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Homological mirror symmetry is T-duality for P
n

Bohan Fang

In this paper, we apply the idea of T-duality to projective spaces.
From a connection on a line bundle on P

n, a Lagrangian in the
mirror Landau–Ginzburg model is constructed. Under this corre-
spondence, the full strong exceptional collection OPn(−n − 1), . . . ,
OPn(−1) is mapped to standard Lagrangians in the sense of [23].
Passing to constructible sheaves, we explicitly compute the quiver
structure of these Lagrangians, and find that they match the quiver
structure of this exceptional collection of P

n. In this way, T-duality
provides quasi-equivalence of the Fukaya category generated by
these Lagrangians and the category of coherent sheaves on P

n,
which is a kind of homological mirror symmetry.

1. Introduction

Mirror symmetry was first observed for Calabi–Yau manifolds. It has been
extended to Fano cases by considering Landau–Ginzburg models as mir-
rors to Fano varieties [16]. A Landau–Ginzburg model is a non-compact
manifold equipped with a complex-valued holomorphic function called the
superpotential. In this paper, we study the approach of homological mirror
symmetry proposed by Kontsevich [19]. Kontsevich suggests to investigate
homological mirror symmetry as the equivalence of the Fukaya category on
the A-model side and the category of coherent sheaves on its mirror B-
model for Calabi–Yau manifolds. Kontsevich [18] and Hori–Iqbal–Vafa [15]
discuss homological mirror symmetry in the case of Fano manifolds. Fol-
lowing this line, Auroux et al. [5] prove homological mirror symmetry for
weighted projective planes (and their non-commutative deformations) and
Del Pezzo surfaces [6]. Abouzaid [1,2] proves the case of all smooth projec-
tive toric varieties using tropical geometry. Bondal and Ruan also announce
a result for weighted projective spaces [7].

Strominger et al. [24] conjecture that mirror symmetry is a manifestation
of T-duality on a special Lagrangian torus fibration. In the case of toric Fano
varieties [14, 20], the moment map produces a fibration by Lagrangian tori.
Auroux [4] discusses the relation between the SYZ conjecture and Fano
varieties. Recently, Chan and Leung [9] apply T-duality with quantum
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corrections to recover mirror symmetry for toric Fano varieties. This paper
deals with homological mirror symmetry for the projective space P

n, using
the philosophy of T-duality. We will apply this T-duality to any holomorphic
line bundle over P

n and obtain a Lagrangian in the Landau–Ginzburg mirror.
We define n + 1 Lagrangians L(−1), . . . ,L(−n − 1) in the mirror which arise
via T-duality of the collection O(−1), . . . ,O(−n − 1). We roughly state our
theorem here.

Theorem 1.1. The derived Fukaya category containing L(−1), . . . ,
L(−n − 1) is equivalent to the derived category of coherent sheaves on P

n.

The definition of this Fukaya category will be specified later. We remark
that the Lagrangians we are considering are submanifolds in (C∗)n consid-
ered as the cotangent bundle of (S1)n. While (C∗)n together with a cer-
tain superpotential W is the Landau–Ginzburg mirror of P

n in the sense
of [15, 18], we do not explicitly consider the superpotential W here. This
differs from the case in [5,6], in which the authors consider the Fukaya–Seidel
category consisting of vanishing cycles in a generic fiber of the superpoten-
tial. However, the Lagrangians in this paper are somehow like the vanishing
thimbles. Under some tentative calculation, the images of the Lagrangiang
L(k) under the superpotential W are not horizontal half-lines going from
critical values to the positive infinity. Instead, they are “thickened” rays.
Thus the Fukaya category we are using differs from the original idea of [15].
We hope a renormalization process suggested by Auroux [4] and Hori and
Vafa [16] will remedy this problem in the future.

Remark 1.2. When computing this Fukaya category, we pass to the dg
category of constructible sheaves by the results of [22,23]. The constructible
sheaves coming from L(−1), . . . ,L(−n − 1) are constructible with respect to
a particular stratification. This stratification coincides with Bondal [7,8] in
the case of projective spaces. The situation in more general cases and the
comparison with Bondal’s results will be discussed in [11].

The use of an explicit exceptional collection of P
n is basically for con-

venience only. T-duality produces an object for any line bundle, as does
the unique functor defined to agree with T-duality on a generating excep-
tional collection. The maps of objects do not a priori coincide. This issue
is addressed in [11], and they turn out to be the same. The method of this
paper is extended to treat all projective toric varieties in [11], thus recovering
Abouzaid’s result [2].
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2. Mirror of projective spaces

In this section, we describe the mirror of the projective space P
n over C.

Roughly speaking, the mirror of P
n is a Landau–Ginzburg model, i.e., a non-

compact manifold with a superpotential [16, 18]. The SYZ conjecture [24]
suggests to construct the mirror of P

n via T-duality on the torus fibration
over the moment polytope, as argued in [20]. The superpotential is conjec-
turally given by Fukaya–Oh–Ohta–Ono’s m0 obstruction [12]. This has been
investigated by Cho and Oh [10]. Following this idea, we give a description
of the mirror of P

n as a complexified moduli space of special Lagrangians.
The material in this section is from [4].

On P
n with its Fubini–Study metric and corresponding symplectic form

ω, the torus Tn acts via

(θ1, · · · , θn) · (z0 : z1 : · · · : zn) = (z0 : e2πiθ1z1 : e2πiθ2z2 : · · · : e2πiθnzn).

This action produces a moment map φ : P
n → Δ given by

(z0 : z1 : · · · : zn) �→
(

|z1|2∑n
i=0 |zi|2

,
|z2|2∑n

i=0 |zn|2 , . . . ,
|zn|2∑n
i=0 |zi|2

)
,

where

Δ =

{
(x1, x2, . . . , xn) : xi ≥ 0,

n∑
i=1

xi ≤ 1

}
.

