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Birational Calabi–Yau threefolds and BPS
state counting
Yukinobu Toda

This paper contains some applications of Bridgeland–Douglas sta-
bility conditions on triangulated categories, and Joyce’s work on
counting invariants of semistable objects, to the study of birational
geometry. We introduce the notion of motivic Gopakumar–Vafa
invariants as counting invariants of D2-branes, and show that they
are invariant under birational transformations between Calabi–Yau
threefolds. The result is similar to the fact that birational Calabi–
Yau threefolds have the same betti numbers or Hodge numbers.

1. Introduction

First of all, let us recall the following well-known fact.

Theorem 1.1 [28]. Let φ : W ��� X be a birational map between smooth
projective Calabi–Yau threefolds. Then we have

bi(W ) = bi(X) for all i ∈ Z.

Here bi(∗) is the i-th betti number of ∗.

This result has been generalized for all dimensions by [1, 47] using the
method of p-adic integration. Later on the equality of Hodge numbers
hp,q(X) (more generally stringy Hodge numbers hp,q

st (X) for varieties with
log terminal singularities) under birational maps has been proved in [2,10,32]
using the method of motivic integration. (Also see [19,48] for related works.)

In terms of string theory, the numbers bi(X), hp,q(X) are interpreted
as “counting invariants” of BPS D0-branes, which are mathematically sta-
ble zero-dimensional sheaves {Ox}x∈X . In this paper, we shall address the
following question.

Question 1.2. How do counting invariants of BPS D2-branes (i.e., stable
one-dimensional sheaves) transform under birational transformations?
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A similar problem has been studied in [31,33,35,36] for Gromov–Witten
invariants and in [17, 40] for Donaldson–Thomas invariants. In this paper,
we are interested in Question 1.2 for Gopakumar–Vafa invariants, which
were introduced by physicists Gopakumar and Vafa [13]. In [16], Hosono
et al. proposed a first mathematical formulation of them. The purpose
of this paper is to introduce another mathematical formulation which we
call motivic Gopakumar–Vafa invariants and study their behavior under
birational transformations. Our method is quite different from the works
cited before, and uses Bridgeland–Douglas stability conditions on triangu-
lated categories [7, 11, 12], and Joyce’s counting invariants of semistable
objects [20–23].

1.1. Gopakumar–Vafa invariants

Let X be a Calabi–Yau threefolds over C, β ∈ N1(X) and g ∈ Z≥0, where
N1(X) is the R-vector space of numerical classes of one cycles. The 0-point
genus g Gromov–Witten invariant of X in numerical class β is defined as the
integration over the virtual fundamental class of the moduli space of stable
maps Mg,0(X, β),

Nβ
g :=

∫
Mvirt

g,0 (X,β)
1Mg,0(X,β) ∈ Q.

Although the invariants Nβ
g are not integers in general, Gopakumar and

Vafa [13] claimed the following integrality of the generating function involv-
ing Nβ

g , based on the string duality between Type IIA and M-theory.

Conjecture 1.3. There are integers nβ,conj
g and the following equality in

Q[[N1(X), λ±1]],

∑
β,g

Nβ
g qβλ2g−2 =

∑
β,g,k

nβ,conj
g

k

(
2 sin

(
kλ

2

))2g−2

qkβ .

They also claimed that the integer nβ,conj
g should be defined by the

“virtual counting of genus g Jacobians” in the moduli space of the BPS-
branes wrapping around holomorphic curves in X, and some computations
are done in [26]. Its mathematical proposal by Hosono et al. [16] uses the
relative Lefschetz action on the intersection cohomology of the moduli space



Birational Calabi–Yau threefolds 65

of one-dimensional semistable sheaves E with

(1.1) (ch2(E), ch3(E)) = (β, 1),

which we denote by Mβ. Using an sl2 × sl2 -action on IH∗(M̃β) where
M̃β → Mβ is the normalization, they defined an invariant ñβ

g ∈ Z and con-
jectured that the invariants ñβ

g satisfy Conjecture 1.3.
However it seems that the invariants ñβ

g are unlikely to be deformation
invariant, hence not equal to nβ,cong

g exactly, since the definition of ñβ
g does

not involve virtual classes. Now there is another approach of Gopakumar–
Vafa invariants using the notion of stable pairs, proposed by Pandharipande
and Thomas [38].

1.2. Main result

Based on the work [16], we will construct invariants (cf. Definition 4.25)

nβ
g (X) ∈ Z, for g ≥ 0, β ∈ N1(X),

as a refinement of ñβ
g . Roughly speaking nβ

g (X) is defined using a certain
motivic invariant, similar to the virtual Poincaré polynomial of Mβ. Fur-
thermore nβ

g (X) is also defined for a non-effective one cycle class β. At
least nβ

g (X) coincides with ñβ
g if the moduli space Mβ is smooth and β is

represented by an effective one cycle. The following is our main theorem.

Theorem 1.4. Let φ : W ��� X be a birational map between smooth
projective Calabi–Yau threefolds. Then we have

nβ
g (W ) = nφ∗β

g (X),

for all g ≥ 0 and β ∈ N1(W ).

It is worth mentioning that in the proof of Theorem 1.4, putting β = 0
would result Theorem 1.1 (cf. Remark 5.7). The definition of nβ

g also
does not involve virtual classes, so we do not claim that nβ

g satisfy Conjec-
ture 1.3. However we have obtained a certain mathematical approximation
of Gopakumar–Vafa invariants, which have birational invariance property.

1.3. Strategy of the proof of Theorem 1.4

We use the notion of stability conditions on triangulated categories intro-
duced by T. Bridgeland [7], based on M. Douglas’s work on Π-stability



66 Yukinobu Toda

[11, 12]. Roughly speaking a stability condition on a triangulated category
D consists of data

Z : K(D) −→ C, P(φ) ⊂ D,

where Z is a group homomorphism and P(φ) is a subcategory for each φ ∈ R,
which satisfy some axioms (Definition 3.1). We work over the triangulated
category D = DX defined by

DX := {E ∈ Db(Coh(X)) | dim Supp(E) ≤ 1}.

In terms of string theory, the set of objects {P(φ) | φ ∈ R} is supposed to
represent the set of BPS-branes at some point of the so-called stringy Kähler
moduli space, the subspace of the moduli space of N = 2 super conformal
field theories. Indeed Bridgeland [7] showed that the set of good stability
conditions Stab(X) is a complex manifold, and expected that it describes
the stringy Kähler moduli space mathematically. In this paper, we will
construct a connected open subset (cf. Lemma 3.6),

UX ⊂ Stab(X),

which corresponds to the neighborhood of the large volume limit in string
theory. Then our invariant nβ

g (X) is defined as a certain counting invariant of
objects E ∈ P(φ) which satisfy (1.1) with respect to some point (Z,P) ∈ UX .

Next let us consider a birational map φ : W ��� X from another Calabi–
Yau threefolds W . Then due to Bridgeland [8], we have the equivalence of
triangulated categories,

Φ: DW −→ DX ,

which gives an isomorphism Φ∗ : Stab(W ) → Stab(X). We claim that the
closures of Φ∗UW and UX intersect, in particular they are contained in the
same connected component of Stab(X) (cf. Lemma 5.2). Then Question 1.2
is rephrased as follows.

Question 1.5. How do counting invariants vary by changing stability
conditions, from σ ∈ UX to τ ∈ Φ∗UW ?

Now we use D. Joyce’s theory on configurations on abelian categories
and counting invariants of semistable objects [20–23]. Especially in [23],
he studies how counting invariants of semistable objects vary under change
of stability conditions. Although his works focus on stability conditions
on abelian categories, his arguments also apply in our case. The reason
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is as follows: roughly speaking, a theory of stability conditions on abelian
categories corresponds to a local theory on Stab(X). Thus Joyce’s works
enable us to study how counting invariants vary locally, and actually we will
see they do not vary at all. Obviously we can answer Question 1.5, and
conclude Theorem 1.4 by this argument.

The content of this paper is as follows. In Section 2 we review the
mathematical proposal of Gopakumar–Vafa invariants in [16]. In Section 3
we review Bridgeland’s work on stability conditions on triangulated cate-
gories [7], and construct some stability conditions we need. In Section 4
we introduce our invariant nβ

g (X), and prove Theorem 1.4 in Section 5. In
Section 6 we prove some technical lemmas.

1.4. Terminology used in this paper

In this paper, all the varieties are defined over C. We say X is Calabi–Yau
if X is smooth projective with trivial canonical bundle. For a variety X,
we denote by D(X) the derived category of coherent sheaves on X. For
a triangulated category D, its K-group is denoted by K(D). We use the
following standard terminology used in birational geometry [30],

N1(X) :=
⊕
D⊂X

RD/ ≡, N1(X) :=
⊕
C⊂X

RC/ ≡ .

In the definition of N1(X), D ⊂ X is a divisor and D1 ≡ D2 if and only if
D1 · C = D2 · C for any curve C on X. Similarly in the definition of N1(X),
C is a curve on X and C1 ≡ C2 if and only if D · C1 = D · C2 for any divisor
D. Cleary we have the perfect pairing,

N1(X) × N1(X) 	 (D, C) 
−→ D · C ∈ R,

which identifies N1(X) with the dual of N1(X). We set N1(X)C =N1(X)
⊗R C and

NE(X) := {Cone of effective curves} ⊂ N1(X),

A(X)C := {B + iω ∈ N1(X)C | ω is ample } ⊂ N1(X)C.

Suppose that a birational map φ : W ��� X is an isomorphism in codimen-
sion one. We use the following isomorphisms,

φ∗ : N1(W ) −→ N1(X), φ∗ : N1(W ) −→ N1(X),
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where the left-hand side is the strict transform and the right-hand side is
the inverse of the dual of the LHS. For a non-zero β ∈ N1(X), Chowβ(X)
is the subvariety of the Chow variety Chow(X), representing effective one
cycles on X with numerical class β. One can refer [29, chapter 1, section
3] for the existence of the variety Chowβ(X). We set Chowβ(X) = Spec C

when β = 0. For a coherent sheaf E on X with dim Supp(E) ≤ 1, we set

(1.2) s(E) :=
∑
p∈X

lengthOX,p
(Ep){p} ∈ Chowβ(X),

where β = ch2(E) and p runs through all the codimension two points.
Let X be a Calabi–Yau threefold. For an object E ∈ DX and v =

(β, k) ∈ N1(X) ⊕ Z, we say E is of numerical type v if

(ch2(E), ch3(E)) = (β, k).

2. Review of work of Hosono et al.

In this section, we briefly review the work of Hosono et al. [16].

2.1. Representations of sl2

First let us recall that the Lie algebra sl2 is generated by three elements,

e =
(

0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
,

which satisfy the relation,

[e, f ] = h, [h, e] = 2e, [h, f ] = −2f.

For each j ∈ 1
2Z, there is a unique irreducible representation of sl2 (up to

isomorphism) of dimension 2j + 1, called the spin j representation, and
denoted by (j). For V = (j), there is an eigenvector v ∈ V of h such that
fv = 0 and

(j) =< v, ev, . . . , e2jv >, e2j+1v = 0,

with hekv = (−2j + 2k)v, 0 ≤ k ≤ 2j.
Let X be a normal projective variety and IH∗(X) is the intersection

cohomology of X introduced in [4]. Note that if X is connected and smooth,
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we have

IH i(X) = H i+dim X(X, C),

for any i ∈ Z. Let H be an ample divisor on X, and η be the Lefschetz
operator,

η = H∧ : IH∗(X) −→ IH∗+2(X).

