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1. Introduction

This paper is a collaboration between a mathematician and a physicist. It
is based on the observation that renormalization of Feynman amplitudes in
physics is closely related to the theory of limiting mixed Hodge structures in
mathematics. Whereas classical physical renormalization methods involve
manipulations with the integrand of a divergent integral, limiting Hodge
theory involves moving the chain of integration so the integral becomes
convergent and studying the monodromy as the chain varies.

Even methods like minimal subtraction in the context of dimensional
or analytic regularization implicitly modify the integrand through the def-
inition of a measure

∫
dDk via analytic continuation. Still, as a regulator

dimensional regularization is close to our approach in so far as it leaves the
rational integrand assigned to a graph unchanged. Minimal subtraction as
a renormalization scheme differs though from the renormalization schemes
which we consider — momentum subtractions essentially — by a finite renor-
malization. Many of the nice algebro-geometric structures developed below
are not transparent in that scheme.

The advantages of the limiting Hodge method are firstly that it is linked
to a very central and powerful program in mathematics: the study of Hodge
structures and their variations. As a consequence, one gains a number of
tools, like weight, Hodge, and monodromy filtrations to study and classify
the Feynman amplitudes. Secondly, the method depends on the integration
chain, and hence on the graph, but it is in some sense independent of the
integrand. For this reason it should adapt naturally, e.g., to gauge theories
where the numerator of the integrand is complicated.

An important point is to analyse the nature of the poles. Limiting mixed
Hodge structures demand that the divergent subintegrals have at worst log
poles. This does not imply that we can not apply our approach to pertur-
bative amplitudes which have worse than logarithmic degree of divergence.
It only means that we have to correctly isolate the polynomials in masses
and external momenta which accompany those divergences such that the
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corresponding integrands have singularities provided by log poles. This is
essentially automatic from the notion of a residue available by our very meth-
ods. As a very pleasant byproduct, we learn that physical renormalization
schemes — on-shell subtractions, and momentum subtractions, Weinberg’s
scheme — belong to a class of schemes for which this is indeed automatic.

Moreover, for technical reasons, it is convenient to work with projec-
tive rather than affine integrals. One of the central physics results in this
paper is that the renormalization problem can be reduced to the study of
logarithmically divergent, projective integrals. This is again familiar from
analytic regulators. The fact that it can be achieved here by leaving the
integrand completely intact will hopefully some fine day allow to under-
stand the nature of the periods assigned to renormalized values in quantum
field theory.

A remark for Mathematicians: our focus in this paper has been renor-
malization, which is a problem arising in physics. We suspect, however, that
similar methods will apply more generally, for example, to period integrals
whenever the domain of integration is contained in R

+n and the integrand
is a rational function with polar locus defined by a polynomial with non-
negative real coefficients. The toric methods and the monodromy computa-
tions should go through in that generality.

1.1. Physics introduction

This paper studies the renormalization problem in the context of parametric
representations, with an emphasis on algebro-geometric properties. We will
not study the nature of the periods one obtains from renormalizable quan-
tum field theories in an even dimension of space-time. Instead, we provide
the combinatorics of renormalization such that a future motivic analysis of
renormalized amplitudes is feasible along the lines of [2]. Our result will in
particular put renormalization in the framework of a limiting mixed Hodge
structure, which hopefully provides a good starting point for an analysis of
the periods in renormalized amplitudes. That these amplitudes are provided
by numbers which are periods (in the sense of [11]) is an immediate conse-
quence of the properties of parametric representations, and will also emerge
naturally below (see Theorem (7.3)).

The main result of this paper is a careful study of the singularities of
the first Kirchhoff–Symanzik polynomial, which carries all the short-distance
singularities of the theory. The study of this polynomial can proceed via an
analysis with the help of projective integrals. Along the way, we will also
give useful formulas for parametric representations involving affine integrals,
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and clarify the role of the second Kirchhoff–Symanzik polynomial for affine
and projective integrals.

Our methods are general, but in concrete examples we restrict ourselves
to φ4

4 theory. Parametric representations are used which result from free-
field propagators for propagation in flat space-time. In such circumstances,
the advantages of analytic regularizations are also available in our study of
parametric representations as we will see. In particular, our use of projective
integrals below combines such advantages with the possibility to discuss
renormalization on the level of the pairing between integration chains and
de Rham classes.

In examples, special emphasis is given to the study of particular
renormalization schemes, the momentum scheme (MOM scheme, Weinberg’s
scheme, on-shell subtractions).

Also, we often consider Green functions as functions of a single kine-
matical scale q2 > 0. Green functions are defined throughout as the scalar
coefficient functions (structure functions) for the radiative corrections to
tree-level amplitudes r. They are to be regarded as scalar quantities of the
form 1 +O(�). Renormalized amplitudes are then, in finite order in per-
turbation theory, polynomial corrections in L = ln q2/μ2 (μ2 > 0) without
constant term, providing the quantum corrections to the tree-level ampli-
tudes appearing as monomials in a renormalizable Lagrangian [15]:

(1.1) φR(Γ) =
aug(Γ)∑

j=1

pj(Γ)Lj .

Correspondingly, Green functions become triangular series in two variables

(1.2) Gr(α, L) = 1 +
∞∑

j=1

γr
j (α)Lj = 1 +

∞∑

j=1

cr
j(L)αj .

The series γr
j (α) are related by the renormalization group which leaves only

the γr
1(α) undetermined, while the polynomials cr

j(L) are bounded in degree
by j. The series γr

1 fulfil ordinary differential equations driven by the prim-
itive graphs of the theory [16].

The limiting Hodge structure A(Γ) which we consider for each Feynman
graph Γ provides contribution of a graph Γ to the coefficients of γr

1 in the
limit. This limit is a period matrix (a column vector here) which has, from
top to bottom, the periods provided by a renormalized graph Γ as entries.
The first entry is the contribution to γr

1 of a graph with res(Γ) = r and
the k-th is a rational multiple of the contribution to γr

k. In Section 9.1, we
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determine the rational weights which connect these periods to the coefficients
pj(Γ) attributed to the renormalization of a graph Γ.

We include a discussion of the structure of renormalization which comes
from an analysis of the second Kirchhoff–Symanzik polynomial. While this
polynomial does not provide short-distance singularities in its own right, it
leads to integrals of the form

(1.3)
∫

ω ln(f)

for a renormalized Feynman amplitude, with ω a de Rham class determined
by the first Kirchhoff–Symanzik polynomial, and f — congruent to one
along any remaining exceptional divisor — determined by the second. We
do not actually do the monodromy calculation for integrals (1.3) involving
a logarithm, but it will be similar to the calculation for (1.5) which we do.
A full discussion of the Hodge structure of a Green function seems feasible
but will be postponed to future work.

1.2. Math introduction

Let P
n−1 be the projective space of lines in C

n which we view as an alge-
braic variety with homogeneous coordinates A1, . . . , An. Let ψ(A1, . . . , An)
be a homogeneous polynomial of some degree d, and let X ⊂ P

n−1 be the
hypersurface defined by ψ = 0. We assume the coefficients of ψ are all real
and ≥ 0. Let σ = {[a1, . . . , an] | ai ≥ 0,∀i} be the topological (n− 1)-chain
(simplex) in P

n−1, where [· · · ] refers to homogeneous coordinates. We will
also use the notation σ = P

n−1(R≥0). Our assumption about coefficients
implies

(1.4) σ ∩X =
⋃

L⊂X

L(R≥0),

where L runs through all coordinate coordinate linear spaces L : Ai1 = · · · =
Aip

= 0 contained in X (see (see figure 1)). The genesis of the renormalization
problem in physics is the need to assign values to integrals

(1.5)
∫

σ
ω,

where ω is an algebraic (n− 1)-form on P
n−1 with poles along X. The prob-

lem is an important one for physical applications, and there is an extensive
literature (see, for example, [10, 21, 22]) focusing on practical formulae to
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Figure 1: Picture of X and L.

reinterpret (1.5) in some consistent way as a polynomial in log t. (Here t
parametrizes a deformation of the integration chain. As a first approxima-
tion, one can think of

∫∞
t ω when ω has a logarithmic pole at t = 0.)

A similar problem arises in pure mathematics in the study of degenerat-
ing varieties, e.g., a family of elliptic curves degenerating to a rational curve
with a node. In the classical setup, one is given a family f : X → D, where
D is a disk with parameter t. The map f is proper (so the fibres Xt are
compact). X is assumed to be non-singular, as are the fibres Xt, t �= 0. X0
may be singular, though one commonly invokes resolution of singularities
to assume X0 ⊂ X is a normal crossing divisor. Choose a basis σ1,t, . . . , σr,t

for the homology of the fibre Hp(Xt, Q) in some fixed degree p. By stan-
dard results in differential topology, the fibre space is locally topologically
trivial over D∗ = D − {0}, and we may choose the classes σi,t to be locally
constant. If we fix a smooth fibre t0 �= 0, the monodromy transformation
m : Hp(Xt0) → Hp(Xt0) is obtained by winding around t = 0. An impor-
tant theorem [7, III,2] says this transformation is quasi-unipotent, i.e., after
possibly introducing a root t′ = t1/n (which has the effect of replacing m by
mn), m-id is nilpotent. The matrix

(1.6) N := log m = −[(id−m) + (id−m)2/2 + · · · ]

is thus also nilpotent. This is the mathematical equivalent of locality in
physics. It insures that our renormalization of (1.5) will be a polyno-
mial in log t rather than an infinite series. We take a cohomology class
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[ωt] ∈ Hp(Xt, C) which varies algebraically. For example, in a family of ellip-
tic curves y2 = x(x− 1)(x− t), the holomorphic 1-form ωt = dx/y is such a
class. Note ωt is single-valued over all of D∗. It is not locally constant. The
expression

(1.7) exp(−(N log t)/2πi)

⎛

⎜
⎝

∫
σ1,t

ωt

...∫
σr,t

ωt

⎞

⎟
⎠ .

is then single-valued and analytic on D∗. Suppose ωt chosen such that the
entries of the column vector in (1.7) grow at worst like powers of | log |t||
as |t| → 0. A standard result in complex analysis then implies that (1.7) is
analytic at t = 0. We can write this

(1.8)

⎛

⎜
⎝

∫
σ1,t

ωt

...∫
σr,t

ωt

⎞

⎟
⎠ ∼ exp((N log t)/2πi)

⎛

⎜
⎝

a1
...

ar

⎞

⎟
⎠ .

Here the aj are constants which are periods of a limiting Hodge structure.
The exponential on the right expands as a matrix whose entries are poly-
nomials in log t, and the equivalence relation ∼ means that the difference
between the two sides is a column vector of (multi-valued) analytic functions
vanishing at t = 0.

We would like to apply this program to the integral (1.5). Let Δ :∏n
1 Aj = 0 be the coordinate divisor in P

n−1. Note that the chain σ has
boundary in Δ, so as a first attempt to interpret (1.5) as a period, we might
consider the pairing

(1.9) Hn−1(Pn−1 −X, Δ−X ∩Δ)×Hn−1(Pn−1 −X, Δ−X ∩Δ) → C.

The form ω is an algebraic (n− 1)-form and it vanishes on Δ for degree
reasons, so it does give a class in the relative cohomology group appearing
in (1.9) (see the discussion (9.8) to (9.10)). On the other hand, the chain σ
meets X (1.4), so we do not get a class in homology. Instead we consider
a family of coordinate divisors Δt :

∏n
1 Aj,t = 0 with Δ0 = Δ. (For details,

see Section 6.) For t = ε > 0, there is a natural chain σε which is what the
physicists would call a cutoff. We have ∂σε ⊂ Δε and σε ∩X = ∅, so

∫
σε

ω
is defined. One knows on abstract grounds that the monodromy of

Hn−1(Pn−1 −X, Δt −X ∩Δt)
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is quasi-unipotent as above [7, III, §2]. The main mathematical work in
this paper will be to compute the monodromy of σε in the specific case
of Feynman amplitudes in physics. More precisely, X will be a graph
hypersurface XΓ associated to a graph Γ (Section 5). We will write down
chains τ ε

γ , one for each flag of core (one particle irreducible in physics) sub-
graphs γ = {Γ1 � · · ·Γp(γ) � Γ}, representing linearly independent homol-
ogy classes in Hn−1(Pn−1 −X, Δε −X ∩Δε). (The combinatorics here is
similar to that found in [1, 18].) We will show the monodromy in our case
is given by

(1.10) m(σε) = σε +
∑

γ

(−1)p(γ)τ ε
γ .

We will then exhibit a nilpotent matrix N such that

(1.11)

⎛

⎜
⎜
⎜
⎜
⎝

m(σε)
...

m(τ ε
γ )

...

⎞

⎟
⎟
⎟
⎟
⎠

= exp(N)

⎛

⎜
⎜
⎜
⎜
⎝

σε
...

τ ε
γ
...

⎞

⎟
⎟
⎟
⎟
⎠

.

With this in hand, renormalization is automatic for any physical theory for
which Γ and its subgraphs are at worst logarithmically divergent after taking
out suitable polynomials in masses and momenta. Namely, such a physical
theory gives a differential form ωΓ as in (1.5) and we may repeat the above
argument:

(1.12) exp(−(N log t)/2πi)

⎛

⎜
⎜
⎜
⎜
⎝

∫
σt

ω
...∫

τ t
γ
ω

...

⎞

⎟
⎟
⎟
⎟
⎠

is single-valued on the punctured disk. The hypothesis of log divergence at
worst for subgraphs of Γ will imply that the integrals will grow at worst like
a power of log as |t| → 0 (Lemma 9.2). Precisely as in (1.8), one gets the
renormalization

(1.13)
∫

σt

ωΓ =
r∑

k=0

bk(log t)k + O(t),

where O(t) denotes a (multi-valued) analytic function vanishing at t = 0.
The renormalization schemes considered here are characterized by the absence
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of a constant term in L in (1.1). Our concern is the renormalization of sub-
divergences, and hence an overall derivative with respect to L is understood.
Hence the appearance of b0 in (1.13). (cf. Section 9.1).

Of course, the requirement that a physical theory have at worst log diver-
gences is a very strong constraint. The difficult computations in Section 7
show how general divergences encountered in physics can be reduced to log
divergences.

Remarks 1.1. The renormalization scheme outlined above, and worked
out in detail in the following sections, has a number of properties, some of
which may seem strange to the physicist.

(i) It does not work in renormalization schemes which demand counter
terms which are not defined by subtractions at fixed values of masses
and momenta of the theory. So conditions on the regulator for exam-
ple, as in minimal subtraction where one defines the counterterm by
projection onto a pole part, are not considered. In such schemes, and
for graphs which are worse than log divergent, a topological procedure
of the sort given here can not work. It is necessary instead to modify
the integrand ωΓ in a non-canonical way.

(ii) On the other hand, our approach is very canonical. It depends on the
choice of a parameter t, as any renormalization scheme must. Some-
what more subtle is the dependence on the monodromy associated to
the choice of a family Δt of coordinate divisors deforming the given
Δ = Δ0. We have taken the most evident such monodromy, moving
all the vertices of the simplex. Note that this choice is stable in the
sense that a small deformation leaves the monodromy unchanged.

(iii) It would seem that our answer is much more complicated than need
be, because Γ will in general contain far more core subgraphs than
divergent subgraphs. For example, in ϕ4 theory, the “dunce’s cap”
(see figure 2) has only one divergent subgraph, given in the picture by
edges 1, 2. It has three core subgraphs (3, 4, 1), (3, 4, 2), (1, 2). From
the point of view of renormalization, this problem disappears. The
τ ε
γ are tubes, and the integral

∫
τε

γ
ωΓ is basically a residue which will

vanish unless γ ⊂ Γ is a divergent subgraph. In (1.12), the column
vector of integrals will consist mostly of 0’s and the final regularization
(1.13) will involve only divergent subgraphs.

(iv) An important property of the theory is the presence of a limiting mixed
Hodge structure. The constants on the right-hand side of (1.8) are
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Figure 2: Dunce’s cap. Here and in following figures, external half-edges are
often not drawn and are determined by the requirement that all vertices are
4-valent.

periods of a mixed Hodge structure called the limiting MHS for the
degeneration. One may hope that the tendency for Feynman ampli-
tudes to be multi-zeta numbers [4] will some day be understood in
terms of this Hodge structure. From the point of view of this paper,
the vector space W ⊂ Hn−1(Pn−1 −XΓ, Δt −XΓ ∩Δt) spanned by σt

and the τ t
γ is invariant under the monodromy. One may ask whether

the image of W in the limiting MHS spans a sub-Hodge structure.
If so, we would expect that this HS would be linked to the multi-
zeta numbers. Note that W is highly non-trivial even when Γ has no
sub-divergences. This W is an essentially new invariant which comes
out of the monodromy; see Section (9.2) for a final discussion of our
viewpoint.

(v) There are a number of renormalization schemes in physics, some of
which are not compatible with our approach. One general test is that
our scheme depends only on the graph polynomials of Γ. For example,
suppose Γ = Γ1 ∪ Γ2 where the Γi meet at a single vertex. Then the
renormalization polynomial in log t our theory yields for Γ will be the
product of the renormalizations for the Γi.
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Most of the mathematical work involved concerns the calculation of mon-
odromy for a particular topological chain. It is perhaps worth taking a
minute to discuss a toy model. Suppose one wants to calculate

∫∞
0 ω, where

ω = dz
(z−i)z . The integral diverges, so instead we consider

∫∞
t ω as a function

of t = εeiθ for 0 ≤ θ ≤ 2π. If we take the path [t,∞] to be a great circle,
then as t winds around 0, the path will get tangled in the singularity of ω
at z = i. Assuming we do not understand the singularities of our integral
far from 0, this could be a problem. Instead we chose our path to follow
the small circle from εeiθ to ε and then the positive real axis from ε to ∞.
The variation of monodromy is the difference in the paths for θ = 0 and
θ = 2π. In this case, it is the circle {|t| = ε}. If we assume something (at
worst superficial log divergence for the given graph and all subgraphs in the
given physical theory) about the behaviour of ω near the pole at 0, then the
behaviour of our integral for |t| � 1 is determined by this monodromy, which
is a topological invariant. This is quite different from the usual approach in
physics involving complicated algebraic manipulations with ω. A glance at
Figure 10 suggests that our toy model is too simple. We have to work with
two scales, ε � η � 1. This is because in the more complicated situation,
we have to deal with cylinders of small radius η, but then we have further
to slightly deform the boundaries of the cylinder (cf. Figure 12).

1.3. Leitfaden

Section 2 is devoted to Hopf algebras of graphs and of trees. These have
played a central role in the combinatorics of renormalization. In particular,
the insight afforded by passing from graphs to trees is important. Since the
combinatorics of core subgraphs is even more complicated than that of diver-
gent subgraphs, it seemed worth going carefully through the construction.
Section 3 studies the toric variety we obtain from a graph Γ by blowing up
certain coordinate linear spaces in the projective space with homogeneous
coordinates labelled by the edges of Γ. The orbits of the torus action are
related to flags of core subgraphs of the given graph. In Section 4, we use
the R-structure on our toric variety to construct certain topological chains
which will be used to explicit the monodromy. Section 5 recalls the basic
properties of the graph polynomial ψΓ ≡ ψ(Γ) and the graph hypersurface
XΓ : ψΓ = 0. The crucial point is Corollary 5.3 which says that the strict
transform of XΓ on our toric blowup avoids points with coordinates ≥ 0.
Any chain we construct which stays close to the locus of such points nec-
essarily is away from XΓ and hence also away from the polar locus of our
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integrand. Section 6 computes the monodromy of our chain. Section 7
considers how to reduce Feynman amplitude calculations as they arise in
physics, including masses and momenta as well as divergences which are
worse than logarithmic, to the basic situation where limiting methods can
apply. In Section 8, we calculate the nilpotent matrix N which is the log of
the monodromy transformation, and in Section 9 we prove the main renor-
malization theorem in the log-divergent case, to which we have reduced the
theory.

2. Hopf algebras of trees and graphs

2.1. Graphs

In this section, we bring together material on graphs and the graph Hopf
algebra which will be used in the sequel. We also discuss Hopf algebras
related to rooted trees and prove a result (Proposition 2.5) relating the Hopf
algebra of core graphs to a suitable Hopf algebra of labelled trees. Strictly
speaking, this is not used in the paper, but it provides the best way we
know to understand flags of core subgraphs, and these play a central role in
the monodromy computations. Trees labelled by divergent subgraphs have
a long history in renormalization theory [12,13].