This moment map is a torus fibration outside of the boundary.
Let D be the boundary divisor of φ, i.e., by D = φ−1(∂Δ) = {(z0 :

z1 : · · · : zn) ∈ P
n|z0, . . . , zn = 0}. The holomorphic n-form Ω on P

n\D is
d log z1 ∧ · · · ∧ d log zn in coordinates (1 : z1 : · · · : zn). By a special
Lagrangian we mean a Lagrangian submanifold L with a constant phase
ϑ, i.e., Im(e−iϑΩ)|L = 0. It is easy to see that the moment map φ defines
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a Tn-orbit fibration on P
n\D. Because of the following lemma, this is a

special Lagrangian fibration.

Proposition 2.1. The Tn-orbits in P
n\D are special Lagrangians.

Proof. It is a classical fact that any Tn-orbit is a Lagrangian. Notice the
holomorphic form Ω on P

n\D is d log z1 ∧ · · · ∧ d log zn. We see the restric-
tion of Ω on the orbit gives rise to phase nπ/2. �

On P
n, define a polar coordinate system (r, θ) by zk = rke

iθk at the
point (1 : z1 : · · · : zn). The coordinate r is the coordinate on the base of the
fibration φ, while θ lives in the fiber.

The mirror M is constructed as the moduli space of the torus fibers
together with flat connections on them.

Definition 2.2. The complexified moduli space M consists of pairs (L,∇).
Here L is a Tn-orbit in P

n\D, and ∇ is a flat U(1) connection on the trivial
line bundle over L up to gauge equivalence.

We omit the details of the complex and the symplectic structures on M .
The result is stated here without any explanation. Any Tn-orbit in P

n\D
has to be a fiber of φ. We write a fiber

L(r) := S1(r1) × · · · × S1(rn) = {(1 : z1 : · · · : zn), |zi| = ri},

for r = (r1, . . . , rn) ∈ (R+)n. It is obvious that L(r1, . . . , rn) is mapped to
a point in Δ by the moment map φ. The flat connection ∇ on L can be
represented as

∑
γidθi. Therefore we can give a coordinate system to M by

(r, γ), where r = (r1, . . . , rn) and γ = (γ1, . . . , γn). Notice γi takes value in
S1 = R/Z. Since P

n\D and M are dual fibrations on the same base, they
share the same coordinate r on the base. With these coordinates (r, γ) in
hand, the symplectic structure on M is defined as following.

Proposition 2.3. The symplectic structure on M is given by

ω∨ = (2π)n
∑

d log ri ∧ dγi.

Let yi = log ri, and we see that ω∨ = (2π)n
∑

dyi ∧ dγi. Hence M carries
the symplectic structure of the cotangent bundle over (S1)n. The coordi-
nates γi are on the base (S1)n while yi live on the fiber. The coordinate
systems (r, γ) and (y, γ) are used throughout the paper with the relation
yi = log ri. We sometimes write T ∗(S1)n as a synonym for the moduli space
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M , since we primarily consider the symplectic structure of M . For the
complex structure on M , there is

Proposition 2.4. The moduli space M is biholomorphic to a subset of
(C∗)n, given by the complex coordinates zj = exp(−2πφj(L))hol∇([S1(rj)]).
The map φj is the j-th component of the moment map φ, while hol∇([S1(rj)])
is the holonomy of ∇ with respect to [S1(rj)].

A straightforward calculation shows that

zj(L,∇) = exp

(
−

2πr2
j

1 +
∑n

i=1 r2
i

+ 2πiγj

)
.

It can be verified that ω∨ is indeed a Kähler structure with respect to the
complex structure.

The superpotential of M is obtained by m0 obstruction to Floer homol-
ogy, roughly speaking, counting holomorphic discs attached to a special
Lagrangian. For here, it is explicitly given by

Proposition 2.5. The superpotential W on M is given by

W = z1 + · · · + zn +
e−2π

z1z2 · · · zn
.

3. T-duality and constructible sheaves

3.1. T-duality on torus fibers

As the definition of M shows, we can go from a flat U(1) gauge field on
a special Lagrangian fiber in P

n\D to a point in the corresponding dual
fiber in M . Leung–Yau–Zaslow and Arinkin–Polishchuk apply a similar
transformation in [21] and [3], respectively, and go from a Lagrangian to a
gauge field. Here we do this in the other way, namely, from a gauge field
to a Lagrangian. From any holomorphic line bundle on P

n, we construct an
exact Lagrangian in M .

We endow a line bundle E on P
n with a Tn-invariant hermitian metric

h, constant on each fiber of φ. The canonical connection on E with respect
to this metric is ∇E,h = d − iAE,h, with the connection 1-form AE,h = i∂h ·
h−1 in some trivialization.1 The restriction of ∇E,h to any fiber L of φ|Pn\D

gives rise to a connection ∇E,h|L on the special Lagrangian L.

1We use the physics notation, such that AE,h is real-valued.
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Lemma 3.1. ∇E,h|L is a flat connection over L.

Proof. The connection ∇E,h can be written as d − iAE,h. The connection
1-form AE,h is given by

AE,h = i∂h · h−1

= −h−1 ·
n∑

i=1

∂h

∂ri
ridθi + terms in dr1, . . . , drn.

The metric h is a function of r = (r1, . . . , rn) and it does not depend on θ,
since it is constant on each fiber. Hence the restriction of AE,h on each fiber
gives vanishing curvature. �

Recall from Section 1 that M is the space of non-singular Tn-orbits
together with flat connections, and M ∼= (C∗)n as a symplectic manifold
with coordinates (r, γ) and the symplectic form

ω∨ = (2π)n
n∑

i=1

d log(ri) ∧ dγi.

We define the submanifold L(E, h) ⊂ M to be

{(L,∇E,h|L) : L is an Tn-orbit in P
n\D}.