It is well known that the operator ηi : IH−i(X) → IH i(X) is an isomor-
phism. (cf. [4, theorems 5.4.10 and 6.2.10].) Using this, one can construct
an sl2-action on IH∗(X) as follows (see [39, section 2] for details). First we
find a homogeneous basis of IH∗(X) which consist of primitive elements.
Here v ∈ IH−i(X) for i ≥ 0 is primitive if ηi+1v = 0. For such a basis {vα},
IH∗(X) is written as a direct sum of the subspaces generated by

(2.1) {vα, ηvα, . . . , ηiαvα},

with deg vα = −iα. Then define the representation of sl2 on IH∗(X) by
letting e ∈ sl2 act as η, h ∈ sl2 act as multiplying by the degree and the
action of f ∈ sl2 is defined inductively from the requirement of fvα = 0.
Hence the subspace (2.1) gives spin

(
iα

2

)
-representation. For a complex

torus T of dimension g, we have the following formula (see [16, section 2]).

IH∗(T ) = Ig :=
[(

1
2

)
⊕ 2(0)

]⊗g

.

Lemma 2.1. The sl2-representation type of IH∗(X) does not depend on a
choice of an ample divisor H.

Proof. Let H ′ be another ample divisor, and consider the operator η′(∗) =
H ′ ∧ ∗. Let Tj , T

′
j ⊂ IH∗(X) be the sub sl2-representations with respect

to the operators η, η′ respectively, consisting of direct sums of spin (j′)-
representations for j′ ≥ j. Suppose that Tj , T ′

j have the same sl2-represention
types. Then the minimal degrees of the following graded vector spaces,

(2.2) IH∗(X)/Tj , IH∗(X)/T ′
j ,

are same, say d ∈ (−2j, 0]. Also the subspaces of degree d elements in (2.2)
have the same dimensions, say l. Then we see

T−d/2
∼= Tj ⊕

(
−d

2

)⊕l

, T ′
−d/2

∼= T ′
j ⊕

(
−d

2

)⊕l

,
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as sl2-representations. Therefore T−d/2 and T−d/2′ have the same sl2-rep-
resentation types. By the induction we obtain the lemma. �

2.2. Relative Lefschetz actions

Let f : X → A be a projective morphism between normal projective vari-
eties. The idea of [16] is to define the (sl2)L × (sl2)R-action on IH∗(X)
using the Lefschetz operators in fiber directions and base directions. Let
HA, HX/A be an ample divisor on A, a relative ample divisor on X over
A respectively. We denote by D(CX), Perv(CX) the derived category of
constructible sheaves on X (with its classical topology), the heart of the
middle perverse t-structure on D(CX) respectively. We have the perverse
Leray spectral sequence,

Er,s
2 = Hr(A, pRsf∗ICX) =⇒ IHr+s(X),

where ICX ∈ Perv(CX) is the intersection complex on X, and pRsf∗ICX ∈
Perv(CA) is the s-th cohomology of Rf∗ICX with respect to the middle
perverse t-structure on D(CA). It is known that this spectral sequence
degenerates at E2-terms (cf. [4, theorem 6.2.5]), and we have two operators,

ηL = HX/A∧ : Er,s
2 −→ Er,s+2

2 , ηR = HA∧ : Er,s
2 −→ Er+2,s

2 ,

such that ηs
L : Er,−s

2
∼=→ Er,s

2 and ηr
R : E−r,s

2
∼=→ Er,s

2 . As in Paragraph 2.1,
these two actions define an (sl2)L × (sl2)R-action on IH∗(X) (cf. [16, corol-
lary 2.1]). Also by the same argument of Lemma 2.1, the (sl2)L × (sl2)R-
representation type of IH∗(X) does not depend on HX/A, HA.

2.3. Definition of HST (Hosono, Saito, Takahashi) invariants

Let X be a projective variety. For β ∈ N1(X) and an ample divisor H on
X, let Mβ be the moduli space of H-Gieseker semistable sheaves E on X
(cf. [18]), pure of dimension one, with numerical type (β, 1). Let M̃β → Mβ

be the normalization. By the same argument as in [37, chapter 5, section
4], there is a natural map,

πβ : Mβ 	 E 
−→ s(E) ∈ Chowβ(X),

and let Sβ the normalization of the image of πβ. The induced morphism
πβ : M̃β → Sβ is projective, hence defines an (sl2)L × (sl2)R-action on



Birational Calabi–Yau threefolds 71

IH∗(M̃β). One can rearrange its action in the following formula (cf.
[16, theorem 2.4]),

IH∗(M̃β) =
⊕
g≥0

Ig ⊗ Rg(β),

where Rg(β) is a virtual (sl2)R-representation.

Definition 2.2 [16, definition 3.6]. We define ñβ
g to be

ñβ
g =

∑
j

(−1)2j(2j + 1) · Nj ∈ Z,(2.3)

after writing Rg(β) =
∑

j Nj · (j)R as a virtual representation.

Remark 2.3. In [16, definition 3.6], the invariant ñβ
g is defined as TrRg(β)

(−1)hR , which coincides with formula (2.3).

Remark 2.4. As pointed out in [38], the invariants ñβ
g are unlikely to be

BPS-invariants discussed in [13]. We need to involve virtual classes to define
appropriate BPS-counting which are deformation invariant.

There is an alternative way of defining ñβ
g pointed out by [39], and it is

much more useful for our purposes. Let V be the space of an (sl2)L × (sl2)R-
representation. Then the operator hL + hR defines the grading V = ⊕Vn

with eRVn ⊂ Vn+2. We can decompose V into the direct sum of the vector
subspaces spanned by

v, eRv, . . . , el−1
R v,

where v ∈ Vα for some α, el
Rv = 0, and there is no v′ ∈ V with eRv′ = v.

Such a subspace is called a Jordan cell of size l and minimal degree α. Let
να

l ∈ Z≥0 be

(2.4) να
l = �{Jordan cells of size l and minimal degree α in V }.

Note that να
l depends only on the eR-action and the grading induced by

hL + hR. We have the following.

Proposition 2.5 [39]. For V = IH∗(M̃β), we have

ñβ
g =

∑
α+l≥1

(−1)α+glνα
l

{(
α + l + g
2g + 1

)
−

(
α + l + g − 2

2g + 1

)}
.
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3. Stability conditions on triangulated categories

In this section we briefly recall the notion of stability conditions on tri-
angulated categories [7], fix some notation and prove some fundamental
properties.

3.1. Generalities

The notion of stability conditions on a triangulated category D was intro-
duced by T. Bridgeland [7] motivated by M. Douglas’s work on Π-stability
[11,12]. Here we only introduce its definition and some terminology used in
this paper, and do not explain its review too much. For the readers who are
not familiar with [7], we recommend consulting the original paper [7].

Definition 3.1. A stability condition on D consists of data σ = (Z,P),

Z : K(D) −→ C, P(φ) ⊂ D,

where Z is a group homomorphism, P(φ) is a subcategory for each φ ∈ R

which satisfies,

• P(φ + 1) = P(φ)[1].

• If φ1 > φ2 and Ai ∈ P(φi), then Hom(A1, A2) = 0.

• If E ∈ P(φ) is non-zero, then Z(E) = m(E) exp(iπφ) for some m(E) ∈
R>0.

• For a non-zero object E ∈ T , we have the following collection of tri-
angles:

0 = E0 �� E1

����
��

��
��

�� E2 ��

����
��

��
��

· · · �� En = E

�����
��

��
��

A1

[1]

�����������
A2

[1]

����������

An

[1]

����������

such that Aj ∈ P(φj) with φ1 > φ2 > · · · > φn.

A non-zero object in P(φ) is called semistable of phase φ. The mass of
E is defined to be

mσ(E) =
∑

j

|Z(Aj)|.
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For an interval I ⊂ R, we denote by P(I) the smallest extension closed
subcategory of D which contains P(φ) with φ ∈ I. It is easy to see that
P((0, 1]) is the heart of a bounded t-structure on D. This gives an alternative
way of constructing a stability condition.

Proposition 3.2 [7, proposition 4.2]. Giving a stability condition is
equivalent to giving the heart of a bounded t-structure A ⊂ D together with
a group homomorphism Z : K(A) → C such that for a non-zero object E ∈ A
one has

(3.1) Z(E) ∈ H := {r exp(iπφ) | r > 0, 0 < φ ≤ 1},

and the pair (Z,A) satisfies the Harder–Narasimhan property.

The set of stability conditions which satisfy the local finiteness (cf. [7,
definition 5.7]) is denoted by Stab(D). It is shown in [7, section 6] that
Stab(D) has a natural topology. Furthermore for each connected component
Σ ⊂ Stab(D), there exists a linear subspace V (Σ) ⊂ HomZ(K(D), C) with a
norm such that we have the local homeomorphism (cf. [7, theorem 1.2]),

Z : Σ 	 (Z,P) 
−→ Z ∈ V (Σ).

3.2. Stability conditions on Calabi–Yau threefolds

For a Calabi–Yau threefold X, we consider the following triangulated cate-
gory as in the introduction,

DX := {E ∈ D(X) | dim Supp(E) ≤ 1}.

Here we introduce the subspace of Stab(DX), coming from the points corre-
sponding to the neighborhood of the large volume limit at X. For B + iω ∈
N1(X)C, we set Z(B,ω) : K(DX) → C as

Z(B,ω)(E) = − ch3(E) + (B + iω) · ch2(E).

Remark 3.3. Note that Z(B,ω) factors as follows,

Z(B,ω) : K(DX)
(ch2,ch3)−→ N1(X) ⊕ Z −→ C.

Here the right arrow takes v = (β, k) to −k + (B + iω)β, which we write as
Z(B,ω)(v) by abuse of notation.
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We also set Coh≤1(X) as Coh≤1(X) := Coh(X) ∩ DX . Note that Coh≤1
(X) is the heart of a bounded t-structure on DX . We have the following
lemma.

Lemma 3.4. For B + iω ∈ A(X)C, the pair

σ(B,ω) := (Z(B,ω), Coh≤1(X))

determines a point in Stab(DX) in the sense of Proposition 3.2.

Proof. The proof of this lemma is exactly same as in [42, lemma 4.1]. In fact
for a non-zero E ∈ Coh≤1(X), we have Im Z(B,ω)(E) > 0 when dim Supp
(E) = 1 and Z(B,ω)(E) ∈ R<0 when dim Supp(E) = 0. Thus (3.1) holds.
One can also check the Harder–Narasimhan property as in [42, lemma 4.1].

�

Remark 3.5. For an object E ∈ Coh≤1(X), it is σ(0,ω)-semistable if and
only if for any non-trivial subobject F ⊂ E in Coh≤1(X), one has

ch3(F )
ω · ch2(F )

≤ ch3(E)
ω · ch2(E)

,

i.e., E is ω-Gieseker semistable sheaf.

We define Stab(X) to be the following fiber product,

Stab(X) ��

��

Stab(DX)

��
N1(X)C

�� Hom(K(DX), C),

where the right arrow takes (Z,P) to Z and the bottom arrow takes B + iω
to Z(B,ω). Note that the stability conditions constructed in Lemma 3.4 are
contained in Stab(X). Let UX ⊂ Stab(X) be

UX := {σ(B,ω) ∈ Stab(X) | B + iω ∈ A(X)C}.

We have to check the following, whose proof will be postponed in Section 6.
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Lemma 3.6. The subset UX is an open connected subset of Stab(X).

By [7, theorem 1.1] and Lemma 3.6, the map

ZX : Stab(X) 	 (Z,P) 
−→ Z ∈ N1(X)C,

restricts to a homeomorphism between UX and A(X)C.

