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Solvmanifolds and noncommutative tori with real
multiplication
Matilde Marcolli

We prove that the Shimizu L-function of a real quadratic field is
obtained from a (Lorentzian) spectral triple on a noncommutative
torus with real multiplication, as an adiabatic limit of the Dirac
operator on a 3-dimensional solvmanifold. The Dirac operator on
this 3-dimensional geometry gives, via the Connes–Landi isospec-
tral deformations, a spectral triple for the noncommutative tori
obtained by deforming the fiber tori to noncommutative spaces.
The 3-dimensional solvmanifold is the homotopy quotient in the
sense of Baum–Connes of the noncommutative space obtained as
the crossed product of the noncommutative torus by the action of
the units of the real quadratic field. This noncommutative space
is identified with the twisted group C∗-algebra of the fundamental
group of the 3-manifold. The twisting can be interpreted as the
cocycle arising from a magnetic field, as in the theory of the quan-
tum Hall effect. We prove a twisted index theorem that computes
the range of the trace on the K-theory of this noncommutative
space and gives an estimate on the gaps in the spectrum of the
associated Harper operator.
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1. Introduction

In the 1970s, Hirzebruch formulated a conjecture, cf. [16], on the topological
interpretation of certain special values of L-functions of totally real fields in
terms of signature defects. The conjecture was proved in the early 80s by
Atiyah–Donnelly–Singer [2] and by Müller [24]. Hirzebruch’s conjecture
played an important role in the development of the Atiyah–Patodi–Singer
index theorem [3], which in turn is a key ingredient in the proof [2] of the
conjecture, extending the Hirzebruch–Riemann–Roch theorem to manifolds
with boundary and relating the signature defect to the eta invariant. Geo-
metrically, the link of an isolated singularity of the Hilbert modular variety
associated to a totally real number field is given by a (4k − 1)-dimensional
solvmanifold. The signature of the Hilbert modular variety is then computed
by the APS theorem applied to the resulting manifold with boundary and
the signature defects are computed by the eta invariant of the solvmani-
fold. The main step in the proof of [2] then consists of separating out the
eta function of the signature operator on the solvmanifold into a part that
recovers the Shimizu L-function of the totally real field and a residual part,
which is shown not to contribute to the eta invariant.

We concentrate here on the simplest case, that of real quadratic fields,
and we consider the question of whether the Shimizu L-function can be



424 Matilde Marcolli

related in a similar way to a spectral geometry (in the sense of Connes’ notion
of spectral triples [11]) on a noncommutative torus with real multiplication
by the same real quadratic field.

The motivation for such a question lies in the fact that the arithmetic
contribution to the eta function in the argument of [2] appears to arise from
a lower dimensional geometry which should correspond to the action of the
units on a lattice in a real quadratic field, while the remaining part of the eta
function can be attributed to the choice of a model, up to homotopy, of the
same space. As we argue in more detail in the body of the paper, the kind
of lower dimensional space that one would like to identify as supporting
the arithmetic part of the eta function is a quotient, which is not a nice
quotient in the ordinary sense, but which can be best described in terms of
noncommutative tori with real multiplication.

The noncommutative tori associated to quadratic irrationalities have
been extensively studied by Manin in [18] and subsequently by several
authors. They have the special property of “real multiplication,” derived from
the presence of non-trivial self Morita equivalences. It is argued in [18] that
the noncommutative tori with real multiplication should play a role for real
quadratic field parallel to the theory of elliptic curves with complex multipli-
cation in the case of imaginary quadratic fields. This makes it an interesting
problem to study the geometric properties of this particular class of non-
commutative spaces and their relation to the arithmetic of real quadratic
fields.

We show in Section 5 that there is a close relation between the
3-dimensional solvmanifold and the noncommutative torus with real multi-
plication. Namely, we prove that the first is the homotopy quotient, in the
sense of Baum–Connes, of the noncommutative space given by the quotient
of the latter by the action of the infinite group of units, Section 3. We
also show that the 3-manifold can be identified with the pullback of the
universal family of elliptic curves along a closed geodesic in the modular
curve.

This interpretation as the homotopy quotient of a noncommutative space
provides a geometric setting analogous to the one developed in the non-
commutative geometry models of the quantum Hall effect [5], where the
presence of a magnetic field makes the Brillouin zone of the lattice into
a noncommutative torus. Here, the 3-dimensional solvmanifold is simi-
larly related to a noncommutative space whose algebra of coordinates is
the crossed product of the algebra of the noncommutative torus by the
action of the units. This is obtained by twisting the group ring of the
fundamental group of the solvmanifold by a cocycle, defined in terms of
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a magnetic potential. The noncommutative space is the resulting twisted
group C∗-algebra, cf. Section 4. As in the case of the quantum Hall effect,
and in the noncommutative Bloch theory of electron-ion interactions, one
obtains in Section 6 information on the spectral theory of the corresponding
magnetic Laplacian by computing the range of the trace on the K-theory of
the twisted group C∗-algebra. We prove a twisted index theorem which we
use to compute the range of the trace using a spectral flow computation and
the Baum–Connes conjecture, which is known to hold for the fundamental
group of the 3-dimensional solvmanifold.

This way of passing from the 3-dimensional solvmanifold to the associ-
ated noncommutative space is obtained in two steps. Viewing the 3-manifold
as a fibration of 2-dimensional tori over the circle, one first replaces the
fiber tori by noncommutative tori and then the mapping torus by the dual
action of the units. We show in Section 7 that the first step can be seen as
a case of the Connes–Landi isospectral deformations [13]. In particular, we
prove that the Dirac operator on the 3-manifold induces in this way a Dirac
operator on the noncommutative torus with real multiplication. A unitary
equivalence as the one considered in [2] then factors this Dirac operator
into a product of two operators, one of which has spectrum given by the
norms N(λ) of the lattice points λ and recovers the Shimuzu L-function. In
Section 7.4 we show how an adiabatic limit relates the Dirac operator on
the 3-manifold to known differential operators on the noncommutative torus,
obtained by considering the derivations along the leaves of the Kronecker
foliations associated to the Galois conjugate elements θ and θ′ in the real
quadratic field K = Q(θ).

Finally, we prove in Section 8 that the norms N(λ) define the momenta
of a Lorentzian Dirac operator on the noncommutative torus with real
multiplication. The theory of spectral triples in Lorentzian signature is at
present still under active development, and this provides a natural example
where the arithmetic structure dictates how the Lorentzian geometry should
be treated in the noncommutative context. We develop a framework for
Lorentzian spectral triples over real quadratic fields, where the Galois invo-
lution of K provides a canonical choice of a Krein involution. In particular,
we prove that, in passing from the indefinite Lorentzian geometry defined by
the quadratic form given by the norm to the associated real Hilbert space,
one can resolve the infinite multiplicities in the spectrum of the Dirac oper-
ator arising from the presence of a noncompact group of symmetries (the
units of the real quadratic field). We show that the resulting operator on
the real Hilbert space has the same eta function as the one coming from the
adiabatic limit of the 3-dimensional geometry as in Section 7.4. This eta
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function is the product of the Shimizu L-function of the real quadratic field
by a term that only depends on the fundamental unit.

2. 3-Dimensional solvmanifolds and real quadratic fields

Let K = Q(
√

d) be a real quadratic field and let ιi : K ↪→ R, for i = 1, 2, be
its two real embeddings. We let L ⊂ K be a lattice, with U+

L the group of
totally positive units preserving L,

(2.1) U+
L = {u ∈ O∗

K
|uL ⊂ L, ιi(u) ∈ R

∗
+}.

We denote by εL a generator, so that U+
L = εZ

L. In the case where L = OK,
the ring of integers of K, then the generator ε = εL is a fundamental unit.
We consider the embedding of L in R

2 given by the mapping

(2.2) L � � �−→ (ι1(�), ι2(�)) ⊂ R
2.

We denote the range by Λ = (ι1, ι2)(L). This is a lattice in R
2. The action

of U+
L extends to an action on Λ by

(2.3) λ = (ι1(�), ι2(�)) �−→ (ει1(�), ε′ι2(�)) = (ει1(�), ε−1ι2(�)).

2.1. Semidirect products and solvmanifolds

Let us denote by V either the group U+
L or a finite index subgroup thereof.

As in [2], we consider the crossed product

(2.4) S(Λ, V ) = Λ �ε V,

where the action of V = εZ on Λ is induced by the action by multiplication
on L. As shown in [2], these are discrete subgroups of the solvable Lie group

(2.5) S(R2, R) = R
2

� R,

with the action of R on R
2 by the one parameter subgroup Θt(x, y) =

(etx, e−ty) of SL2(R). For ε > 1 and ε′ = ε−1 < 1, the action of V on Λ
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is then generated by

(2.6) Aε =
(

ε 0
0 ε′

)
∈ SL2(R).

We also consider the 3-dimensional solvmanifold obtained as the quotient

(2.7) Xε = S(Λ, V )\S(R2, R),

with π1(Xε) = S(Λ, V ).

2.2. The topology of the 3-manifold Xε

It is well known [2] that the 3-manifold Xε of (2.7) is a fibration over the
circle S1 with fibers that are 2-tori and with monodromy given by the matrix
Aε of (2.6).

Lemma 2.1. The manifold Xε has first homology

(2.8) H1(Xε, Z) = Λ/(1 − Aε)Λ ⊕ Z.

Proof. The fundamental group is π1(Xε) = S(Λ, V ). Consider the surjective
map

(2.9) π : S(Λ, V ) −→ Λ/(1 − Aε)Λ ⊕ Z, π(λ, n) = (λ mod (1 − Aε)Λ, n).

By writing

An
ε (λ′) = λ′ − (1 − Aε)(λ′ + Aε(λ′) + · · · + An−1

ε (λ′))

one sees that λ + An
ε (λ′) = λ + λ′ modulo (1 − Aε)Λ, so that π(λ + An

ε λ′,
n + n′) = π(λ, n) + π(λ′, n′). Since commutators in S(Λ, V ) are of the form

(λ, n)(λ′, n′)(λ, n)−1(λ′, n′)−1 = ((1 − An′

ε )λ − (1 − An
ε )λ′, 0),

we see that the homomorphism (2.9) has Ker(π) = [π1(Xε), π1(Xε)]. �

Corollary 2.2. The compact 3-manifold Xε has cohomology

(2.10) Heven(Xε, Z) = Z ⊕ Z ⊕ Coker(1 − Aε), Hodd(Xε, Z) = Z ⊕ Z.
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Proof. By Poincaré duality, we have

(2.11) H2(Xε, Z) ∼= H1(Xε, Z) ∼= Z ⊕ Λ/(1 − Aε)Λ,

and H1(Xε, Z) = Hom(H1(Xε, Z), Z) = Z ⊕ Hom(Λ/(1 − Aε)Λ, Z), so that

(2.12) H2(Xε, Z) ∼= H1(Xε, Z) ∼= Z ⊕ Hom(Λ/(1 − Aε)Λ, Z).

We have Ker(1 − Aε) = 0, while Coker(1 − Aε) is torsion, so that we obtain

(2.13)
H0(Xε, Z) = Z, H1(Xε, Z) = Z,

H3(Xε, Z) = Z, H2(Xε, Z) = Z ⊕ Coker(1 − Aε).

�

2.3. Action on Z
2

We recall the following description of the action of Aε on Λ, which will be
useful in the following, where we use twisted group C∗-algebras to describe
noncommutative tori.

Lemma 2.3. In the basis {1, θ} of ι1(L) ⊂ R, the action of the group V = εZ

is generated by the matrix

(2.14) ϕε =
(

a b
c d

)
∈ SL2(Z)

with ε = a + bθ and εθ = c + dθ. The conjugate elements 1/θ and 1/θ′ are
the fixed points of ϕε ∈ SL2(Z) acting on P

1(R) by fractional linear trans-
formations.

Proof. As we have seen in (2.3), the action of V on Λ is given by

Aε : (n + mθ, n + mθ′) �−→ (ε(n + mθ), ε′(n + mθ′))

with εε′ = 1. In particular, for m = 0 and n = 1 this gives ε ∈ ι1(L) and ε′ ∈
ι2(L). Thus, we can write ε = a + bθ, for two integers a, b ∈ Z. Similarly,
the element εθ can be written in the form εθ = c + dθ. Thus, the action of
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Ak
ε on Λ can be described equivalently as

(2.15) (n, m) �−→ (n, m)ϕk
ε , with ϕε =

(
a b
c d

)
∈ SL2(Z).

The second statement follows immediately since

θ−1 =
ε

εθ
=

aθ−1 + b

cθ−1 + d
.