In coordinates, we see that ∇E,h|L is smooth as a function of the fiber L,
and hence L(E, h) is a submanifold of M .

Proposition 3.2. L(E, h) is an exact Lagrangian submanifold.

Proof. In the coordinates (r, γ) of M ,

L(E, h) =
{

(r1, . . . , rn; −h−1 · ∂h

∂r1
r1, . . . ,−h−1 · ∂h

∂rn
rn),

(r1, . . . , rn) ∈ (R+)n

}
.
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The tangent space of L(k, h) at any point is spanned by the collection {∂ri
−

h−1 ·
∑n

j=1 rj
∂2hj

∂ri∂rj
∂γj

, 1 ≤ i ≤ n}. We have

ω∨

⎛
⎝∂ri

− h−1 ·
n∑

j=1

rj
∂2hj

∂ri∂rj
∂γj

, ∂ri′ − h−1 ·
n∑

j′=1

rj′
∂2hj′

∂ri′∂rj′
∂γj′

⎞
⎠

= (2π)nh−1
(

− ∂2hj

∂ri∂ri′
+

∂2hj

∂ri∂ri′

)

= 0.

The simple-connectedness of L(E, h) implies it is exact. �

3.2. Objects in the Fukaya category

In this subsection, we show that for the canonical metric hk on O(k), the
Lagrangian L(O(k), hk) can be endowed with a canonical brane structure,
thus it is an object in the Fukaya category Fuk(M).

For the line bundle O(1), on the open set U = {(1 : z1 : · · · : zn)} ⊂ P
n

we can write any x ∈ O(1)|U as {(1 : z1 : · · · : zn), ξ} by a local trivialization
of O(1). The natural Tn-invariant hermitian metric h1 on O(1) is given by

h1(x, y) =
〈ξ, η〉

1 +
∑n

i=1 |zi|2
.

Writing zi = rie
iθi , the canonical connection ∇O(1),h1

= d − iAO(1),h1
on

O(1) with respect to h1 is

AO(1),h1
= i∂h1 · h−1

1

=
r2
1dθ1

1 +
∑n

i=1 r2
i

+ · · · +
r2
ndθn

1 +
∑n

i=1 r2
i

+ terms of dr1, . . . , drn.

Hence, the Lagrangian

L(O(1), h1) =
{

(r, γ(1)(r)) : r = (r1, . . . , rn) ∈ (R+)n,

γ(1)(r) =
(

r2
1

1 +
∑n

i=1 r2
i

, . . . ,
r2
n

1 +
∑n

i=1 r2
i

)}
,

which is obviously the graph of the (S1)n-valued function γ(1). For any other
holomorphic line bundle O(k), let hk denote (h1)k, and this construction
gives rise to a Lagrangian (Figure 1).



726 Bohan Fang

Figure 1: Fiberwise T-duality transformation for P
1. The Lagrangians

L(O(1), h1) and L(O(2), h2) shown are obtained from line bundles O(1)
and O(2), respectively.

L(O(k), hk) = {(r, γ(k)) : r = (r1, . . . , rn) ∈ (R+)n, γ(k) = kγ(1)}.

We adapt the definition of the Fukaya category Fuk(M) for cotangent
bundles from [23]. The moduli space M is symplectomorphic to the cotan-
gent bundle M = T ∗(S1)n, where S1 = R/Z. Moreover, it is already equipped
with a standard symplectic form ω∨ = (2π)n

∑
dyj ∧ dγj . The Fukaya cat-

egory of a cotangent bundle has been defined in [23],2 and we apply that
definition to M = T ∗(S1)n. The variable γj are the coordinates on the base
which are periodic with period 1 and yj are the coordinates on the fiber.
Fix a metric on the base (S1)n to be g = dγ2

1 + dγ2
2 + · · · + dγ2

n. We would
like to employ the result of [23] to perform calculations in the Fukaya cat-
egory. The projective space P

n has an exceptional collection. We choose
one here: O(−n − 1),O(−n), . . . ,O(−1). The philosophy is to show that
the Lagrangians {L(O(k), hk)}−1

k=−n−1 constructed from this collection form
a derived Fukaya subcategory equivalent to DbCoh(Pn). From now on, we
only consider these objects, as well as their cones, shifts and sums in the
Fukaya category of M . Let us recall some basic facts concerning the geom-
etry of cotangent bundles from [23].

The next lemma shows that L(O(−1), h−1) is a graph over an open set.

Lemma 3.3. Let T = {(γ1, . . . , γn)|γi < 0, and
∑n

i=1 γi > −1}, an n-cell
in the base (S1)n of M = T ∗(S1)n. The Lagrangian L(O(−1), h−1) is the
graph Γdf of an exact 1-form df for some f : T → R (Figure 2).

2This definition differs from the “wrapped” category of Fukaya–Seidel–Smith [13].
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Figure 2: The Landau–Ginzburg mirror of P
1. The Lagrangian L(O(−1),

h−1) is a graph over the open interval T = S1\P .

Proof. We know that L(O(−1), h−1) is given by n equations

γj = −
r2
j

1 +
∑n

i=1 r2
i

for 1 ≤ j ≤ n and (r1, . . . , rn) ∈ (R+)n. Rewriting ri in the form of γj , we
get

ri =

(
− γj

1 +
∑n

j=1 γj

)1/2

for 1 ≤ i ≤ n and (γ1, . . . , γn) ∈ T . Using the coordinate system (y, γ) on
the cotangent bundle, where yi = log ri, we find

yi =
1
2

log

(
− γi

1 +
∑n

j=1 γj

)
.

Now note

yi =
∂f

∂γi
,

where

f =
1
2

n∑
i=1

γi log(−γi) − 1
2

⎛
⎝1 +

n∑
j=1

γj

⎞
⎠ log

⎛
⎝1 +

n∑
j=1

γj

⎞
⎠ .

