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We explore the constraints on the spectrum of primary fields
implied by modularity of the elliptic genus of N = (2, 2) 2D CFTs.
We show that such constraints have nontrivial implications for
the existence of “extremal” N = (2, 2) conformal field theories.
Applications to AdS3 supergravity and flux compactifications are
addressed.
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1. Introduction and summary

In a recent work [47], Witten has revived the study of 2 + 1 dimensional
quantum gravity. In particular, he has defined a notion of pure AdS3 quan-
tum gravity and investigated its properties in light of the AdS/CFT corre-
spondence. These considerations naturally lead to a notion of an extremal
conformal field theory. Extremality means that the partition function of the
boundary CFT is as close as possible to the Virasoro character of the vac-
uum. The reason for this is that there are two kinds of excitations in pure
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gravity: the perturbative excitations and the black holes. The perturbative
excitations are identified with Virasoro descendants of the vacuum follow-
ing [7] while the Virasoro primaries correspond to the BTZ black holes. Since
black holes are parametrically heavy, there is a large gap from the vacuum
to the first nontrivial Virasoro primary. The present paper addresses similar
questions for pure quantum gravity with extended N = 2 supersymmetry.
Our main tool will be the elliptic genus of an N = 2 superconformal field
theory. As we recall below, this is a weak Jacobi form, and its modular prop-
erties impose tight constraints on the partition function. The advantage of
this approach is that, unlike the case of [47], we do not have to assume the
complete holomorphic factorization of the partition function. The holomor-
phy and modularity of the elliptic genus holds for any conformal field theory
with N = 2 supersymmetry. Thus, we can test the hypothetical existence
of a theory of pure AdS3 supergravity without relying on the additional
assumption of holomorphic factorization. We will show that there is some
tension between these modular properties and the notion of extremality.

A brief summary of our results is the following:

1. In Section 3.1, we give a definition of an extremal (2, 2) superconformal
field theory which, one might expect would constitute a holographic
dual to “pure (2, 2) AdS3 supergravity.” In any case, it is a natural
generalization of the notion of extremality to (2, 2) supersymmetry. In
this paper, we restrict our attention to theories with c = 0 mod 6 and
integral U(1)R charges for the left- and right-moving N = 2 algebras.
Relaxing this assumption is an interesting open problem.

2. In Section 4, we give numerical evidence that only a finite number of
“exceptional” examples of extremal (2, 2) theories can exist. Then in
Section 5 we give an analytic proof that this is indeed the case. We
also present very strong evidence that the extremal elliptic genus only
exists for nine values of c, namely

(1.1) 6, 12, 18, 24, 30, 42, 48, 66, 78.

3. In Section 6 we then introduce the notion of a “nearly extremal (2, 2)
superconformal theory,” whose spectrum only approximates that of
pure (2, 2) supergravity. We show that if the degree of approximation
is relaxed, then candidate elliptic genera do indeed exist.

4. By quantifying the degree of approximation required to produce can-
didate elliptic genera we are able to constrain the spectrum as follows.
Consider states (in the NSNS-sector) which are right-chiral-primary
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and left N = 2 primary with (L0, J0) eigenvalue (h, �). In section 6.1,
Equation (6.11), we show that for c large any theory with modular
elliptic genus must have some such state with

(1.2) h <
c

24
+

3�2

2c
− 1

8
+ O(c−1/2).

This result is conjectural. It is supported by numerical evidence des-
cribed in Section 6. Finding a rigorous justification of (6.11) (or a
counterexample) is an interesting open problem raised by the present
paper.

5. On the other hand, in Section 7, we show that it is possible to construct
an elliptic genus which is compatible with the spectrum of an extremal
(2, 2) superconformal theory for conformal weights h ≤ c

24 .

6. In Section 9 we comment on a partial generalization of our results to
N = 4 theories.

In the remainder of the paper we discuss some implications of the above
results. First, in Section 8, we discuss the implications for the existence of
pure (2, 2) AdS3 supergravity. While our results cast some doubt on the
existence of such theories, they are not conclusive. It is conceivable that
quantum corrections to the cosmic censorship bound for the existence of
black holes imply that one should identify a near-extremal rather than an
extremal (2, 2) CFT as a holographic dual of pure supergravity. We leave
this question for future work. Of course, even when a candidate Jacobi
form exists that does not mean a corresponding (2, 2) supergravity neces-
sarily exists. In the analogous N = 0 case, the relevant partition functions
can readily be constructed, but it is not known whether the corresponding
extremal CFTs exist for general Chern–Simons levels k. Indeed, there is
an argument based on the modular differential equation of these partition
functions [23, 24] that suggests that the theories are in fact inconsistent for
sufficiently large k.

A second motivation for the present work is that constraints on confor-
mal field theory spectra implied by modular invariance might have inter-
esting applications to flux compactifications of string theory and M-theory.
This is briefly explained in Section 10. Again, the development of this idea
is left to future work.
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2. Polar states and the elliptic genus

We will focus on theories with N = (2, 2) two-dimensional superconformal
symmetry. It will be convenient to parametrize the (left = right) central
charge as c = 6m. A simple example of such a theory that the reader might
wish to keep in mind is an N = (2, 2) sigma-model based on a Calabi–
Yau target space of complex dimension 2m. In the present paper, we only
consider integer values of m, and thus the relevant Calabi–Yau manifolds
have even complex dimension.2 In particular, the smallest nontrivial value
of m corresponds to a Calabi–Yau 2-fold, that is a torus T 4 or a K3 surface.

We assume that the Hilbert space of our theory is a direct sum of unitary
highest weight representations of the N = 2 algebra. This allows us to define
the RR-sector partition function

(2.1) ZRR(τ, z; τ̄ , z̄) := TrHRRqL0−c/24e2πizJ0 q̄L̃0−c/24e2πiz̄J̃0eiπ(J0−J̃0),

which has good modular properties under the SL(2, Z) action (τ, z)→(aτ+b
cτ+d ,

z
cτ+d). Here, as usual, q = e2πiτ and y = e2πiz, and similarly for q̄ and ȳ.

In these conventions, the elliptic genus of an N = (2, 2) superconformal
field theory C is defined to be

(2.2) χ(τ, z; C) := ZRR(τ, z; τ̄ , 0).

It is holomorphic in (τ, z) by the standard properties of the Witten index.
For references on the elliptic genus, see [3, 4, 18,28–30,38–42,44,45].

N = 2 algebras have the crucial spectral flow isomorphism [43], which
allows us to relate the NS- and R-sector partition functions. Recall that
spectral flow SFθ for θ ∈ 1

2Z is an isomorphism of N = 2 superconformal
algebras which maps eigenvalues

L0 −→ L0 + θJ0 + θ2m,(2.3)
J0 −→ J0 + 2θm.(2.4)

2A generalization to half-integer values of m should be possible, but we will not
attempt it in the present paper. For m = 1, the resulting theory actually has (4, 4)
supersymmetry, but we will not use this fact.
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The spectral flow operators act on Z = ZRR as:

(SFθ
˜SFθ̃Z) = e

(

mθ2τ + 2mθ

(

z +
1
2

))

· e

(

mθ̃2τ̄ + 2mθ̃

(

z̄ − 1
2

))

Z(τ, z + τθ; τ̄ , z̄ + θ̃τ̄),(2.5)

where e(x) := e2πix. For simplicity, we restrict our attention to theories
with integral spectrum of left- and right-moving U(1) charges J0, J̃0. Again,
it should be possible, and would be interesting, to relax this assumption.
Spectral-flow invariant theories with integral U(1) charges satisfy

ZRR = (SFθ
˜SF θ̃)ZRR, θ, θ̃ ∈ Z,(2.6)

ZNSNS = (SFθ
˜SFθ̃)ZRR, θ, θ̃ ∈ Z +

1
2
.(2.7)

As is well known [28], the modularity properties of ZRR together with
spectral-flow invariance and unitarity imply that the elliptic genus is a weak
Jacobi form of index m and weight zero [21]. A weak Jacobi form φ(τ, z) of
weight w and index m ∈ Z, with (τ, z) ∈ H × C, satisfies the transformation
laws

φ

(

aτ + b

cτ + d
,

z

cτ + d

)

= (cτ + d)we2πim(cz2/(cτ+d))φ(τ, z),
(

a b
c d

)

∈ SL(2, Z),

(2.8)

φ(τ, z + �τ + �′) = e−2πim(�2τ+2�z)φ(τ, z), �, �′ ∈ Z,(2.9)

and has a Fourier expansion

(2.10) φ(τ, z) =
∑

n≥0,�∈Z

c(n, �)qny�

with c(n, �) = (−1)wc(n, −�). It follows from the spectral-flow identity that
c(n, �) = 0 for 4mn − �2 < −m2. Following [21], we denote by J̃w,m the
vector space of weak Jacobi forms of weight w and index m. A Jacobi form
is then a weak Jacobi form whose polar part vanishes (see below).

Suppose we are given an integer m ∈ Z+. If (�, n) ∈ Z
2 is a lattice point,

we refer to its polarity as p = 4mn − �2. If φ ∈ J̃0,m, let us define the polar
part of φ, denoted φ−, to be the sum of the terms in the Fourier expansion
corresponding to lattice points of negative polarity. By spectral flow, one
can always relate the degeneracies to those in the fundamental domain with
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|�| ≤ m. If we impose the modular transformation (2.8) with −1 ∈ SL(2, Z),
which implements charge conjugation, then c(n, �) = c(n, −�) and therefore
the polar coefficients which cannot be related to each other by spectral flow
and charge conjugation are c(n, �) where (�, n) is valued in the polar region
P (of index m), defined to be

(2.11) P(m) := {(�, n) : 1 ≤ � ≤ m, 0 ≤ n, p = 4mn − �2 < 0}.

For an example, see Figure 1.
Given any Fourier expansion

(2.12) ψ(τ, z) =
∑

�,n∈Z

ψ̂(n, �)qny�,

we define its polar polynomial (of index m) to be the sum restricted to the
polar region P(m):

(2.13) Pol(ψ) :=
∑

(�,n)∈P(m)

ψ̂(n, �)qny� .

Let us moreover denote by Vm the space of polar polynomials, i.e., the vector
space generated by the monomials qny� with (�, n) ∈ P(m).

The key mathematical fact we need follows from the theory of “periods
of modular forms.” The upshot is that one can reconstruct a weak Jacobi

Figure 1: A cartoon showing polar states (represented by “•”) in the region
P(m). Spectral flow by θ = 1

2 relates these states to particle states in the
NS-sector of an N = 2 superconformal field theory which are holographically
dual to particle states in AdS3.
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form of weight zero from its polar polynomial. Moreover, there is a sequence

(2.14) 0 −→ J̃0,m
Pol−→ Vm

Per−→ S5/2

exact at Vm, where Per is a “period map” to a certain space of vector-valued
cusp forms of weight 5/2. A nonzero image in the space of cusp forms means
that the polar polynomial cannot be realized by a true weak Jacobi form.
For an explanation of these facts in the physics literature, together with
references to the mathematical literature, see [15, 33, 34, 37]. The reader
interested in these matters should also consult [6].

In the next two sections we will show that there can indeed be nontrivial
obstructions simply by computing the dimensions of J̃0,m and Vm.

Returning to the conformal field theory C, an eigenstate of L0, J0 is
called a polar state if it has negative polarity:

(2.15) p = 4mL0 − J2
0 − m2 = 4m

(

L0 − c

24

)

− J2
0 < 0.

One checks that 4mL0 − J2
0 is spectral-flow invariant, so we can speak of

polar states in both the R- and NS-sector. Using the mathematical results
explained above, we see that the significance of polar states is that the polar
degeneracies of the elliptic genus determine all the other Fourier coefficients
of the elliptic genus.

2.1. Counting weight zero weak Jacobi forms

Let J̃ev,∗ = ⊕w∈2Z,m∈ZJ̃w,m denote the bigraded ring of weak Jacobi forms
of even weight. According to [21], Theorem 9.3, J̃ev,∗ is a polynomial algebra
on four generators of degree

(2.16) (w, m) = (4, 0), (6, 0), (−2, 1), (0, 1).