�

We obtain in this way two corresponding identifications S(Λ, V ) =
Z

2
�ϕε

Z, by mapping (λ, εk) to either (λ1 = n + mθ, k) or (λ2 = n + mθ′,−k).

2.4. Solvmanifold and Hecke’s lift of geodesics

For Γ = SL2(Z) and XΓ = Γ\H the modular curve, let UΓ → XΓ denote
the universal family of elliptic curves over the modular curve, where the
fiber over τ ∈ XΓ of UΓ is the isomorphism class of the elliptic curve Eτ =
C/(Z + τZ).

Suppose given a lattice L in a real quadratic field K and let {1, θ} be a
basis for L, with θ′ the Galois conjugate of θ under the Galois involution of
K over Q.

We denote by γθ,θ′ the infinite geodesic in the hyperbolic plane H with
endpoints θ, θ′ ∈ P

1(R). This defines a closed geodesic in the quotient XΓ of
length log ε, for ε > 1 the generator of V = U+

L = εZ. We denote the closed
geodesic by γ̄θ,θ′ .

Consider the restriction of the universal family UΓ to the closed geodesic
γ̄θ,θ′ . Via the parameterization of the closed geodesic by a circle S1 of length
log ε, we can consider the pullback to the parameterizing S1 of UΓ. We
obtain in this way a real 3-dimensional manifold, which we denote Uθ,θ′ .
This is topologically a 3-manifold that fibers over a circle, with fibers T 2.
We consider it endowed with the metric that is the product of the geodesic
length and the flat metric on T 2. We then obtain the following result.

Lemma 2.4. The solvmanifold S(Λ, V ) is isometrically equivalent to Uθ,θ′.

Proof. We recall the following procedure of Hecke to lift closed geodesics to
the space of lattices [18, Section 1.8.2]. Given a lattice L in a real quadratic



430 Matilde Marcolli

field K, with � �→ �′ the Galois involution, one sets

(2.16) Λt(L) := {z ∈ H | z = z(�, t) = �et + i�′e−t � ∈ L}.

This defines, for all t ∈ R a lattice Λt ⊂ C. The action of V = εZ is of the
form (cf. [18, Lemma 1.8.3])

(2.17) z(�, t) �−→ ε�et + iε′�′e−t = z(�, t + log ε).

In particular (see again [18, Lemma 1.8.3]), for {1, θ} a basis of L, the lattice
Λt(L) is generated by {1, τt} where τt runs over the geodesic �θ,θ′ ⊂ H, for
t ∈ R. Thus, we can identify the 3-manifold Uθ,θ′ with the fibration over a
circle of length log ε, with fiber Eτt

= C/Λt(L).
On the other hand, the 3-manifold S(Λ, V ) is a fibration of tori over the

circle

(2.18) T 2 −→ S(Λ, V ) −→ S1,

where the base S1 is a circle of length log ε and the fiber over t ∈ S1 is given
by the 2-torus

(2.19) T 2
t = R

2/Λt,

with Λt = Θt(Λ), for Θt(x, y) = (etx, e−ty). This proves the result. �

3. Actions on noncommutative tori with real multiplication

The noncommutative torus Aθ of modulus θ ∈ R � Q is the noncommu-
tative space described, at the topological level, by the irrational rotation
C∗-algebra, that is, the universal C∗-algebra generated by two unitaries U ,
V with the commutation relation V U = e2πiθUV . It has a smooth struc-
ture given by the smooth subalgebra of series

∑
n,m an,mUnV m with rapidly

decaying coefficients [9].
It is a well-known result [9,27] that the algebras Aθ1 and Aθ2 are Morita

equivalent whenever there exists an element g ∈ SL2(Z) acting on R by
fractional linear transformations, such that θ1 = gθ2. In the following, we
concentrate on the case where the irrational number θ is a quadratic irra-
tionality in a real quadratic field K = Q(θ). These are the noncommutative
tori with real multiplication considered in [18]. We let L be the lattice in
K with ι1(L) = Z + Zθ and ι2(L) = Z + Zθ′. As before, we denote by Λ the
corresponding lattice in R

2.
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The C∗-algebra of the noncommutative torus Aθ described above can be
equivalently described as the crossed product

(3.1) Aθ = C(S1) �θ Z,

where the action of Z on S1 is by the irrational rotation by exp(2πiθ). Up to
Morita equivalence, one can replace C(S1) by the crossed product C0(R) �

Z, and one obtains a Morita equivalent description of the noncommutative
torus as

(3.2) C0(R) �θ Z
2 = C0(R) � (Z + Zθ).

In the case we are considering, of real quadratic fields, we can regard the
noncommutative torus with real multiplication associated to a lattice L ⊂ K

as described by the algebras

(3.3) TΛ,1 := C0(R) � ι1(L), TΛ,2 := C0(R) � ι2(L).

These algebras can be described as follows. They are C∗-algebras generated
by elements of the form fUλ, with f ∈ C0(R) and λ ∈ Λ, with the product

fUλ hUη = fUλ,i(h)Uλ+η, where Uλ,i(h)(x) = h(x + ιi(λ)), i = 1, 2.

The group V = εZ of units acts as symmetries of the noncommutative tori
TΛ,i as follows.

Lemma 3.1. For k ∈ Z and fUλ ∈ TΛ,i, set υk
ε (f)(x) := f(εkx) and

(3.4) υk
1 (fUλ) = υk

ε (f)UAk
ε (λ) and υk

2 (fUλ) = υk
ε′(f)UAk

ε (λ).

This defines actions υi : V → Aut(TΛ,i).

Proof. The result follows directly from

υk
i (Uλ(h))(x) = UAk

ε (λ)(υ
k
i (h))(x) =

{
h(εk(x + n + mθ)), i = 1,
h(ε−k(x + n + mθ′)), i = 2,

which implies that

υk
ε (fUλhUη) = υk

i (f)υk
i (Uλ(h))UAk

ε (λ+η) = υk
i (fUλ)υk

i (hUη).
�
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It is customary, in noncommutative geometry, to replace quotients by
crossed product algebras. In this case, the quotient of the noncommutative
tori TΛ,i by the action of V is described by the crossed product algebra

(3.5) TΛ,V,i := TΛ,i �υi
V,

which we can view equivalently as the crossed product

(3.6) TΛ,V,i := C0(R) �i S(Λ, V ),

for the actions of S(Λ, V ) on C0(R) of the form
(3.7)
U(λ,k)f(x) = f(εk(x + n + mθ)) or U(λ,k)f(x) = f(ε−k(x + n + mθ′)).

4. Twisted group algebras and the magnetic Laplacian

Another equivalent description of the algebra Aθ of the noncommutative
torus is as twisted group C∗-algebra. This played an important role in the
context of the noncommutative geometry model of the integer quantum Hall
effect (see [5]).

We recall briefly the definition and properties of twisted group C∗-
algebras, as this will be useful in the following. For a similar overview and
applications to the case of Fuchsian groups, see [21].

4.1. Twisted group algebras

Let Γ be a finitely generated discrete group, and let σ : Γ × Γ → U(1) be a
multiplier, that is, a 2-cocycle satisfying the cocycle property

(4.1) σ(γ1, γ2)σ(γ1γ2, γ3) = σ(γ1, γ2γ3)σ(γ2, γ3),

with σ(γ, 1) = σ(1, γ) = 1.
Consider then the Hilbert space �2(Γ) and the left/right σ-regular repre-

sentations of Γ given by

(4.2) Lσ
γf(γ′) = f(γ−1γ′)σ(γ, γ−1γ′), Rσ

γf(γ′) = f(γ′γ)σ(γ′, γ).

They satisfy the relations

(4.3) Lσ
γLσ

γ′ = σ(γ, γ′)Lσ
γγ′ , Rσ

γRσ
γ′ = σ(γ, γ′)Rσ

γγ′ .
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Moreover, the left σ-regular representation commutes with the right σ̄-regular
representation, with σ̄ the conjugate multiplier. The algebra generated by
the Rσ

γ is the twisted group ring C(Γ, σ). Its norm closure is the (reduced)
twisted group C∗-algebra C∗

r (Γ, σ).

4.2. The noncommutative tori as twisted group algebras

One identifies the C∗-algebra Aθ of the noncommutative torus with the
reduced twisted group C∗-algebra C∗

r (Z2, σ) in the following way. Let σ be
a cocycle of the form

(4.4) σ((n, m), (n′, m′)) := exp(−2πi(ξ1nm′ + ξ2mn′)).

Then the operators U = Rσ
(0,1) and V = Rσ

(1,0) acting by

Uf(n, m) = e−2πiξ2n f(n, m + 1), V f(n, m) = e−2πiξ1m f(n + 1, m)

which generate the algebra C∗
r (Z2, σ) satisfy the commutation relation

UV = e2πiθV U, with θ = ξ2 − ξ1.

Notice that different choices of ξ1, ξ2 with the same θ = ξ2 − ξ1 yield the
same algebra Aθ. This gives us the freedom to choose the ξi according to
the following result.

Lemma 4.1. A cocycle σ of the form (4.4) has the property that
(4.5)

σ((n, m), (n′, m′)) = σ((n, m)ϕ, (n′, m′)ϕ), ∀ϕ =
(

a b
c d

)
∈ SL2(Z)

if and only if ξ2 = −ξ1.

Proof. We see that σ((n, m)ϕ, (n′, m′)ϕ) is of the form

exp(−2πi((ξ1 + ξ2)(ab nn′ + cd mm′) + (ξ1cb + ξ2ad)mn′

+ (ξ1ad + ξ2cb)nm′)).
�
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Thus, in the following we will assume that ξ2 = θ/2 = −ξ1 in the choice
of the cocycle σ of (4.4). We can then write σ in the form

σθ((n, m), (k, r)) = exp(πiθ(nr − mk)) = exp(πiθ(n, m) ∧ (k, r)),

where we use the notation

(4.6) (a, b) ∧ (c, d) = det
(

a b
c d

)
.

We then obtain the following identifications.

Corollary 4.2. The noncommutative tori TΛ,i are described by twisted
group C∗-algebras

(4.7)
TΛ,1 = C∗(Z2, σθ) = C∗(Λ, σθ(θ′−θ)−1),

TΛ,2 = C∗(Z2, σθ′) = C∗(Λ, σθ′(θ′−θ)−1).

Proof. The expression

σu(λ, η) = exp(πiu λ ∧ η)

defines a cocycle on Λ. For λ = (n + mθ, n + mθ′) and η = (k + rθ, k + rθ′),
a direct calculation shows that

σθ((n, m), (k, r)) = σu(λ, η), for u = θ(θ′ − θ)−1.

Thus, the generators Rσ
(n,m) of C∗(Z2, σθ) with

Rσ
(n,m)R

σ
(k,r) = σθ((n, m), (k, r))Rσ

(n,m)+(k,r)

are identified with the generators Rσ
λ of C∗(Λ, σθ(θ′−θ)−1) with

Rσ
λRσ

η = σθ(θ′−θ)−1(λ, η)Rσ
λ+η.

The case of TΛ,2 is analogous. �

4.3. Twisted group algebra of S(Λ, V )

We now show that the algebra Aθ � V , which we introduced in the pre-
vious section to describe the quotient of the noncommutative torus with
real multiplication by the action of V , also admits a description in terms
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of twisted group C∗-algebras, for the group S(Λ, V ). First notice that the
group S(Λ, V ) is amenable, so that the maximal and reduced group C∗-
algebras coincide, C∗

max(S(Λ, V )) ∼= C∗
r (S(Λ, V )), so that we can simply write

C∗(S(Λ, V )) and C∗(S(Λ, V ), σ̃) for the twisted case.

Lemma 4.3. Let σ be a multiplier on Z
2 of the form (4.4), with ξ2 = θ/2 =

−ξ1. Then the map σ̃ : S(Λ, V ) × S(Λ, V ) → U(1) of the form

(4.8) σ̃((n, m, k), (n′, m′, k′)) := σ((n, m), (n′, m′)ϕk
ε )

is a multiplier for S(Λ, V ), identified with the group Z
2

�ϕε
Z.

Proof. The cocycle condition for σ and the SL2(Z)-invariance σ((n, m)ϕ,
(n′, m′)ϕ) = σ((n, m), (n′m′)) imply that σ̃ also satisfies the cocycle condi-
tion (4.1), since we have

σ((n1, m1), (n2, m2)ϕk1
ε )σ((n1, m1) + (n2, m2)ϕk1

ε , (n3, m3)ϕk1+k2
ε )

= σ((n1, m1), (n2, m2)ϕk1
ε + (n3, m3)ϕk1+k2

ε )

× σ((n2, m2)ϕk1
ε , (n3, m3)ϕk1+k2

ε ). �

We then have the following result.

