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Integration on product spaces and GLn of a
valuation field over a local field

Matthew Morrow

We present elements of a theory of translation-invariant integration
on finite dimensional vector spaces and on GLn over a valuation
field with local field as residue field. We then discuss the case of
an arbitrary algebraic group. This extends the work of Fesenko.

1. Introduction

This paper addresses the problem of measure and integration on a finite
dimensional vector space and on GLn over a valuation field whose residue
field is a local field. This, and the more fundamental problem of integration
over the field itself have been considered by Fesenko [3–5] and Kim and Lee
[12,13] in the case of a higher dimensional local field, and by the author [14].
Far more general results of Hrushovski and Kazhdan using model theory [7,8]
treat the case of residue characteristic zero.

Such a theory has applications in the representation theory of two-
dimensional local fields (see [12]) and related problems in the Langlands
programme.

In mathematical physics, there are poorly understood relations between
geometric Langlands programme and conformal field theory (see e.g., [6]).
Hence, suitable physical interpretations of this work and its extensions may
provide insight into problems of field theory.

More explicitly, the Feynman integral is not understood rigorously (see
[11] for discussion of the problems), but the valuation fields C(t) and R(t)
may be identified with subspaces of the space of continuous paths. Measure
theory on these fields may explain aspects of Feynman measure. Further
evidence of the relations between quantum field theory and the measure
on these fields may be found in Sections 16 and 18 of [5] and Example 5.6
of [14].
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We now outline the contents of the paper.
Let F be a valued field with arbitrary value group Γ and ring of integers

OF , whose residue field F is a non-discrete locally compact field; let C(Γ) be
the field of fractions of the complex group algebra of Γ. In [14], the author
used ideas of Fesenko [3, 5] to introduce elements of a theory of integration
over F with values in C(Γ). In the first section, we give a summary of the
results required for this paper.

In the second section, the integral on F is extended to Fn using repeated
integration. So that Fubini’s theorem holds, we consider C(Γ)-valued func-
tions f on Fn such that for any permutation σ of {1, . . . , n} the repeated
integral

∫ F

· · ·
∫ F

f(x1, . . . , xn) dxσ(1) . . . dxσ(n)

is well defined, and its value does not depend on σ; such a function is called
Fubini.

Now suppose that g is a Schwartz–Bruhat function on F
n; let f be the

complex-valued function on Fn which vanishes off On
F and satisfies

f(x1, . . . , xn) = g(x1, . . . , xn)

for x1, . . . , xn ∈ OF . f is shown to be Fubini in the second section. In
Proposition 4.11, it is shown that if a ∈ F and τ ∈ GLn(F ), then x �→ f
(a + τx) is also Fubini and

(∗)
∫ F n

f(a + τx) dx = | det τ |−1
∫ F n

f(x) dx,

where | · | is an absolute value on F . The main result of the third sec-
tion, Theorem 4.4, easily follows: there exists a space of Fubini functions
L(Fn, GLn) such that L(Fn, GLn) is closed under affine changes of variable,
with (∗) holding for f ∈ L(Fn, GLn).

Next, just as in the classical case of a local field, we look at C(Γ)-valued
functions φ on GLn(F ), for which τ �→ φ(τ)| det τ |−n belongs to L(Fn2

),
having identified Fn2

with the space of n × n matrices over F . This leads
to an integral on GLn(F ) which is left and right translation invariant, and
which lifts the Haar integral on GLn(F ) in a certain sense.

Finally we discuss extending the theory to the case of an arbitrary alge-
braic group.
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1.1. Notation

Let Γ be a totally ordered abelian group and F a field with a valuation
ν : F× → Γ with residue field F , ring of integers OF and residue map ρ :
OF → F (also denoted by an overline). Suppose further that the valuation is
split; that is, there exists a homomorphism t : Γ → F× such that ν ◦ t = idΓ.

Sets of the form a + t(γ)OF are called translated fractional ideals.
C(Γ) denotes the field of fractions of the complex group algebra Γ; the

basis element of the group algebra corresponding to γ ∈ Γ shall be written
as Xγ rather than as γ. With this notation, XγXδ = Xγ+δ. Note that if
Γ is a free abelian group of finite rank n, then C(Γ) is isomorphic to the
rational function field C(X1, . . . , Xn).

We fix a choice of Haar measure on F . The measure on F
× is chosen

to satisfy d×x = |x|−1d+x, and the measure on F
m is always the product

measure.

Remark 1.1. The assumptions above hold for a higher dimensional local
field. For basic definitions and properties of such fields, see [9].

Indeed, suppose that F = Fn is a higher dimensional local field of dimen-
sion n ≥ 2: we allow the case in which F1 is an archimedean local field. If
F1 is non-archimedean, instead of the usual rank n valuation v : F× → Z

n,
let ν be the n − 1 components of v corresponding to the fields Fn, . . . , F2;
note that v = (νF ◦ η, ν) where η : F× → F×

1 is the homomorphism η(α) =
αt(−ν(α)). If F1 is archimedean, then F may be similarly viewed as an
valuation field with value group Z

n−1 and residue field F1.
The residue field of F with respect to ν is the local field F = F1. If F is

non-archimedean, then the ring of integers OF of F with respect to the rank
n valuation is equal to ρ−1(OF ), while the group of units O×

F with respect
to the rank n valuation is equal to ρ−1(O×

F
).

2. Integration on F

In [14], a theory of integration on F taking values in the field C(Γ) is devel-
oped. We repeat here the definitions and main results.
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Definition 2.1. For g a function on F taking values in an abelian
group A, set

g0 : F → A

x �→
{

g(x), x ∈ OF ,

0, otherwise.

More generally, for a ∈ F , γ ∈ Γ, the lift of g at a, γ is the A-valued
function on F defined by

ga,γ(x) =

{
g((x − a)t(−γ)), x ∈ a + t(γ)OF ,

0, otherwise.

Note that g0,0 = g0 and ga,γ(a + t(γ)x) = g0(x) for all x ∈ F .

Definition 2.2. Let L denote the space of complex-valued Haar integrable
functions on F . A simple function on F is a C(Γ)-valued function of the form

x �→ ga,γ(x) Xδ

for some g ∈ L, a ∈ F , γ, δ ∈ Γ.
Let L(F ) denote the C(Γ)-space of all C(Γ)-valued functions spanned

by the simple functions; such functions are said to be integrable on F .

Remark 2.3. Note that the space of integrable functions is the smallest
C(Γ)-space of C(Γ)-valued functions on F with the following properties:

(i) If g ∈ L, then g0 ∈ L(F ).

