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Correlations of eigenvalues and Riemann zeros
John Brian Conrey and Nina Claire Snaith

Interest in comparing the statistics of the zeros of the Riemann zeta
function with random matrix theory dates back to the 1970s and
the work of Montgomery and Dyson. Twelve years ago Rudnick
and Sarnak and, independently, Bogomolny and Keating showed
that the n-point correlation function of the Riemann zeros, cor-
rectly scaled and in the limit of infinite height on the critical line,
agrees with the scaling limit of the n-correlation of eigenvalues of
random unitary matrices. The former piece of work holds only
for a restricted class of test functions, and the latter relies on a
heuristic method and the conjectures of Hardy and Littlewood.
Neither tells us more than the asymptotic limit for the general
n-correlation. In this article we use the ratios conjecture for aver-
age values of the Riemann zeta function to produce the lower order
terms in a very precise formula for the n-correlation of the Riemann
zeros. The same method can be applied rigorously in the random
matrix case, yielding a formula which shows identical structure
(though with none of the arithmetic details) to the correlations
of the Riemann zeros - something which cannot be seen from the
classical determinantal formula for the random matrix correlation
functions.
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1. Introduction

In 1972 Montgomery [17] and Dyson [12] discovered that pairs of zeros of the
Riemann zeta-function are distributed like pairs of eigenvalues of random
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unitary matrices. Part of this discovery could be proven, under the assump-
tion of the Riemann hypothesis, and part relies on a heuristic based on the
Hardy–littlewood conjectures for the distribution of prime pairs.

Odlyzko [18], in the 1980s carried out a substantial numerical test of
Montgomery’s conjecture which provided stunning visual substantiation.

Subsequently Rudnick and Sarnak [20] showed that the limit high on the
critical line of the n-correlation of the zeros of the Riemann zeta-function
agreed with that of unitary matrices, provided that the test function had a
Fourier transform with limited support.

At the same time, Bogomolny and Keating [2] showed how the Hardy–
Littlewood conjectures could be used to derive the asymptotic limit of the
n-correlation.

Bogomolny and Keating [1] also investigated the difference between
Montgomery’s limiting pair-correlation conjecture and the data of Odlyzko.
A close examination of Odlyzko’s data revealed that lower-order terms, likely
to be of an arithmetic nature, were present. They derived formulae for
these lower-order terms, initially using the Hardy–Littlewood conjectures,
but subsequently developing a method whose point of departure was the
trace formula of Gutzwiller. They gave full details for the lower-order terms
for the 2-point correlation, as well as numerics showing the goodness of fit,
whereas for three and higher correlations, they outlined several methods
which lead to these lower-order terms.

In this paper, we present a different approach to obtaining these lower-
order terms for n-correlation. Our approach is based on the ‘Ratios con-
jecture’ of Conrey, Farmer and Zirnbauer [6, 7] (see also [10]). Assuming
the Ratios conjecture we prove a formula which explicitly gives all of the
lower-order terms in any order correlation. (In the final section we write
down the first four correlations.)

Our method works equally well for the random matrix theory. An inter-
esting feature of this work is the new formula for the n-correlation of the
random matrix theory that arises by this method (see Theorem 3.5). It is
a far less elegant formula than the usual determinantal expression, but it
allows for direct comparison with the number theoretical result, illustrating
the identical structure of the n-point correlations of Riemann zeros and ran-
dom matrix eigenvalues. (See [15, Remark 1.8] for another example where
a formula more complicated than the determinantal one actually yields an
easier comparison with the number theory.) In fact, in the scaling limit
(when the variables in the test function are multiplied by log T/2π and T ,
the height up the critical line, becomes large) all of the arithmetic features
of the formula for the n-correlation of the Riemann zeros disappear and
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it exactly matches our new formula for the n-correlation of eigenvalues of
unitary matrices in the equivalent limit. This identification allows us to
prove that in the scaling limit the leading order terms for our n-correlation
of the Riemann zeros have the expected determinantal form. See [9] for the
explicit derivation of the asymptotic limit in the case of the triple correlation
of Riemann zeros. The higher correlations follow in exactly the same way.

This point is significant in view of the difficulty in making this iden-
tification in other works on n-correlation and n-level density. In Rudnick
and Sarnak [20] this identification is proven in the case of test functions
restricted to [−1, 1]; the proof is quite involved and makes serious use of the
restriction on the support of the test function. Indeed this point forms a
difficulty which shows up, for example, in the work of Gao [14] on n-level
density for zeros of quadratic L-functions. Rubinstein [19] had evaluated
this for test functions whose total support was contained in [−1, 1] and ver-
ified the determinantal form for functions restricted to this class, analogous
to what Rudnick and Sarnak did. Gao extended the range of support to
[−2, 2], but for these test functions he was unable to derive the determinan-
tal form, due to combinatorial complexities. Here we handle the case in full
generality without any mention of the test function. It is possible that our
method sheds light on this difficulty that arises in these other works.

This paper extends the calculation of the triple correlation of Riemann
zeros [9]. An anticipated application of this current work is the determina-
tion of the lower-order terms in the nearest neighbor spacing for zeta-zeros.

Throughout this paper we assume the truth of the Riemann Hypothesis.

2. Background and notation

2.1. The Riemann zeta-function

For more details about the Riemann zeta-function, see the standard texts
[13, 21], but most of the properties that are needed for this paper are dis-
cussed below. The Riemann zeta-function is defined by

(2.1) ζ(s) =
∞∑

n=1

1
ns

for s = σ + it with σ > 1. It has a meromorphic continuation to the whole
complex plane with its only singularity a simple pole at s = 1 with residue 1.
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It satisfies a functional equation which, in its symmetric form reads

(2.2) π−s/2Γ
(

s

2

)
ζ(s) = π(s−1)/2Γ

(
1 − s

2

)
ζ(1 − s),

and in its asymmetric form is

(2.3) ζ(s) = χ(s)ζ(1 − s),

where

(2.4) χ(1 − s) = χ(s)−1 = 2(2π)−sΓ(s) cos
πs

2
.

The product formula discovered by Euler is

(2.5) ζ(s) =
∏

p

(
1 − 1

ps

)−1

for σ > 1 where the product is over the prime numbers p.
The complex zeros of the Riemann zeta-function are denoted by

ρ = β + iγj , where it is known that 0 < β < 1. The Riemann hypothesis
asserts that β = 1/2 for all zeros ρ. We assume this is true and denote
the zeros as 1/2 + iγj , where 0 < γ1 ≤ γ2 ≤ · · · . The number of γ with
0 < γ ≤ T is given by

(2.6) N(T ) = #{γ ≤ T} =
T

2π
log

T

2πe
+ O(log T )

so that the average distance from one γ to the next is ∼2π/ log γ.
The family {ζ(1/2 + it)|t > 0} parameterized by real numbers t can be

modeled by characteristic polynomials of unitary matrices.

2.2. Unitary matrices

If X is an N × N matrix with complex entries X = (xjk), we let X∗ be
its conjugate transpose, i.e., X∗ = (yjk), where yjk = xkj . X is said to be
unitary if XX∗ = I. We let U(N) denote the group of all N × N unitary
matrices. This is a compact Lie group and has a Haar measure which allows
us to analyse.
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All of the eigenvalues of X ∈ U(N) have absolute value 1; we write
them as

(2.7) eiθ1 , eiθ2 , . . . , eiθN .

The eigenvalues of X∗ are e−iθ1 , . . . , e−iθN . Clearly, the determinant, detX =∏N
n=1 eiθn , of a unitary matrix is a complex number with absolute value

equal to 1.
The average distance from one θ to the next is 2π/N . To obtain a

sequence of numbers with average spacing 1 we let

(2.8) θ̃j =
Nθj

2π
.

For any sequence of N points on the unit circle there are matrices in
U(N) with these points as eigenvalues. The collection of all matrices with
the same set of eigenvalues constitutes a conjugacy class in U(N). Thus, the
set of conjugacy classes can be identified with the collection of sequences of
N points on the unit circle.

We are interested in computing various statistics about these eigenval-
ues. Consequently, we identify all matrices in U(N) that have the same set
of eigenvalues. Weyl’s integration formula gives a simple way to perform
averages over U(N) for functions f that are constant on conjugacy classes.
Such functions are called “class functions”. Weyl’s formula asserts that for
such an f ,

(2.9)
∫

U(N)
f(X) dHaar =

∫

[0,2π]N
f(θ1, . . . , θN ) dXN ,

where

(2.10) dXN =
∏

1≤j<k≤N

∣∣eiθk − eiθj
∣∣2 dθ1 · · · dθN

N !(2π)N
.

Since N will be fixed in this paper, we will usually write dX in place of
dXN . The Haar measure can be expressed in terms of the Vandermonde
determinant

(2.11) Δ(w1, . . . , wR) = det
R×R

(
wj−1

i

)
=

∏

1≤j<k≤R

(wk − wj).
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The characteristic polynomial of a matrix X is denoted ΛX(s) and is
defined by

(2.12) ΛX(s) = det(I − sX∗) =
N∏

n=1

(1 − se−iθn).

The roots of ΛX(s) are the eigenvalues of X and are on the unit circle. The
characteristic polynomial satisfies the functional equation

ΛX(s) = (−s)N
N∏

n=1

e−iθn

N∏

n=1

(1 − eiθn/s)(2.13)

= (−1)N det X∗ sN ΛX∗(1/s).(2.14)

Note that

(2.15) s
Λ′

X

ΛX
(s) +

1
s

Λ′
X∗

ΛX∗

(
1
s

)
= N.

These characteristic polynomials have value distributions similar to those
of the Riemann zeta-function and form the basis of random matrix models
which predict behavior for the Riemann zeta-function based on what can be
proven about the Λ. Some care has to be taken in making these comparisons
because we are used to thinking about the zeta-function in a half-plane,
whereas the Λ are naturally studied in a circle. The translation is that the
1/2-line corresponds to the unit circle; the half-plane to the right of the
1/2-line corresponds to the inside of the unit circle. Note that ΛX(0) = 1 is
the analog of limσ→∞ ζ(σ + it) = 1.

We let

(2.16) z(x) =
1

1 − e−x
.

In our formulas for averages of characteristic polynomials the function z(x)
plays the role for random matrix theory that ζ(1 + x) plays in the theory of
moments of the Riemann zeta-function.

We want an accurate formula for

(2.17)
∑∗

0<γj1 ,...,γjn<T

f(γj1 , . . . , γjn
),

for suitable functions f , to be described later, where the sum is for distinct
indices j; the desired formula should be analogous to the RMT theorem
which we state in the next section.
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3. Eigenvalue correlations

Here is a statement for n-correlation of eigenvalues of random unitary matri-
ces of size N :

Theorem 3.1. Let f : [0, 2π]n → C be a continuous function of n-variables.
Then

∫

U(N)

∑∗

1≤j1,...,jn≤N

f(θj1 , . . . , θjn
) dXN

=
1

(2π)n

∫

[0,2π]n
f(θ1, . . . , θn) det

n×n
SN (θk − θj) dθ1 · · · dθn,

where
∑∗

indicates that the sum is for distinct indices and where

SN (θ) =
sin(Nθ/2)
sin(θ/2)

.

This theorem is a well-known consequence of Gaudin’s lemma; see [4].
In the following sections we present a new proof of this theorem, for

periodic, holomorphic test functions f , based on a formula for averaging
ratios of characteristic polynomials of unitary matrices. There are many
proofs for this formula; see [3,7,8]. The point of this approach is that it has
a natural analog in the theory of L-functions.

3.1. Averages of ratios of characteristic polynomials

The statement of the Ratios theorem is slightly complicated. We attempt
to make it easier to comprehend by eliminating subscripts. So, let there be
given finite sets A, B, C and D and consider

(3.1) R(A, B; C, D) :=
∫

U(N)

∏
α∈A ΛX(e−α)

∏
β∈B ΛX∗(e−β)

∏
γ∈C ΛX(e−γ)

∏
δ∈D ΛX∗(e−δ)

dX,

with �γ > 0,�δ > 0. Theorem 3.2, the Ratios theorem, is written in an
equivalent but slightly different form to previous work, where we express
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R(A, B; C, D) as a sum over subsets S ⊂ A and T ⊂ B with |S| = |T |. Each
term in this sum essentially has the same structure, except that the elements
of S effectively exchange places with those in T . In addition we let S =
A − S and T = B − T . We will let α̂ denote a generic member of S and
β̂ denote a generic member of T ; we will use α and β for generic members
of A and B or of S and T , according to the context. Also S− = {−α̂ :
α̂ ∈ S}, and similarly for T−. The Ratios theorem is most easily stated
in terms of

(3.2) Z(A, B) :=
∏

α∈A
β∈B

z(α + β),

where z(x) = 1/(1 − e−x), and

Z(A, B; C, D) :=

∏
α∈A
β∈B

z(α + β)
∏

γ∈C
δ∈D

z(γ + δ)
∏

α∈A
δ∈D

z(α + δ)
∏

β∈B
γ∈C

z(β + γ)

=
Z(A, B)Z(C, D)
Z(A, D)Z(B, C)

.(3.3)

Theorem 3.2 (Ratios Theorem [7,8]). With �γ > 0,�δ > 0 for γ ∈ C and
δ ∈ D, |C| ≤ |A| + N and |D| ≤ |B| + N , we have

R(A, B; C, D) =
∑

S⊂A,T⊂B
|S|=|T |

e−N(
∑

α̂∈S α̂+
∑

β̂∈T β̂)Z(S + T−, T + S−; C, D),

where A = S + S, B = T + T and Z is defined in (3.3).