A graph Γ is determined by giving a finite set HE(Γ) of half-edges,
together with two further sets E(Γ) (edges) and V (Γ) (vertices) and surjec-
tive maps

(2.1) pV : HE(Γ)→ V ; pE : HE(Γ)→ E.

(Note we do not allow isolated vertices.) In combinatorics, one typically
assumes all fibres p−1

E (e) consist of exactly two half-edges (e an internal
edge), while in physics the calculus of path integrals and correlation func-
tions dictates that one admit external edges e ∈ E with #p−1

E (e) = 1. If
all internal edges of Γ are shrunk to 0, the resulting graph (with no inter-
nal edges) is called the residue res(Γ). In certain theories, the vertices are
decomposed into different types V = �Vi, and the valence of the vertices in
Vi, #p−1

V (v), is fixed independent of v ∈ Vi.
We will typically work with labelled graphs which are triples (Γ, A, φ :

A ∼= E(Γ)). We refer to A as the set of edges.
A graph is a topological space with Betti numbers |Γ| = h1(Γ) = dimH1

(Γ, Q) and h0(Γ). We say Γ is connected if h0 = 1. Sometimes h1 is referred
to as the loop number.
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A subgraph γ ⊂ Γ is determined (for us) by a subset E(γ) ⊂ E(Γ). We
write Γ//γ for the quotient graph obtained by contracting all edges of γ to
points. If γ is not connected, Γ//γ is different from the naive quotient Γ/γ.
If γ = Γ, we take Γ//Γ = ∅ to be the empty set. It will be convenient when
we discuss Hopf algebras below to have the empty set as a graph.

Also, for γ = e a single edge, we have the contraction Γ//e = Γ/e. In
this case, we also consider the cut graph Γ− e obtained by removing e and
also any remaining isolated vertex.

A graph Γ is said to be core (1PI in physics terminology) if for any edge
e we have |Γ− e| < |Γ|.

A cycle γ ⊂ Γ is a core subgraph such that |γ| = 1. If Γ is core, it can
be written as a union of cycles (see, e.g., the proof of Lemma 7.4 in [2]).

2.1.1. Self-energy graphs Special care has to be taken when the residue
res(γ) of a connected component γ of some subgraph consists of two half-
edges connected to a vertex, |res(γ)| = 2. Such graphs are called self-energy
graphs in physics. In such a situation, if the internal edges of γ contract to a
point, we are left with two edges in Γ//γ, which are connected at this point
u. It might happen that the theory provides more than one two-point vertex.
In fact, for a massive theory, there are two two-point vertices provided by
the theory corresponding to the two monomials in the Lagrangian quadratic
in the fields, we call them of mass and kinetic type. Γ//γ represents then
a sum over two graphs by summing over the two types of vertices for that
point u (see Figure 3 for an example).

The edges and vertices of various types have weights. We set the weight
of an edge to be two, the weight of a vertex with valence greater than two
is zero, and the weight of a vertex of mass type is zero, and the weight of
the kinetic type is +2.

Then, the superficial degree of divergence sdd(Γ) for a connected core
graph Γ is

(2.2) sdd(Γ) = 4|Γ| − 2|Γ[1]|+ 2|Γ[0],kin|,

where Γ[0],kin is the set of vertices of kinetic type, and Γ[1] the set of internal
edges. Γ[0], the set of interaction vertices (for which we assume we have only
one type), does not show up as they have weight zero, nor does Γ[0],mass. By
| · · · | we denote the cardinality of these sets.

Note that a graph Γ//γ which has one two-point vertex labelled m2 (of
mass type) which appears after contracting a self-energy subgraph γ has
an improved power-counting as its edge number is 2h1(Γ//γ) + 1. If the
two-point vertex is labelled by � (kinetic type), it has not changed though:



Mixed Hodge structures and renormalization in physics 649

Figure 3: This vertex graph has a propagator correction given by edges
4, 5, 6. The non-trivial part of the coproduct then delivers on the left the
subgraph with internal edges 4, 5, 6 among other terms. The coproduct on
the right has a co-graph on edges 1, 2, 3. There is a two-point vertex u
between edges 2, 3. Choosing two labels u = m2 or u = � allows to dis-
tinguish between mass and wave-function renormalization. We remind the
reader that the corresponding monomials in the Lagrangian are m2φ2/2 and
φ�φ/2.

sdd(Γ//γ) = sdd(Γ), as the weight of the two-point vertex compensates for
the weight of the extra propagator. Quite often, in massless theories, one
then omits the use of these two-point vertices altogether.

2.2. Hopf algebras of graphs

Let P be a class of graphs. We assume ∅ ∈ P and that Γ ∈ P and Γ′ ∼= Γ
implies Γ′ ∈ P. We say P is closed under extension if given γ ⊂ Γ we have

(2.3) γ,Γ ∈ P ⇔ γ,Γ//γ ∈ P.

Easy examples of such classes of graphs are P = core graphs, and P =
log − divergent graphs, where Γ is log divergent (in φ4

4 theory) if it is core
and if further #E(Γi) = 2|Γi| for every connected component Γi ⊂ Γ. (Both
examples are closed under extension by virtue of the identity |γ|+ |Γ//γ| =
|Γ|.) Examples which arise in physical theories are more subtle. Verifica-
tion of (2.3) requires an analysis of which graphs can arise from a given
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Lagrangian. To verify P = {Γ | sdd(Γ) ≥ 0} satisfies (2.3), one must con-
sider self-energy graphs and the role of vertices of kinetic type as discussed
above.

In particular, in massless φ4
4 theory divergent graphs are closed under

extension, and so is the class of graphs for which 4|Γ| − 2|Γ[1]|+ 2|Γ[0],kin|+
2|Γ[0],mass| ≥ 0. Note that this may contain superficially convergent graphs
if there are sufficiently many two-point vertices of mass type. It pays to
include them in the class of graphs to be considered, which enables one to
discuss the effect of mass in the renormalization group flow.

Associated to a class P which is closed under extension as above, we
define a (commutative, but not cocommutative) Hopf algebra H = HP as
follows. As a vector space, H is freely spanned by isomorphism classes
of graphs in P. (A number of variants are possible. One may work with
oriented graphs, for example. In this case, the theory of graph homology
yields a (graded commutative) differential graded Hopf algebra. One may
also rigidify by working with disjoint unions of subgraphs of a given labelled
graph.) H becomes a commutative algebra with 1 = [∅] and product given
by disjoint union. Define a comultiplication Δ : H → H ⊗H:

(2.4) Δ(Γ) =
∑

γ⊂Γ
γ∈P

γ ⊗ Γ//γ.

One checks that (2.3) implies that (2.4) is coassociative. Since H is graded
by loop numbers and each Hn is finite dimensional, the theory of Hopf
algebras guarantees the existence of an antipode, so H is a Hopf algebra.

If P ′ ⊂ P with Hopf algebras H ′, H (e.g., take P to be core graphs, and
P ′ ⊂ P divergent core graphs), then the map H � H ′ obtained by send-
ing Γ �→ 0 if Γ �∈ P ′ is a homomorphism of Hopf algebras. For example,
the divergent Hopf algebra carries the information needed for renormaliza-
tion [13], while the core Hopf algebra HC determines the monodromy. In
terms of group schemes, one has Spec (Hlog.div.) ↪→ Spec (HC) is a closed
subgroup scheme, and renormalization can be viewed as a morphism from
the affine line with coordinate L to Spec (Hlog.div.). Already here we use
that for divergent graphs with sdd(Γ) > 0, we can evaluate them as poly-
nomials in masses and external momenta with coefficients determined from
log-divergent graphs, see below.

Let Γi, i = 1, 2 be core graphs (a similar discussion will be valid for other
classes of graphs) and let vi ∈ Γi be vertices. Let Γ = Γ1 ∪ Γ2 where the two
graphs are joined by identifying v1 ∼ v2. Then Γ is core (cf. Proposition 3.2).
Further, core subgraphs Γ′ ⊂ Γ all arise as the image of Γ′

1 � Γ′
2 → Γ for
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Γ′
i ⊂ Γi core. Thus

Δ(Γ) =
∑

Γ′ ⊗ Γ//Γ′ =
(∑

Γ′
1 ⊗ Γ1//Γ′

1

)(∑
Γ′

2 ⊗ Γ2//Γ′
2

)
(2.5)

+
∑

(Γ′ − Γ′
1 · Γ′

2)⊗ (Γ1//Γ′
1 · Γ2//Γ′

2)

+
∑

Γ′ ⊗ (Γ//Γ′ − Γ1//Γ′
1 · Γ2//Γ′

2).

It follows that the vector space I ⊂ HC spanned by elements Γ− Γ1 · Γ2
as above satisfies Δ(I) ⊂ I ⊗HC + HC ⊗ I. Since I is an ideal, we see
that HC := HC/I is a commutative Hopf algebra. Roughly speaking, HC
is obtained from HC by identifying one-vertex reducible graphs with prod-
ucts of the component pieces.

Generalization to theories with more vertex and edge types are
straightforward.

Figure 4 gives the wheel with three spokes. This graph, which in φ4

theory (external edges to be added such that each vertex is four-valent) has
a residue 6ζ(3) for conceptual reasons [2], has a coproduct (we omit edge
labels and identify terms which are identical under this omission, which gives
the indicated multiplicities).

(2.6)

For example, the three possible labellings for the four-edge cycle in the third
line are 4523, 5631, and 6412. While the graph has a non-trivial coproduct
in the core Hopf algebra, it is a primitive element in the renormalization
Hopf algebra. It is tempting to hope that the core coproduct relates to the



652 Spencer Bloch and Dirk Kreimer

Figure 4: In Equation (2.6), we give the coproduct for this wheel with three
spokes in the core Hopf algebra.

Hodge structure underlying the period which appears in the residue of this
graph.

2.3. Rooted tree Hopf algebras

We introduce the Hopf algebra of decorated non-planar rooted trees HT
using non-empty finite sets as decorations (decorations will be sets of edge
labels of Feynman graphs below) to label the vertices of the rooted tree Hopf
algebra HT (∅). Products in HT are disjoint unions of trees (forests) [3, 12].
We write the coproduct as

(2.7) Δ(T ) = T ⊗ I + I⊗ T +
∑

admissible cuts C

PC(T )⊗RC(T ).

Edges are oriented away from the root and a vertex which has no outgoing
edge we call a foot. An admissible cut is a subset of edges of a tree such that
no path from the root to any vertex of T traverses more than one element
of that subset. Such a cut C separates T into at least two components. The
component containing the root is denoted RC(T ), and the product of the
other components is PC(T ).

A ladder is a tree without side branching. Decorated ladders generate
a sub-Hopf algebra LT ⊂ HT . A general element in LT is a sum of bam-
boo forests, which is disjoint unions of ladders. Decorated ladders have an
associative shuffle product

(2.8) L1 � L2 :=
∑

k∈shuffle (�1,�2)

L(k),

where �i denotes the ordered set of decorations for Li and shuffle(�1, �2) is
the set of all ordered sets obtained by shuffling together �1 and �2.
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Lemma 2.1. Let K ⊂ LT be the ideal generated by elements of the form
L1 · L2 − L1 � L2. Then Δ(K) ⊂ K ⊗ LT + LT ⊗K.

Proof. Write Δ(Li) =
∑di

j=0 Lij ⊗ Ldi−j
i , where di is the length of Li and Lij

(resp. Lj
i ) is the bottom (resp. top) subladder of length j. Then

Δ(L1)Δ(L2) =
∑

j,μ

L1jL2μ ⊗ Ld1−j
1 Ld2−μ

2 ,(2.9)

Δ(L1 � L2) =
∑

k

Δ(L(k)) =
∑

k,ν

L(k)ν ⊗ L(k)d1+d2−ν .

Consider pairs (j, μ) of indices in (2.9) and write j + μ = ν. Among the pairs
k, ν, we consider the subset K(j, μ) for which the first ν = j + μ elements of
the ordered set consist of a shuffle of the decorations on the ladders L1j , L2μ.
It is clear that the remaining d1 + d2 − ν elements of k will then run through
shuffles of the decorations of Ld1−j

1 , Ld2−μ
2 , so

Δ(L1)Δ(L2)−Δ(L1 � L2)(2.10)

=
∑

j,μ

⎛

⎝

⎛

⎝L1jL2μ −
∑

k∈K(j,μ)

L(k)j+μ

⎞

⎠⊗ Ld1−j
1 Ld2−μ

2

⎞

⎠

+
∑

j,μ

⎛

⎝
∑

k∈K(j,μ)

L(k)j+μ ⊗ (Ld1−j
1 Ld2−μ

2 − L(k)d1+d2−j−μ)

⎞

⎠

∈ K ⊗ LT + LT ⊗K.

�

Remark 2.2. Any bamboo forest is equivalent mod K to a sum of stalks.
Indeed, one has, e.g.,

(2.11) L1 · L2 · L3 ≡ (L1 � L2) · L3 ≡ (L1 � L2) � L3 ≡ L1 � L2 � L3.

For any decoration �, one has an operator [3]

(2.12) B�
+ : HT → HT ,

which carries any forest to the tree obtained by connecting a single root
vertex with decoration � to all the roots of the forest. This operator is a
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Hochschild 1-cocycle, i.e.,

(2.13) ΔB�
+ = B�

+ ⊗ I + (id⊗B�
+)Δ.

Let J ⊂ HT be the smallest ideal containing the ideal K as in Lemma 2.1
and stable under all the operators B�

+. Generators of J as an abelian group
are obtained by starting with elements of K and successively applying B�

+
for various � and multiplying by elements of HT . It follows from (2.13) that
ΔJ ⊂ J ⊗HT + HT ⊗ J . Define

(2.14) HT := HT /J .

A flag in a core graph Γ is a chain

(2.15) f := ∅ � Γ1 � · · · � Γn = Γ

of core subgraphs. Write F (Γ) for the collection of all maximal flags of
Γ. One checks easily that for a maximal flag, n = |Γ|. Let us consider an
example.

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)
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(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

are the twelve flags for the graph given in Figure 5. We omitted the edge
labels in the above flags. Note that only the first two (2.16, 2.17) are relevant
for the renormalization Hopf algebra to be introduced below.

To the flag f we associate the ladder L(f) with n vertices decorated
by Γi − Γi−1. (More precisely, the foot is decorated by Γ1 and the root by
Γ− Γn−1.). Define

(2.28) ρL : HC → LT ; ρL(Γ) :=
∑

f∈F (Γ)

L(f).

Here the set of labels D will be the set of subsets of graph labels.

Lemma 2.3. The map ρL is a homomorphism of Hopf algebras.

Figure 5: A graph with overlapping subdivergences. The renormalization
Hopf algebra gives Δ′123456 = 56⊗ 1234 + 1256⊗ 34 + 3456⊗ 12. Note
that each edge belongs to some subgraph with sdd ≥ 0.
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Proof. For a flag f, let f (p) be the bottom p vertices with the given labelling,
and let f(p) be the top n− p vertices with the quotient labelling gotten by
contracting the core graph associated to the bottom p vertices. For γ ⊂ Γ
a core subgraph, define F (Γ, γ) := {f ∈ F (Γ) | γ ∈ f}. There is a natural
identification

(2.29) F (Γ, γ) = F (γ)× F (Γ//γ).

We have
(2.30)
(ρL ⊗ ρL) ◦ΔC(Γ) =

∑

γ

ρL(γ)⊗ ρL(Γ//γ) =
∑

γ

∑

f∈F (Γ,γ)

L(f |γ|)⊗ L(f|γ|).

On the other hand,

(2.31) ΔL ◦ ρL(Γ) =
∑

f∈F (Γ)

n∑

i=1

L(f (i))⊗ L(f(i)).

The assertion of the lemma is that there is a 1–1 correspondence

(2.32) {γ,max. flag of Γ containing γ} ↔ {max. flag of Γ, i ≤ n}.

This is clear. �

In fact, the tree structure associated to a maximal flag f of Γ is rather
more intricate than just a ladder. Though we do not use this tree structure
in the sequel, we present the construction in some detail to help in under-
standing the difference between the core and renormalization Hopf algebra.

We want to associate a forest T (f) to the flag f , and we proceed by
induction on n = |Γ|. We can write Γ =

⋃
Γ(j) in such a way that all the

Γ(j) are core and one-vertex irreducible, and such that |Γ| =
∑
|Γ(j)|. This

decomposition is unique. If it is non-trivial, we define T (f) =
∏

T (f (j))
where f (j) is the induced flag from f on Γ(j). We now may assume Γ is
one-vertex irreducible. If the Γi in our flag are all one-vertex irreducible, we
take T (f) = L(f) to be a ladder as above. Otherwise, let m < n be maximal
such that Γm � Γ is one-vertex reducible. By induction, we have a forest
T (f |Γm). To define T (f), we glue the foot of the ladder with decorations
Γm+1 − Γm, . . . ,Γ− Γn−1 to all the roots of T (f |Γm). (For an example, see
Figures 6 and 7).
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Figure 6: The core Hopf algebra on rooted trees. We indicate subgraphs by
edge labels on the vertices of rooted trees. The dots indicate seven more such
trees, corresponding to flags Γi � Γj � Γk with Γi a cycle on four edges. The
last tree represents a sum of two flags, 34 � 3456 � 123456 + 56 � 3456 �

123456, again indicating graphs by edge labels. Hence that tree corresponds
to a sum of two ladders, as it should.

Lemma 2.4. Let Γ =
⋃

Γ(j) where Γ and the Γ(j) are core. Assume |Γ| =∑
j |Γ(j)|. Then, viewing flags f ∈ F (Γ) as sets of core subgraphs, ordered

by inclusion, there is a 1–1 correspondence between F (Γ) and shuffles of the
F (Γ(j)).

Figure 7: The two graphs differ in how the subdivergences are inserted.
a, c ∈ 3, 4, and b, d ∈ 5, 6, c �= a, b �= d. So there are eight such legal trees,
plus the two which are identical between the two graphs. Note the permu-
tation of labels at the feet of the trees in ρ(Γ): 1a2b ↔ 12ab. Keeping that
order, we can uniquely reconstruct each graph from the knowledge of the
labels at the feet: 1a2b, 34, 56 and 12ab, 34, 56, which are the cycles in each
graph. Note that in the difference of the two graphs, only the difference of
those eight trees remains, corresponding to a primitive element in the renor-
malization Hopf algebra. The core Hopf algebra hence stores much more
information than the renormalization Hopf algebra, which we hope to use
in the future to understand the periods assigned to Feynman graphs by the
Feynman rules.
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Proof. One checks easily that the Γ(j) can have no edges in common. Further,
there is a 1–1 correspondence between core subgraphs Γ′ ⊂ Γ and
collections of core subgraphs Γ(j)′ ⊂ Γ(j). Here, the dictionary is given by
Γ′ �→ {Γ′ ∩ Γ(j)} and {Γ(j)′} �→

⋃
Γ(j)′

. The assertion of the lemma
follows. �

As a consequence of Lemma 2.4, we may partition the flags F (Γ) associ-
ated to a core Γ as follows. Given f ∈ F (Γ), let Γm ⊂ Γ be maximal in the
flag f such that Γm is one-vertex reducible. The flag f induces a flag fm on
Γm, and we know that it is a shuffle of flags f

(j)
m on Γ(j)

m where Γm =
⋃

Γ(j)
m

as in the lemma. We say two flags are equivalent, f ∼ f ′, if f and f ′ agree
at Γm and above, and if they simply correspond to two different shuffles of
the flags f

(j)
m . We now have

(2.33) T (f) ≡
∑

f ′∼f

L(f ′) mod J .

Indeed, T (f) is obtained by successive B�
+ operations applied to the forest

T (f |Γm). The latter, by Remark 2.2, coincides with the right-hand side
of (2.33). We conclude

Proposition 2.5. With notation as above, there exist homomorphisms of
Hopf algebras

(2.34)

HC
ρL−−−−→ LT

⏐
⏐
�

⏐
⏐
�

HC
ρT−−−−→ HT

Here ρT (Γ) is the sum T (f) over equivalence classes of flags f as above.
We will barely use HT in the following, and introduced it for completeness
and the benefit of the reader used to it.