The first two generators correspond to the Eisenstein series

(2.17) E4 = 1 + 240
∞
∑

n=1

σ3(n)qn = 1 + 240q + 2160q2 + 6720q3 + · · ·

and

(2.18) E6 = 1 − 504
∞
∑

n=1

σ5(n)qn = 1 − 504q − 16632q2 − 122976q3 − · · · ,



Extremal N = (2, 2) 2D conformal field theories 751

where the Fourier coefficients σk(n) :=
∑

d|n dk are defined to be the k-th
powers of the positive divisors of n. A generalization of Eisenstein series to
Jacobi forms is described in [21]:
(2.19)

Ek,m(τ, z) =
1
2

∑

c,d∈Z,(c,d)=1

∑

�∈Z

(cτ + d)−k exp
[
2πim

(
�2 aτ+b

cτ+d
+2� z

cτ+d
− cz2

cτ+d

)]
.

In terms of these generalized Eisenstein series, one can write the remain-
ing two generators in (2.16) as

(2.20) φ̃−2,1 =
φ10,1

Δ
∈ J̃−2,1, φ̃0,1 =

φ12,1

Δ
∈ J̃0,1,

where the first subscript on φ̃ denotes the weight and the second denotes
the index. Here, Δ = q

∏∞
n=1(1 − qn)24 and

φ10,1 =
1

144
(E6E4,1 − E4E6,1)

= (y − 2 + y−1)q + (−2y2 − 16y + 36 − 16y−1 − 2y−2)q2 + · · · ,

φ12,1 =
1

144
(E2

4E4,1 − E6E6,1)

= (y + 10 + y−1)q + (10y2 − 88y − 132 − 88y−1 + 10y−2)q2 + · · · .

(2.21)

Thus the two weak Jacobi forms φ̃−2,1 and φ̃0,1 have the series expansion

φ̃−2,1 =
(

y − 2 + y−1) +
(

−2y2 + 8y − 12 + 8y−1 − 2y−2) q + · · · ,

φ̃0,1 = (y + 10 + y−1) +
(

10y2 − 64y + 108 − 64y−1 + 10y−2) q + · · · .

(2.22)

Much useful information about Jacobi forms can be found in [21].
To summarize, a natural vector space basis of J̃0,m is given by

(2.23) (φ̃−2,1)a(φ̃0,1)bEc
4E

d
6 ,

where a, b, c, d are nonnegative integers such that a + b = m and a = 2c + 3d.
It is straightforward to compute the number of solutions to these constraints
and thereby show that

(2.24) j(m) := dim J̃0,m =
m2

12
+

m

2
+

(

δs,0 +
s

2
− s2

12

)

,
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where m = 6ρ + s with ρ ≥ 0 and 0 ≤ s ≤ 5. Specifically,

(2.25) j(m) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

m2

12
+

m

2
+ 1. m = 0 mod 6,

m2

12
+

m

2
+

5
12

, m = 1, 5 mod 6,

m2

12
+

m

2
+

2
3

m = 2, 4 mod 6,

m2

12
+

m

2
+

3
4

m = 3 mod 6.

2.2. Counting polar monomials

Let us now compute the dimension of the space Vm and compare it to j(m).
In other words, we wish to count the number of integer points in the (�, n)
plane bounded (on one side) by the parabola 4mn − �2 = 0, as shown in
Figure 1. We have

(2.26) P (m) := dimVm =
m
∑

�=1

⌈

�2

4m

⌉

.

Note that we want the ceiling function and not the floor function, as we
include n = 0 up to the largest n with n < �2/(4m) for each � = 1, . . . , m.

To compute this, we follow [21] and write our sum as a sum of three
terms.

(2.27)
m
∑

�=1

⌈

�2

4m

⌉

=
m
∑

�=1

�2

4m
−

m
∑

�=1

((

�2

4m

))

+
1
2

m
∑

�=1

(⌈

�2

4m

⌉

−
⌊

�2

4m

⌋))

,

where

(2.28) ((x)) := x − 1
2
(�x� + 	x
) =

⎧

⎨

⎩

0, x ∈ Z,

α − 1
2
, x = n + α, 0 < α < 1.

Note that ((x)) is the sawtooth function. It is periodic of period 1.
Now we evaluate the three terms. The main term comes from the ele-

mentary formula

(2.29)
m
∑

�=1

�2

4m
=

m2

12
+

m

8
+

1
24

.
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Next, note that the number of integers � with 1 ≤ � ≤ m with �2 =
0 mod 4m is 	 b

2
, where b is the largest integer with b2|m. This follows
from the prime factorization of m. Thus, we obtain:

(2.30)
m
∑

�=1

⌈

�2

4m

⌉

−
m
∑

�=1

⌊

�2

4m

⌋

= m −
⌊

b

2

⌋

.

Finally we come to the most subtle term
∑m

�=1((
�2

4m)). The numbers
(( �2

4m)) are, very roughly speaking, randomly distributed between −1/2 and
+1/2, Therefore, the average will go to zero. In fact, they roughly make a
random walk, so we expect a quantity on the order of m1/2. To be more
precise, the discussion of [21, pp. 122–124], shows that

m
∑

�=1

((

�2

4m

))

= −1
4

∑

d|4m

h′(−d) +
1
2

((m

4

))

,

where h′(−d) is the class number of a quadratic imaginary field of discrimi-
nant −d (with the exception of d = 3, 4).

Putting the three terms together, we obtain

(2.31) P (m) =
m2

12
+

5m

8
+ A(m),

where A(m) is the arithmetic function

(2.32) A(m) =
1
4

∑

d|4m

h′(−d) − 1
2

⌊

b

2

⌋

− 1
2

((m

4

))

+
1
24

.

Very roughly speaking, A(m) grows like O(m1/2), so for large m we have

(2.33) P (m) − j(m) =
m

8
+ O(m1/2).

The reader should be warned that we are not using the O symbol
in its precise mathematical sense here, but rather as a heuristic order-of-
magnitude for the “average” value of the subleading term to the linear
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behavior in (2.33).3

m dim J̃0,m dim Vm

m = 0 1 0
m = 1 1 1
m = 2 2 2
m = 3 3 3
m = 4 4 4
m = 5 5 6
m = 6 7 8
m = 7 8 9
m = 8 10 11
m = 9 12 13
m = 10 14 16
m = 11 16 18
m = 12 19 21

The first few values of P (m) and j(m) are shown in the above table.
Note that P (m) > j(m) for m ≥ 5, and it is straightforward to check with
a computer that (P (m) − j(m) − m

8 )m−1/2 is positive and roughly order 1
for values of m out to order several thousand, see Figure 2.

The important conclusion that we draw is that for large m there are
on the order of m

8 linear constraints on the polar coefficients of the elliptic
genus expressing modularity.

Remarks.

1. The action of charge conjugation together with spectral flow defines an
action of D∞ on the (�, n) plane which preserves the space Q of polar
values −m2 ≤ 4mn − �2 < 0. A fundamental domain is given by the
polar region P(m), but the quotient Q/D∞ has fixed points: for � =
−m the spectral flow to � = +m can be undone by charge conjugation.
Therefore, if we compute the orbifold Euler character of Q/D∞, the

3This is a subtle issue which, while fascinating, we believe is a distraction from
our main exposition. A theorem of Siegel states that limd→∞

log h′(−d)
log d = 1

2 as d
runs through discriminants of quadratic imaginary fields, but h′(−d) itself does
not have a simple asymptotic expansion. This follows from its relation to the
Dirichlet series Ld(s) at s = 1. For a discussion of these and related matters,
together with their possible applications to black holes and with references to the
math literature, see [35]. For a rigorous discussion of the probability distribution
of h′(−d), see [5, 22].
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Figure 2: A plot of the first few hundred values of (P (m) − j(m) −
m/8)m−1/2 shows the quantity remains on the order of 1. The points do not
tend to a limiting value — as would be the case for an asymptotic expansion,
but are distributed about a mean value and exhibit a considerable amount
of scatter. Detailed results on the distribution are available in the math
literature, but we will not need these.

line of states (�, h) with � = m should be counted with weight 1
2 . There

are precisely m/4 states on this line and hence χorb(Q/D∞) = P (m) −
m/8, which is a much closer approximation to j(m).

2. Recently, Manschot [34] has reproduced the formula for P (m) − j(m)
by directly computing the dimension of the image of the period map
Per in (2.14).

3. Extremal N = (2, 2) conformal field theories

3.1. Definition

In [47], Witten suggested that the holographic dual of pure 2+1 dimensional
quantum gravity should be an “extremal conformal field theory.” The latter
is defined to be a conformal field theory whose modular invariant partition
function is “as close as possible” to the Virasoro character of the vacuum.
When c = 24k the vacuum character is

(3.1) χ
(k)
Vac(τ) = q−k

∞
∏

n=2

1
1 − qn

.

The partition function Zk(τ) has weight zero. Unlike the elliptic genus case,
there is no obstruction to completing an arbitrary polynomial in q−1 to a
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modular function by adding nonpolar terms. Therefore, Witten defines Zk(τ)
to be the unique modular function with no singularities for τ ∈ H such that
the expansion around the cusp at infinity satisfies

(3.2) Zk(τ) :=

[

q−k
∞
∏

n=2

1
1 − qn

]

q≤0

+ O(q).

Following [15], Witten interprets the first Virasoro primary above the vac-
uum representation to be a state corresponding to the lightest possible BTZ
black hole in AdS3.

Following Witten [47], let us consider “pure N = (2, 2) supergravity”
with negative cosmological constant. This is the hypothetical quantum the-
ory whose classical action is a supersymmetric completion of the Einstein–
Hilbert action,

(3.3) Isugra =
1

16πG

∫

d3x
√

g

(

R(g) +
2

R2 + · · ·
)

.

Here, R is the AdS length scale and the ellipses denote contributions of
other fields in the N = 2 supergravity multiplet. Specifically, apart from the
metric, these fields include real spin-3

2 gravitino fields, ψi
L and ψi

R, i = 1, 2, as
well as two abelian gauge fields, aL and aR. In general, if we were interested
in N = (p, q) supergravity theory, the corresponding gauge group would be
SO(p) × SO(q). Thus, in the present context of N = (2, 2) theory, we have
SO(2) × SO(2) gauge fields.

In fact, by enlarging the gauge group one can write the entire supergrav-
ity action (3.3) as the Chern–Simons action [1, 2]:

ICS =
kL

4π

∫

tr
(

AL ∧ dAL +
2
3
AL ∧ AL ∧ AL

)

− kR

4π

∫

tr
(

AR ∧ dAR +
2
3
AR ∧ AR ∧ AR

)

,

(3.4)

where the gauge fields AL and AR take values in the Lie algebra of the
supergroup

(3.5) G = GL × GR = OSp(2|2)L × OSp(2|2)R.
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Since the bosonic part of the supergroup OSp(2|2) is SO(2) × SL(2, R),
the gauge group (3.5) contains the classical symmetry4 group, SL(2, R)L ×
SL(2, R)R, of the three-dimensional AdS space. In the simple case kL = kR,
which will be of interest to us in the present paper, one finds the following
relation between the parameters:

(3.6) kL = kR =
R

16G
.

Combining this with the Brown–Henneaux formula cL = cR = 3R
2G and using

our expression for the central charge cL = cR = 6m, we can conveniently
write (3.6) as

(3.7) kL = kR =
m

4
.

Since we take m to be integer, it follows that kL and kR take values in 1
4Z.

This is consistent with the fact that the bosonic part of our supergroup
OSp(2|2) contains SL(2, R), which is a double cover of the identity compo-
nent of SO(2, 1); see Section 2.1 of [47] for further details on the allowed
values of kL and kR.

The equivalence of N = (2, 2) supergravity and Chern–Simons theory
based on the supergroup (3.5) is valid not only classically, but to all orders
in perturbation theory, as long as the perturbative expansion starts with
a nondegenerate classical solution. This way of formulating perturbative
N = (2, 2) supergravity will be useful to us in what follows, in particular, in
Section 8 where we discuss quantum corrections.