3.3. Wall and chamber structures

In this paragraph, we recall the notion of wall and chamber structures on the
space of stability conditions. The wall and chamber structure is introduced
in [6] on the space of stability conditions on K3 surfaces, and we show that
our space Stab(X) also possesses such a structure. Let

Stab∗(X) ⊂ Stab(X),

be the connected component which contains UX . Let S ⊂ DX be a set of
objects. For σ ∈ Stab∗(X), we call S has bounded mass if there is m > 0
such that

mσ(E) < m,

for any E ∈ S. It is easy to show that if this condition holds for σ ∈
Stab∗(X), then it also holds for any σ′ ∈ Stab∗(X). We have the follow-
ing proposition (cf. [6, proposition 9.3]).

Proposition 3.7. For a fixed compact subset U ⊂ Stab∗(X), there is a
finite number of real codimension one submanifolds {Wγ | γ ∈ Γ} such that
each connected component

C ⊂ U \
⋃
γ∈Γ

Wγ

has the following property. If E ∈ S is σ-semistable for some σ ∈ C, then E
is semistable in σ′ for all σ′ ∈ C.

Proof. The same proof of [6, proposition 9.3] applies once we show the ana-
logue of [6, lemma 9.2] in our case, i.e., the set of numerical classes,

(3.2) {(ch2(E), ch3(E)) | E ∈ S} ⊂ N1(X) ⊕ Z,

is a finite set. For an ample divisor ω, let us take σ = σ(0,ω). Also for
E ∈ S, let A1, . . . , An be the σ-semistable factors. Then the bounded mass
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condition for S implies that the values

|ch3(Ai)|, |ch2(Ai) · ω|,

are bounded. On the other hand, the following space,

{c ∈ NE(X) | c · ω ≤ 1} ⊂ N1(X),

is compact. In fact openness of the ample cone immediately implies the
compactness of the earlier space. Since ch2(Ai) or −ch2(Ai) is contained
in NE(X), we see that the pair (ch2(Ai), ch3(Ai)) has finite number of
possibilities. Hence (3.2) is also finite. �

We call a connected component C ⊂ U \
⋃

γ∈Γ Wγ chamber.

3.4. Moduli theory of semistable objects

In this paragraph, we consider the moduli problem of σ-semistable objects
E ∈ DX for σ ∈ Stab(X). Such a moduli theory is studied in [41] for stabil-
ity conditions on K3 surfaces and abelian surfaces, and we use some basic
arguments developed there. Let M be the moduli stack of objects E ∈ DX ,
satisfying the following condition,

(3.3) Exti(E, E) = 0, for i < 0.

Then by the result of Lieblich [34], the stack M is an Artin stack of locally
finite type over C. More precisely, Lieblich showed that the stack of E ∈
D(X) satisfying the previous condition is an Artin stack of locally finite
type. However for a family of objects E ∈ D(X × S), the condition Es ∈ DX

is obviously an open condition, thus M is also an Artin stack of locally finite
type.

For σ = (Z,P) ∈ UX , v ∈ N1(X) ⊕ Z and φ ∈ R, we can consider the
substack,

i : M(v,φ)(σ) ↪→ M,

which is the moduli stack of E ∈ P(φ) of numerical type v. The purpose
here is to show that M(v,φ)(σ) is algebraic. Recall that a set of objects
S ⊂ DX is called bounded if there is a finite type C-scheme S together with
an object E ∈ D(X × S) such that any object E ∈ S is isomorphic to Es for
some s ∈ S. We use the following lemma, whose proof will be postponed
until Section 6.
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Lemma 3.8. Let us take σ = (Z,P) ∈ Stab∗(X) such that Z is defined over
Q. Then the set of objects,

M(v,φ)(σ)(Spec C) = {E ∈ P(φ) | E is of numerical type v},

is bounded.

Using this lemma and the argument in [41], we show the following propo-
sition.

Proposition 3.9. The stack M(v,φ)(σ) is an Artin stack of finite type over
C, and i : M(v,φ)(σ) ↪→ M is an open immersion.

Proof. For B and ω are rational, the set of C-valued points of M(v,φ)(σ(B,ω))
is bounded by Lemma 3.8. Hence by [41, lemma 3.13 (ii), proposition 3.18]
the result is true for such σ(B,ω). Then one can apply [41, theorem 3.20,
step 1], and conclude the result for any σ ∈ UX . �

4. Motivic Gopakumar–Vafa invariants

The purpose of this section is to introduce the invariants nβ
g (X) ∈ Z, from

a certain motivic invariant of varieties over a Chow variety.

4.1. Motivic invariants of varieties

Let A be a projective variety over C. First let us recall the Grothendieck
group of varieties over A.

Definition 4.1. We define the Z-module K0(Var /A) to be

K0 (Var/A) =
⊕

Z[(X, π)]/ ∼,

where [(X, π)] is an isomorphism class of a pair of a quasi-projective variety
X together with a morphism π : X → A. The equivalence relation ∼ is
generated by

[(X, π)] = [(Z, π|Z)] + [(X \ Z, π|X\Z)],

for closed subvarieties Z ⊂ X.

Let π : X → A be a projective morphism with X smooth and connected.
There is an induced morphism X → Ã, where Ã is the normalization of
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π(A). Then as in Paragraph 2.2, IH∗(X) carries an (sl2)L × (sl2)R-action
with respect to the morphism X → Ã. Let να

l ∈ Z be the number of Jordan
cells in IH∗(X) for this action, defined in (2.4). We set P (X, π) ∈ Z[t, s] as
follows:

P (X, π) = tdim X
∑
α,l

να
l tαsl−1.

We show the following proposition.

Proposition 4.2. There exists a map,

ΥA : K0 (Var/A) −→ Z[t, s],

such that for any projective morphism π : X → A with X smooth and con-
nected, we have

ΥA([(X, π)]) = P (X, π).

Proof. Let X be a connected smooth projective variety with a morphism
π : X → A. Let Z ⊂ X be a smooth closed subvariety and take the blow-up
p : X† → X along Z,

(4.1) E
j ��

q

��

X†

p

��

π†

		�
��

��
��

�

Z
i

�� X π
�� A.

By the result of [5, theorem 5.1], K0(Var /A) is generated by such [(X, π)]
with relation

[(X†, π†)] − [(E, π† ◦ j)] = [(X, π)] − [(Z, π ◦ i)].

Hence it is enough to show that

(4.2) P (X†, π†) − P (E, π† ◦ j) = P (X, π) − P (Z, π ◦ i).

Let d = dimX and r be the codimension of Z in X. Note that q : E → Z is
a P

r−1-bundle. By the isomorphism (4.3) in Lemma 4.3 next, we have

P (X†, π†)
td

=
P (X, π)

td
+

t−r+2P (Z, π ◦ i)
td−r

+ · · · +
tr−2P (Z, π ◦ i)

td−r
,
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since μα
l is determined by the grading and eR-actions. Thus we have

P (X†, π†) = P (X, π) + t2P (Z, π ◦ i) + · · · + t2(r−1)P (Z, π ◦ i).

Similarly the isomorphism (4.4) in Lemma 4.3 yields,

P (E, π† ◦ j) = P (Z, π ◦ i) + t2P (Z, π ◦ i) + · · · + t2(r−1)P (Z, π ◦ i).

Hence the Equation (4.2) holds. �
We have used the following lemma.

Lemma 4.3. In the diagram (4.1), we have the following isomorphisms,

IH∗(X†) ∼= IH∗(X) ⊕
r−2⊕
i=0

IH∗(Z)[−r + 2 + 2i],(4.3)

IH∗(E) ∼=
r−1⊕
i=0

IH∗(Z)[−r + 1 + 2i],(4.4)

which preserve eR-actions.

Proof. Let OE(1) be the tautological line bundle on E and set ξ = c1(OE(1))
∈ H2(E, C). We have the following isomorphism,

(4.5)
H∗(Z, C) ⊕ H∗(Z, C)[−2] ⊕ · · · ⊕ H∗(Z, C)[−2(r − 1)]

∼=−→ H∗(E, C),

which sends (v0, v1, . . . , vr−1) to
∑

ξiq∗vi. It is obvious that (4.5) preserves
eR-actions, hence (4.4) follows.

Next in [14, p. 605], it is shown that we have the isomorphism,

(4.6) H∗(X†, C)
∼=−→ H∗(X, C) ⊕ H∗(E, C)

q∗H∗(Z, C)
,

which sends v ∈ H∗(X, C) to (p∗v, j∗v). For an ample divisor HA on A, we
have

π∗HA ∧ p∗v = p∗(p∗π∗HA ∧ v), j∗π†∗HA ∧ j∗v = j∗(π†∗HA ∧ v).

Hence the isomorphism (4.6) preserves eR-actions. Using (4.4) and (4.6), we
obtain the isomorphism (4.3). �

In the following, we compute some examples of our nvariant P (X, π).
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Example 4.4. (i) Let A be a d-dimensional smooth projective variety
and consider the element [(A, id)] ∈ K0(Var /A). Let bi(A) ∈ Z be the
i-th betti number of A. Then one can easily see

να
l =

{
bd+α(A) − bd+α−2(A), if l = −α + 1,

0, otherwise.

Hence we have

P (A, id) =
d∑

α=0

(bα(A) − bα−2(A))tαs−α+d.

(ii) Let π : X → A be a projective bundle with fiber P
r−1. Then applying

(i) and (4.4), we have

P (X, π) = P (A, id)(1 + t2 + · · · + t2(r−1)),

=
d∑

α=0

r−1∑
k=0

(bα(A) − bα−2(A))tα+2ks−α+d.

(iii) Let i : Z ↪→ A be a smooth subvariety of codimension r. Let π : X → A
be a blow-up along Z. Using (4.3), we have

P (X, π) = P (A, id) + P (Z, i)(t2 + t4 + · · · + t2(r−1)),

=
d∑

α=0

(bα(A) − bα−2(A))tαs−α+d

+
d−r∑
α=0

r−1∑
k=1

(bα(Z) − bα−2(Z))tα+2ks−α+d−r.

Here we have used Lemma 4.5 next, which shows P (Z, i) = P (Z, id).
Lemma 4.5 will also be used in Lemma 5.5

Lemma 4.5. Let u : A → A′ be a finite morphism between projective vari-
eties. Then the following diagram commutes,

K0(Var /A)
ΥA ��

u∗

��

Z[t, s]

K0(Var /A′).
ΥA′



����������

Here u∗ takes π : X → A to u ◦ π : X → A → A′.
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Proof. It is enough to check the commutativity for [(X, π)] ∈ K0(Var /A),
where X is a smooth projective variety and π : X → A is a morphism. Let
HA′ be an ample divisor on A′, and set HA = u∗HA′ . Note that the divisor
HA is also ample because u is finite. Since the definition of ΥA does not
depend on a choice of an ample divisor on A, one may compute ΥA(X, π)
using the eR-action on IH∗(X) given by π∗HA ∧ ∗. Also one may compute
ΥA′(X, u ◦ π) by the eR-action given by (u ◦ π)∗HA′ ∧ ∗. Since HA = u∗HA′ ,
both eR-actions are same, hence ΥA(X, π) = ΥA′(X, u ◦ π). �

Remark 4.6. For Q =
∑

qa,btasb ∈ Z[t, s], let m(Q) be the integer

m(Q) = max{a + 2b | qa,b �= 0}.

Let π : X → A be a projective morphism with X smooth and connected.
Then it is clear that m(Q) = 2 dimX for Q = ΥA([(X, π)]). In particular
one can recover να

l from t−m(Q)/2Q. Using this and the motivic property
of ΥA, one can easily show that for any quasi-projective variety X with a
morphism π : X → A and Q = ΥA([(X, π)]), the integer m(Q) is even.