2.4. Renormalization Hopf algebras

In a similar manner, one may define homomorphisms

(2.35) ρR : HR → HT

for any one of the renormalization Hopf algebras obtained by imposing
restrictions on external leg structure. For a graph Γ, let, as before, the
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residue of Γ, res(Γ), be the graph with no loops obtained by shrinking all
its internal edges to a point. What remains are the external half-edges con-
nected to that point (cf. Section 2.1). Note that ”doubling” an edge by
putting a two-point vertex in it does not change the residue.

In φ4
4 theory for example, graphs have 2m external legs, with m ≥ 0.

For a renormalizable theory, there is a finite set of external leg structures R
such that we obtain a renormalization Hopf algebra for that set.

For example, for massive φ4
4 theory, there are three such structures: the

four-point vertex, and two two-point vertices, of kinetic type and mass type.
Let us now consider flags associated to core graphs. Such chains · · ·Γi �

Γi+1 � · · · � Γ correspond to decorated ladders, and the coproduct on the
level of such ladders is a sum over all possibilities to cut an edge in such a
ladder, splitting the chain

(2.36) [· · · � Γi]⊗ [Γi+1//Γi � · · · � Γ//Γi].

So let us call such an admissible cut renormalization-admissible, if all
core graphs Γi, Γ//Γi obtained by the cut have residues in R.

The set of renormalization-admissible cuts is a subset of the admissible
cuts of a core graph, and the coproduct respects this. Hence the renor-
malization Hopf algebra HR is a quotient Hopf algebra of the core Hopf
algebra.

If we enlarge the set R to include other local field operators appearing
for example in an operator product expansion, we get quotient Hopf algebras
between the core and the renormalization Hopf algebra.

2.5. External leg structures

External edges are usually labelled by data which characterize the amplitude
under consideration. Let σ be such data. For graphs Γ with a given residue
res(Γ), there is a finite set τ ∈ {σ}res(Γ) of possible data τ . A choice of such
data determines a labelling of the corresponding vertex to which a subgraph
shrinks. Let Γ//γτ be that co-graph with the corresponding vertex labelling.

One gets a Hopf algebra structure on pairs (Γ, σ) by using the renormal-
ization coproduct Δ(Γ) = Γ′ ⊗ Γ′′ by setting Δ(Γ, σ) =

∑
τ∈{σ}res(Γ′)

(Γ′, τ)⊗
(Γ′′

τ , σ). We regard the decomposition into external leg structures as a par-
tition of unity and write

(2.37)
∑

τ∈{σ}res(Γ)

(Γ, τ) = (Γ, I).
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In our applications, we only need this for (sub)graphs γ with |res(γ)| = 2,
and the use of these notions will become clear in the applications below.

3. Combinatorics of blowups

We consider P
n−1 with fixed homogeneous coordinates A := {A1, . . . , An}.

Suppose given a subset S ⊂ 2A. Assume A �∈ S and that S has the property
that whenever μ1, μ2 ∈ S with μ1 ∪ μ2 �= A, then μ1 ∪ μ2 ∈ S. For μ ∈ S,
we write Lμ ⊂ P

n−1 for the coordinate linear space defined by Ai = 0, i ∈ μ.
Write L(S) := {Lμ | μ ∈ S}. We see that

(3.1) Lμi
∈ L(S); Lμ1 ∩ Lμ2 �= ∅ ⇒ Lμ1 ∩ Lμ2 ∈ L(S).

We can stratify the set L(S) taking L(S)1 to be the set of all minimal
elements (under inclusion) of L(S). More generally, L(S)i will be the set of
minimal elements in L(S)−

∐i−1
j=1 L(S)j .

Proposition 3.1.

(i) Elements in L(S)1 are all disjoint, so we may define P (S)1 to be the
variety defined by blowing up elements in L(S)1 on P

n−1. We do not
need to specify an order in which to perform the blowups.

(ii) More generally, the strict transforms of elements in L(S)i+1 to the
space P (S)i obtained by successively blowing the strict transform of
L(S)j , j = 1, . . . , i, are disjoint, so we may inductively define P (S) to
be the successive blowup of the L(S)i.

(iii) Let Ei ⊂ P (S) correspond to the blowup of Lμi
, i = 1, . . . , r. (Ei is

the unique exceptional divisor with image Lμi
in P (S).) Then E1 ∩

· · · ∩Er �= ∅ if and only if after possibly reordering, we have inclusions
Lμ1 ⊂ · · · ⊂ Lμr

.

(iv) The total exceptional divisor E ⊂ P (S) is a normal crossings divisor.

(v) Let M ⊂ P
n−1 be a coordinate linear space. Assume M �⊂ L for any

L ∈ L(S). Then M ∩ L(S) := {M ∩ L | L ∈ L(S)} satisfies (3.1). The
strict transform of M in P (S) is obtained by blowing up elements of
M ∩ L(S) on M as in (i) and (ii) above.

Proof. If L1 �= L2 ∈ L(S)i and L1 ∩ L2 �= ∅, then L1 ∩ L2 ∈ L(S)j for some
j < i. This means that when we get to the i-th step, L1 ∩ L2 has already
been blown up, so the strict transforms of the Li are disjoint, proving
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(ii). For (iii),
⋂

Ei �= ∅ ⇐ Lμ1 ⊂ · · · ⊂ Lμr
follows from the above argu-

ment. Conversely, if we have strict inclusions among the Lμi
, we may write

(abusively) Lμi
/Lμi−1 for the projective space with homogeneous coordinates

the homogeneous coordinates on Lμi
vanishing on Lμi−1 . The exceptional

divisor on the blowup of Lμi−1 ⊂ Lμi
is identified with Lμi−1 × (Lμi

/Lμi−1).
A straightforward calculation identifies non-empty open sets (open toric
orbits in the sense to be discussed below) in

⋂
Ei and

(3.2) Lμ1 × (Lμ2/Lμ1)× · · · × (Lμr
/Lμr−1).

The remaining parts of the proposition follow from the algorithm in [8]. �

For us, sets S as above will arise in the context of graphs. Recall in 2.1
we defined the notion of core graph.

Proposition 3.2. Let Γ be a graph, and let Γ1, Γ2 ⊂ Γ be core subgraphs.
Then the union Γ1 ∪ Γ2 is a core subgraph.

Proof. Removing an edge increases the Euler–Poincaré characteristic by 1.
If h1 does not drop, then either h0 increases (the graph disconnects when
e is removed) or e has a unary vertex, so removing e drops the number of
vertices. Suppose e is an edge of Γ1 (assumed core). Then e cannot have a
unary vertex. If, on the other hand, removing e disconnects Γ1 ∪ Γ2, then
since the Γi are core, what must happen is that each Γi has precisely one-
vertex of e. But this would imply that Γ1 is not core, a contradiction. �

To a graph Γ, we may associate the projective space P(Γ) with homo-
geneous coordinates Ae, e ∈ E(Γ) labelled by the edges of Γ. Let Γ be
a core graph. A coordinate linear space L ⊂ P(Γ) is a non-empty linear
space defined by some subset of the homogeneous coordinate functions,
L : Ae1 = · · · = Aep

= 0. Define L(Γ) to be the set of coordinate linear spaces
in P(Γ) such that the corresponding set of edges ei1 , . . . , eip

is the edge set of
a core subgraph Γ′ ⊂ Γ. It follows from Proposition 3.2 that L(Γ) satisfies
condition (3.1), so the iterated blowup

(3.3) π : P (Γ) → P(Γ)

as in Proposition 3.1 is defined. Define

(3.4) L =
⋃

L∈L(Γ)

L ⊂ P(Γ); E =
⋃

EL = π−1L.
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Lemma 3.3. Suppose P(Γ) = P
n−1 with coordinates A1, . . . , An. Let L ⊂

P(Γ) be defined by A1 = · · · = Ap = 0. Let πL : PL → P(Γ) be the blowup of
L. Then the exceptional divisor E ⊂ PL is identified with P

p−1 × L. Further
A1, . . . , Ap induce coordinates on the vertical fibres P

p−1 and Ap+1, . . . , An

give homogeneous coordinates on L.

Proof. This is standard. One way to see it is to use the map P
n−1 − L→

P
p−1, [a1, . . . , an] �→ [a1, . . . , ap]. (Here, and in the sequel, [· · · ] denotes a

point in homogeneous coordinates.) This extends to a map f on PL:

(3.5)

E
↪→−−−−→ PL

f−−−−→ P
p−1

⏐
⏐
�πL|E

⏐
⏐
�πL

L
↪→−−−−→ P

n−1.

The resulting map πL|E × f : E ∼= L× P
p−1. �

It will be helpful to better understand the geometry of P (Γ). Let Gm =
Spec Q[t, t−1] be the standard one dimensional algebraic torus. Define T =
G

n
m/Gm, where the quotient is taken with respect to the diagonal embedding.

For all practical purposes, it suffices to consider complex points

(3.6) T (C) = C
×n/C

× ∼= C
×n−1.

A toric variety P is an equivariant (partial) compactification of T . In other
words, T ⊂ P is an open set, and we have an extension of the natural group
map m

(3.7)

T × T
⊂−−−−→ T × P

m

⏐
⏐
� m̄

⏐
⏐
�

T
⊂−−−−→ P.

For example, P(Γ) is a toric variety for a torus T (Γ). Canonically, we may
write T (Γ) = (

∏
e∈Edge(Γ) Gm)

/
Gm. More important for us:

Proposition 3.4.

(i) P (Γ) is a toric variety for T = T (Γ).

(ii) The orbits of T on P (Γ) are in 1–1 correspondence with pairs (F, Γp �

· · · � Γ1 � Γ). Here F ⊂ Γ is a (possibly empty) subforest (subgraph
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with h1(F ) = 0) and the Γi are core subgraphs of Γ. We require that
the image of Fi := F ∩ Γi in Γi//Γi+1 be a subforest for each i. (cf.
(3.2)). The orbit associated to such a pair is canonically identified with
the open orbit in the toric variety P(Γp//Fp)× P((Γp−1//Γp)//Fp−1)×
· · · × P((Γ//Γ1)//F ).

Proof. A general reference for toric varieties is [9]. The fact (i) that P (Γ)
is a toric variety follows inductively from the fact that the blowup of an
invariant ideal I in a toric variety is toric. Indeed, the torus acts on I and
hence on the blowup Proj(I).

We recall some toric constructions. Let N = Z
Edge(Γ)/Z, and let M =

hom(N, Z). We have canonically T = Spec Q[M ], where Q[M ], is the group
ring of the lattice M . A fan (op. cit., 1.4, p. 20) F is a finite set of convex
cones in NR = N ⊗ R satisfying certain simple axioms. To a cone C ⊂ NR

one associates the dual cone (op. cit. p. 4)

(3.8) C∨ = {m ∈MR|〈m, c〉 ≥ 0,∀c ∈ C}

(resp. the semigroup C∨
Z

= C∨ ∩M). The toric variety V (F) associated
to the fan F is then a union of the affine sets U(C) := Spec Q[C∨

Z
]. For

example, our N has rank n− 1. There are n evident elements e determined
by the n edges of Γ. Let Ce = {

∑
e′ �=e re′e′ | re′ ≥ 0} be the cone spanned

by all edges except e. The spanning edges for Ce form a basis for N, which
implies that U(Ce) ∼= A

n−1. Since all the coordinate rings lie in Q[M ] (i.e.,
T (Γ) ⊂ U(Ce)), one is able to glue together the U(Ce). The resulting toric
variety associated to the fan {Ce | e ∈ Edge(E)} is canonically identified
with P(Γ).

Remark 3.5. Our toric varieties will all be smooth (closures of orbits in
smooth toric varieties are smooth), which is equivalent [9, §2] to the con-
dition that cones in the fan are all generated by subsets of bases for the
lattice N . Faces of these cones are in 1–1 correspondence with subsets of
the generating set.

In general, the orbits of the torus action are in 1–1 correspondence with
the cones C in the fan (op. cit. 3.1, p. 51). The subgroup of N generated by
C ∩N corresponds to the subgroup of T which acts trivially on the orbit.
For example, in the case of projective space P

n−1, there are n cones Ce of
dimension n− 1 corresponding to the n fixed points (0, . . . , 1, . . . , 0) ∈ P

n−1.
For any S � Edge(Γ), the cone C(S) spanned by the edges of S corresponds
to the orbit {(. . . , xe, . . .)|xe = 0 ⇔ e ∈ S} ⊂ P

n−1. Let L : Ae = 0, e ∈ Γ′ ⊂
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Γ be a coordinate linear space in P(Γ) associated to a subgraph Γ′ ⊂ Γ. It
follows from Lemma 3.3 that the exceptional divisor EL ⊂ PL in the blowup
of L can be identified with

(3.9) EL = P(Γ′)× P(Γ//Γ′).

Let e(Γ′) =
∑

e∈Γ′ e ⊂ NR, and write τ(Γ′) = R
≥0 · e(Γ′). The subgroup Z ·

e(Γ′) ⊂ N determines a 1-parameter subgroup G(Γ′) ⊂ T = Spec Q[M ]. It
follows from (3.9) that G(Γ′) acts trivially on EL. One has τ(Γ′) ⊂ C ′ ⊂ Ce

for all e �∈ Γ′, where C ′ is the cone generated by the edges of Γ′. For all
e′ ∈ Γ′, we define a subcone Ce,e′ ⊂ Ce to be spanned by τ(Γ′) together with
all edges of Γ except e, e′. The fan for PL is then

(3.10) {Ce, e ∈ Γ′} ∪ { Ce,e′ , e �∈ Γ′, e′ ∈ Γ′}.

Note that Ce, e �∈ Γ′, is not a cone in the fan for PL. More generally, let F
be the fan for P (Γ). Certainly, F will contain as cones the half-lines τ(Γ′)
for all core subgraphs Γ′ ⊂ Γ as well as the R

≥0e, e ∈ Γ, but we must make
precise which subsets of this set of half-lines span higher dimensional cones
in F . By general theory, the cones correspond to the non-empty orbits. In
other words,

(3.11) R
≥0e1, . . . , R

≥0ep, R
≥0e(Γ1), . . . , R≥0e(Γq)

span a cone in F if and only if the intersection

(3.12) E1 ∩ · · · ∩Eq ∩D1 ∩ · · · ∩Dp �= ∅,

where Ei ⊂ P (Γ) is the exceptional divisor corresponding to L(Γi) and
Dj ⊂ P (Γ) is the strict transform of the coordinate divisor Aei

= 0 in P(Γ).
To understand (3.12), consider the simple case E1 ∩D1. We have a core
subgraph Γ1 ⊂ Γ, and an edge e1 of Γ. We know by Lemma 3.3 that
E1 ∼= P(Γ1)× P(Γ//Γ1). If e1 is an edge of Γ1, then D1 ∩ E1 = P(Γ1//e1)×
P(Γ//Γ1). Otherwise

D1 ∩ E1 = P(Γ1)× P((Γ//Γ1)//e1).

One (degenerate) possibility is that e1 is an edge of Γ1, which forms a loop
(tadpole). In this case, e1 is itself a core subgraph of Γ, and the divisor D1
should be treated as one of the exceptional divisors Ei. Thus, we omit this
possibility. Another possibility is that e1 �∈ Γ1, but that the image of e1 in



Mixed Hodge structures and renormalization in physics 665

Γ//Γ1 forms a loop. In this case, Γ2 := Γ1 ∪ e1 is a core subgraph, so the
linear space L2 : Ae = 0, e ∈ Γ2 gets blown up in the process of constructing
P (Γ). But blowing L2 separates E1 and D1, so the intersection of the strict
transforms of D1 and E1 in P (Γ) is empty. The general argument to show
that (3.12) is empty if and only if the conditions of (ii) in the proposition
are fulfilled is similar and is left for the reader. Note that the case where
there are no divisors Di follows from Proposition 3.1(iii). �

We are particularly interested in orbits corresponding to filtrations by
core subgraphs Γp � · · · � Γ1 � Γ. Let V ⊂ P (Γ) be the closure of this
orbit. We want to exhibit a toric neighbourhood of V which retracts onto
V as a vector bundle of rank p. As in the proof of Proposition 3.4, we have
e(Γi) :=

∑
e∈Γi

e. The cone C spanned by the e(Γi) lies in the fan F . For
cones C ′ ∈ F , we write C ′ > C if C is a subcone of C ′. By the general
theory, this will happen if and only if C ⊂ C ′ is a subcone which appears on
the boundary of C ′. The orbit corresponding to C ′ will then appear in the
closure of the orbit for C.

Proposition 3.6. With notation as above, let FC ⊂ F be the subset of
cones C ′ such that we have C ′ ≤ C ′′ ≥ C for some C ′′ ∈ F . Write P 0 ⊂
P (Γ) for the open toric subvariety corresponding to the subfan FC ⊂ F . We
have V ↪→ P 0 ⊂ P (Γ). Further there is a retraction π : P 0 → V realizing P 0

as a rank p vector bundle over V, which is equivariant for the action of the
torus T .

Proof. One has the following functoriality for toric varieties [9, §1.4]. Sup-
pose φ : N ′ → N ′′ is a homomorphism of lattices (finitely generated free
abelian groups). Let F ′,F ′′ be fans in N ′

R
, N ′′

R
. Suppose for each cone

σ′ ∈ F ′ there exists a cone σ′′ ∈ F ′′ such that φ(σ′) ⊂ σ′′. Then there is
an induced map on toric varieties V (F ′) → V (F ′′). Let N ′ = N = Z

n/Z as
above, and N ′′ = N ′/(Ze(Γ1) + · · ·+ Ze(Γp)). One has the evident surjec-
tion φ : N ′ � N ′′. We take as fan F ′ = FC ⊂ F . The closure V of the orbit
corresponds to the fan F ′′ in N ′′

R
given by the images of all cones C ′′ ≥ C

(op. cit. §3.1). Such a C ′′ is generated by e(Γ1), . . . , e(Γp), f1, . . . , fq, and
there are no linear relations among these elements (Remark 3.5). A subcone
C ′ ≤ C ′′ is generated by a subset e(Γi1), . . . , e(Γia

), f1, . . . , fb. The image
is simply the cone in N ′′

R
generated by the images of the f ’s. If we have

another cone C ′
1 ≤ C ′′

1 ≥ C in F ′ with the same image in F ′′, it will have
generators say g1, . . . , gb together with some of the e(Γi)’s. Reordering the
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g’s, we find that there are relations

(3.13) fi +
∑

aije(Γj) = gi +
∑

bije(Γj)

with aij , bij ≥ 0. It follows that the cones in F spanned by fi, e(Γ1), . . . , e(Γp)
and gi, e(Γ1), . . . , e(Γp) meet in a subset strictly larger that the cone spanned
by the e(Γj). By the fan axioms, the intersection of two cones in a fan is
a common face of both, so these two cones coincide, which implies fi = gi.
In particular, for each cone in F ′′, there is a unique minimal cone in F ′

lying over it. This is the hypothesis for [19, p. 58, Proposition 1.33]. One
concludes that the map π : P 0 → V induced by the map F ′ → F ′′ is an
equivariant fibration, with fibre the toric bundle associated to the fan gen-
erated by the e(Γi), 1 ≤ i ≤ p. This toric variety is just affine p-space, so we
get an equivariant A

p-fibration over V . Any such fibration is necessarily a
vector bundle with structure group G

p
m. Indeed, this amounts to saying that

any automorphism of the polynomial ring k[x1, . . . , xp] which intertwines the
diagonal action of G

p
m is necessarily of the form xi �→ cixi with ci ∈ k×. �

Remark 3.7. We will need to understand how these constructions are
compatible. Let V be a closed orbit corresponding to a cone C as above, and
let V1 ⊂ V be a smaller closed orbit corresponding to a larger cone C1 > C.
(The correspondence between cones and orbits is inclusion-reversing.) As
above, we have a toric variety V1 ⊂ P 0

1 ⊂ P (Γ) and a retraction π1 : P 0
1 →

V1. The fan F ′
1 for P 0

1 is given by the set of cones C ′
1 in F such that

(3.14) C ′
1 ≤ C ′′ ≥ C1 (> C).