(ii) If f ∈ L(F ) and a ∈ F , then L(F ) contains x �→ f(x + a).

(iii) If f ∈ L(F ) and α ∈ F×, then L(F ) contains x �→ f(αx).

In fact, it is clear that if f is simple, then for a ∈ F and α ∈ F×, the
functions x �→ f(x + a) and x �→ f(αx) are also simple.

The main result on existence and properties of an integral is as follows:

Theorem 2.4. There is a unique C(Γ)-linear functional
∫ F on L(F ) which

satisfies
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(i)
∫ F lifts the usual integral on F : for g ∈ L,

∫ F

(g0) =
∫

g(u) du;

(ii) Translation invariance: for f ∈ L(F ), a ∈ F ,

∫ F

f(x + a) dx =
∫ F

f(x) dx;

(iii) Compatibility with multiplicative structure: for f ∈ L(F ), α ∈ F×,

∫ F

f(αx) dx = |α|−1
∫ F

f(x) dx.

Here the absolute value of α is defined by |α| = |αt(−ν(α))|Xν(α), and we
have adopted the customary integral notation

∫ F (f) =
∫ F

f(x) dx.

Proof. See [14]. �

Remark 2.5. If ga,γ is the lift of a Haar integrable function, then
∫ F

ga,γ(x) dx =
∫

g(u) du Xγ .

3. Repeated integration on F n

In this section, we extend the integral on F to the product space Fn for n a
positive integer. We do this by using the integral over F to define repeated
integrals. The idea is simple, though the notation is not.

Given a sequence x1, . . . , xn of n terms, and r such that 1 ≤ r ≤ n, the
notation

x1, . . . , ẋr, . . . , xn = x1, . . . , xr−1, xr+1, . . . , xn

denotes the sequence of n − 1 terms obtained by removing the rth term.
We introduce the largest space of functions for which all repeated inte-

grals exist and are equal.

Definition 3.1. Let f be a C(Γ)-valued function on Fn. The inductive
definition of f being Fubini, and the repeated integral of f , is as follows:

If n = 1, then f is Fubini if and only if it is integrable, and the repeated
integral of f is defined to be its integral

∫ F
f(x) dx.
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For n > 1, f is Fubini if and only if it satisfies the following conditions:

(i) For each r with 1 ≤ r ≤ n, and all x1, . . . , ẋr, . . . , xn in F , the function

xr �→ f(x1, . . . , xn)

is required to be integrable on F , and then the function

(x1, . . . , ẋr, . . . , xn) �→
∫ F

f(x1, . . . , xn) dxr

is required to be Fubini on Fn−1.

(ii) Then we require that the repeated integral of (x1, . . . , ẋr, . . . , xn) �→∫ F
f(x1, . . . , xn) dxr does not depend on r. The repeated integral of f

on Fn is defined to be the common value of these n repeated integrals
on Fn−1.

The repeated integral of a Fubini function f on Fn will be denoted∫ F n

f(x) dx.

The repeated integral is a C(Γ)-linear functional on the C(Γ)-space of
all Fubini functions on Fn.

Remark 3.2. Informally, a C(Γ)-valued function f is Fubini if and only if,
for each permutation σ of {1, . . . , n}, the expression

∫ F

· · ·
∫ F

f(x1, . . . , xn) dxσ(1) . . . dxσ(n)

is well defined and its value does not depend on σ. The repeated integral of
f is of course the common value of these n! integrals.

Remark 3.3. We will also be interested in repeated integrals of complex-
valued functions on F

n. Since the integration theory on F does not allow
for functions on F which are perhaps only defined off a null set, we must
ensure that such functions do not arise. Therefore, we define a complex-
valued function g on F

n to be Fubini if it is Haar integrable and satisfies the
obvious rewording of Definition 3.1. Informally, such a function is Fubini if
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and only if it is Haar integrable and each partial integral
∫

· · ·
∫

g(u1, . . . , un) duσ(1) · · · duσ(r)

is defined for all uσ(r+1), . . . , uσ(n) ∈ F , where σ is any permutation of
{1, . . . , n} and 1 ≤ r ≤ n. Fubini’s theorem then implies that the value of
the repeated integral

∫ F

· · ·
∫ F

g(u1, . . . , un) duσ(1) · · · duσ(n)

is independent of σ.
Fubini’s theorem and induction on n imply that any integrable function

on F
n is almost everywhere equal to a Fubini function.

Any continuous complex-valued function on F with compact support
is Fubini, as is any Schwartz function if F is archimedean. So the class
of Fubini functions is still large enough for applications in representation
theory, harmonic analysis, etc.

In fact, most Fubini functions on Fn encountered in this paper will be of
the following form, which is generalization of the notion of a simple function
on F :

Definition 3.4. Let f be a Fubini function on Fn; the inductive definition
of f being strongly Fubini is as follows:

If n = 1, then g is strongly Fubini if and only if it is a simple function.
For n > 1, g is strongly Fubini if and only if the following holds. For

each r with 1 ≤ r ≤ n, and each x1, . . . , ẋr, . . . , xn in F , we require that

xr �→ f(x1, . . . , xn)

is a simple function on F , and then that

(x1, . . . , ẋr, . . . , xn) �→
∫ F

f(x1, . . . , xn) dxr

is strongly Fubini on Fn−1.

The property of being strongly Fubini is preserved under translation and
scaling, as is the weaker property of being Fubini. For α = (α1, . . . , αn) in
F×n (n copies of F×, not the group of nth powers of F×), write |α| =

∏
i |αi|,
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where | · | is the absolute value introduced in Theorem 2.4; for x ∈ Fn, write
αx to denote the coordinate-wise product αx = (α1x1, . . . , αnxn).

Lemma 3.5. Suppose f is a strongly Fubini (resp. Fubini) function on Fn.
For a ∈ Fn and α ∈ F×n, the functions x �→ f(x + a) and x �→ f(αx) are
strongly Fubini (resp. Fubini), with repeated integrals

∫ F n

f(x + a) dx =
∫ F n

f(x) dx,

∫ F n

f(αx) dx = |α|−1
∫ F n

f(x) dx.