3.2. Averages of logarithmic derivatives
of characteristic polynomials

For use in determining multiple correlation we differentiate the Ratios the-
orem to obtain a theorem about averages of logarithmic derivatives:
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Theorem 3.3. If �αj > 0 and �βj > 0 for αj ∈A and βj ∈B, then J(A; B)
= J∗(A; B) where

J(A; B) :=
∫

U(N)

∏

α∈A

(−e−α)
Λ′

X

ΛX
(e−α)

∏

β∈B

(−e−β)
Λ′

X∗

ΛX∗
(e−β) dX,(3.4)

J∗(A; B) :=
∑

S⊂A,T⊂B
|S|=|T |

e−N(
∑

α̂∈S α̂+
∑

β̂∈T β̂) Z(S, T )Z(S−, T−)
Z†(S, S−)Z†(T, T−)

×
∑

(A−S)+(B−T )
=U1+···+UR

|Ur|≤2

R∏

r=1

HS,T (Ur),(3.5)

and

HS,T (W ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

α̂∈S

z′

z
(α − α̂) −

∑

β̂∈T

z′

z
(α + β̂) if W = {α} ⊂ A − S,

∑

β̂∈T

z′

z
(β − β̂) −

∑

α̂∈S

z′

z
(β + α̂) if W = {β} ⊂ B − T ,

(
z′

z

)′
(α + β) if W = {α, β} with

α ∈ A − S, β ∈ B − T
0 otherwise.

(3.6)

Also, Z(A, B) =
∏

α∈A
β∈B

z(α + β), with the dagger on Z†(S, S−) imposing the

additional restriction that a factor z(x) is omitted if its argument is zero.

Remark 3.1. The definitions of J(A; B) and J∗(A; B) make sense without
the restriction that �αj > 0 and �βj > 0. However, the two are not equal
without these restrictions.

Remark 3.2. Note that J∗(A; B) has a pole when an α ∈ A is equal to −β,
for some β ∈ B. It also appears to have a pole when two αs are equal, say
α1 = α2, occurring when α1 ∈ S and α2 /∈ S, as seen in the term z′

z (α − α̂)
of (3.21). However, this is cancelled by a pole with residue of the opposite
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sign when S is replaced by S − {α1} + {α2}. The same phenomenon occurs
when two βs are equal, as can be seen from the concrete examples given in
(5.23) and (5.29).

Proof of Theorem 3.3. By (3.1), we have

(3.7) J(A; B) =
∏

α∈A
β∈B

d

dα

d

dβ
R(A, B; C, D)

∣∣∣∣∣∣∣∣
C=A
D=B

.

Of course, in this situation |C| = |A| and |D| = |B|; so that we may think of
A = {α1, . . . , αk} and C = {γ1, . . . , γk} and then the substitution “C = A”
means the substitution γi = αi for i = 1, 2, . . . , k, and similarly for D
and B.

Recall from Theorem 3.2 that R is expressed as a sum of Z over subsets
S and T . In performing the differentiations in (3.7) we will find that the
derivatives with respect to the variables in S and T are fairly simple to
perform (as we will show below, culminating in (3.14)), but we will need
Lemma 3.1 to differentiate with respect to the remaining variables. Hence
we first rewrite Z so as to separate these variable types.

Note first that Z(A, B)=Z(B, A) and that Z behaves nicely with respect
to unions:

(3.8) Z(A1 + A2, B) = Z(A1, B)Z(A2, B).

Recall that A = S + S and B = T + T and put C = CS + CS and D =
DT + DT , where we think of CS , for example, as being the set that will
be substituted by S when eventually C is substituted by A. Then using
(3.8) repeatedly, we have

Z(S + T−, T + S−; C, D)

=
Z(S, T )Z(S, S−)Z(T−, T )Z(T−, S−)Z(C, D)

Z(S, D)Z(T , C)Z(S−, CS)Z(T−, DT )Z(S−, CS)Z(T−, DT )
.(3.9)

This simplifies further if we make the substitution for C and D:

Z(S + T−, T + S−; C, D)
∣∣
C=A
D=B

=
Z(S, T )Z(S−, T−)
Z(S, S−)Z(T, T−)

= Z(S, T ; T−, S−).(3.10)
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Note that since z(x) has a pole at x = 0, the resulting expression is 0 unless
both S and T are empty.

We now differentiate (3.9) with respect to the variables in S and T ;
these derivatives are easy to calculate because, anticipating the substitution
of each γ ∈ CS by an α̂ we see that in differentiating with respect to α̂ the
expression z(γ − α̂) in the denominator (one of the factors of Z(S−, CS))
must be differentiated; if not it makes the whole expression 0 after the
substitution is made because z(x) has a pole at x = 0. Using the notation

(3.11) Z†(X, Y ) =
∏

x∈X,y∈Y
x+y 	=0

z(x + y),

and noting that

(3.12)
d

dα̂

1
z(γ − α̂)

= −eα̂−γ ,

we have, for example,

(3.13)
∏

α̂∈S

d

dα̂

1
Z(S−, CS)

∣∣∣∣
CS=S

=
(−1)|S|

Z†(S−, S)
.

In this way we obtain

J(A; B) =
∑

S,T
|S|=|T |

e−N(
∑

α̂+
∑

β̂) Z(S, T )Z(S−, T−)
Z†(S, S−)Z†(T, T−)

×
∏

α∈S
β∈T

d

dα

d

dβ

×
(

Z(S, T )Z(S, S−)Z(T , T−)Z(C, D)
Z(S, T )Z(CS , S−)Z(DT , T−)Z(S, D)Z(T , C)

)∣∣∣∣∣
C=A
D=B

.(3.14)

Note that the sets CS and DT vary from term to term in the sum over
S and T since the division of C into the union of sets CS and CS mimics
the form of A = S + S, and similarly for D. Also observe that

(3.15)
Z(S, T )Z(S, S−)Z(T , T−)Z(C, D)

Z(S, T )Z(CS , S−)Z(DT , T−)Z(S, D)Z(T , C)

∣∣∣∣
C=A
D=B

= 1.
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To perform the differentiations in (3.14) we use a form of logarithmic differ-
entiation expressed in the following.

Lemma 3.1. Let H be a differentiable function of w ∈ W . Then

(3.16)

(
∏

w∈W

d

dw

)
eH = eH

∑

W=W1+···+Wr

H(W1) · · ·H(Wr)

where

(3.17) H(W ) =

(
∏

w∈W

d

dw

)
H.

The sum is over all set partitions of W into disjoint sets Wj.

In words this Lemma says that to perform a derivative with respect to
each variable once, we form all of the set partitions of the complete set of
variables and add up over these set partitions the product of the partial
derivatives of the exponent H with respect to each variable in each subset
of the partition. This lemma is obvious upon working a few examples.

We apply this lemma with

H =HA,B,C,D
S,T :=

∑

α∈S
β∈T

log z(α + β)+
∑

α∈S
α̂∈S

log z(α − α̂)+
∑

β∈T

β̂∈T

log z(β − β̂)

−
∑

α∈S
δ∈D

log z(α + δ) −
∑

β∈T
γ∈C

log z(β + γ)(3.18)

and so obtain, with HS,T (W ) := HA,B,C,D
S,T (W )

∣∣
C=A
D=B

=
((∏

w∈W
d

dw

)

HA,B,C,D
S,T

) ∣∣
C=A
D=B

,

J(A; B) =
∑

S,T
|S|=|T |

e−N(
∑

α̂+
∑

β̂) Z(S, T )Z(S−, T−)
Z†(S, S−)Z†(T, T−)

×
∑

S+T
=W1+···+WR

R∏

r=1

HS,T (Wr).(3.19)
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Strictly speaking, HS,T (W ) depends on A and B, but from now on use of
HS,T (W ) will refer always to the expressions in (3.21) to (3.26), and these
can be used without specifically referring to A and B.

By consideration of (3.18) it is clear that we can restrict the subsets Wr

to be singletons or else pairs which have precisely one α and one β. This
follows from some easy calculations. Since

(3.20) HA,B,C,D
S,T ({α}) =

∑

β∈T

z′

z
(α + β) +

∑

α̂∈S

z′

z
(α − α̂) −

∑

δ∈D

z′

z
(α + δ),

we have

(3.21) HS,T ({α}) =
∑

α̂∈S

z′

z
(α − α̂) −

∑

β̂∈T

z′

z
(α + β̂), α /∈ S.

Similarly,

(3.22) HS,T ({β}) =
∑

β̂∈T

z′

z
(β − β̂) −

∑

α̂∈S

z′

z
(β + α̂), β /∈ T.

In addition

(3.23) HS,T ({α, β}) =
(

z′

z

)′
(α + β), α, β /∈ S or T.

Also,

(3.24) HS,T (∅) = 1,

and

(3.25) HS,T ({α, α′}) = HS,T ({β, β′}) = 0

and

(3.26) HS,T (W ) = 0 if |W | ≥ 3.
�

3.3. Residue identity

A key ingredient of the proof of n-correlation will be the following residue
identity for J∗(A; B):
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Lemma 3.2. Suppose that α∗ ∈ A and β∗ ∈ B. Let A′ = A − {α∗} and
B′ = B − {β∗}. Then J∗(A; B) has a simple pole at α∗ = −β∗ with

(3.27) Res
α∗=−β∗

J∗(A; B) = NJ∗(A′; B′) + J∗(A′; B) + J∗(A′ + {−β∗}; B′).

Proof. By Theorem 3.3 we have

(3.28) J∗(A, B) =
∑

S⊂A
T⊂B

|S|=|T |

DS,T (S, T ),

where throughout this proof (and this paper) A = S + S, B = T + T and

(3.29) DS,T (S, T ) = Q(S, T )
∑

S+T=
∑

Wr

∏

r

HS,T (Wr).

Here the sum is over any collection of non-empty sets W1, W2, . . . , which
form a partition of S + T ,

(3.30) Q(S, T ) = e−N(
∑

α̂∈S α̂+
∑

β̂∈T β̂) Z(S, T )Z(S−, T−)
Z†(S, S−)Z†(T, T−)

and HS,T (W ) is defined as in (3.21) to (3.26) and Z† is defined in Theo-
rem 3.3. We claim that D, Q and H have the following properties:

P1: If α∗ ∈ S and β∗ ∈ T , then Q(S, T ) is independent of α∗ and β∗ and

(3.31) HS,T (W ) =

⎧
⎨

⎩

1
(α∗ + β∗)2

+ O(1) if W = {α∗, β∗},

O(1) otherwise.

P2: If α∗ ∈ S and β∗ ∈ T , then Q(S, T ) is regular when α∗ = −β∗ and

(3.32) HS,T (W ) =

⎧
⎨

⎩

1
α∗ + β∗ + O(1) if W = {β∗},

O(1) otherwise.

P3: If α∗ ∈ S and β∗ ∈ T , then Q(S, T ) is regular when α∗ = −β∗ and

(3.33) HS,T (W ) =

⎧
⎨

⎩

1
α∗ + β∗ + O(1) if W = {α∗},

O(1) otherwise.
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P4: If α∗ ∈ S and β∗ ∈ T and S′ = S − {α∗} and T ′ = T − {β∗}, then
Q(S, T ) =

(
−1/(α∗ + β∗)2 + O(1)

)
Q1(S, T ), where

Q1(S, T ) = Q(S′, T ′)
(
1 − (α∗ + β∗)

(
N + HS′,T ′({α∗})|α∗=−β∗

+ HS′,T ′({β∗})
)

+ O(|α∗ + β∗|2)
)

(3.34)

and

HS,T (W ) = HS′,T ′(W ) − (α∗ + β∗)
×
(
HS′,T ′(W + {α∗})α∗=−β∗ + HS′,T ′(W + {β∗})

)

+ O(|α∗ + β∗|2).(3.35)

We show that the lemma follows from these four properties and then prove
that these properties hold in this situation. (We will later demonstrate
a proof along very similar lines when we treat the n-correlation of the
zeta-zeros.)

From these four properties we obtain four Laurent or Taylor expansions
of DS,T (S, T ) as a function of α∗ in a neighborhood of −β∗:

• If α∗ ∈ S and β∗ ∈ T , then (with S
′ = S − {α∗} and T

′ = T − {β∗})

DS,T (S, T ) =
(

1
(α∗ + β∗)2

+ O(1)
)

Q(S, T )
∑

S
′+T

′=
∑

Wr

∏

r

HS,T (Wr)

=
(

1
(α∗ + β∗)2

+ O(1)
)

DS,T (S′
, T

′);(3.36)

consequently, Resα∗=−β∗ DS,T (S, T ) = 0.

• If α∗ ∈ S and β∗ ∈ T , then

Res
α∗=−β∗

DS,T (S, T ) = Q(S′ + {−β∗}, T )
∑

S+T
′=

∑
Wr

∏

r

HS′+{−β∗},T (Wr)

= DS′+{−β∗},T (S, T
′).(3.37)

• If α∗ ∈ S and β∗ ∈ T , then

Res
α∗=−β∗

DS,T (S, T ) = Q(S, T )
∑

S
′+T=

∑
Wr

∏

r

HS,T (Wr)

= DS,T (S′
, T ).(3.38)
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• If α∗ ∈ S and β∗ ∈ T , then

Q1(S, T )
∑

S+T=
∑

Wr

∏

r

HS,T (Wr)

= Q(S′, T ′)
∑

S+T=
∑

Wr

∏

r

HS′,T ′(Wr)

×
(

1 + (α∗ + β∗)

(
N + HS′,T ′({α∗})|α∗=−β∗ + HS′,T ′({β∗})

+
∑

r

HS′,T ′(Wr + {α∗})|α∗=−β∗ + HS′,T ′(Wr + {β∗})
HS′,T ′(Wr)

)

+ O(|α∗ + β∗|2)
)

.(3.39)

Therefore in this final case,

Res
α∗=−β∗

DS,T (S, T ) = NDS′,T ′(S, T ) + DS′,T ′(S + {−β∗}, T )

+ DS′,T ′(S, T + {β∗}).(3.40)

Note that (3.39) can be written as

(3.41) DS′,T ′(S, T )
(
1 + O

(
|α∗ + β∗|

))
.