The N = (2, 2) case is similar to the N = 0 case of Chern–Simons grav-
ity. There are no local degrees of freedom, but the Chern–Simons theory
does give rise to “edge states.” These are N = 2 descendants of the vacuum
representation, that is, the irreducible highest weight representation defined
by (h = 0, q = 0).

The natural generalization of Witten’s proposal to (2, 2) supergravity in
2 + 1 dimensions is that the holographic dual should be an “extremal (2, 2)
superconformal field theory,” where we define the latter to be a theory whose
partition function is “as close as possible” to the vacuum character of the

4This symmetry group is the gauge group of the analogous formulation of N = 0
gravity theory.
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N = 2 algebra. The vacuum character of the N = 2 algebra is [8]

χ(m)
vac (τ, z) : = TrV0,0q

L0−c/24e2πi(z+1/2)J0

= q−m/4(1 − q)
∞
∏

n=1

(1 − yqn+1/2)(1 − y−1qn+1/2)
(1 − qn)2

.(3.8)

We have shifted z by 1/2 relative to the standard definition for later conve-
nience. The expression in (3.8) is neither spectral-flow invariant, nor modu-
lar invariant, and hence more terms must certainly be added to get a physical
partition function.

In [10] the near horizon geometry of the D1D5 system was investigated
and it was observed that the cosmic censorship bound for the BTZ black
hole, which requires r± ≥ 0 for the two roots of the lapse function, can be
translated into the holographic conformal field theory as the bounds

(3.9) 4m
(

L0 − c

24

)

− J2
0 ≥ 0 and 4m

(

L̃0 − c

24

)

− J̃2
0 ≥ 0.

In [15], the connection of these inequalities to the conditions on polarity of
terms in the partition function was pointed out. We will assume here that
for general N = (2, 2) supergravity the cosmic censorship bound continues
to be (3.9). That is, black hole states must have p, p̃ ≥ 0, where p and p̃ refer
to the polarity of the left- and right-moving states (i.e., p = 4mn − �2). In
a theory of “pure supergravity,” we would certainly want to require that all
states with p < 0 and p̃ < 0 are N = 2 descendents of the vacuum (or their
spectral-flow images). These considerations, then, motivate our definition
of an N = (2, 2) extremal conformal field theory to be:

Definition. An N = (2, 2) extremal conformal field theory of level m
(“N = 2 ECFT” for short) is a hypothetical theory whose partition function
is of the form:

ZNSNS(τ, z; τ̄ , z̄) : = TrHNSNSq
L0−c/24e2πizJ0 q̄L̃0−c/24e2πiz̄J̃0eiπ(J0−J̃0)

=
∑

s,s̄∈Z

SFsχ
(m)
vac (τ, z)SFs̄χ̄

(m)
vac (τ̄ , z̄)

+
∑

s∈Z

SFsχ
(m)
vac (τ, z)f̄(τ̄ , z̄) +

∑

s̄∈Z

f(τ, z)SFs̄χ̄
(m)
vac (τ̄ , z̄)(3.10)

+
∑

p,p̃≥0

a(n, �; ñ, �̃)qny�q̄ñȳ�̃.
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Here the coefficients a(n, �; ñ, �̃) are integers, and the sum over nonpolar
states in the last line means that both the left and right polarity of the state
is nonnegative. The functions f(τ, z) and f̄(τ̄ , z̄) describe the contribution
of terms with nonnegative polarity with respect to the left and right polarity,
respectively. We need to include such terms since states with either p ≥ 0
or p̃ ≥ 0 are not polar and are allowed by the extremality condition.

Using spectral flow (2.2), we can compute ZRR(τ, z; τ̄ , z̄) for an N = 2
ECFT from (3.10). The elliptic genus is then obtained upon setting z̄ = 0.
In this limit, only those terms that have q̄0 contribute. All of these terms
have negative polarity, with the exception of the q̄0ȳ0 term that has polarity
zero. Thus the elliptic genus of an N = 2 ECFT of level m is of the form

(3.11) (2(−1)m + u)
∑

θ∈Z+1/2

SFθχ
(m)
vac + Nonpolar,

where u is the coefficient of the q̄0ȳ0 term coming from f̄(τ̄ , z̄). The factor
2(−1)m is the limit z̄ → 0 of the first term in (3.10), as we will see momentar-
ily. Using (5.21), below one can determine the constant to be u = 12m − 2.
For convenience, we drop the overall constant factor from the right-movers
and define

(3.12) χ
(m)
ext (τ, z) :=

∑

θ∈Z+1/2

SFθχ
(m)
vac + Nonpolar.

We will call a weak Jacobi form that satisfies (3.12) an extremal elliptic
genus. Because the only unknown terms in (3.12) are nonpolar terms, we
can compute the polar polynomial of such an extremal elliptic genus. We
will give an explicit formula for it in Section 3.2. Then, in Section 4, we
investigate whether such a polar polynomial is consistent with modularity.

3.2. The extremal polar polynomial

Let us compute the polar polynomial of a would-be extremal elliptic genus.
We begin by demonstrating the following useful fact:

(3.13) Pol

⎛

⎝

∑

θ∈Z+1/2

SFθχ
(m)
vac

⎞

⎠ = Pol(SF1/2χ
(m)
vac ) .
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Indeed, if we apply the spectral flow by θ = l + 1
2 to the vacuum character

(3.8), we obtain an expression of the form

(3.14) (−1)mql(l+1)my(2l+1)m(1 − q)
∞
∏

n=1

(1 − yqn+l+1)(1 − y−1qn−l)
(1 − qn)2

.

We wish to show that this expression contains no polar terms in the funda-
mental domain (2.11) for l 
= 0. Without loss of generality, we can assume
l > 0. Note that it is not true that (3.14) has no polar terms. In fact, already
the first term ql(l+1)my(2l+1)m is polar for every l; it has polarity p = −m2.
However, it does not belong to the polar region P(m) since the power of y is
not in the allowed range 1 ≤ � ≤ m.

On the other hand, there are terms in (3.14) with 1 ≤ � ≤ m but, as we
show momentarily, these terms are not polar. We can simplify the problem
a little bit and omit the denominator in (3.14) and the factor (1 − q) which
can only increase the polarity. Then, our goal is to show that

(3.15) ql(l+1)my(2l+1)m
∞
∏

n=1

(1 − yqn+l+1)(1 − y−1qn−l)

has no polar terms in the range 1 ≤ � ≤ m. From the above discussion,
we already know that the term ql(l+1)my(2l+1)m is polar. We can combine
it with the terms from factors (1 − yqn+l+1) and (1 − y−1qn−l) for various
n to bring the power of y to the desired range. Since l is assumed to be
positive, it is easy to see that the terms coming from factors (1 − yqn+l+1)
can be ignored, while from

∏∞
n=1(1 − y−1qn−l) we need to collect at least

2lm factors of y−1 to bring the overall power of y to the desired range.
The most economical way to do this (which yields the minimal increase in
polarity) is to collect the factors in the infinite product with the smallest
powers of q. These are the terms with n = 1, . . . , 2lm:

(3.16) ql(l+1)my(2l+1)m
2lm
∏

n=1

y−1qn−l = q(2lm−l+2)lmym.

The resulting term has polarity p = 4(2lm − l + 2)lm2 − m2 which satisfies
p > 0 for any l, m ≥ 1. It is easy to see that including other factors from
the infinite product in (3.15) only increases the polarity further.

Having proven (3.13), we now define

(3.17) p
(m)
ext := (−1)m PolSF1/2χ

(m)
vac .
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On the other hand, setting l = 0 in (3.14), one finds

(3.18) (−1)mSF1/2χ
(m)
vac = (1 − q)ym

∞
∏

n=1

(1 − yqn+1)(1 − y−1qn)
(1 − qn)2

.

The Fourier expansion of (3.18) begins:

(3.19) ym + q(ym − ym−1) + q2(−2y−1+m + 3ym − y1+m) + · · · .

The first few polar polynomials follow easily from (3.19) since the polar
terms for index m have n ≤ 	m

4 
. In this way, we find that the first few
polar polynomials are:

p1
ext = y,(3.20)

p2
ext = y2,(3.21)

p3
ext = y3,(3.22)

p4
ext = y4,(3.23)

p5
ext = (1 + q)y5,(3.24)

p6
ext = (1 + q)y6 − qy5,(3.25)

p7
ext = (1 + q)y7 − qy6,(3.26)

p8
ext = (1 + q)y8 − qy7,(3.27)

p9
ext = (1 + q + 3q2)y9 − qy8,(3.28)

p10
ext = (1 + q + 3q2)y10 − (q + 2q2)y9,(3.29)

p11
ext = (1 + q + 3q2)y11 − (q + 2q2)y10,(3.30)

p12
ext = (1 + q + 3q2)y12 − (q + 2q2)y11.(3.31)

4. Experimental search for the extremal elliptic genus

Since P (m) > j(m) for m ≥ 5, and since Equation (3.18) does not have any
obvious modular properties, it is far from obvious that (3.13) is the polar
polynomial of a true weak Jacobi form. In this section, we describe numerical
results suggesting that in fact, for all but finitely many m, it is not in the
image of Pol applied to J̃0,m. We will find that there are actually some
“exceptional” cases where it is in the image for m ≥ 5. In Section 5, we will
show analytically that there can only be a finite number of such exceptional
cases. That might seem to obviate the need for the present section, but the
methods we employ here will prove very useful when we come to describe
nearly extremal theories in Section 6.
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Choose a basis φi, i = 1, . . . , j(m), for J̃0,m. We are searching for real
numbers xi such that

(4.1)
j(m)
∑

i=1

xiPol(φi) = p
(m)
ext .

A useful way of trying to solve this equation is the following. We choose a
polarity-ordered basis of monomials qny� for Vm, that is the basis monomials
qn(a)yl(a), where a = 1, . . . ,dim Vm = P (m) so that polarity increases as a
increases, and terms with the same polarity are ordered in increasing powers
of y. For example, for a = 1, the most polar term is ym. A polarity-ordered
basis for V5 would be

(4.2) y5, y4, y3, qy5, y2, y1

with a = 1, . . . , 6. The polarity-ordered basis will be very useful for our
discussion of β-extremal N = 2 conformal field theories in Section 6.

Having chosen these two bases, we can define a matrix Nia of dimensions
j(m) × P (m) from the expansion

(4.3) Pol(φi) =
P (m)
∑

a=1

Niaq
n(a)y�(a).

Similarly, we can define coefficients da by

(4.4) p
(m)
ext =

P (m)
∑

a=1

daq
n(a)y�(a).

Thus, we are trying to solve the linear equations

(4.5)
j(m)
∑

i=1

xiNia = da, a = 1, . . . , P (m).

It should be stressed that even if we can find a solution xi to (4.5),
we are far from establishing the existence of an N = 2 extremal theory.
If a solution exists, then the next test we should apply is to see whether
the resulting form

∑

xiφi has integral Fourier coefficients. Integrality is
clearly a necessary condition for any candidate elliptic genus since it arises
in conformal field theory from the trace on a Hilbert space.
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Using a computer (and the explicit basis (2.23) above), we have exam-
ined equation (4.5) for 1 ≤ m ≤ 36. We have found that there is a solution
xi in rational numbers for 1 ≤ m ≤ 5 and for m = 7, 8, 11, 13, but there is no
solution for m = 6, 9, 10 and 14 ≤ m ≤ 36.5 Moreover, remarkably, for those
values of m which give a solution, the Fourier coefficients we have explicitly
evaluated turn out to be integral.

The simplest example is the case m = 1, in which case χ
(1)
ext = φ̃0,1. The

next simplest case, m = 2, yields

(4.6) χ
(2)
ext =

1
6
(φ̃0,1)2 +

5
6
(φ̃−2,1)2E4.

Although it is not obvious, one can prove that the Fourier coefficients are
all integral. Indeed, the claim that this expression has integer Fourier coef-
ficients is equivalent to the statement

(4.7) (φ̃0,1)2 + 5(φ̃−2,1)2E4 = 0 mod 6.

In order to prove this, it is convenient to note (see (2.17) and (2.18)) that

E4 = 1 mod 6, E6 = 1 mod 6.