Proof. This is a simple induction on n; the case n = 1 is Remark 2.3. �
A theme of this paper is showing how integrals constructed at the level

of F lift Haar integrals on F . For the integral on F , this is the identity
∫ F

g0(x) dx =
∫

g(u) du

for Haar integrable g on F .
We will denote by t : Γn → Fn the product of n copies of t; the value

of n will be clear from the context. Similarly, we write ρ or an overline
for the the residue map On

F → F
n. Given a = (a1, . . . , an) ∈ Fn and γ =

(γ1, . . . , γn) ∈ Γ, there is a product of translated fractional ideals given by

a + t(γ)On
F =

n∏
i=1

ai + t(γi)OF .

Now we may generalize the notion of lifting a function:

Definition 3.6. For g a function on F
n taking values in an abelian

group A, set

g0 : Fn → A

x �→
{

g(x), x ∈ On
F ,

0, otherwise.

Again, more generally, for a ∈ Fn, γ ∈ Γn, the lift of g at a, γ is the
A-valued function on F defined by

ga,γ(x) =

{
g((x − a)t(−γ)), x ∈ a + t(γ)On

F ,

0, otherwise.

Of course, g0 = g0,0 and ga,γ(a + t(γ)x) = g0,0(x) for all x ∈ Fn.
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Remark 3.7. It is a straightforward observation that a section of a lifted
function is again a lifted function. To be precise, suppose that f = ga,γ is a
lifted function as in the definition, r is such that 1 ≤ r ≤ n, and x1, . . . , ẋr,
. . . , xn ∈ F . Then the function

xr �→ f(x1, . . . , xn)

of F is identically zero unless xi ∈ ai + t(γi)OF for all i 	= r.
If in fact xi ∈ ai + t(γi)OF for all i 	= r, then

xr �→ f(x1, . . . , xn)

is the lift of
ur �→ g(ξ1, . . . , ξr−1, ur, ξr+1, . . . , ξn)

at ar, γr, where ξi := (xi − ai)t(−γi) ∈ OF for i 	= r.
This generalizes to s-dimensional sections of f for any s with 1 ≤ s ≤ n.

We shall frequently employ the cases s = 1 and s = 2.

We may now prove the fundamental result that the repeated integral on
Fn lifts the Haar integral on F

n:

Proposition 3.8. Suppose g is a Fubini function on Fn. Then g0 is
strongly Fubini on Fn, with repeated integral

∫ F n

g0(x) dx =
∫

F
n
g(u) du.

Proof. Let r be such that 1 ≤ r ≤ n, and fix x1, . . . , ẋr, . . . , xn ∈ F . The
previous remark and the case n = 1 (contained in Theorem 2.4) imply that
xr �→ g0(x1, . . . , xn) is simple and integrable on F with integral

{∫
g(x1, . . . , xr−1, ur, xr+1, . . . , xn) dur, xi ∈ OF for all i 	= r,

0, otherwise.

That is,

(x1, . . . , ẋr, . . . , xn) �→
∫ F

g0(x1, . . . , xn) dxr

is the lift of the everywhere defined Haar integrable function

(u1, . . . , un) �→
∫

g(u1, . . . , un) dur

on F
n−1.

The result now follows easily by induction on n. �



572 Matthew Morrow

Remark 3.9. More generally, suppose f = ga,γ is the lift of a Fubini func-
tion to Fn; here g is Fubini on F

n, a ∈ Fn and γ ∈ Γn. Then the proposition
and the invariance of being strongly Fubini under translation and scaling
(Lemma 3.5) imply f is strongly Fubini on Fn, with repeated integral

∫ F n

f(x) dx =
∫

F
n
g(u) du X

∑n
i=1 γi .

4. Change of variables from GLn in repeated integrals

With the basics of repeated integrals in place, we turn to the interaction
of the theory with GLn(F ). We shall write the action of GLn(F ) on Fn

as a left action, though we also write elements of Fn as row vectors; given
τ ∈ GLn(F ) and x = (x1, . . . , xn) ∈ Fn, τx means

τx = τ

⎛
⎜⎝

x1
...

xn

⎞
⎟⎠ .

Given a function f on Fn, we write f ◦ τ for the function x �→ f(τx). SLn(F )
denotes the determinant 1 subgroup of GLn(F ). These notation also apply
to F in place of F .

Definition 4.1. A complex-valued function g on F
n is said to be GL-Fubini

if and only if g ◦ τ is Fubini for all τ ∈ GLn(F ).

Remark 4.2. Any continuous complex-valued function with compact sup-
port is GL-Fubini, as is any Schwartz function when F is archimedean;
this follows from Remark 3.3 and the invariance of these properties under
GLn(F ). In the following results, this is the sort of function to have in mind.

Definition 4.3. Let L(Fn, GLn) be the C(Γ)-space of C(Γ)-valued func-
tions spanned by ga,γ ◦ τ for g GL-Fubini, τ ∈ GLn(F ), a ∈ Fn, γ ∈ Γn.

The aim of this section is the following result.

Theorem 4.4. Every function in L(Fn, GLn) is Fubini on Fn. If f ∈
L(Fn, GLn), a ∈ Fn and τ ∈ GLn(F ), then the functions x �→ f(x + a) and
x �→ f(τx) belong to L(Fn, GLn), with repeated integrals given by
∫ F n

f(x + a) dx =
∫ F n

f(x) dx,

∫ F n

f(τx) dx = | det τ |−1
∫ F n

f(x) dx.
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The theorem will be proved through several smaller results. First we
recall the Iwasawa decomposition, where we abbreviate “unipotent upper
triangular” to u.u.t.

Lemma 4.5. Let τ be in GLn(F ). Then there exist A in GLn(OF ), a u.u.t.
U in GLn(F ) and a diagonal Λ in GLn(F ) such that τ = AUΛ.

Proof. When Γ = Z and F is complete with respect to the discrete valuation
ν, this is the standard Iwasawa decomposition. However, the standard proof
is valid in the generality in which we require it (see e.g., [1]). �

This decomposition allows us to restrict attention to a upper triangular
matrix, for the GLn(OF ) term can be “absorbed” into the function.

Lemma 4.6. L(Fn, GLn) is spanned over C(Γ) by functions of the form
x �→ g0 ◦ U(αx + a), for g GL-Fubini on F

n, U a u.u.t. matrix, α ∈ F×n

and a ∈ Fn.

Proof. Let g be GL-Fubini on F
n, τ ∈ GLn(F ), a ∈ Fn and γ ∈ Γn. Let

A, U,Λ be the Iwasawa decomposition of
⎛
⎜⎝

t(−γ1)
. . .

t(−γn)

⎞
⎟⎠ τ,

as in Lemma 4.5. For x in Fn, the identity ga,γ ◦ τ(x) = g0 ◦ AUΛ(x − τ−1a)
holds.