By (3.36) and (3.39) the double poles in P1 and P4 cancel because

(3.42)
∑

S⊂A,T⊂B
|S|=|T |

{α∗}∈S,{β∗}∈T

DS′,T ′(S, T ) =
∑

S⊂A,T⊂B
|S|=|T |

{α∗}/∈S,{β∗}/∈T

DS,T (S′
, T

′) = J∗(A′, B′);

therefore, the pole at α∗ = −β∗ is simple.
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Combining the four bullet-points above, we have (where as usual the
primed notation means that α∗ or β∗ has been removed from that set)

Res
α∗=−β∗

J∗(A; B) =
∑

S⊂A,T ⊂B
|S|=|T |

{α∗}∈S,{β∗}∈T

(
NDS′,T ′(S, T ) + DS′,T ′(S + {−β∗}, T )

+ DS′,T ′(S, T + {β∗})
)

+
∑

S⊂A,T ⊂B
|S|=|T |

{α∗}/∈S,{β∗}∈T

DS,T (S′
, T )

+
∑

S⊂A,T ⊂B
|S|=|T |

{α∗}∈S,{β∗}/∈T

DS′+{−β∗},T (S, T
′)(3.43)

Note that since α∗ does not appear in any of the summands, with the tempo-
rary convention that A′ = R + R, we can relabel two of the sums as follows:

∑

S⊂A,T⊂B
|S|=|T |

{α∗}∈S,{β∗}∈T

DS′,T ′(S, T + {β∗}) +
∑

S⊂A,T⊂B
|S|=|T |

{α∗}/∈S,{β∗}∈T

DS,T (S′
, T )

=
∑

R⊂A′,T⊂B
|R|=|T |
{β∗}/∈T

DR,T (R, T ) +
∑

R⊂A′,T⊂B
|R|=|T |
{β∗}∈T

DR,T (R, T )

= J∗(A′; B).(3.44)

Similarly,

(
∑

S⊂A,T⊂B
|S|=|T |

{α∗}∈S,{β∗}∈T

DS′,T ′(S + {α∗}, T ) +
∑

S⊂A,T⊂B
|S|=|T |

{α∗}∈S,{β∗}/∈T

DS,T (S, T
′)

)∣∣∣∣∣
α∗=−β∗

= J∗(A; B′)
∣∣
α∗=−β∗ = J∗(A′ + {−β∗}; B′).

(3.45)

Thus we have arrived at

Res
α∗=−β∗

J∗(A; B) = NJ∗(A′; B′) + J∗(A′; B) + J∗(A′ + {−β∗}; B′),(3.46)

which is the statement of the lemma.
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Now we verify that properties P1 through P4 are satisfied in the random
matrix situation where we have

(3.47) Q(S, T ) = e−N(
∑

α̂∈S α̂+
∑

β̂∈T β̂) Z(S, T )Z(S−, T−)
Z†(S, S−)Z†(T, T−)

and

HS,T (W ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

α̂∈S

z′

z
(α − α̂) −

∑

β̂∈T

z′

z
(α + β̂) if W = {α} ⊂ A − S,

∑

β̂∈T

z′

z
(β − β̂) −

∑

α̂∈S

z′

z
(β + α̂) if W = {β} ⊂ B − T ,

(
z′

z

)′
(α + β) if W = {α, β} with

α ∈ A − S, β ∈ B − T,

0 otherwise.

(3.48)

We will start with the simplest case that α∗ ∈ S, β∗ ∈ T . The only
polar term from α∗ = −β∗ arises from a situation when one of the partition
parts Wr = {α∗, β∗} and there is a pole from HS,T (Wr) =

(
z′

z

)′
(α∗ + β∗).

Since
(

z′

z

)′
(x) = 1/x2 + O(1) and α∗ and β∗ do not appear in Q(S, T ), this

completes the proof of P1.
Next, suppose that α∗ ∈ S and β∗ ∈ T . The only pole in DS,T (S, T )

occurs in the product of the H for HS,T (Wr) when Wr = {β∗}. We have

(3.49) HS,T ({β∗}) =
∑

β̂∈T

z′

z
(β̂ − β∗) −

∑

α̂∈S

z′

z
(β∗ + α̂)

for which, when α̂ = α∗, the term − z′

z (β∗ + α∗) has a simple pole at
α∗ = −β∗ with residue 1. Q(S, T ) is clearly regular at α∗ = −β∗.

Next, when α∗ ∈ S and β∗ ∈ T , the only pole in the product of the H
occurs for HS,T ({α∗}). We have

(3.50) HS,T ({α∗}) =
∑

α̂∈S

z′

z
(α̂ − α∗) −

∑

β̂∈T

z′

z
(α∗ + β̂)
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for which, when β̂ = β∗, the term − z′

z (α∗ + β∗) has a simple pole at
α∗ = −β∗ with residue 1. Q(S, T ) does not depend on α∗.

Finally, we consider the case α∗ ∈ S and β∗ ∈ T . We have

(3.51) Q(S, T ) = z(α∗ + β∗)z(−α∗ − β∗)Q1(S, T ),

where

Q1(S, T ) = Q(S′, T ′)e−N(α∗+β∗)

×
∏

β̂∈T ′ z(α∗ + β̂)z(−α∗ − β̂)
∏

α̂∈S′ z(α̂ + β∗)z(−α̂ − β∗)
∏

α̂∈S′ z(α∗ − α̂)z(α̂ − α∗)
∏

β̂∈T ′ z(β∗ − β̂)z(β̂ − β∗)
.(3.52)

Note that

(3.53) Q1(S, T )
∣∣
α∗=−β∗ = Q(S′, T ′).

We are well on our way to verifying property P4 because z(α∗ + β∗)z(−α∗ −
β∗) = −1

(α∗+β∗)2 + 1
12 + O(|α∗ + β∗|) and we have an expansion for Q1(S, T )

in the neighborhood of α∗ = −β∗:

Q1(S, T ) = Q(S′, T ′)
(
1 − N(α∗ + β∗) + O

(
|α∗ + β∗|2

))

×
(

1 + (α∗ + β∗)
( ∑

α̂∈S′

(z′

z
(α̂ + β∗) − z′

z
(−β∗ − α̂)

)

+
∑

β̂∈T ′

(z′

z
(−β∗ + β̂) − z′

z
(β∗ − β̂)

))
+ O(|α∗ + β∗|2)

)

= Q(S′, T ′)
(

1 − (α∗ + β∗)
(
N + HS′,T ′({α∗})|α∗=−β∗

+ HS′,T ′({β∗})
)

+ O(|α∗ + β∗|2)
)

.(3.54)
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Now we obtain an expansion for HS,T (W ), where we remember that
W ⊂ S + T and so W does not contain α∗ or β∗. By (3.48) we have that

HS,T ({α}) =
∑

α̂∈S

z′

z
(α − α̂) −

∑

β̂∈T

z′

z
(α + β̂)

= HS′,T ′({α}) +
z′

z
(α − α∗) − z′

z
(α + β∗);(3.55)

HS,T ({β}) =
∑

β̂∈T

z′

z
(β − β̂) −

∑

α̂∈S

z′

z
(β + α̂)

= HS′,T ′({β}) +
z′

z
(β − β∗) − z′

z
(β + α∗);(3.56)

and

(3.57) HS,T ({α, β}) =
(

z′

z

)′
(α + β) = HS′,T ′({α, β}).

Thus,

(3.58) HS,T (W )
∣∣∣∣
α∗=−β∗

= HS′,T ′(W )

and

(3.59)
d

dα∗ HS,T (W )
∣∣∣∣
α∗=−β∗

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−
(

z′

z

)′
(α + β∗) if W = {α},

−
(

z′

z

)′
(β − β∗) if W = {β},

0 otherwise.
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Note that we can write this as

d

dα∗ HS,T (W )
∣∣∣∣
α∗=−β∗

= −HS′,T ′(W + {α∗})
∣∣
α∗=−β∗ − HS′,T ′(W + {β∗}),

(3.60)

where one or both of the terms will be zero. From this the expansion of
HS,T (W ) in P4 follows.

This concludes the proof of Lemma 3.2. �

3.4. n-Correlation via the Ratios theorem

In this section we will prove the following expression for the n-correlation.

Theorem 3.4. Let C− denote the path from −δ + πi down to −δ − πi and
let C+ denote the path from δ − πi up to δ + πi and let f be a
2π-periodic, holomorphic function of n variables. Using the notation J(A; B)
from Theorem 3.3,

∫

U(N)

N∑

j1,...,jn=1

f(θj1 , . . . , θjn
) dX

=
1

(2πi)n

∑

K+L+M={1,...,n}
(−1)|L|+|M |N |M |(3.61)

×
∫

C+
K

∫

C−
L+M

J(zK ; −zL)f(iz1, . . . , izn) dz1 . . . dzn

where zK = {zk : k ∈ K}, −zL = {−z	 : � ∈ L} and
∫
C+

K

∫
C−

L+M means that
we are integrating all of the variables in zK along the C+ path and all of the
variables in zL or zM along the C− path.

Proof. Since

(3.62) g(z) = ΛX(ez) =
N∏

j=1

(
1 − eze−iθj

)
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has zeros at z = iθj + 2πim, m ∈ Z, by Cauchy’s theorem we can express
a sum

(3.63)
N∑

j=1

f(θj) =
1

2πi

∫

C

g′

g
(z)f(z/i) dz =

1
2πi

∫

C
ez Λ′

X

ΛX
(ez)f(z/i) dz,

where C is a positively oriented contour which encloses a subinterval of the
imaginary axis of length 2π. We choose a specific path C to be the positively
oriented rectangle that has vertices δ − πi, δ + πi,−δ + πi,−δ − πi, where δ
is a small positive number. More generally, we have

N∑

j1,...,jn=1

f(θj1 , . . . , θjn
)

=
1

(2πi)n

∫

C
· · ·
∫

C

n∏

j=1

ezj
Λ′

X

ΛX
(ezj )f(z1/i, . . . , zn/i) dz1 · · · dzn.(3.64)

We average this equation over X ∈ U(N) and, after a change of variables
zj → −zj , we obtain

∫

U(N)

N∑

j1,...,jn=1

f(θj1 , . . . , θjn
) dX

=
1

(2πi)n

∫

Cn

J(z1, . . . , zn; )f(iz1, . . . , izn) dz1 · · · dzn.(3.65)

Let C− denote the path along the left side of C from −δ + πi, down to
−δ − πi, and let C+ denote the path along the right side of C from δ − πi up
to δ + πi. Since the periodicity of the function f implies that the horizontal
segments of the contours cancel, each variable zj is on one or the other of
these two vertical paths. Thus, our expression is a sum of 2n terms, each
term being an n-fold integral with each integral on a vertical line segment
either C− or C+. For each variable zj which is on C− we use the functional
equation (2.15) to replace e−zj

Λ′
X

ΛX
(e−zj ) by N − ezj

Λ′
X∗

ΛX∗ (ezj ). In this way
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we find that

1
(2πi)n

∫

Cn

J(z1, . . . , zn; )f(iz1, . . . , izn) dz1 · · · dzn

=
1

(2πi)n

∑

εj∈{−1,+1}

∫

Cε1

· · ·
∫

Cεn

∫

U(N)
(−1)n

n∏

j=1

×
(

1 − εj

2
N + εje

−εjzj
Λ′

Xεj

ΛXεj

(e−εjzj )
)

f(iz1, . . . , izn) dX dz1 · · · dzn.

(3.66)

Another way to write this equation is

1
(2πi)n

∫

Cn

J(z1, . . . , zn; )f(iz1, . . . , izn) dz1 · · · dzn

=
1

(2πi)n

∫

U(N)
(−1)n

∑

K⊂{1,...,n}

∏

j∈K

∫

C+

e−zj
Λ′

X

ΛX
(e−zj )

×
∏

j /∈K

∫

C−

(
N − ezj

Λ′
X∗

ΛX∗
(ezj )

)
f(iz1, . . . , izn) dz1 · · · dzn dX.(3.67)

The expansion of the product over j /∈ K can be easily expressed as a
sum over further subsets of {1, . . . , n}. We have

1
(2πi)n

∫

Cn

J(z1, . . . , zn; )f(iz1, . . . , izn) dz1 · · · dzn

=
1

(2πi)n

∫

U(N)
(−1)n

∑

K+L+M={1,...,n}

∏

j∈K

∫

C+

e−zj
Λ′

X

ΛX
(e−zj )

×
∏

j∈L

∫

C−

(−1)ezj
Λ′

X∗

ΛX∗
(ezj )

∏

j∈M

∫

C−

Nf(iz1, . . . , izn) dz1 · · · dzn dX.

(3.68)

Using this last equation, (3.65) and the definition of J(A; B) from
Theorem 3.3, we have the statement of the theorem. �

3.5. n-Correlation theorem

We will now prove our main theorem.
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Theorem 3.5. Let J∗ be as defined in Theorem 3.3. Then

∫

U(N)

∑∗

1≤j1,...,jn≤N

f(θj1 , . . . , θjn
) dXN

=
1

(2π)n

∫

[0,2π]n

∑

K+L+M={1,...,n}
N |M |J∗(−iθK ; iθL)

× f(θ1, . . . , θn) dθ1 · · · dθn,(3.69)

where iθL = {iθ	 : � ∈ L}, −iθK = {−iθk : k ∈ K} and the star on the sum
indicates summation over distinct indices. Moreover, the integrand has no
poles on the path of integration.

This is clearly a far more unwieldy formula for the n-correlation than
the usual determinantal expression, and as such its calculation might appear
to be a pointless exercise. However, the reason for working out this result is
that its structure is precisely that of the n-correlation of the Riemann zeros,
stated in Theorem 4.3. This is yet another illustration of how we can make
sense of an impossibly complicated formula from number theory by seeing
it as arithmetic decorations hung on the solid framework of a rigorous result
from the random matrix theory. This can be seen easily in the examples in
Section 5. There we compare formulae where ζ(1 + x) takes the place of the
function z(x) and other arithmetic terms appear, but in all its important
aspects the structure of the n-correlation of the Riemann zeros and that of
eigenvalues of random unitary matrices is absolutely identical.