Moreover, from (2.21), it also follows that φ10,1 = φ12,1 mod 6, which in
turn implies φ̃−2,1 = φ̃0,1 mod 6, cf. (2.22). Substituting this into (φ̃0,1)2 +
5(φ̃−2,1)2 and using the fact that φ̃0,1 and φ̃−2,1 have integer Fourier coeffi-
cients, we therefore demonstrate (4.7).

When we use the basis (2.23), the solutions xi are rational numbers with
increasingly large denominators as m increases. For example, already the
next case, m = 3, looks like

(4.8) χ
(3)
ext =

1
48

(φ̃0,1)3 +
7
16

φ̃0,1(φ̃−2,1)2E4 +
13
24

(φ̃−2,1)3E6.

Even though the coefficients xi of every monomial (φ̃−2,1)a(φ̃0,1)bEc
4E

d
6 are

rational numbers, the Fourier coefficients c(n, �) are integers. In order to
show this, as in the previous example, we express this as the following

5The arguments of Section 5 demonstrate that there can only be finitely many
solutions. Using the constraints of that section, it is easy to check that there are
no further solutions up to m ≤ 400. This suggests that the above list is in fact
complete.
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statement

(4.9) (φ̃0,1)3 + 21φ̃0,1(φ̃−2,1)2E4 + 26(φ̃−2,1)3E6 = 0 mod 48.

Then, using (2.17), we note that E4 = 1 mod 48, so we can ignore E4 in
this computation. It is not true, however, that E6 = 1 mod 48. Instead,
from (2.18) we find that E2

6 = 1 mod 48. According to (2.20) and (2.21),
this implies the following identity:

φ̃−2,1 = φ̃0,1E6 mod 48,

which, after substituting in the LHS of (4.9), proves the desired result.
Using the basis of weak Jacobi forms described in Section 7 below, one

can check that for the “miraculous” values m = 5, 7, 8, 11, 13 the solution
does indeed have the property that all the Fourier coefficients c(n, �) are
integers.

5. The extremal elliptic genus does not exist for
m sufficiently large

In this section, we give an analytic proof that there is no weak Jacobi form in
J̃0,m satisfying (3.12) for m sufficiently large. Since this section is rather long
and technical, let us summarize the main idea here. Using the spectral-flow
symmetry, one can determine the NS-sector character (without an insertion
of yJ0 or (−1)F ) from the elliptic genus. This character is a modular form
for a congruence subgroup Γθ of the modular group. It is therefore highly
constrained, and as in the case discussed in [47], determined by the coeffi-
cients of the negative powers of q, which in turn are fixed by the polar terms
of the original elliptic genus. On the other hand, given the full NS-sector
character, we can also determine from it, by a suitable modular transforma-
tion, the R-sector character (without an insertion of (−1)F ), and thus, in
particular, its leading term in the q-expansion. This coefficient is however
also directly determined by the extremal hypothesis and a sum rule (5.20)
for Fourier coefficients. The two ways of evaluating the same coefficient
lead to a nontrivial constraint on m, Equation (5.19). Using properties of
modular forms, one can show that this constraint is violated for sufficiently
large m. The argument must be broken up into cases: m odd, m = 2 mod 4
and m = 0 mod 4, of which the last case is technically the most difficult. In
this section, we will give the main line of argument, whereas the technical
details can be found in Appendix A.
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Figure 3: The fundamental domain Fθ of the genus zero subgroup Γθ of Γ.

5.1. NS-sector elliptic genus

Suppose χ(τ, z) is the elliptic genus of a CFT with χ ∈ J̃0,m. By spectral
flow we define the “NS-sector elliptic genus” to be6

(5.1) χNS(τ, z) := e

[

m

(

τ

4
+ z +

1
2

)]

χ

(

τ, z +
τ

2
+

1
2

)

.

Using the transformation properties of a Jacobi form, it follows easily that

χNS(−1/τ, z/τ) = (−1)me

(

mz2

τ

)

χNS(τ, z),

χNS(τ + 2, z) = (−1)m χNS(τ, z).
(5.2)

If we put z = 0, we thus obtain simple transformation laws for χNS(τ) :=
χNS(τ, 0) under the congruence subgroup Γθ = 〈T 2, S〉. (In this section, we
consider the modular group to be PSL(2, Z).) For m even we have a strict
modular function and for m odd we have a function with multiplier system
given by −1 on the two generators.

To begin, let us sketch a few mathematical facts. The group Γθ is a
genus zero subgroup of Γ. It has modular domain Fθ = F ∪ T · F ∪ TS · F
shown in Figure 3. Note there are two cusps, equivalent to τ = i∞ and
τ = 1.

Since H/Γθ is genus zero, the function field has a generator K̂(τ) which
can be uniquely specified (up to an additive and multiplicative constant) by

6Note that unlike the NS vacuum character (3.8), χNS(τ, z) does not involve the
shift of z by 1/2.
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demanding that K̂ takes i∞ to ∞.7 An explicit choice is:

(5.3) K̂(τ) :=
ϑ12

3
η12 (τ) =

Δ2(τ)
Δ(2τ)Δ(τ/2)

= q−1/2 + 24 + 276q1/2 + · · · .

The expansion of K̂ around the cusp at τ = 1 is obtained by writing τ =
1 − 1

τr
and observing that

(5.4) K̂(τ) := K̃(τr) = −ϑ12
2

η12 (τr) = −212qr + · · · ,

where qr = e(τr).
In order to work with the case of m odd, it will be useful to consider

the index two subgroup8 Γ̃θ := 〈T 4, ST 2〉 such that Γθ = Γ̃θ ∪ S · Γ̃θ. This is
again a genus zero subgroup, and its Hauptmodul is the NS-sector character
of φ̃0,1 (i.e., the elliptic genus for K3 divided by two). Using the definition
(5.1) with m = 1 and χ = φ̃0,1 and putting z = 0, one finds

(5.5) κ(τ) :=
(

2ϑ4

ϑ2

)2

−
(

2ϑ2

ϑ4

)2

= q−1/4(1 − 20q1/2 + · · · ).

This function satisfies κ|S = −κ and κ|T 2 = −κ, and is thus odd under the
Deck transformation H/Γ̃θ → H/Γθ. Indeed,

(5.6) κ2(τ) = K̂(τ) − 64,

giving the explicit double cover. Near the Ramond cusp, κ has the expansion
(5.7)

κ(1 − 1/τr) := κ̃(τr) = −4i

[

(

ϑ3

ϑ4

)2

+
(

ϑ4

ϑ3

)2
]

(τr) = −8i(1 + 32qr + O(q2
r )).

Now, χNS has no singularities for τ ∈ H, and, moreover, using again the
transformation laws of a Jacobi form

(5.8) χNS(1 − 1/τr) = e
(

−m

4

)

χ

(

τr,
1
2

)

= e
(

−m

4

)

∑

n,�

c(n, �)(−1)�qn
r .

7Such a function for a genus zero congruence subgroup is often referred to as a
“Hauptmodul.”

8To prove the subgroup is index 2 note that for all n ∈ Z, T 4n, ST 4n+2, T 4n+2S
and ST 4nS are in Γ̃θ. Then use induction on the length of the word in S, T 2. Recall
that in this section modular transformations are regarded as elements of PSL(2, Z).
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By unitarity, the sum is over n ≥ 0 and hence χNS(τ) must be a polynomial
in κ(τ). This polynomial will be even for m even and odd for m odd. More-
over, the polynomial is fixed by the coefficients of the nonpositive powers of
q. Those coefficients in turn are related to the polar contributions to χ(τ, z).
To demonstrate the relationship, note that

(5.9) χNS(τ) =
∑

n,�

c(n, �) (−1)m+� qm/4 + n + �/2.

Now write

(5.10) 4mn − �2 = 4m

(

m

4
+ n +

�

2

)

− (m + �)2.

The nonpolar terms in χ(τ, z) have 4mn − �2 ≥ 0 and therefore from (5.10)
contribute only nonnegative powers of q in (5.9). In fact, they always con-
tribute positive powers with precisely one exception: when 4mn − �2 = 0
and � = −m. In that case, n = m/4. Note that this cannot happen if
m 
= 0 mod 4 because n is integral.

5.2. A nontrivial constraint

In this subsection, we assume m 
= 0 mod 4. We return to a discussion of the
case m = 0 mod 4 in Section 5.3 below.

Our conclusion thus far is that for m 
= 0 mod 4, χNS(τ) is a modular
function for Γ̃θ such that

(5.11) χNS(τ) =
∑

θ∈Z

SFθχ
(m)
vac (τ, z)|z=1/2 + O(q1/4).

One easily finds that only θ = 0 can contribute to negative powers of q and
hence we can simplify this equation to

(5.12) χNS(τ) = q−m/4(1 − q)
∞
∏

n=1

(1 + qn+1/2)2

(1 − qn)2
+ O(q1/4).

This has expansion

(5.13) q−m/4(1 + q + 2q3/2 + 3q2 + 4q5/2 + 6q3 + · · · ).
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While the expression on the RHS of (5.12) is not modular, it can be written
as

(5.14) χNS(τ) = q−m/4 1 − q1/2

1 + q1/2 q1/8 ϑ3

η3 + O(q1/4).

Now we can write an explicit formula for χNS(τ). Define expansion coeffi-
cients:

(5.15) q−m/4q1/8 1 − q1/2

1 + q1/2

ϑ3

η3 =
∞
∑

α=−m/4

h̃(α)qα.

Note that h̃(α) is only nonzero for α ∈ 1
2Z, for m even and 1

4 + 1
2Z for m

odd. For α ∈ 1
4Z+, let ℘α be the unique polynomial of degree 4α such that

(5.16) ℘α(κ) = q−α + O(q1/4), α ∈ 1
4

Z+.

Then for m 
= 0 mod 4,

(5.17) χNS =
0

∑

α=−m/4

h̃(α)℘−α(κ).

On the other hand, if we expand around the cusp τ = 1, then, by (5.8),

(5.18)
0

∑

α=−m/4

h̃(α)℘−α(κ̃(τr)) = e−iπm/2
∑

n,�∈Z

c(n, �)(−1)� qn
r .

In particular, if we take τr → i∞, then we arrive at the key constraint

(5.19) L :=
0

∑

α=−m/4

h̃(α)℘−α(−8i) = e−iπm/2
∑

�

c(0, �)(−1)�.

The argument for the nonexistence of the extremal elliptic genus is based on
showing that, for large m, the left-hand side and right-hand side of (5.19)
have different growth rates. As we shall see momentarily, the right-hand
side is always an affine linear function of m, while the left-hand side grows
exponentially for m = 2 mod 4; for m odd, the left-hand side grows also
linearly in m, but the coefficient is different.

Let us first establish the growth property of the right-hand side. By the
ansatz for pure supergravity, we know that the only nonzero polar coeffi-
cients c(0, �) occur for � = ±m and are given by 1. The coefficient c(0, 0) is
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not polar. Fortunately, Gritsenko [25] has proven a useful identity for the
Fourier coefficients of weak Jacobi forms of index m:9

(5.20) m
∑

�

c(0, �) = 6
∑

�

�2c(0, �).

Using (5.20) and (3.18), we can solve for c(0, 0) to get c(0, 0) = 12m − 2,
and therefore

(5.21)
∑

�

c(0, �)(−1)� = 12m − 2 + 2(−1)m =

{

12m, m even,

12m − 4, m odd.

In particular, the right-hand side of (5.19) grows linearly with m.
Now let us turn to the left-hand side of (5.19). Observe that this is the

q0 term in the q-expansion of

(5.22)

⎛

⎝

∑

α≥−m/4

h̃(α)qα

⎞

⎠

⎛

⎝

∑

n≥0

qn/4℘n/4(−8i)

⎞

⎠.

On the other hand, using the fact that κ is a Hauptmodul, one can show
that10

(5.23)
∞
∑

n=0

qn/4℘n/4(z) =
4q d

dqκ

z − κ
.

9The proof is very simple: exp[−8π2mG2(τ)z2]χ(τ, z) transforms as a weight zero
modular form. Therefore, the coefficients of z2n in the Taylor series around z = 0
transform like forms of weight 2n. In particular the coefficient of z2 must vanish,
since there are no modular forms of weight 2.