Now note that g0 ◦ A = (g ◦ A)0, where A is the image of A in GLn(F ).
So x ∈ Fn implies ga,γ ◦ τ(x) = (g ◦ A)0(U(λx + b)), where λ ∈ F×n is defined
by

Λ =

⎛
⎜⎝

λ1
. . .

λn

⎞
⎟⎠ ,

and b = −λτ−1a. �
We now turn to proving special cases of the main theorem as well as

some technical lemmas. Particular attention is given to the case n = 2, for
it is required several times later in inductions.

Lemma 4.7. Let g be GL-Fubini on F
2 and set f = g0. Let α ∈ F and set

e = α−1t(ν(α)) if α 	= 0 and e = 0 otherwise; set δ0 = min(ν(α), 0).



574 Matthew Morrow

There exists τ ∈ SL2(F ), independent of g, such that for any x ∈ F , the
function y �→ f(x + αy, y) equals

{
the lift of v �→ g ◦ τ(xt(−δ0), v) at −xet(−δ0),−δ0 if x ∈ t(δ0)OF ,

0 otherwise.

Proof. If α = 0, then we are just considering a section of a Fubini function
and so τ = id suffices by Remark 3.7. Henceforth, assume that α 	= 0.

We first consider the case α = t(δ) for some δ ∈ Γ; so e = 1. Consider,
for any x ∈ F , the section

Dx : F → C,

y �→ f(x + t(δ)y, y).

We make the following claim, dependent on the sign of δ, regarding Dx:
Case: δ < 0.

Dx =

{
lift of v �→ g(v,−xt(−δ)) at −xt(−δ),−δ if x ∈ t(δ)OF ,

0 otherwise.

Case: δ = 0.

Dx =

{
lift of v �→ g(v + x, v) at 0, 0 if x ∈ OF ,

0 otherwise.

Case: δ > 0.

Dx =

{
lift of v �→ g(x, v) at 0, 0 if x ∈ OF ,

0 otherwise.

We shall prove the case δ = 0. For any x, y ∈ F , f(x + y, y) vanishes
unless x + y and y both belong to OF ; hence Dx is identically zero unless
x ∈ OF . Assuming that x ∈ OF , it remains to verify that

Dx = lift of v �→ g(v + x, v) at 0, 0.

Both sides vanish off OF and are seen to agree on OF by direct evaluation.
This proves the claim in this case. The other cases are proved by similar
arguments and we omit the details.
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If δ ≥ 0 and x ∈ OF , then Dx is also the lift of a function at −x, 0:
Case: δ = 0.

Dx = lift of v �→ g(v, v − x) at −x, 0.

Case: δ > 0.

Dx = lift of v �→ g(x, v − x) at −x, 0.

The proof when α ∈ t(Γ) is completed by setting:
Case: δ < 0.

τ =
(

0 1
−1 0

)
.

Case: δ = 0.

τ =
(

0 1
−1 1

)
.

Case: δ > 0.

τ =
(

1 0
−1 1

)
.

In the general case, write α = e−1t(δ), with δ = ν(α) and e ∈ O×
F ; let

τ ′ =
(

e−1 0
0 1

)
. Also introduce f ′(x, y) = f(e−1x, y), which is the lift

of (u, v) �→ g(e−1u, v) = g ◦ τ ′(u, v) (a Fubini function on F
2) at 0, 0. By

the case above, there exists τ ∈ SL2(F ) such that x ∈ F implies y �→ f ′

(x + t(δ)y, y) = f(e−1x + αy, y) equals
{

the lift of v �→ g ◦ τ ′τ(xt(−δ0), v) at −xt(−δ0),−δ0 if ν(x) ≥ δ0,

0 otherwise.

Hence, y �→ f(x + αy, y) = f ′(ex + t(δ)y, y) equals
{

the lift of v �→ g ◦ τ ′τ(e xt(−δ0), v) at −ext(−δ0),−δ0 if ν(x) ≥ δ0,

0 otherwise.

As τ ′τ

(
e 0
0 1

)
has determinant 1, this completes the proof. �

Remaining with the case n = 2, we now extend the previous lemma
slightly in preparation for the induction on n.
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Lemma 4.8. Let g be GL-Fubini on F
2, a ∈ F , γ ∈ Γ; set f = g(0,a),(0,γ).

Let α ∈ F and set δ = min(ν(α) + γ, 0).
There exist b, c ∈ F (independent of g) and τ ∈ SL2(F ) (independent of

g and a) such that x ∈ F implies y �→ f(x + αy, y) equals

{
the lift of v �→ g ◦ τ((x − c)t(−δ), v) at b, γ − δ if x ∈ c + t(δ)OF ,

0 otherwise.

Proof. Let e = α−1t(ν(α)) if α 	= 0 and e = 0 otherwise. For x in F , the
previous lemma implies that y �→ g0(x + t(γ)αy, y) equals

{
the lift of v �→ g ◦ τ(xt(−δ), v) at −xet(−δ),−δ if x ∈ t(δ)OF ,

0 otherwise,

for some τ ∈ SL2(F ) (independent of g by the previous lemma, and clearly
independent of a).

For x, y ∈ F , the identity

f(x + αy, y)

= g0(x + αy, (y − a)t(−γ))

= g0(x + αa + t(γ)α(y − a)t(−γ), (y − a)t(−γ))

=

{
g ◦τ((x+αa)t(−δ), ((y −a)t(−γ)+xet(−δ))t(δ)) if x+αa ∈ t(δ)OF ,

0 otherwise

follows. Set b = a − ext(γ − δ) and c = −αa to complete the proof. �

The following result extends the previous lemma to the case of arbitrary
n ≥ 2; it is rather technical.

Lemma 4.9. Let g be GL-Fubini on F
n, a ∈ F , γ ∈ Γ; set f =

g(0,...,0,a),(0,...,0,γ). Let αi ∈ F for 1 ≤ i ≤ n − 1. Then

(i) For all x1, . . . , xn−1 ∈ F , the function of F

xn �→ f(x1 + α1xn, . . . , xn−1 + αn−1xn, xn)

is integrable and simple.
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(ii) Further, there exist τ ∈ SLn(F ), δ ∈ Γn−1 and c ∈ Fn−1 such that the
function of Fn−1

(x1, . . . , xn−1) �→
∫ F

f(x1 + α1xn, . . . , xn−1 + αn−1xn, xn) dxn

is the lift of

(u1, . . . , un−1) �→
∫

g ◦ τ(u1, . . . , un) dun Xγ−
∑n−1

i=1 δi

at c, δ. Also, τ may be chosen to be independent of g and a.