Proposition 4.4. The algebras TΛ,V,i = TΛ,i �i V are isomorphic to the
algebras

(4.9)

TΛ,V,1 = C∗(Z2, σθ) �υ1 Z = C∗(Z2
�ϕε

Z, σ̃θ)

= C∗(Λ, σθ(θ′−θ)−1) �υ1 V = C∗(S(Λ, V ), σ̃θ(θ′−θ)−1),

TΛ,V,2 = C∗(Z2, σθ′) �υ2 Z = C∗(Z2
�ϕε

Z, σ̃θ′)

= C∗(Λ, σθ′(θ′−θ)−1) �υ2 V = C∗(S(Λ, V ), σ̃θ′(θ′−θ)−1).

Proof. We just show explicitly one of the identifications. The others follow
similarly. The twisted group algebra C∗(Z2

�ϕε
Z, σ̃θ) is generated by ele-

ments Rσ̃
(n,m,k) satisfying

Rσ̃
(n,m,k)R

σ̃
(n′,m′,k′) = σ̃((n, m, k), (n′, m′, k′))Rσ̃

(n,m,k)(n′,m′,k′).
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The crossed product C∗(Z2, σθ) �υ1 Z is generated by elements of the form
Rσ

(n,m)υ
k
ε . The map Rσ̃

(n,m,k) �→ Rσ
(n,m)υ

k
ε gives an identification of the gene-

rators, which also satisfies

Rσ
(n,m)υ

k
ε Rσ

(n′,m′)υ
k′

ε = Rσ
(n,m)R

σ
(n′,m′)ϕk

ε
υk+k′

ε

= σ((n, m), (n′, m′)ϕk
ε ) Rσ

(n,m)+(n′,m′)ϕk
ε
υk+k′

ε .

This gives an isomorphism C∗(Z2, σθ) �υ1 Z = C∗(Z2
�ϕε

Z, σ̃θ). �

4.4. The magnetic Laplacian

Consider the general setting of a finitely generated discrete group Γ acting
freely on a contractible space X̃ with compact quotient X= X̃/Γ. Assume
everything happens in the smooth category and we think of X̃ as endowed
with a metric that is invariant under the action of Γ. Upon choosing a base
point x0 ∈ X̃, we can think of the discrete set Γx0 as a crystal of charged ions
and consider the electron–ion interaction problem in X̃. This means that
electrons move in X̃ subject to a periodic potential. Under reasonable assu-
mptions, one can make an independent electron approximation and replace
the N -particle Hamiltonian with the unbounded periodic electric potential
of the ion crystal with a single electron Hamiltonian in an effective periodic
potential given by a bounded function (see [21] for a brief overview).

The Hamiltonian is then of the form Δ + V , where the Δ is the Laplacian
on X̃. We think of it as an unbounded operator on L2(X̃). The Hamiltonian
is invariant under translations by γ ∈ Γ, that is, TγΔ = ΔTγ and by con-
struction V is also invariant. Here the Tγ are the operators Tγf(x) = f(xγ)
on L2(X̃).

One can consider on X̃ a magnetic field. This is specified by a closed
2-form ω which satisfies γ∗ω = ω. Since X̃ is contractible, there is a global
magnetic potential ω = dχ. The corresponding hermitian connection ∇ =
d − iχ satisfies ∇2 = iω. The invariance of ω implies d(χ − γ∗χ) = 0, so that
χ − γ∗χ = dφγ , where the function φγ(x) =

∫ x
x0

χ − γ∗χ has the properties
that

φγ(x) − φγ′(γx) − φγγ′(x)

is independent of x ∈ X̃ and φγ(x0) = 0, so that

(4.10) σ(γ, γ′) = exp(−iφγ(γ′x0))

defines a multiplier σ : Γ × Γ → U(1). The Laplacian Δ is naturally replaced,
in the presence of a magnetic field, by the magnetic Laplacian Δχ = ∇∗∇ =
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(d − iχ)∗(d − iχ). This is no longer invariant under translations Tγ , but is
invariant under the magnetic translations

(4.11) T φ
γ Δχ = ΔχT φ

γ ,

where T φ
γ f(x) = exp(iφγ(x))f(γ−1x). Similarly, in the independent electron

approximation, the effective potential V is also invariant under the magnetic
translations.

The magnetic translations satisfy the relations of the twisted group
algebra C∗

r (Γ, σ̄)

T φ
γ T φ

γ′ = σ̄(γ, γ′)T φ
γγ′ ,

for σ as in (4.10) and σ̄ the conjugate. (We refer the reader to [19,21] for a
brief overview of these well-known facts.)

4.5. Discretized electron–ion interaction and Harper operators

It is usually convenient to discretize the electron–ion interaction problem.
This means replacing the continuum model with Hilbert space L2(X̃) by a
discrete model on the Hilbert space �2(Γ). In the case without magnetic
field, this is done by replacing the Laplacian Δ by its discretized version
Δdiscr = r − R, where r is the cardinality of a symmetric set of generators
for Γ and R is the random walk operator

(4.12) R =
r∑

i=1

Rγi
with Rγi

f(γ) = f(γγi)

for f ∈ �2(Γ). As in the continuum model, the discretized Laplacian com-
mutes with translations by elements γ ∈ Γ. The effective potential is then
taken to be an element in the group ring C[Γ].

In the presence of a magnetic field, one can still obtain a good discretized
version of the electron–ion interaction problem as in [30]. The random walk
operator of (4.12) is then replaced by the Harper operator

(4.13) Hσ =
r∑

i=1

Rσ
γi

,

with Rσ
γi

∈ C(Γ, σ) the elements of the right σ-regular representation, with
σ the cocycle of (4.10). The discretized version of the magnetic Laplacian
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is then given by the operator

(4.14) Δχ
discr = r − Hσ,

which commutes with the magnetic translations Lσ̄
γ . Similarly, the effective

potential is taken to be an element V ∈ C(Γ, σ), which then also commutes
with the magnetic translations Lσ̄

γ .

4.6. Harper operators for noncommutative tori and for S(Λ, V )

In the case of the noncommutative torus, viewed as the twisted group C∗-
algebra C∗(Z2, σ), the Harper operator is of the form

(4.15) Hσ = U + U∗ + V + V ∗,

where U and V are the generators of Aθ.
The spectral theory of the Harper operator Hσ of (4.15) was widely

studied. In particular, it was shown in [17] that the spectrum exhibits a
remarkable fractal structure (the Hofstadter butterfly) which appears to
have infinitely many gaps (Cantor like spectrum) for irrational θ and finitely
many gaps (band spectrum) for rational θ. The precise gap structure of the
spectrum of Harper operators, as a function of the magnetic flux (that is θ in
the noncommutative torus case), is a problem still under active investigation.
As we see more in detail in the following, in the specific case of interest here,
the gap labelling problem for the spectrum of the Harper operator is closely
related to the computation of the range of the trace on the K-theory of the
twisted group C∗-algebra.

In the following, we will be interested in the case of the group S(Λ, V ).
In this case, after identifying it with Z

2
�ϕε

Z, the Harper operator is of the
form

(4.16) Hσ̃ = U + U∗ + V + V ∗ + W + W ∗,

where U = Rσ̃
(0,1,0), V = Rσ̃

(1,0,0) and W = Rσ̃
(0,0,1).

4.7. Spectral theory and K-theory

We recall here briefly the relation between spectral theory of Harper oper-
ators and K-theory of twisted group C∗-algebras (cf. [6; 21, Section 3]).
We then proceed in the following section to analyze the specific case of
C∗(S(Λ, V )).
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As we have seen, the twisted group C∗-algebra C∗
r (Γ, σ) is the norm

closure of the twisted group ring C(Γ, σ) in the right σ-regular representation
on �2(Γ), that is, the C∗-algebra generated by the magnetic translations
Rσ

γ . If we take the weak closure of C(Γ, σ), we obtain the twisted group
von Neumann algebra U(Γ, σ). Suppose given an operator Hσ,V = Hσ + V ,
with Hσ the Harper operator described above and V an effective potential
in C(Γ, σ). We have by construction Hσ,V ∈ C(Γ, σ) ⊂ C∗

r (Γ, σ) ⊂ U(Γ, σ),
hence the spectral projections of Hσ,V ,

(4.17) PE = 1(−∞,E](Hσ,V )

are in the von Neumann algebra, PE ∈ U(Γ, σ). In particular, if the energy
level E is not in the spectrum of Hσ,V , then the corresponding spectral
projection PE is actually in the C∗-algebra C∗

r (Γ, σ).
This implies that the question of counting gaps in the spectrum of Hσ,V

can be reformulated as a problem of counting projections in the C∗-algebra
C∗

r (Γ, σ), modulo the Murray-von Neumann equivalence relation, P ∼ Q if
there exists V ∈ C∗

r (Γ, σ) ⊗ K with P = V ∗V and Q = V V ∗. Equivalent
spectral projections correspond to a same gap in the spectrum. The group
K0(C∗

r (Γ, σ)) is the Grothendieck group of the resulting abelian semi-group
(with the operation of direct sum). Thus, the gap counting problem is
restated as a problem involving K-theory of C∗-algebras. More precisely,
there is a faithful canonical finite trace

τ(a) = 〈aδ1, δ1〉�2(Γ),

on C∗
r (Γ, σ), with δγ the canonical basis of �2(Γ). This extends to

tr = τ ⊗ Tr : {P ∈ C∗
r (Γ, σ) ⊗ K) |P ∗ = P, P 2 = P} −→ R,

with Tr the standard trace on bounded operators and induces

(4.18) [tr] : K0(C∗
r (Γ, σ)) −→ R.

One can obtain an estimate of the number of equivalence classes of projec-
tions by a direct computation of the range of the trace on K0(C∗

r (Γ, σ))),
using

(4.19)
tr({P ∈ C∗

r (Γ, σ) ⊗ K) |P ∗ = P, P 2 = P}) = [tr](K0(C∗
r (Γ, σ))) ∩ [0, 1].
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5. Homotopy quotient and the Baum–Connes conjecture

As we show in this section, the computation of the range of the trace on
K-theory is closely related to the use of the 3-manifold Xε as a commutative
model up to homotopy of the noncommutative space TΛ,V,i.

The main idea of the Baum–Connes conjecture is precisely the fact that
noncommutative spaces originating from “bad quotients” have good homo-
topy quotients that can be used to compute geometrically invariants such
as the analytic K-theory.

The group S(Λ, V ) we are considering here is a particular case of a class
of groups of the form Z

2
�ϕ Z, for some ϕ ∈ SL2(Z). The corresponding

(twisted) group C∗-algebras and their K-theory were analyzed in [25]. We
wish to stress here the relation between the noncommutative space and its
model Xε and the role of the latter in the index computations.

5.1. K-theory of C∗(S(Λ, V ), σ̃)

We now compute explicitly the K-theory of the twisted group C∗-algebra
of S(Λ, V ). This can be done using the Pimsner–Voiculescu six terms exact
sequence.

Lemma 5.1. The K-theory groups of C∗(S(Λ, V ), σ̃)) are of the form

(5.1)
K0(C∗(S(Λ, V ), σ̃)) ∼= Λ,

K1(C∗(S(Λ, V ), σ̃)) ∼= Λ ⊕ Λ/(1 − Aε)Λ.

Proof. By Proposition 4.4, we can identify C∗(S(Λ, V ), σ̃) with the crossed
product C∗(Λ, σ) � V . Thus, we can apply the Pimsner–Voiculescu six
terms exact sequence for the actions of V ∼= Z. We have

K0(A)
1−α∗ �� K0(A) �� K0(A � Z)

∂
��

K1(A � Z)

∂

��

K1(A)�� K1(A)
1−β∗��

where A = C∗(Λ, σ) and α∗ and β∗ denote the action on K0(A) and K1(A),
respectively, induced by the generator Aε of the Z-action on A. We can
identify K0(A) = Λ = K1(A). We then have 1 − α∗ = 0 and 1 − β∗ = 1 −
Aε, so that we obtain Ker(1 − β∗) = Ker(1 − Aε) = 0 and Coker(1 − β∗) =
Λ/(1 − Aε)Λ. �
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We find in this way an abstract isomorphism of abelian groups

(5.2)
K0(C∗(S(Λ, V )), σ̃) ∼= Hodd(Xε, Z) ∼= Z

2,

K1(C∗(S(Λ, V )), σ̃) ∼= Hev(Xε, Z) ∼= Z
2 ⊕ Coker(1 − Aε).