It follows that F ′
1 ⊂ F ′ = FC , so P 0

1 ⊂ P 0 is an open subvariety. Let V 0 ⊂ V
be the image of the composition P 0

1 ⊂ P 0 π−→ V . Then V 0 is the open toric
subvariety of V corresponding as above to the closed orbit V1 ⊂ V , and we
have a retraction V 0 πV−−→ V1. One gets commutative diagrams

(3.15)

P 0
1 P 0

1
⊂−−−−→ P 0

π1

⏐
⏐
� π

⏐
⏐
� π

⏐
⏐
�

V1
πV←−−−− V 0 ⊂−−−−→ V
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and

(3.16)

P 0|V1
⊂−−−−→ P 0

1

π

⏐
⏐
� π1

⏐
⏐
�

V1 V1.

Remark 3.8. Using the toric structure, one can realize these vector bun-
dles as direct sums of line bundles corresponding to characters of the tori
acting on the fibres.The inclusion on the top line of (3.16) corresponds to
characters which act trivially on all of V .

Remark 3.9. (compare Proposition 3.4). Given a flag of core subgraphs

(3.17) Γp � Γp−1 � · · · � Γ1 � Γ,

let Li ⊂ P(Γ) be defined by the edge variables for edges in Γi, so we have
L1 � · · · � Lp � P(Γ). For L ⊂ P(Γ) a coordinate linear space, let T (L) ⊂ L
be the subtorus where none of the coordinates vanishs. Then the orbit
associated to (3.17) is

(3.18) T (L1)× T (L2/L1)× · · · × T (Lp/Lp−1)× T (Pn−1/Lp).

(Here the notation Li+1/Li is as in (3.2).)

4. Topological chains on toric varieties

One can define the notion of non-negative real points V (R≥0) and positive
real points V (R>0). For a torus T = Spec Q[N∨] for some N ∼= Z

g, we take

T (R>0) = {φ : Q[N∨] → R | φ(n) > 0,∀n ∈ N∨}.

A toric variety V can be stratified as a disjoint union of tori V =
∐

Tα.
Define

V (R≥0) =
∐

Tα(R>0);(4.1)

V (R>0) = T (R>0),

where T ⊂ V is the open orbit. Let V ⊂ P (Γ) be the closure of the orbit
associated to a flag (3.17), and let T (V ) ⊂ T = Spec Q[N∨] be the subtorus
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acting trivially on V . Let πV : PV → V be the vector bundle as in Propo-
sition 3.6. We write PV = L1 ⊕ · · · ⊕ Lp as a direct sum of line bundles,
where each Li is equivariant for T (V ). Let K(V ) ∼= (S1)p ⊂ T (V )(C) be
the maximal compact subgroup. Note that one has a canonical identifica-
tion T (V ) = G

p
m associated to the 1-parameter subgroups of T (V ) generated

by e(Γi) ∈ N . In particular, the identification K(V ) = (S1)p is canonical
as well. For all closed orbits V, we may fix metrics on the Li which are
compatible under inclusions (3.16) and are (necessarily) invariant under
the action of K(V ). We fix also a constant η > 0. We can then define
Sη

V ⊂ PV to be the product of the circle bundles of radius η embedded in
the Li. Sη

V becomes a principal bundle over V with structure group K(V ).
Note that Sη

V ∩ PV (R≥0) contains a unique point in every fibre of Sη
V over

a point of V (R). Let 0 < ε << η be another constant. We need to define a
chain ση,ε

V ⊂ V (R>0). We consider closures V1 ⊂ V of codimension 1 orbits
in V . For each such V1, we have an open P (V )1 ⊂ V and a retraction
P (V )1 → V1 which is a line bundle with a metric. The fibres of P (V )1(R>0)
have a canonical coordinate r > 0. If V1 corresponds to an intersection of
V = E1 ∩ · · · ∩Ep with another exceptional divisor Ep+1, then we remove
from each fibre of P (V )1(R>0) over V1(R>0) the locus where r < η. If, on the
other hand, V1 corresponds to an intersection of V with one of the Di (i.e.,
with a strict transform of one of the coordinate divisors), then we remove the
locus r < ε. Repeating this process for each V1 (i.e., for each irreducible toric
divisor in V ), we obtain a compact ση,ε

V ⊂ V (R>0) which stays away from
the boundary components. (Here “boundary components” are exceptional
divisors together with strict transforms of coordinate divisors.)

Example 4.1. Consider the case V = P (Γ). Let π : P (Γ) → P(Γ), and let

σ = {(A1, . . . , An) | Ai ≥ 0} ⊂ P(Γ)(R)

be the original integration chain. We have ση,ε
P (Γ) ⊂ π−1(σ) defined by excis-

ing away points within a distance of η from an Ei or ε from the strict
transform Dj of a coordinate divisor Aj = 0. (cf. Figure 8). It is a manifold
with corners.

Define τη,ε
V to be the inverse image of ση,ε

V in Sη
V . The fibres of τη,ε

V over
ση,ε

V are products (S1)p with a canonical origin at the point where this fibre
meets PV (R≥0). For an angle 0 ≤ θ ≤ 2π, we can thus define τη,ε,θ

V ⊂ τη,ε
V to

be swept out by the origin in each fibre under the action of [0, θ]p ⊂ K(V ).
The chains τη,ε,θ

V have R-dimension n− 1 which is equal to the complex
dimension of P(Γ) and P (Γ).



Mixed Hodge structures and renormalization in physics 669

Figure 8: P (Γ) and the real chain ση,ε
P (Γ).

Example 4.2. Here is an example which is too simple to correspond to
any graph, but is sufficient to clarify the toric picture. Take

(4.2) L1 : A1 = A2 = 0; L2 : A2 = 0

in P
2 with coordinates A1, A2, A3. Take P

π−→ P
2 to be the blowup of L1 =

(0, 0, 1). Let E1 ⊂ P be the exceptional divisor, and let E2 ⊂ P be the strict
transform of L2. Note that E2 is already a divisor, so it is not necessary
to blow up again. Take V = E1 ∼= P

1. The fan F for P is Figure 9. The
cone C = R

≥0 · (e1 + e2), so the fan F ′ = FC ⊂ F is the subset of cones
lying in the first quadrant. The toric variety PV is A

2 with (0, 0) blown
up. It projects down onto V as a line bundle. Sη

V ⊂ PV (C) is then a circle
bundle over V (C). V has two suborbits V2 = E1 ∩ E2 and V1 = E1 ∩D1,
where D1 is the strict transform of the divisor A1 = 0 in P

2. We may
interpret z := A1/A2 as a coordinate on V , so V1 : z = 0 and V2 : z = ∞.
We have P (V )1 = V − {z = ∞} and P (V )2 = V − {z = 0}. The real chain
ση,ε

V = {η ≤ z ≤ 1/ε}, and τη,ε
V is the S1-bundle of radius η over ση,ε

V . On the
other hand, V2 corresponds to the cone labelled C2 in Figure 9 and the fan
FC2 is just C2 itself. The toric variety PV2

∼= A
2 is a rank 2 vector bundle

over the point V2. We have PV2 ⊂ PV . In this case, ση,ε
V2

is simply the point
V2, and τη,ε

V2
∼= S1 × S1 ⊂ PV1(C). In local coordinates around V1 given by
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Figure 9: Fan for Example 4.2.

eigenfunctions for the torus action, we have

τη,ε,θ
V = {(ηeiμ, z) | η ≤ z ≤ 1/ε, 0 ≤ μ ≤ θ}(4.3)

τη,ε,θ
V1

= {(ηeiμ, ηeiν) | 0 ≤ μ, ν ≤ θ}
τη,ε,θ
V ∩ τη,ε,θ

V1
= {(ηeiμ, η) | 0 ≤ μ ≤ θ}.

We want now to establish a basic formula for the boundary of the chains
τη,ε,θ
V . Here V runs through the closures of orbits in P (Γ) associated to flags

of core subgraphs (3.17). We include the big orbit V = P (Γ). We write
|V | := codim(V/P (Γ)). We may express the boundary chains ∂τη,ε,θ

V locally
(in fact Zariski-locally) in coordinates which are eigenfunctions for the torus
action. It is clear (cf. (4.3)) that boundary terms are obtained by setting a
suitable one of these coordinates to be constant: either ηeiθ or η or ε. (The
presence of 1/ε in the first line of (4.3) simply means that the appropriate
coordinate near that point is 1/z.)

Proposition 4.3. For a suitable orientation, the boundary

(4.4) ∂
∑

V

(−1)|V |τη,ε,θ
V

will contain no chains with one coordinate constant = η.

Proof. For a given boundary term, we can choose local eigenfunction coor-
dinates x1, . . . , xn−1 such that be boundary term is given by x1 = η. We
take the chains to be oriented in some consistent way by this ordering of
coordinates. (Note that these coordinates are defined on a Zariski open set.
The obstruction to choosing consistent orientations for various open sets is a
class in the first Zariski cohomology of P (Γ) with constant Z/2Z-coefficients.



Mixed Hodge structures and renormalization in physics 671

Figure 10: The monodromy chain, with angular variable θ.

Since this cohomology group vanishes, we can choose such consistent orien-
tations.) If ∂τη,ε,θ

V contains a term with x1 = η, there are two possibilities.
Either x1 is a real coordinate on τη,ε,θ

V or it is a circular coordinate. If
x1 is a real coordinate, then the fact that x1 = η appears in the boundary
means that locally x1 = 0 defines a codimension 1 orbit closure V1 ↪→ V . In
∂τη,ε,θ

V1
, x1 will appear as a circular coordinate. Since |V | = |V1|+ 1, the

same chain x1 = η will appear in ∂τη,ε,θ
V and in ∂τη,ε,θ

V1
and will cancel in

(4.4). If, on the other hand, x1 = ηeiθ is a circular coordinate, then for suit-
able ordering of coordinates, the chain will be an (S1)p-bundle over a chain
σ contained in the locus where certain coordinates ≥ 0. But then (4.4) will
contain another chain which is an (S1)p−1-bundle over {x1 ≥ η} × σ, and
the boundary components involving x1 = η will occur with opposite signs
and will cancel (cf. Figure 10). �

The boundary chain (4.4) is an (n− 2)-chain involving two scales
0 < ε < η. We want to construct an (n− 1)-chain ξη,ε,θ which amounts
to a scaling η → ε. To do this, we construct a vector field v on P (Γ). Let
E =

∑
Ei be the exceptional divisor. v will be 0 outside a neighbourhood N,

of E. Locally, at a point on N which is close to divisors E1, . . . , Ep, we have
coordinates x1, . . . , xp which are eigenfunctions for the torus action such that
locally Ei : xi = 0. Locally we will take v to be radial and inward-pointing
in each xi. We glue these local v’s using a partition of unity. ”Flowing” the
(n− 2)-chain (4.4) along this vector field yields an (n− 1)-chain ξη,ε,θ. If
this is done with care, we can arrange

(4.5) ∂ξη,ε,θ ≡ ∂
∑

V

(−1)|V |τη,ε,θ
V − ∂

∑

V

(−1)|V |τ ε,ε,θ
V .
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Here≡means that the two sides differ by a chain lying in an ε-neighbourhood
of the strict transform D of the coordinate divisor Δ in P (Γ). Another
important property of the chain ξη,ε,θ is

Lemma 4.4. ξη,ε,2π ≡ ξη,ε,0.

Proof. The point is that ∂τη,ε,2π
V ≡ 0 except for the case V = P (Γ), and τη,ε,θ

P (Γ)
is independent of θ (see Figure 10). �

Define the chain cη,ε,θ =
∑

V (−1)|V |τη,ε,θ
V − ξη,ε,θ. We have

(4.6) ∂cη,ε,θ = ∂
∑

V

(−1)|V |τ ε,ε,θ
V .

Note that cη,ε,0 = ση,ε
P (Γ), i.e., all chains involving at least one circular variable

die at θ = 0. We define the variation,

(4.7) var(cη,ε,θ) = cη,ε,2π − cη,ε,0 ≡
∑

V �P (Γ)

(−1)|V |τ ε,ε
V .

It is a sum of “(S1)p-tubes” over all E1 ∩ · · · ∩Ep � P (Γ).

5. The graph hypersurface

Associated to a graph Γ with n edges, one has the graph polynomial

(5.1) ψΓ(A1, . . . , An) =
∑

T

∏

e�∈T

Ae,

where T runs through spanning trees of Γ. This polynomial has degree h1(Γ);
for more detail, see [2] and the references cited there. Let X = XΓ : ψΓ = 0
be the graph hypersurface in P

n−1. For μ ⊂ Edge(Γ), let Lμ ⊂ P(Γ) be
defined by Ae = 0, e ∈ μ. Let Γμ =

⋃
e∈μ e ⊂ Γ be the subgraph with edges

in μ. Note the dictionary Γμ ↔ Lμ is inclusion reversing.

Lemma 5.1.

(i) Lμ ⊂ XΓ ⊂ P(Γ) if and only if h1(Γμ) > 0.

(ii) If h1(Γμ) > 0, there exists a unique ν ⊆ μ such that h1(Γν) = h1(Γμ)
and such that moreover Γν is a core graph.

(iii) We have in (ii) that ν =
⋃

ξ, where ξ runs through all minimal subsets
of μ such that Lξ ⊂ X.
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(iv) Lμ = Lν ∩M , where M is a coordinate linear space not contained
in XΓ.

Proof. These assertions are straightforward from the results in [2, Section 3].
Note that (iv) justifies our strategy of only blowing up core subgraphs. �

We have seen (Remark 3.4) that our blowup P (Γ) is stratified as a union
of tori indexed by pairs

(5.2) (F, {Γp � · · · � Γ1 � Γ//γ}),

where F ⊂ Γ is a suitable subforest and the Γi are core.

Proposition 5.2.

(i) As in Proposition 3.4, the torus corresponding to (5.2) is

(5.3) T (Γp//Fp)× T ((Γp−1//Γp)//Fp−1)× · · · × T ((Γ//Γ1)//F ).

Here T (Γ) := P(Γ)−Δ, where Δ :
∏

e∈Edge(Γ) Ae = 0.

(ii) The strict transform Y of XΓ in P (Γ) meets the stratum (5.3) in a
union of pullbacks

(5.4) pr−1
1 (X0

Γp
) ∪ pr−1

2 (X0
Γp−1//Γp

) ∪ · · · ∪ pr−1
p (X0

(Γ//γ)//Γ1
).

Here the pri are the projections to the various subtori in (5.3), and X0

denotes the restriction of the corresponding graph hypersurface to the
open torus in the projective space.

Proof. Let Γ′ ⊂ Γ be a subgraph and let L : Ae = 0, e ∈ Edge(Γ′). Assume
h1(Γ′) > 0, so L ⊂ XΓ. Let PL → P(Γ) be the blowup of L. Let EL ⊂ PL

be the exceptional divisor, and let YL ⊂ PL be the strict transform of XΓ.
The basic geometric result (op. cit. Proposition 3.5) is that EL = P(Γ′)×
P(Γ//Γ′) and

(5.5) YL ∩ EL = (XΓ′ × P(Γ//Γ′)) ∪ (P(Γ′)×XΓ//Γ′).

The assertions of the proposition follow by an induction argument. �

Corollary 5.3. The strict transform Y of XΓ in P (Γ) does not meet the
non-negative points P (Γ)(R≥0) (4.1).
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Proof. It suffices by (4.1) to show that Y does not meet the positive points
in any stratum. By Proposition 5.2, it suffices to show that for any graph
Γ, the graph hypersurface XΓ has no R-points with coordinates all >0.
This is immediate because ψΓ is a sum of monomials with non-negative
coefficients. �

Remark 5.4. The Feynman amplitude is obtained by calculating an inte-
gral over σ = P(Γ)(R≥0) with an integrand which has a pole along XΓ. Again
using that ψΓ is a sum of monomials with non-negative coefficients, one sees
from Lemma 5.1 that

(5.6) σ ∩XΓ =
⋃

μ

Lμ(R≥0),

where Lμ ↔ Γμ with Γμ ⊂ Γ a core subgraph. The iterated blowup P (Γ) →
P(Γ) is exactly what is necessary to separate the non-negative real points
from the strict transform of XΓ.

Remark 5.5. The points where ψΓ �= 0 have some remarkable proper-
ties. It is shown in [20] that for any angular sector S with angle < π,
ψΓ(a1, . . . , an) �= 0 at any complex projective point a such that the ai �= 0
and all the arg(ai) lie in S.

6. Monodromy

Let pi = (0, . . . , 1, 0, . . . , 0) ∈ C
n be the i-th coordinate vector. Define

σaff =

{
n∑

i=1

τipi | τi ≥ 0,
∑

τi = 1

}

⊂ C
n − {(0, . . . , 0)} → P

n−1.

Fix a positive constant ε << 1 and choose qk = (qk1, . . . , qkn) ∈ R
n, 1 ≤

k ≤ n, with 1− ε < qkj ≤ 1 and |qjk − q�,m| ≤ ε2. We assume the qk are
algebraically generic. Write rk(t) = pk + tqk ∈ C

n. Define (cf. Figure 11)

(6.1) σaff
t =

{
n∑

i=1

τkrk(t)|τk ≥ 0,
∑

τk = 1

}

We write σ and σ̃t for the images of these chains in P
n−1. Of course, σ =

σPn−1 as above, and we know that σ ∩XΓ =
⋃

L⊂L σL. Here L is as in (3.4).
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Figure 11: Moving Δt.

Lemma 6.1. Let L ⊂ NL be a neighbourhood of L in P
n−1 and let σ ⊂ Nσ

be a neighbourhood of σ. Then there exists ε0 > 0 such that ε ≤ ε0 implies
that for all 0 ≤ θ ≤ 2π, we have σ̃εeiθ ⊂ Nσ and σ̃εeiθ ∩XΓ ⊂ NL.

Proof. We have σ ∩XΓ ⊂ L. By compacity, σ̃εeiθ ⊂ Nσ for ε � 1. Again by
compacity, if we shrink Nσ we will have Nσ ∩XΓ ⊂ NL. �

Remark 6.2. Write Hk,t for the projective span of the points

r1(t), . . . , r̂k(t), . . . , rn(t),

and let Δt =
⋃n

k=1 Hk,t. Thus, Δ = Δ0 and we may consider the monodromy
for Δεeiθ , 0 ≤ θ ≤ 2π. More precisely, renormalization in physics involves an
integral over the chain σ. The integrand has poles along XΓ. Since σ ∩XΓ �=
∅, the integral is possibly divergent. On the other hand, by Corollary 5.3,
the chain σε does not meet XΓ and so represents a singular homology class

(6.2) [σε] ∈ Hn−1(Pn−1 −XΓ, Δε −Δε ∩XΓ, Z).

(Since all qkj > 0, it follows that σε ⊂ σ, and points in σε have all coordinates
>0.) We consider the topological pairs (Pn−1 −XΓ, Δεeiθ −Δεeiθ ∩XΓ) as
a family over the circle and we continuously deform our chain σε to a family
of chains σεeiθ on P

n−1 −XΓ with boundary on Δεeiθ −Δεeiθ ∩XΓ. (We
will not be able to take σεeiθ = σ̃εeiθ because this chain can meet XΓ.) The
monodromy map m is an automorphism of (6.2) obtained by winding around
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the circle: m(σε) = σεe2πi . We will calculate m(σε) and see that it determines
in a natural way the renormalization expansion we want.

Recall we have π : P (Γ) → P(Γ), and π−1(XΓ) = YΓ ∪ E, where Y =
YΓ is the strict transform of XΓ and E =

⋃
Ei is the exceptional divisor.