Proof. The proof is by induction on n.
Let δn−1 = min(ν(αn−1) + γ, 0). Let ξ1, . . . , ξn−2 be in OF ; the function

(xn−1, xn) �→ f(ξ1, . . . , ξn−2, xn−1, xn)

is the lift of
(un−1, un) �→ g(ξ1, . . . , ξn−2, un−1, un),

which is GL-Fubini, at (0, a), (0, γ); this is just a generalization of Remark 3.7
to a two-dimensional section. By the previous lemma, there exist b, cn−1 ∈ F
and τ ∈ SL2(F ), all independent of ξ1, . . . , ξn−2, such that for all xn−1 ∈ F ,

xn �→ f(ξ1, . . . , ξn−2, xn−1 + αn−1xn, xn)

equals the lift of

un �→ g(ξ1, . . . , ξn−2, τ((xn−1 − cn−1)t(−δn−1), un))

at b, γ − δn−1 if xn−1 ∈ cn−1 + t(δn−1)OF , and equals 0 otherwise.

Also denote by τ the element of SLn(F ) given by
(

In−2 0
0 τ

)
, where

In−2 denotes the n − 2 by n − 2 identity matrix.
Now take ξn−1 ∈ cn−1 + t(δn−1)OF ; so ξn−1 = cn−1 + t(δn−1)ξ′

n−1, say.
It has been shown that

(x1, . . . , xn−2, xn) �→ f(x1, . . . , xn−2, ξn−1 + αn−1xn, xn)

is the lift of

(u1, . . . , un−2, un) �→ g ◦ τ(u1, . . . , un−2, ξ
′
n−1, un),
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which is GL-Fubini, at (0, . . . , 0, b), (0, . . . , 0, γ − δn−1). By the inductive
hypothesis, the following hold:

(i) For all x1, . . . , xn−2 ∈ F ,

xn �→ f(x1 + α1xn, . . . , ξn−1 + αn−1xn, xn)

is a simple integrable function.

(ii) There exists τ ′ ∈ SLn−1(F ) (independent of ξn−1, g, b) and δi ∈ Γ,
ci ∈ F (1 ≤ i ≤ n − 2), such that

(x1, . . . , xn−2) �→
∫ F

f(x1 + α1xn, . . . , ξn−1 + αn−1xn, xn) dxn

is the lift of

(u1, . . . , un−2) �→
∫

g ◦ ττ ′(u1, . . . , un−2, ξn−1, un) dun Xγ−δn−1−
∑n−2

i=1 δi

at (c1, . . . , cn−2), (δ1, . . . , δn−2).

It follows that:

(i) For any x1, . . . , xn−1 in F ,

xn �→ f(x1 + α1xn, . . . , xn−1 + αn−1xn, xn)

is a simple integrable function (this function is zero unless xn−1 ∈
cn−1 + t(δn−1)OF , in which case the statement follows from (i) above).

(ii) The function

(x1, . . . , xn−1) �→
∫ F

f(x1 + α1xn, . . . , xn−1 + αn−1xn, xn) dxn

is the lift of

(u1, . . . , un−1) �→
∫

g ◦ ττ ′(u1, . . . , un) dun Xγ−
∑n−1

i=1 δi

at (c1, . . . , cn−1), (δ1, . . . , δn−1).

This completes the proof. �
The previous lemma was concerned with the case of a matrix differing

from the identity only along the left-most column. We now consider the
case of an arbitrary u.u.t. matrix.
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Proposition 4.10. Suppose g is GL-Fubini on F
n, a ∈ Fn, γ ∈ Γn, δ ∈ Γ;

set f = ga,γ Xδ. Let U be a u.u.t. matrix in GLn(F ). Then f ◦ U is strongly
Fubini on Fn, with

∫ F n

f ◦ U(x) dx =
∫ F n

f(x) dx.

Proof. The proof is by induction on n.
For any n, we claim that it suffices to prove the special case a = 0, γ = 0,

δ = 0. We may clearly assume δ = 0 by linearity. For x ∈ Fn, the identity

f(Ux) = ga,γ(Ux) = g0,0((Ux − a)t(−γ))

= g0 ◦ U1(t(−γ)(x − U−1a))

holds, where U1 is the u.u.t. matrix

U1 =

⎛
⎜⎝

t(−γ1)
. . .

t(−γn)

⎞
⎟⎠ U

⎛
⎜⎝

t(γ1)
. . .

t(γn)

⎞
⎟⎠ .

The special case implies that g0 ◦ U1 is strongly Fubini with repeated integral
equal to that of g0. Thus f ◦ U differs from a strongly Fubini function by
translation and scaling and hence is itself strongly Fubini (Lemma 3.5), while
compatibility between the repeated integral on Fn and the Haar integral on
F

n (Proposition 3.8) implies

∫ F n

f ◦ U(x) dx = |t(γ)|
∫ F n

g0(x) dx

= X
∑n

i=1 γi

∫
F

n
g(u) du

=
∫ F n

f(x) dx.

This completes the proof of the claim; so now assume a = 0, γ = 0, δ = 0.
For each r with 1 ≤ r ≤ n, we must now prove that

(i) For x1, . . . , ẋr, . . . , xn ∈ F , the function of F , xr �→ f ◦ U(x1, . . . , xn),
is simple and integrable.
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(ii) The function of Fn−1

(x1, . . . , ẋr, . . . , xn) �→
∫ F

f ◦ U(x1, . . . , xn) dxr

is strongly Fubini, with repeated integral equal to that of f .

The inductive step depends on decomposing U in a certain way. Write

U =

⎛
⎜⎜⎜⎜⎝

1 α1,2 · · · α1,n

. . . . . .
...

. . . αn−1,n

1

⎞
⎟⎟⎟⎟⎠

and observe that U(x1, . . . , xn) = (x1 +
∑n

i=2 α1,ixi, . . . , xn−1 + αn−1,nxn, xn).
Let V be the u.u.t. matrix obtained by setting to zero all entries in the rth
row and rth column of U , apart from the 1 in the r, r-place. Let V ′ be
the n − 1 by n − 1 u.u.t. matrix obtained by removing the rth row and rth
column of U . There exist βr+1, . . . , βn ∈ F such that the u.u.t. matrix P
defined by

P (x1, . . . , xn) =

(
x1 + α1,rxr, . . . , xr−1 + αr−1,rxr, xr

+
n∑

i=r+1

βixi, xr+1, . . . , xn

)

satisfies U = PV .
We are now equipped to begin the main part of the proof. The previous

lemma (if r > 1; it follows straight from the definition of a strongly Fubini
function if r = 1) implies that for fixed x1, . . . , ẋr, . . . , xn ∈ F , the function

xr �→f

((
x1 − α1,r

n∑
i=r+1

βixi

)
+ α1,rxr, . . .