Note the similar forms of Theorems 3.4 and 3.5. In the former the sum
is over all indices and the integrals are on paths slightly shifted away from
the imaginary axis, and in the latter the sum is over distinct indices and
the integration is along the imaginary axis. Moving the integrals onto the
imaginary axis results in some principal value terms, and surprisingly these
cancel exactly with extra terms in the sum in 3.4.

We actually prove a more general theorem (Theorem 3.6 below). We
start with a little notation: For a given n and 0 ≤ R ≤ n, let the sum∑N

j1,...,jn=1 with the additional condition that jm 
= j	 if m > R and � > R

be denoted by
∑n,R. If we additionally fix three disjoint sets K, L and M

whose union is {1, 2, . . . , n}, then we introduce the following notation for
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the familiar integral

∫ πi

−πi
· · ·
∫ πi

−πi

∫

C
K∩{1,...,R}
+

∫

C
(L+M)∩{1,...,R}
−

J∗(zK ; −zL)f(iz1, . . . , izn)

× dz1 · · · dzR dzR+1 · · · dzn

=: In,R
f ;K,L,M .(3.70)

Once again, the integrals on the imaginary axis are principal value integrals.
We have already derived equation (3.61). In the new notation this is

written as

(2πi)n

∫

U(N)

∑n,n
f(θj1 , . . . , θjn

) dX

=
∑

K+L+M={1,...,n}
(−1)|L+M |N |M |In,n

f ;K,L,M .(3.71)

Note that (3.61) features J whereas In,R
f ;K,L,M is defined in terms of J∗.

However, when R = n (that is, all the integrals are off the imaginary axis)
Theorem 3.3 says that J and J∗ are equal.

With the help of Lemma 3.2 we will prove the following:

Theorem 3.6. Using the notation of (3.70) and the preceding paragraph,
with 0 ≤ R ≤ n,

(2πi)n

∫

U(N)

∑n,R
f(θj1 , . . . , θjn

) dX

=
∑

K+L+M={1,...,n}
(−1)|(L+M)∩{1,...,R}|N |M |In,R

f ;K,L,M .(3.72)

Proof. We will prove this by induction. Assume that Theorem 3.6 holds for
n − 1 and any 0 ≤ R ≤ n − 1.

We start with the right side of (3.72) and move the zR integral onto
the imaginary axis, resulting in a principal value integral and a residue at
zR = zt, for t > R, in any term where R ∈ K, t ∈ L or R ∈ L, t ∈ K. A
close inspection of the integral and the form of J∗(zK ; −zL) reveals that
there is no pole unless R and t are in one of these two configurations (see
Remark 3.2). Also, if t < R then the contour on which zt is integrated has
not yet been moved, and so it remains on the far side of the imaginary
axis from the zR contour and hence does not yield a pole. Each residue
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contribution comes in the form of the three terms in Lemma 3.2, multiplied
by πi. (It is πi rather than 2πi because the zR contour is moving precisely
onto the imaginary axis, where zt lies, yielding half the contribution of a
contour completely encircling the pole.) Thus

∑

K+L+M={1,...,n}
(−1)|(L+M)∩{1,...,R}|N |M |In,R

f ;K,L,M

=
∑

K+L+M={1,...,n}
(−1)|(L+M)∩{1,...,R−1}|N |M |In,R−1

f ;K,L,M

+ 2 ×
n∑

t=R+1

πi

⎡

⎣
∑

K′+L′+M={1,...,n}−{R,t}
(−1)|(L′+M)∩{1,...,R−1}|N |M |

×
∫ πi

−πi
· · ·
∫ πi

−πi

∫

C
K∩{1,...,R−1}
+

∫

C
(L+M)∩{1,...,R−1}
−

(
J∗(zK′+{t}; −zL′)

+ J∗(zK′ ; −zL′+{t}) + NJ∗(zK′ ; −zL′)
)

× f(iz1, . . . , izR−1, izt, izR+1, . . . , izn) dz1 · · · dzR−1 dzR+1 · · · dzn

⎤

⎦

(3.73)

The final sum above contains the two identical contributions from the case
R ∈ K, t ∈ L and the case R ∈ L, t ∈ K. To confirm the sign of each term,
if R ∈ K, the residue is multiplied by +iπ because the contour of integra-
tion moves in from the right of the imaginary axis (skirting the pole in the
positive direction) and the argument zR in J∗(zK ; −zL) occurs with a plus
sign. Note that (−1)|(L′+M)∩{1,...,R−1}| = (−1)|(L+M)∩{1,...,R}| if R ∈ K and
L = L′ + {t}. On the other hand, if R ∈ L then the zR contour comes from
the left of the imaginary axis, but as C− is directed downwards, the pole is
still circled in the positive direction. However, zR appears in J∗(zK ; −zL)
with a minus sign, so the residue acquires an extra minus sign, which is cap-
tured above because (−1)|(L′+M)∩{1,...,R−1}| = (−1) × (−1)|(L+M)∩{1,...,R}| if
L = L′ + {R}.

In the integrals in the final sum above we now relabel the integration vari-
ables z1, z2, . . . , zR−1, zR+1, . . . , zn by z1, z2, . . . , zn−1 so that f(z1, . . . , zR−1,
zt, zR+1, . . . , zt, . . . , zn) is replaced by f(z1, . . . , zR−1, zt−1, zR, . . . , zt−1, . . . ,
zn−1) =: gt(z1, . . . , zn−1). In addition, for some function h of sets K, L
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and M ,

∑

K+L+M={1,...,m−1}
(h(K + {m}, L, M) + h(K, L + {m}, M)

+ h(K, L, M + {m}))

=
∑

K+L+M={1,...,m}
h(K, L, M),(3.74)

so we now rewrite the three J∗ terms in the final sum in (3.73) as a sum
over partitions of {1, . . . , n − 1}. Thus (3.73) equals

∑

K+L+M={1,...,n}
(−1)|(L+M)∩{1,...,R−1}|N |M |In,R−1

f ;K,L,M

+ 2πi

n∑

t=R+1

∑

K+L+M={1,...,n−1}
(−1)|(L+M)∩{1,...,R−1}|N |M |In−1,R−1

g;K,L,M .

(3.75)

By the induction hypothesis, this equals

∑

K+L+M={1,...,n}
(−1)|(L+M)∩{1,...,R−1}|N |M |In,R−1

f ;K,L,M

+ 2πi

n∑

t=R+1

(2πi)n−1
∫

U(N)

∑n−1,R−1
gt(θj1 , . . . , θjn−1) dX.(3.76)

Note that the left side of (3.72) can be written as

(2πi)n

∫

U(N)

∑n,R−1
f(θj1 , . . . , θjn

) dX

+ (2πi)n

∫

U(N)

n∑

t=R+1

∑n−1,R−1
gt(θj1 , . . . , θjn−1) dX,(3.77)

where the second sum incorporates all the terms where θjR
= θjt

, t > R, and
then uses the same relabeling of the variables θj1 , θj2 , . . . , θjR−1 , θjR+1 , . . . , θjn
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and the definition of gt as described before (3.75). Therefore

(2πi)n

∫

U(N)

∑n,R−1
f(θj1 , . . . , θjn

) dX

=
∑

K+L+M={1,...,n}
(−1)|(L+M)∩{1,...,R−1}|N |M |In,R−1

f ;K,L,M(3.78)

and so, using the induction hypothesis, we have used (3.72) for a given n and
R to deduce the same expression for n and R − 1. Since in (3.71) we have
derived the expression for R = n for any n, we have shown that if (3.72) is
true for n − 1, it is also true for n. To justify the induction hypothesis in n,
we consider n = 1. Equation (3.61) states

2πi

∫

U(N)

∑1,1
f(θj1) dX

=
∑

K+L+M={1}
(−1)|(L+M)∩{1}|N |M |I1,1

f ;K,L,M = −NI1,1
f ;∅,∅,{1}.(3.79)

The final step above follows by remembering that J∗(∅; zA) = 0 for any
non-empty set A. Since

∑1,1 =
∑1,0 and I1,1

f ;∅,∅,{1} = −I1,0
f ;∅,∅,{1}, it is imme-

diate that
(3.80)

2πi

∫

U(N)

∑1,0
f(θj1) dX =

∑

K+L+M={1}
(−1)|(L+M)∩∅|N |M |I1,0

f ;K,L,M .

This completes the proof of Theorem 3.6. �

It remains to verify that the integrand in Theorem 3.5 has no poles on
the path of integration. We have already confirmed in Lemma 3.2 that each
J∗(−iθK ; iθL) has only a simple pole at θk = −θ	 for θk ∈ θK and θ	 ∈ θL.

We check that

(3.81)
∑

K+L+M={1,2,...,n}
NMJ∗(−iθK ; iθL)
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has no pole at θ1 = θ2 for generic values of the remaining variables. A given
J∗(−iθK ; iθL) only has a pole when θ1 ∈ θL and θ2 ∈ θK , or vice versa, so

Res
θ1=θ2

∑

K+L+M={1,2,...,n}
NMJ∗(−iθK ; iθL)

=
∑

K+L+M={3,...,n}
NM Res

θ1=θ2

(
J∗(−iθK + {−iθ1}; {iθ2} + iθL)

+ J∗(−iθK + {−iθ2}; {iθ1} + iθL)
)

= 0;(3.82)

this is zero because Ress=x f(s, x) = − Ress=x f(x, s). Thus if (3.81) had
a singular set it would be of complex dimension less than n − 1 and this
implies that there is no singular set (see for example [16, Corollary 7.3.2]).

Our new proof of n-correlation in the case of the random matrix theory
is now complete.

4. Correlations of the Riemann zeros

Now we turn to the Riemann zeta-function. The goal is to obtain a precise
conjecture for the n-correlation of its zeros and we do this following the
method of the previous section for the random matrix case.

4.1. The Ratios conjecture for the zeta-function

We derive our formula rigorously from the Ratios conjecture for the zeta-
function, which we now state.

Conjecture 4.1 (Ratios Conjecture [6]). Let Zζ(A, B) =
∏

α∈A
β∈B

ζ(1 + α +

β) and

(4.1) Zζ(A, B; C, D) :=
Zζ(A, B)Zζ(C, D)
Zζ(A, D)Zζ(B, C)

.

Further, let

(4.2) Aζ(A, B; C, D) =
∏

p

Zp(A, B; C, D)
∫ 1

0
Ap,θ(A, B; C, D) dθ,
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where zp(x) := (1 − p−x)−1, Zp(A, B) =
∏

α∈A
β∈B

zp(1 + α + β)−1 and

(4.3) Zp(A, B; C, D) :=
Zp(A, B)Zp(C, D)
Zp(A, D)Zp(B, C)

and

(4.4) Ap,θ(A, B; C, D) :=

∏
α∈A zp,−θ(1/2 + α)

∏
β∈B zp,θ(1/2 + β)

∏
γ∈C zp,−θ(1/2 + γ)

∏
δ∈D zp,θ(1/2 + δ)

with zp,θ(x) := (1 − e(θ)p−x)−1. Then, provided that −1
4 < �α,�β < 1

4 ,
1

log T � �γ,�δ < 1
4 and �α,�β,�γ,�δ � T , we conjecture that, with s =

1
2 + it, for any interval I ⊂ [−T, T ],

∫

I

∏
α∈A ζ(s + α)

∏
β∈B ζ(1 − s + β)

∏
γ∈C ζ(s + γ)

∏
δ∈D ζ(1 − s + δ)

dt

=
∫

I
Rζ,t(A, B; C, D) dt + O(|I|1/2+ε),(4.5)

where

(4.6) Rζ,t(A, B; C, D) =
∑

S⊂A,T⊂B
|S|=|T |

Xt(S, T )ZζAζ(S + T−, T + S−; C, D).

Here T− means the set of all of the negatives of elements of T (i.e. T− :=
{−t : t ∈ T}), A = S + S, B = T + T and

(4.7) Xt(S, T ) =
∏

α̂∈S

χ(s + α̂)
∏

β̂∈T

χ(1 − s + β̂),

where χ(1 − s) = χ(s)−1 = 2(2π)−sΓ(s) cos πs
2 is the factor from the func-

tional equation ζ(s) = χ(s)ζ(1 − s).

Remark 4.1. Note that since |S| = |T |, for small shifts α̂ and β̂ we have

(4.8) Xt(S, T ) = e−	(
∑

α̂∈S α̂+
∑

β̂∈T β̂)
(

1 + O(1/(1 + |t|)
)

,

where � = log t
2π , which can sometimes be used to simplify formulae.
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The method for constructing the Ratios conjecture is detailed in [6] and
is based on the same principles as the recipe for generating conjectures for
moments (see [5]) of zeta and L-functions. (Moments cover just the case
where C = {∅} and D = {∅}.)

Corollary 4.1. With the same conditions on α, β, γ and δ as in Conjec-
ture 4.1, and with conditions on μ the same as those on α and β, we have

∫

I

∏
α∈A ζ(s + α)

∏
β∈B ζ(1 − s + β)

∏
γ∈C ζ(s + γ)

∏
δ∈D ζ(1 − s + δ)

∏

μ∈U

χ′

χ
(s + μ) dt

=
∫

I
Rζ,t(A, B; C, D)

∏

μ∈U

χ′

χ
(s + μ) dt + O(|I|1/2+ε)(4.9)

as a consequence of Conjecture 4.1.