10Write ℘α(z) =
∮

C
℘α(�)
�−z

d�
2πi , where the contour is on a large circle C in the

� plane. Now make the change of variables � → �(r) := r−1 − 20r + · · · so that
�(q1/4) = κ. This gives a one-one map of C to a small circle C ′ around the origin.
Using ℘α(�(r)) = r−4α + O(r), and taking the circle to be small, we see ℘α(z) =
−

∮

C′
�′(r)r−4α

�(r)−z
dr
2πi . It is now straightforward to sum the series and apply Cauchy’s

theorem to arrive at (5.23). We thank Terry Gannon for pointing out this crucial
identity to us.
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In order to apply this to our problem, we use the identities11

24q
d

dq
log ϑ4 = E2 − (ϑ4

2 + ϑ4
3),

24q
d

dq
log ϑ3 = E2 + (ϑ4

2 − ϑ4
4),(5.24)

24q
d

dq
log ϑ2 = E2 + (ϑ4

3 + ϑ4
4),

to compute 4q d
dqκ = −4ϑ8

3/(ϑ2
2ϑ

2
4). Using the “abstruse identity” ϑ4

3 = ϑ4
2 +

ϑ4
4, it follows that

(5.25)
∞
∑

n=0

qn/4℘n/4(−8i) = (ϑ2
4 − iϑ2

2)
2.

Thus, we need to estimate the large m behavior of

(5.26) L :=

[

q−m/4+1/8 1 − q1/2

1 + q1/2

ϑ3

η3 (ϑ2
4 − iϑ2

2)
2

]

q0

.

We estimate the growth behavior of L in Appendix A, and it turns out to
be quite different for even and odd.

For m odd, eiπm/2L is positive and is bounded below by

(5.27) eiπm/2L ≥ 4πm − 8π

√

m − 5
2

− 6π.

Since 4π > 12, this will asymptotically (i.e., for m ≥ 2000) grow more
quickly than (5.21). We have checked that among the first 2000 terms,

11To prove these identities note that (24q d
dq − E2)ϑ2 must be a weight 5/2 mod-

ular form for Γ(2) and hence is a polynomial of degree 5 in ϑ2, ϑ3, ϑ4. More-
over, the q expansion has only coefficients q1/8+n with n integer. Together with
the transformation property under τ → τ + 1, this fixes it to be of the form
ϑ2(a(ϑ4

3 + ϑ4
4) + bϑ3ϑ4(ϑ2

3 + ϑ2
4) + cϑ2

3ϑ
2
4) for some constants a, b, c. Now, matching

the first three coefficients of the q expansion on the left- and right-hand sides, we
find a = 1, b = c = 0. The other two equations now follow by modular transfor-
mations. These identities also have nice interpretations in terms of massless free
fermions on a two-dimensional torus. One can compute the expectation value of
their energy either by differentiating their partition function or by evaluating the
energy–momentum tensor using the fermion two-point function. Requiring that
these two methods produce the same answer implies these identities [17].
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the two numbers only agree for m = 1, 3, 5, 7, 11, 13, 19, 31, 41. For m =
1, 3, 5, 7, 11, 13, there exists indeed a sugra elliptic genus, while for m =
19, 31, 41 there does not, as we have verified explicitly. (Note that the fact
that the two numbers agree does not imply that there must exist a sugra
elliptic genus.)

For m = 2 mod 4, L turns out to grow exponentially, so that (5.19) can-
not be satisfied for m large enough. For details of the calculation, see again
Appendix A.

5.3. A constraint for m = 0 mod 4

We now turn to the case m = 0 mod 4. As we have pointed out above, in
this case nonpolar terms contribute to the constant term of χNS. We thus
need to make the more general ansatz
(5.28)

χNS(τ, z) = q−m/4+1/8 1 − q

(1 + yq1/2)(1 + y−1q1/2)
ϑ3(τ, z)

η3 + d + O(q1/2).

Instead of (5.17), we obtain

(5.29) χNS =
0

∑

α=−m/4

h̃(α)℘−α(κ) + d.

The argument of Section 5.2 can then be used to fix the value of d:

(5.30) d = 12m −
[

q−m/4+1/8 1 − q1/2

1 + q1/2

ϑ3(τ)
η3 (ϑ4

4 − ϑ4
2)

]

q0

.

We obtain an additional constraint on the theory in the following way. Let

(5.31) D̂ :=
(

y
d

dy

)2

− m

6
E2.

Then χ̂NS(τ) := D̂(χNS(τ, z))|z=0 is a weight 2 weakly holomorphic modular
form for Γθ which moreover satisfies

(5.32) χ̂NS(1 − 1/τr) = τ2
r D̂(χ(τ, z))|z=1/2.

The qr → 0 limit of the coefficient of τ2
r of the right-hand side of (5.32) is

(5.33)
∑

�

c(0, �)(−1)��2 − m

6

∑

c(0, �)(−1)� = 2m2 − m

6
12m = 0.
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On the other hand, weakly holomorphic modular forms of weight 2 for Γθ

are of the form

(5.34) (ϑ4
2 − ϑ4

4) × L(K̂),

where L(K̂) is a Laurent series in K̂. By examining the Ramond cusp, we
see that L(K̂) must be a polynomial in K̂. Define polynomials Pa(K̂) =
q−a/2 + O(q1/2) for a ≥ 0 and

(5.35) P̃a(K̂)(ϑ4
2 − ϑ4

4) =

{

1 + O(q1/2), a = 0,

aq−a/2 + O(q1/2), a > 0.

Using (5.24), we find

(5.36) 2q
d

dq
K̂ = K̂(ϑ4

2 − ϑ4
4),

from which we deduce

(5.37) P̃a(z) =

{

−1, a = 0,

−zP ′
a(z), a > 0.

Define expansion coefficients

(5.38) χ̂NS(τ) =
∑

α=−m/4

(−2α)x(α)qα + X(0).

If the extremal elliptic genus exists, then

(5.39) χ̂NS(τ) =
∑

α<0

x(α)P̃−α(K̂)(ϑ4
2 − ϑ4

4) − X(0)(ϑ4
2 − ϑ4

4).

Evaluating at the Ramond cusp, we have

(5.40) τ2
r

(

X(0)(ϑ4
4 + ϑ4

3) −
∑

α<0

x(α)P̃−α(K̃)(ϑ4
4 + ϑ4

3)

)

,

and evaluating at qr → 0 the coefficient of τ2
r becomes simply 2X(0) since

P̃α(0) = 0 for α > 0. Therefore, X(0) = 0.
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On the other hand, we can deduce the coefficient X(0) directly from the
q0 term of D̂χNS. Expressing χNS by (5.28) and (5.30) and then using

(y∂y)2
1

(1 + yq1/2)(1 + y−1q1/2)

∣

∣

∣

∣

y=1
= − 2q1/2

(1 + q1/2)4
,(5.41)

y∂yϑ3|y=1 = 0,(5.42)

(y∂y)2ϑ3|y=1 = 2q∂qϑ3,(5.43)

and (5.24), we obtain the constraint

0 =
[

D̂χNS

]

q0
=

[

(y∂y)2χNS − m

6
E2 χNS

]

q0

= −2m2 +

[

q−m/4+1/8 1 − q1/2

1 + q1/2

−2q1/2

(1 + q1/2)2
ϑ3

η3

]

q0

− (4m − 2)

[

q−m/4+1/8 1 − q1/2

1 + q1/2

q∂qϑ3

η3

]

q0

= −2m2 − R1 − (4m − 2) R2,(5.44)

where R1 and R2 are defined as

R1 =

[

2 q1/2 (1 − q1/2)4

(1 − q)3
ϑ3

η3

]

qm/4−1/8

(5.45)

R2 =

[

(1 − q1/2)2

1 − q

q∂qϑ3

η3

]

qm/4−1/8

.(5.46)

In Appendix A, we show that for large enough m both R1 and R2 are
positive. It is then clear that (5.44) cannot be satisfied.

5.4. What are the exceptional values of m?

The results of the previous subsections establish rigorously that there are
at most a finite number of values of m for which a candidate extremal
elliptic genus can exist. The results of Section 4 suggest that there are
in fact precisely nine such values namely 1 ≤ m ≤ 5, and m = 7, 8, 11, 13.
Although we do not have a rigorous proof, we strongly believe this list to
be complete.
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Figure 4: A semi-log plot of the left-hand side and right-hand side of the
constraint (5.19) for m = 2 mod 4. The left-side grows exponentially with
m, as shown on the log plot.

As we have mentioned, for m odd, we have studied the first 2000 terms
and the only possibilities are the values mentioned above. For m ∼ 2000, we
are well within the regime for which our asymptotic bounds are valid. For
m even, we have also examined the constraints numerically and it appears
that m ≥ 36 is well within the range of validity of our bounds, see Figures 4
and 5.

Figure 5: This figure shows a semi-log plot of the quantities R1 and R2
appearing in the constraint (5.44). The constraint is violated when they are
positive. The plot shows that starting with m = 28 they are indeed positive
and even exponentially growing.
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6. Near-extremal N = 2 conformal field theories

In Section 5, we showed that N = 2 ECFTs, as we have defined them, at
best exist only for a finite number of exceptional values of m. One might
object that our definition is too narrow and that we should simply modify
the definition of an extremal theory.

In this section, we consider one way of modifying the notion of an
extremal theory, by demanding only that some “significant” fraction of the
polar degeneracies c(n, �) coincide with those predicted from the vacuum
character.

Returning to the system of equations (4.5), for fixed m, define k(m) to
be the largest integer such that

(6.1)
j(m)
∑

i=1

xiNia = da, a = 1, . . . , k(m)

admits a solution xi for which the elliptic genus
∑

xiφi has an integral
Fourier expansion. We would like to show that we can choose k(m) to be
“close” to P (m).

Turning again to a numerical analysis, we studied the truncation of (6.1)
to the first j(m) equations: 1 ≤ a ≤ j(m), where we ordered the polar terms
via their polarity. We found that in all cases 1 ≤ m ≤ 36 there is indeed a
solution xi in rational numbers. Moreover, for all m except m = 17 the
Fourier expansion coefficients are integral — in so far as we have tested
them. This indicates that k(m) = j(m) + O(1).12 We conjecture that this
is the case in general, and in Section 6.1, assuming this conjecture to be
true, we derive an interesting constraint on the spectrum of N = 2 CFTs.

For the analysis in Section 6.1, it turns out to be more convenient to
define a “β-extremal N = 2 CFT” by imposing the less restrictive condition
of only requiring that polar degeneracies are predicted from the vacuum
character in the β-truncated polar region:

(6.2) Pβ := {(�, n) : 1 ≤ � ≤ m, n ≥ 0, 4mn − �2 ≤ −β}.

We know that for suitable β candidate elliptic genera exist. For example,
if we take β = m2, then we can always construct a candidate elliptic genus.
We get a better approximation to an extremal theory by lowering the value

12Note that at least for the exceptional solutions, m = 7, 8, 11, 13 we have k(m) >
j(m).
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of β. Therefore, let Pβ(m) be the number of independent polar monomials
of polarity ≤ −β, and let β∗ be the smallest integer β such that

(6.3)
j(m)
∑

i=1

xiNia = da, a = 1, . . . , Pβ(m),

admits a solution xi for which
∑

xiφi has integral coefficients in its Fourier
expansion. According to our conjecture, Pβ∗(m) ∼= j(m). We would there-
fore like to estimate the value of β for which Pβ(m) = j(m) + O(m1/2) for
large m. The computation follows closely the analysis of Section 2.2.

We now have

(6.4) Pβ(m) =
m
∑

r=r0

⌈

r2 − β

4m

⌉

,

where r0 := �
√

β�. As before, we write this as a sum of three terms,
(6.5)

Pβ(m) =
m
∑

r=r0

r2 − β

4m
−

m
∑

r=r0

((

r2 − β

4m

))

+
1
2

m
∑

r=r0

(⌈

r2 − β

4m

⌉

−
⌊

r2 − β

4m

⌋)

.

The first term is
(6.6)

m
∑

r=r0

r2 − β

4m
=

m2

12
+

m

8
+

1
24

− r0(2r0 − 1)(r0 − 1)
24m

− β
(m − r0 + 1)

4m
.