Based on Remark 4.6 we introduce the following notation, which will be
used in Paragraph 4.4.

Definition 4.7. We define the subset Z[t, s]† ⊂ Z[t, s] to be the set of poly-
nomials Q such that m(Q) is even. For Q ∈ Z[t, s]†, we define the operation
Q	 by

Q	 := t−m(Q)/2Q ∈ Z[t−1, t, s].

When A = Spec C, we write K0(Var /A) as K0(Var /C), and just write
its elements as [X] ∈ K0(Var /C) omitting the structure morphism X →
Spec C. Also we write ΥSpec C as Υ for simplicity.

Remark 4.8. If A = Spec C, all the Jordan cells have length one. Hence
Υ(X) ∈ Z[t] is nothing but the virtual Poincaré polynomial of X.

There is a ring structure on K0(Var /C) defined by

([X1], [X2]) 
−→ [X1 × X2],

with unit [Spec C]. Also we have the following natural map,

Π: K0 (Var/C) × K0 (Var/A) −→ K0 (Var/A) ,
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which takes the pair ([T ], [(X, π)]) to

T × X
pr−→ X

π−→ A,

where pr is the projection to X. The operation Π makes K0(Var /A) a
K0(Var /C)-algebra. We have the following lemma.

Lemma 4.9. The following diagram is commutative.

Π: K0 (Var/C) × K0 (Var/A)

Υ×ΥA

��

�� K0(Var /A)

ΥA

��
Z[t] × Z[t, s] �� Z[t, s],

where the bottom arrow takes (Q1(t), Q2(t, s)) to Q1(t)Q2(t, s).

Proof. It is enough to check

(4.7) ΥA([T × X, π ◦ pr]) = Υ(T ) · ΥA([(X, π)]),

for smooth projective T and X with a morphism π : X → A. We have the
isomorphism as graded vector spaces,

IH∗(T × X) ∼= IH∗(T ) ⊗ IH∗(X).

Let us introduce the eR-action on the right-hand side, by letting eR act on
IH∗(T ) trivially. Then this isomorphism preserves the eR-actions, which
shows the equality (4.7) immediately. �

Remark 4.10. More generally a motivic invariant is defined to be a ring
homomorphism Υ: K(Var /C) → Λ for some ring Λ. Then a motivic invari-
ant relative to A is defined to be a map,

K0 (Var/A) ⊗K0(Var /C) Λ −→ M,

for some Λ-module M . Lemma 4.9 implies that ΥA is obtained in this way.

Remark 4.11. Let π : X → A be a morphism and p : Z → X be a Zariski
locally trivial fibration with fiber F . Then we have [(Z, π ◦ p)] = Π([F ],
[(X, π)]), which yields the equality ΥA([(Z, π ◦ p)]) = Υ(F ) · ΥA([(X, π)]) by
Lemma 4.9 (cf. [24, lemma 4.2]).
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4.2. Motivic invariants of Artin stacks

Here we extend the invariant constructed in the previous paragraph to the
invariant of Artin stacks over a projective variety A. The material of this
paragraph is a slight generalization of Joyce’s work [24]. In loc.cite, he works
on the motivic invariants over K0(Var /C) such as virtual Poincaré polyno-
mials. For our purpose we have to extend the results in [24] to invariants
over K0(Var /A) such as ΥA. However the proofs are straightforward gen-
eralizations and we will leave some details to readers. Let R be an Artin
stack of locally finite type over C. Following Joyce [24], we introduce the
Grothendieck group of Artin stacks over R, denoted by K0(St /R) in this
paper. It was denoted by SF(R) in Joyce’s papers [21–24].

Definition 4.12 [24, definition 3.1]. We define K0(St /R) to be the
Q-vector space generated by equivalence classes of pairs [(X , ρ)], where
ρ : X → R is a 1-morphism of Artin stacks, X is of finite type over C

with affine geometric stabilizers, such that for each closed substack Y ⊂ X ,
one has

[(X , ρ)] = [(Y, ρ|Y)] + [(X \ Y, ρ|X\Y)].

The following lemma is a generalization of [24, theorem 4.10]. Next we
set Λ = Q(t, s).

Lemma 4.13. Let A be a projective variety. Then ΥA : K0(Var /A) →
Z[t, s] extends to the map,

Υ′
A : K0 (St/A) −→ Λ = Q(t, s),

such that for a 1-morphism ρ : X →A with X ∼=[X/G], X is a quasi-projective
variety and G a special algebraic C-group (cf. [24, definition 2.1]), we have

(4.8) Υ′
A([(X , ρ)]) =

ΥA([(X, π)])
Υ([G])

.

Here π is the composition, π : X → [X/G] ∼= X ρ→ A.

Proof. When A = Spec C, Lemma is proved in [24, theorem 4.10]. Also
Υ([G]) is non-zero in Z[t] by [24, lemma 4.7], hence the right-hand side of
(4.8) makes sense. We have to check that for ρ : X → A with X 1-isomorphic
to [X/G], the value ΥA([(X, π)])/Υ([G]) does not depend on a choice of X,
G, and an isomorphism X ∼= [X/G]. This follows from Remark 4.11 and
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exactly the same proof of [24, proposition 4.8]. Finally as in the proof of [24,
theorem 4.10], any Artin stack with affine geometric stabilizers X is stratified
by global quotient stacks, and can define Υ′

A([(X , ρ)]) by the formula (4.8)
and the linearity. Then the same proof of [24, theorem 4.10] shows that
Υ′

A([(X , ρ)]) does not depend on a choice of such a stratification. �

We will use a Λ-module with more relations than K0(St /R), denoted
by K0(St /R). It was denoted by SF(R, Υ, Λ) in [24].

Definition 4.14 [24, definition 4.11]. We define K0(St /R)Υ to be the
Λ-module generated by equivalence classes of pairs [(X , ρ)], where ρ : X → R
is a 1-morphism of Artin stacks, X is of finite type over C with affine geo-
metric stabilizers, such that

(i) For each closed substack Y ⊂ X , one has

[(X , ρ)] = [(Y, ρ|Y)] + [(X \ Y, ρ|X\Y)].

(ii) Let X be a finite type Artin C-stack with affine geometric stabilizers
together with a 1-morphism ρ : X → R. Let T be a quasi-projective
variety, and pr: T × X → X the projection. Then

[(T × X , ρ ◦ pr)] = Υ([T ])[(X , ρ)].

(iii) Let ρ : X → R be as before and X ∼= [X/G] with X quasi-projective,
G a special algebraic group acting on X. Then we have

[(X , ρ)] = Υ([G])−1[(X, π)],

where π is the composition π : X → [X/G] ∼= X ρ→ R.

Remark 4.15. As in the proof of [24, theorem 4.10], any Artin stack of
finite type is stratified by global quotient stacks. Then using (i), (iii) in
Definition 4.14, one can show that Λ-module K0(St /R) is spanned over Λ
by [(X, π)], where X is a variety and π : X → R is a 1-morphism.

Now we descend the map Υ′
A to K0(St /A)Υ.
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Lemma 4.16. There is a Λ-module homomorphism ῩA : K0(St /A)Υ → Λ
such that the following diagram commutes,

K0 (St/A)
Υ′

A ��

��

Λ

K0 (St/A)Υ .
ῩA

�������������

Here the left arrow is the natural quotient map.

Proof. For the relation (ii) of Definition 4.14, we have

Υ′
A([(T × X , ρ ◦ pr)]) = Υ(T ) · Υ′

A([X , ρ]),

by Lemma 4.9 and the construction of Υ′
A in Lemma 4.13. The compatibility

with Definition 4.14 (iii) follows from (4.8). �

Let p : R′ → R be a 1-morphism between Artin stacks of locally finite
type. Then there is the notion of its push-forward,

(4.9) p∗ : K0
(
St/R′) −→ K0 (St/R),

by taking a 1-morphism ρ : X → R′ to p ◦ ρ : X → R. Moreover if p is of
finite type, there is the notion of its pull-back,

p∗ : K0 (St/R) −→ K0
(
St/R′),(4.10)

by taking a 1-morphism ρ : X → R to the fiber product X ×R R′ → R′

(cf. [24, definition 3.4]). These operations descend to Λ-module homomor-
phisms between K0(St /R)Υ and K0(St /R′)Υ (cf. [24, theorem 4.13]).

4.3. Ringel–Hall product

Let M be the moduli stack of E ∈ DX satisfying (3.3), which we discussed
in Section 3. Let A ⊂ DX be the heart of a bounded t-structure, and take
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v ∈ N1(X) ⊕ Z. We consider the substacks

Obj(A) ⊂ M, Obj
v(A) ⊂ M

the stack of objects in A, the stack of objects in A of numerical type v,
respectively. Suppose that Obj(A) is an open substack of M, hence in
particular Obj(A), Obj

v(A) are Artin stacks of locally finite type. (This con-
dition holds when A = Coh≤1(X).) Then there is an associative product ∗
on K0(St /Obj(A)) and K0(St /Obj(A))Υ, based on Ringel–Hall algebras [21].
Let Ex(A) be the stack of the exact sequences, 0 → E1 → E2 → E3 → 0 in
A. We have the diagram,

(4.11) Ex(A)
p2 ��

(p1,p3)
��

Obj(A)

Obj(A) × Obj(A),

where pi takes 0 → E1 → E2 → E3 → 0 to Ei. For elements fi ∈ K0(St /
Obj(A)) with i = 1, 2, one can define f1 ∗ f2 as

f1 ∗ f2 = p2∗(p1 × p3)∗(f1 × f2) ∈ K0(St /Obj(A)),(4.12)

where p2∗, (p1 × p3)∗ are defined in (4.9), (4.10) respectively. Note that if
fi ∈ K0(St /Obj

vi(A)), the element f1 ∗ f2 is contained in K0(St /Obj
v1+v2

(A)). See [21, section 5] for the details.

Theorem 4.17 [21, theorem 5.2]. The operation ∗ makes K0(St /Obj

(A)) and K0(St /Obj(A))Υ associative algebras with unit [(Spec C, ρ0)],
where ρ0 : Spec C → Obj(A) corresponds to the zero object.

In order to simplify the expositions in the following sections, we intro-
duce Hall algebras of derived categories (H(X), ∗), introduced by Toën [43].
We emphasize that in our proof, we will not use the algebra (H(X), ∗) essen-
tially. The algebra (H(X), ∗) contains (K0(St /Obj(A)), ∗) as a subalgebra,
and all the computations in the proof will be made in the latter algebra
for suitable hearts of bounded t-structures A ⊂ DX . As we do not need its
actual definition, we only give its rough explanation and properties. Let
D̃ be a dg-category of finite type (cf. [45, definition 2.4]) whose homotopy
category is D(X). Then Toën and Vaquié [45, theorem 0.1] showed that the
stack of objects in D̃, which they denote Perf(X) in [45, definition 3.28],
is an ∞-stack of locally geometric and locally of finite presentation. Then
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H(X) is defined by the ∞-stack version of our notion of stack functions
over Perf(X) (in [43, paragraph 3.3], it is denoted by Habs(D̃),) and the
∗-product is defined in the similar way of (4.12). Furthermore by [45, corol-
lary 3.21], the stack M is realized as an open substack of Perf(X). Thus
if there is a 1-morphism,

ρ : X −→ M,

with X an Artin stack of finite type, it defines an element [(X , ρ)] ∈ H(X).
In particular for the heart of a bounded t-structure A ⊂ DX with Obj(A) ⊂
M open, the algebra (K0(St /Obj(A)), ∗) is realized as a subalgebra of H(X)
(see [45, 46 – paragraph 3.3] for details).