. . . ,

(
xr−1 − αr−1,r

n∑
i=r+1

βixi

)
+ αr−1,rxr, xr, . . . , xn

)
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is simple and integrable on F . Therefore,

xr �→f

(
x1 + α1,rxr, . . . , xr−1 + αr−1,rxr, xr +

n∑
i=r+1

βixi, xr+1 . . . , xn

)

=f ◦ P (x1, . . . , xn)

is a translate of a simple integrable function and hence is simple and inte-
grable by Remark 2.3. Replacing x1, . . . , ẋr, . . . , xn by V ′(x1, . . . , ẋr, . . . , xn)
implies that the function

xr �→f ◦ PV (x1, . . . , xn)
= f ◦ U(x1, . . . , xn)

is simple and integrable, proving (i).
The previous lemma (if r > 1) and translation invariance (any r) of the

integral also imply that

f ′ : (x1, . . . , ẋr, . . . , xn) �→
∫ F

f ◦ P (x1, . . . , xn) dxr

is the lift of

(u1, . . . , u̇r, . . . , un) �→
∫

g ◦ τ(u1, . . . , un) dur X−
∑n−1

i=1 δi

at b, δ for some b ∈ Fn−1, δ = (δi) ∈ Γn−1, τ ∈ SLn(F ).
The inductive hypothesis with function f ′ and matrix V ′ implies that

f ′ ◦ V ′ is strongly Fubini with repeated integral equal to that of f ′. But the
repeated integral of f ′ is

∫
F

n
g ◦ τ(u) du X−

∑n−1
i=1 δi X

∑n−1
i=1 δi =

∫
F

n
g(u) du

=
∫ F n

f(x) dx

by Remark 3.9, and

f ′ ◦ V ′(x1, . . . , ẋr, . . . , xn) =
∫ F

f ◦ PV (x1, . . . , xn) dxr

=
∫ F

f ◦ U(x1, . . . , xn) dxr,

which proves (ii). �
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Proposition 4.11. Let g be GL-Fubini on F
n, a ∈ Fn, γ ∈ Γn, δ ∈ Γ; set

f = ga,γ Xδ. Let τ ∈ GLn(F ); then f ◦ τ is strongly Fubini on Fn, with
∫ F n

f ◦ τ(x) dx = | det τ |−1
∫ F n

f(x) dx.

Proof. We claim that it suffices to prove the special case a = 0, γ = 0, δ = 0.
This claim follows in the same way as the beginning of Proposition 4.10. Now
assume a = 0, γ = 0, δ = 0.

Write τ = AUΛ as in Lemma 4.5. Then f ◦ A = (g ◦ A)0, where A is the
image of A in GLn(F ); Proposition 3.8 implies

∫ F n

f ◦ A(x) dx =
∫

F
n
g ◦ A(u) du

= | det A|−1
∫

F
n
g(u) du

= | det A|−1
∫ F n

f(x) dx.

Proposition 4.10 implies that f ◦ AU is strongly Fubini with
∫ F n

f ◦ AU(x) dx =
∫ F n

f ◦ A(x) dx.

Finally, Lemma 3.5 implies that f ◦ AUΛ is strongly Fubini, with
∫ F n

f ◦ AUΛ(x) dx = | det Λ|−1
∫ F n

f ◦ AU(x) dx.

Since det τ = det A det Λ, the proof is complete. �
The previous proposition extends by linearity to all of L(Fn, GLn) and

so the main Theorem 4.4 is proved.

Remark 4.12. Suppose F is a two-dimensional local field, with OF =
ρ−1(OF ) the rank 2 ring of integers. Assume that our chosen Haar mea-
sure on F assigns OF measure 1. Then for any τ ∈ GLn(F ) and a ∈ Fn, the
characteristic function of a + τ(On

F ) belongs to L(Fn, GLn), and
∫ F n

chara+τ(On
F )(x) dx = | det τ | ∈ C(X) = C(Γ).

Kim and Lee [13] have also developed a measure theory on Fn. Their
measurable sets are the algebra of sets generated by ∅, Fn and a + τ(On

F )
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for a ∈ Fn, τ ∈ GLn(F ); the measure assigned to a + τ(On
F ) is | det τ |, as in

the approach of this paper.
However, the measure of Kim and Lee does not take values in C(X), but

rather in an additive monoid consisting of elements 0 and λXi, λ ∈ R>0,
i ∈ Z; addition is defined by

λXi + λ′Xj =

⎧⎪⎨
⎪⎩

λXi if i < j,

(λ + λ′)Xi if i = j,

λ′Xj if i > j.

If S is a measurable set in the approach of Kim and Lee, then charS will
belong to L(Fn, GLn); expanding the integral in R((X)), we may write

∫ F n

charS(x) dx =
∑
i≥I

λiXi,

where λi ∈ R and λI 	= 0. Kim and Lee assign S measure λIX
I ; this trun-

cation of the measure is suitable for defining a convolution of functions on
GLn(F ) and for ensuring σ-additivity.

5. Invariant integral on GLN(F )

We will now consider integration on the space of matrices MN (F ) and its
unit group GLN (F ).

Let n = N2 and identify MN (F ) with Fn via an isomorphism T : Fn →
MN (F ) of F vector spaces. Let L(MN (F )) be the C(Γ)-space of C(Γ)-valued
functions f on MN (F ) for which fT belongs to L(Fn, GLn); set

∫ MN (F )

f(x) dx =
∫ F n

fT (x) dx.

Remark 5.1. The space L(MN (F )) does not depend on the choice of the
isomorphism T since L(Fn, GLn) is invariant under the action of GLn(F ),
and the functional

∫ MN (F ) depends on T only up to a scaler multiple from
|F×| = {λXγ : λ ∈ |F×|, γ ∈ Γ}.

L(MN (F )) is closed under translation, and
∫ MN (F ) is a translation-

invariant C(Γ)-linear functional on the space.

Of course, integrating on MN (F ) is no harder than integrating on Fn.
We are really interested in GLN (F ).
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Definition 5.2. Let L(GLN (F )) denote the space of C(Γ)-valued func-
tions φ on GLN (F ) such that τ �→ φ(τ)| det τ |−n extends to a function of
L(MN (F )).