Proof. This follows immediately by integration by parts using the fact that

(4.10)
χ′

χ
(s) � log(2 + |s|) and

d

ds

χ′

χ
(s) � 1

1 + |s| .
�

4.2. Averages of logarithmic derivatives of the
Riemann zeta-function

To determine the correlations of the Riemann zeros, we will need a result
about averaging logarithmic derivatives of the zeta-function:

Theorem 4.1. Assuming the Ratios conjecture, if �αi,�βj > 0 for αi ∈ A
and βj ∈ B then Jζ,I(A; B; U) = J∗

ζ,I(A; B; U) + O(|I|1/2+ε), where for an
interval I

Jζ,I(A; B; U)

:=
∫

I

∏

α∈A

ζ ′

ζ
(1
2 + it + α)

∏

β∈B

ζ ′

ζ
(1
2 − it + β)

∏

μ∈U

(
− χ′

χ
(1
2 + it + μ)

)
dt

(4.11)
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and

(4.12) J∗
ζ,I(A; B; U) :=

∫

I
J∗

ζ,t(A; B; U) dt,

where

J∗
ζ,t(A; B; U) :=

∑

S⊂A,T⊂B
|S|=|T |

Xt(S, T )
Zζ(S, T )Zζ(S−, T−)

Zζ
†(S, S−)Zζ

†(T, T−)
Aζ(T−, S−; S, T )

×
∑

S+T
=W1+···+WR

R∏

r=1

HS,T (Wr) ×
∏

μ∈U

(
− χ′

χ
(1/2 + it + μ)

)
.(4.13)

Here we use the notation Zζ as in Conjecture 4.1 and Z†
ζ (A, B) =

∏
α∈A
β∈B

α+β 	=0
ζ(1 + α + β). In addition, T− := {−t : t ∈ T}, A = S + S, B = T + T and

(4.14) HS,T (Wr) = Hζ;S,T (Wr) −
∑

p

Hp,1;S,T (Wr) +
∑

p

Hp,2;S,T (Wr).

Further, we have

Hζ,S,T (W ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

α̂∈S

ζ ′

ζ
(1 + α − α̂)

−
∑

β̂∈T

ζ ′

ζ
(1 + α + β̂) if W = {α} ⊂ S,

∑

β̂∈T

ζ ′

ζ
(1 + β − β̂)

−
∑

α̂∈S

ζ ′

ζ
(1 + β + α̂) if W = {β} ⊂ T ,

(
ζ ′

ζ

)′
(1 + α + β) if W = {α, β} with

α ∈ S, β ∈ T ,

0 otherwise;

(4.15)
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Hp,1;S,T (W ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

α̂∈S

z′
p

zp
(1 + α − α̂)

−
∑

β̂∈T

z′
p

zp
(1 + α + β̂) if W = {α} ⊂ S,

∑

β̂∈T

z′
p

zp
(1 + β − β̂)

−
∑

α̂∈S

z′
p

zp
(1 + β + α̂) if W = {β} ⊂ T ,

(
z′
p

zp

)′
(1 + α + β) if W = {α, β}

with α ∈ S, β ∈ T ,

0 otherwise;

(4.16)

and

(4.17) Hp,2,S,T (W ) =
∑

W=
∑J

j=1 Xj

(−1)J−1(J − 1)!
J∏

j=1

cS,T (Xj)

with

(4.18) cS,T (X) :=

∫ 1
0 Ap,θ(S, T )

∏
α∈S∩X(z′

p,−θ/zp,−θ)
(1

2 + α
)∏

β∈T∩X

(z′
p,θ/zp,θ)(1

2 + β) dθ
∫ 1
0 Ap,θ(S, T ) dθ

and the notation

(4.19) Ap,θ(S, T ) := Ap,θ(T−, S−; S, T ),

with Ap,θ(A, B; C, D) as in Conjecture 4.1.

To prove this we want to differentiate Rζ,t with respect to all of the
α ∈ A and β ∈ B and then replace each γ by an α and each δ by a β. In
what follows, A and C have the same cardinality, as do B and D. Thus,
after differentiation, when we want to set the γ equal to the α in some order,
and the δ equal to the β in some order, we can abbreviate this by C = A
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and D = B. With the definition of Jζ,I(A; B; U) as in (4.11), and using
Corollary 4.1, we have

Jζ,I(A; B; U)

=
∫

I

∏

α∈A
β∈B

d

dα

d

dβ
Rζ,t(A, B; C, D)

∣∣∣∣
C=A
D=B

∏

μ∈U

(
− χ′

χ
(1/2 + it + μ)

)
dt

+ O(|I|1/2+ε).
(4.20)

The situation is much as in the random matrix theory case, except that
now we have to understand how to include the arithmetical factor Aζ . For
a start, we can differentiate with respect to the α̂ ∈ S and β̂ ∈ T as before.
CS and DT are defined as in the proof of Theorem 3.3. We have

Jζ,I(A; B; U) =
∫

I

∏

μ∈U

(
− χ′

χ
(1/2 + it + μ)

)

×
∑

S⊂A,T⊂B
|S|=|T |

Xt(S, T )
Zζ(S, T )Zζ(S−, T−)
Zζ

′(S, S−)Zζ
′(T, T−)

∏

α∈S
β∈T

d

dα

d

dβ

×
(

Zζ(S, T )Zζ(S, S−)Zζ(T , T−)Z(C, D)
Zζ(S, T )Zζ(CS , S−)Zζ(DT , T−)Zζ(S, D)Zζ(T , C)

× Aζ(S + T−, T + S−; C, D)

)∣∣∣∣
C=A
D=B

dt + O(|I|1/2+ε).(4.21)

In anticipation of applying Lemma 3.1, we note that a brief calculation
shows that

Zζ(S, T )Zζ(S, S−)Zζ(T , T−)Z(C, D)
Zζ(S, T )Zζ(CS , S−)Zζ(DT , T−)Zζ(S, D)Zζ(T , C)

× Aζ(S + T−, T + S−; C, D)
∣∣∣∣
C=A
D=B

= Aζ(T−, S−; S, T ).(4.22)
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The remainder of the proof of Theorem 4.1 consists of applying
Lemma 3.1 with (keeping just the factors from the big brackets in (4.21)
that depend on S and T )

H = log Zζ(S, T ) + log Zζ(S, S−) + log Zζ(T , T−) − log Zζ(S, D)

− log Zζ(T , C) +
∑

p

(
log Zp(S, T ) + log Zp(S, S−) + log Zp(T , T−)

− log Zp(S, D) − log Zp(T , C) + log
∫ 1

0
Ap,θ(S + T−, T + S−; C, D) dθ.

(4.23)

Note the exponent −1 in the definition of Zp(A, B) in Conjecture 4.1 which
accounts for the minus sign in front of H1,p,S,T (Wr) in the definition in (4.14)
of HS,T (Wr).

Now it just remains to prove:

Lemma 4.1. Let W ⊂ S + T . Then

Hp,2,S,T (W ) :=
∏

w∈W

d

dw
log
(∫ 1

0
Ap,θ(S + T−, T + S−; C, D) dθ

)∣∣∣∣∣
C=S+S
D=T+T

=
∑

W=
∑J

j=1 Xj

(−1)J−1(J − 1)!
J∏

j=1

cS,T (Xj);(4.24)

here

(4.25) cS,T (X) :=

∫ 1
0 Ap,θ(S, T )

∏
α∈S∩X(z′

p,−θ/zp,−θ)(1
2 + α)

×
∏

β∈T∩X(z′
p,θ/zp,θ)(1/2 + β) dθ

∫ 1
0 Ap,θ(S, T ) dθ

,

where we have adopted the notation

(4.26) Ap,θ(S, T ) := Ap,θ(T−, S−; S, T ).
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Further, we have, for α∗ ∈ S, β∗ ∈ T , S′ = S − {α∗}, T ′ = T − {β∗} and
W ⊂ S + T ,

d

dα∗ cS,T (W )
∣∣∣∣
α∗=−β∗

= −cS′,T ′(W + {α∗})|α∗=−β∗ − cS′,T ′(W + {β∗})

+ cS′,T ′(W )cS′,T ′({α∗})|α∗=−β∗ + cS′,T ′(W )
× cS′,T ′({β∗})(4.27)

and

d

dα∗ Hp,2;S,T (W )
∣∣∣∣
α∗=−β∗

= −Hp,2,S′,T ′(W + {α∗})|α∗=−β∗

− Hp,2,S′,T ′(W + {β∗}).(4.28)

Proof. The proof is simple, involving only differentiation. The first line,
(4.24), follows from logarithmic differentiation of the integral of Ap,θ, where
each variable w ∈ W appears in just one place. Equation (4.27) also arises
immediately by following the rules of differentiation. Note that α∗ appears
in Ap,θ(S, T ) in the numerator of (4.4) in a factor zp,θ(1

2 − α∗) and in the
denominator in a factor of type zp,−θ(1

2 + α∗) and α∗ /∈ W . The first term
in (4.27) comes from the zp,−θ(1

2 + α∗) factor in the numerator of (4.25), the
second term in (4.27) from the zp,θ(1

2 − α∗) and the final two terms in (4.27)
from the integral in the denominator of (4.25). To obtain (4.28) note that
the α∗ appears in each factor of cS,T (Xj), j = 1, . . . , J , in (4.24). Using the
product rule on each term in (4.24) we differentiate each cs,T (Xj) in turn
and sum the results. Note that cS,T (Xj)

∣∣
α∗=−β∗ = cS′,T ′(Xj). Using (4.27)

and careful combinatorial accounting (4.28) can be obtained. �

Remark 4.2. We have allowed here some loose use of notation in writing
Hp,2,S′,T ′(W + {α∗}). The lemma starts out by defining Hp,2,S,T (W ), where
W ⊂ S + T , but of course W + {α∗} /∈ S + T when α∗ ∈ S. However to
understand the notation Hp,2,S′,T ′(W + {α∗}) simply replace S with S′ and
T with T ′ in the definition of Hp,2,S,T and replace S with A − S′ and T with
B − T ′. A similar comment applies to cS′,T ′(W + {α∗}) in (4.27).

4.3. Residue identity revisited

Using Theorem 4.1, which is an application of Lemma 3.1 along much the
same lines as Theorem 3.3, we now prove the analog for ζ of Lemma 3.2.
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Lemma 4.2. Suppose that α∗ ∈ A and β∗ ∈ B. Let A′ = A − {α∗} and
B′ = B − {β∗} and � = log t

2π . Then J∗
ζ,t(A; B; U) (defined in Theorem 4.1)

has a simple pole at α∗ = −β∗ with

Res
α∗=−β∗

J∗
ζ,t(A; B; U) = −χ′

χ
(s − β∗)J∗

ζ,t(A
′; B′; U) + J∗

ζ,t(A
′; B; U)

+ J∗
ζ,t(A

′ + {−β∗}; B′; U).(4.29)

Proof. We use Lemma 3.2. First we remember the convention that
A = S + S and B = T + T and we write Theorem 4.1 as

(4.30) J∗
ζ,t(A, B; U) =

∏

μ∈U

χ′

χ
(1/2 + it + μ)

∑

S⊂A
T⊂B

|S|=|T |

Dζ;S,T (S, T ),

where with the abbreviation A(S, T ) := Aζ(T−, S−; S, T ), we have

(4.31) Dζ;S,T (S, T ) = Qζ(S, T )A(S, T )
∑

S+T=
∑

Wr

R∏

r=1

HS,T (Wr)

and

(4.32) Qζ(S, T ) := Xt(S, T )
Zζ(S, T )Zζ(S−, T−)

Zζ
†(S, S−)Zζ

†(T, T−)
.

Now we let Qζ(S, T )A(S, T ) play the role of Q(S, T ) in the proof of
Lemma 3.2 and HS,T (W ) plays the role of HS,T (W ). Thus we need to
prove the four conditions below, describing the behavior of the various com-
ponents of the formula as α∗ approaches −β∗, and then the rest of the proof
is identical to that of Lemma 3.2.

Q1: If α∗ ∈ S and β∗ ∈ T , then Qζ(S, T )A(S, T ) is independent of
α∗ and β∗ and

(4.33) HS,T (W ) =

⎧
⎨

⎩

1
(α∗ + β∗)2

+ O(1) if W = {α∗, β∗},

O(1) otherwise.
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Q2: If α∗ ∈ S and β∗ ∈ T , then Qζ(S, T )A(S, T ) is regular when
α∗ = −β∗ and

(4.34) HS,T (W ) =

⎧
⎨

⎩

1
α∗ + β∗ + O(1) if W = {β∗},

O(1) otherwise.

Q3: If α∗ ∈ S and β∗ ∈ T , then Qζ(S, T )A(S, T ) is regular when
α∗ = −β∗ and

(4.35) HS,T (W ) =

⎧
⎨

⎩

1
α∗ + β∗ + O(1) if W = {α∗},

O(1) otherwise.

Q4: If α∗ ∈ S and β∗ ∈ T and S′ = S − {α∗} and T ′ = T − {β∗}, then
Qζ(S, T ) =

( −1
(α∗+β∗)2 + O(1)

)
Qζ;1(S, T ) and

Qζ;1(S, T )A(S, T ) = Qζ(S′, T ′)A(S′, T ′)
(

1 − (α∗ + β∗)
(
− χ′

χ
(s − β∗)

+ HS′,T ′({α∗})|α∗=−β∗ + HS′,T ′({β∗})
))

+ O(1)(4.36)

and

HS,T (W ) = HS′,T ′(W ) − (α∗ + β∗)(HS′,T ′(W + {α∗})|α∗=−β∗

+ HS′,T ′(W + {β∗})) + O(|α∗ + β∗|2).(4.37)

We have just to prove these four conditions to complete the proof. We
start with the first case where α∗ /∈ S, β∗ /∈ T . Then α∗ ∈ S and β∗ ∈ T .
The terms Hp,1 and Hp,2 have no poles because of the conditions on the
real parts of α and β. The only polar term from α∗ = −β∗ arises from a
situation when one of the partition parts is Wr = {α∗, β∗} and there is a pole
from Hζ;S,T (Wr) =

(
ζ′

ζ

)′
(1 + α∗ + β∗). Since

(
ζ′

ζ

)′
(1 + x) = 1/x2 + O(1)

and Qζ(S, T )A(S, T ) is clearly independent of α∗ and β∗, the first condition
is satisfied.