4.4. Counting invariants of moduli stacks

Next we assume X is a Calabi–Yau threefold, and use the space of stability
conditions Stab(X) and the open subset UX in Section 3. Let us take v ∈
N1(X) ⊕ Z, σ ∈ UX and φ ∈ R. We consider the substack

i : M(v,φ)(σ) ↪→ M,

which is the moduli stack of E ∈ P(φ) of numerical type v. By Proposi-
tion 3.9, M(v,φ)(σ) is an Artin stack of finite type. Also for an interval
I ⊂ R, let Cσ(I) ⊂ N1(X) ⊕ Z be the image of the map,

(ch2, ch3) : P(I) \ {0} −→ N1(X) ⊕ Z.

Definition 4.18. For σ ∈ UX , we define δ(v,φ)(σ) ∈ H(X) to be

δ(v,φ)(σ) = [(M(v,φ)(σ), i)] ∈ H(X).

Also define ε(v,φ)(σ) ∈ H(X) as follows,

(4.13) ε(v,φ)(σ) =
∑

v1+···+vn=v

(−1)n−1

n
δ(v1,φ)(σ) ∗ · · · ∗ δ(vn,φ)(σ),

where vi ∈ Cσ(φ).

We have to check the following, whose proof will be given in Section 6.

Lemma 4.19. The sum (4.13) is a finite sum.



88 Yukinobu Toda

Remark 4.20. Suppose that for φ ∈ R, there is the heart of a t-structure
A ⊂ DX such that Obj(A) ⊂ M is open and P(φ) ⊂ A. Then δ(v,φ)(σ) is
contained in the subalgebra K0(St /Obj(A)) and ε(v,φ)(σ) coincides with the
one defined in the algebra K0(St /Obj(A)) as in [22, definition 8.1].

Remark 4.21. Suppose any σ-semistable object of numerical type v is
stable. Then we must have ε(v,φ)(σ) = δ(v,φ)(σ).

For v = (β, k) ∈ N1(X) ⊕ Z, let us consider the following open substacks
of M,

Coh(X) := Obj(Coh≤1(X)), Coh
v(X) := Obj

v(Coh≤1(X)).

By Remark 4.20, for 0 < φ ≤ 1 and σ ∈ UX , we have

(4.14) ε(v,φ)(σ) ∈ K0 (St/Coh
v(X)) .

Using the same argument as in [37, chapter 5, section 4], we have the
following 1-morphism,

π : Coh
v(X) 	 E 
−→ s(E) ∈ Chowβ(X).

Now we define the element P (v, σ) ∈ Λ.

Definition 4.22. For v ∈ N1(X) ⊕ Z and σ ∈ UX as before, we define
P (v, σ) ∈ Λ as follows.

• If v ∈ Cσ(φ) with 0 < φ ≤ 1, we define

P (v, σ) := (L − 1)Υ′
A(π∗ε

(v,φ)(σ)),

where L = Υ(A1) and A = Chowβ(X). Note that π∗ε(v,φ)(σ) ∈ K0
(St /A) makes sense by (4.14).

• If v ∈ Cσ(φ) with 1 < φ ≤ 2, we define

P (v, σ) := P (−v, σ).

Note that in this case −v ∈ Cσ(φ − 1), hence the right-hand side makes
sense.

• Otherwise we define P (v, σ) = 0.
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Remark 4.23. The definition of P (v, σ) for v ∈ Cσ(φ) with 1 < φ ≤ 2 is
motivated by the following observation. Let Cohv(X)[1] be the stack of
objects E ∈ Coh≤1(X)[1] of numerical type v. Then we have

ε(v,φ)(σ) ∈ K0 (St/Coh
v(X)[1]) .

Also we have the 1-morphism,

π′ : Coh
v(X)[1] 	 E 
−→ −s(E) ∈ A′ := Chow−β(X).

Hence it is reasonable to define

(4.15) P (v, σ) = (L − 1)Υ′
A′(π′

∗ε
(v,φ)(σ)).

However we can easily see that the right-hand side of (4.15) is equal to
P (−v, σ), hence we define P (v, σ) as in Definition 4.22 to reduce the
exposition.

We have the following proposition. (Recall that we have defined Z[t, s]†

and Q	 for Q ∈ Z[t, s]† in Definition 4.7.)

Proposition 4.24. If σ = σ(0,ω) with ω ample and v = (β, 1), we have
P (v, σ) ∈ Z[t, s]†.

Proof. We may assume v ∈ Cσ(φ) for 0 < φ ≤ 1. If σ = σ(0,ω) and v = (β, 1),
any semistable object in σ of type v is stable. In fact suppose there is a
σ-semistable object E ∈ Coh≤1(X) which is not stable. Then there is an
exact sequence 0 → E1 → E → E2 → 0 in Coh≤1(X) such that

(4.16) arg Z(0,ω)(E) = arg Z(0,ω)(E1) = arg Z(0,ω)(E2).

Because ch3(E) = 1, we have Re Z(0,ω)(E) < 0, hence (4.16) implies Re Z(0,ω)
(Ei) < 0 for i = 1, 2. Since − ch3(Ei) = Re Z(0,ω)(Ei), this contradicts to
1 = ch3(E) = ch3(E1) + ch3(E2).

By Remark 4.21 we have

ε(v,φ)(σ) = δ(v,φ)(σ) = [([Mv/Gm], ρ)],

for some projective variety Mv, Gm acting on Mv trivially and ρ is a
1-morphism [Mv/Gm] → Coh(X). (The factor Gm comes from the stabi-
lizers Aut(E) ∼= Gm for stable objects E.) In fact Mv is the moduli space
of ω-Gieseker stable sheaves of Chern character v. Thus by Remark 4.6 and
noting L − 1 = Υ(Gm), we have P (v, σ) ∈ Z[t, s]†. �
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Now we define the notion of motivic Gopakumar–Vafa invariant.

Definition 4.25. For σ = σ(0,ω) ∈ UX and v = (β, 1), write P (v, σ)	 as

P (v, σ)	 =
∑
α,l

να
l (β)tαsl−1.

By Proposition 4.24, it is possible to define P (v, σ)	. Then define the motivic
Gopakumar–Vafa invariant nβ

g (X) as follows:

nβ
g (X) =

∑
α+l≥1

(−1)α+glνα
l (β)

×
{(

α + l + g
2g + 1

)
−

(
α + l + g − 2

2g + 1

)}
.(4.17)

Remark 4.26. The motivation of (4.17) in Definition 4.25 comes from
Proposition 2.5. Obviously the invariant nβ

g (X) coincides with ñβ
g if β is

represented by an effective one cycle, and the moduli space Mβ in Para-
graph 2.3 is smooth.

Remark 4.27. Still the definition of nβ
g does not involve virtual classes, so

nβ
g is unlikely to be deformation invariant. On the other hand, our construc-

tion of BPS-count has a possibility to involve virtual classes using Behrend’s
constructible functions [3]. As in the proof of Proposition 4.24, P (v, σ) in
Definition 4.25 is equal to ΥA([(Mv, ρ)]) for some projective variety over A,
ρ : Mv → A. Then using Behrend’s constructible function ν : Mv → Z, one
might try to define P ′(v, σ) something like

P ′(v, σ) =
∑

n

±nΥA([ν−1(n), ρ|ν−1(n)]),

and construct nβ′

g by the same way as in Definition 4.25. In this paper we
stick to Definition 4.25 in order to show birational invariance, though it
seems interesting to pursue this construction.

In the next paragraph, we will show that nβ
g (X) does not depend on a

choice of ω.
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4.5. Local transformation formula of the counting invariants

The aim of this paragraph is to give the transformation formula of ε(v,φ)(σ)
under small deformations of σ. Again we assume X is a Calabi–Yau three-
fold. Let us fix the following data:

v ∈ N1(X) ⊕ Z, φ ∈ R, σ = (Z,P) ∈ UX .

Furthermore we fix an open neighborhood σ ∈ U in Stab(X) such that U is
compact. We set S ⊂ DX to be the set of objects,

S := {E ∈ DX | E is semistable in some σ′ = (Z ′,P ′) ∈ U with
|Z ′(E)| ≤ |Z ′(v)|}.

Then S has bounded mass, hence there is a wall and chamber structure on U
as in Proposition 3.7. Let C ⊂ U be a chamber with σ ∈ C. By the definition
of the topology on Stab(X) (cf. [7, Section 6]), we can take τ = (W, Q) ∈
UX ∩ C and 0 < ε < 1/6 such that

P(φ) ⊂ Q((φ − ε, φ + ε)), Q(φ) ⊂ P((φ − ε, φ + ε)),

for any φ ∈ R. Furthermore we can take W to be defined over Q. Note that
for any v ∈ Cτ ((φ − ε, φ + ε)), there are uniquely determined φ(v), φ′(v) ∈
(φ − 1

2 , φ + 1
2) such that

(4.18) W (v) ∈ R>0 exp(πiφ(v)), Z(v) ∈ R>0 exp(πiφ′(v)),

by our choice of ε. Recall the definition of H ⊂ C in (3.1).

Proposition 4.28. Let σ, τ and ε > 0 be as before. There is a unique
sequence of functions un : H

2n → Q such that we have the following in H(X),

ε(v,φ)(σ) =
∑

v1+···+vn=v

un(z1, . . . , zn, w1, . . . , wn)

× ε(v1,φ1)(τ) ∗ · · · ∗ ε(vn,φn)(τ),(4.19)

= ε(v,φ)(τ) + [ multiple commutators of ε(vi,φi)(τ)],(4.20)

where vi ∈ Cτ ((φ − ε, φ + ε)), φi = φ(vi) and

zi = exp
(

−πi

(
φ − 1

2

))
Z(vi), wi = exp

(
−πi

(
φ − 1

2

))
W (vi).
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Here (4.19) is a finite sum, and [· · · ] in (4.20) is a finite Q-linear combina-
tion of multiple commutators of ε(vi,φi)(τ).

Proof. This is an application of the arguments in [23, theorem 5.2] to Bridge-
land’s stability conditions, and the proof is same as in [41, equation (68)].
Note that (4.18) implies zi, wi ∈ H, thus (4.19) makes sense. By [41, propo-
sition 3.18], there is ψ ∈ R such that

ψ − 1 < φ − ε < φ + ε < ψ,

and Obj(Aψ) ⊂ M is open for Aψ = Q((ψ − 1, ψ]). Since all the terms in
(4.19) are contained in K0(St /Obj(Aψ)), it is enough to show (4.19) in
K0(St /Obj(Aψ)). Then the straightforward adaptation of the arguments
in [41, proposition 5.23] which deduces [41, equation (68)] gives the desired
equality. (Note that in loc.cite, we worked over an algebra A(Aψ, Λ, χ),
not over K0(St /Obj(Aψ)).) However readers can find that the same argu-
ment is applied. Moreover in loc.cite, the coefficients are given in the form
U({vi}1≤i≤n, τ, σ). These are obviously rephrased in terms of the functions
un : H

2n → Q, as in [25, paragraph 3.1]. Finally the formula (4.20) follows
from [23, theorem 5.2]. �

Remark 4.29. Suppose that there is the heart of a t-structure A ⊂ DX

with Obj(A) ⊂ M open, and all the terms ε(v,φ)(σ), ε(vi,φi)(τ) in (4.19)
are contained in K0(St /Obj(A)). Then (4.19), (4.20) hold in the algebra
K0(St /Obj(A)).

The explicit formula of un (cf. [23, definition 4.4]) is complicated and we
do not need this. Now we show the following proposition.

Proposition 4.30. For any v = (β, k) ∈ N1(X) ⊕ Z, the element P (v, σ) ∈
Λ does not depend on a choice of σ ∈ UX .