(The Ei are closures of orbits associated to core subgraphs of Γ.) We may
transfer our monodromy problem to P (Γ). Δεeiθ is in general position with
respect to the blowups, so we obtain a family of divisors Δ′

εeiθ = π∗Δεeiθ

on P (Γ). Since π : P (Γ)− E − YΓ ∼= P(Γ)−XΓ, we have an isomorphism of
topological pairs

(P (Γ)− E − YΓ, Δ′
εeiθ −Δ′

εeiθ ∩ (E ∪ YΓ)) ∼= (P(Γ)−XΓ, Δεeiθ

−Δεeiθ ∩XΓ).(6.3)

In Section 4, we have defined chains τη,ε,θ
V , ξη,ε,θ, cη,ε,θ on P (Γ). These chains

sit on (or, in the case of ξ, within) various (S1)p-bundles over P (Γ)(R≥0)
where the S1 have radius η with respect to a chosen metric. From Corol-
lary 5.3 it follows that for 0 < η << 1, none of these chains meets YΓ. By
construction, these chains do not meet E, so they may be identified with
chains on P(Γ)−XΓ. We claim that a small modification of the chains cη,ε,θ

will represent the monodromy chains σεeiθ . The monodromy chains σεeiθ

should have boundary on Δεeiθ . On the other hand, the chains cη,ε,θ were
cut off so they had boundaries on tubes a distance ε from the toric divisors
Dj given by the strict transforms of the Aj = 0 (see Figure 12). We must

Figure 12: The chain τη,ε
E .
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“massage” these brutal cutoffs to get them into Δεeiθ . Our chains τ sit on
tubes or products of tubes or products of tubes of radius η which we can
think of as lying on P

n−1 − L. Since ε << η, when we deform Δ → Δεeiθ

the homotopy type of the circles, or product of circles where these divisors
intersect the tubes does not change. This may seem strange because L ⊂ Δ
while Δεeiθ is in general position with respect to L, but the intersections with
a hollow tubular neighbourhood of L are canonically homotopic. Indeed, we
may take Δεeiθ to correspond to a point in a small contractible disk in the
moduli space for coordinate simplices around the point corresponding to Δ.
The canonical path up to homotopy between the two points in moduli will
induce the desired homotopy on the intersections (see Figure 13). The two
sets of four dots on the circles are canonically homotopic.). In more detail,
by Corollary 5.3, the chains τη,ε,θ are bounded away from XΓ by a bound
which is independent of ε as ε → 0. Outside of some tubular neighbourhood
N of XΓ we may find a space M disjoint from XΓ such that M contains open
neighborhoods of both Δ−N ∩Δ and Δεeiθ −N ∩Δεeiθ and such that we
have deformation retractions M → Δ−N ∩Δ and M → Δεeiθ −N ∩Δεeiθ .
Shrinking ε, we may assume our ε-cutoffs lie in M . We may then use
the deformation retract to extend the chain slightly to a chain τ̃η,ε,θ

V which
bounds on Δεeiθ . It remains to consider the chains ξη,ε,θ. Recall these
were obtained by flowing the chain ∂

∑
V (−1)|V |τη,ε,θ

V inward towards the
exceptional divisor E, so η → ε (cf. Figure 10). We are in a small neigh-
borhood of E(R≥0) hence by Corollary 5.3 we are away from XΓ. The
point to be checked is that the term ∂

∑
V (−1)|V |τ ε,ε,θ

V is very close to Δεeiθ ,
so by the same deformation retraction argument as above we can extend
the chain to bound on Δεeiθ . The subtlety is that we are ε-close to E as
well, so we need the distance from Δεeiθ to be o(ε). Recall (6.1) we have the

Figure 13: Homotopy invariance of Δt ∩ tube over L.
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vertices rk(εeiθ) = [qk1εe
iθ, . . . , 1 + qkkεe

iθ, . . . , qknεeiθ] ∈ P
n−1. The coordi-

nate divisor Δεeiθ is determined by these projective points. The projective
point does not change if we scale the coordinates by eiθ, so the image in
P

n−1 of the affine simplex below, parametrized by τ1, . . . , τn ≥ 0,
∑

τj = 1,
will have boundary in Δεeiθ :

eiθτ1(1 + εeiθq11, . . . , εe
iθq1n) + · · ·+ eiθτp(εeiθqp1, . . . , 1(6.4)

+ εeiθqpp, . . . , εe
iθqpn) + τp+1(εeiθqp+1,1, . . . , 1

+ εeiθqp+1,p+1, . . . , εe
iθqp+1,n) + · · ·+ τn(εeiθqn1, . . . , εe

iθqnn + 1).

Consider for example ∂τ ε,ε,θ
V where V is the orbit closure corresponding to

the blowup of A1 = · · · = Ap = 0. Take in (6.4) τ1, . . . , τp ≤ ε, so terms in
τjε may be neglected for j ≤ p. Take uj := τj/τk, where k > p is chosen so
that (say) τk ≥ 1/n. As a consequence, u1, . . . , up ≤ nε. The corresponding
projective point can then be written

[eiθ(u1 + ε) + O(ε2), . . . , eiθ(up + ε) + O(ε2), up+1 + eiθε + O(ε2), . . . , un

(6.5)

+ eiθε + O(ε2)].

The boundary is given by setting one or more of the uj = 0. Points in ∂τ ε,ε,θ
V

can be approximated by points (6.5) which then deform into Δεeiθ . To see
this, note that since V is a codimension 1 orbit closure, there will locally be
one coordinate on P (Γ) near V which takes the constant value εeiθ on ∂τ ε,ε,θ

V

(cf. Figure 10). On the other hand, (6.5) is in homogeneous coordinates on
P(Γ). To transform to P (Γ) near a general point of V , one fixes � ≤ p and
looks at ratios

(6.6)
eiθ(uj + ε) + O(ε2)
eiθ(u� + ε) + O(ε2)

for 1 ≤ j �= � ≤ p. Clearly, at the boundary u� = 0, we will get p− 1 coordi-
nates uj/ε + O(ε) which are close to R

≥0, and one coordinate (corresponding
to the local defining equation for V ) of the form εeiθ + O(ε2). The remain-
ing coordinates on V are ratios of the uj + εeiθ + O(ε2), j ≥ p + 1. Since
uk = 1, these ratios are again close to R

≥0. The calculation for orbit closures
V of codimension ≥ 2 in P (Γ) is similar and is left for the reader. We have
proven

Proposition 6.3. With notation as above, the monodromy of the chain
σε ∈ Hn−1(Pn−1 −XΓ, Δε −XΓ ∩Δε) is represented by the chains c̃η,ε,θ
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given by modifying the chains cη,ε,θ to have boundary in Δεeiθ . In particular,
the monodromy m(σε) = c̃η,ε,2π is given by

(6.7) m(σε) =
∑

V

(−1)|V |τ̃ ε,ε
V ,

where τ̃ ε,ε
V is the chain τ ε,ε

V defined in Section 4 with boundary extended to
Δε as above.

It will be convenient to simplify the notation and write

(6.8) τ ε
V := τ̃ ε,ε

V .

7. Parametric representations

In this section we list well-known representations of the Feynman rules and
then prepare for a subsequent analysis of short-distance singularities in terms
of mixed Hodge structures.

7.1. Kirchhoff–Symanzik polynomials

Let

ψ(Γ) =
∑

T

∏

e�∈T

Ae,(7.1)

φ(Γ) =
∑

T1∪T2=T

Q(T1) ·Q(T2)
∏

e�∈T1∪T2

Ae,(7.2)

be the two homogenous Kirchhoff–Symanzik polynomials [10, 22]. Here, T
is a spanning tree of the 1PI graph Γ and T1, T2 are disjoint trees which
together cover all vertices of Γ. Also, Q(Ti) is the sum of all external
momenta attached to vertices covered by Ti. Note that φ(Γ) can be written
as

(7.3)
∑

kinetic invariants(qi·qj)

Rqi·qj
.

Here, qi are external momenta attached to T1 and qj to T2, and Rqi·qj
are

rational functions of the edge variables only, and the sum is over independent
such kinematical invariants where momentum conservation has been taken
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into account. We extend the definition to the empty graph I by ψ(I) = 1,
φ(I) = 0.

Let | · |γ denote the degree of a polynomial with regard to variables of
the graph γ.

Lemma 7.1.

i) deg φ = deg ψ + 1.

ii)

(7.4) ψ(Γ) = ψ(Γ//γ)ψ(γ) + ψΓ,γ

with |ψΓ,γ |γ > |ψ(γ)|γ for all core graphs Γ and subgraphs γ.

iii)

(7.5) φ(Γ) = φ(Γ//γ)ψ(γ) + φΓ,γ

with |φΓ,γ |γ > |ψ(γ)|γ for all core graphs Γ and subgraphs γ.

Proof. (i) by definition, (ii) has been proved in [2], (iii) follows similarly by
noting that the two-trees of φ are obtained from the spanning trees of ψ by
removing an edge. If that edge belongs to Γ//γ, we get φ(Γ//γ)ψ(γ). If it
belongs to γ, we get a monomial m with |m|γ > |ψ(γ)|γ . �

Note that it might happen that φ(Γ//γ) = 0, if the external momenta
flows through subgraphs γ only. In such a case (which can lead to infrared
divergences), one easily shows φΓ,γ = ψ(Γ//γ)φ(γ).

7.2. Feynman rules

From these polynomials, one constructs the Feynman rules of a given theory.
For example, we have in φ4 theory for a vertex graph Γ, sdd(Γ) = 0,

(7.6) Φ(Γ) =
∫

R
k
>ε

e−
∑

edgese Aem2
e−φ(Γ)/ψ(Γ)

ψ2(Γ)
dA1, . . . , dA|Γ[1]|.

We will write
∫
>ε dAΓ to abbreviate the affine chain of integration.

The integral is over the k-dimensional hypercube of positive real coor-
dinates in R>ε with a small strip of width 1� ε > 0 removed at each axis.
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We regard the integrand

(7.7) C � ι(Γ) :=
e−

∑
e Aem2

e−φ(Γ)/ψ(Γ)

ψ2(Γ)
,

ι(Γ) = ι
(
Γ)({m2}, {qi · qj}, {A}

)
as a function of the set of internal masses

{m2}, the set of external momenta {qi · qj} (which can be considered as
labels on external half-edges), and the set of graph coordinates {A}, and
ι takes values in C. We often omit the A dependence and abbreviate P =
{m}, {qi · qj} for all these external parameters of the integrand: ι = ι(P ).
The renormalization schemes we consider are determined by the condition
that the Green function shall vanish at a particular renormalization point
R, so that renormalization becomes an iterated sequence of subtractions

(7.8) ι−(P, R) := ι(P )− ι(R).

We let sdd(Γ) be the superficial degree of divergence of a graph Γ given as
(see also Equation (2.2) for a refined version)

(7.9) sdd(Γ) := D|Γ| −
∑

edges e

we −
∑

vertices v

wv,

where |Γ| is the rank of the first Betti homology, D the dimension of space-
time which we keep as an integer, we the weights of the propagator for
edge e as prescribed by free-field theory, and wv the weight of the vertex as
prescribed by the interaction Lagrangian. Note that we can set the width ε
to zero,

∫
>ε dAΓ →

∫
>0 dAΓ if the integrand ι−(Γ) is evaluated on a graph Γ

which has no divergent subgraphs.
Throughout, we assume that all masses and external momenta are in

general position, so that there are no zeroes in the φ-polynomial off the
origin for positive values of the A variables. In particular, we assume that
the point P is chosen appropriately away from all mass-shell and kinematical
singularities. We remind the reader of the notation (Γ, σ) (Section 2.5) where
σ stores all the necessary detail on how to evaluate the graph Γ.

A special role is played by the evaluations (Γ, σP=0). They set all internal
masses and momenta to zero. Note that this leads immediately to infrared
divergences: the Feynman integrands ι(·)(P = 0) are missing the exponen-
tial in the numerator, which provides a regulator at large values of the A
variables, and hence an infrared regulator. The ultraviolet singularities at
small values of the A variables are taken into account by the renormalization
procedure itself, and hence by our limiting mixed Hodge structure. We will
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eliminate the case P = 0 below using that ι− evaluates to zero if there is no
dependence on masses or external momenta.

7.3. General remarks on renormalization and QFT

We now consider the renormalization Hopf algebra HR of 1PI Feynman
graphs in Section 2.4. We use the notation

(7.10) Δ(Γ) =
∑

γ

γ ⊗ Γ//γ,

for its coproduct. Also, Δ(I) = I⊗ I. Projection P into the augmentation
ideal on the rhs is written as

(7.11) (id⊗ P )Δ(Γ) =
∑

∅�=Γ//γ

γ ⊗ Γ//γ,

so that for example the antipode S is

(7.12) S(Γ) = −
∑

∅�=Γ//γ

S(γ)Γ//γ =: −Γ̄.

Furthermore, we introduce a forest notation for the antipode:

(7.13) S(Γ) =
∑

[for]

(−1)|[for]|Γ//[for]
|[for]|∏

j=1

γ[for],j ,

where the sum is over all forests [for] and the product is over all subgraphs
which make up the forest. Here, a forest [for] is a possibly empty collection of
proper superficially divergent 1PI subgraphs γ[for],j of Γ which are mutually
disjoint or nested. We call a forest [for] maximal if Γ//[for] is a primitive
element of the Hopf algebra. As edge sets

(7.14) Γ = (Γ//[for]) ∪ (∪jγj) .

This is in one-to-one correspondence with the representation of the antipode
as a sum over all cuts on rooted trees ρT (Γ) as detailed in Section 2.3 above.
The integer |[for]| is the number of edges removed in this representation.

Let us first assume that the graph Γ and all its core subgraphs have
a non-positive superficial degree of divergence, so they are convergent or
provide log pole: sdd ≤ 0 for all elements in (the complement of) the forests.
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As the integrand ι(Γ)(P ) depends on P = {m}, {qi · qj} only through
the argument of the exponential, we redefine the second Kirchhoff–Symanzik
polynomial as follows:

(7.15) φ(Γ)({qi · qj}) → ϕ(Γ)(P ) := φ(Γ)({qi · qj}) + ψ(Γ)
∑

e

Aem
2
e.

Then, the unrenormalized integrand is

(7.16) ι(Γ)(P ) =
exp−ϕ(Γ)(P )/ψ(Γ)

ψ2(Γ)
.

With this notation, the renormalized integrand is (in all sums and products
over j here and in the following, j runs from 1 to |[for]|)

ιR(Γ)(P, R) =
∑

[for]

(−1)[for]
exp−

(
ϕ(Γ//[for])(P )

ψ(Γ//[for]) +
∑

j
ϕ(γj)(R)

ψ(γj)

)

ψ2(γ//[for])
∏

j ψ2(γj)

−
∑

[for]

(−1)[for]
exp−

(
ϕ(Γ//[for])(R)

ψ(Γ//[for]) +
∑

j
ϕ(γj)(R)

ψ(γj)

)

ψ2(γ//[for])
∏

j ψ2(γj)
(7.17)

=: ῑ(Γ)(P, R) + Sι(Γ)(R),

where +Sι(Γ)(R) = −ῑ(Γ)(R, R) is the integrand for the counterterm, and
ῑ(Γ)(P, R), the integrand in the first line, delivers upon integrating Bogoli-
ubov’s R̄ operation. Note that this formula (7.17) is just the evaluation

(7.18) m(Sι
R ⊗ ι)Δ(Γ),

which guarantees that the corresponding Feynman integral exists in the limit
ε → 0 [13,15].

This Feynman integral is obtained by integrating from ε to ∞ each edge
variable. For the renormalized Feynman integral ΦR(Γ)(P ), we can take the
limit ε → 0, while for the R̄-operation

(7.19) Φ̄(Γ)(P, R; ε) =
∫

ε
ῑ(Γ)(P, R),

and the counterterm

(7.20) SΦ
R;ε(Γ) = −Φ̄(Γ)(R, R; ε),
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the lower boundary remains as a dimension-full parameter in the integral.
Note that the result (7.17) above can also be written in the P −R form, typ-
ical for renormalization schemes which subtract by constraints on physical
parameters:

(7.21) ιR(Γ)(P, R) =
∑

∅�=Γ//γ

[ι(Γ//γ)(P )− ι(Γ//γ)(R)]Sι
R;ε(γ),

and as

ῑ(Γ)(P, R) =
∑

∅�=Γ//γ

Sι
R;ε(γ)ι(Γ//γ)(P ) ⇒ ιR(Γ)(P, R)

=
∑

γ

Sι
R;ε(γ)ι(Γ//γ)(P ),(7.22)

using the notation (7.11,7.10). Similarly, for Feynman integrals,

Φ̄(Γ)(P, R; ε) =
∑

∅�=Γ//γ

SΦ
R;ε(γ)Φ(Γ//γ)(P ),

ΦR(Γ)(P ) = lim
ε→0

∑

γ

SΦ
R;ε(γ)Φ(Γ//γ)(P ).(7.23)

When it comes to actually calculating the integral (7.6) (or, in its renormal-
ized form (7.17)), something rather remarkable happens. By Lemma 7.1(i),
the term in the exponential in these integrals is homogeneous of degree 1 in
the edge variables Ai. The assumption sdd(Γ) = 0 means dA/ψ2 is homo-
geneous of degree 0. Making the change of variable Ai = tai, we find

dA/ψ(A)2 = dt/t ∧
(∑

(−1)j−1ajda1 ∧ · · · ∧ d̂aj ∧ · · ·
)

/ψ(a)2

= dt/t ∧ Ω/ψ2.(7.24)

Note that Ω/ψ2 is naturally a meromorphic form on the projective space
P(Γ) with homogeneous coordinates the ai. Writing σ={ai ≥ 0} ⊂ P(Γ)(R),
we see that the renormalized integral can be rewritten up to a term which
is O(ε) as a sum of terms of the form

∫

σ
Ω/ψ2

j

∫ ∞

ε

(
e(−tfj(a)) − e(−tgj(a))

)
dt/t

=
∫

σ
Ω/ψ2

j

(
E1(εfj(a))− E1(εgj(a))

)
,(7.25)
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where

(7.26) E1(z) :=
∫ ∞

1
e−tz dt

t
= −γE − ln z + O(z); z → 0

is the exponential integral. (Here fj(a), gj(a) are defined by taking the locus
ai ≥ 0,

∑
ai = 1.) As long as fj(a), gj(a) > 0, we may allow ε → 0 for fixed

a. The Euler constant and log ε terms cancel. When the dust settles, we
are left with the projective representation for the renormalized Feynman
integral

ΦR(Γ)(P ) =
∫

σ
ΩΓ
∑

[for]

(−1)[for]

×
ln

(
ϕ(Γ//[for])(P )

∏
j ψ(γj) +

∑
j ϕ(γj)(R)ψ(Γ//[for])

∏
h �=j ψ(γh)

ϕ(Γ//[for])(R)
∏

j ψ(γj) +
∑

j ϕ(γj)(R)ψ(Γ//[for])
∏

h �=j ψ(γh)

)

ψ2(Γ//[for])
∏

j ψ2(γj)
.

(7.27)

Note that the use of σ is justified as long as the integrand has all subdi-
vergences subtracted, so is in the ῑ form, so that lower boundaries in the ai

variables can be set to zero indeed.
By (7.21), this can be equivalently written as

(7.28) ΦR(Γ)(P ) = lim
ε→0

∑

γ

SΦ
R;ε(γ)

∫

>ε
dAΓ//γι−(Γ//γ)(P, R),

in any renormalization scheme which is described by kinematical subtrac-
tions P → R.

Remark 7.2. It will be our goal to replace the affine
∫

dA by the projec-
tive

∫
d Ω in the above. The presence of lower boundaries, which can not

be ignored as the integrand has divergent subgraphs, allows this only upon
introducing suitable chains τ ε

γ as discussed in previous sections.

Next, we relax the case of log divergence.

7.4. Reduction of graphs with ssd(Γ) > 0

We start with an example. To keep things simple but not too simple, we
consider the one-loop self-energy graph in φ3

6 theory, a scalar field theory
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with a cubic interaction in six dimensions of space-time. We have

Φ(Γ)(P ) =
∫

>ε
dAΓι(Γ)(P ) =

∫

>ε
dAΓ

e−ϕ(Γ)/ψ(Γ)

ψ(Γ)3

≡
∫ ∞

ε
dA1 dA2

e−(m2(A1+A2)2+q2A1A2)/(A1+A2)

(A1 + A2)3
.(7.29)

We will renormalize by suitable subtractions at chosen values of masses and
momenta in the ϕ-polynomial. We hence (with subdivergences taken care
of by suitable bar operations ι → ῑ in the general case) replace ι(Γ)(P ) by
ι(Γ)(P )− ι(Γ)(0), as this leaves ι−(Γ)(P, R) invariant.

Then the above can be written, with this subtraction, and by the familiar
change of variables Ai = tai, and by one partial integration in t,

Φ(Γ)(P ) =
∫

σ
d Ω

∫ ∞

ε

dt

t

[m2(a1 + a2)2 + q2a1a2]e−t(m2(a1+a2)2+q2a1a2)/(a1+a2)

(a1 + a2)4

−
∫

σ
d Ω

[m2(a1 + a2)2 + q2a1a2]
(a1 + a2)4

,

(7.30)

where we expanded the boundary term up to terms constant in ε, which
gave the term in the second line. We discarded already the pure pole term
∼ 1/ε from Φ(Γ)(P = 0) =

∫
>ε

dA
(A1+A2)3

=
∫∞
ε dt/t2

∫∞
0 db21/(1 + b2)3.