Next, suppose that α∗ ∈ S and β∗ /∈ T . The only pole in Dζ;S,T (S, T )
occurs in the product of the H for Hζ;S,T (Wr) when Wr = {β∗}. We have

(4.38) Hζ;S,T ({β∗}) =
∑

β̂∈T

ζ ′

ζ
(1 + β̂ − β∗) −

∑

α̂∈S

ζ ′

ζ
(1 + β∗ + α̂)
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for which, when α̂ = α∗, the term − ζ′

ζ (1 + β∗ + α∗) has a simple pole at
α∗ = −β∗ with residue 1. Qζ(S, T )A(S, T ) depends on α∗ and not β∗, so it
is regular when α∗ = −β∗.

Similarly, when α∗ /∈ S and β∗ ∈ T , the only pole in the product of the
H occurs for Hζ;S,T ({α∗}). We have

(4.39) Hζ;S,T ({α∗}) =
∑

α̂∈S

ζ ′

ζ
(1 + α̂ − α∗) −

∑

β̂∈T

ζ ′

ζ
(1 + α∗ + β̂)

for which, when β̂ = β∗, the term − ζ′

ζ (1 + α∗ + β∗) has a simple pole at
α∗ = −β∗ with residue 1.

Finally, we consider the case α∗ ∈ S and β∗ ∈ T . Let S′ = S − {α∗} and
T ′ = T − {β∗}. We have

(4.40) Qζ(S, T ) = ζ(1 + α∗ + β∗)ζ(1 − α∗ − β∗)Qζ;1(S, T ),

where

Qζ;1(S, T ) = Qζ(S′, T ′)Xt({α∗}, {β∗})

×
∏

β̂∈T ′ ζ(1 + α∗ + β̂)ζ(1 − α∗ − β̂)
∏

α̂∈S′ ζ(1 + α̂ + β∗)ζ(1 − α̂ − β∗)
∏

α̂∈S′ ζ(1 + α∗ − α̂)ζ(1 + α̂ − α∗)
∏

β̂∈T ′ ζ(1 + β∗ − β̂)ζ(1 + β̂ − β∗)
.

(4.41)

Note that ζ(1 + α∗ + β∗)ζ(1 −α∗ − β∗) = −1
(α∗+β∗)2 + O(1). Also, remem-

bering that χ(s − β∗)χ(1 − s + β∗) = 1,

(4.42) Qζ;1(S, T )
∣∣
α∗=−β∗ = Qζ(S′, T ′),

which gives us an expansion for Qζ;1(S, T ) in the neighborhood of α∗ = −β∗:

Qζ;1(S, T ) = Qζ(S′, T ′)(1 +
χ′

χ
(s − β∗)(α∗ + β∗) + O(|α∗ + β∗|2)

×
(

1 + (α∗ + β∗)
( ∑

α̂∈S′

(ζ ′

ζ
(1 + α̂ + β∗) − ζ ′

ζ
(1 − β∗ − α̂)

)

+
∑

β̂∈T ′

(ζ ′

ζ
(1 − β∗ + β̂) − ζ ′

ζ
(1 + β∗ − β̂)

))
+ O(|α∗ + β∗|2)

)
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= Qζ(S′, T ′)
(
1 − (α∗ + β∗)

(
− χ′

χ
(s − β∗)

+ Hζ;S′,T ′({α∗})|α∗=−β∗ + Hζ;S′,T ′({β∗})
)

+ O(|α∗ + β∗|2)
)
.(4.43)

Since A(S, T )|α∗=−β∗ = A(S′, T ′), we have the expansion around α∗ = −β∗:

A(S, T ) = A(S′, T ′)

⎛

⎜⎜⎜⎝1 + (α∗ + β∗)
∑

p

⎛

⎜⎜⎜⎝
∑

α̂∈S′

(
−

z′
p

zp
(1 + α̂ + β∗)

+
z′
p

zp
(1 − β∗ − α̂)

)
+
∑

β̂∈T ′

(
−

z′
p

zp
(1 − β∗ + β̂) +

z′
p

zp
(1 + β∗ − β̂)

)

−

∫ 1
0 Ap,θ(S′, T ′)

(
(z′

p,−θ/zp,−θ)(1/2 − β∗)
+(z′

p,θ/zp,θ)(1/2 + β∗)
)
dθ

∫ 1
0 Ap,θ(S′, T ′) dθ

⎞

⎟⎟⎟⎠+ O(|α∗ + β∗|2)

⎞

⎟⎟⎟⎠

= A(S′, T ′)

(
1 + (α∗ + β∗)

∑

p

(
Hp,1;S′,T ′({α∗})|α∗=−β∗

+Hp,1;S′,T ′({β∗}) − Hp,2;S′,T ′({α∗})|α∗=−β∗ − Hp,2;S′,T ′({β∗})
)
)

+ O(|α∗ + β∗|)2,(4.44)

where the first line is a result of differentiating (4.2), and the second line from
the definitions of Hp,1;S,T (W ) (in Theorem 4.1) and Hp,2;S,T (W ) (in (4.24)).

Thus we have

Qζ;1(S, T )A(S, T ) = Qζ(S′, T ′)A(S′, T ′)
(

1 − (α∗ + β∗)
(

−χ′

χ
(s − β∗)

+ HS′,T ′({α∗})|α∗=−β∗ + HS′,T ′({β∗})
))

+ O(1)(4.45)

as α∗ → −β∗.
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Now we obtain an expansion for the product of H term. By the definition
of Hζ in Theorem 4.1 we have that

Hζ;S,T ({α}) =
∑

α̂∈S

ζ ′

ζ
(1 + α − α̂) −

∑

β̂∈T

ζ ′

ζ
(1 + α + β̂)

= Hζ;S′,T ′({α}) +
ζ ′

ζ
(1 + α − α∗) − ζ ′

ζ
(1 + α + β∗);(4.46)

Hζ;S,T ({β}) =
∑

β̂∈T

ζ ′

ζ
(1 + β − β̂) −

∑

α̂∈S

ζ ′

ζ
(1 + β + α̂)

= Hζ;S′,T ′({β}) +
ζ ′

ζ
(1 + β − β∗) − ζ ′

ζ
(1 + β + α∗);(4.47)

and

(4.48) Hζ;S,T ({α, β}) =
(

ζ ′

ζ

)′
(1 + α + β) = Hζ;S′,T ′({α, β}).

Thus,

(4.49) Hζ;S,T (W )
∣∣∣∣
α∗=−β∗

= Hζ;S′,T ′(W )

and

d

dα∗ Hζ;S,T (W )
∣∣
α∗=−β∗ =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−
(

ζ ′

ζ

)′
(1 + α + β∗) if W = {α} ⊂ S,

−
(

ζ ′

ζ

)′
(1 + β − β∗) if W = {β} ⊂ T ,

0 otherwise.

= −Hζ,S′,T ′(W + {α∗})|α∗=−β∗ −Hζ,S′,T ′(W + {β∗}).(4.50)

In exactly the same way,

Hp,1;S,T (W )
∣∣∣∣
α∗=−β∗

= Hp,1;S′,T ′(W )(4.51)

and

d

dα∗ Hp,1;S,T (W )
∣∣
α∗=−β∗ = −Hp,1,S′,T ′(W + {α∗})|α∗=−β∗

− Hp,1,S′,T ′(W + {β∗}).(4.52)
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Also, by Lemma 4.1 we have

(4.53) Hp,2;S,T (W )
∣∣∣∣
α∗=−β∗

= Hp,2;S′,T ′(W )

and

d

dα∗ Hp,2;S,T (W )
∣∣∣∣
α∗=−β∗

= −Hp,2,S′,T ′(W + {α∗})|α∗=−β∗

− Hp,2,S′,T ′(W + {β∗}).(4.54)

Combining these results we have exactly equation (4.37).
The rest of the proof proceeds exactly as before. �

4.4. n-Correlation via the Ratios conjecture

Now we proceed to n-correlation. Let f satisfy the conditions

f(x1, . . . , xn)is holomorphic for |�xj | < 2, with j = 1, . . . , n,

is translation invariant, i.e., f(x1 + t, . . . , xn + t) = f(x1, . . . , xn)

and satisfies f(0, x2, . . . , xn) � 1/(1 + |x2|2 + · · · + |xn|2)
as |xj | → ∞, with j = 2, . . . , n.(4.55)

Theorem 4.2. Let C− denote the path from −δ + iT down to −δ − iT and
let C+ denote the path from δ − iT up to δ + iT and let f be as in (4.55).
Using the notation Jζ,t(A; B; C) from Theorem 4.1,

∑

0<γj1 ,...,γjn≤T

f(γj1 , . . . , γjn
) =

1
(2πi)n

∑

K+L+M={1,...,n}
(−1)|L|+|M |

×
∫

C+
K

∫

C−
L+M

1
T

∫

I∗
Jζ,t(zK ; −zL; −zM ) dt

× f(iz1, . . . , izn) dz1 · · · dzn,(4.56)

where zK = {zk : k ∈ K}, −zL = {−z	 : � ∈ L} and
∫
C+

K

∫
C−

L+M means that
we are integrating all of the variables in zK along the C+ path and all of
the variables in zL or zM along the C− path; and I∗ is the interval which
has lower endpoint max{0,−�z1, . . . ,−�zn} and upper endpoint min{T, T −
�z1, . . . , T − �zn}.
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Proof. By Cauchy’s theorem we can express the sum over zeros as

∑

0<γ1,...,γn≤T

f(γ1, . . . , γn) =
1

(2πi)n

∫

C
. . .

∫

C
f(−iz1, . . . ,−izn)

×
n∏

j=1

ζ ′

ζ
(1/2 + zj) dz1 . . . dzn,(4.57)

where C is a positively oriented contour which encloses a subinterval of the
imaginary axis from zero to T . We choose a specific path C to be the
positively oriented rectangle that has vertices δ, δ + iT,−δ + iT,−δ, where
δ is a small positive number.

Due to the translation invariance of f , (4.57) equals

1
T

∫ T

0

1
(2πi)n

∫

C
· · ·
∫

C
f(−iz1 − t, . . . ,−izn − t)

×
n∏

j=1

ζ ′

ζ
(1/2 + zj) dz1 · · · dzn dt

=
1
T

∫ T

0

1
(2πi)n

∫

C−it

· · ·
∫

C−it

f(−iz1, . . . ,−izn)

×
n∏

j=1

ζ ′

ζ
(1/2 + it + zj) dz1 · · · dzn dt

=
1

(2πi)n

∑

εj∈{−1,+1}

∫

Cεn

· · ·
∫

Cε1

1
T

∫

I∗
f(−iz1, . . . ,−izn)

×
n∏

j=1

ζ ′

ζ
(1/2 + it + zj) dt dz1 · · · dzn + O(T ε),(4.58)

where the range of the innermost integral is the interval I∗ which has
lower endpoint max{0,−�z1, . . . ,−�zn} and upper endpoint min{T, T −
�z1, . . . , T − �zn}. In the second line we made a change of variables zj →
zj + it. The contour C−it is C shifted down by −it; that is, it runs from
δ − it, δ + i(T − t),−δ + i(T − t),−δ − it. In progressing to the third line,
we note that the horizontal portions of the contour of integration can be
chosen so that the integral along them is O(T ε) (following the identical
argument to Davenport [11, p. 108]), so we concentrate on the vertical sides
of the contours. When we now exchange the order of integration to move
the t integral to the inside, the integration over z1, . . . , zn becomes the sum
of 2n integrals, each on one of the contours C+ or C− defined in Theorem 4.2.
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Remark 4.3. The main integral is of size ≈ T logn T . The T is a result
of
∫
[−T,T ]n f ≈ T ; the power of the log comes from the moment of the log-

arithmic derivative and will become clear from the examples at the end of
the paper.

For each variable zj in (4.58) which is on C− we use the functional
equation

(4.59)
ζ ′

ζ
(s) =

χ′

χ
(s) − ζ ′

ζ
(1 − s)

to replace ζ′

ζ (s + zj), where s = 1/2 + it. In this way we find that (4.58)
equals

1
(2πi)n

∑

εj∈{−1,+1}

∫

Cεn

. . .

∫

Cε1

1
T

∫

I∗

n∏

j=1

(
1 − εj

2
χ′

χ
(s + zj)

+ εj
ζ ′

ζ
(1/2 + εj(it + zj))

)
× f(iz1, . . . , izn) dt dz1 · · · dzn.(4.60)

Another way to write this equation is

1
(2πi)n

∑

K⊂{1,...,n}

∏

j∈K

∫

C+

∏

j /∈K

∫

C−

1
T

∫

I∗

ζ ′

ζ
(s + zj)

×
(

χ′

χ
(s + zj) − ζ ′

ζ
(1 − s − zj)

)
× f(iz1, . . . , izn) dt dz1 . . . dzn.(4.61)

(Note that the dz are no longer in order but this should not cause confusion.)
The expansion of the product over j /∈ K can be easily expressed as a sum
over subsets of K. This yields

1
(2πi)n

∑

K+L+M={1,...,n}
(−1)|L|+|M |

∏

k∈K

∫

C+

∏

	∈L

∫

C−

1
T

∫

I∗

ζ ′

ζ
(s + zk)

× ζ ′

ζ
(1 − s − z	)

∏

m∈M

∫

C−

(
− χ′

χ
(s + zm)

)
f(iz1, . . . , izn) dt dz1 . . . dzn.

(4.62)
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Remark 4.4. We note the asymptotic for χ′

χ :

(4.63)
χ′

χ
(1/2 + it) = − log

|t|
2π

(
1 + O

(
1
|t|

))
.