This identification can be justified more naturally in terms of the Baum–
Connes conjecture, as we discuss in the following.

5.2. K-theory and the twist

The following result shows that the presence of the twisting by σ̃ has no
effect on the K-theory.

Lemma 5.2. There is an isomorphism

(5.3) Ki(C∗(S(Λ, V ), σ̃)) ∼= Ki(C∗(S(Λ, V ))

between the K-theory of the twisted group C∗-algebra C∗(S(Λ, V ), σ̃) and the
K-theory of the untwisted C∗(S(Λ, V )).

Proof. The argument is similar to that used in [14, Corollary 2.2; 19,20]. The
cocycle σ̃ is real in the sense of Definition 1.12 of [14], being of the form (4.8),
with σ of the exponential form σ((n, m), (n′, m′)) = exp(−πiθ(mn′ − nm′)).
Thus, as in Corollary 1.13 of [14], the identification (5.3) follows using a
homotopy exp(−tπiθ(mn′ − nm′)), with t ∈ [0, 1]. �

Notice in fact that for groups of the form Γ = Z
2

�ϕ Z, with ϕ ∈ SL2(Z),
all cocycles σ : Γ × Γ → U(1) are real in the above sense. This was observed
already in [25].

Lemma 5.3. Let σ ∈ Z2(Γ, U(1)) be a cocycle. Then σ is cohomologous
to a real cocycle, that is, to an element of Z2(Γ, U(1)) that is of the form
exp(2πiζ) for ζ ∈ Z2(Γ, R).

Proof. We can see it easily as in Section 2.2 of [19], by considering the exact
sequence of coefficient groups

1 −→ Z
ι−→ R

exp(2πi·)−−−−−→ U(1) −→ 1
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and the long exact cohomology sequence

· · · −→ H2(Γ, Z) −→ H2(Γ, R)
exp(2πi·)∗−−−−−−→ H2(Γ, U(1))

δ−→ H3(Γ, Z) ι∗−→ H3(Γ, R) −→ · · ·(5.4)

Since in our case, for Γ = S(Λ, V ), we have EΓ = R
2

� R and BΓ = Xε, we
see that

H2(Γ, Z) = H2(Xε, Z) = H1(Xε, Z) = Z ⊕ Λ/(1 − A)Λ

and

H3(Γ, Z) = H3(Xε) = Z.

We then see that in the sequence (5.4) the map ι∗ is injective so that δ = 0.
Thus, all elements in H2(Γ, U(1)) come from H2(Γ, R) via the exponential
map. �

In fact, we do not need this general fact, as the cocycle we are using is
already constructed in the desired exponential form, but we stated it here
for completeness.

5.3. Thom isomorphism, homotopy quotients and Baum–Connes

It is known that the group S(Λ, V ) satisfies the Baum–Connes conjecture
(with coefficients). In fact, the group SL2(Z) is known to satisfy the Baum–
Connes conjecture with coefficients, hence by [8] so does the group Z

2
�ϕε

Z

with ϕε ∈ SL2(Z).
This means that the Kasparov assembly map is an isomorphism, hence

the K-theory of the C∗-algebra C∗(S(Λ, V )) can be computed in terms of
the geometric K-theory of the homotopy quotient BΓ, the classifying space
for proper actions (cf. [4]). This relates directly the analytic K-theory of
the C∗-algebra to the topological K-theory of the 3-manifold Xε.

Lemma 5.4. The Kasparov assembly map for C∗(S(Λ, V )) gives an iso-
morphism

(5.5)
μ : K1(Xε)

∼=−→ K0(C∗(S(Λ, V ))),

μ : K0(Xε)
∼=−→ K1(C∗(S(Λ, V ))).
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Proof. In our case, the space EΓ is the solvable Lie group S(R2, R) = R
2

� R

and the homotopy quotient BΓ = Γ\EΓ is the 3-manifold Xε = S(Λ, V )\
S(R2, R). This can be identified with the mapping torus

Xε = T 2 × [0, 1]/((x, y), 0) ∼ (Aε(x, y), 1).

For a mapping torus, the Thom isomorphism [10] gives the identification

(5.6) Ki+1(C(Xε)) = Ki(C(T 2) �Aε
Z).

Moreover, the C∗-algebra C(T 2) �Aε
Z is identified with C∗(Λ) � V by the

Fourier transform, which identifies C(T 2) = C∗(Λ) for T 2 = R
2/Λ. The algebra

C∗(Λ) � V is then isomorphic to C∗(S(Λ, V )), by the same argument of
Proposition 4.4 in the untwisted case. �

6. Twisted index theorem, K-theory and the range
of the trace

As we have seen, the 2-cocycle σ̃ on Γ =S(Λ, V ) is of the form σ̃ = exp(2πiζ),
with ζ ∈ H2(Γ, R). Upon identifying H2(Γ, R) = H2(BΓ, R) = H2(Xε, R),
we can identify the 2-cocycle ζ with a closed 2-form ωε on the 3-manifold
Xε. We denote by ω̃ε its pullback to the universal covering X̃ε = S(R2, R).
This is a Γ-invariant 2-form, γ∗ωε = ωε, which we previously interpreted as
a magnetic field.

Lemma 6.1. The real 2-cocycle ζ ∈H2(Γ, R) with σ̃ = exp(2πiζ) is given by

(6.1) ζ((λ, k), (η, r)) =
1

4πi

∫
R

ω,

where ω is the closed 2-form on T 2 = R
2/Λ associated to the cocycle σ on

Λ, with magnetic flux
∫
T 2 ω = 2πiθ(θ′ − θ)−1, and R ⊂ R

2 is the oriented
parallelogram with vertices

(6.2) {0, Ak
ε (η), λ, λ + Ak

ε (η)}.

Proof. On X̃ε the form ω̃ε is exact, hence we have a global magnetic potential
χε with ω̃ε = dχε and d(χε − γ∗χε) = 0, or χε − γ∗χε = dφγ , as before, where
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the φγ recovers the cocycle σ̃ by the formula

σ̃(γ, γ′) = exp
(
−φγ(γ′x0)

)
= exp

(∫ γ′x0

x0

γ∗χε − χε

)
.

We know from Lemma 4.3 that the cocycle σ̃ has the form σ̃u((λ, k), (η, r)) =
σu(λ, Ak

ε (η)), for u = θ(θ′ − θ)−1, so that we have

ζ((λ, k), (η, r)) =
θ(θ′ − θ)−1

2
Ak

ε (η) ∧ λ,

that is, ζ((λ, k), (η, r)) = ξ(λ, Ak
ε (η)), where

(6.3) ξ(λ, Ak
ε (η)) =

1
2πi

∫ Ak
ε (η)

0
U∗

λχ − χ.

Here χ is the magnetic potential on R
2 associated to the closed 2-form ω

with ∫
T 2

ω = 2πiθ(θ′ − θ)−1.

Let then R denote the oriented parallelogram in R
2 with vertices as in (6.2).

We have

(6.4)
1

2πi

∫
R

ω =
1

2πi

∫ Ak
ε (η)

0
(U∗

λχ − χ) − 1
2πi

∫ λ

0
(U∗

Ak
ε (η)χ − χ).

Using the fact that ξ(η, λ) = −ξ(λ, η), this gives

1
2πi

∫
R

ω = 2ζ((λ, k), (η, r)).

�

6.1. Spectral flow and odd Chern character

An element of K1(C(Xε)) can be viewed as the class [g] of g ∈ UN (C(Xε)),
which we can see as a differentiable map g : Xε → GLN (C). We proceed as
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in [15] and we consider the associated 1-form

(6.5) β(g) = g−1dg ∈ Ω1(Xε, glN (C)).

The corresponding family of connections ∇u = d + uβ(g) on the trivial bun-
dle Xε × C

N determines a closed Chern–Simons form

(6.6) Ch(g) := cs(d, d + β(g)) =
∫ 1

0
Tr

(
d

du
(∇u)e∇2

u

)
du,

which gives the odd Chern character Ch(g). As shown in [15], this has an
expression as an odd differential form

(6.7) Ch(g) =
∞∑

k=0

(−1)k k!
(2k + 1)!

Tr(β(g)2k+1).

One then has, see [15], that the pairing

(6.8) 〈D, [g]〉 = SF (D, g−1Dg)

of an odd Fredholm module (H, D) with [g] ∈ K1 is given by the spectral
flow along Du = (1 − u)D + ug−1Dg. In the case where D = /∂ is the Dirac
operator of a compact spin manifold, this is computed by the Atiyah–Patodi–
Singer index formula [3]. In our case, this gives

(6.9) SF (/∂, g−1/∂g) = − 1
(2πi)2

∫
Xε

Â(Xε)Ch(g).

6.2. Twisted index theorem

We need the twisted version of (6.9) above. Let /∂ = /∂Xε
be the Dirac

operator on Xε, and let /̃∂ be its lift to the universal cover X̃ε = S(R2, R).
We then consider the twisting /̃∂ ⊗ ∇ of the operator /̃∂ by the hermitian
connection ∇ = d + iηε on the trivial line bundle on X̃ε, with ηε the 1-form
giving the magnetic potential dηε = ωε on X̃ε.

While the operator /̃∂ is Γ-invariant, with Γ = S(Λ, V ), the twisted opera-
tor /̃∂ ⊗ ∇ is only invariant under the projective action (Γ, σ̃) of the magnetic
translations Rσ̃

γ .
Consider then the 1-parameter family of operators Du = /̃∂u ⊗ ∇, where

/̃∂u = (1 − u)/̃∂ + ug−1 /̃∂ g, for [g] ∈ K1(Xε) and the associated operator Dg =
∂
∂u + Du on X̃ε × [0, 1], which we can extend to X̃ε × R (cf. [3, p. 95]).



446 Matilde Marcolli

Theorem 6.2. The range of the trace on K0(C∗(S(Λ, V ), σ̃)) is given by

(6.10) [tr](μσ̃[g]) =
−1

(2πi)2

∫
Xε

Â eωε Ch(g),

where μσ̃ : K1(Xε) → K0(C∗(S(Λ, V ), σ̃)) is the (twisted) Kasparov isomor-
phism, [g] ∈ K1(Xε) and ωε is the closed 2-form on Xε associated to the
cocycle σ̃.

Proof. We let P± be the projections on the L2-kernel of DgD∗
g and D∗

gDg,
respectively, namely

DgP
+ = 0, D∗

gP
− = 0.

The P± have smooth kernels P±(x, y) and the (Γ, σ̃)-invariance of /̃∂ ⊗ ∇
implies that

e−iφγ(x)P±(γx, γy)eiφγ(y) = P±(x, y),

which implies that P±(x, x) is Γ-invariant, for Γ = S(Λ, V ).
We proceed as in [1] and consider the von Neumann trace

tr(P±) =
∫

Xε×S1

trP±((x, t), (x, t)) dx dt,

where tr P±(x, x) is the pointwise trace. The L2-index of Dg is given by

(6.11) IndL2(Dg) = tr(P+) − tr(P−).

We define P̄± by the smooth kernels

(6.12) P̄±(x, y) =
∫

S1

trP±((x, t), (y, t)) dt.

These satisfy tr(P̄±) = tr(P±) by

∫
Xε×S1

trP±((x, t), (x, t)) dx dt =
∫

Xε

trP̄±(x, x)dx.
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The projections P̄± are in the von Neumann algebra U(Γ, σ̃). After adding
a compact perturbation in C∗

r (Γ, σ̃) one obtains a well-defined index
(cf. [23, 28]),

(6.13) Ind(Γ,σ̃)(Dg) = [P̄+] − [P̄−] ∈ K0(C∗
r (Γ, σ̃)).

The (twisted) Kasparov map μ : K1(Xε) → K0(C∗(Γ, σ̃)) is given by

(6.14) μσ̃[g] = Ind(Γ,σ̃)(Dg).

We obtain in this way that

IndL2(Dg) = tr(P̄+) − tr(P̄−) = tr(Ind(Γ,σ̃)(Dg)).

Consider the heat kernel e−tD2
, where

D =
(

0 D∗
g

Dg 0

)
with D2 =

(
D∗

gDg 0
0 DgD∗

g

)
.

We have

lim
t→∞

trs(e−tD2
) = tr(P+) − tr(P−)

and
∂

∂t
trs(e−tD2

) = −trs(D2e−tD2
) = trs([De−tD2

,D]) = 0.