�

Lemma 3.4. There are canonical brane structures for objects L(O(k), hk)
for k ∈ {−n − 1, . . . ,−1}. Hence we have obtained n objects L(O(k), hk) in
the Fukaya category Fuk(M).
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Proof. The Lagrangian L(O(−1), h−1) is canonically Hamiltonian isotopic
to T , inside T ∗(S1)n|T (this is a hamiltonian isotopy inside T ∗(S1)n|T but
not the whole T ∗(S1)n). Let p : T ∗(S1)n → (S1)n be the projection to the
base. This Hamiltonian isotopy can be achieved by the Hamiltonian flow
ϕH,t, where H = f ◦ p, which takes L(O(−1), h−1) to (1 − t)L(O(−1), h−1).
In particular, when t = 1, one arrives at T . We can equip T with grading
0. Because T is canonically Hamiltonian isotopic to L(O(−1), h−1), there
is a canonical grading for L(O(−1), h−1). As for the pin structure, since
L(O(−1), h−1) is contractible, it has a trivial pin structure. So we obtain a
canonical brane structure on L(O(−1), h−1).

Let S̃1 = R/(n + 1)Z, and let M̃ = T ∗(S̃1)n. Consider the (n + 1)n-
covering π : M̃ → M , given by π : (y, γ̃ mod (n + 1)) �→ (y, γ̃ mod 1). The
variables γ̃ = (γ̃1, . . . , γ̃n) are n + 1 periodic in each component. To treat
L(O(k), hk) for k ≤ −2, we need to consider the lifts of these Lagrangians
under this covering map π. These Lagrangians become graphs over open
sets in M̃ after the lifting (Figure 3).

Let a = (a1, . . . , an) ∈ (Z/(n + 1))n, and assume each ai takes integer
value from −n to 0. We can define open sets

U(k)(a1,...,ai) =

⎧⎨
⎩γ̃|γ̃i < ai,

n∑
j=1

γ̃j > k +
n∑

j=1

aj

⎫⎬
⎭

for k ∈ {−n − 1, . . . ,−1}. An exact Lagrangian L(O(k), hk) admits (n + 1)n

possible lifts. Let f0
−1 be a real function on U0(−1), defined by:

f0
−1 =

1
2

n∑
i=1

γ̃i log(−γ̃i) − 1
2

⎛
⎝1 +

n∑
j=1

γ̃j

⎞
⎠ log

⎛
⎝1 +

n∑
j=1

γ̃j

⎞
⎠ .

Figure 3: This square represents the base (S̃1)2 of T ∗(S̃1)2, as the lift M̃ of
the Landau–Ginzburg mirror M of P

2. The Lagrangian L(0,0)(O(−1), h−1) is
a graph over the small shaded triangle U (0,0)(−1), while L(−1,0)(O(−2), h−2)
is a graph over U (−1,0)(−2).
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Note that f0
−1 is one of the lifts of f : T → R. For k ∈ {−n − 1, . . . ,−1},

there are (n + 1)n lifts of L(O(k), hk), namely, given by the graph of the
differential of

fa
k = f0

−1

(
γ̃1 − a1

−k
,
γ̃2 − a2

−k
, . . . ,

γ̃n − an

−k

)
,

for any a = (a1, . . . , an) ∈ (Z/(n + 1))n. We denote the lifted Lagrangian as
the differential of the above function by La(O(k), hk).

Since the topology of L(O(k), hk) is trivial, it has a trivial (and canon-
ical) pin structure. We know that naturally L0(O(k), hk) has a canonical
brane structure, by the same argument for L(O(−1), h−1). The covering
map π acts trivially on the phase, and hence we can make π into a graded
covering π̃ with trivial grading. Under the graded covering map π̃, the nat-
ural grading of L0(O(k), hk) is mapped to a grading of L(O(k), hk) in M ,
giving a canonical brane structure for L(O(k), hk). Notice that our construc-
tion does not depend on the lift of L(O(k), hk). If La(O(k), hk) is another
lift of L(O(k), hk), for any x ∈ L0(O(k), hk) and x′ ∈ La(O(k), hk) such that
π(x) = π(x′), we have α̃L0(O(k),hk)(x) = α̃La(O(k),hk)(x′), where α̃L0(k,hk) and
α̃La(O(k),hk) are canonical gradings of L0(O(k), hk) and La(O(k), hk), respec-
tively. Hence different lifts give the same grading for L(O(k), hk). �

Remark 3.5. Although we are only worrying about finitely many L(O(k),
hk) for k ∈ {−n − 1, . . . ,−1}, this lemma actually holds for all k, i.e., any
L(O(k), hk) for k ∈ Z has a canonical brane structure and can be made
into an object in the Fukaya category Fuk(M). Therefore, from any line
bundle O(k) on P

n, we can construct a Lagrangian brane L(O(k), hk) on
the mirror side. Moreover, this construction does not essentially depend
on the choice of T -invariant metric, although we are using the canonical
metric hk here. Different metrics give rise to quasi-isomorphic branes in the
Fukaya category. Let h′

k = eλhk be another metric on O(k), where λ is a
Tn-invariant function on P

n. A straightforward calculation shows that the
Lagrangian L(O(k), h′

k) = φ1(L(O(k), hk), where φ is the hamiltonian flow
generated by the function λ. A more detailed argument of non-characteristic
isotopy in [22] shows that L(O(k), h′

k) and L(O(k), hk) are quasi-isomorphic
in the Fukaya category Fuk(M). For a direct treatment of an arbitrary
T -invariant metric in the T-duality, please see [11]. In t! he rest of this
paper, we simply denote L(O(k), hk) by L(k) for convenience.