Note that graphs Γ with sdd > 0 have res(Γ) = 2. They hence depend
on a single kinematical invariant q2 say, φ(Γ) = φ(Γ)(q2), for which we write
φ(Γ)q2 .

The result in (7.30) leads us to define two top-degree forms. (Here
Ω = a1da2 − a2da1 and we still write φ, ψ for the Kirchhoff–Symanzik poly-
nomials regarded as dependent on either ai or Ai variables below).

(7.31) ω� = ω�(Γ) = Ω
φ1(Γ)
ψ(Γ)4

= Ω
a1a2

(a1 + a2)4
,

and

(7.32) ωm2 = ωm2(Γ) = Ω
(a1 + a2)2

ψ(Γ)4
= Ω

1
(a1 + a2)2

,
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so that

Φ(Γ)(P ) = −m2
∫

σ
[ω� + ωm2 ]− (q2 −m2)

∫

σ
ω�(7.33)

+ m2
∫

σ
[ω� + ωm2 ]

∫ ∞

ε

dt

t
e−tϕ(Γ)(P )/ψ(Γ)

+ (q2 −m2)
∫

σ
ω�

∫ ∞

ε

dt

t
e−tϕ(Γ)(P )/ψ(Γ).

There are corresponding affine integrands

ι�(Γ) =
φ1(Γ)
ψ(Γ)4

e−ϕ(Γ)(P )/ψ(Γ),(7.34)

ιm2(Γ) =
(a1 + a2)2

ψ(Γ)4
e−ϕ(Γ)(P )/ψ(Γ).(7.35)

The graph Γ is renormalized by a choice of a renormalization condition
R� for the coefficient of q2 −m2 (wave-function renormalization), and by
the choice of a condition Rm2 for the mass renormalization. R is often still
used to denote the pair of those.

(7.36) Φ(Γ)(P ) + m2δm2 + q2z� = ΦR�,Rm2 (Γ)(P ).

The mass counterterm is then

(7.37) m2δm2 = −m2
∫

σ
[ω� + ωm2 ]

(

1−
∫ ∞

ε

dt

t
e−tϕ(Γ)(Rm2 )/ψ(Γ)

)

,

and the wave-function renormalization q2z� is

(7.38) q2z� = −q2
∫

σ
ω�

(

1−
∫ ∞

ε

dt

t
e
−t

ϕ(Γ)(R�)

ψ(Γ)

)

.

Note the term 1 in the () brackets does not involve exponentials.
The corresponding renormalized contribution is

(7.39)

ΦR(Γ)(P ) = (q2 −m2)
∫

σ
ω� ln

ϕ(P )
ϕ(R�)

+ m2
∫

σ
[ω� + ωm2 ] ln

ϕ(Γ)(P )
ϕ(Γ)(Rm2)

.

The transition from the unrenormalized contribution to the renormalized
one is particularly simple upon defining Feynman rules in accordance with
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external leg structures:

Φ((Γ, σ�)) = (q2 −m2)
∫

>ε
dA

φ1(Γ)e−ϕ(Γ)(P )/ψ(Γ)

ψ(Γ)D/2+1 ,(7.40)

Φ((Γ, σm2)) = m2
∫

>ε
dA

[φ1(Γ) + ψ(Γ)
∑

e Ae]e−ϕ(Γ)(P )/ψ(Γ)

ψ(Γ)D/2+1 ,(7.41)

so that renormalization proceeds as before on log-divergent integrands.
This example extends straightforwardly to the case of Γ having divergent

subgraphs. Let us return to φ4
4 theory and define for a core graph Γ with

sdd(Γ) = 2, (so that it is a self-energy graph and hence has only two external
legs, and thus a single kinematical invariant q2), and graph polynomials
ψ(Γ), φ(Γ) = φq2(Γ), ϕ(Γ) = ϕ(Γ)(P ) = φq2(Γ) + ψ(Γ)

∑
e Aem

2
e, the forms

ω�(Γ) = ΩΓ
φ1(Γ)
ψ3(Γ)

,(7.42)

ωm2(Γ) = ΩΓ
φ1(Γ) + ψ(Γ)

∑
e Ae

ψ3(Γ)
.(7.43)

The corresponding complete affine integrands ι�, ιm2 are immediate replac-
ing ai by Ai variables, and multiplying by exponentials exp−ϕ(Γ)(P )/ψ(Γ),
with P → R for counterterms.

One finds by a straightforward computation

ΦR�((Γ, σ�))(P ) =
∑

γ

SΦ
R;ε(γ)

∫

ε
ω�(Γ//γ) ln

ϕ(Γ//γ)(P )
ϕ(Γ//γ)(R�)

(7.44)

=
∫

ΩΓ
∑

[for]

(−1)[for]ω�(Γ//[for]) ln
ϕ(Γ//[for])(P )
ϕ(Γ//[for])(R�)

,(7.45)

and

ΦRm2 ((Γ, σm2))(P ) =
∑

γ

SΦ
R;ε(γ)

∫

ε
ωm2(Γ//γ) ln

ϕ(Γ//γ)(P )
ϕ(Γ//γ)(Rm2)

(7.46)

=
∫

ΩΓ
∑

[for]

(−1)[for]ωm2(Γ//[for]) ln
ϕ(Γ//[for])(P )

ϕ(Γ//[for])(Rm2)
.(7.47)

We set
(7.48)

ΦR(Γ)(P ) ≡ ΦR((Γ, I))(P ) = φR�((Γ, σ�))(P ) + ΦRm2 ((Γ, σm2))(P ),
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in the external leg structure notation of Section 2.5. We can combine the
results for graphs Γ for all degrees of divergence sdd(Γ) ≥ 0 by defining
ω(Γ) = Ω/ψ2(Γ) for a log-divergent graph with the results above. And that’s
that. Well, we have to hasten and say a word about the Feynman rules when
the subgraphs γ have sdd(γ) > 0, and hence also about SΦ

R;ε(γ) in that case.
We use, with P the projection into the augmentation ideal, the notation

(7.49) Γ̄ = Γ + m(S ◦ P ⊗ P )Δ =: Γ + (Γ′)−1Γ′′.

Let us consider the quotient Hopf algebra given by quadratically divergent
graphs: Δ2(Γ) =

∑
γ,sdd(γ)=2 γ ⊗ Γ//γ. We write

(7.50) Δ2(Γ) =: Γ⊗ I + I⊗ Γ + Γ′
2 ⊗ Γ′′.

We add 0 = +Γ′
2
−1Γ′′ − Γ′

2
−1Γ′′, so

Γ̄ = Γ + Γ′
2
−1Γ′′ − Γ′

2
−1Γ′′ + Γ′−1Γ′′(7.51)

=
(
Γ + Γ′

2
−1Γ′′

)
+
(
Γ′−1 − Γ′

2
−1
)

Γ′′.(7.52)

Here the sum is over all terms of the coproduct with the Γ′
2 terms being

present whenever Γ′ is quadratically divergent.
Evaluating the terms Γ′

2 by 1/ψ2(γ′
2) = ι(γ′

2)(P = 0) decomposes the bar
operation on the level of integrands as follows.

(7.53)

ῑ(Γ)(P ) =

I
︷ ︸︸ ︷(
ι(Γ)(P ) + ι(Γ′

2
−1)(P = 0)ι(Γ′′)(P )

)
+ ι(Γ′−1)(R)ι(Γ′′)(P ),

where ι(Γ′−1)(R) ≡ Sι
R;ε(Γ

′) appears because a subtraction of a P = 0 term,
from a quadratically divergent term, precisely delivers those counterterms
by our previous analysis. Note that they contain terms which do not have
an exponential, as in the example (7.38,7.37). Often, as a two-point ver-
tex of mass type improves the powercounting of the co-graph, we might
keep self-energy subgraphs massless, in which case only terms involving R�
contribute.
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We are left to decompose the terms denoted I. We find by direct com-
putation

I =

II
︷ ︸︸ ︷[
ω(Γ) + ω(Γ′

2
−1)ω(Γ′′)

]
e−ϕ(Γ)(P )/ψ(Γ)(7.54)

− ω(Γ′
2
−1)ω(Γ′′)

[
e−ϕ(Γ)(P )/ψ(Γ) − e−ϕ(Γ//Γ′

2)(P )/ψ(Γ//Γ′
2)
]

︸ ︷︷ ︸
III

.(7.55)

The terms denoted II gives us the final integrand ι(Γ)(P ) with a correspond-
ing form ωII(Γ). ωII(Γ) = ω(Γ) if there are no subgraphs with sdd = 2. Note
that II has the full Γ as an argument in the common exponential,

(7.56) II = ωII(Γ) exp(−ϕ(Γ)/ψ(Γ)),

which defines ωII. The rational coefficient ωII has log poles only for all
subgraphs including the ones with sdd = 2.

The terms III is considered in t, ai variables. We can integrate t as before.
As the rational part of the integrand factorizes in Γ′

2 and Γ′′ variables, we
similarly decompose the former into s, bi, i ∈ Γ′

2
[1], variables. We note s

only appears in the log (after the t integration) as a coefficient of φΓ,Γ′
2
,

using Lemma 7.1. Partial integration in s eliminates the log and delivers
a top-degree form for the bi integration. These terms precisely compensate
against the constant terms mentioned above, as φΓ,Γ′

2
= φ1(Γ′

2)φ1(Γ− Γ′
2),

using that res(Γ′
2) = 2.

We hence summarize

Theorem 7.3.

(7.57) ΦR(Γ)(P ) = lim
ε→0

∑

γ

SΦ
R;ε(γ)

∫

ε
ωII(Γ//γ) ln

ϕ(Γ//γ)(P )
ϕ(Γ//γ)(R)

.

It is understood that each counterterm is computed with a subtraction R as
befits its argument γ, and forms Γ are chosen in accordance with the previous
derivations. Here, ωII is constructed to have log poles only. As a projective
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integral, this reads

ΦR(Γ)(P )

=
∫

ΩΓ
∑

[for]

(−1)[for]

× ln

(
ϕ(Γ//[for])(P)

∏
j ψ(γj) +

∑
j ϕ(γj)(R)ψ(Γ//[for])

∏
h �=j ψ(γh)

ϕ(Γ//[for])(R)
∏

j ψ(γj) +
∑

j ϕ(γj)(R)ψ(Γ//[for])
∏

h �=j ψ(γh)

)

× ω(Γ//[for])
∏

j

ω(γj).
(7.58)

Remark 7.4. Similar formulas can be obtained for the bar operations and
counterterms, with the same rational functions in the integrands, and expo-
nentials exp(−ϕ(Γ//γ)(X)/ψ(Γ//γ)), with X = P or X = R as needed.

Remark 7.5. We have worked with choices of renormalizations for mass
and wave functions, R → R�, Rm2 . One can actually also define P → P�,
Pm2 , and for example set masses to zero in all exponentials (ϕ(·)(P ) →
φq2(·)), that is essentially the Weinberg scheme if one then subtracts at
q2 = μ2.

Remark 7.6. This all is nicely reflected in properties of analytic regulators.
For example, in dimensional regularization, the identity

∫
dDk[k2]ρ = 0, ∀ρ,

leads to Φ(Γ)(P = 0) = 0 immediately, where Φ now indicates unrenormali-
zed Feynman rules using that regulator.

Remark 7.7. We are working so far with constant lower boundaries. The
chains introduced in previous sections have moving lower boundaries which
respect the hierarchy in each flag. We will study that difference in Section 9.1.

7.5. Specifics of the MOM scheme

We define the MOM scheme by setting all masses to zero in radiative cor-
rections and keeping a single kinematical invariant q2 in the φ-polynomial,
P = {0}, {qi · qj ∼ q2},

(7.59) φ(Γ) = q2Rq2(Γ).

Such a situation arises if we set masses to zero (possibly after factorization
of a polynomial part from the amplitude as in the Weinberg scheme), and
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for vertices if we consider the case of zero momentum transfers, or evaluate
at a symmetric point q2

i = q2, where i denotes the external half-edges of
Γ. If we want to emphasize the q2 dependence, we write φq2 . Trivially,
φq2 = q2φ1. In the MOM scheme, subtractions are done at q2 = μ2, which
defines R for all graphs. Counterterms in the MOM scheme become very
simple when expressed in parametric integrals thanks to the homogeneity of
the φ-polynomial. Note that we hence have ϕ(Γ) = φ(Γ) as we have set all
masses to zero.

In an MOM scheme, renormalized diagrams are polynomials in ln q2/μ2:

Theorem 7.8. For all Γ,

(7.60) ΦMOM(Γ)(q2/μ2) =
aug(Γ)∑

j=1

cj(Γ) lnj q2/μ2.

Here, aug(Γ) = max[for] |[for]|.

Proof. Consider a sequence γ1 � γ2 · · · γaug(Γ) � Γ. This is in one-to-one
correspondence with some decorated rooted tree appearing in ρR(Γ) (2.35).
Choose one edge ej ∈ γj/γj−1 in each decoration and de-homogenize with
respect to that edge. We get a sequence of lower boundaries ε, ε/A2,
ε/A2/A3, . . . . Use the affine representation and integrate to obtain the
result. �

7.5.1. MOM scheme results from residues In such a scheme, it is
particularly useful to take a derivative with respect to ln q2. We consider

(7.61) p1(Γ) := q2∂q2ΦMOM(Γ)(q2/μ2)|q2=μ2 ,

where we evaluate at q2 = μ2 after taking the derivative. This number,
which for a primitive element of the renormalization Hopf algebra is the
residue of that graph in the sense of [2], is our main concern for a general
graph. It will be obtained in the limit of the limiting mixed Hodge structure
we construct.

Remark 7.9. It is not that this limit would not exist for general schemes.
But the limit would be a complicated function of ratios of masses and kine-
matical invariants, which has a constant term given by the number p1(Γ)
and beyond that a dependence on these ratios which demands a much finer
Hodge theoretic study than we can offer here.
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But first we need to remind ourselves how coefficients of higher powers
of logarithms of complicated graphs related to coefficients of lower powers
of sub- and co-graphs thanks to the renormalization group.

7.5.2. The counterterm SΦ
MOM For SΦ

MOM(Γ) =:
∑aug(Γ)

j=1 sj(Γ) lnj μ2,
we simply use the renormalization group or the scattering-type formula. In
particular, we have

(7.62) SΦ
MOM(Γ) =

aug(Γ)∑

j=1

1
j!

(−1)j [p1 ⊗ · · · ⊗ p1]︸ ︷︷ ︸
jfactors

Δj−1(Γ).

This is easily derived [6, 17] upon noting that p1(Γ) = Φ(S � Y (Γ)).
Note that this determines counterterms by iteration: for a k-loop graph,

knowledge of all the lower order counterterms suffices to determine all con-
tributions to the k-loop counterterm but the lowest order coefficient of lnμ2.
But then, that coefficient is given by the formula

(7.63) s1(Γ) = p1(Γ) lnμ2,

which itself only involves counterterms of less than k loops, by the structure
of the bar operation.

7.5.3. p1(Γ) from co-graphs We can now summarize the consequences
of the renormalization group and our projective representations for paramet-
ric representations of Feynman integrals. The interesting question is about
the logs which we had in numerators. Theorem 7.3 becomes

Theorem 7.10.

(7.64) p1(Γ) = lim
ε→0

∑

γ

SΦ
MOM;ε(γ)q2∂q2

∫

ε
ωII(Γ//γ) lnφq2/μ2(Γ//γ).

This limit is

p1(Γ) =
∫

ΩΓ
∑

[for]

(−1)[for]q2∂q2

× ln

⎛

⎝φq2/μ2(Γ//[for])
∏

j

ψ(γj) +
∑

j

φ1(γj)ψ(Γ//[for])
∏

h �=j

ψ(γh)

⎞

⎠

× ω(Γ//[for])
∏

j

ω(γj).
(7.65)
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The derivative with respect to ln q2 can be taken inside the integral in (7.64)
if and only if all edges carrying external momentum are in the comple-
ment C(Γ) of all edges belonging to divergent subgraphs. In that case,
q2∂q2 lnφq2(Γ//γ) = 1 and no logs in the numerator appear.

Remark 7.11. Note that overlapping divergent graphs can force all edges
to belong to divergent subgraphs, cf. figure 5.

Proof. If all edges carrying external momentum are in the complement to
divergent subgraphs, we bring the counterterms under the integrand using
the bar operation. We can take the limit ε → 0 in the integrand for all
edge variables belonging to subgraphs, and this limit commutes with the
derivative with respect to ln q2 by assumption: each φ2

q(Γ//γ) is a linear
combination of terms Aeψe(Γ//γ), where e is in that complement C(Γ) of
subgraph edges, and ψe(Γ//γ) = ψ(Γ//γ/e). Applying then the Chen–Wu
theorem [21] with respect to the elements of C(Γ) disentangles the q2 depen-
dence from the limit in ε. �

Remark 7.12. Note that the discussion below with respect to the limiting
Hodge structure assumes that we have this situation of disentanglement of
divergent subgraphs and edges carrying external momentum. We hence have
no logarithms in the numerator. But note that the general case does no harm
to the ensuing discussion: by Lemma 7.1, any logarithms in the numerator
are congruent to one along any exceptional divisor of XΓ//[for]. Furthermore,
when external momentum interferes with subgraphs, all logs can be turned
to rational functions by a partial integration. The fact that the second
Kirchhoff–Symanzik polynomial is a linear combination of ψ-polynomials,
applied to graphs with an extra shrunken edge, in the MOM case estab-
lishes these rational functions to have poles coming from our analysis of this
ψ(Γ) polynomial. A full mathematical discussion of this “

∫
ω ln f” situation

should be subject to future work.

7.5.4. Examples From now on, we measure q2 in units of μ2 so that
subtractions are done at 1. This simplifies notation. Let us first consider
Dunce’s cap in detail, figure 14. We have the following data (pathq(Γ) refers
to the momentum path through the graph):

ψ(Γ) = (A1 + A2)(A3 + A4) + A3A4,(7.66)
ψ(γ) = A3 + A4, ψ(Γ//γ) = A1 + A2,(7.67)
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Figure 14: Dunce’s cap, again. We label the edges 1,2,3,4. Resolved in trees,
we find three trees in the core Hopf algebra. We label the vertices by edge
labels of the graph. The sets 123 and 124 correspond to a triangle graph as
indicated, the sets 12 and 34 are one-loop vertex graphs, and tadpoles appear
in the coproduct on the rhs for edges 3 or 4. The coproduct in the core Hopf
algebra is, expressed in edge labels, Δ′(1234) = 123⊗ 4 + 124⊗ 3 + 34⊗ 12.
Only the last term appears in the renormalization Hopf algebra.

pathq(Γ) = e1,(7.68)

φ1(Γ) = A1(A2A3 + A3A4 + A4A2) = A1ψ(Γ//e1) = A1ψ
1(Γ),(7.69)

φ1(γ) = A3A4, φ1(Γ//γ) = A1A2,(7.70)

{[for]} = {∅, (34)}.(7.71)

Φ(Γ)ε(q2) =
∫ ∞

ε

4∏

i=1

dAi

exp−q2 φ1(Γ)
ψ(Γ)

ψ2(Γ)
.(7.72)

Hence we choose a function τ(ε) which goes to zero rapidly enough so that
limε→0 τ(ε)/ε = 0 and compute

Φ̄ε(Γ)(q2, μ2) =
∫ ∞

ε
dA1 dA2

∫ ∞

τ(ε)
dA3 dA4

⎧
⎨

⎩

exp−q2 φ1(Γ)
ψ(Γ)

ψ2(Γ)

−
exp
[
−q2 φ1(Γ//γ)

ψ(Γ//γ)

]

ψ2(Γ//γ)

exp
[
−φ1(γ)

ψ(γ)

]

ψ2(γ)

⎫
⎬

⎭
(7.73)
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=
∫ ∞

q2ε
dA1 dA2

∫ ∞

τ(ε)q2

dA3 dA4

⎧
⎨

⎩

exp−φ1(Γ)
ψ(Γ)

ψ2(Γ)

⎫
⎬

⎭

−

⎧
⎨

⎩

∫ ∞

q2ε
dA1 dA2

∫ ∞

τ(ε)
dA3 dA4

exp
[
−φ1(Γ//γ)

ψ(Γ//γ)

]

ψ2(Γ//γ)

exp
[
−φ1(γ)

ψ(γ)

]

ψ2(γ)

⎫
⎬

⎭
.(7.74)

Let us now re-scale to variables Ai → A1Bi for all variables i ∈ 2, 3, 4. We
get

Φ̄ε(Γ)(q2, μ2)

=
∫ ∞

q2ε

dA1

A1

∫ ∞

q2ε
dB2

∫ ∞

q2τ(ε)/A1

dB3 dB4

⎧
⎨

⎩

exp−A1
(B2B3+B3B4+B4B2)

(1+B2)(B3+B4)+B3B4

[(1 + B2)(B3 + B4) + B3B4]2

⎫
⎬

⎭

−
{∫ ∞

q2ε

dA1

A1

∫ ∞

q2ε
dB2

∫ ∞

τ(ε)/A1

dB3 dB4
exp−A1

B2
1+B2

(1 + B2)2
exp−A1

B3B4
B3+B4

(B3 + B4)2

}

.

