conjectures [47, 48]. For N = 1, the space of potential partition functions
is one-dimensional, therefore, h0(τ) must be proportional to η(τ)−3. This
agrees with the computation in [47]. For N = 2, the table teaches us that no
weakly holomorphic function hμ(τ) exists with the required properties. The
obstruction form is given explicitly in [11]. The fact that no modular weakly
holomorphic partition function exists is consistent with the known partition
function calculated in [48]. This non-modular partition function has the form
fμ(τ)/η(τ)6 [36], where fμ(τ) are regularized Eisenstein series of weight 3

2 .
The Fourier coefficients cμ(n) of fμ(τ) are the number of equivalence classes
of all positive definite forms, with discriminant −4n and −4n + 1 for μ = 0
and μ = 1, respectively. A connection between class numbers and rank 2
bundles over CP

2 was earlier established by Klyachko [49]. The holomorphic
fμ(τ) are not modular covariant, but can be made so by a non-holomorphic
addition [50, 51], similar to the way E2(τ) can be made modular covariant.

Table 2: For U(N) gauge theory on CP
2, the number of polar coeffi-

cients p(N) and constraints on the polar spectrum dimS3 1
2
,M are listed for

N = 1 . . . 10.

N 1 2 3 4 5 6 7 8 9 10
p(N) 1 1 1 1 3 4 4 5 7 8
dim S3 1

2
,M 0 1 0 0 1 1 0 0 1 2



828 Jan Manschot

It is unclear how and if this holomorphic anomaly extends to larger values
of N . Minahan et al. [52] explain how it does if the 4-manifold is 1

2K3.
The table shows that appropriate weakly holomorphic forms exists and

are unique up to an overall factor for N = 3 and N = 4. One can show that
for N = 3, the hμ(τ) are given by

(4.25)

hμ(τ) =
1
2

θ5
2(τ)Θ3,μ

⎡
⎣1

2
0

⎤
⎦ (τ) + θ5

3(τ)Θ3,μ

[
0
0

]
(τ) + θ5

4(τ)Θ3,μ

⎡
⎣0

1
2

⎤
⎦ (τ)

η(τ)9
,

where ΘN,μ

[
a
b

]
(τ) is defined by

(4.26) ΘN,μ

[
a
b

]
(τ) =

∑
k∈Z

e
( τ

2N
(aN + μ + kN)2 + (aN + μ + kN) b

)
.

The overall factor of 1
2 in (4.25) is such that the first coefficient of the

expansion is 1. For N = 4, hμ(τ) can be written in the form fμ(τ)/η(τ)12,
where fμ(τ) is a holomorphic vector-valued modular form.

It would be interesting to learn whether these functions give the Euler
numbers of the instanton moduli spaces on CP

2. This could shed light on
the question of the holomorphic anomaly as well as the gap condition. It
would also be instructive to find out whether the Euler numbers for N = 3
and N = 4 capture any special information, as is the case for N = 2 where
they are related to class numbers.

5. Conclusion

The dimension of the space of N = (2, 2) and (4, 0) elliptic genera is shown
to be equal to the number of independent degeneracies of the polar spec-
tra, minus a number of constraints. This excludes certain polar spectra
of SCFTs, since not all spectra are consistent with modular transforma-
tions. The constraints are also of interest from the point of view of AdS3
gravity, since the polar spectrum corresponds to the states which lie clas-
sically below the cosmic censorship bound. A technique is presented to
calculate the number of constraints, which is generally applicable in situa-
tions where weakly holomorphic modular forms appear. As an additional
example, N = 4 Yang–Mills on CP

2 is discussed. This showed that weakly
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holomorphic modular forms do exist, which satisfy the modular proper-
ties expected for SU(3) and SU(4) partition functions. In a similar way,
the technique might prove useful in future situations where one wants to
determine specific modular forms.

From the mathematical point of view, the space of weak Jacobi forms of
weight 0 and index m (J̃0,m) is studied. A Jacobi form can be decomposed
in a vector-valued modular form hμ(τ) and theta functions θm,μ(τ, z) by
quasi-periodicity. The dimension of J̃0,m is calculated as the number of
polar coefficients of hμ(τ) minus the number of constraints imposed by the
existence of a space of cusp forms. Also the generalization to dim J̃k,m is
given. In addition, the used techniques are applied to some generalizations
of Jacobi forms, which arise in physics.
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