When considering homological mirror symmetry, one actually deals with
the derived version of the triangulated envelope of the Fukaya category.
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There are several ways to define the triangulated envelope of a Fukaya
category. Here we adopt the method of Yoneda embedding, which agrees
with the definition in [22].

For any A∞ category A, the Yoneda embedding Y : A → mod(A) maps
an object L ∈ A to an A∞-module homA(−, L). We write Tr(A) for the
category of twisted complexes of modules in Y(A) as a version of the trian-
gulated envelope of A.

We study the Fukaya category F as a full subcategory of Fuk(M) con-
taining objects L(k), −n − 1 ≤ k ≤ −1, in this paper. Precisely,

Definition 3.6. F is the full A∞ subcategory of Fuk(M) consisting of n
objects L(k) where k ∈ {−n − 1, . . . ,−1}.

The derived category of F , denoted by DF , is a triangulated category
H0(Tr(F)). Note that DF ⊂ DFuk(M) is a full subcategory. We state our
main theorem:

Theorem 3.7. The (bounded) derived Fukaya category DF is equivalent
to DbCoh(Pn), the derived category of coherent sheaves on P

n.

3.3. Passing to standard branes

Let X be a real analytic manifold. A standard brane in the Fukaya category
Fuk(T ∗X) over an open set U ⊂ X is the graph of the differential d log m
equipped with the canonical brane structure, where m is a defining function
of ∂U on U : m = 0 on ∂U and m > 0 on U . The quasi-isomorphism class
of this brane does not depend on the choice of the particular m.

We would like to remind that the Lagrangian L(−1) is the graph of
the exact differential form df on the open set T ⊂ (S1)n. Note that we
cannot claim L(−1) is a standard brane in Fuk(M) at present, since ef

does not go to 0 near the boundary. However, it looks very much like a
standard Lagrangian, i.e., the covector df points inward near the boundary
∂T and its length is arbitrarily large. This section shows that L(−1) is
indeed isomorphic to a standard brane over the open set T , which allows
us to apply the microlocalization functor in [23] to pass into the category of
constructible sheaves.

For any real analytic manifold X, let Shnaive(X) be the triangulated dg
category whose objects are complexes of sheaves with bounded constructible
cohomology, and whose morphisms are the usual complexes of morphisms.
Then we take Sh(X) be the dg quotient of Shnaive(X) with respect to the
subcategory N of acyclic objects [17].
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The result of [23] says that there is an A∞ microlocalization functor from
Sh(X) to Tr Fuk(T ∗X), such that the induced functor for derived categories
D Sh(X) → D Fuk(T ∗X) is an embedding. The functor is generated by
sending i∗CU for any open set i : U ↪→ X to the standard Lagrangian over U .
Particularly, for X = (S1)n, we use μ as the microlocalization functor from
Sh((S1)n) → Tr Fuk(M) or the derived version D Sh((S1)n) → D Fuk(M),
depending on the context. Similarly, there is a microlocaliztion functor
μ̃ : Sh((S̃1)n) → Tr Fuk(M̃). Due to this fact, we denote the standard brane
over U in Fuk(M) by μ(i∗CU ), and the standard brane over Ũ in Fuk(M̃)
by μ̃(i∗C˜U ).

The normalized geodesic flow ϕt perturbs the objects when defining the
morphisms in Fuk(M). Since we have already chosen a metric on the base
(S1)n of M = T ∗(S1)n, i.e., g = dγ2

1 + · · · + dγ2
n, the normalized geodesic

flow ϕ is

ϕt(y, γ) =
(

y, γ + t
y∗

‖y‖

)
,

where y∗ ∈ Tγ(S1)n is the dual of y ∈ T ∗
γ (S1)n with respect to this metric.

Note that this flow is only defined on (T ∗(S1)n)0 = {(y, γ) ∈ M |y �= 0} ⊂ M ,
i.e., away from the zero section in the cotangent bundle. Let s be an arbitrary
point in ∂T , and L{s}∗ be the brane supported on the fiber Lagrangian
T ∗

s (S1)n. Define

L(−1)0 = L(−1) ∩ (T ∗(S1)n)0,

(L{s}∗)0 = L{s}∗ ∩ (T ∗(S1)n)0.

Lemma 3.8. There exists a δ > 0, such that

0 ≤ t1 ≤ t2 < δ ⇒ ϕt1((L{s}∗)0) ∩ ϕt2(L(−1)0) = ∅.

Proof. The Lagrangian L(−1) is the graph of df over the open set T ⊂ (S1)n.
The function f here, as given in Lemma 3.3, is

f =
1
2

n∑
i=1

γi log(−γi) − 1
2

⎛
⎝1 +

n∑
j=1

γj

⎞
⎠ log

⎛
⎝1 +

n∑
j=1

γj

⎞
⎠ .

Here we assume γi takes value in (−1, 0). Denote Zi = γi for 1 ≤ i ≤ n, and

Z0 = −1 −
n∑

j=1

γj .



732 Bohan Fang

Hence the function

f =
1
2

n∑
i=0

Zi log(−Zi),

while the open set T is characterized by

T = {Zi < 0|0 ≤ i ≤ n}.

Since s ∈ ∂T , there exists a non-empty subset of index I ⊂ {0, . . . , n},
such that Zi(s) = 0 for i ∈ I and Zi(s) < 0 for i ∈ {0, . . . , n}\I. Note that
1 ≤ |I| ≤ n because of the constraint

∑n
i=0 Zi = −1 so that we cannot have

Zi(s) = 0 for all 0 ≤ i ≤ n. There is a bound R > 0 such that | log(−Zi(s))|
< R/2 for all i ∈ {0, . . . , n}\I. Choose a subset K ⊂ {0, . . . , n} such that
|K| = n and I ⊂ K. Therefore, {Zi|i ∈ K} form a coordinate system on
(S1)n. Let i0 = {0, . . . , n}\K be the single index that is not in K. It is easy
to see that the metric

gK =
∑
i∈K

dZ2
i

is equivalent to the standard metric

g = dγ2
1 + · · · + dγ2

n =
n∑

i=1

dZ2
i .