(7.75)

We re-scale once more B4 = B3C4. Also, we set the lower boundaries in
the B2 and C4 integrations to zero. This is justified as A1 and B3 remain
positive.

Φ̄ε(Γ)(q2, μ2) =
∫ ∞

q2ε

dA1

A1

∫ ∞

0
dB2

∫ ∞

q2τ(ε)/A1

dB3

B3

×
∫ ∞

0
dC4

⎧
⎨

⎩

exp−A1
(B2+B3C4+C4B2)

(1+B2)(1+C4)+B3C4

[(1 + B2)(1 + C4) + B3C4]2

⎫
⎬

⎭

−
∫ ∞

q2ε

dA1

A1

∫ ∞

0
dB2

∫ ∞

τ(ε)/A1

dB3

B3

×
∫ ∞

0
dC4

{
exp−A1

B2
1+B2

(1 + B2)2
exp−A1B3

C4
1+C4

(1 + C4)2

}

.(7.76)
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Taking a derivative wrt ln q2 and using that limε→0 τ(ε)/ε = 0 deliver three
remaining terms

∂ln q2Φ̄ε(Γ)q2=1

=
∫ ∞

0
dB2

∫ ∞

τ(ε)/ε

dB3

B3

∫ ∞

0
dC4

{
1

[(1 + B2)(1 + C4) + B3C4]2

}

−
∫ ∞

0
dB2

∫ ∞

τ(ε)/(q2ε)

dB3

B3

∫ ∞

0
dC4

{
1

(1 + B2)2
e−εq2B3C4/(1+C4)

(1 + C4)2

}

+
∫ ∞

q2ε

dA1

A1

∫ ∞

0
dB2

∫ ∞

0
dC4

{
e−A1(B2/(1+B2))

[(1 + B2)(1 + C4)]2

}

.

(7.77)

Integrating B3 in the second line and A1 in the third, we find

∂ln q2Φ̄ε(Γ)q2=1 =
∫ ∞

0
dB2

∫ ∞

τ(ε)/ε

dB3

B3

∫ ∞

0
dC4

1
[(1 + B2)(1 + C4) + B3C4]2

+ ln τ(ε)/ε

∫
Ωγ

ψ2(γ)

∫ ΩΓ//γ

ψ2(Γ//γ)
.(7.78)

Using the exponential integral, those B3 and A1 integrations also deliver
finite contributions

−
∫ ∞

0
dB2

∫ ∞

0
dC4

{
1

(1 + B2)2
ln C4

1+C4

(1 + C4)2

}

+
∫ ∞

0
dB2

∫ ∞

0
dC4

{
ln B2

1+B2

[(1 + B2)(1 + C4)]2

}

= 0.(7.79)

This cancellation of logs is no accident: while in this simple example it looks
as if it originates from the fact that the co-graph and subgraph are identical,
actually the cross-ratio

(7.80) ln
φ(Γ//γ)ψ(γ)
ψ(Γ//γ)φ(γ)

vanishes identically when integrated against the de-homogenized product
measure

(7.81)
∫

0
dAΓ//γ dAγ

1
ψ2(Γ//γ)ψ2(γ)

.
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This is precisely because C(Γ) = e1 has an empty intersection with γ[1] =
e3, e4.

But then, this cancelation of logs will break down if φ(Γ) is not as nicely
disentangled from φ(γ) for all log poles as it is here, and will be replaced
by logs congruent to 1 along subdivergences in general, in accordance with
Theorem 7.10.

Let us study this in some detail. Consider the graph on the upper left in
figure 7 and consider the finite lnφ/ψ-type contributions of the exponential
integral to in the vicinity of the exceptional divisor for the subspace A3 =
A4 = 0.

Routing an external momentum through edges 1,6, we have the following
graph polynomials:

φ1(Γ) = A1[A3A4(A5 + A6) + A5A6(A3 + A4) + A2(A3 + A4)(A5 + A6)]
(7.82)

+ A6A5[(A1 + A2)(A3 + A4) + A3A4],

φ1(Γ/34) = A1[A5A6 + A2(A5 + A6)] + A5A6[(A1 + A2)],
(7.83)

φ1(34) = A3A4,
(7.84)

ψ(Γ/34) = (A1 + A2)(A5 + A6) + A5A6,
(7.85)

ψ(34) = A3 + A4.
(7.86)

We have C(Γ) = e1, e6, and ∪γ�Γ,res(γ)≥0γ
[1] = e3, e4, e5, e6. The intersection

is e6. We hence find, with suitable de-homogenization,

(7.87)
ln

X︷ ︸︸ ︷
B5B6(1 + B2)+

Y︷ ︸︸ ︷
B5B6 + B2(B5 + B6)

(1+B2)(B5+B6)+B5B6
− ln C4

1+C4

[(1 + B2)(B5 + B6) + B5B6]2[1 + C4]2
dB2 dC4 dB5 dB6.

Here, the term X denotes a term which would be absent if the momenta
would only go through edge 1 and hence the above intersection would be
empty, while Y indicates the terms from the momentum flow through edge 1.

This is of the form ln(fΓ//γ/fγ)[ωΓ//γ ∧ ωγ ]. If the term X would be
absent, a partial integration

(7.88)
∫ ∞

ε

ln xu+v
xu+w

(xu + w)2
∼
∫ ∞

ε

1
(xu + w)2
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would show the vanishing of this expression as above. The presence of X
leaves us with a contribution which can be written, replacing lnC4/(1 + C4)
by lnY/ψ(Γ/34),

(7.89)

ln

X︷ ︸︸ ︷
B5B6(1 + B2)+

Y︷ ︸︸ ︷
B5B6 + B2(B5 + B6)

B5B6 + B2(B5 + B6)︸ ︷︷ ︸
Y

[(1 + B2)(B5 + B6) + B5B6]2[1 + C4]2
.

As promised, it is congruent to one along the remaining log pole at A5 =
A6 = 0. It has to be: the forest where the subgraph 56 shrinks to a point
looses the momentum flow through edge 6 and could not contribute any
counterterm for a pole remaining in the terms discussed above.

Note that in general higher powers of logarithms can appear in the
numerator as subgraphs can have substructure. Lacking a handle to notate
all the log poles which do not cancel due to partial integration identities
known beyond mankind, we consider it understood that all terms from
the asymptotic expansion of the exponential integral up to constant terms
(higher order terms in ε are not needed as all poles are logarithmic only)
are kept without being shown explicitly in further notation. We emphasize
though that all those logarithm terms in the numerator are congruent to
one along log poles — and deserve study in their own right elsewhere —
and hence thanks to Lemma 7.1 which guarantees indeed all necessary can-
celations, we have in all cases:

(7.90) p1(Γ) = lim
ε→0

∂ln q2Φ̄ε(Γ)q2=1.

Remark 7.13. There is freedom in the choice of τ , a natural choice comes
from the rooted tree representation ρ(Γ) of the forest. Each forest is part of
a legal tree t and any subgraph γ corresponds to a vertex v in that tree. If
dv is the distance of v to the root of t, τ(ε) = εdv+1 is a natural choice.

8. N

8.1. For physicists: the antipode as monodromy

Let us now come back to the core Hopf algebra and prepare for an analysis in
terms of limiting mixed Hodge structures. This will be achieved in two steps:
an analysis of the structure of the antipode of the renormalization Hopf
algebra, which will then allow to define a matrix N for the monodromy in
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question such that S(Γ) can be expressed in a particularly nice way. In fact,
because of orientations, the N which arises in the monodromy calculation
is the negative of the N computed in this section. We omit the minus sign
to simplify the notation.

Let us consider the antipode first. Thanks to the above lemma we can
write for the antipode S(Γ)

(8.1) S(Γ) = −
|Γ|∑

j=0

(−1)j
∑

|C|=j

∑

t

PC(t)RC(t).

Here, we abuse notation in an obvious manner identifying Γ and ρT (Γ), the
latter being the indicated sum over trees, in accordance with Equation 2.34.

We also define R(Γ) = −S(Γ). Let us now label the edges of each t(Γ)
once and for all by 1, 2, . . . , |Γ| − 1. Then, we have |Γ| − 1 cuts C with
|C| = 1, and

(8.2)
(
|Γ| − 1

j

)

cuts of cardinality |C| = j. We hence can define a vector v(Γ) with 2|Γ|−1

entries in H, ordered according to a never decreasing cardinality of cuts:

(8.3)

v(Γ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Γ,
∑

t

PC(t)RC(t)

︸ ︷︷ ︸
( |Γ|−1

1 ) entries of cardinality 1

, . . . ,
∑

t

PC(t)RC(t)

︸ ︷︷ ︸
(

|Γ|−1
j

)
entries of cardinality j

, . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

T

.

Example: Dunce’s cap with edges 1, 2, 3, 4 and divergent subgraph 3, 4,
compare figure 14. The core coproduct is

(8.4) Δ′
c = 123⊗ 4 + 124⊗ 3 + 34⊗ 12.

The vector v is then

(8.5) v =
(

1234
(123)(4) + (124)(3) + (12)(34)

)

.
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Let N (2) be the two-by-two matrix

(8.6) N (2) =
(

0 1
0 0

)

.

Note that
[(

1 0
0 1

)

−N (2)
](

1234
(123)(4) + (124)(3) + (12)(34)

)

=
(

R(1234)
(123)(4) + (124)(3) + (12)(34)

)

,(8.7)

with

(8.8) R(1234) = 1234− (123)(4)− (124)(3)− (34)(12).

In fact, it is our first task to find a nilpotent matrix N , N |Γ| = 0, such that

|Γ|−1∑

j=0

(−1)jN j/j!

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

R(Γ),
∑

t

R(PC(t))R(RC(t))

︸ ︷︷ ︸
( |Γ|−1

1 ) entries of cardinality 1

, . . . ,
∑

t

R(PC(t))R(RC(t))

︸ ︷︷ ︸
(

|Γ|−1
j

)
entries of cardinality j

, . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

T

.

(8.9)

For PC(t) =
∏

i ti, we here have abbreviated R(PC(t)) for
∏

i R(ti).

8.2. The matrix N

Let M(0, 1) be the space of matrices with entries in the two-point set {0, 1}.
Let now m + 1 be the number of loops m = |Γ| − 1 in the graph and let

us construct a nilpotent 2m × 2m square matrix N ≡ N (m), Nm+1 = 0, in
M(0, 1) as follows.

Consider first the m + 1-th row of the Pascal triangle, for example for
m = 3 it reads 1, 3, 3, 1. For this example, we will then construct blocks of
sizes 1× 1, 1× 3, 3× 3, 3× 1, and 1× 1, all with entries either 0 or 1.
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So this gives us in general m + 2 blocks M
(m)
j , 0 ≤ j ≤ m + 1, of matri-

ces of size M
(m)
0 : 1× 1, M

(m)
1 : 1×m, M

(m)
2 : m×m(m− 1)/2!, . . . , M (m)

m :
m× 1, M

(m)
m+1 : 1× 1.

In the block M
(m)
j , 0 ≤ j < (m + 2)/2, fill the columns, from left to

right, by never increasing sequences of binary numbers (read from top to
bottom) where each such number contains j entries 1 for the block M

(m)
j .

Put M
(m)
0 = (0) in the left upper corner and M

(m)
1 to the left of it. For

j ≥ 2, put the block M
(m)
j below and to the right of the block M

(m)
j−1 , in

N . All entries in N outside these blocks are zero. Determine the entries of
the blocks M

(m)
j , m + 1 ≥ j ≥ (m + 2)/2, by the requirement that N⊥ = N ,

where N⊥ is obtained from N by reflection along the diagonal which goes
from the lower left to the upper right. We write M

(m)
i

⊥
= M

(m)
m+1−i. For

odd integer m, we have M
(m)⊥

(m+1)/2 = M
(m)
(m+1)/2+1, by construction. Here are

M
(3)
j and N, N2, N3 for m = 3:

M
(3)
0 = (0), M

(3)
1 = (1, 1, 1), M

(3)
2 =

⎛

⎝
1 1 0
1 0 1
0 1 1

⎞

⎠ ,

M
(3)
3 =

⎛

⎝
1
1
1

⎞

⎠ , M
(3)
4 = (0).(8.10)

N (3) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 |1 1 1| 0 0 0 0
0 0 0 0 |1 1 0| 0
0 0 0 0 |1 0 1| 0
0 0 0 0 |0 1 1| 0
0 0 0 0 0 0 0 |1
0 0 0 0 0 0 0 |1
0 0 0 0 0 0 0 |1
0 0 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,(8.11)

N (3)2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 2 2 2 0
0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,(8.12)
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N (3)3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 0 6
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.(8.13)

We can now write, for 1 ≤ j ≤ m,

(8.14) N j = j!n(m)
j ,

where the matrix n
(m)
j ∈M(0, 1), by construction. Hence

(8.15) exp
{
−LN (m)

}
=

m∑

j=0

(−L)j

j!
N (m)j =

m∑

j=0

(−L)jn
(m)
j .

This is obvious from the set-up above. Furthermore, directly from construc-
tion, n

(m)
j , j ≥ 1, has a block structure into blocks of size

(8.16) (1×m), . . . , · · ·︸︷︷︸
j−1 middle blocks missing

, . . . , (m× 1),

located in the uppermost right corner of size 2m−j+1 × 2m−j+1 as in the
above example.

8.3. Math: the matrix N

In this section, we compute the matrix N which gives the log of the mono-
dromy. Because of orientations, the answer we get is the negative of the
physical N computed in the previous section.

Our basic result gives the monodromy

m(σ1) =
∑

I

(−1)pτI = σ1 +
∑

I, p≥1

(−1)pτI .(8.17)

Here we have changed notation. I = {i1, . . . , ip} refers to a flag Γi1 � · · · �
Γip

� Γ of core subgraphs. More generally

m(τI) =
∑

J⊃I

(−1)q−pτJ .(8.18)
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Here J = {j1, . . . , jq} ⊃ I. to verify (8.18), consider, e.g., the case cor-
responding to Γ1 � Γ. We have seen (Lemma 3.3) that the blowup of
P(Γ) along the linear space defined by the edge variables associated to
edges of Γ1 yields as exceptional divisor E1 ∼= P(Γ1)× P(Γ//Γ1). In fact,
the strict transform of E1 in the full blowup P (Γ) can be identified with
P (Γ1)× P (Γ//Γ1). To see this, note that by Proposition 3.4, the intersec-
tion in P (Γ) of distinct exceptional divisors E1 ∩ · · · ∩Ep is non-empty if
and only if after reordering, the corresponding core subgraphs of Γ form
a flag. This means, for example, that E1 ∩ EI �= ∅ if and only if the flag
corresponding to I has a subflag of core subgraphs contained in Γ1, and
the remaining core subgraphs form a flag containing Γ1. In this way, we
blow up appropriate linear spaces in P(Γ1) and in P(Γ/Γ1). The result is
P (Γ1)× P (Γ//Γ1) ⊂ P (Γ). The chain τ1 is an S1-bundle over the chain
σP(Γ1) × σP(Γ//Γ1) (slightly modified along the boundaries as above), and the
monodromy map is the product of the monodromies on each factor. (The
monodromy takes place on P (Γ1)× P (Γ//Γ1). In the end, one takes the
S1-bundle over m(σP(Γ1) × σP(Γ//Γ1)).) But this yields exactly (8.18). The
result for a general m(τI) is precisely analogous. To compute N , suppose
Γ has exactly k core subgraphs Γ′

� Γ. (This means that P (Γ) will have k
exceptional divisors Ei.) Consider the commutative ring

R := Q[x1, . . . , xk]/(x2
1, . . . , x

2
k, M1, . . . , Mr),(8.19)

where we think of the xi as corresponding to exceptional divisors Ei on
P (Γ), and the Mj are monomials corresponding to empty intersections of
the Ei. The notation means that we factor the polynomial ring in the
xi by the ideal generated by the indicated elements. We may if we like
drop the Mj from the ideal. This will simply mean the column vector on
which N acts will have many entries equal to 0. As a vector space, we can
identify R with the free vector space on σ1 and the τI by mapping σ1 �→ 1
and τI �→

∏
i∈I xi. With this identification, the monodromy map m is given

(compare (8.18)) by multiplication by (1− x1)(1− x2) · · · (1− xk). But the
map R → Endvec.sp.(R) given by multiplication is a homomorphism of rings,
so log(m) is given by (note x2

i = 0)

log
(
(1− x1) · · · (1− xk)

)
= −

∑
xi.(8.20)

Thus N is the matrix for the map given by multiplication by −
∑

xi. If
we ignore the relations Mj and just write the matrix for the action on
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Q[x1, . . . , xk]/(x2
1, . . . , x

2
k), it has size 2k × 2k and is strictly upper triangular.

For k = 3, the matrix is −N (3) (8.11).

9. Renormalization: the removal of log poles

Recall we have defined sdd(Γ), the degree of superficial divergence of a
graph with respect to a given physical theory (2.2). The choice of the theory
determines a differential form ωΓ associated to Γ. We will be interested in the
logarithmic divergent case, when sdd(Γ) ≥ 0, but ωΓ has been chosen such
that it only has log poles, see in particular Section 7.4. The affine integral in
this case will be overall logarithmically divergent, but this overall divergence
can be eliminated by passing to the associated projective integral. If, for
all core subgraphs Γ′ ⊂ Γ, we have sdd(Γ′) < 0, then the projective integral
actually converges and we are done. If Γ′ > 0 for some subgraph, then one is
obliged to manipulate the differential form as described in Section 7 above.
To simplify notation, from now on we assume that all graphs and subgraphs
have sdd ≤ 0, while all following lemmas hold similarly for higher degrees
of divergence with the appropriate choice of ωII. Below, we spell all results
out for the case ωII = Ω2n−1/ψ2

Γ, and we set ψΓ ≡ ψ(Γ).

Lemma 9.1. Let Γ′
� Γ be core graphs and assume sdd(Γ) = 0. Let L ⊂

XΓ ⊂ P(Γ) be the coordinate linear space defined by the edges occurring in
Γ′. Let π : PL → P(Γ) be the blowup of L. Then π∗ωΓ has a logarithmic pole
on E if and only if sdd(Γ′) = 0. Similarly, the pullback of ωΓ to the full core
blowup P (Γ) (cf. formula (3.3)) has a log pole of order along the exceptional
divisor EΓ′ associated to Γ′ if and only if sdd(Γ′) = 0.