Proof. For σ ∈ UX , let us take τ ∈ UX and ε > 0 as in Proposition 4.28. It is
enough to show P (v, σ) = P (v, τ) in this situation. First assume v /∈ Cσ(φ)
for any φ ∈ R, thus P (v, σ) = 0. If P (v, τ) �= 0, there is some τ -semistable
object E ∈ DX of numerical type v. Because τ is contained in a chamber,
E must be also semistable in σ, which is a contradiction. (See the comment
in [7] after [7, proposition 8.1].) Hence P (v, τ) = 0 follows.



Birational Calabi–Yau threefolds 93

Next suppose v ∈ Cσ(φ) for some φ. We may assume 0 < φ ≤ 1. If
φ = 1, then β = 0 and v ∈ Cτ (1). Since we have

P(1) = Q(1) = {zero-dimensional sheaves},

it follows that δ(vi,1)(σ) = δ(vi,1)(τ) for any vi ∈ Cσ(1) = Cτ (1). Hence ε(v,1)

(σ) = ε(v,1)(τ) and P (v, σ) = P (v, τ) follows.
Finally suppose 0 < φ < 1. We can take ε > 0 sufficiently small such that

0 < φ − ε < φ + ε < 1. Then all the terms ε(vi,φi)(τ) in (4.19) are contained
in K0(St /Coh(X)), and (4.20) holds in K0(St /Coh(X)). Then applying
Lemma 4.16 and Remark 4.15, it is enough to show the following: for two
varieties U1, U2 with 1-morphisms ρi : Ui → Cohvi(X), where vi ∈ Cτ ((φ −
ε, φ + ε)) with v1 + v2 = v, we have

(4.21) Υ′
A(π∗[f1, f2]) = 0, fi = [(Ui, ρi)] ∈ K0 (St/Coh(X)) ,

where A = Chowβ(X). Note that if there is an exact sequence 0 → E1 →
E → E2 → 0 in Coh≤1(X), we have s(E) = s(E1 ⊕ E2). Using this and
Lemma 4.31 next, we can conclude (4.21) holds. �

Lemma 4.31. Let A ⊂ DX be the heart of a t-structure with Obj(A) ⊂ M
open. For v ∈ N1(X) ⊕ Z, assume that there is a 1-morphism π : Obj

v(A) →
A, where A is a projective variety, which satisfies,

π([E]) = π([E1 ⊕ E2]), for any exact sequence
0 → E1 → E → E2 → 0 in A,(4.22)

where E ∈ A is of numerical type v. Then we have

(4.23) Υ′
A(π∗[f1, f2]) = 0, fi = [(Ui, ρi)] ∈ K0 (St/Obj(A)) ,

where U1, U2 are quasi-projective varieties.

Proof. For C-valued points pi ∈ Ui, let E(pi) ∈ A be the objects correspond-
ing to ρi(pi). Let us decompose U1 × U2 into finite locally closed pieces,

U1 × U2 =
∐
k

Wk,

such that the dimensions of Extj(E(p1), E(p2)), Extj(E(p2), E(p1)) are
constant on each Wk for j = 0, 1. Furthermore we may assume that the
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bundles

⋃
(p1,p1)∈Wk

Extj(E(p2), E(p1)) → Wk,
⋃

(p1,p2)∈Wk

Extj(E(p1), E(p2)) −→ Wk,

are trivial bundles with fibers V j
k , V̄ j

k for j = 0, 1 respectively. Let us con-
sider the diagram (4.11) which defines ∗-product on K0(St /Obj(A)). Then
the set of C-valued points of the following stack,

(4.24) Wk ×Obj(A)×Obj(A) Ex(A),

is identified with the C-valued points of Wk × V 1
k . Let 0 → E(p1) → E →

E(p2) → 0 be an exact sequence in A which represents a C-valued point of
(4.24). Then the stabilizers at this point in (4.24) is identified with the fiber
at (id, id) of the following morphism,

Aut(0 −→ E(p1) −→ E −→ E(p2) −→ 0) −→ Aut(E(p1)) × Aut(E(p2)),

which is isomorphic to V 0
k = Hom(E(p2), E(p1)). Hence we have

(p1, p3)∗{(f1, f2)|Wk
} =

[
Wk × V 1

k /V 0
k

]
,

where V 0
k acts on Wk × V 1

k trivially. Therefore we can write f1 ∗ f2 in the
following form,

f1 ∗ f2 =
∑

k

[([
Wk × V 1

k /V 0
k

]
, ρ′

k

)]
,

for some 1-morphism ρ′
k : [Wk × V 1

k /V 0
k ] → Obj

v(A). (Also see [23, theorem
5.18].) Let us consider the composition,

(4.25) Wk × V 1
k −→

[
Wk × V 1

k /V 0
k

] ρ′
k−→ Obj

v(A) π−→ A.

By the assumption (4.22), the earlier morphism is nothing but the following
map,

Wk × V 1
k 	 (p1, p2, v) 
−→ π([E(p1) ⊕ E(p2)]).

Hence the morphism (4.25) descends to the morphism, ρ†
k : Wk → A,

which takes (p1, p2) to π([E(p1) ⊕ E(p2)]). Therefore by Lemma 4.9 and



Birational Calabi–Yau threefolds 95

using (4.8), we have

Υ′
A(π∗(f1 ∗ f2)) =

∑
k

L
dim V 1

k −dim V 0
k ΥA([(Wk, ρ

†
k)]).

(Recall that we have defined L = Υ(A1) in Definition 4.22.) Arguing as in
the same way for Υ′

A(π∗(f2 ∗ f1)) and taking their difference, we obtain

Υ′
A(π∗[f1, f2]) =

∑
k

(Ldim V 1
k −dim V 0

k − L
dim V̄ 1

k −dim V̄ 0
k )ΥA([(Wk, ρ

†
k)]).

Then Sublemma 4.32 next shows dimV 1
k − dim V 0

k = dim V̄ 1
k − dim V̄ 0

k ,
hence (4.21) follows. �

We have used the following sublemma.

Sublemma 4.32. Let A ⊂ DX be the heart of a t-structure and take E, F ∈
A. Then one has

dim Ext1(E, F ) − dim Hom(E, F ) = dim Ext1(F, E) − dim Hom(F, E).

Proof. Since X is a Calabi–Yau threefold, we have

χ(E, F ) :=
∑

k

(−1)k dim Extk(E, F )

= − dim Ext1(E, F ) + dim Hom(E, F )

+ dim Ext1(F, E) − dim Hom(F, E),

by Serre duality. On the other hand Riemann–Roch implies χ(E, F ) = 0
because chi(E) = chi(F ) = 0 for i = 0, 1. �

Combined with Proposition 4.24, we have the following.

Corollary 4.33. For any σ ∈ UX and v = (β, 1), we have P (v, σ) = P (v,
σ(0,ω)) ∈ Z[t, s]†, and nβ

g (X) does not depend on a choice of ω.

5. Birational invariance of the counting invariants

Now we state our main theorem.

Theorem 5.1. Let φ : W ��� X be a birational map between smooth pro-
jective Calabi–Yau threefolds. Then for β ∈ N1(W ), one has

nβ
g (W ) = nφ∗β

g (X).
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The strategy is as follows. First we enlarge the definition of P (v, σ) ∈
Λ for some boundary points σ ∈ UX , and show P (v, σ) = P (v, τ) for τ ∈
UX . Next we compare P (v, σ) with P (v′, σ′) defined for σ′ ∈ UW , using the
derived equivalence [8], Φ: DW → DX .

5.1. Perverse t-structures on DX

Before giving the proof of Theorem 5.1, we investigate some boundary points
in UX . We assume there is a diagram of birational maps,

(5.1) (C† ⊂ W )

g
������������

(X ⊃ C)

f										

(0 ∈ Y ),

where C and C† are tree of rational curves. Furthermore we assume that
relative Picard numbers of f and g are one, and φ : W ��� X is not an iso-
morphism. In this case the diagram (5.1) is called a flop (cf. [28]). The main
technical tool we use here is the notion of perverse t-structures associated to
f : X → Y . It was introduced by T. Bridgeland [8] to construct the derived
equivalence between W and X. Next we collect some results we need.

Proposition 5.2. There are hearts of bounded t-structures pPer(DX) ⊂
DX for p = −1, 0 which satisfy the following.

(i) For any E ∈ pPer(DX), we have Rf∗E ∈ Coh≤1(Y ).

(ii) There is an equivalence Φ: DW → DX which restrict to the equiva-
lence,

Φ: −1Per(DW ) −→ 0Per(DX).

Furthermore Φ induce the following commutative diagrams,

(5.2) DW
Φ ��

(ch2,ch3)
��

DX

(ch2,ch3)
��

N1(W ) ⊕ Z
φ∗ �� N1(X) ⊕ Z,

Stab(W )
Φ∗ ��

ZW

��

Stab(X)

ZX

��
N1(W )C

φ∗ �� N1(X)C.

Here φ∗ in the left diagram takes (β, k) to (φ∗β, k), and Φ∗ is the
natural isomorphism induced by the equivalence Φ.
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(iii) Let H be a relatively ample divisor on X over Y . Then for a suffi-
ciently small 0 < δ � 1 and an ample divisor ω′ on Y , the pairs

σ(−δH,f∗ω′) = (Z(−δH,f∗ω′),
0Per(DX)),

σ(δH,f∗ω′) = (Z(δH,f∗ω′),
−1Per(DX)),(5.3)

determine stability conditions contained in UX .

(iv) For p = −1, 0, the stack of objects E ∈ pPer(DX),

p
Per(X) ⊂ M,

is an open substack of M.

Proof. In [8, section 3], Bridgeland constructed the hearts of some bounded
t-structures pPer(X/Y ) on D(X) for p = −1, 0. For simplicity we discuss the
case of p = 0. According to [46, lemma 3.1], the abelian category 0Per(X/Y )
is obtained from Coh(X) as a tilting of the torsion pair,

T0 = {T ∈ Coh(X) | R1f∗T = 0},

F0 = {F ∈ Coh(X) | f∗F = 0, Hom(C, F ) = 0},

where C := {E ∈ Coh(X) | Rf∗E = 0}, i.e., 0Per(X/Y ) is generated by F0[1]
and T0. Let us define pPer(DX) to be

pPer(DX) := DX ∩ pPer (X/Y ) .

We have to check that pPer(DX) is the heart of a bounded t-structure on
DX . Since F0 ⊂ Coh≤1(X), the pair (F0, T0 ∩ Coh≤1(X)) also determines a
torsion pair on Coh≤1(X), and the corresponding tilting is 0Per(DX). Thus
0Per(DX) is the heart of a bounded t-structure on DX (cf. [15]).

(i) For E ∈ pPer(DX), the object Rf∗E must be a sheaf by the definition
of pPer(X/Y ) in [8, section 3].

(ii) In [8], Bridgeland constructed the equivalence,

Φ: D(W ) −→ D(X),

which restricts to an equivalence between −1Per(W/Y ) and 0Per(X/Y ). Fur-
thermore Chen [9] showed that Φ is given by a Fourier–Mukai functor with
kernel OW×Y X . Because φ : W ��� X is an isomorphism in codimension one,
the equivalence Φ takes DW to DX .
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For the left diagram of (5.2), let us take a divisor D on X and E ∈ DW .
By Riemann–Roch theorem, we have

χ(OX(D), Φ(E)) = −D · ch2 Φ(E) + ch3 Φ(E),(5.4)

χ(Φ−1OX(D), E) = −φ−1
∗ D · ch2(E) + ch3(E).(5.5)

Here we have used the fact that ch1 Φ−1OX(D) = φ−1
∗ D. This follows

because Φ−1(OX(D)) and OX(φ−1
∗ D) are isomorphic over W \ C†, and C†

has codimension two in W (cf. [42, lemma 3.15]). By adjunction we must
have (5.4) = (5.5), and this holds for any divisor D. Thus we have

(ch2 Φ(E), ch3 Φ(E)) = (φ∗ ch2(E), ch3(E)),

by the definition of φ∗ : N1(W ) → N1(X).
For the commutativity of the right diagram of (5.2), the same proof

of [42, lemma 4.8] is applied, and we leave the readers to check the
detail.