Therefore, there is a bound Q with

‖ · ‖gK
≤ 1/Q‖ · ‖g.

For any M > 0, there is a δ > 0, such that for any γ ∈ T with distg(γ, s)
< δ, log(−Zi(γ)) < −M for all i ∈ I and | log(−Zi(γ))|<R for i ∈ {0, . . . , n}
\I. We choose a large M such that 2nR

Q2(M−R) < 1, and a δ corresponding to
this M .

For any (y, γ) ∈ L(−1) and any given 0 ≤ t1 ≤ t2 < δ, it suffices to show
that ϕt1(y, s) �= ϕt2(y, γ) to finish the proof. We know that

ϕt1(y, s) =
(

y, s + t1
y∗

‖y‖g

)
, and ϕt2(y, γ) =

(
y, γ + t2

y∗

‖y‖g

)
.

Therefore, ϕt1(y, s) = ϕt2(y, γ) implies that v = (t2 − t1) y∗

‖y‖g
, where v = s −

γ is considered as a vector in T (S1)n. Decompose v =
∑

i∈K vi∂Zi
. When
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i ∈ I,

Zi(s) = 0, Zi(γ) < 0 ⇒ vi > 0.

We will show that v = (t2 − t1) y∗

‖y‖g
is impossible.

Case 1. distg(γ, s) < δ. We have

y = df(γ) =
∑
i∈K

∂f

∂Zi
dZi

=
∑
i∈K

1
2
(log(−Zi) − log(−Zi0))dZi.

For i ∈ I,

∂f

∂Zi
<

1
2
(−M + R) < 0,

while for i ∈ K\I, ∣∣∣∣ ∂f

∂Zi

∣∣∣∣ <
1
2
R < R.

The length of y satisfies

‖y‖g ≥ Q‖y‖gK
≥ Q

√√√√∑
i∈I

∣∣∣∣ ∂f

∂Zi

∣∣∣∣
2

≥ Q

√
1
4
(M − R)2 ≥ 1

2
Q(M − R).

Therefore,〈
v,

y

‖y‖g

〉
<

∑
i∈I

vi
−M + R

Q(M − R)
+

∑
i∈K\I

|vi|
2R

Q(M − R)

<
2R

Q(M − R)
‖v‖gK

|K\I| <
2nR‖v‖g

Q2(M − R)
.

Since 2nR
Q2(M−R) < 1, the inner product

〈
v,

y∗

‖y‖g

〉
g

=
〈

v,
y

‖y‖g

〉
< ‖v‖g.

Note that the dual y∗ is taken with respect to the standard metric g. We
know the length of y

‖y‖g
is 1, and this shows that y∗ is not parallel and in

the same direction with v. Thus the equality v = (t2 − t1) y∗

‖y‖g
is impossible.
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Case 2. distg(γ, s) ≥ δ. Therefore, v = (t2 − t1) y∗

‖y‖g
is impossible to hold

since ‖v‖g ≥ δ while the length of the right hand side is t2 − t1 < δ. �

Lemma 3.9. The Lagrangian brane L(−1) is isomorphic to a standard
Lagrangian over the open set T in the category D Fuk(M). Similarly, all
La(k) are isomorphic to standard Lagrangians over Ua(k) ⊂ (S̃1)n in
D Fuk(M̃).

Proof. Since the functions f and fa
k are essentially the same, i.e., only

differing by scaling of the domain, it suffices to show this lemma only
for L(−1).

To prove that Y(L(−1)) ∼= Y(μ(i∗CT )), we first fix a triangulation Λ
of the base (S1)n containing T and each stratum of its boundary. The
technique of [22] exploits the triangulation to resolve the diagonal standard,
i.e., the identity functor. What emerges is that the Yoneda module of any
object Y(L) is expressed in terms of (sums and cones of shifts of) Yoneda
modules from standards, Y(μ(i∗CT )), where T ∈ Λ. The coefficient of the
Yoneda standard module Y(μ(i∗CT )), takes the form homD Fuk(M)(L{s}∗, L),
where s is any point in T (contractibility of T means that the choice is
irrelevant up to isomorphism) — see Proposition 4.4.1 and Remark 4.5.1
of [22].

Now apply this to L(−1). Note that Λ contains all strata of T and ∂T .
Let T �= T and let s ∈ T. Then if T ∩ T = ∅, clearly homD Fuk(M)(L{s}∗,
L(−1)) = 0, since L{s}∗ is just the fiber T ∗

s (S1)n. Otherwise, if T ∩ ∂T is
non-empty, then Lemma 3.8 ensures us that the hom space homD Fuk(M)
(L{s}∗,L(−1)) = 0. Finally, if T = T , then since L(−1) is a graph
over T, the morphism space homD Fuk(M)(L{s}∗,L(−1)) = C. Therefore,
Y(L(−1)) ∼= Y(μ(i∗CT )). Note that the result is independent of how Λ was
chosen. �

4. The quasi-equivalence of the categories

Recall M̃ = T ∗(S̃1)n, where S̃1 is identified with R/(n + 1)Z. The variable
γ̃ = (γ̃1, γ̃2, . . . , γ̃n) on the base is defined mod n + 1, and y ∈ T ∗

γ̃ (S̃1)n ∼= R
n

is the variable in the fiber. The covering map π : M̃ → M is given by (y, γ̃
mod (n + 1)) �→ (y, γ̃ mod 1).