The integral of φ over GLN (F ) is defined by
∫ GLN (F )

φ(τ) dτ =
∫ MN (F )

φ(x)| det x|−n dx,

where the integrand on the right is really the extension of the function to
MN (F ).

Remark 5.3. For the previous definition of the integral to be well defined,
we must show that if f1, f2 ∈ L(MN (F )) are equal when restricted to GLN

(F ), then f1 = f2.
It suffices to prove that if f ∈ L(Fn, GLn) vanishes off some Zariski

closed set (other than Fn), then f is identically zero. By a locally constant
function g on Fn, we mean a function such that for each a ∈ Fn, there exists
γ ∈ Γ such that if ε1, . . . , εn ∈ F have valuation greater than γ, then f(a1 +
ε1, . . . , an + εn) = f(a1, . . . , an). If g1, g2 are locally constant, then so are
g1 + g2 and g1 ◦ A for any affine transformation of Fn. But a lifted function
is locally constant and so any function in L(Fn, GLn) is locally constant. It
is now enough to show that if p is a polynomial in F [X1, . . . , Xn], such that
p(ε1, . . . , εn) = 0 whenever ε1, . . . , εn ∈ F have large enough valuation, then
p is the zero polynomial. This is easily proved by induction on n.

The integral is translation invariant.

Proposition 5.4. Suppose φ belongs to L(GLN (F )) and σ ∈ GLN (F ).
Then the functions τ �→ φ(στ) and τ �→ φ(τσ) belong to L(GLN (F )), with

∫ GLN (F )

φ(στ) dτ =
∫ GLN (F )

φ(τ) dτ =
∫ GLN (F )

φ(τσ) dτ.

Proof. Let rσ (resp. lσ) denote the element of GLn(F ) (identified with
GL(MN (F )) via T ) defined by right (resp. left) multiplication by σ. Let
τ �→ φ(τ)| det τ |−n be the restriction of f ∈ L(MN (F )) to GLN (F ), say. The
function

τ �→ φ(τσ)| det τ |−n

=| det σ|nφ(τσ)| det τσ|−n

=| det σ|nφ ◦ rσ(τ)| det(rστ)|−n
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is the restriction of | det σ|nf ◦ rσ ∈ L(MN (F )) to GLN (F ).
Theorem 4.4 therefore implies that

∫ GLN (F )

φ(τσ) dτ =
∫ MN (F )

| det σ|nf ◦ rσ(x) dx

= | det σ|n| det rσ|−1
∫ MN (F )

f(x) dx

= | det σ|n| det rσ|−1
∫ GLN (F )

φ(τ) dτ.

Note that det σ is the determinant of σ as an N × N matrix, and det rσ

is the determinant of rσ as an automorphism of the N2-dimensional space
MN (F ).

To complete the proof for rσ, it suffices to show that det rσ = det σn.
Let ei,j denote the N × N matrix with a 1 in the i, j position and zeros
elsewhere. With respect to the ordered basis

e1,1, e1,2, . . . , e1,N , e2,1, . . . , e2,N , . . . , eN,1, . . . , eN,N ,

r(σ) acts as the block matrix

⎛
⎜⎝

σt

. . .
σt

⎞
⎟⎠

(t denotes transpose), which has determinant detσn as required.
The proof with lσ in place of rσ differs only in notation, except that one

should use the ordered basis

e1,1, e2,1, . . . , eN,1, e1,2, . . . , eN,2, . . . , e1,N , . . . , eN,N

instead. �

So we have obtained a translation-invariant integral on the algebraic
group GLN (F ). Just as the integrals on F and Fn lift the usual Haar
integral on F and F

n, so too does this integral incorporate the Haar integral
on GLN (F ). To demonstrate this most clearly, it is prudent to now assume
that the chosen isomorphism T restricts to an OF -linear isomorphism On

F →
MN (OF ). Thus T descends to a F -linear isomorphism T : F

n → MN (F )
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which makes the diagram commute:

On
F

T−−−−→ MN (OF )⏐⏐�
⏐⏐�

F
n −−−−→

T
MN (F )

where the vertical arrows are coordinate-wise residue homomorphisms. This
will ensure a functoriality between our algebraic groups at the level of F and
at the level of F .

Remark 5.5. This assumption holds if we identify MN (F ) with Fn2
in the

most natural way, via the standard basis of Fn2
and the basis of MN (F )

used in Proposition 5.4.

Further, we now normalize the Haar measures on MN (F ) and GLN (F ) in
the following way: give MN (F ) the Haar measure obtained by pushing for-
ward the product measure on F

n via T , and then give GLN (F ) the standard
Haar measure dGLN

u = | det u|−ndMN
u. Such normalizations are not essen-

tial, but otherwise extraneous constants would appear in formulae below.
It will be useful to call a complex-valued function on MN (F ) GL-Fubini if
its pull back to F

n via T is GL-Fubini in the sense already defined. Again,
note that a Schwartz–Bruhat function on MN (F ) is certainly GL-Fubini.

We have already defined what is meant by the lift of a Haar integrable
from F , F

n. Let us generalize this notion further.

Definition 5.6. Let G denote either of the algebraic groups MN , GLN .
Given a complex-valued function g on G(F ), let g0 be the complex-valued
function on G(F ) defined by

g0 : G(F ) → C

x �→
{

g(x), x ∈ G(OF ),
0, otherwise.

Then the compatibility between the integrals on MN at the level of F
and F is the following:
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Proposition 5.7. Suppose that g is a complex-valued Haar integrable func-
tion on MN (F ) which is a GL-Fubini function on F

n (e.g., g a Schwartz–
Bruhat function on MN (F )). Then g0 belongs to L(MN (F )), and

∫ MN (F )

g0(x) dx =
∫

MN (F )
g(u) du.

Proof. By the existence of T and its compatibility with T we have an equality
of functions on MN (F ):

(gT
−1)0T = g0.

Definition of the integral on MN (F ) implies

∫ MN (F )

g0(x) dx =
∫ F n

(gT
−1)0(x) dx.

Taking G to be n copies of the additive group, we showed in Proposition 3.8
that the result corresponding to this one holds; so

∫ F n

(gT
−1)0(x) dx =

∫
F

n
gT

−1(u) du.

Finally, our normalization of the Haar measure on MN (F ) implies
∫

F
n
gT

−1(u) du =
∫

MN (F )
g(u) du,

which completes the proof. �

And now we prove the same result for GLN .