(iii) The same proof of [42, lemma 4.3] shows that the pairs (5.3) give
stability conditions. In fact arguing as in [42, lemma 3.8 (iii)], any object in
0Per(DX) is given by a successive extension of the following objects,

S0 = ωf−1(0)[1], Si = OCi
(−1) (1 ≤ i ≤ m),(5.6)

C̃oh≤1(X) := {F ∈ Coh≤1(X) | Ci � Supp(F ) for all i}.(5.7)

Here Ci for 1 ≤ i ≤ m are the irreducible components of C and f−1(0) is
the scheme theoretic fiber of f at 0 ∈ Y . In order to show (3.1) in Propo-
sition 3.2, it is enough to check this for the generators (5.6) and (5.7). For
Z = Z(−δH,f∗ω′), we have

Z(S0) = −1 + δH · f−1(0) < 0, Z(Si) = −δH · Ci < 0 (1 ≤ i ≤ m),

Im Z(F ) > 0 for F ∈ C̃oh≤1(X) \ {0},

thus (3.1) holds. We leave the readers to check the Harder–Narasimhan
property, applying the proof of [42, lemma 4.3]. Also the case of p = −1
is similarly proved. Finally we have to check that the stability conditions
determined by (5.3) are contained in UX . Since it requires some more tech-
nical arguments, we postpone it until Section 6.
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(iv) According to [46], there are vector bundles pE on X for p = −1, 0
such that an object E ∈ DX is contained in pPer(DX) if and only if

(5.8) Rf∗RHom(pE , E) ∈ Coh(Y ).

Since (5.8) is an open condition, the stack pPer(X) is an open substack
of M. �

For v = (β, k) ∈ N1(X) ⊕ Z, let

p
Per

v(X) ⊂ p
Per(X),

the substack of objects E ∈ pPer(DX) of numerical type v. By Proposi-
tion 5.2 (i), we have the 1-morphism,

π̄ : p
Per

v(X) 	 E 
−→ s(Rf∗E) ∈ Chowf∗β(Y ).

Let σ ∈ UX be one of (5.3), corresponding to pPer(DX) for p = −1 or 0. As
in (4.14), for 0 < φ ≤ 1 we have

(5.9) ε(v,φ)(σ) ∈ K0 (St/p
Per(X)) .

Definition 5.3. Let σ ∈ UX be one of (5.3). We define P (v, σ) ∈ Λ as
follows.

• If v ∈ Cσ(φ) with 0 < φ ≤ 1, we define

P (v, σ) := (L − 1)Υ′
Ā(π̄∗ε

(v,φ)(σ)),

where Ā=Chowf∗β(Y ). By (5.9), π̄∗ε(v,φ)(σ) ∈K0(St /Ā) makes sense.

• If v ∈ Cσ(φ) with 1 < φ ≤ 2, we define

P (v, σ) := P (−v, σ).

• Otherwise we define P (v, σ) = 0.
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Remark 5.4. In [46], it is shown that there are vector bundles pE on X
for p = −1, 0 such that there are equivalences,

pPer (X/Y ) ∼−→ Coh(f∗Hom(pE , pE)).

Since the right-hand side is the module category over a non-commutative
sheaf of algebras on Y , BPS counting constructed from Definition 5.3 and
the formula (4.17) is interpreted as (approximation of) non-commutative
Gopakumar–Vafa invariant. It seems interesting to pursue its relation-
ship to non-commutative Donaldson–Thomas theory on conifold studied by
B. Szendrői [40].

For σ ∈ UX as in Proposition 5.2 (iii), let us write it σ = (Z,P) as in
Definition 3.1. We also use the abelian category

Aσ = P
((

−1
2
,
1
2

])
,

and the stack of objects in Aσ, Obj(Aσ) ⊂ M. By Proposition 5.2(iv)
and [41, proposition 3.18], Obj(Aσ) is an open substack of M. We have
the following lemma.

Lemma 5.5. Under the previous situation, the following diagram is com-
mutative,

K0 (St/Cohv(X)) ∩ K0 (St/p
Per

v(X)) ��

��


















K0 (St/Cohv(X))

π∗ �� K0 (St/A)
Υ′

A

����
��

��
��

��

f∗

��
K0 (St/p

Per
v(X))

π̄∗ �� K0
(
St/Ā

) Υ′
Ā �� Λ.

(5.10)

Here A = Chowβ(X) and Ā = Chowf∗β(Y ). Furthermore if f∗ω′ · β = 0,
the following diagram commutes,

K0 (St/Cohv(X)) ∩ K0 (St/Objv(Aσ)) ��

��


















K0 (St/Cohv(X))

π∗ �� K0 (St/A)
Υ′

A

�����������
π1∗

��
K0 (St/Objv(Aσ))

π0∗ �� K0 (St/C) Υ′
�� Λ.

(5.11)
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Here π0 : Obj
v(Aσ) → Spec C, π1 : A → Spec C are the structure morphisms.

The diagram also commutes after the following replacements.

Coh
v(X) 
−→ Coh

v(X)[1], π 
−→ π′, A 
−→ A′,

Coh
v(X) 
−→ Per

v(X), π 
−→ π̄, A 
−→ Ā.

Here we have used the notation of Remark 4.23.

Proof. In both diagrams, the commutativity of the left-hand side follows
from the functorial property of the push-forwards. Let us show the commu-
tativity of the right-hand side. Since f : X → Y contracts only finite number
of rational curves, the map

f∗ : A 	 Z 
−→ f∗Z ∈ Ā,

which sends an algebraic cycle Z on X to the cycle f∗Z on Y , is a finite
morphism (see [29, theorem 6.8] for the existence of the above morphism).
Hence we can apply Lemma 4.5, which shows the commutativity of the
right-hand side of (5.10). Finally if f∗ω′ · β = 0, any effective one cycle of
homology class β is contracted by f . Thus Ā = Spec C, and f∗ : A → Ā is
identified with π1. Therefore the commutativity of the right-hand side of
(5.11) also follows from Lemma 4.5. �

Now we show the following proposition.

Proposition 5.6. Let σ ∈ UX be as before and τ = (W, Q) ∈ UX . Then
for any v ∈ N1(X) ⊕ Z, one has P (v, σ) = P (v, τ).

Proof. It is enough to show P (v, σ) = P (v, τ) under the situation of Propo-
sition 4.28. Furthermore the same proof of Proposition 4.30 shows P (v, σ) =
P (v, τ) = 0 if v /∈ Cσ(φ) for any φ ∈ R. Thus we may assume v ∈ Cσ(φ) for
some 0 < φ ≤ 1. First we assume 0 < φ < 1. Let us take ε > 0 as in Propo-
sition 4.28. We can choose ε > 0 sufficiently small so that 0 < φ − 2ε <
φ + 2ε < 1. Then we have

Q((φ − ε, φ + ε)) ⊂ pPer(DX) ∩ Coh≤1(X).

Thus all the terms in (4.19) are contained in both K0(St / pPer(X)) and
K0(St /Coh(X)), and (4.20) holds in both algebras. Applying Lemma 4.31
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for A = Coh≤1(X), we have

(5.10) (L − 1)Υ′
A(π∗ε

(v,φ)(σ)) = (L − 1)Υ′
A(π∗ε

(v,ψ)(τ)),

for some ψ ∈ (φ − ε, φ + ε). (Here we have used the same notation as in
Lemma 5.5.) By Definition 4.22, the right-hand side of (5.10) is P (v, τ). On
the other hand we have

(5.11) (L − 1)Υ′
A(π∗ε

(v,φ)(σ)) = (L − 1)Υ′
Ā(π̄∗ε

(v,φ)(σ)),

by the diagram (5.10). Then the right-hand side of (5.11) is P (v, σ) by
Definition 5.3. Hence (5.10) and (5.11) show P (v, σ) = P (v, τ).

Next suppose φ = 1. Note that in this case f∗ω′ · β = 0 for v = (β, k).
For a sufficiently small ε > 0, one has

Q((1 − ε, 1 + ε)) ⊂ Aσ.

Thus the formulae (4.19) and (4.20) hold in K0(St /Obj(Aσ)). Applying
Lemma 4.31 for A = Aσ, we have

(5.12) (L − 1)Υ′(π0∗ε
(v,1)(σ)) = (L − 1)Υ′(π0∗ε

(v,ψ)(τ)),

for some ψ ∈ (1 − ε, 1 + ε). If ψ ≤ 1, then ε(v,ψ)(τ) is contained in both
K0(St /Coh(X)) and K0(St /Obj(Aσ)), hence the right-hand side of (5.12)
is equal to P (v, τ) by the diagram (5.11). Also the diagram (5.11) after the
following replacement,

Coh
v(X) 
−→ p

Per
v(X), π 
−→ π̄ A 
−→ Ā,

shows that the left-hand side of (5.12) is equal to P (v, σ). Hence in this case
we obtain P (v, σ) = P (v, τ). When ψ > 1, we can use the diagram (5.12)
after the replacement,

Coh
v(X) 
−→ Coh

v(X)[1], π 
−→ π′ A 
−→ A′,

and conclude that P (v, σ) = P (v, τ). In fact by Remark 4.23, we see that
the right-hand side of (5.12) is equal to P (v, τ) also in this case. �

5.2. Proof of Theorem 5.1

Proof. We may assume that there is a diagram (5.1), since any birational
map φ : W ��� X is connected by a sequence of flops [27]. Let H be a
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relatively ample divisor on W over Y and

σ = (Z(−δH,g∗ω′),
−1Per(DW )) ∈ UW ,

the stability condition in (5.3), applied for g : W → Y . By Proposition 5.2
(ii), we have

Φ∗σ = (Z(−δφ∗H,f∗ω′),
0Per(DX)).

(Here we have used the right diagram of (5.2).) Since −φ∗H is relatively
ample over Y , Φ∗σ is one of the stability conditions constructed in (5.3).
Hence by Proposition 5.6, it is enough to show

(5.13) P (W, v, σ) = P (X, φ∗v,Φ∗σ).

We may assume v ∈ Cσ(φ) for 0 < φ ≤ 1. By Proposition 5.2 (ii), the equiv-
alence Φ induces the isomorphism,

(5.14) ΦSt : K0
(
St/−1

Per(W )
)

−→ K0
(
St/0

Per(X)
)
.

It is easy to see that (5.14) preserves ∗-product. Furthermore by the left
diagram of (5.2), the isomorphism (5.14) takes δ(v,φ)(σ) to δ(φ∗v,φ)(Φ∗σ).
Thus we have

(5.15) ΦStε
(v,φ)(σ) = ε(φ∗v,φ)(Φ∗σ).

On the other hand, we have the commutative diagram,

K0
(
St/−1Per

v(W )
) ΦSt ��

π̄W ∗ �������������������
K0

(
St/0Per

φ∗v(X)
)

π̄X∗

��
K0

(
St/Ā

) ΥĀ �� Λ.