The Fukaya category F admits a lift F̃ through the covering map π.
The objects of F̃ are all lifts of each object in F . A lift La(i) of L(i) is the
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graph of a differential 1-form over an open set

U(i)a =

⎧⎨
⎩γ̃|γ̃j < aj ,

∑
j

γ̃j > i +
∑

j

aj

⎫⎬
⎭ ,

where a = (a1, . . . , an), aj ∈ Z/(n + 1). Here we assume aj takes an integer
value ranging from −n to 0. The morphisms of F̃ are inherited from Fuk(M̃)
as

hom
˜F (La(i),Lb(j)) = homFuk(˜M)(L

a(i),Lb(j)).

The composition maps mk are the same as in Fuk(M̃). The category F̃ is a
full A∞-subcategory of Fuk(M̃).

Let D̃ be the differential graded category containing objects i∗CUa(i) for
−n − 1 ≤ i ≤ −1 and a = (a1, . . . , an) ∈ (Z/(n + 1))n. D̃ is a full subcate-
gory of Sh((S̃1)n).

There is a natural Γ = (Z/(n + 1))n action on M̃ given by the deck
transformation, i.e., α ∈ Γ : (y, γ̃) �→ (y, γ̃ + α). This action gives rise to
actions on F̃ and on D̃. For any α ∈ Γ, we have for objects

α · La(i) = La+α(i), α · i∗CUa(i) = i∗CUa+α(i).

For morphisms, these actions induce natural isomorphisms on morphism
spaces.

α : hom(La(i),Lb(j)) → hom(La+α(i),Lb+α(j)),
α : hom(i∗CUa(i), i∗CUb(j)) → hom(i∗CUa+α(i), i∗CUb+α(j)).

The action respects the compositions of corresponding morphisms.

Definition 4.1. The category F̃/Γ is the quotient of F̃ with respect to
the action of Γ. It consists of n + 1 objects, denoted as formal orbits
(⊕aLa(i))/Γ. The morphisms are defined to be

hom
˜F/Γ((⊕aLa(i))/Γ, (⊕bLb(j))/Γ) =

⎛
⎝⊕

a,b

hom
˜F (La(i),Lb(j))

⎞
⎠ /Γ.

The compositions are inherited naturally from F̃ . The quotient category
D̃/Γ is defined the same way.
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By Lemma 3.9, the branes La(i) are quasi-isomorphic to standards over
Ua(i). Hence, we have

Proposition 4.2. The A∞ functor μ̃ restricted on D gives rise to a quasi-
equivalence μ̃ : D̃ → F̃ , where μ̃ sends i∗CUa(i) to La(i). This functor is a
quasi-isomorphism.

Proof. This is essentially the result of [23], and it is obvious that μ̃ is
Γ-equivariant. �

Taking the quotient of F̃ by the action Γ, we get an A∞ Fukaya-type
categoryF̃/Γ. This category is isomorphic to F .

Lemma 4.3. F̃/Γ ∼= F .

Proof. Define a functor J sending (⊕aLa(i))/Γ to L(i). Any morphism
from (⊕aLa(i))/Γ to (⊕bLb(j))/Γ corresponds to (n + 1)n intersection points
(after perturbation) between La0+c(i) and Lb0+c(j) for some a0, b0 and all
c ∈ Γ. These points are of the same degree d. Under the map π, all these
intersection points go to one intersection point between L(i) and L(j) of the
same degree d. On the other hand, any morphism between L(i) and L(j)
can be lifted to (n + 1)n intersection points between La0+c(i) and Lb0+c(j)
for some a0, b0 and all c ∈ Γ. Hence the morphism spaces of F̃/Γ and F are
identical.

For compositions, let us consider a polygon Q bounded by L(i1), . . .,
L(ik). This polygon contributes to the composition of morphisms repre-
sented by each vertex. Since Q is a simply-connected polygon, it has (n + 1)n

lifts to M̃ , the polygons Qc bounded by La1+c(i1), . . . ,Lak+c(ik), for some
a1, . . . , ak and all c ∈ Γ. Similarly, the compositions in F̃/Γ come from
counting of the orbit of polygons bounded by La1+c(i1), . . . ,Lak+c(ik) for
some a1, . . . , ak and all c ∈ Γ. Hence we have proved the composition maps
in both F̃/Γ and F are the same. �

Since the functor μ̃ is Γ-equivariant, the induced functor D̃/Γ → F̃/Γ ∼=
F is a quasi-equivalence. Hence the functor (still denoted by μ̃) between the
derived categories μ̃ : D(D̃/Γ) → DF is a equivalence.

Lemma 4.4. D(D̃/Γ) is equivalent to DF .

The quiver structure of D(D̃/Γ) can be computed in a combinatorial
way. Note that D(D̃/Γ) is generated by objects in D̃/Γ, as a triangulated
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category. Hence we only deal with objects in D̃. The following statement is
Lemma 4.4.1. from [23] concerning the morphisms of sheaves.

Lemma 4.5. Let X be a real analytic manifold. For any two open sets
i0 : U0 ↪→ X, i1 : U1 ↪→ X, we have a canonical quasi-isomorphism in the dg
category:

homSh(X)(i0∗CU0 , i1∗CU1) � (Ω(U0 ∩ U1, ∂U0 ∩ U1), d).

The composition of morphisms coincides with the wedge product of
differential forms.

By this lemma,

hom
˜D(i∗CUa(i), i∗CUb(j)) � Ω((Ua(i) ∩ Ub(j), ∂Ua(i) ∩ Ub(j)), d).

Hence

hom
˜D/Γ(U(i),U(j)) =

⎛
⎝⊕

a,b

Ω((Ua(i) ∩ Ub(j), ∂Ua(i) ∩ Ub(j)), d)

⎞
⎠ /Γ,

with Γ acting on the space of differential forms in the obvious way. Notice
that when Ua(i) ⊃ Ub(j), we have Ω((Ua(i) ∩ Ub(j), ∂Ua(i) ∩ Ub(j)), d) =
Ω(Ub(j), d). The cohomology H∗(Ω(Ub(j), d)) = C[0] (C in the zeroeth
degree). Otherwise when Ua(i) �⊃ Ub(j),

Ω((Ua(i) ∩ Ub(j), ∂Ua(i) ∩ Ub(j)), d)
∼= Ω((Ua(i) ∩ Ub(j)/(∂Ua(i) ∩ Ub(j)), pt), d).