Proposition 5.8. Suppose that g is a complex-valued Schwartz–Bruhat
function on GLN (F ) such that

f(u) =

{
g(u)| det u|−n, u ∈ GLN (F ),
0, det u = 0

is GL-Fubini on MN (F ). Then g0 belongs to L(GLN (F )), and

∫ GLN (F )

g0(τ) dτ =
∫

GLN (F )
g(u) du.
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Proof. The assumption on f and the previous proposition imply that f0

belongs to L(MN (F )). Moreover, τ ∈ GLN (OF ) implies

f0(τ) = g(τ)| det τ |−n = g0(τ)| det τ |−n,

so that f0 is an extension of τ �→ g0(τ)| det τ |−n from GLN (F ) to a function
in L(MN (F )).

Therefore, g0 belongs to L(GLN (F )) and

∫ GLN (F )

g0(τ) dτ =
∫ MN (F )

f0(x) dx

=
∫

MN (F )
f(u) du

=
∫

GLN (F )
g(u) du,

where the second equality follows from the previous proposition. �

Remark 5.9. If g decreases sufficiently rapidly towards the boundary of
GLN (F ) in MN (F ), then the hypothesis in the previous proposition will
hold, i.e., f will be GL-Fubini on MN (F ). In particular, if g is the restriction
to GLN (F ) of a Schwartz–Bruhat function on MN (F ), then (replacing g by
g| det ·|s) the function

f(u) =

{
g(u)| det u|s−n, u ∈ GLN (F ),
0, det u = 0,

is GL-Fubini on MN (F ) for s ∈ C and Re(s) sufficiently large. The previous
result now implies

∫ GLN (F )

g0(τ)| det τ |s dτ =
∫

GLN (F )
g(u)| det u|s du;

note that for any τ ∈ GLN (F ) in the support of g0, one has | det τ |s =
| det τ |s ∈ C

×.
Thus we can lift Jacquet–Godement zeta functions [10] to GLN (F ); this

may be useful in generalizing their theory.
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6. Other algebraic groups and related problems

6.1. Integration over an arbitrary algebraic group

Having established an integral on GLN (F ), it would be useful to also be able
to integrate on algebraic subgroups such as SLN (F ) or BN (F ), the group
of invertible upper triangular matrices. Arguments similar to the above will
surely provide such an integral, but to establish such results for an arbitrary
reductive algebraic group G, we require a more general abstract approach.

The author suspects that to each algebraic group G there is a space of
C(Γ)-valued functions L(G(F )) on G(F ) and a linear functional

∫ G(F ) on
these functions with the following properties:

(i) Compatibility between F and F : if g is a “nice” (e.g., Schwartz–
Bruhat) Haar integrable function on G(F ), then g0 (an obvious gener-
alization of Definition 5.6) belongs to L(G(F )) and

∫ G(F )

g0(x) dx =
∫

G(F )
g(u) du.

(ii) Translation invariance: if f ∈ L(G(F )) and τ ∈ G, then x �→ g(xτ) is
in L(G(F )), and

∫ G(F )

f(xτ) dx =
∫ G(F )

f(x) dx.

There should also be a left translation-invariant integral on G(F ), and
this would coincide with the right-invariant integral if G(F ) is unimodular.

Even for the simplest algebraic group G = “additive group”, these con-
ditions are not enough to make the integral unique in a reasonable way; this
is discussed in the first section of [14]. However, if we assume the existence
of an absolute value which relates the integrals on F× and F , the unique-
ness does follow. We have observed a similar phenomenon in this paper
where we constructed the integral on Fn to be compatible with change of
variables from GLn(F ). So to ensure uniqueness, we should add to the list
the informal statement

(iii) Compatibility between the integrals over different algebraic groups.
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6.2. Subgroups of GLN

Once integration over algebraic subgroups of GLN (F ) has been established,
there are certain formulae which are expected to hold by analogy with the
case of a local field. We quote two examples from [2]; for f a complex-valued
integrable function on GLN (F ) (resp. on BN (F )),

∫
GLN (F )

f(g) dg =
∫

GLN (OF )

∫
BN (F )

f(kb) dk dRb

∫
BN (F )

f(b) dRb =
∫

ΔN (F )

∫
UN (F )

f(uλ) du dλ,

where UN denotes the u.u.t. matrices, ΔN the diagonal matrices and dR

right Haar measure (apart from BN , these groups are unimodular).
Writing these identities explicitly, one sees that these formulae require

the class of integrable functions on GLN (F ) to be invariant under certain
polynomial changes of variables. It is therefore also important to extend the
class of functions L(Fn, GLn) so that it is closed under certain polynomial
changes of variables.

This is also precisely the sort of compatibility which may be important
in (iii).

6.3. Non-linear change of variables

To develop integration on arbitrary algebraic groups and prove compatibility
between them, we are led to investigate non-linear change of variables on
Fn. A step in this direction is taken in [15] in the case of a two-dimensional
local field (that is, F is a complete discrete valuation field whose residue field
is a local field). It is proved that if f = ga,γ is the lift to F 2 of a Schwartz–
Bruhat function on F

2 and h is a polynomial over F then, assuming certain
conditions, (x, y) �→ f(x, y − h(x)) is Fubini on F 2, and so

∫ F 2

f(x, y − h(x)) dx dy =
∫ F 2

f(x, y − h(x)) dy dx =
∫ F 2

f(x, y) dy dx.

Note that the second equality follows simply from translation invariance of
the integral.

However, it is essential to make some assumptions on the singularities
of h, for the author also proves the following:
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Proposition 6.1. Suppose F is a two-dimensional local field and F has
finite characteristic p. Let h(X) = t−1Xp where t is a uniformiser of F , and
let g be any Schwartz–Bruhat function on K × K. Then for all y ∈ F , the
function x �→ g0(x, y − h(x)) is integrable, with

∫ F
g0(x, y − h(x)) dx = 0.

Therefore, ∫ F ∫ F

g0(x, y − h(x)) dx dy = 0,

whereas ∫ F ∫ F

g0(x, y − h(x)) dy dx =
∫ ∫

g(u, v) dv du,

which need not be zero.

Whether this failure of Fubini’s theorem will cause a problem in verifying
existence of integrals on algebraic groups is unclear to the author. If such
“wild” changes of variable do not appear when changing charts on one’s
algebraic group, then this may not be too serious. However, it is certainly an
unexpected result; it appears to be a measure-theoretic consequence of the
characteristic p local field F being imperfect, see [15] for further discussion.
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