(5.16)

Hence the diagram (5.16) together with (5.15) imply (5.13). �

Remark 5.7. If v = (0, 1) and σ ∈ UX , then P (v, σ) is equal to
∑

i bi(X)ti.
Hence Proposition 5.6 and (5.13) imply bi(W ) = bi(X) for all i ∈ Z.

Example 5.8. Let P
1 ∼= C ⊂ X be a (−1,−1) curve, i.e., the normal

bundle NC/X is isomorphic to OC(−1) ⊕ OC(−1). For m �= 0, the same
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computation in [16, proposition 4.5] shows,

nm[C]
g (X) =

{
1 if g = 0, m = ±1,
0 otherwise.

Let φ : W ��� X be a flop at C, and C† ⊂ W the flopped curve. Since
φ∗[C†] = −[C], one can see

n[C†]
g (W ) = n−[C]

g (X) = 1,

by the computation shown. Note that since −[C] is not effective, the invari-
ant nβ

g (X) should also be defined for non-effective one cycle classes β.

6. Some technical lemmas

In this section, we prove some postponed technical lemmas.

6.1. Proof of Lemma 3.6

Let us take σ = σ(B,ω) ∈ UX and B′ + iω′ ∈ N1(X)C. First we show ‖Z(B,ω)
−Z(B′,ω′)‖σ < ∞ (see [7, section 6] for ‖∗‖σ). By the definition of ‖∗‖σ, it
is equal to

(6.1) sup
{

|{(B − B′) + i(ω − ω′)} ch2(E)|
|Z(B,ω)(E)| : E is semistable in σ

}
.

Let us put m = |Z(B,ω)(E)| for a σ-semistable object E. Then we have
|ω · ch2(E)/m| ≤ 1. We set K ⊂ N1(X) as

(6.2) K := {c ∈ NE(X) | ω · c ≤ 1} ⊂ N1(X).

As in the proof of Proposition 3.7, the space K is compact. Therefore the
function

K 	 c 
−→ |{(B − B′) + i(ω − ω′)}c| ∈ R

has a maximum value, say M . Since ch2(E)/m ∈ K or − ch2(E)/m ∈ K,
we have (6.1) ≤ M < ∞.
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Then by [7, proposition 6.3], the map Stab(X) → N1(X)C is a local
homeomorphism. Suppose that B′ + iω′ satisfies

‖Z(B,ω) − Z(B′,ω′)‖σ < sin πε,

for a sufficiently small ε. Then [7, theorem 7.1] guarantees the existence
of a stability condition τ = (Z(B′,ω′),Q) which satisfies d(P,Q) < ε (see [7,
section 6] for d(∗, ∗)). If we know τ ∈ UX , we can conclude UX is open.

To conclude τ ∈ UX , it is enough to check Q((0, 1]) ⊂ Coh≤1(X). Accor-
ding to the proof of [7, theorem 7.1], the set of objects Q(φ) for 0 < φ ≤ 1
is obtained as follows: an object E ∈ DX is contained in Q(φ) if and only
if there is a thin and enveloping subcategory E ∈ P((a, b)) such that E
is Z(B′,ω′)-semistable with phase φ (see [7, definitions 7.2 and 7.4] for the
notion of thin enveloping subcategory). Take E ∈ Q(φ) with E ∈ P((a, b))
as before. If 0 < a < b ≤ 1, one has E ∈ Coh≤1(X). Suppose b > 1. Then
there is a distinguished triangle

(6.3) H−1(E)[1] −→ E −→ H0(E),

with H−1(E)[1] ∈ P((1, b)) and H0(E) ∈ P((a, 1]). The semistability of E
in Z(B′,ω′) implies

(6.4) arg Z(B′,ω′)(H
−1(E)[1]) ≤ arg Z(B′,ω′)(H

0(E)).

Here arg is taken in the interval (πi(a − ε), πi(b + ε)). However since H i(E)
∈ Coh≤1(X), (6.4) implies E ∼= H0(E) or E ∼= H−1(E)[1]. Since E has
phase 0 < φ ≤ 1 with respect to Z(B′,ω′), one must have E ∼= H0(E) ∈
Coh≤1(X). The similar argument shows E ∈ Coh≤1(X) when a ≤ 0.

6.2. Proof of Lemma 3.8

In fact we show the following stronger claim. Let Σ ⊂ Stab(DX) be the
connected component which contains UX , and Σ′ ⊂ Σ the subset of σ =
(Z,P) such that Im Z ⊂ C is discrete. We show that for any σ ∈ Σ′, φ ∈ R

and z ∈ C, the following set of objects,

M (z,φ)(σ) := {E ∈ P(φ) | Z(E) = z},

is bounded. For an ample divisor ω on X, let us consider the point σ(0,ω) ∈
UX . By Remark 3.5, any σ(0,ω)-semistable object is nothing but ω-Gieseker
semistable sheaf up to shift. As is well known, the set of ω-Gieseker
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semistable sheaves with a fixed Hilbert polynomial forms a bounded family,
hence the claim is true for σ = σ(0,ω).

Next suppose that the previous claim is true for some σ = (Z,P) ∈ Σ′.
We show that if τ = (W, Q) ∈ Σ′ is sufficiently close to σ, then the claim
also holds for τ . Obviously once we show this, then the claim is true for
any σ ∈ Σ′. In order to show the boundedness of M (z,φ)(τ), we may assume
φ = 1/2 by applying some element g ∈ G̃L

+
(2, R) (cf. [7, lemma 8.2]) to σ,

τ . If τ is sufficiently close to σ, we have

Q
(

1
2

)
⊂ P

((
1
4
,
3
4

))
⊂ Q((0, 1)).

For E ∈ M (z,1/2)(τ), let Fi ∈ P(φi) for φi ∈ (1/4, 3/4), 1 ≤ i ≤ n be the σ-
semistable factors of E. Since Im W (Fi) ≤ Im W (E), there is δ > 0 which
does not depend on E such that Im Z(Fi) ≤ Im z + δ, if τ is enough close
to σ. Because Im Z ⊂ C is discrete, we see that numbers of semistable
factors n, and the values zi = Z(Fi) ∈ C have finite number of possibilities.
Since Fi ∈ M (zi,φi)(σ), the boundedness of M (zi,φi)(σ) for each i implies the
boundedness of M (z,φ)(τ).

6.3. Proof of Lemma 4.19

We may assume 0 < φ ≤ 1 and let us take 0 < ε < 1/6. Since σ ∈ UX ,
there is τ = (Z(B,ω), Coh≤1(X)) ∈ UX with B, ω rational such that Cσ(φ) ⊂
Cτ ((φ − ε, φ + ε)). From this it is clear that there is a finite number of pos-
sibilities for n in (4.13). Hence it is enough to check the finiteness of the set,

{(v1, v2) | v1 + v2 = v, vi ∈ Cσ(φ)}.

We write vi = (βi, ki) ∈ N1(X) ⊕ Z. It is enough to check that the possible
pairs (β1, β2) are finite. First we assume 0 < φ < 1. We may assume that
0 < φ − ε < φ + ε < 1. Then βi ∈ NE(X) and we have

(6.5) Im Z(B,ω)(vi) ≤ Im Z(B,ω)(v).

Since (6.5) implies βi · ω ≤ β · ω and (6.2) is compact, the possible pairs
(β1, β2) must be finite.

Next we treat the case of φ = 1. Then vi is decomposed as follows,

vi =
∑

j

vij , vij ∈ Cτ (φij) with φij ∈ (1 − ε, 1 + ε).
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If we write vij = (βij , kij), then βij ∈ NE(X) or −βij ∈ NE(X). We can
easily see,

|βij · ω| = |Im Z(B,ω)(vij)| ≤ |Re Z(B,ω)(v)| · tanπε.

Again since (6.2) is compact, the possible {βij}i,j are finite. Thus the pair
(β1, β2) also has a finite number of possibilities.

6.4. Proof of Proposition 5.2 (iii)

We have to show stability conditions in (5.3) are contained in UX . In [42,
proposition 4.4], the author put the assumption that there exists a hyper-
plane Y0 ⊂ Y such that f−1(Y0) is smooth. In our purpose, we have to
improve the proof and show that actually stability conditions in (5.3) are
contained in UX without such assumption.

The proof goes on as in Lemma 3.6, and we show the case of p = 0 for
simplicity. Let σ = σ(−δH,f∗ω′) be as in (5.3), and take B + iω ∈ N1(X)C.
We also set Z = Z(−δH,f∗ω′). The value ‖Z − Z(B,ω)‖σ is given by

(6.6) sup
{

|{(−δH − B) + i(f∗ω′ − ω)} ch2(E)|
|Z(E)| : E is semistable in σ

}
.

In order to show (6.6) is finite, it is enough to give the upper bound of
(6.6) for E ∈ 0Per(DX). Let us take F ∈ C̃oh≤1(X) where C̃oh≤1(X) is
given by (5.7), and put m = |Z(F )|. Then f∗ω′ · ch2(F )/m ≤ 1. By the
openness of the big cone, there is a sufficiently small rational polyhedral
cone f∗ω′ ∈ Δ ⊂ φ∗A(W ) ∪ A(X). Let K ′ be

K ′ := {c ∈ Δ̌ | f∗ω′ · c ≤ 1} ⊂ N1(X),

where Δ̌ is the dual cone. Then K ′ is compact, hence the function

K ′ 	 c 
−→ |{(−δH − B) + i(f∗ω′ − ω)} · c| ∈ R

has a maximum value, say M ′. Since F ∈ C̃oh≤1(X), we have ch2(F ) ·
φ∗H ′ ≥ 0, where H ′ is an ample divisor on W . Hence ch2(F )/m ∈ K ′, which
implies

(6.7)
|{(−δH − B) + i(f∗ω′ − ω)} ch2(F )|

|Z(F )| ≤ M ′,

for all F ∈ C̃oh≤1(X).
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Next let us take a non-zero G ∈ 0Per(DX) supported on C. Since G is
generated by (5.6), we can write [G] =

∑n
i=1 ai[Si] in K(DX) for ai ≥ 0. Let

us set ci := δH · Ci and c′
i := |((−δH − B) − iω) · Ci|. We have

(6.8)
|{(−δH − B) + i(f∗ω′ − ω)} ch2(G)|

|Z(G)| ≤
∑n

i=1 aic
′
i

a0 +
∑n

i=1 aici
.

Since ci > 0 and ai > 0 for some i, we have RHS≤ M ′′ for some M ′′ > 0
independent of ai. We may take M ′′ = M ′.

Finally since 0Per(DX) is generated by (5.6) and (5.7), any E ∈0Per(DX)
is written as [E] = [F ] + [G] in K(DX), where F ∈ C̃oh≤1(X) and [G] =∑n

i=1 ai[Si] for ai ≥ 0. We have

(6.6) ≤ sup
{

M ′ · |Z(F )| + |Z(G)|
|Z(F ) + Z(G)| : E ∈ 0Per(DX)

}
(6.9)

≤ M ′ · sup
{

|z| + 1
|z + 1| : Im z ≥ 1

}
< ∞.(6.10)

Now we have proved ‖Z − Z(B,ω)‖σ < ∞. As in the proof of Lemma 3.6, for
any ε > 0 there is B + iω ∈ A(X)C and a stability condition τ = (Z(B,ω),Q)
such that

d(σ, τ) < ε, ‖Z − Z(B,ω)‖σ < sin πε.

If we show τ ∈ UX , we can conclude σ ∈ UX . The same proof of the last
part of Lemma 3.6 shows τ ∈ UX (it is enough to notice that in the sequence
(6.3), one has H−1(E)[1] ∈ P([1, b)) and the rest is the same), and we leave
the detail to the reader.
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[43] B. Toën, Higher and derived stacks, Preprint, math.AG/0604504.
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