Thus

tr(P+) − tr(P−) = lim
t→∞

trs(e−tD2
) = lim

t→0
trs(e−tD2

)

=
−1

(2πi)2

∫
Xε×S1

Â Ch(∇u) =
−1

(2πi)2

∫
Xε

Â eωε Ch(g),

where Ch(∇u) = tr(βe(d+uβ)2) for β = g−1dg, with
∫
S1 Ch(∇u) = Ch(g). �

6.3. Range of the trace

Using the twisted index theorem we can then compute explicitly the range
of the trace on K0(C∗(S(Λ, V ), σ̃)). We obtain the following result.

Proposition 6.3. The range of the trace on K0(C∗(S(Λ, V ), σ̃)) is

(6.15) [tr](K0(C∗(S(Λ, V ), σ̃))) = Z + Zθ(θ′ − θ)−1.
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Proof. Since Xε is a 3-manifold, when we expand the terms in the cohomo-
logical formula (6.10) as

Â(Xε) = 1 − 1
24

p1(Xε) + · · · ,

eωε = 1 + ωε +
1
2
ω2

ε + · · · ,

Ch(g) = −1
6
Tr(β(g)) +

1
5!

Tr(β3(g)) + · · · ,

only the terms of the wedge product Â(Xε)eωCh(g) that give differential
forms of order up to 3 can contribute nontrivially.

Thus, we obtain the terms

(6.16)
1

(2π)2

∫
Xε

(
−1
6

Tr(β(g)) ∧ ω +
1
5!

Tr(β(g)3)
)

.

The term
1

(2π)2

∫
Xε

1
5!

Tr(β(g)3) =
1

(2π)2

∫
Xε

Ch(g)

is the term one would find in the untwisted case, and it gives the untwisted
odd Chern character.

For the remaining term

1
(2π)2

−1
6

∫
Xε

Tr(β(g)) ∧ ωε,

the range as [g] varies in K1(C(Xε)) is given by ZR(ω), where R(ω) is the
range of the linear form

Tω : [g] �−→ 1
(2π)2

−1
6

∫
Xε

Tr(β(g)) ∧ ωε ∈ R.

First notice that, with the notation Ch1(g) = −1
6 Tr(β(g)), we have

∫
C

Ch1(g) = 2πideg(g|C) ∈ 2πiZ,

for C ∈ H1(Xε, Z). Thus, we obtain

1
2πi

∫
Xε

Ch1(g) ∧ PD(C) ∈ Z,
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for PD(C) ∈ H2(Xε, Z) ↪→ H2(Xε, R). Now consider the explicit description
of the 2-form ωε given in Lemma 6.1 above. We can write

ωε = 2πiθ(θ′ − θ)−1ω̄ε,

where ω̄ε ∈ H2(Xε, Z) is given by

ω̄ε(v, w) = Ak
ε (η) ∧ λ,

for v = ((0, 0), (λ, k)) and w = ((0, 0), (η, r)). Thus, we see that we can write

1
(2π)2

∫
Xε

Ch1(g) ∧ ωε = − 1
2πi

θ(θ′ − θ)−1
∫

Xε

Ch1(g) ∧ ω̄ε

= − 1
2πi

θ(θ′ − θ)−1
∫

PD(ω̄ε)
Ch1(g)

= θ(θ′ − θ)−1 deg(g|PD(ω̄ε)) ∈ θ(θ′ − θ)−1
Z.

�

7. Isospectral deformations and spectral triples

In noncommutative geometry, the analog of Riemannian structures is pro-
vided by the formalism of spectral triples [11]. A spectral triple on a noncom-
mutative space A (where A is a C∗-algebra) consists of the data (A∞,H, D)
of a dense involutive subalgebra A∞, a representation π : A → B(H) as
bounded operators on a Hilbert space H and a self-adjoint operator D on
H, with compact resolvent, satisfying the compatibility condition

(7.1) [D, π(a)] ∈ B(H), ∀a ∈ A∞.

In particular, in the commutative case, to a Riemannian spin-manifold X
one can associate a canonical spectral triple (C∞(X), L2(X, S), /∂). A recon-
struction theorem [12, 26] shows that a spectral triple where the algebra is
abelian, which satisfies a list of axioms, is the canonical spectral triple of a
Riemannian spin-manifold.

In our case, we have a spectral triple associated to the 3-manifold Xε,
where the spinor bundle is a complex 2-plane bundle and the Dirac operator
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can be written in the form

(7.2) /∂Xε
= c(dt)

∂

∂t
+ c(etdx)

∂

∂x
+ c(e−tdy)

∂

∂y
,

where {dt, etdx, e−tdy} is the basis of the cotangent bundle of S(R2, R, ε) =
R

2
�Aε

R and c(ω) denotes the Clifford multiplication by the 1-form ω.
More explicitly, (7.2) is of the form

(7.3)

/∂Xε
=

∂

∂t
σ0 + et ∂

∂x
σ1 + e−t ∂

∂y
σ2 =

⎛
⎜⎝

∂

∂t
e−t ∂

∂y
− iet ∂

∂x

e−t ∂

∂y
+ iet ∂

∂x
− ∂

∂t

⎞
⎟⎠ ,

where σi, for i = 0, 1, 2, are the Pauli matrices.
Our purpose here is to show that this commutative spectral triple can be

deformed isospectrally to a spectral triple for the noncommutative tori TΛ,i.

7.1. The Connes–Landi isospectral deformations

We consider the problem from the point of view of the Connes–Landi isospec-
tral deformations [13]. This provides a general procedure to deform commu-
tative spectral triples to noncommutative ones isospectrally, for manifolds
with isometric torus actions.

We recall briefly the construction of isospectral deformations, in a ver-
sion that is best adapted to our setting.

Suppose given a spectral triple (C∞(X), L2(X, S), /∂X) associated to a
compact Riemannian spin-manifold X. Assume that the manifold X has
an action of a torus T 2 by isometries, T 2 ⊂ Isom(X). Then one considers
a noncommutative algebra Aθ, depending on a real parameter θ ∈ R, which
is obtained by decomposing the operators π(f) ∈ B(H), for f ∈ C∞(X) and
H = L2(X, S) according to their weighted components

(7.4) π(f) =
∑

n,m∈Z

π(fn,m),

where

(7.5) ατ (π(fn,m)) = e2πi(nτ1+mτ2) π(fn,m), ∀τ = (τ1, τ2) ∈ T 2,

for

(7.6) ατ (T ) = U(τ)TU(τ)∗, ∀T ∈ B(H), ∀τ ∈ T 2,
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with U(τ) the unitary transformations implementing the T 2-action on
H = L2(X, S) by

U(τ)ψ(x) = ψ(τ−1(x)).

Let L1 and L2 denote the infinitesimal generators of the action

(7.7) U(τ) = exp(2πiτL) = exp(2πi(τ1L1 + τ2L2)).

We consider then the subalgebra of B(H) generated by the operators of the
form

(7.8) πξ1,ξ2(f) =
∑
n,m

π(fn,m)e−2πi(ξ1nL2+ξ2mL1),

where ξ1 and ξ2 are two real parameters.

Lemma 7.1. For homogeneous operators π(f)n,m define the deformed
product

(7.9) fn,m ∗ξ1,ξ2 hk,r := e−2πi(ξ1nr+ξ2mk)fn,mhk,r.

The product of operators of the form (7.8) satisfies

πξ1,ξ2(fn,m)πξ1,ξ2(hk,r) = πξ1,ξ2(fn,m ∗ξ1,ξ2 hk,r).

Proof. One checks directly that the operator product π(fξ1,ξ2)π(hξ1,ξ2) is
given in components by

π(fn,m) ∗ξ1,ξ2 π(hk,r) = e−2πi(ξ1nr+ξ2mk)π(fn,m)π(hk,r).

�

One can recognize in (7.9) the convolution product of the twisted group
C∗-algebra C∗(Z2, σ) with the cocycle

σ((n, m), (k, r)) = exp(−2πi(ξ1nr + ξ2mk)).

As shown in [13], the operators (7.8) have bounded commutators with
the Dirac operator. In fact, since T 2 acts by isometries, the Dirac operator
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satisfies

U(τ)DU(τ)∗ = D,

i.e., it is of bidegree (0, 0). Thus, one sees that the commutators give

[D, πξ1,ξ2(f)] =
∑

n,m[D, π(f)n,me−2πi(ξ1nL2+ξ2mL1)]

=
∑

n,m[D, π(f)]n,me−2πi(ξ1nL2+ξ2mL1),

which is still a bounded operator on H.
We consider in particular the case where ξ2 = u/2 = −ξ1. We denote by

Au = C∞(X)u the deformed algebra, that is, the algebra generated by the
(7.8). The deformed spectral triple is given by the data (Au, L2(X, S), /∂X).

7.2. Noncommutative solvmanifolds

We apply the procedure described above to obtain an isospectral deforma-
tion of the solvmanifold Xε, which corresponds to deforming the fiber tori
to noncommutative tori.

The canonical spectral triple for Xε consists of the data (C∞(Xε),
L2(Xε, S), /∂Xε

), with the Dirac operator of the form (7.2).
There is a torus action on Xε by isometries, which consists of translations

along the fibers of the fibration T 2 → Xε → S1. This acts on spinors by
unitaries

(7.10) U(τ)ψ((x, y), t) = ψ((x + etτ1, y + e−tτ2), t),

for τ ∈ T 2 = R
2/Λ and (x, y) ∈ T 2

t = R
2/Λt, the fiber over t ∈ S1, with

(etλ1, e
−tλ2) ∈ Λt, for (λ1, λ2) ∈ Λ.

The action clearly preserves the metric dt2 + etdx2 + e−tdy2, hence the
Dirac operator (7.3) satisfies

U(τ)∂Xε
U(τ)∗ = ∂Xε

.

The infinitesimal generators of the action ατ are the operators 2πL1 = et ∂
∂x ,

2πL2 = e−t ∂
∂y with U(τ) = exp(2πi(τ1L1 + τ2L2)).

We introduce the following notation. We denote by Eλ, for λ ∈ Λ, the
function

(7.11) Eλ((x, y), t) := e2πi〈Θ−t(x,y),λ〉,
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where, as above, Θ−t(x, y) = (e−tx, ety) and 〈(a, b), λ〉 = aλ1 + bλ2. We also
denote by Ξu(λ, L1, L2) the operator

(7.12) Ξu(λ, L1, L2) := exp
(

iπ
u

(θ′ − θ)
λ ∧ (L1, L2)

)
,

acting on H = L2(Xε, S).

Proposition 7.2. The deformed algebra C∞(Xε)u, for u ∈ R, is the C∗-
subalgebra of B(H), with H = L2(Xε, S) generated by the operators of the
form

(7.13) πu(f) = EλΞu(λ, L1, L2).

Proof. The induced action α : T 2 → Aut(C∞(Xε)) defined by

π(ατ (f)) = U(τ)π(f)U(τ)∗

is of the form ατ (f)((x, y), t) = f((x + etτ1, y + e−tτ2), t).
Thus, a homogeneous operator of bidegree λ = (λ1, λ2) is in this case a

function fλ((x, y), t) with the property that

(7.14) ατ (fλ)((x, y), t) = e2πi(λ1τ1+λ2τ2)fλ((x, y), t).

This condition is satisfied by functions of the form

(7.15) fλ((x, y), t) = exp(2πi〈Θ−t(x, y), λ〉) = exp(2πi(e−tλ1x + etλ2y)).

Under the change of variables

(7.16) Z
2 −→ Λ, (n, m) �−→ λ = (n + mθ, n + mθ′),

the condition (7.14) corresponds to elements fn,m of bidegree (n, m) for the
corresponding action of T 2 = R

2/Z
2. Thus, using this change of coordinates

to pass in (7.8) from Z
2 to Λ, we can see that elements of the deformed

algebra of the form (7.8) correspond to elements of the form

∑
λ

aλ Eλ Ξu(λ, L1, L2),

for ξ2 = u/2 = −ξ1. �
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Set 2uθ = u/(θ′ − θ). The operators (7.13) act on spinors by

(πu(f)ψ)((x, y), t) =Eλ((x, y), t)(U((−λ2uθ, λ1uθ))ψ)((x, y), t)

= e2πi〈Θ−t(x,y),λ〉ψ((x − etλ2uθ, y + e−tλ1uθ), t).

Proposition 7.3. The operators

(7.17) π(Rσ
λ) := Eλ Ξu(λ, L1, L2)

define a representation on H = L2(Xε, S) of the noncommutative torus
C∗(Λ, σ), with the cocycle

σ(λ, η) = exp(2πiuθ λ ∧ η).

Proof. Notice that we have

U(−λ2uθ, λ1uθ)e2πi〈Θ−t(x,y),η〉 = e2πiuθ λ∧ηe2πi〈Θ−t(x,y),η〉.