It follows that

H∗(Ω((Ua(i) ∩ Ub(j), ∂Ua(i) ∩ Ub(j)), d))

= H∗(Ua(i) ∩ Ub(j)/(∂Ua(i) ∩ Ub(j)), pt)
= 0.
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This is because when Ua(i) �⊃ Ub(j), Ua(i) ∩ Ub(j)/(∂Ua(i) ∩ Ub(j)) is a
contractible space, and the homology is zero. Therefore, in the derived
category

homD( ˜D/Γ)(U(i),U(j)[k])

∼= Hk

⎛
⎝

⎛
⎝⊕

a,b

Ω((Ua(i) ∩ Ub(j), ∂Ua(i) ∩ Ub(j)), d)

⎞
⎠ /Γ

⎞
⎠

=

⎛
⎝⊕

a,b

Hk(Ω((Ua(i) ∩ Ub(j), ∂Ua(i) ∩ Ub(j)), d))

⎞
⎠ /Γ

=
⊕

U0(i)⊃Ub(j)

Hk(Ω(Ub(j), d))

∼=
{

C
Nn(i−j), k = 0,

0, k �= 0.

Here Nn(i − j) = #{b = (b1, . . . , bn)|bi ≤ 0,
∑

bi ≥ i − j}, counting all pos-
sible Ub(j) in U0(i). Notice this explicit calculation of morphisms implies
that {U(−n − 1), . . . ,U(−1)} is a full strong exceptional collection of D(D̃
/Γ), since Nn(0) = 1 and Nn(m) = 0 when m < 0. Let eb

i,j denote the iden-
tity in H0(Ω(Ub(j), d) as a subspace of homD( ˜D/Γ)(U(i),U(j)).

We compare this exceptional collection with the exceptional collection
{O(−n − 1), . . . ,O(−1)} of Db Coh(Pn). The morphism spaces of D(D̃/Γ)
are

homD( ˜D/Γ)(U(i),U(j)) =
⊕

U0(i)⊃Ub(j)

H0(Ω(Ub(j), d)).

The constraint on the multi-index b is that

b = (b1, . . . bn) ∈ {b = (b1, . . . , bn)|bi ≤ 0,
∑

bi ≥ i − j}.

We construct an isomorphism ν of morphisms spaces homD( ˜D/Γ)(U(i),U(j))
to homDb Coh(Pn)(O(i),O(j)) by

ν : homD( ˜D/Γ)(U(i),U(j)) ∼= homDb Coh(Pn)(O(i),O(j))
eb
i,j �→ xb

i,j ,

where xb
i,j = x

j−i+
∑

bi

0 x−b1
1 · · ·x−bn

n is a generator of homDb Coh(Pn)(O(i),
O(j)) (Figure 4).
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Figure 4: The case of P
2. On (S̃1)2, the base of M̃ , U (0,0)(−1), U (0,1)(−1)

and U (1,0)(−1) (three shaded triangles) inside U (0,0)(−2) (the larger triangle)
correspond to three generators of homDbCoh(P2)(O(−2),O(−1)).

The next step is to show that this identification of morphisms respect
composition maps. For i < j < k, morphism spaces homD( ˜D/Γ)(U(i),U(j))
and homD( ˜D/Γ)(U(j),U(k)) are non-trivial. The composition map is com-
puted as wedge product of cohomology in the following decomposition.

homD( ˜D/Γ)(U(j),U(k)) ⊗ homD( ˜D/Γ)(U(i),U(j))

=
⊕

Ub(j)⊂U0(i)

⊕
Ub+c(k)⊂Ub(j)

H0(Ω(Ub+c(k), d)) ⊗ H0(Ω(Ub(j), d)).

Therefore, one observes that the multiplication restricted on subspaces of
subspaces H0(Ω(Ub+c(k), d)) and H0(Ω(Ub+c(k), d)) gives rise to ec

j,k · eb
i,j =

eb+c
i,k .

Under the isomorphism ν, ec
j,k and eb

i,j correspond to xc
j,k and xb

i,j , respec-
tively. The composition

xc
j,k · xb

i,j = x
k−j+

∑

ci

0 x−c1
1 · · ·x−cn

n · x
j−i+

∑

bi

0 x−b1
1 · · ·x−bn

n

= x
k−i+

∑

(bi+ci)
0 x−b1−c1

1 · · ·x−bn−cn
n

= xb+c
i,k ,

which means ν(ec
j,k · eb

i,j) = xc
j,k · xb

i,j . Therefore, we have shown the quiver
structures of two full strong exceptional collections are the same, the equiv-
alence of triangulated categories Db Coh(Pn) ∼= D(D̃/Γ) follows. By Lemma
4.4, our main theorem holds.

Theorem 4.6. DF is equivalent to Db Coh(Pn). �

Remark 4.7. The Lagrangians La(i) for i ∈ {−n − 1, . . . ,−1} are stan-
dard branes over particular open sets (after the lift with respect to the
covering map π). They correspond to certain constructible sheaves with
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respect to a fixed stratification Λ̃. Pushing forward to the constructible
sheaves on (S1)n via the covering map π, they are constructible sheaves on
(S1)n with respect to the stratification Λ, which coincides with the strati-
fication given by Bondal [7]. Bondal arrives at this stratification from the
coherent sheaves on a toric variety, while we obtain this stratification via
the standard Lagrangians constructed by T-duality.
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