Denote the number of integers r such that r0 ≤ r ≤ m with r2 = β mod 4m
by ν(m, β). Unlike the case β = 0, we cannot write down an exact formula,
but it is clear that asymptotically ν(m, β) ∼ m1/2. The second term is

(6.7)
m
∑

r=r0

⌈

r2 − β

4m

⌉

−
m
∑

r=r0

⌊

r2 − β

4m

⌋

= m + 1 − r0 − ν(m, β).

For the third term, we again use the argument that the numbers (( r2−β
4m ))

are randomly distributed. We thus have a random walk between −1/2 and
+1/2 and the sum is expected to be of order m1/2.

To conclude, note that for β = αm with α a constant 0 < α < 1, we have
r0 ∼ m1/2, so the large m asymptotics are

(6.8) Pβ(m) =
m2

12
+

(

5
8

− α

4

)

m + O(m1/2).
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Comparing to (2.25), we see that for large m, the reduction of polarity
to obtain the truncated supergravity elliptic genus is given by β = 1

2m +
O(m1/2).

As in Equation (2.33) above, the symbol O(m1/2) is to be understood
heuristically. It would be worthwhile being more rigorous about this point.

6.1. A constraint on the spectrum of N = 2 theories with
integral U(1) charges

In the previous sections, we have found strong evidence that we must have
Pβ∗(m) ∼= j(m), and hence by (6.8)

(6.9) β∗ ≥ m

2
+ O(m1/2)

for large m.
Now a monomial qny� of polarity β corresponds by spectral flow to a

state in the NS-sector that contributes as qh−m/4y� with

(6.10) h =
m

4
+

�2

4m
− β

4m
.

Therefore, if we accept (6.9), then we can obtain an interesting constraint on
the spectrum of a (2, 2) AdS3 supergravity with a holographically dual CFT.
It must contain at least one state which is a left-moving N = 2 primary (not
necessarily chiral primary) tensored with a right-moving chiral primary such
that

(6.11) h <
m

4
+

�2

4m
− 1

8
+ O(m−1/2).

It would be interesting and useful to sharpen this bound. However, we
will show in Section 7 that it is possible to construct elliptic genera, which,
after spectral flow, do match the spectrum of the vacuum character for
all conformal weights with h ≤ m

4 . There is no contradiction between this
result and (6.11) because under 1/2 unit of spectral flow, 0 ≤ |�| ≤ 2m and
hence �2

4m could be as large as m, and thus the bound can be as large as
5m
4 − 1

8 + O(m−1/2).

7. Construction of nearly extremal elliptic genera

In this section, we consider an alternative basis for the weak Jacobi forms
which has a “triangular” nature, allowing us to replace the polar region P(m)
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by an alternative region S. We will see that for large m, S “approximates”
P(m). In the next section, we discuss the possible physical significance of
this fact.

It is shown in [25] that there is an integral basis of the ring of weak
Jacobi forms of weight zero with integral coefficients

(7.1) J̃Z

0,∗ = Z[φ0,1, φ0,2, φ0,3, φ0,4]/I,

where I is the ideal generated by the relation

(7.2) φ0,1φ0,3 = 4φ0,4 + φ2
0,2.

The generators are elliptic genera of Calabi–Yau manifolds, and explicit
formulae are given in [25]. In the basis (2.23), they can be expressed as13

φ0,1 = φ̃0,1,(7.3)

φ0,2 =
1
24

φ̃2
0,1 − 1

24
φ̃2

−2,1E4,(7.4)

φ0,3 =
1

432
φ̃3

0,1 − 1
144

φ̃0,1φ̃
2
−2,1E4 +

1
216

φ̃3
−2,1E6,(7.5)

φ0,4 =
1

6912
φ̃4

0,1 − 1
1152

φ̃2
0,1φ̃

2
−2,1E4 +

1
864

φ̃0,1φ̃
3
−2,1E6 − 1

2304
φ̃4

−2,1E
2
4 .

(7.6)

To make the triangular nature of this basis manifest, it is useful to
consider the NS-sector images of the generators,

(7.7) φ̂0,m = (−1)mqm/4ymφ0,m

(

τ, z +
τ

2
+

1
2

)

.

We now consider ordering the q, y expansion by the leading power of q and,
for each power of q, by the largest positive power of y. (Recall that χNS(τ, z)
is an even function of z, so the positive powers of y determine the negative
powers of y.) With this ordering of terms, we have

φ̂0,1 = q−1/4 + O(q1/4),

φ̂0,2 = (y + y−1) + O(q1/2),

φ̂0,3 = q1/4(y − y−1)2 + O(q3/4),

φ̂0,4 = 1 + O(q1/2).

(7.8)

13We have redefined φ0,4 in [25] by a factor of −1.
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By (7.1), an overcomplete linear basis of J̃0,m is given by

(7.9) (φ̂0,1)i(φ̂0,2)j(φ̂0,3)k(φ̂0,4)l

with i + 2j + 3k + 4l = m, i, j, k, l ≥ 0. In order to obtain a set of linearly
independent basis vectors, we distinguish the monomials in (7.9) according
to whether i > k or i ≤ k and then use identity (7.2) to eliminate φ̂0,3 or
φ̂0,1, respectively. The result is that there exists a vector space basis for
J̃0,m which is a disjoint union of two sets A � B with

A := {(φ̂0,1)i(φ̂0,2)j(φ̂0,4)l| i > 0, j ≥ 0, l ≥ 0 i + 2j + 4l = m},

(7.10)

B := {(φ̂0,2)j(φ̂0,3)k(φ̂0,4)l|, j ≥ 0, k ≥ 0, l ≥ 0 2j + 3k + 4l = m}.

(7.11)

A tedious but elementary counting argument shows that

(7.12) |A| =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

m2

16
+

3m

8
− s2

16
+

s

8
+

1
2
, m = s mod 4, s = 1, 3,

m2

16
+

m

4
− s2

16
+

s

4
, m = s mod 4, s = 0, 2,

and |A| + |B| = j(m).
Now note that the leading expression in the q, y expansion of an element

in the set A is q−i/4yj , while that in the set B is qk/4yj+2k. It thus follows
that an (NS-sector) Jacobi form of weight zero and index m with integral
Fourier coefficients is uniquely determined by the coefficients of qny� where
(�, n) run over the set:

(7.13) S = SA � SB

where

(7.14) SA =
{

(�, n)|n < 0, 0 ≤ �, n +
m

4
≥ �

2

}

and

(7.15) SB =
{

(�, n)|0 ≤ n, 8n ≤ �, n +
m

4
≥ �

2

}

.
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In both SA and SB, the (�, n) are in the lattice (�, n) ∈ Z × 1
4Z, subject to

the quantization condition

(7.16)
(

n +
m

4

)

− �

2
= 0 mod 1.

(This quantization is equivalent to the statement that in the Ramond sector
the elliptic genus has a Fourier expansion in q, y with integral powers of q, y.)
The regions SA and SB in the (�, h) plane are triangles and their union is
a triangle. The full region S can serve as a surrogate for the polar region
P(m), as explained in Figure 6.

Recall that n, the power of q in the NS-sector character, is related to
h as n = h − m

4 . It then follows from (7.14) that SA contains all possible
points with h < m/4 that occur in the NS vacuum character (3.8). Thus it
is possible to construct a weak Jacobi form with integral coefficients whose
q-expansion agrees with that of an extremal theory for all NS-sector Virasoro
weights up to h = m/4 (for m even) and h = (m − 1)/4 (for m odd). This
fits in very nicely with the bound (6.11), which puts an upper bound on the
range of h where all states can be descendants of the vacuum.

Figure 6: A comparison of the polar region P(m) and the region S. The NS-
sector polar region is bounded by � ≥ 0, h ≥ �/2, h ≤ m

4 + �2

4m . The region
S is the triangular region, � ≥ 0, h ≥ �

2 , h − m
4 ≤ �

8 , which itself is a union
of two triangular regions SA and SB, where SA is the subregion of S with
h < m

4 . The polar region contains SA, while SB is an “approximation” to
the remainder.
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8. Discussion: quantum corrections to the cosmic
censorship bound

If the pure N = (2, 2) supergravity is a consistent quantum theory, its
Hilbert space should be spanned by states which can be identified as excita-
tions of the supergravity fields. One class of such states are perturbative and
normalizable excitations of the supergravity fields in AdS3, which generate
the vacuum representation in the boundary CFT [7]. It is expected that
these are the only states up to the cosmic censorship bound. We define this
bound to be the boundary of the region in the space of energy and charges in
which states corresponding semi-classically to black hole solutions can exist.
In the classical limit, the cosmic censorship bound is the condition on mass
and charges of a black hole such that there is a regular horizon.

It turns out that the classical cosmic censorship bound is exactly equal
to the upper bound of the polar part of the CFT spectrum [15]. This was the
motivation for the definition of N = (2, 2) extremal conformal field theory
in Section 3.1. On the other hand, in Section 5, we proved that such a
conformal field theory does not exist for sufficiently large m. This result,
however, does not immediately rule out the conjectured existence of pure
N = (2, 2) supergravity since the cosmic censorship bound might receive
quantum corrections. That is, there might be quantum corrections to the
relation between the values of the mass and charges of those quantum states
whose semi-classical manifestation are black holes. There are two potential
sources for such corrections, and we will discuss each of them below.

As far as perturbative effects are concerned, the pure supergravity theory
can be treated as the Chern–Simons gauge theory with the gauge group (3.5).
Since the classical equations of motion of the Chern–Simons theory imply
vanishing of the gauge field strength and since any perturbative corrections
to the equations of motion can be expressed as a polynomial of the field
strength and its covariant derivatives, black hole solutions are not corrected
to all orders in the perturbative (i.e., 1/m) expansion. However, values of
the mass and charge of a given black hole solution can receive corrections
since computing them requires knowing the action as well as the equations
of motion. In particular, the “level” m, whose inverse appears in front of the
action, can be corrected. The leading discrepancy between the dimension
of the space of polar polynomials, P (m), and the dimension of the space of
weak Jacobi forms, j(m),

(8.1) P (m) − j(m) =
m

8
+ O(m1/2),
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can be explained if m is shifted by an appropriate constant by quantum
effects. Such a shift is known to occur in perturbative Chern–Simons gauge
theory [46], where the level k is shifted at one loop by the dual Coxeter
number of the gauge group, C2(G). For the supergroup OSp(2|2), we have
C2 = −2, so that in the present case both kL and kR are shifted as14

(8.2) kL → kL − 2.

Combining this with Equation (3.7), we can express this as the shift of m,

(8.3) m → m − 8,

which, unfortunately, does not account for the difference in (8.1). Further-
more, it seems difficult to attribute subleading terms in (P (m) − j(m)) to
higher order perturbative effects since subleading terms in P (m) contain the
arithmetic function A(m), which does not have a nice 1/m expansion (see
footnote 2).

There is another source of corrections which are nonperturbative in
nature. To see this, we note that conformal weights h for states counted
by the elliptic genus are integers, as required by modular invariance. This
granularity, which is smeared out in any perturbative analysis, gives rise to
an intrinsic ambiguity in the cosmic censorship bound of O(1) in h. Since
the boundary of the polar region in the (L0, J0) plane has a length of order
m, it is possible that the discrepancy of P (m) and j(m) mentioned above
is entirely attributed to this granularity. For example, the bound on h for
a new primary state found in (6.11) is within O(1) of the cosmic censorship
bound.

It is possible that a combination of these two effects resolves the apparent
contradiction between the conjectured existence of pure N = (2, 2) super-
gravity and the properties of the elliptic genus we found in this paper.