Thus, we obtain

e2πi〈Θ−t(x,y),λ〉Ξu(λ, L1, L2)e2πi〈Θ−t(x,y),η〉Ξu(η, L1, L2)

= e2πiuθ λ∧ηe2πi〈Θ−t(x,y),λ〉e2πi〈Θ−t(x,y),η〉Ξu(λ, L1, L2)Ξu(η, L1, L2)

= e2πiuθ λ∧ηe2πi〈Θ−t(x,y),λ+η〉Ξu(λ + η, L1, L2).

This shows that the operators π(Rσ
λ) satisfy the product rule

π(Rσ
λ)π(Rσ

η ) = σ(λ, η)π(Rσ
λ+η),

for σ(λ, η) = exp(2πiuθ λ ∧ η), which is the product rule of the twisted group
algebra C∗(Λ, σ). �

We obtain in this way an isospectral noncommutative geometry given
by the finitely summable spectral triple

(7.18) (C∞(Xε)u, L2(Xε, S), /∂Xε
).

Corollary 7.4. In the case u = θ and u = θ′, the isospectral deformation
(7.18) defines a finitely summable spectral triple for the noncommutative tori
TΛ,i, with dense subalgebra C(Λ, σ).

Proof. This is a direct consequence of Proposition 7.3 and the identifications
of Corollary 4.2 of the TΛ,i with twisted group C∗-algebras C∗(Λ, σ). �
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The representation (7.17) of C∗(Λ, σ) extends to an action of C∗(S(Λ, V ), σ̃),
as follows. Let U(k log ε) denote the unitary operator

(7.19) (U(k log ε)ψ)((x, y), t) = ψ(Ak
ε (x, y), t) = ψ((x, y), t − k log ε).

Proposition 7.5. The operators

(7.20) π(Rσ̃
(λ,k)) := Eλ Ξu(λ, L1, L2) U(k log ε)

define a representation on H = L2(Xε, S) of the twisted group C∗-algebra
C∗(Λ �ε V, σ̃), for the cocycle

σ̃((λ, k), (η, r)) = exp
(
2πi

uθ

2
λ ∧ Ak

ε (η)
)

.

Proof. We have the identities

(U(k log ε)Eη) = EAk
ε (η),

Ξu(λ, L1, L2)EAk
ε (η) = e2πiuλ∧Ak

ε (η)EAk
ε (η),

EλEAk
ε (η) = Eλ+Ak

ε (η),

U(k log ε)Ξu(η, L1, L2)U(r log ε) = Ξu(Ak
ε (η), L1, L2)U((k + r) log ε).

These combine to give the composition rule

EλΞu(λ, L1, L2)U(k log ε)EηΞu(η, L1, L2)U(r log ε)

= σ̃((η, r), (λ, k))Eλ+Ak
ε (η)Ξu(λ + Ak

ε (η), L1, L2)U((k + r) log ε).
�

7.3. Unitary equivalences

We begin by reformulating the data described above in an equivalent form
by expanding in Fourier modes along the fiber tori as in [2].

Recall that the fiber over t ∈ [0, log ε) is given by the torus T 2
t = R

2/Λt,
with Λt = Θt(Λ). Thus, if we denote by (x, y), as above, the coordinates
in T 2

t , we can write these as (x, y) = Θt(a, b), with (a, b) ∈ T 2 = R
2/Λ, the

reference torus.
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This means writing the spinors ψ((x, y), t) in the form

(7.21)
∑

λ

ψλ e2πi〈(a,b),λ〉 =
∑

λ

ψλ e2πi〈Θ−t(x,y),λ〉 =
∑

λ

ψλEλ.

The Dirac operator acts on Eλ as

/∂Xε
Eλ =

(
∂

∂t
σ0 + 2πiλ1σ1 + 2πiλ2

)
Eλ.

The operators π(Rσ
η ) act as

(7.22) EηΞu(η, L1, L2)Eλ = e2πiuη∧λEη+λ.

The commutators are bounded operators of the form

(7.23) [/∂Xε
, π(Rσ

η )] = (η1σ1 + η2σ2) Rσ
η .

Thus, passing to Fourier modes in the fiber directions gives a unitarily equiv-
alent spectral triple for the noncommutative tori TΛ,i, with

/̂∂Xε
ψλ =

(
∂

∂t
σ0 + 2πiλ1σ1 + 2πiλ2σ2

)
ψλ

π̂(Rσ
η )ψλ = σ(η, λ) ψλ+η.

(7.24)

We then consider a second unitary equivalence, which, as in [2] adjusts for
the possible signs of λ1 and λ2. Namely, we define the following unitary
operator on the Hilbert space of the spinors ψλ. We set

(7.25) U ψλ = σλ ψλ,

where σλ is a product of Pauli matrices, where σi, for i = 1, 2, appears in
the product if and only if λi < 0. Then the Dirac operator transforms to
the unitarily equivalent operator

(7.26) U /̂∂Xε
U∗ = sign(N(λ))

(
∂

∂t
σ0 + 2πi|λ1|σ1 + 2πi|λ2|σ2

)
.

The action of the Rσ
η transform correspondingly to the operators

(7.27) U π̂(Rσ
η )U∗ : σλψλ �−→ σλ+ηψλ+η.

We then perform the other unitary transformation used in [2]. To this
purpose, let us fix a choice of a fundamental domain FV for the action of



Solvmanifolds and NC tori 457

V on the lattice Λ. By this choice of a fundamental domain, we can write
uniquely an element λ ∈ Λ in the form λ = Ak

ε (μ), for a μ ∈ FV and a k ∈ Z.
For λ = Ak

ε (μ) �= 0, consider then the time shift

(7.28) Ũ(σλψλ)(t) = σλψλ

(
t − log

|μ1|
|N(μ)|1/2

)
,

so that we have

(7.29) ψ̃λ := Ũ(σλψλ) = σλψ|N(λ)|1/2(sign(λ1)εk,sign(λ2)ε−k).

One obtains in this way a unitarily equivalent spectral triple for TΛ,i, with
the Dirac operator

(7.30) /̃∂ = /̃∂
(0)

+
∑

μ∈(Λ�{0})/V

/̃∂
(μ)

,

where

/̃∂
(μ)

ψ̃Ak
ε (μ) = sign(N(μ))|N(μ)|1/2

×
(

|N(μ)|−1/2 ∂

∂t
σ0 + 2πiεkσ1 + 2πiε−kσ2

)
ψ̃Ak

ε (μ),(7.31)

while the action of the Rσ
η is by

π̃(Rσ
η ) ψ̃λ = ψ̃λ+η.

As in [2], one can write the operator /̃∂
(μ)

as a product

/̃∂
(μ)

= DμBμ,

with

(7.32)
Dμ ψ̃Ak

ε (μ) = sign(N(μ))|N(μ)|1/2 ψ̃Ak
ε (μ),

Bμ ψ̃Ak
ε (μ) =

(
|N(μ)|−1/2 ∂

∂t
σ0 + 2πiεkσ1 + 2πiε−kσ2

)
ψ̃Ak

ε (μ).

In the following, we relate the Dirac operator /∂Xε
, its unitarily equivalent

operators discussed here above and the decomposition (7.32) to known dif-
ferential operators on noncommutative tori.
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7.4. Differential operators on noncommutative tori

Notice that the action on R
2 of the 1-paramater subgroup of SL2(R)

Θt =
(

et 0
0 e−t

)

has fixed point (0, 0), with stable manifold the axis (0, y) and unstable
manifold the axis (x, 0). On the standard torus R

2/Z
2 with coordinates

(s1, s2) with (x, y) = (s1 + s2θ, s1 + s2θ
′), these two directions define the

two Kronecker foliations s1 + s2θ and s1 + s2θ
′ with conjugate slopes θ and

θ′. The points of the lattice Λ determine on these two foliations the points
of the pseudolattices Z + Zθ and Z + Zθ′, which define the equivalence rela-
tion on the space of leaves of the two Kronecker foliations, defining as quo-
tients the noncommutative tori TΛ,i, i = 1, 2. The action of Θt is expanding
along the line Lθ = {s1 + s2θ} and contracting along Lθ′ = {s1 + s2θ

′} and
flows the other points of R

2 along hyperbola with asymptotes Lθ′ and Lθ.
Thus, the operators et ∂

∂x and e−t ∂
∂y correspond to derivations along the

leaf direction of these two transverse Kronecker foliations. The factors et

and e−t are the normalization factors that account for the rescaling of the
transverse measure due to the action of the flow Θt. In fact, consider for
instance a small transversal of length � for the Kronecker foliation Lθ, given
by the interval T� = {(x, y) : x = 1, −�/2 < y < �/2}. The flow Θt maps it
to the transversal Θt(T�) = {(x = et, y) : −e−t�/2 < y < e−t�/2} of length
e−t�. Thus, the differentiation ∂

∂x in the leaf direction of Lθ is weighted by
the factor et that normalizes the length of the transversal and corrects for
the scaling of the transverse measure.

Consider then the terms 2πiλ1σ1 and 2πiλ2σ2 in the operator

/̂∂Xε
: ψλ �−→

(
∂

∂t
σ0 + 2πiλ1σ1 + 2πiλ2σ2

)
ψλ,

which we obtained after passing to Fourier modes on the fiber tori T 2
t . These

terms correspond, respectively, to the leafwise derivations et ∂
∂x and e−t ∂

∂y .
These can be expressed equivalently in terms of the operators

δθ : ψn,m �−→ (n + mθ) ψn,m and δθ′ : ψn,m �−→ (n + mθ′) ψn,m,

so that the sum λ1σ1 + λ2σ2 acts as the operator

(7.33) /Dθ,θ′ =
(

0 δθ′ − iδθ

δθ′ + iδθ 0

)
.
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This gives the Dirac operator of a spectral triple on the noncommutative
tori TΛ,i with

Rσ
r,kψn,m = σ((r, k), (n, m))ψ(n,m)+(r,k)

and

[ /Dθ,θ′ , Rσ
r,k] =

(
0 (r + kθ′) − i(r + kθ)

(r + kθ′) + i(r + kθ) 0

)
Rσ

r,k.

In the particular case where θ′ = −θ, this agrees with the spectral triple
for the first order signature operator on the noncommutative torus consid-
ered, for instance, in [22]. The construction of [22] can be interpreted as
obtained by using the two transverse Kronecker foliations Lθ and L−θ and
the associated leafwise derivations ∂/∂x and ∂/∂y.

We can consider here the same kind of unitary transformations that
we described earlier for /̂∂Xε

, applied to the operator /Dθ,θ′ of (7.33). Let
us denote by /Dθ,θ′,0 the restriction of /Dθ,θ′ to the complement of the zero
modes ψ0 (i.e., λ = 0). We have, as in (7.30),

(7.34) /Dθ,θ′,0 =
∑

μ∈(Λ�{0})/V

/Dμ
θ,θ′ ,

with
/Dμ

θ,θ′ ψAk
ε (μ) = (λ1σ1 + λ2σ2) ψAk

ε (μ).

After the unitary transformation ŨU with U as in (7.25) and Ũ as in (7.29),
we obtain a unitarily equivalent operator

(7.35) /̃D
μ

θ,θ′ ψ̃Ak
ε (μ) = sign(N(μ)) |N(μ)|1/2 (εkσ1 + ε−kσ2) ψ̃Ak

ε (μ).

As before, we factor this as a product of the operators

(7.36) /̃D
μ

θ,θ′ = Dμ
θ Bθ,

with

(7.37)
Dμ

θ ψ̃Ak
ε (μ) = sign(N(μ)) |N(μ)|1/2 ψ̃Ak

ε (μ),

Bθ ψ̃Ak
ε (μ) = (εkσ1 + ε−kσ2) ψ̃Ak

ε (μ).

8. Shimizu L-function and Lorentzian geometry

In this section, we describe another way of relating the Shimizu L-function to
the geometry of noncommutative tori with real multiplication, by regarding
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the norms N(λ), for λ ∈ Λ, as defining the momenta of a Lorentzian rather
than Euclidean Dirac operator.

Instead of working with positive inner product spaces, as in the case of
Euclidean spectral triples, the Galois involution of the real quadratic field
defines a natural choice of a “Krein involution” and the norm correspond-
ingly defines an indefinite quadratic form. One formulates in this way a
notion of spectral triple over a real quadratic field and with Lorentzian sig-
nature, using the relation between indefinite inner product spaces and the
associated real Hilbert spaces. The main point that requires care is the fact
that the Lorentzian Dirac operator has a noncompact group of symmetries,
in our case given by the units of the real quadratic field, hence it fails to have
compact resolvent due to the presence of infinite multiplicities in the eigen-
values. We show that the multiplicities can be resolved by transforming the
triple via a Krein isometry, which is an unbounded self-adjoint operator in
the associated real Hilbert space and defines a finitely summable associated
Dirac operator in the Euclidean signature.