In some applications |zm| is small relative to t, and it simplifies the formulae
to replace χ′

χ (s + zm) with − log |t|
2π . However, here where zk can be the same

size as t we will not use this approximation.

We have the statement of Theorem 4.2. �

4.5. n-Correlation for the Riemann zeros

We will now state our main theorem.

Theorem 4.3. Assume the Ratios conjecture 4.1. Let J∗
ζ,t be as defined in

Theorem 4.1. Then
∑

0<γ1 	=···	=γn≤T

f(γ1, . . . , γn)

=
1

(2π)n

∫

[−T,T ]n

1
T

∫

I∗

∑

K+L+M={1,...,n}
J∗

ζ,t(−izK ; izL; izM ) dt

× f(z1, . . . , zn) dz1 . . . dzn + O(T 1/2+ε),(4.64)

where −izK = {−izk : k ∈ K} izL = {iz	 : � ∈ L} and izM = {izm : m ∈ M}.
Moreover, the integrand has no poles on the path of integration.

The proof is nearly identical to that of Theorem 3.5. The only difference
is that some care is needed with regard to endpoints of intervals when we
move each new path of integration onto the imaginary axis. The (slight)
difficulty is with poles that may lie at the very endpoints; this point did not
arise in the random matrix theory context because of the periodicity of the
integrand. However by extending the paths slightly we can circumvent this
difficulty; an argument like that used to handle the horizontal segments in
the proof of Theorem 4.2 will work in this case too, and introduces an error
term of size only O(T ε).

It remains to verify that the integrand in Theorem 4.3 has no poles on
the path of integration. We have already confirmed in Lemma 3.2 that each
J∗(−iθK ; iθL) has only a simple pole at θk = −θ	 for θk ∈ θK and θ	 ∈ θL.
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We check that

(4.65)
∑

K+L+M={1,2,...,n}
J∗

ζ,t(−iθK ; iθL; iθM )

has no pole at θ1 = θ2 when the values of the remaining θj are not equal
to θ1 or θ2. A given J∗

ζ,t(−iθK ; iθL; iθM ) only has a pole when θ1 ∈ θL and
θ2 ∈ θK , or vice versa, so

Res
θ1=θ2

∑

K+L+M={1,2,...,n}
J∗

ζ,t(−iθK ; iθL; iθM )

=
∑

K+L+M={3,...,n}
Res
θ1=θ2

(
J∗

ζ,t(−iθK + {−iθ1}; {iθ2} + iθL; iθM )

+ J∗
ζ,t(−iθK + {−iθ2}; {iθ1} + iθL; iθM )

)
= 0;(4.66)

this is zero because Ress=x f(s, x) = − Ress=x f(x, s).
Thus if (4.65) had a singular set it would be of complex dimension less

than n − 1 and by standard results in the theory of several complex variables,
this implies that there is no singular set (see for example [16, Corollary
7.3.2]).

Our proof of n-correlation in the case of ζ-zeros is now complete.

Corollary 4.2. By rearranging the integrals, now that we know the inte-
grand has no singularities, and using the fact that f is translation invariant
we have that the Ratios conjecture implies that

∑

0<γ1 	=···	=γn≤T

f(γ1, . . . , γn)

=
1
T

∫ T

0

1
(2π)n

∫

[−T,T ]n

∑

K+L+M={1,...,n}
J∗

ζ,t(−izK + it; izL − it; izM − it)

× f(z1, . . . , zn) dz1 · · · dzn dt + O(T 1/2+ε)
(4.67)

5. Examples

In this section we explicitly write out all of the terms in our expressions
for n-correlations for RMT eigenvalues and for ζ-zeros for 2 ≤ n ≤ 4. In
the case of the ζ correlations, we simplify the terms Xt(S, T ) and χ′

χ (s + α)
using the approximations involving � = log t

2π mentioned at (4.8) and (4.63).
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To proceed, we calculate J∗(A; B) and J∗
ζ,t(A; B) := J∗

ζ,t(A; B; U)/∏
μ∈U

χ′

χ (1
2 + it + μ) for sets A and B with four or fewer elements. DS,T

and Dζ,S,T are defined in the proofs of Lemmas 3.2 and 4.2, respectively. In
the following sections we first compile DS,T , Dζ,S,T , then evaluate J∗ and
J∗

ζ,t and then assemble these into the correlation formulas RN,n(x1, . . . , xn)
and Rζ,t,n(x1, . . . , xn). Here we define R via

∫

U(N)

∑∗

1≤j1,...,jn≤N

f(θ1, . . . , θn) dXN

=
1

(2π)n

∫

[0,2π]n
RN,n(x1, . . . , xn)f(x1, . . . , xn) dx1 · · · dxn(5.1)

and
∑

0<γ1 	=···	=γn≤T

f(γ1, . . . , γn) =
1

(2π)n

∫

[−T,T ]n

1
T

∫

I∗
Rζ,t,n(x1, . . . , xn)dt

× f(x1, . . . , xn) dx1 · · · dxn + O(T 1/2+ε),(5.2)

(compare these with Theorems 3.5 and 4.3).
Recall that

z(x) =
1

(1 − e−x)
,(5.3)

S(x) = SN (x) =
sin(Nx/2)
sin(x/2)

,(5.4)

zp(x) := (1 − p−x)−1,(5.5)

and

Zp(A, B) =
∏

α∈A
β∈B

zp(1 + α + β)−1.(5.6)

We also will introduce, as needed below, a number of other expressions
A(x), B(x), etc.; for convenience, these are listed in Section 5.7.

5.1. Pair correlation, RMT

Suppose that the sets A and B have just one element: A = {a}, B = {b}.
We have

J∗(a; b) = Dφ,φ + Da,b,(5.7)
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where

Dφ,φ =
(

z′

z

)′
(a + b),(5.8)

and

Da,b = e−N(a+b)z(a + b)z(−a − b).(5.9)

Thus

J∗(a; b) =
(

z′

z

)′
(a + b) + e−N(a+b)z(a + b)z(−a − b).(5.10)

Then the 2-point correlation function is

RN,2(u, v) = N2 + J∗(iu; −iv) + J∗(−iu; iv)

= det
(

N S(u − v)
S(v − u) N

)
.(5.11)

5.2. Pair correlation, ζ

We have

J∗
ζ,t(a; b) =

(ζ ′

ζ

)′
(1 + a + b) − B(a + b)

+ e−	(a+b)ζ(1 + a + b)ζ(1 − a − b)A(a + b),(5.12)

where � = log t
2π and

A(x) =
∏

p

(1 − 1/p1+x)(1 − 2/p + 1/p1+x)
(1 − 1/p)2

,(5.13)

B(x) =
∑

p

(
log p

p1+x − 1

)2

,(5.14)

and conjecture that

Rζ,t,2(u, v) = �2 + J∗
ζ (iu; −iv) + J∗

ζ (−iu; iv).(5.15)

Further, letting

P1(x) = e−	xA(x)ζ(1 + x)ζ(1 − x)(5.16)
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and

P2(x) =
(ζ ′

ζ

)′
(1 + x) − B(x),(5.17)

we have

J∗
ζ,t(a; b) = P1(a + b) + P2(a + b).(5.18)

5.3. Triple correlation, RMT

In this case we have

J∗(a; b1, b2) = Dφ,φ + Da,b1 + Da,b2 ,

(5.19)

Dφ,φ = 0,(5.20)

Da,b1 = e−N(a+b1)z(a + b1)z(−a − b1)
(

z′

z
(b2 − b1) − z′

z
(b2 + a)

)
,(5.21)

and

Da,b2 = e−N(a+b2)z(a + b2)z(−a − b2)
(

z′

z
(b1 − b2) − z′

z
(b1 + a)

)
.(5.22)

Thus,

J∗(a; b1, b2) = e−N(a+b1)z(a + b1)z(−a − b1)
(

z′

z
(b2 − b1) − z′

z
(b2 + a)

)

+ e−N(a+b2)z(a + b2)z(−a − b2)
(

z′

z
(b1 − b2) − z′

z
(b1 + a)

)
.(5.23)

Then

RN,3(u, v, w) = N3 + N
(
J∗(iu; −iv) + J∗(iv; −iu) + J∗(iu; −iw)

+ J∗(iw; −iu) + J∗(iw; −iv) + J∗(iv; −iw)
)

+
(
J∗(−iw; iu, iv) + J∗(−iv; iw, iu) + J∗(−iu; iw, iv)

+ J∗(iu; −iw,−iv) + J∗(iv; −iw,−iu) + J∗(iw; −iu,−iv)
)

= det

⎛

⎝
N S(u − v) S(u − w)

S(v − u) N S(v − w)
S(w − u) S(w − v) N

⎞

⎠ .(5.24)
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5.4. Triple correlation for ζ

The analog for ζ is

J∗
ζ,t(a; b1, b2) = e−	(a+b1)A(a + b1)ζ(1 + a + b1)ζ(1 − a − b1)

×
(

ζ ′

ζ
(1 + b2 − b1) − ζ ′

ζ
(1 + a + b2) − B1(a + b1, a + b2)

)

+ e−	(a+b2)A(a + b2)ζ(1 + a + b2)ζ(1 − a − b2)

×
(

ζ ′

ζ
(1 + b1 − b2) − ζ ′

ζ
(1 + a + b1) − B1(a + b2, a + b1)

)

+ Q(a + b1, a + b2),(5.25)

where

Q(x, y) = −
∑

p

log3 p

p2+x+y(1 − 1/p1+x)(1 − 1/p1+y)
(5.26)

and

B1(x, y) =
∑

p

(
1 − 1/px

)(
1 − 1/px − 1/py + 1/p1+y

)
log p

(
1 − 1/p1−x+y

)(
1 − 1/p1+y

)(
1 − 2/p + 1/p1+x

)
p2−x+y

.

Then we conjecture that

Rζ,t,3(u, v, w) = �3 + �
(
J∗

ζ,t(iu; −iv) + J∗
ζ,t(iv; −iu) + J∗

ζ,t(iu; −iw)

+ J∗
ζ,t(iw; −iu) + J∗

ζ,t(iw; −iv) + J∗
ζ,t(iv; −iw)

)

+
(
J∗

ζ,t(−iw; iu, iv) + J∗
ζ,t(−iv; iw, iu) + J∗

ζ,t(−iu; iw, iv)

+ J∗
ζ,t(iu; −iw,−iv)+J∗

ζ,t(iv; −iw,−iu)+J∗
ζ,t(iw; −iu,−iv).(5.27)

It is convenient to introduce the function

P3(a, b, c) = B1(a + b, a + c) +
ζ ′

ζ
(1 + a + c) − ζ ′

ζ
(1 + c − b).(5.28)

In terms of this, we have

J∗
ζ,t({a}; {b1, b2}) = Q(a + b1, a + b2) − P1(a + b1)P3(a, b1, b2)

− P1(a + b2)P3(a, b2, b1).
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5.5. Quadruple correlation, RMT

With A = {a}, B = {b1, b2, b3}, we have that

J∗(a; b1, b2, b3) = Dφ,φ + Da,b1 + Da,b2 + Da,b3

= e−N(a+b1)z(a+b1)z(−a−b1)
(

z′

z
(b2−b1) − z′

z
(b2+a)

)

×
(

z′

z
(b3 − b1) − z′

z
(b3 + a)

)

+ e−N(a+b2)z(a+b2)z(−a−b2)
(

z′

z
(b1−b2)−

z′

z
(b1+a)

)

×
(

z′

z
(b3 − b2) − z′

z
(b3 + a)

)

+ e−N(a+b3)z(a+b3)z(−a−b3)
(

z′

z
(b1 − b3) − z′

z
(b1 + a)

)

×
(

z′

z
(b2 − b3) − z′

z
(b2 + a)

)
.(5.29)

With A = {a1, a2}, B = {b1, b2}, we have

J∗(a1, a2; b1, b2) = Dφ,φ + Da1,b1 + Da1,b2 + Da2,b1 + Da2,b2 + Da1,a2,b1,b2 ,

(5.30)

where

Dφ,φ =
(

z′

z

)′
(a1 + b1)

(
z′

z

)′
(a2 + b2) +

(
z′

z

)′
(a1 + b2)

(
z′

z

)′
(a2 + b1)

(5.31)

and

Da1,b1 = e−N(a1+b1)z(a1 + b1)z(−a1 − b1)
×
(
H{a1},{b1}({a2}, {b2}) + H{a1},{b1}({a2})H{a1},{b1}({b2})

)

= e−N(a1+b1)z(a1 + b1)z(−a1 − b1)
((

z′

z

)′
(a2 + b2)

+
(

z′

z
(a2 − a1) − z′

z
(a2 + b1)

)(
z′

z
(b2 − b1) − z′

z
(b2 + a1)

))
;(5.32)
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the other Dai,bj
are similar. Also,

Da1,a2,b1,b2 = e−N(a1+a2+b1+b2)

×

z(a1 + b1)z(−a1 − b1)z(a1 + b2)z(−a1 − b2)z(a2 + b1)
z(−a2 − b1)z(a2 + b2)z(−a2 − b2)

z(a1 − a2)z(a2 − a1)z(b1 − b2)z(b2 − b1)
.