14One way to think about this shift is as follows. The supergroup OSp(2|2) is the
superconformal group of AdS2, and its dual Coxeter number, C2, can be thought
of as the beta-function of the world-sheet sigma-model defining AdS2 space-time.
If instead of AdS2 we consider a positive curvature space, that is a 2-sphere S2, the
contribution to the beta-function of the world-sheet theory should have opposite
sign and, hence, the opposite shift of k. In particular, for S2, which has the isometry
group SU(2), the shift k → k + 2 is familiar in the study of SU(2) Chern–Simons
theory [46]. In the case of OSp(2|2) Chern–Simons theory, the shift should have
opposite sign, therefore justifying (8.2).
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Given the close resemblance of the region SA ∪ SB identified in Section
7 with the polar region, it is natural to ask whether the boundary of that
region might in fact constitute the quantum-corrected cosmic censorship
bound. This seems unlikely to us. Along the line h = �

8 + m
4 , 0 ≤ � ≤ 2m

3 ,

the polarity becomes as great as p = m2

16 . It seems unlikely that quantum
corrections will modify the mass and charge in such a way as to change a
semi-classical black hole state with such a polarity to a descendent of the
vacuum.

9. Extremal N = 4 theories

The analysis for the case of the pure N = (2, 2) supergravity theories is
somewhat inconclusive since we cannot rule out that there are quantum
corrections to the classical supergravity ansatz. The situation is sharper
for the case with N = (4, 4) superconformal symmetry since the possible
quantum corrections of these theories are well constrained [11]. Therefore,
in this section, we shall begin to address whether modular invariance allows
for a pure N = (4, 4) supergravity theory. Unfortunately, our results are
somewhat incomplete.

Following the earlier definition, we define an extremal N = (4, 4) theory
to be a theory whose partition function is of the form (3.10), where χ

(m)
vac is

now the vacuum character of the N = 4 algebra [19,20]:

(9.1) χ(m)
vac = q−m/4

∞
∏

n=1

(1 − yqn−1/2)2(1 − y−1qn−1/2)2

(1 − qn)
χ(q, y),

with

χ(q, y) =
∞
∏

n=1

1
(1 − qn)(1 − y2qn)(1 − y−2qn−1)

×
∑

j∈Z

q(m+1)j2+j

(

y2(m+1)j

(1 − yqj+1/2)2
− y−2(m+1)j−2

(1 − y−1qj+1/2)2

)

.(9.2)

As in the case of the N = 2 vacuum character, we have evaluated this expres-
sion at z + 1

2 . To get rid of the negative powers of q in the denominator, we
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can rewrite it as two separate sums over positive j,

χ(q, y) =
∞
∏

n=1

1
(1 − qn)(1 − y2qn)(1 − y−2qn−1)

×

⎡

⎣

∑

j≥0

q(m+1)j2+j

(

y2(m+1)j

(1 − yqj+1/2)2
− y−2(m+1)j−2

(1 − y−1qj+1/2)2

)

+
∑

j≥1

q(m+1)j2+j−1

(

y−2(m+1)j−2

(1 − y−1qj−1/2)2
− y2(m+1)j

(1 − yqj−1/2)2

)

⎤

⎦ .(9.3)

It is straightforward to read off the polar polynomial from this expression.
Using the same methods as in Section 4, we have analyzed whether

this polar polynomial can be completed to a weak Jacobi form. We have
performed the analysis for 1 ≤ m ≤ 20, and we have found that the only
cases where this is possible are m = 1, 2, 3, 4, 5. (Note that for 1 ≤ m ≤ 4
this is automatic since P (m) = j(m).) Thus, apart from a few low-level
exceptions, we expect that the pure N = (4, 4) sugra ansatz is incompatible
with modular invariance. It might be possible to prove this assertion by
suitably modifying the methods of Section 5, but the expressions appear to
be challenging and we have not attempted to do so.

An important loophole in our argument is the possibility that there are
zero modes making the elliptic genus vanish. This might happen when there
is an extension of the chiral algebra and m is odd. In order to demonstrate
this, write the character expansion of the RR-sector partition function as

(9.4)
ZRR =

∑

1≤�,�̃≤m

c��̃χ�χ�̃ + c00χ0χ0 +
∑

1≤�≤m

c�0χ�χ0 +
∑

1≤�̃≤m

c0�̃χ0χ�̃ + · · ·

Here χ� denote the characters of the unitary massless representations, with
0 ≤ � ≤ m denoting twice the spin of the highest weight vector and + · · ·
refers to terms with a massive representation on the left or the right. The
reason for separating out the � = 0 spin as special is that its highest weight
vector is not a polar state, whereas the highest weight vectors of all the
other massless representations are polar states. An extremal theory must
have an expansion of the form

(9.5) ZRR = χmχm̃ + c00χ0χ0 +
∑

1≤�≤m

c�0χ�χ0 +
∑

1≤�̃≤m

c0�̃χ0χ�̃ + · · ·
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since χm is the spectral-flow image of the NS vacuum. Now, the elliptic
genus of χ� is (−1)�(� + 1), while that of the massive representations is zero.
Thus, if the elliptic genus vanishes then, comparing the coefficient of the
left-moving vacuum character χm, we see that

(9.6) cm0 = (−1)m+1(m + 1).

Note that a nonvanishing coefficient cm0 implies that the right-moving chiral
algebra is enhanced, as claimed. Also, since cm0 is a positive integer, this
can only happen when m is odd. Moreover, by comparing the coefficients of
the other left-moving characters, we find the constraints c�0 = 0 for 1 ≤ � ≤
m − 1 and

∑m
�̃=0 c0�̃(−1)�̃(�̃ + 1) = 0. Since our no-go theorem would apply

if either the holomorphic or anti-holomorphic elliptic genus is nonvanishing,
we might as well assume the anti-holomorphic elliptic genus also vanishes. In
this case, we find that c0� = 0 for 1 ≤ � ≤ m − 1 and hence c00 = (m + 1)2,
so that ZRR = |χm + (m + 1)χ0|2 + · · · . Thus, for extremal theories of this
type our arguments fail, and further investigation is necessary.

It should be noted that a vanishing elliptic genus does indeed occur in
some important examples. One example arises in AdS3 × S3 × T 4 compact-
ifications [31]. A second example is in the MSW conformal field theory with
(0, 4) supersymmetry, which is dual to an AdS3 × S2 × X compactification,
where X is Calabi–Yau [32,36]. In all these cases, there is an extended chiral
algebra due to singleton modes. In such a case, one must take derivatives
with respect to z̄ and set z̄ = 0 [9, 31]. The resulting modular object is a
nonholomorphic generalization of a Jacobi theta function [12, 14]. A sim-
ilar phenomenon happens in the analog of the elliptic genus for the large
N = 4 superconformal algebra [26]. Of course, the examples we have just
cited are not extremal theories. However, these examples do suggest that
it would be useful to extend the investigation of extremal theories to the
cases of vanishing elliptic genera, or (0, 4) supersymmetry, or large N = 4
supersymmetry.

10. Applications to flux compactifications

Flux compactifications of M-theory and string theory have been a very pop-
ular subject of investigation in recent years [13, 16]. Unfortunately, these
compactifications are in general very complicated and it is difficult to be
sure that they are valid solutions of string theory within a controlled approx-
imation scheme. The demonstration of holographically dual conformal field
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theories would definitively settle such difficulties, at least for flux compacti-
fications to anti-de Sitter spacetimes. The considerations and techniques of
this paper might put interesting constraints on the allowed spectra of some
classes of flux compactifications, namely compactifications to AdS3 with a
holographically dual (2, 2) conformal field theory. One could imagine, for
example, flux compactifications of M-theory on a suitable Calabi–Yau 4-fold,
where one includes M5 instanton effects, in order to exclude no-scale com-
pactifications.

The compactifications of greatest interest are those with a small cosmo-
logical constant and a large gap from the ground state to the Kaluza–Klein
scale. These simple aspects of the spectrum already have implications for
the conformal field theory. If the cosmological constant is small, then the
Brown–Henneaux central charge c = 3

2RM
(3)
pl is large. This implies that the

level

(10.1) m =
RM

(3)
pl

4

is large.
Now let us consider the spectrum of the theory. The supergravity mul-

tiplet corresponds to the super-Virasoro descendants. Next, if V8 is the
volume of the Calabi–Yau 4-fold in 11-dimensional Planck units, then

(10.2) [V8(M
(11)
pl )8]M (11)

pl = M
(3)
pl ,

and therefore, M
(11)
pl ∼ M

(3)
pl unless V8 is unnaturally large, and hence in

AdS units, the KK scale is of order m. Thus, we naturally expect a large
gap to the primary fields corresponding to the KK modes.

In addition to the supergravity multiplet and the KK modes, there will
typically be other primary fields, for example, the moduli fields, many of
which might have acquired masses in the compactification scheme. Our
conjectured bound (6.11) might possibly put constraints on the masses which
the moduli acquire.

It would clearly be of interest to make these considerations more precise,
and moreover to extend them to theories with holographic duals with only
(1, 1) supersymmetry. Indeed, one does not expect generic flux compactifi-
cations to lead to N = 2 supersymmetry since there is no candidate isometry
for the U(1) current algebra. Given the N = 1 supersymmetry, one can still
form a holomorphic elliptic genus, but the existence of the Hauptmodul K̂
for Γθ (see Equation (5.3) above) shows that the techniques of this paper
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cannot be used to exclude compactifications just based on the polar polyno-
mial of the elliptic genus. Further work is needed to see whether modularity,
combined with other ideas, puts any interesting constraints on the landscape
of three-dimensional AdS compactifications.15
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A. Growth properties

A.1. Analysis of the constraint for m odd

For m odd, we have

(A.1) L =

[

−2iq−m/4+1/8 1 − q1/2

1 + q1/2

ϑ3(τ)
η3 ϑ2

2ϑ
2
4

]

q0

,

where L was defined in (5.26). We can simplify this significantly using
the triple product identity ϑ2ϑ3ϑ4 = 2η3. Next, shifting τ → τ + 1 (which
cannot change the q0 coefficient) we obtain

(A.2) L = 4e−iπm/2

[

q−m/4+1/8 1 + q1/2

1 − q1/2 ϑ2ϑ3

]

q0

.

Now use the usual sum formula for ϑ2 and ϑ3 to obtain

(A.3)
ϑ2ϑ3 =

∑

r,s∈Z

q(r−1/2)2/2+s2/2 =
∑

r,s∈Z

q(2r−1)2/8+(2s)2/8 =
∑

n∈N0

B(n)qn/8,

where B(n) is the number of ways of writing n as a sum of an even and an
odd integer squared, i.e., n = (2r − 1)2 + (2s)2 with both r and s integer.
We also observe that the series expansion of the other factor is

(A.4)
1 + q1/2

1 − q1/2 = 1 + 2
∞
∑

�=1

q�/2.

Thus the exact result for (5.26) is

(A.5) L = 4e−iπm/2

⎡

⎣B(2m − 1) + 2
(2m−1)/4

∑

�=1

B(2m − 1 − 4�)

⎤

⎦ .

The dominant contribution comes from the second term. This sum is pre-
cisely equal to all combinations of an odd and an even integer whose square
sum up to a number less or equal to 2m − 5. Now draw a rectangular
lattice whose unit cell is a square with length 2, where we shift the lat-
tice by one unit in the x1-direction say, so that the centers of the cells
are at (x1, x2) = (2r − 1, 2s). Consider the area of all those unit cells for
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Figure 7: The grey area is given by those boxes whose centers lie within the
outer circle of radius

√
2m − 5. The inner circle has radius

√
2m − 5 −

√
2

and is completely contained in the grey area.

which the corresponding center point (2r − 1, 2s) has the property that
(2r − 1)2 + (2s)2 ≤ 2m − 5. It follows from elementary geometry that this
area is bigger than the area of the disk with radius

√
2m − 5 −

√
2 (see

Figure 7). Since each unit cell has area 4, it follows that

(A.6)
(2m−1)/4

∑

�=1

B(2m − 1 − 4�) ≥ 1
4
π
(√

2m − 5 −
√

2
)2

=
π

2
m − π

√

m − 5
2

− 3
4
π.

Thus it follows that eiπm/2L, which is positive, is bounded below by

(A.7) eiπm/2L ≥ 4πm − 8π

√

m − 5
2

− 6π.