As above, we let Λ be the lattice in R
2 associated to a lattice L ⊂ K in

a real quadratic field K = Q(
√

d) by the embeddings ιi : K ↪→ R,

(8.1) Λ = {λ ∈ R
2 |λ = (λ1, λ2) = (ι1(�), ι2(�)), � ∈ L}.

We denote, as above, by V the group V = εZ of units preserving Λ. We
denote the action as above with λ �→ Ak

ε (λ) = (εkλ1, ε
−kλ2).

For x ∈ K, we denote by x′ = c(x) the image under the Galois involution
of K. For λ = (λ1, λ2) ∈ Λ, we have λ2 = c(λ1). The norm is given by
N(λ) = λ1λ2, and N(ε) = εε′ = 1.

We consider the quadratic form N(λ) = λ1λ2 = (n + mθ)(n + mθ′) to
be the analog of the wave operator � = p2

0 − p2
1.

Its Dirac factorization into linear first order operator is obtained by
considering a linear operator of the form

(8.2) Dλ =
(

0 D+
λ

D−
λ 0

)
:=

(
0 λ1
λ2 0

)
,

whose square is D2
λ = �λ, with

(8.3) �λ =
(

N(λ) 0
0 N(λ)

)
.

We assemble these modes to define an operator D acting on H = �2(Λ) ⊕
�2(Λ) by Deλ,± = Dλeλ,±. This satisfies Dγ = −γD with respect to the
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Z/2Z-grading

γ =
(

1 0
0 −1

)
.

Consider the algebra C∗(Λ, σ) of the noncommutative torus acting diago-
nally on H. The operator D has bounded commutators with the elements
of the dense subalgebra C(Λ, σ) since we have

(8.4) [D, Rσ
η ]eλ,± = σ(λ, η) η∓ eη+λ,±,

where we used the notation η+ = η1 and η− = η2.
However, the other properties of D differ significantly from what one

usually postulates for Dirac operators of spectral triples.
First of all, notice that D is not self-adjoint. In fact, it is invariant with

respect to a different involution, defined for operators with coefficients in
the real quadratic field K, namely

D = c(Dt),

where Dt = (Dt
λ) denotes the transpose and c(D) denotes the effect of the

Galois involution c : x �→ x′ of K applied to the coefficients of D. In this
arithmetic context, it is natural to require this property instead of self-
adjointness.

A more serious problem, however, comes from the fact that the operator
D has infinite multiplicities, hence it is very far from having the compact
resolvent property of spectral triple. This is a typical problem one encounters
in trying to extend the formalism of spectral triples from the Euclidean to
the Lorentzian context, because of the presence of noncompact symmetry
groups for the Lorentzian manifold. Here the noncompact symmetry group
is given by the units in V = εZ.

8.1. Arithmetic Krein spaces

It is well known that, when one replaces Euclidean geometry by Lorentzian
geometry, the notion of the Hilbert space is replaced by the notion of a Krein
space (cf. e.g., [7]). The version we consider here is slightly different from
the usual one, since we want to be able to work over the real quadratic field
K instead of passing directly to complex numbers.

Definition 8.1. Let c : K → K denote the Galois involution c : x �→ x′ of
the real quadratic field. Let V be a K-vector space. We say that a map
T : V → V is c-linear if it satisfies T (av + bw) = c(a)T (v) + c(b)T (w).
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A Lorentzian pairing on a K-vector space V is a nondegenerate K-valued
pairing

(·, ·) : V × V −→ K

which is c-linear in the first variable and linear in the second, i.e., it is
conjugate-symmetric with respect to the Galois involution c.

We can then introduce the analog of the notion of a Krein space in this
arithmetic context.

Definition 8.2. A Krein space over a real quadratic field K (or K-Krein
space) is a K-vector space V endowed with a Lorentzian pairing (·, ·) as in
Definition 8.1, and a c-linear involution κ : V → V, such that the pairing
(κ·, ·) has the following properties:

(1) (κ·, ·) = c(·, κ·);
(2) For all v �= 0 in V, the elements (κv, v) ∈ K are totally positive.

When properties (1) and (2) of Definition 8.2 hold, we say that (κ·, ·)
defines a positive-definite inner product. We have a corresponding notion of
Krein adjoint as follows.

Definition 8.3. Given a K-linear operator T on a K-Krein space V, the
Krein adjiont T † is the adjoint in the Lorentzian pairing (·, ·),

(8.5) (v, Tw) = (T †v, w).

The c-linear involution κ of Definition 8.2 corresponds to a Wick rotation
from Lorentzian to Euclidean signature. The Krein adjoint satisfies T † =
κT ∗κ, where T ∗ is the adjoint in the inner product 〈·, ·〉 = (κ·, ·).

Given a K-Krein space V, there are two naturally associated real Hilbert
spaces, obtained by considering the real vector spaces

(8.6) VR,i := V ⊗ιi(K) R,

obtained by tensoring V with R using either one of the two embeddings
ιi : K ↪→ R of the real quadratic field.
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Lemma 8.4. The pairing

(8.7) 〈v, w〉 =
1
2
ι1 ((κv, w) + (v, κw)) =

1
2
ι2 ((κv, w) + (v, κw))

induced on VR,i by the Lorentzian pairing (·, ·) on V defines a real valued
positive-definite inner product.

Proof. We know that (v, κw) = c(κv, w). Thus, we have

〈v, w〉 =
1
2

(ι1(κv, w) + ι2(κv, w)) .

We can extend this pairing by R-linearity to define a bilinear form on VR,i.
By the assumption that for v �= 0 the (κv, v) are totally positive elements of
K, we obtain that (8.7) defines a positive-definite inner product. �

In the following, we still denote by VR,i the Hilbert space completion
obtained in this way.

8.2. Lorentzian spectral triples over real quadratic fields

It is not uncommon to make use of Krein spaces to extend the formalism
of spectral triples to Lorentzian geometry [29]. Here we follow a similar
viewpoint, adapted to the arithmetic setting of real quadratic fields.

For a K-linear operator T acting on a K-Krein space V, we define
Mi(T ) ≥ −∞, for i = 1, 2, as

(8.8) Mi(T ) := inf
(v,v)=1

ιi(Tv, Tv).

We introduce the following preliminary notion of a K-triple, which we then
refine by additional properties providing the analog of a spectral triple.

Definition 8.5. A Krein K-triple consists of data (A,V,D) with the
following properties.

(1) A is an involutive algebra over the real quadratic field K.

(2) V is a K-Krein space with nondegenerate K-bilinear form (·, ·).
(3) The algebra A acts on V via a representation π : A → EndK(V), with

the involution of A realized by the Krein adjoint π(a∗) = π(a)†.
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(4) The operators π(a), for a ∈ A, satisfy

(8.9) Mi(a) > −∞.

(5) The operator D is a densely defined K-linear operator on V, which is
Krein-self-adjoint , D† = D.

(6) The commutators Ca := [D, a] satisfy

(8.10) Mi(Ca) > −∞, ∀a ∈ A.

We then define Lorentzian K-spectral triples in the following way.

Definition 8.6. A Krein K-triple (A,V,D) as in Definition 8.5 is a finitely
summable Lorentzian K-spectral triple if the following holds.

(1) There exists a densely defined K-linear operator U : V → V with (Uv,
Uv) = (v, v), for all v ∈ Dom(U) and U † = U−1, with the property
that

(8.11) U †DU = D.

(2) The commutators Ca,U := [DU , πU (a)], with πU (a) = U †π(a)U , satisfy
the condition

(8.12) Mi(Ca,U ) > −∞, ∀a ∈ A.

(3) The operator U is an unbounded self-adjoint operator, U = U∗, on the
associated real Hilbert space VR,i with the inner product 〈·, ·〉 of (8.7).

(4) The triple (A,V,D) is p-summable for p ∈ R
∗
+ if

(8.13)
∑

n

∣∣〈Uen, |D2|Uen〉
∣∣−s/2

< ∞, ∀s ≥ p,

where en is an orthonormal basis for the complement of the zero modes
of the operator |D2| in the real Hilbert space VR,i.

Notice that in Krein spaces isometries are not necessarily bounded opera-
tors [7, Section VI], so the U is only densely defined in general. The defi-
nition given here is different from the notions of Lorentzian spectral triples
currently developed in the literature. The differences stem mainly from our
need to work over a finite extension of Q instead of C and to resolve the
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infinite multiplicity of the eigenvalues. We also require the weaker prop-
erty (8.9), (8.10) and (8.12), instead of requiring continuity in the operator
norm in the associated Hilbert space. These conditions will become more
transparent in our main example below.

8.3. Arithmetic twisted group algebras

We consider the K-vector space VΛ spanned by the basis elements eλ with
λ ∈ Λ, endowed with the pairing

(8.14) (v, w) :=
∑

λ

c(aλ)bλ,

for v =
∑

λ aλeλ and w =
∑

λ bλeλ, and with c : x �→ x′ the Galois involution
of K.

Lemma 8.7. The space VΛ with the pairing (8.14) is a K-Krein space.

Proof. Clearly the pairing (8.14) is a Lorentzian pairing in the sense of
Definition 8.1. Let κ : VΛ → VΛ be given by the Galois involution

κ(v) =
∑

λ

c(aλ)eλ.

Then the pairing 〈v, w〉 = (κv, w) = c(v, κw) is a positive-definite inner product,
as in Definition 8.2. In fact, we have

ι1〈v, v〉 =
∑

λ

ι1(a2
λ) ≥ 0, ι2〈v, v〉 =

∑
λ

ι2(a2
λ) ≥ 0.

�

We consider on VΛ the action of the group ring K[Λ], given by Rλeη =
eλ+η.

Lemma 8.8. The operators Rλ acting on VΛ satisfy

Mi(Rλ) > −∞.

Moreover, the operators Rλ define bounded operators in the associated real
Hilbert spaces VΛ,R,i = VΛ ⊗ιi(K) R.
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Proof. The operators Rλ are Krein isometries, and (Rλv, Rλv) = (v, v)
implies that Mi(Rλ) = 1. The operators Rλ act by eη �→ eλ+η on the asso-
ciated Hilbert spaces, hence they define bounded (unitary) operators. �

Now we want to introduce, in this setting of K-Krein spaces, an analog
of the twisted group ring C(Λ, σ) (the noncommutative torus) we have been
working with in the complex case.

Lemma 8.9. Suppose given ω ∈ K
∗ with N(ω) = ωω′ = 1. Then the

expression

(8.15) �(λ, η) = ω(n,m)∧(r,k),

for λ = (n + mθ, n + mθ′) and η = (r + kθ, r + kθ′), defines a K
∗-valued

group 2-cocycle σ on Λ.

Proof. The argument is the same as in the complex case. It suffices to show
that the cocycle condition holds. �

Definition 8.10. The twisted group ring K(Λ, σ) is the unital involutive
K-algebra generated by elements R�

λ with the product

(8.16) R�
λ R�

η = �(λ, η)R�
λ+η = ω(n,m)∧(r,k)R�

λ+η,

for λ = (n + mθ, n + mθ′) and η = (r + kθ, r + kθ′), and the involution
(R�

λ )∗ = R�
−λ.

The twisted group ring K(Λ, σ) also acts on VΛ by

(8.17) R�
λ eη = �(η, λ)eλ+η.

Lemma 8.11. The operators R�
λ , acting as in (8.17), satisfy Mi(R�

λ ) >−∞.

Proof. The action (8.17) preserves the Lorentzian pairing (·, ·) on VΛ since

(R�
λ eη, R

�
λ eζ) = c(ω(η, λ))ω(ζ, λ)δη,ζ = N(ω(η, λ))δη,ζ = (eη, eζ),

since N(ω(η, λ)) = 1. The condition (R�v, R�v) = (v, v) implies Mi(R�
λ ) = 1.

�

However, notice that, while the action of K[Λ] extends to an action
by bounded operators on the associated real Hilbert spaces VK ⊗ιi(K) R, the
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induced action on VR of the twisted group ring K(Λ, �) is by the unbounded
operators

(8.18) R�
λ eη,± = A(r,k)∧(n,m)

ω eλ+η,±,

with

(8.19) Aω =
(

ι1(ω) 0
0 ι2(ω)

)
∈ SL2(R).