Proof. We give the proof for φ4 theory. Let the loop number |Γ| = m so the
graph has 2m edges (2.2). Let

Ω2m−1 =
∑

(−1)iAi dA1 ∧ · · · ∧ d̂Ai ∧ · · · ∧ dA2m

= A2m
2md(A1/A2m) ∧ · · · ∧ d(A2m−1/A2m).(9.1)

Then

ωΓ =
Ω2m−1

ψ2
Γ

.(9.2)
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Suppose L : A1 = · · · = Ap = 0. We can write the graph polynomial [2,
Proposition 3.5]

ψΓ = ψΓ′(A1, . . . , Ap)ψΓ//Γ′(Ap+1, . . . , A2m) + R(9.3)

where the degree of R in A1, . . . , Ap is strictly greater than deg ψΓ′ = |Γ′|.
Let ai = Ai/A2m, and let bi = ai/ap, i < p. Locally on P , we can take
b1, . . . , bp−1, ap, ap+1, . . . , A2m as local coordinates and write

ωΓ = ±ap−2|Γ′|
p

dap

ap
∧ db1 ∧ · · · ∧ da2m−1

F 2 .(9.4)

Here F is some polynomial in the ai’s and the bj ’s which is not divisible by
ap. The assertion for the blowup of L follows immediately. The assertion for
P (Γ) is also clear because we can find a non-empty open set on P(Γ) meeting
L such that the inverse images in P (Γ) and in PL are isomorphic. �

We want to state the basic renormalization result coming out of our
monodromy method. For this, we restrict to the case

sdd(Γ′) ≤ 2, ∀Γ′ ⊆ Γ,(9.5)

with an understanding that appropriate forms ωII(Γ′) have been chosen so
that the differential forms have log poles only. The following lemma applies
then to φ4 theory. A physicist wishing to apply our results to another theory
needs only check the lemma holds with ωΓ replaced by the integrand given
by Feynman rules.

Lemma 9.2. Let τ ε
V be the chains on P(Γ) constructed above (Section 4)

(including the case τ ε
P (Γ) = σε). Then, assuming (9.5), we will have

∣
∣
∣

∫

τε
V

ωΓ

∣
∣
∣ = O(| log |ε||k), |ε| → 0(9.6)

for some k ≥ 0.

Proof. We first consider the integral for the chain σε = τ ε
P (Γ). Locally on

the blowup P (Γ) the integrand will look like (5.4) but there may be more
than one log form; i.e., ω̃dap1/ap1 ∧ · · · ∧ dapk

/apk
. An easy estimate for

such an integral over a compact chain satisfying aj ≥ ε gives C(| log ε|)k.
The integrals over τ ε

V , V � P (Γ), involve first integrating over one or more
circles. Locally the chain is an (S1)p-bundle over an intersection
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x1 = · · · = xp = 0 in local coordinates. We may compute the integral by first
taking residues. V will be the closure of a torus orbit in P (Γ) associated to a
flag Γp � · · · � Γ1 � Γ (Proposition 3.4). We may assume xi is a local equa-
tion for the exceptional divisor in P (Γ) associated to Γi ⊂ Γ. By Lemma 9.1,
our integrand will have a pole on xi = 0 if and only if sdd(Γi) = 0. (Note
that the integrand has no singularities on τ ε

V , so we may integrate in any
order.) The situation is confusing because sdd(Γi) < 0 ⇒ sdd(Γ//Γi) > 0, so
one might expect non-log growth in this case. The problem does not arise,
because the residue will vanish. Assuming sdd(Γi) = 0, ∀i, the residue inte-
gral is

∫

∏
j τε

P (Γj//Γj+1)

ωΓp
∧ · · · ∧ ωΓ//Γ1

.(9.7)

Since sdd(Γi//Γi+1) = 0, we may simply write (9.7) as a product of integrals
and argue as above. �

We want now to apply the argument sketched in the introduction to our
situation. There is one mathematical point which must be dealt with first.
We want to consider

∫
σt

ωΓ as a function of t. Here we must be a bit careful.
For t = εeiθ and |θ| << 1 we are ok, but as θ grows, our chain may meet XΓ.
Topologically, we have (Proposition 6.3) the chains c̃η,ε,θ which miss XΓ and
which represent the correct homology class in H∗(P(Γ)−XΓ, Δt −XΓ ∩Δt),
but one must show our integral depends only on the class in homology
relative to Δt, i.e., ωΓ integrates to zero over any chain on Δt −XΓ ∩Δt.
Intuitively, this is because ωΓ|Δt = 0, but, because Δt has singularities, it
is best to be more precise. Quite generally, assume U is a smooth variety
of dimension r, and D ⊂ U is a normal crossings divisor (i.e., for any point
u ∈ U there exist local coordinates x1, . . . , xr near u, and p ≤ r such that
D : x1x2 · · ·xp = 0 near u). One has sheaves

Ωq
U (log D)(−D) ⊂ Ωq

U ⊂ Ωq
U (log D),(9.8)

where Ωq
U is the sheaf of algebraic (or complex analytic; in fact, either will

work here) q-forms on X, and Ωq
U (log D) is obtained by adjoining locally

wedges of differential forms dxi/xi, 1 ≤ i ≤ p. Locally, Ωq
U (log D)(−D) :=

x1x2 · · ·xpΩ
q
U (log D). All three sheaves are easily seen to be stable under

exterior differential (for varying q). The resulting complexes calculate the
de Rham cohomology for (U, D), U, (U −D) respectively [7]. Note that in
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the top degree r = dimU , we have

Ωr
U (log D)(−D) = OU · x1x2 · · ·xp

dx1 ∧ · · · ∧ dxp

x1x2 · · ·xp
dxp+1 ∧ · · · ∧ dxr = Ωr

U .

(9.9)

It follows that we get maps

Ωr
U [−r] → Ω∗

U (log D)(−D); Γ(U, Ωr
U ) → Hr

DR(U, D).(9.10)

In particular, taking U = P(Γ)−XΓ, we see that integrals
∫
ch.rel.Δt

ωΓ are
well defined.

Theorem 9.3. We suppose given a graph Γ such that all core subgraphs
Γ′ ⊆ Γ have superficial divergence sdd(Γ′) ≤ 0 for a given physical theory.
Let ωΓ be the form associated to the given theory. Let N be the upper-
triangular matrix of size K ×K described in the previous section, where K
is the number of chains of core subgraphs

Γp � · · · � Γ.

Then the left-hand side of the expression below is single-valued and analytic
for t in a disk about 0, so the limit

lim
|t|→0

exp
(

−N
log t

2πi

)

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∫
τ t

P (Γ)
ωΓ

...∫
τ t

V
ωΓ

...

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎝

a1
...

ak

⎞

⎟
⎠(9.11)

exists.

Proof. The proof proceeds as outlined in Section 1.3. N is chosen to be
nilpotent and such that the left-hand side has no monodromy. Lemma 9.2
assures that terms have at worst log growth. Since they are single-valued
on D∗, they extend to the origin. �

Remark 9.4. It is time to compare what we are calculating here with
what a physicist computes according to Theorem 7.3. The transition is
understood upon noticing that in our constructions of chains, we pick up
the residue from each exceptional divisor by computing the monodromy.
In physics, we iterate those residues as iterated integrals. Below the top
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entry a1, this gives different rational weights to them in accordance with
the scattering-type formula of [6]. We discuss this below in Section 9.1.

Definition 9.5. With notation as above, the renormalized value
∫
σ ωΓ is

the top entry in the column vector exp(+N log t
2πi )

(
a1
...

)

.

Remark 9.6. Note that the terms
∫
τ t

V
ωΓ on the left-hand side of (9.11)

may be calculated recursively. As in Lemma 9.2 above, V corresponds to a
flag of core subgraphs of Γ. As in formula (9.7), the integral dies unless all
the Γi//Γi+1 are log divergent. In this case, one gets

(2πi)p−1
∏∫

τ t
P (Γi//Γi+1)

ωΓi//Γi+1
.(9.12)

If, in addition, the subquotients Γi//Γi+1 are primitive, i.e., they are log
divergent but have no divergent subgraphs, then the integrals in (9.12) will
converge as |t| → 0. Upto a term which is O(t) and can be ignored in the
limit, they may be replaced by their limits as t → 0. These entries in (9.11)
may then be taken to be constant.

Example 9.7. Consider Dunce’s cap (figure 2). It has three core sub-
graphs, but only the 2-edged graph γ with edges 1, 2 is log divergent. Thus,
the column vector in (9.11) has four entries, but only two are non-zero.

Dropping unnecessary rows and columns, the matrix N =
(

0 −1
0 0

)

. The

constant entry in the column vector is

2πi

∫

σγ

Ω1

ψ2
γ

∫

σΓ//γ

Ω1

ψ2
Γ//γ

= 2πi
(∫ ∞

0

da

(a + 1)2
)2

= 2πi.(9.13)

It remains to connect
∫
σ ωΓ to the physicists computation.

9.1. lMHS versus ΦR

Let us understand how the period matrix pT = (a1, a2, . . . , ar) which we
have constructed connects to the coefficients cj

(9.14) ΦMOM(Γ)(q2/μ2) =
r∑

j=1

cj(Γ) lnj q2/μ2.
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Going to variables

tΓ, a1, . . . , a|Γ[1]|,
∑

ai = 1,

t1, b1, . . . , b|Γ1
[1]|,
∑

bi = 1,

. . . ,

tp, z1, . . . , b|Γp
[1]|,
∑

zi = 1,

for a chain of core graphs Γp � · · · � Γ1 � Γ gives, for each such flag and
constant lower boundaries ε, an iterated integral over

(9.15)
∫ ∞

ε
dt

∫ ∞

ε/t
dt1 · · ·

∫ ∞

ε/t/t1···/tp−1

dtp.

As the integral has a logarithmic pole along any ti integration, the difference
between integrating against the chains, which only collect the coefficients of
ln ε for each such integral, and the iteration above is a factorial for each
flag. A summation over all flags established the desired relation using tree
factorials [14].

As the entries in the vector (a1, . . .)T are in one-to-one correspondence
with forests of Γ, identifying a1 with the empty forest, we can write the top
entry defined in Definition 9.5 as

(9.16)
∑

[for]

(
ln t

2πi

)|[for]|
a[for],

where

(9.17) a[for] = p1(Γ//[for])
∏

j

p1(γj),

using the notation of Equations 7.14 and 7.61. Then,

(9.18) ∂ln tΦMOM(Γ)(t) =
∑

[for]

aug(Γ)
(

ln t

[for]∗!

)|[for]|
a[for].

Here, [for]∗! is a forest factorial defined as follows. Any forest [for] defines a
tree T and a collection of edges C such that PC(T ) and RC(T ) denote the
core sub- and co-graphs in question. The complement set T [1]/C defines a
forest ∪iti say. We set [for]∗! =

∏
i ti!, for standard tree factorials ti! [14].
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For example, comparing the two graphs

(9.19)

we have the two vectors

(9.20)

and

(9.21)

Hence, we find the same ln2 t term upon computing Equation 9.16 for the
monodromy.

On the other hand, the tree factorials deliver 1/2 for that term in the
case of Γ1, and 1 for Γ2, while we get 2 in both cases for the term ∼ ln t.
Indeed, the flag

(9.22)

corresponds to a tree with two edges. The term ∼ ln2 t comes from the cut
C which corresponds to both of these edges. The complement is the empty
cut, whose tree factorial is 3! simply. As we took a derivative with respect to
ln t, we get a factor of aug(Γ) = 3, which leaves us with a factor 3/3! = 1/2.

For , we note that the tree factorial is 3 instead of 3! (we have
two flags instead of one), which leaves us with a factor 1.
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9.2. Limiting mixed Hodge structures

In this final paragraph, at the suggestion of the referee we outline the struc-
ture of a limiting mixed Hodge structure associated to a variation of mixed
Hodge structure and how it might apply to the Feynman graph amplitudes.

Let Γ be a log-divergent graph with n loops and 2n edges. The graph
hypersurface XΓ : ψΓ = 0 is a hypersurface in P

2n−1, and the Feynman inte-
grand represents a cohomology class

[ Ω
ψ2

Γ

]
∈ H2n−1(P2n−1 −XΓ, C) = H2n−1(P2n−1 −XΓ, Q)⊗ C

= HC = HQ ⊗ C.(9.23)

The cohomology group has a mixed Hodge structure, which means there are
defined two filtrations:

(i) The weight filtration W∗HQ which is defined over Q and increasing. It
looks like

0 ⊂ W2nHQ ⊂ W2n+1HQ ⊂ · · · ⊂W4n−2HQ = HQ.(9.24)

Blowing up on XΓ so it becomes a normal crossings divisor D∗, there
is a spectral sequence relating the graded pieces W2n−1+i/W2n−1+i−1
to the Tate twist by −i of the cohomology in degree 2n− 1− i of the
codimension i− 1 strata of D. (So, for example, grW

2n is related to
⊕jH

2n−2(Dj)(−1), where D =
⋃

Dj .)

(ii) The Hodge filtration F ∗HC which is defined over C and decreasing:

(0) ⊂ F 2n−1 ⊂ F 2n−2 ⊂ · · · ⊂ F 1 = HC.(9.25)

The filtrations are subject to the compatibility condition that the
filtration

F p(grW
q ⊗ C) := F pHC ∩Wq ⊗ C

/
F pHC ∩Wq−1 ⊗ C(9.26)

is the Hodge filtration of a pure Hodge structure of weight q. (This
is simply the condition that F ∗grW

q ⊗ C be q-opposite to its complex
conjugate, i.e., that grW

q ⊗ C = F p ⊕ F
q−p+1 for any p.)

Let us say that a class ω ∈ HC has Hodge level p if ω ∈ F pHC − F p+1HC.
An important problem is to determine the Hodge level of the Feynman form
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(9.23). One may speculate that the Hodge level of the Feynman form equals
the transcendental weight of the period. (The transcendental weight of a
multi-zeta number ζ(n1, . . . , np) is the sum of the ni.) For example, in [4],
one finds many examples of Feynman amplitudes of the form ∗ζ(N), where *
is rational. In all known cases, N = 2n− 3. To estimate the Hodge level, one
may use the pole order filtration [7, 3.12]. One blows up on XΓ ⊂ P

2n−1 to
replace X by a normal crossings divisor D =

⋃r
i=1 Di. Let ω on P

2n−1 −XΓ
be a (2n− 1)-form and let I ⊂ {1, . . . , r} be the indices i such that ω has
a pole along Di. Write pi + 1 for the order of this pole, with pi ≥ 0. Then
the Hodge level of ω is ≥ 2n− 1−

∑
pi. (For a more precise statement, see

op. cit.) For example, if XΓ is smooth (this happens only when n = 1), one
would get p1 = 1 so the Hodge level would be ≥ 2n− 2.

Proposition 9.8. For the Feynman form, at least 2 of the pi ≥ 1. The pole
order calculation thus suggests the Hodge level of the Feynman form above
is ≤ 2n− 3.

Proof. The situation for n = 1 is trivial, so we assume n ≥ 2. The space of
symmetric n× n-matrices has dimension d := n(n+1)

2 . Let P
d−1 be viewed as

the projectivized space of such matrices, so a point corresponds to a matrix
upto scale. The determinant of the universal matrix defines a hypersurface
X ⊂ P

d−1. More generally, we define Xp ⊂ P
d−1 to be the locus where the

rank of the corresponding symmetric matrix is ≤ n− p. We have X = X1,
and it is easy to see that Xp has codimension p(p+1)

2 in P
d−1. Points in Xp

will have multiplicity ≥ p on X .
There is an inclusion ρ : P

2n−1 ↪→ P
d−1 such that XΓ = X ∩ P

2n−1.
Points of X2 ∩ P

2n−1 will have multiplicity ≥ 2 in XΓ and codimension ≤ 3
in P

2n−1 . This means that in the local ring on P
2n−1 at a general point of

X2 ∩ P
2n−1, there will be functions x1, x2, x3 which form part of a system

of coordinates on P
2n−1 such that a local defining equation ψ for XΓ lies in

(x1, x2, x3)2. We may construct our normal crossings divisor D as above by
first blowing up X2 ∩ P

2n−1 in P
2n−1. Subsequent blowups will not affect the

pole order, which may be computed at the generic point of the exceptional
divisor E. We have

dx1 dx2 dx3 · · ·
ψ2 =

x2
1dx1 d(x2/x1)d(x3/x1) · · ·
x4

1φ(x1, x2/x1, x3/x1, . . .)
.(9.27)

It follows that the Feynman form has a double pole on E as well as a double
pole on the strict transform of XΓ in the blowup. �
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Remark 9.9. (i) To give a complete proof that the Hodge level is
≤ 2n− 3, one would have to show the double order pole was not killed
by an exact form.

(ii) It would be exciting to be able to say something about the weight
filtration on H2n−1(P2n−1 −XΓ).

(iii) The data in [4] suggests that double zetas which occur will have tran-
scendental weight 2n− 4. For example, the bipartite graph Γ consist-
ing of the 12 edges joining sets of three and four vertices has Feynman
amplitude a rational multiple of ζ(3, 5). In general, a calculation as
above shows X3 ∩ P

2n−1 has multiplicity ≥ 3 and codimension ≤ 6. If
one could show that for the bipartite Γ that this codimension drops to
5, then the same argument as above would yield 3 poles with pi ≥ 1,
suggesting a Hodge level 2n− 4.

Next we should consider the mixed Hodge structure necessary for the
relative period calculation. Recall (3.3) we work in a toric blowup P =
P (Γ) → P

2n−1. Let B ⊂ P be the complement of the big toric orbit in P .
It is the union of the strict transform of the coordinate divisor Δ ⊂ P

2n−1

and the exceptional divisors. Let Y ⊂ P be the strict transform of XΓ. The
relevant cohomology group is the middle group in the sequence

H2n−2(B − Y ∩B; Q)→H2n−1(P − Y, B − Y ∩B; Q) → H2n−1(P − Y, Q).
(9.28)

If all the subgraphs Γ′
� Γ have sdd(Γ′) < 0, then renormalization is unnec-

essary. The Feynman amplitude as we have defined it is simply a period of
the mixed Hodge structure (9.28). The weight filtration for the group on
the left involves the cohomology of the strata of the normal crossings divisor
B. For example, we have an exact sequence

H0(B(1) − Y ∩B(1), Q) → H0(B(0) − Y ∩B(0), Q)

→ W0H
2n−2(B − Y ∩B(0), Q).(9.29)

Here we write B(i) for the disjoint union of the components of the strata
of dimension i. We know from Corollary 5.3 that Y ∩B(0) = ∅, and a bit
of thought about the combinatorics of B(i), i = 0, 1, reveals that W0H

2n−2
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(B − Y ∩B, Q) = Q(0). This gives a map of the trivial Hodge structure
Q(0) to our period motive:

Q(0) → H2n−1(P − Y, B − Y ∩B; Q).(9.30)

When the period is a rational multiple of ζ(2n− 3), we expect that there
is a map of Hodge structures Q(3− 2n) → H2n−1(P2n−1 −XΓ, Q) and that
the extension of Q(3− 2n) by Q(0) associated to ζ(2n− 3) is a subquotient
of (9.28).

Finally the main focus of this paper has been the renormalization case
when one or more proper subgraphs of Γ has sdd = 0. In this case, the
Feynman form will have a pole along one or more divisor in B, so (9.28) is no
longer the relevant Hodge structure. In this case, we work with the limiting
mixed Hodge structure Hlim associated to Ht := H2n−1(P2n−1 −XΓ, Δt −
Δt ∩XΓ). Let D be a small disk around t = 0, and let D∗ = D − {0}. Then
HD∗ =

⋃
t�=0 Ht becomes a local system on D∗. Let HD∗ = HD∗ ⊗OD∗ be

the corresponding analytic bundle. If we untwist by the monodromy, we get
a trivial local system (h = dimHt)

C
h
D∗ ∼= exp(−N log t)HD∗ ⊂ HD∗ .(9.31)

Since this local system is trivial, it extends (trivially) across t = 0. It also
has a canonical Q-structure defined from the Q-structure at any point t0 �= 0.
The analytic bundle HD∗ has a Hodge filtration F ∗HD∗ coming from the
Hodge filtrations on the Ht. (Note the Hodge filtration is not horizontal,
so there is no Hodge filtration on the local system HD∗ .) From (9.31), we
get a canonical trivialization of the analytic bundle HD∗ ∼= Oh

D∗ and hence
a canonical extension across t = 0. One can show [5, 2.1(i)] that the Hodge
filtration extends across t = 0 as well.

Thus, on the fibre H0 we have a Hodge filtration and a Q-structure.
If you think in terms of periods, i.e., using the pairing H∨

0,Q ×H0 → C,
the above description of the Hodge filtration as a limit across t = 0 coin-
cides with the computation (9.11). What we have not given is the weight
filtration. This monodromy weight or limiting weight filtration is more sub-
tle, essentially being determined by the endomorphism N together with the
given weight filtrations on the fibres Ht. We hope that the computation of N
in this paper will help to understand this structure, but at the moment the
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weight structures on the Ht are not well enough understood to say more. For
the general theory, the interested reader is referred to [5] and the references
cited there.
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