A.2. Analysis of the constraint for m = 2 mod 4

In the case of m odd, we saw that L only grew linearly. Since the original
expression contained exponentially growing function such as η−3, this means
that there had to occur cancellations. We will now show that for m =
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2 mod 4, such cancellations do not occur, i.e., that

(A.8) L =

[

q−m/4+1/8 1 − q1/2

1 + q1/2

ϑ3

η3 (ϑ4
4 − ϑ4

2)

]

q0

grows exponentially with m. To this end, use (5.24) to write

(A.9)

[

q−1/2+1/8 (1 − q1/2)2

1 − q

(

−24
q∂qϑ3

η3 +
E2ϑ3

η3

)

]

qN

,

where N = m/4 − 1/2. The following form of E2 will be useful:

(A.10) E2(τ) = 1 − 24
∞
∑

k=1

σ1(k)qk,

where σ1(k) is the divisor function.
Let us first consider the second term of (A.9). We will show that this is

negative and grows exponentially fast with N . We introduce the expansion
coefficients of ϑ3/η3,

(A.11)
ϑ3

η3 = q−1/8
∑

n≥0

(F1(n)qn + F2(n)qn+1/2).

From these, we obtain the discrete derivative (1 − q1/2)2ϑ3/η3,

(A.12) q−1/2+1/8(1 − q1/2)2
ϑ3

η3 =
∑

n≥0

(K(n)qn + K ′(n)qn−1/2)

with K(n) = F2(n) − 2F1(n) + F2(n − 1), and, including E2,

(A.13) q−1/2+1/8E2(1 − q1/2)2
ϑ3

η3 =
∑

n≥0

(K̂(n)qn + K̂ ′(n)qn−1/2)

with

(A.14) K̂(n) = K(n) − 24
n

∑

s=1

σ1(s)K(n − s).
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Finally, the desired second term of (A.9) is
∑N K̂(n). It will therefore suffice

to show that K̂(n) grows exponentially and is negative for large n.
To examine the large n behavior, we begin with the Rademacher expan-

sions for F1(n) and F2(n). These are summarized in Appendix B with the
result that

F1(n) = (8n)−5/4eπ
√

2n

(

1 − 15 + π2

8
√

2π
n−1/2 +

105 + 10π2 + π4

256π2 n−1

+ O(n−3/2)

)

,

F2(n) = (8n)−5/4eπ
√

2n

(

1 +
3(π2 − 5)

8
√

2π
n−1/2 +

3(35 − 10π2 + 3π4)
256π2 n−1

+ O(n−3/2)

)

.

From this, we compute the discrete derivative

(A.15) K(n) = π2(8n)−9/4eπ
√

2n(1 + O(n−1/2)).

Note the exponential growth with n. Now write

(A.16) K̂(n) = K(n) − 24K(n − 1) − 24S

with S :=
∑n

s=2 σ(s)K(n − s). It is straightforward to see that the sum S
is positive definite for large n: first note that because of (A.15), K(n) is
negative for at most finitely many n. Since K(n) grows exponentially and
σ(s) only grows like σ(s) ∼ eγs ln ln s, where γ is the Euler–Mascheroni con-
stant [27], it follows that the first terms of the sum dominate the (potentially
negative) terms at its tail. The first two terms on the RHS of (A.16) clearly
grow like −23π2(8n)−9/4eπ

√
2n, hence K̂(n) is negative and exponentially

growing for large n. Therefore the same is true for
∑N K̂(n).

In the analysis of the case m = 0 mod 4 below, we will show that the first
term of (A.9) is negative, so that there can be no cancellations between the
two. We thus conclude that (A.9) grows exponentially.
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A.3. Analysis of the constraint for m = 0 mod 4

Define

R1 =

[

2q1/2 (1 − q1/2)4

(1 − q)3
ϑ3

η3

]

qm/4−1/8

(A.17)

R2 =

[

(1 − q1/2)2

1 − q

q∂qϑ3

η3

]

qm/4−1/8

.(A.18)

We shall show that for large enough m, both R1 and R2 are positive. Con-
sider first R2. Note that the only negative coefficients that can appear are
due to the factor (1 − q1/2)2. It will suffice to show that the coefficients

(A.19)

[

(1 − q1/2)2

(1 − q)3(1 − q2)3
q∂qϑ3

]

qN

are positive for N large enough. We have dropped the factor of (1 − q)−1 and
included only the first two factors of η3, which will turn out to be sufficient
to ensure positivity. Defining

(A.20)
1

(1 − q)3(1 − q2)3
=

∞
∑

n=0

b(n)qn,

it is straightforward to calculate

(A.21) b(n) =

⎧

⎪

⎨

⎪

⎩

1
1920

(2 + n)(4 + n)(6 + n)(8 + n)(5 + 2n), n even,

1
1920

(1 + n)(3 + n)(5 + n)(7 + n)(13 + 2n), n odd.

Note in particular that

(A.22) b(n) =
n5

960
+

3n4

128
+

19n3

96
+ O(n2).

We now want to calculate the coefficients p(N) of

(A.23)
1

(1 − q)3(1 − q2)3
q∂qϑ3 =

∑

N∈1/2N

p(N)qN .
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We need to distinguish the cases N ∈ N and N ∈ N + 1
2 :

N ∈ N : p(N, K) =
K
∑

s=0

b(N − 2s2)4s2,(A.24)

N ∈ N +
1
2

: p(N, K) =
K
∑

s=0

b(N − (2s + 1)2/2)(2s + 1)2.(A.25)

In principle, the upper bound K is given by the requirement that the argu-
ment of b be nonnegative, and its explicit expression will involve some floor
function of a square root of N . For the moment, we will leave K as an
auxiliary integer parameter. One can then evaluate the sums explicitly to
obtain polynomials in both N and K, again distinguishing the cases N odd
and N even. As the resulting expressions are rather lengthy, we refrain from
writing them down explicitly. To determine the Nth coefficient of (A.19),
we then need to evaluate

(A.26) p(N, K1) − 2p(N − 1/2, K2) + p(N − 1, K3).

In principle, we would now have to determine the exact values of Ki, which
are complicated step functions of N1/2. For our purposes, however, it is
enough to know their leading behavior. In particular, we know that Ki =
√

N
2 − εi, where 0 ≤ εi < 2, so that εi is of order 1. We then obtain for

(A.26) the expression

(A.27)
N9/2

1890
√

2
+ O(N7/2).

Note that this holds for all N ∈ 1
2N. (Hence, our estimates can also be

applied to the analysis of Section A.2.) This shows that the leading term
has a positive coefficient and that it is independent of the εi, which only
appear in the subleading terms. This then shows that (A.19) has positive
coefficients for N large enough.

Note that for low values of N, the coefficients of (A.19) can still be nega-
tive. To complete the argument, we thus have to show that after convolution
with the remaining factors in (A.18) the potentially negative coefficients for
N < N0 cannot render negative the coefficients at arbitrarily large N . To
see this, note that it follows from the Rademacher expansion that, for any
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set of positive integers a1, . . . , ak, the Fourier coefficients of

(A.28) (1 − q)a1(1 − q2)a2 · · · (1 − qk)akη−3

will have the asymptotic behavior ∼ npeπ
√

2n. For example, in Appendix
B, we show that for the case of interest, (1 − q)3(1 − q2)3η−3, the leading
asymptotics is given by

(A.29)
π6

8
√

2
n−9/2eπ

√
2n.

We approximate the convolution sum as the integral

(A.30)
∫ N

dss9/2(N − s)−9/2eπ
√

2(N−s).

The position of the saddle point of this integral grows as

(A.31) s0 ∼ N1/2.

This means that for N large enough, the contribution of the negative coeffi-
cients around s ∼ 1 will be negligible, so that the total coefficient is positive.

Turning to R1, we need to consider

(A.32) (1 − q)−3(1 − q2)−3(1 − q3)−3(1 − q4)−3 =
∞
∑

n=0

b̃(n)qn.

A straightforward, but somewhat tedious calculation then gives expressions
similar to (A.21) whose explicit forms depend on n mod 12. Again, the
leading terms are independent of this, so that we can write

b̃(n) =
n11

551809843200
+

n10

3344302080
+

29 n9

1337720832
+

5 n8

5505024

+
16949 n7

696729600
+ O(n6).(A.33)

We can now define p̃(N, K) analogously to (A.24), (A.25) and evaluate

p̃(N, K1) − 4p̃(N − 1/2, K2) + 6p̃(N − 1, K3) − 4p̃(N − 3/2, K4)
+ p̃(N − 2, K5),(A.34)

which leads to

(A.35)
N15/2

1751349600
√

2
+ O(N13/2).
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Since sums of terms of order n6 give contributions of at most N7, this
also shows that it was sufficient to consider (A.33) only up to n6. The
coefficients of the truncated η−3 expansion grow as in (B.20), and the rest
of the argument is then completely analogous to the case of R2.

B. Rademacher expansions

The proofs in Appendix A require some asymptotic expansions for coeffi-
cients of some modular forms. We collect these here.

First, we apply the expansion to the modular vector

f1 =
1
2

ϑ3 + ϑ4

η3 = q−1/8
∞
∑

n=0

F1(n)qn,(B.1)

f2 =
1
2

ϑ3 − ϑ4

η3 = q3/8
∞
∑

n=0

F2(n)qn,(B.2)

f3 =
ϑ2

η3 =
∞
∑

j=0

F3(n)qn.(B.3)

We have weight w = −1, the representation is manifest for T , and for S it
is computed from

f1(−1/τ) = (−iτ)−1 1
2
(f1 + f2 + f3)(τ),(B.4)

f2(−1/τ) = (−iτ)−1 1
2
(f1 + f2 − f3)(τ),(B.5)

f3(−1/τ) = (−iτ)−1(f1 − f2)(τ).(B.6)

We now have convergent expansions

F1(n) =
π

8
(n − 1/8)−1I2

(

4π

√

1
8

(

n − 1
8

)

)

+ O(e2π
√

n/8),(B.7)

F2(n) =
π

8
(n + 3/8)−1I2

(

4π

√

1
8

(

n +
3
8

)

)

+ O(e2π
√

n/8),(B.8)

F3(n) =
π

8
(n)−1I2

(

4π

√

1
8
n

)

+ O
(

e2π
√

n/8
)

.(B.9)
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Now use

(B.10) Iν(x) ∼ 1√
2πx

ex

(

1 − 4ν2 − 1
8x

+
(4ν2 − 1)(4ν2 − 9)

128x2 + · · ·
)

for x → +∞ to get

F1(n) = (8n)−5/4e4π
√

n/8
(

1 − π2 + 15
8
√

2π

1
n1/2 +

π4 + 70π2 + 105
256π2

1
n

+ · · ·
)

(B.11)

F2(n) = (8n)−5/4e4π
√

n/8
(

1 +
3(π2 − 5)

8
√

2π

1
n1/2 +

3(3π4 − 70π2 + 35)
256π2

1
n

+ · · ·
)

.

(B.12)

We also need the asymptotic expansion of functions that are obtained
from η−3 by dropping the first few factors in the product formula. Defining

(B.13) η−3 = q−1/8
∑

n

p3(n)qn

(with p3(n) = 0 for n < 0 ), we have the Rademacher formula

(B.14) p3(n) = 2π(8n − 1)−5/4I3/2(π
√

2(n − 1/8)) + O(eπ
√

n/2).

Note that the Bessel function is elementary

(B.15) I3/2(x) =
2√
2πx

(

cosh x − sinhx

x

)

.

Define

(B.16) (1 − q)3(1 − q2)3η−3 = q−1/8
∑

n

p̂3(n)qn ,

which is a kind of sixth-order discrete derivative:

p̂3(n) = p3(n) − 3p3(n − 1) + 8p3(n − 3) − 6p3(n − 4) − 6p3(n − 5)
+ 8p3(n − 6) − 3p3(n − 8) + p3(n − 9).(B.17)

Substituting the asymptotic expansion (B.14), one finds after some algebraic
manipulations

(B.18) p̂3(n) =
(

π6

8
√

2
n−9/2 + O(n−5)

)

eπ
√

2n.
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Similarly, the coefficients

(B.19) (1 − q)3(1 − q2)3(1 − q3)3(1 − q4)3η−3 = q−1/8
∑

n

p̃3(n)qn

have leading asymptotics

(B.20) p̃3(n) ∼
(

27π12
√

2
n−15/2 + O(n−8)

)

eπ
√

2n.
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