As in the complex case, we can also consider the group ring K[S(Λ, V )]
for S(Λ, V ) = Λ � V . The cocycle (8.15) extends to a cocycle on the cross
product by setting

(8.20) �̃((λ, k), (η, r)) = �(λ, Ak
ε (η)) = ω(n,m)∧(u,v)ϕk

ε ,

for λ = (n + mθ, n + mθ′) and η = (u + vθ, u + vθ′), with n, m, u, v ∈ Z.

Definition 8.12. The twisted group ring K(S(Λ, V ), �̃) is the unitary invo-
lutive K-algebra with generators R�̃

λ,k satisfying

R�̃
λ,kR

�̃
η,r = �̃((λ, k), (η, r))R�̃

λ+Ak
ε (η),k+r,

with the involution (R�̃
λ,k)

∗ = R�̃
−A−k

ε (λ),−k
.

8.4. Lorentzian Dirac operator

On the K-Krein space VΛ ⊕ VΛ we consider the densely defined K-linear
operator

(8.21) DKeλ,± = DK,λeλ,± =
(

0 D+
λ

D−
λ 0

)
eλ,± :=

(
0 �

c(�) 0

)
eλ,±,

where we write λ ∈ Λ as λ = (ι1(�), ι2(�)) with � ∈ L ⊂ K, as in (8.1).
The operator DK of (8.21) induces on the real Hilbert space VR,i ⊕ VR,i

the R-linear operators

(8.22) Dλ =
(

0 λ1
λ2 0

)
and c(Dλ) =

(
0 λ2
λ1 0

)
,

respectively. This recovers the Lorentzian Dirac operator described in (8.2)
above.
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Lemma 8.13. The data (K(Λ, �),VΛ ⊕ VΛ,DK) define a Krein K-triple in
the sense of Definition 8.5.

Proof. Properties (1)–(4) of Definition 8.5 follow from Lemma 8.7, Lemma
8.11 and the fact that the Krein adjoint (R�

λ )† = R�
−λ = (R�

λ )−1. Property
(5) follows directly from (8.21), since

D†
K

= c(Dt
K,λ) =

(
0 c(λ2)

c(λ1) 0

)
=

(
0 λ1
λ2 0

)
= DK.

We then need to prove (6), namely that the commutators [DK, R�
λ ] satisfy

Mi([DK, R�
λ ]) > −∞.

We have

[DK, R�
λ ]eη,± = �(η, λ)

(
0 (λ1 + η1) − η1

(λ2 + η2) − η2 0

)
eλ+η,±.

Thus, we have
([DK, R�

λ ]v, [DK, R�
λ ]v) = N(λ)(v, v),

from which the result follows. �
Suppose given a choice of a fundamental domain FV for the action of

V = εZ on Λ. Let ρ(λ) ∈ Z denote the unique integer such that λ = A
ρ(λ)
ε (μ),

with μ ∈ FV .
Consider the K-linear operator on VΛ ⊕ VΛ defined by

(8.23) Tεeλ,± :=
(

ερ(λ) 0
0 ε−ρ(λ)

)
eλ,±.

Consider also the involution J : V → V defined by setting

Jeλ,± = eJ(λ),±,

where J(λ) = A−k
ε (μ) for λ = Ak

ε (μ) with μ ∈ FV and k ∈ Z. This satisfies
J2 = 1 and J† = J .

We set Uε = TεJ , with

(8.24) Uεeλ,± =
(

ε−ρ(λ) 0
0 ερ(λ)

)
eJ(λ),±.

We now show that the data of Lemma 8.13 satisfy the properties a Lorentzian
K-spectral triple.
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Proposition 8.14. The data (K(Λ, �),VΛ ⊕ VΛ,DK) define a Lorentzian
K-spectral triple, as in Definition 8.6.

Proof. The Tε are Krein isometries, since

(Tεeλ,±, Tεeλ,±) = N(ερ(λ))(eλ,±, eλ,±) = (eλ,±, eλ,±).

They satisfy T †
ε = Tε−1 = T−1

ε . Thus we have U †
ε = J†T †

ε = JT−1
ε = U−1

ε .
This is also a Krein isometry since both Tε and J are, with Dom(Uε) =
Dom(Tε), since J is bounded.

The operator Uε is a symmetry of the Dirac operator, namely we have

(8.25) DK,ε := U †
ε DKUε = DK.

In fact, we have

(8.26) T †
ε DKTεeλ,± =

(
0 ε−2ρ(λ)λ1

ε2ρ(λ)λ2 0

)
eλ,±.

Since we have λ = A
ρ(λ)
ε (μ) with μ ∈ FV , we can write the above equiva-

lently as

T †
ε DKTεeλ,± =

(
0 ε−ρ(λ)μ1

ερ(λ)μ2 0

)
eλ,±.

Thus, we have

J†T †
ε DKTεJeλ,± =

(
0 ερ(λ)μ1

ε−ρ(λ)μ2 0

)
eλ,±

=
(

0 λ1
λ2 0

)
eλ,± = DKeλ,±.

This proves property (1) of Definition 8.6. We now show that (2) and (3) of
Definition 8.6 also hold.

(2) follows from Lemma 8.13 and the fact that Uε is a Krein isometry,
since

(U †
ε [DK, R�

λ ]Uεv, U †
ε [DK, R�

λ ]Uεv) = ([DK, R�
λ ]Uεv, [DK, R�

λ ]Uεv)
= N(λ)(Uεv, Uεv) = N(λ)(v, v).
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(3) The adjoint U∗
ε in the associated Hilbert space inner product 〈·, ·〉 of

(8.7) satisfies U∗
ε = Uε since

U∗
ε eλ,± = (κU †

ε κ)eλ,± = c(U †
ε )eλ,±

=
(

c(ερ(λ)) 0
0 c(ε−ρ(λ))

)
eJ(λ),± =

(
ε−ρ(λ) 0

0 ερ(λ)

)
eJ(λ),± = Uεeλ,±.

Consider then the operator |D2
K
| acting on the associated real Hilbert space

by

|D2
K
|eλ,± =

(
|N(λ)| 0

0 |N(λ)|

)
eλ,±.

We restrict |D2
K
| to the orthogonal complement of the zero modes, i.e., on

the span of the eλ,± with λ �= 0. We then obtain

(8.27)∑
λ
=0

∣∣〈Uεeλ,±, |D2
K
|Uεeλ,±〉

∣∣−s/2 =
∑
λ
=0

(ε2ρ(λ) + ε−2ρ(λ))−s/2|N(λ)|−s/2.

This can be written equivalently as

(8.28)
∑
k∈Z

(ε2k + ε−2k)−s/2
∑

μ∈(Λ�{0})/V

|N(μ)|−s/2,

using the unique decomposition λ = Ak
ε (μ), for k ∈ Z and μ ∈ FV , associated

to the choice of the fundamental domain. Thus, we see that the finite sum-
mability condition holds. �

Definition 8.15. The eta function of a Lorentzian K-spectral triple is the
function

(8.29) ηD(s) :=
∑

n

sign(〈Uen,D2Uen〉)
∣∣〈Uen, |D2|Uen〉

∣∣−s/2
,

where the sum is over an orthonormal basis for the complement of the zero
modes of |D2| in the Hilbert space VR,i.

The following result relates the Shimizu L-function to the Lorentz K-
spectral triple.
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Corollary 8.16. The eta function for the Lorentz K-spectral triple of
Proposition 8.14 is of the form

(8.30) ηDK
(s) = L

(
Λ, V,

s

2

)
Zε

(s

2

)
,

where L(Λ, V, s) is the Shimizu L-function and Zε(s/2) =
∑

k∈Z
(ε2k + ε−2k)−s/2.

Proof. The argument is the same as in Proposition 8.14. We have

∑
λ
=0

sign(〈Uεeλ,±,D2
K
Uεeλ±〉)

∣∣〈Uεeλ,±, |D2
K
|Uεeλ,±〉

∣∣−s/2

=
∑
λ
=0

sign(N(λ))(ε2ρ(λ) + ε−2ρ(λ))−s/2|N(λ)|−s/2

=
∑
k∈Z

(ε2k + ε−2k)−s/2
∑

μ∈(Λ�{0})/V

sign(N(μ))|N(μ)|−s/2.

The result then follows since L(Λ, V, s) =
∑

μ∈(Λ�{0})/V sign(N(μ))|N(μ)|−s.
�

8.5. Eta function and 3-dimensional geometry

The zeta and eta functions we obtained in Proposition 8.14 and Corollary
8.16 for the Lorentzian spectral geometry are closely related to those one
can obtain from the spectral geometry of the 3-dimensional solvmanifold Xε

and the signature operator on the noncommutative torus.
We have seen in Section 7.4 above that the Dirac operator /∂Xε

on the
3-dimensional solvmanifold Xε can be related to the signature operator /Dθ,θ′

of (7.33) on the noncommutative torus TΛ,i. Up to a unitary equivalence, we
have written in (7.36) the operator /Dθ,θ′ in terms of the operators /̃D

μ

θ,θ′ =
Dμ

θ Bθ, with μ ∈ (Λ � {0})/V , defined as in (7.37).
The zeta and eta functions for the operator /̃D

μ

θ,θ′ have the following
form.

Lemma 8.17. The operator /̃Dθ,θ′ has an associated zeta function of the
form

(8.31) ζ
/̃Dθ,θ′

(s) = 2Zε

(s

2

) ∑
μ∈(Λ�{0})/V

|N(μ)|−s/2.
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The eta function of /̃Dθ,θ′ vanishes due to the symmetry in the spectrum.
However, the restriction /̃D

+
θ,θ′ of /̃Dθ,θ′ to the subspace H+ of the positive

modes of the operator Bθ has a nonvanishing eta function of the form

(8.32) η
/̃D

+
θ,θ′

(s) = L
(
Λ, V,

s

2

)
Zε

(s

2

)
= ηDK

(s).

Proof. The operator

Bθ =
(

0 ε−k − iεk

ε−k + iεk 0

)

has spectrum
Spec(Bθ) = {±(ε2k + ε−2k)1/2}

which is symmetric around zero. Thus, for the zeta function, we have

ζ
/̃Dθ,θ′

(s) =
∑

μ∈(Λ�{0})/V

|N(μ)|−s/2 2
∑
k∈Z

(ε2k + ε−2k)−s/2,

while the eta function vanishes.
One can restrict the spectral triple for the noncommutative torus TΛ,i to

the subspace H+ of the positive modes of the operator Bθ, since the action of
the Rσ

η preserves this decomposition. The new Dirac operator /̃D
+
θ,θ′ is then

given by the restriction of /̃Dθ,θ′ to H+. It has a corresponding decomposition

/̃D
+
θ,θ′,0 =

∑
μ∈(Λ�{0})/V

Dμ
θ B+

θ ,

where Spec(B+
θ ) = {(ε2k + ε−2k)1/2}. Thus, in this case, one obtains

η
/̃D

+
θ,θ′

(s) = L
(
Λ, V,

s

2

)
ζB+

θ
(s),

where
ζB+

θ
(s) = Zε

(s

2

)
=

∑
k

(ε2k + ε−2k)−s/2.

�

8.6. The residue

The special value L(Λ, V, 0) of the Shimizu L-function can be extracted from
the eta function η

/̃D
+
θ,θ′

(s) in the following way.
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Corollary 8.18. The function η
/̃D

+
θ,θ′

(s) has a pole of order 1 at s = 0 with

(8.33) Ress=0 η
/̃D

+
θ,θ′

(s) =
L(Λ, V, 0)

log ε
.

Proof. Consider the function

Zε(s) :=
∑
k∈Z

(ε2k + ε−2k)−s.

It suffices to show that it has a simple pole at s = 0 with residue

(8.34) Ress=0Zε(s) =
1

log ε
.

One writes

Γ(s)Zε(s) =
∫ ∞

0
gε(t) ts−1dt,

where

(8.35) gε(t) =

(∑
k∈Z

e−(ε2k+ε−2k)t

)

for t > 0. The function gε(t) satisfies

gε(t) = −e−2t + 2hε(t) − 2
∞∑

k=0

e−ε2kt(1 − e−ε−2kt),

where

hε(t) =
∞∑

k=0

e−ε2kt.

We can estimate −e−2t = −1 + O(t) when t → 0 and (1 − e−ε−2kt) =
O(ε−2kt), uniformly. Notice that

hε(t) − hε(ε2t) = e−t =
∞∑

r=0

(−1)r

r!
tr,

hence

(8.36) hε(t) =
1

2 log ε
log

(
1
t

)
+ C −

∞∑
r=0

(−1)r

r!(ε2r − 1)
tr.
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Thus, the function Γ(s)Zε(s) has a double pole at s = 0 and simple poles
at s ∈ Z<0. Thus, the function Zε(s) has a simple pole at zero with residue
1/ log ε. �
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