Thus,

J∗(a1, a2; b1, b2)

:=
(

z′

z

)′
(a1 + b1)

(
z′

z

)′
(a2 + b2) +

(
z′

z

)′
(a1 + b2)

(
z′

z

)′
(a2 + b1)

+ e−N(a1+b1)z(a1 + b1)z(−a1 − b1)

×
((

z′

z

)′
(a2 + b2) +

(z′

z
(a2 − a1) − z′

z
(a2 + b1)

)

×
(z′

z
(b2 − b1) − z′

z
(b2 + a1)

))
+ e−N(a1+b2)z(a1 + b2)z(−a1 − b2)

×
((

z′

z

)′
(a2 + b1) +

(z′

z
(a2 − a1) − z′

z
(a2 + b2)

)

×
(z′

z
(b1 − b2) − z′

z
(b1 + a1)

))
+ e−N(a2+b1)z(a2 + b1)z(−a2 − b1)

×
((

z′

z

)′
(a1 + b2) +

(z′

z
(a1 − a2) − z′

z
(a1 + b1)

)

×
(z′

z
(b2 − b1) − z′

z
(b2 + a2)

))
+ e−N(a2+b2)z(a2 + b2)z(−a2 − b2)

×
((

z′

z

)′
(a1 + b1) +

(z′

z
(a1 − a2) − z′

z
(a1 + b2)

)

×
(z′

z
(b1 − b2) − z′

z
(b1 + a2)

))

+ e−N(a1+a2+b1+b2)z(a1 + b1)z(a1 + b2)z(a2 + b1)z(a2 + b2)

× z(−a1 − b1)z(−a1 − b2)z(−a2 − b1)z(−a2 − b2)
z(a1 − a2)z(a2 − a1)z(b1 − b2)z(b2 − b1)

.

(5.33)
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Then

RN,4(u, v, w, y)

= N4 + N2(J∗(iu; −iv) + J∗(iv; −iu) + J∗(iu; −iw)
+ J∗(iw; −iu) + J∗(iw; −iv) + J∗(iv; −iw)
+ J∗(iy; −iu) + J∗(iu; −iy) + J∗(iy; −iv)
+ J∗(iv; −iy) + J∗(iy; −iw) + J∗(iw; −iy)

)

+ N
(
J∗(−iw; iu, iv) + J∗(−iv; iw, iu) + J∗(−iu; iw, iv)

+ J∗(iu; −iw,−iv) + J∗(iv; −iw,−iu) + J∗(iw; −iu,−iv)
+ J∗(−iw; iy, iv) + J∗(−iv; iw, iy) + J∗(−iy; iw, iv)
+ J∗(iy; −iw,−iv) + J∗(iv; −iw,−iy) + J∗(iw; −iy,−iv)
+ J∗(−iw; iu, iy) + J∗(−iy; iw, iu) + J∗(−iu; iw, iy)
+ J∗(iu; −iw,−iy) + J∗(iy; −iw,−iu) + J∗(iw; −iu,−iy)
+ J∗(−iy; iu, iv) + J∗(−iv; iy, iu) + J∗(−iu; iy, iv)
+ J∗(iu; −iy,−iv) + J∗(iv; −iy,−iu) + J∗(iy; −iu,−iv)

)

+ J∗(−iy; iu, iv, iw) + J∗(−iw; iy, iu, iv) + J∗(−iv; iy, iu, iw)
+ J∗(−iu; iy, iv, iw) + J∗(iy; −iu,−iv,−iw) + J∗(iu; −iy,−iv,−iw)
+ J∗(iv; −iy,−iu,−iw) + J∗(iw; −iy,−iu,−iv)
+ J∗(iy, iu; −iv,−iw) + J∗(iy, iv; −iu,−iw) + J∗(iy, iw; −iu,−iv)
+ J∗(iu, iv; −iy,−iw) + J∗(iu, iw; −iy,−iv) + J∗(iv, iw; −iy,−iu)

= det

⎛

⎜⎜⎝

N S(u − v) S(u − w) S(u − y)
S(v − u) N S(v − w) S(v − y)
S(w − u) S(w − v) N S(w − y)
S(y − u) S(y − v) S(y − w) N

⎞

⎟⎟⎠.

(5.34)

5.6. Quadruple correlation, ζ

We conjecture that

Rζ,t,4(u, v, w, y)

= �4 + �2(J∗
ζ,t(iu; −iv) + J∗

ζ,t(iv; −iu) + J∗
ζ,t(iu; −iw)

+ J∗
ζ,t(iw; −iu) + J∗

ζ,t(iw; −iv) + J∗
ζ,t(iv; −iw)

+ J∗
ζ,t(iy; −iu) + J∗

ζ,t(iu; −iy) + J∗
ζ,t(iy; −iv)
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+ J∗
ζ,t(iv; −iy) + J∗

ζ,t(iy; −iw) + J∗
ζ,t(iw; −iy)

)

+ �
(
J∗

ζ,t(−iw; iu, iv) + J∗
ζ,t(−iv; iw, iu) + J∗

ζ,t(−iu; iw, iv)

+ J∗
ζ,t(iu; −iw,−iv) + J∗

ζ,t(iv; −iw,−iu) + J∗
ζ,t(iw; −iu,−iv)

+ J∗
ζ,t(−iw; iy, iv) + J∗

ζ,t(−iv; iw, iy) + J∗
ζ,t(−iy; iw, iv)

+ J∗
ζ,t(iy; −iw,−iv) + J∗

ζ,t(iv; −iw,−iy) + J∗
ζ,t(iw; −iy,−iv)

+ J∗
ζ,t(−iw; iu, iy) + J∗

ζ,t(−iy; iw, iu) + J∗
ζ,t(−iu; iw, iy)

+ J∗
ζ,t(iu; −iw,−iy) + J∗

ζ,t(iy; −iw,−iu) + J∗
ζ,t(iw; −iu,−iy)

+ J∗
ζ,t(−iy; iu, iv) + J∗

ζ,t(−iv; iy, iu) + J∗
ζ,t(−iu; iy, iv)

+ J∗
ζ,t(iu; −iy,−iv) + J∗

ζ,t(iv; −iy,−iu) + J∗
ζ,t(iy; −iu,−iv)

)

+ J∗
ζ,t(−iy; iu, iv, iw) + J∗

ζ,t(−iw; iy, iu, iv) + J∗
ζ,t(−iv; iy, iu, iw)

+J∗
ζ,t(−iu; iy, iv, iw) + J∗

ζ,t(iy; −iu,−iv,−iw) + J∗
ζ,t(iu; −iy,−iv,−iw)

+ J∗
ζ,t(iv; −iy,−iu,−iw) + J∗

ζ,t(iw; −iy,−iu,−iv)

+ J∗
ζ,t(iy, iu; −iv,−iw) + J∗

ζ,t(iy, iv; −iu,−iw) + J∗
ζ,t(iy, iw; −iu,−iv)

+ J∗
ζ,t(iu, iv; −iy,−iw) + J∗

ζ,t(iu, iw; −iy,−iv) + J∗
ζ,t(iv, iw; −iy,−iu),

(5.35)

where the relevant J∗
ζ,t are now described.

We have

J∗
ζ,t({a}, {b1, b2, b3})

= −
∑

p

zp(1 + a + b1)zp(1 + a + b2)zp(1 + a + b3) log4 p

p3+3a+b1+b2+b3

+ W1(a, b1; b2, b3) + W1(a, b2; b1, b3) + W1(a, b3; b1, b2),(5.36)

where

W1(a, b1; b2, b3) = P1(a + b1)(P3(a, b1, b2)P3(a, b1, b3) − B2(a, b1; b2, b3))
(5.37)

with

B2(a, b1; b2, b3) =
∑

p

(p − 1)p2b1
(
pa+b1 − 1

) (
pa+b1 − p

)
log2 p

(−2pa+b1 + pa+b1+1 + 1)2 (pb1 − pb2+1) (pb1 − pb3+1)
.

(5.38)
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We also have

J∗
ζ,t({a1, a2}, {b1, b2})

= P2(a1 + b1)P2(a2 + b2) + P2(a1 + b2)P2(a2 + b1) − B4(a1, a2, b1, b2)

+ e−	(a1+a2+b1+b2)A∗(a1, a2, b1, b2)

× Zζ({a1, a2}, {b1, b2})Zζ({−a1,−a2}, {−b1,−b2})

Z†
ζ ({a1, a2}, {−a1,−a2})Z†

ζ ({b1, b2}, {−b1,−b2})
+ W (a1, b1; a2, b2)

+ W (a1, b2; a2, b1) + W (a2, b1; a1, b2) + W (a2, b2; a1, b1),
(5.39)

where

A∗(a1, a2, b1, b2)

=
∏

p

Zp({a1, a2}, {b1, b2})Zp({−a1,−a2}, {−b1,−b2})
Zp({a1, a2}, {−a1,−a2})Zp({b1, b2}, {−b1,−b2})

× p−a1−a2−b1−b2

(
1 +

zp(1 − a1 − b1)zp(1 − a2 − b1)zp(b2 − b1)
zp(1)zp(−a1 − b1)zp(−a2 − b1)zp(1 + b2 − b1)

+
zp(1 − a1 − b2)zp(1 − a2 − b2)zp(b1 − b2)

zp(1)zp(−a1 − b2)zp(−a2 − b2)zp(1 + b1 − b2)

)

(5.40)

and

W (a1, b1; a2, b2) = P1(a1 + b1)
{

P2(a2 + b2) − B3(a1, a2; b1, b2)

+ P3(a1, b1, b2)P3(b1, a1, a2)
}

(5.41)

with

B3(a1, a2; b1, b2)

=
∑

p

log2 p

(
(p − 1)2

(
pa1+b1 − 1

)2
pa1+b1

(pa1 − pa2+1) (−2pa1+b1 + pa1+b1+1 + 1)2 (pb1 − pb2+1)

+
C(a1, a2; b1, b2)

(pa1 − pa2+1) (−2pa1+b1 + pa1+b1+1 + 1) (pb2+1 − pb1) (pa2+b2+1 − 1)

+
1

pa2+b2+1 − 1

)
,

(5.42)
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C(a1, a2; b1, b2)

= −pa1+b1 + 2pa1+b1+1 − pa2+b1+2 − p2a1+2b1+1 + pa1+a2+2b1+1 − pa1+b2+2

+ pa2+b2+2 + p2a1+b1+b2+1 − 2pa1+a2+b1+b2+2 + pa1+a2+b1+b2+3,
(5.43)

and

B4(a1, a2; b1, b2)

=
∑

p

(3−p1+a1+b1 −p1+a2+b1 −p1+a1+b2 −p1+a2+b2 +p2+a1+a2+b1+b2) log4 p

(p1+a1+b1 − 1)(p1+a2+b1) − 1)(p1+a1+b2 − 1)(p1+a2+b2 − 1)
.

5.7. Auxiliary functions

For ease of reference we list the various auxiliary functions we have intro-
duced in this example section.

A(x) =
∏

p

(1 − 1/p1+x)(1 − 2/p + 1/p1+x)
(1 − 1/p)2

(5.44)

A∗(a1, a2, b1, b2) =
∏

p

Zp({a1, a2}, {b1, b2})Zp({−a1,−a2}, {−b1,−b2})
Zp({a1, a2}, {−a1,−a2})Zp({b1, b2}, {−b1,−b2})

× p−a1−a2−b1−b2

×
(

1 +
zp(1 − a1 − b1)zp(1 − a2 − b1)zp(b2 − b1)

zp(1)zp(−a1 − b1)zp(−a2 − b1)zp(1 + b2 − b1)

+
zp(1 − a1 − b2)zp(1 − a2 − b2)zp(b1 − b2)

zp(1)zp(−a1 − b2)zp(−a2 − b2)zp(1 + b1 − b2)

)
(5.45)

B(x) =
∑

p

(
log p

p1+x − 1

)2

(5.46)

B1(x, y) =
∑

p

(
1 − 1/px

)(
1 − 1/px − 1/py + 1/p1+y

)
log p

(
1−1/p1−x+y

)(
1−1/p1+y

)(
1−2/p+1/p1+x

)
p2−x+y

(5.47)

B2(a, b1; b2, b3) =
∑

p

(p − 1)p2b1
(
pa+b1 − 1

) (
pa+b1 − p

)
log2 p

(−2pa+b1 + pa+b1+1 + 1)2 (pb1 − pb2+1) (pb1 − pb3+1)

(5.48)
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B3(a1, a2; b1, b2) =
∑

p

log2 p

(
(p − 1)2

(
pa1+b1 − 1

)2
pa1+b1

(
pa1 − pa2+1

) (
−2pa1+b1 + pa1+b1+1 + 1

)2
(
pb1 − pb2+1

)

+
C(a1, a2; b1, b2)(

pa1 − pa2+1
) (

−2pa1+b1 + pa1+b1+1 + 1
) (

pb2+1 − pb1
)

(
pa2+b2+1 − 1

)

+
1

pa2+b2+1 − 1

)
(5.49)

B4(a1, a2; b1, b2) =
∑

p

(3 − p1+a1+b1 − p1+a2+b1 − p1+a1+b2 − p1+a2+b2

+p2+a1+a2+b1+b2) log4 p

(p1+a1+b1 − 1)(p1+a2+b1 − 1)(p1+a1+b2 − 1)
(p1+a2+b2 − 1)

C(a1, a2; b1, b2) = −pa1+b1 + 2pa1+b1+1 − pa2+b1+2 − p2a1+2b1+1

+ pa1+a2+2b1+1 − pa1+b2+2 + pa2+b2+2 + p2a1+b1+b2+1

− 2pa1+a2+b1+b2+2 + pa1+a2+b1+b2+3(5.50)

P1(x) = e−	xA(x)ζ(1 + x)ζ(1 − x)(5.51)

P2(x) =
(ζ ′

ζ

)′
(1 + x) − B(x)(5.52)

P3(a, b, c) = B1(a + b, a + c) +
ζ ′

ζ
(1 + a + c) − ζ ′

ζ
(1 + c − b)(5.53)

Q(x, y) = −
∑

p

log3 p

p2+x+y(1 − 1/p1+x)(1 − 1/p1+y)
(5.54)

W (a1, b1; a2, b2) = P1(a1 + b1)
{

P2(a2 + b2) − B3(a1, a2; b1, b2)

+ P3(a1, b1, b2)P3(b1, a1, a2)
}

(5.55)

W1(a, b1; b2, b3) = P1(a + b1)(P3(a, b1, b2)P3(a, b1, b3) − B2(a, b1; b2, b3))
(5.56)
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